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Coffinite, USiO4, is an important U(IV) mineral, but its thermody-
namic properties are not well-constrained. In this work, two dif-
ferent coffinite samples were synthesized under hydrothermal
conditions and purified from a mixture of products. The enthalpy
of formation was obtained by high-temperature oxide melt solu-
tion calorimetry. Coffinite is energetically metastable with respect
to a mixture of UO2 (uraninite) and SiO2 (quartz) by 25.6± 3.9 kJ/mol.
Its standard enthalpy of formation from the elements at 25 °C is
−1,970.0 ± 4.2 kJ/mol. Decomposition of the two samples was char-
acterized by X-ray diffraction and by thermogravimetry and differen-
tial scanning calorimetry coupled with mass spectrometric analysis
of evolved gases. Coffinite slowly decomposes to U3O8 and SiO2

starting around 450 °C in air and thus has poor thermal stability in the
ambient environment. The energetic metastability explains why cof-
finite cannot be synthesized directly from uraninite and quartz but
can be made by low-temperature precipitation in aqueous and hy-
drothermal environments. These thermochemical constraints are in
accord with observations of the occurrence of coffinite in nature
and are relevant to spent nuclear fuel corrosion.

uranium | coffinite | USiO4 | U(IV) minerals | calorimetry

In many countries with nuclear energy programs, spent nuclear
fuel (SNF) and/or vitrified high-level radioactive waste will be

disposed in an underground geological repository. Demonstrat-
ing the long-term (106–109 y) safety of such a repository system is
a major challenge. The potential release of radionuclides into
the environment strongly depends on the availability of water
and the subsequent corrosion of the waste form as well as the
formation of secondary phases, which control the radionuclide
solubility. Coffinite (1), USiO4, is expected to be an important
alteration product of SNF in contact with silica-enriched ground-
water under reducing conditions (2–8). It is also found, accompa-
nied by thorium orthosilicate and uranothorite, in igneous and
metamorphic rocks and ore minerals from uranium and thorium
sedimentary deposits (2, 4, 5, 8–16). Under reducing conditions
in the repository system, the uranium solubility (very low) in
aqueous solutions is typically derived from the solubility product
of UO2. Stable U(IV) minerals, which could form as secondary
phases, would impart lower uranium solubility to such systems.
Thus, knowledge of coffinite thermodynamics is needed to con-
strain the solubility of U(IV) in natural environments and would
be useful in repository assessment.
In natural uranium deposits such as Oklo (Gabon) (4, 7, 11,

12, 14, 17, 18) and Cigar Lake (Canada) (5, 13, 15), coffinite has
been suggested to coexist with uraninite, based on electron probe
microanalysis (EPMA) (4, 5, 7, 11, 13, 17, 19, 20) and trans-
mission electron microscopy (TEM) (8, 15). However, it is not
clear whether such apparent replacement of uraninite by a cof-
finite-like phase is a direct solid-state process or occurs mediated
by dissolution and reprecipitation.

The precipitation of USiO4 as a secondary phase should be
favored in contact with silica-rich groundwater (21) [silica
concentration >10−4 mol/L (22, 23)]. Natural coffinite samples
are often fine-grained (4, 5, 8, 11, 13, 15, 24), due to the long
exposure to alpha-decay event irradiation (4, 6, 25, 26) and are
associated with other minerals and organic matter (6, 8, 12, 18,
27, 28). Hence the determination of accurate thermodynamic
data from natural samples is not straightforward. However, the
synthesis of pure coffinite also has challenges. It appears not to
form by reacting the oxides under dry high-temperature condi-
tions (24, 29). Synthesis from aqueous solutions usually produces
UO2 and amorphous SiO2 impurities, with coffinite sometimes
being only a minor phase (24, 30–35). It is not clear whether
these difficulties arise from kinetic factors (slow reaction rates)
or reflect intrinsic thermodynamic instability (33). Thus, there
are only a few reported estimates of thermodynamic properties
of coffinite (22, 36–40) and some of them are inconsistent. To
resolve these uncertainties, we directly investigated the ener-
getics of synthetic coffinite by high-temperature oxide melt so-
lution calorimetry to obtain a reliable enthalpy of formation and
explored its thermal decomposition.

Results and Discussion
We used two independently prepared coffinite samples. A phase-
pure coffinite sample prepared at Institut de Chimie Séparative
de Marcoule (ICSM), France is labeled “coffinite-F” and a less
pure material prepared at Forschungszentrum Jülich, Germany is
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labeled “coffinite-G.” In both cases, considerable purification af-
ter initial synthesis was done to separate impurities (SI Appendix).
The purpose of measuring and comparing both samples was to test
whether consistent thermochemical data could be obtained on ma-
terials prepared and purified independently in different laboratories.
Before calorimetric measurements, samples were characterized

by TEM, infrared spectroscopy (IR), powder X-ray diffraction
(XRD), simultaneous differential scanning calorimetry and ther-
mogravimetric analysis (DSC-TG) coupled with mass spectromet-
ric analysis of evolved gases (MS-EGA), and by EPMA. The
details are given in Experimental Methods and in SI Appendix.
The XRD patterns (SI Appendix, Fig. S1) show the reflections

expected for a zircon-type structure (space group I41/amd).
Lattice parameters are a = b = 6.983(3) Å and c = 6.263(4) Å for
coffinite-G, and a = b = 6.990(1) Å and c = 6.261(1) Å for
coffinite-F. Crystallite size was estimated from X-ray peak broad-
ening (65 nm for coffinite-G and 85 nm for coffinite-F). This
observation is consistent with previous reports (8, 24, 26, 34, 40).
Although the particle size may affect the thermodynamic prop-
erties, we did not investigate this further. Even though coarse-
grained but impure coffinite (>10 μm) has been documented from
the Grants uranium region, New Mexico (8, 41), Colorado (8, 10),
and hydrothermal deposits in Czech Republic (42), natural
coffinite and materials produced in SNF alteration are usually
fine-grained, having similar particle size as our synthetic sam-
ples. So, the data obtained here are applicable to most “real
world” situations.
TG (Fig. 1) indicates a negligible amount of water in sample

coffinite-F, not quantifiable from the MS trace. This observation
agrees with Raman spectra on the same sample which show no
signal associated with water (43). The water content of coffinite-G
quantified by MS-EGA is 0.37 mol H2O per mole of USiO4
(slightly less than that estimated from TG analysis: 0.43 mol H2O
per mole of USiO4). The water signal from MS suggests that there
may be two water bonding sites, one with release near 150 °C and
the other around 275 °C. The second peak (Fig. 1C) has a high-
temperature tail up to 450 °C, suggesting some water molecules are
strongly interacting with the sample.
Above 450 °C, both samples oxidize and slowly decompose in

air, as indicated by weight increase on the TG trace due to oxi-
dation of U(IV). This is consistent with previous reports (24, 30).
After heating to 1,000 °C in air, no trace of USiO4 is detected in
either sample. Coffinite-F decomposes to U3O8 and amorphous
SiO2 (SI Appendix, Fig. S2), and coffinite-G decomposes to a mix-
ture of crystalline and amorphous SiO2 phases and a uranium-
rich phase (possibly containing some silica and whose XRD
pattern resembles that of U3O8).
EPMA of coffinite-F (SI Appendix, Table S1) confirms USiO4

stoichiometry. The X-ray map (SI Appendix, Fig. S3) and back-
scattered electron image show that coffinite-F is pure and homo-
geneous with no detectable secondary phases. As for coffinite-G,
the Si/U ratio of this sample is 4.19 and its chemical composition is
USiO4·3.19SiO2·0.37H2O, obtained by combining EPMA result
and water content from MS, described in detail in SI Appendix.
This bulk composition is used to interpret the calorimetric data.
Through thermochemical cycles (SI Appendix, Tables S2 and

S3), the enthalpy of formation (ΔHf,ox) of coffinite-F from binary
oxides (uraninite plus quartz) is 24.6 ± 3.1 kJ/mol, obtained from
calorimetry in sodium molybdate (3Na2O·4MoO3); and 26.7 ±
4.7 kJ/mol, derived from calorimetry in lead borate (2PbO·B2O3)
(Table 1). Using independent measurements in two different
solvents confirms consistency and indicates that there were no
unanticipated problems in calorimetric procedures. Details of
calorimetry are given in SI Appendix.
Due to limited sample amount, calorimetry of coffinite-G was

performed only in 3Na2O·4MoO3 solvent. Correction for excess
silica and water was required to derive ΔHf,ox of coffinite from
this sample. The excess Si is present as amorphous to poorly

crystalline silica (SI Appendix, Fig. S4), and was corrected by
using the drop solution enthalpy of silica glass. The correction
for excess water is less simple. If the water is “free water” and
thus weakly bonded to the sample, the corrected ΔHf,ox of
coffinite is −5.5 ± 3.5 kJ/mol (SI Appendix, Table S4). However, it
is unlikely the H2O is free water, as IR shows water signal for the
sample dried at 200 °C for 48 h (SI Appendix, Fig. S6), and MS
shows that the water is removed gradually up to 450 °C, which
suggests that at least part of the H2O in this sample is strongly
bonded. Assuming water in coffinite is adsorbed on the surface
with an integral adsorption enthalpy of −80 kJ/mol per mole of

Fig. 1. DSC-TG of coffinite-F [DSC trace in bold solid, and TG trace in bold
dash (A)] and coffinite-G (B) with corresponding H2O

+ (m/z +18) trace from
MS-EGA (C).
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H2O, similar to the values observed for water adsorption on
alumina and titania (44–46) and, through proper thermochemi-
cal cycles (SI Appendix, Table S4), a value of ΔHf,ox of coffinite
(24.1 ± 3.5 kJ/mol) is obtained, in agreement with the results for
coffinite-F (Table 1).
The tightly bound water could originate from metaschoepite

(UO3·2H2O), which could be formed from partial oxidation of
U(IV) (47) that originally was not incorporated in the coffinite
structure, but rather was embedded in the gelatinous layer of
excess amorphous silica (33). This phase may be hard to detect
by XRD, especially if it is fine-grained or poorly crystalline. If all
of the water is in metaschoepite, the composition of coffinite-G
can be written as 0.815(USiO4)·3.379SiO2·0.185(UO3·2H2O).
Making this correction through an appropriate thermochemical
cycle (SI Appendix, Table S5) gives the corrected ΔHf,ox of USiO4
as 23.9 ± 4.0 kJ/mol, again in agreement with the value for
coffinite-F.
Thus, our measurements indicate that coffinite is energetically

metastable with respect to uraninite plus quartz by about 25
kJ/mol. Coffinite is also energetically metastable with respect to
mixture of UO2 and amorphous SiO2, as the enthalpy difference
between quartz and glass is 9.1 kJ/mol (48). For the Gibbs free
energy of coffinite formation from uraninite plus quartz to be
negative at 25 °C, the entropy of formation must be strongly
positive and probably unreasonably large for a solid-state reaction.
Thus, we conclude that coffinite is thermodynamically metastable
relative to uraninite plus quartz under ambient conditions. This
conclusion is in good agreement with the solubility experiments
and calculations of Szenknect et al. (40) using reference entropy
data (22, 40) and obtainingΔHf,ox = 10 ± 32 kJ/mol (Table 2). The
present values disagree with ΔHf,ox = -5.8 kJ/mol estimated by

Langmuir (22) or ΔHf,ox = 4.3 ± 5.6 kJ/mol collected in the book
edited by Grenthe (37) and suggest that the estimation by Szen-
knect et al. (40) is more reliable than those values (Table 2).
The substantially positive ΔHf,ox also explains why coffinite

cannot be formed directly from UO2 and SiO2 and agrees with
the observation that coffinite decomposes upon heating to a
moderate temperature as seen from DSC-TG experiments.
Coffinite metastability was also inferred by Costin et al. (33) in

hydrothermal synthesis. They noted that the dissolution–repreci-
pitation process slows toward the coffinite end of the Th1−xUxSiO4
series, forming a correspondingly increasing amount of a Th–U
dioxide phase. As a result, the formation of a uranothorite phase
with x > 0.26 (coffinite included) is suggested to be thermody-
namically unfavorable (40). In addition, a Th–U dioxide phase and
amorphous silica were inevitably present in these products (24, 30).
Because coffinite is metastable with respect to uraninite plus

quartz, why can it form and persist widely in uranium ore de-
posits (2, 12, 19)? First, one should realize that coffinite can be
stable with respect to aqueous species over a wide range of
concentrations. Langmuir (22) assumed the average silica con-
centration to be 10−3 M in the solution where the aqueous
equilibrium between coffinite and uraninite is established (5):
USiO4(s) + 2H2O(l) ⇄ UO2(s) + Si(OH)4(aq). A calculation based
on Gibbs free energy obtained from solubility experiments done
by Szenknect et al. (40) and auxiliary data (37) gives the Gibbs
free energy of this reaction to be 5.7 ± 5.8 kJ/mol, which is es-
sentially zero. Thus, their analysis suggests that coffinite can
form from aqueous U(IV) in contact with silica-rich aqueous
solutions, even though it is metastable with respect to crystalline
UO2 plus SiO2. Our enthalpy data support this general conclu-
sion. Therefore, coffinite can be an alteration product of UO2
under repository, hydrothermal, metamorphic, or even igneous
conditions as long as its formation can proceed through pre-
cipitation from aqueous solution.
The presence of water may play an additional significant role

in stabilizing the coffinite phase or favoring the coffinitization
process (4). Deditius et al. (8) studied the composition of natural
coffinite and found it can crystallize with variable amounts of
H2O apparently incorporated in the material. However, whether
this water is truly in the coffinite structure (24, 49), is associated
with the excess silica (24, 43), or represents a fine intergrowth of
coffinite and some other phase, e.g., metaschoepite, is not clear.
Although it is plausible that coffinite forms as an alteration

product from interaction of uraninite with Si-rich fluids, there
may also be an alternative explanation for its formation. Con-
sider underground nuclear waste repositories, ore deposits, or
natural reactors where the high alpha dose (6, 25, 50) triggers

Table 1. Measured enthalpies of drop solution and enthalpies
of formation from oxides

Source ΔHds, kJ/mol ΔHf,ox, kJ/mol

Coffinite-F −121.43 ± 1.54* 24.6 ± 3.1
−102.01 ± 3.10† 26.7 ± 4.7

Coffinite-G 44.14 ± 0.94* (−5.5 ± 3.5)
44.14 ± 0.94* 24.1 ± 3.5‡

44.39 ± 0.94* 23.9 ± 4.0§

*Measured in 3Na2O·4MoO3 solvent.
†Measured in 2PbO·B2O3 solvent.
‡This value obtained from a correction considering the water was strongly
bonded and its interaction enthalpy was assumed to be −80 kJ/mol.
§This value obtained from a correction considering metaschoepite as an
impurity phase containing all of the water.

Table 2. Comparison of thermodynamics of formation of coffinite at 25 °C obtained in different studies

Source ΔHf,ox, kJ/mol* ΔGf,ox, kJ/mol* ΔSf,ox, J mol−1·K−1† ΔH°f, kJ/mol ΔG°f, kJ/mol

Langmuir (22) −5.7‡ 5.6 −37.9 −2,001.3 −1,882.4
Grenthe et al. (37) 4.3 ± 5.6‡ 4.4 ± 4.2 −0.4 ± 12.8 −1,991.3 ± 5.4 −1,883.6 ± 4.0
Hemingway (36) 2 ± 6 −1,886 ± 6
Szenknect (40) −105 ± 32‡ 16 ± 6 −407 ± 56 −2,101 ± 32 −1,872 ± 6

10 ± 32‡,§ −19.1 ± 12.8§

Fleche (39) 82 −1,913
Coffinite-F 24.6 ± 3.1 −1,971.0 ± 3.4‡

26.7 ± 4.7 −1,968.9 ± 4.9‡

Coffinite-G (-5.5 ± 3.5) −2,001.1 ± 3.8‡

24.1 ± 3.5 −1,971.5 ± 3.8‡

23.9 ± 4.0 −1,971.7 ± 4.2‡

*Calculated with auxiliary data from ref. 48.
†This value was calculated.
‡Calculated with auxiliary data from ref. 48.
§The entropy value was taken from averaging reference data (22, 37), and then was used to calculate the enthalpy of formation.
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radiolysis of water to form H2O2 (25, 51–53); the localized oxi-
dative conditions would help dissolve uraninite into more soluble
uranyl (UO2

2+) species (47). Organic matter in the natural system
(6, 8, 12, 18, 28) could then play an important reducing role to
precipitate coffinite as summarized by Deditius et al. (8). A se-
quence of UO2 oxidation by peroxide, transport of U(VI) species
in aqueous solution, and reduction by organic matter in the pres-
ence of a silica source could produce coffinite at locations distant
from the initial UO2 phase. Under such conditions, USiO4 could
form if its crystallization were kinetically favored over that of UO2.
Thus, the process of coffinitization may involve a sequence of
reactions: UO2 dissolution under locally oxidizing conditions,
transport of the dissolved U(VI) species into more reducing
environments containing dissolved silica, followed by coffinite
precipitation.

Experimental Methods
Coffinite-F and -G samples were prepared by hydrothermal synthesis routes,
described elsewhere (33, 35). Because these syntheses routes inevitably have
UO2 and amorphous silica as byproducts, further purification is needed.
HNO3 and KOH solution were used to wash the samples as described in the
purification protocol proposed by Clavier et al. (54). More synthesis and
purification details are shown in SI Appendix.

XRD measurements were performed at room temperature using a Bruker
D8 diffractometer with Bragg–Brentano geometry (Cu Κα radiation, 40 kV,
and 40 mA), using a step size of 0.016–0.028 °. Lattice parameters were re-
fined by the Le Bail method (55).

DSC-TG measurements were performed with a Setaram LabSys instrument
coupled with a quadrupole mass spectrometer (MKS Cirrus2) for evolved gas
analysis. Coffinite samples (∼10 mg) were placed in Pt crucibles without lids
and heated in airflow (40 mL/min) to 1,000 °C at 10 °C/min. For quantitative
analysis of evolved gases MS traces for H2O

+ (m/z = 18) and CO2 (m/z = 44)
were calibrated by decomposition of calcium oxalate in the same experimental
conditions.

Chemical composition and homogeneity were determined using a Cameca
SX-100 electron microprobe with wavelength dispersive spectroscopy (15-kV

accelerating voltage, 10-nA beam current, and a spot size of 1 μm). Samples
were pelletized, polished, and carbon coated before analysis. The de-
composition products of coffinite-G were recovered after DSC-TG and the
ratio of Si/U was further analyzed.

High-temperature oxide melt solution calorimetry was conducted using a
custom-built Tian-Calvet twin microcalorimeter (52–54). Powdered samples
were hand pressed into small pellets (∼5 mg) and were dropped from room
temperature into either 30 g of molten 2PbO·B2O3 solvent at 802 °C, or 20 g
of molten 3Na2O·4MoO3 solvent presaturated with 100 mg of SiO2 (56) at
703 °C, each held in Pt crucibles. O2 gas was continuously bubbled through
the melt at 5 mL/min to ensure an oxidizing environment and facilitate
dissolution of samples to prevent local saturation (57). Flushing O2 gas at
∼50 mL/min through the calorimeter chamber assisted in maintaining a
constant gas environment above the solvent and removing any evolved
gases (57). The calorimeter was calibrated using the heat content of ∼5 mg
α-Al2O3 pellets (58, 59). Upon rapid and complete dissolution of the sample,
the enthalpy of drop solution ΔHds was obtained. Finally, using appropriate
thermochemical cycles, enthalpies of formation from the oxides ΔHf,ox were
calculated.

Previous studies show that silica has a low solubility in 3Na2O·4MoO3 but
silica-containing samples dissolve, precipitating silica as cristobalite (56). A
test of this solvent on the dissolution of zircon structure materials was done
by dropping ZrSiO4 and HfSiO4 in this setup and yielded consistent results
with experiments done in molten lead 2PbO·B2O3 solvent at 802 °C.
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