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Molecular networks drive nearly all cellular processes. With the advent 

of omics technologies involving next-generation sequencing and mass 

spectrometry, we have started to uncover highly complex gene, protein, and 

biochemical networks that underlie survival mechanisms like growth and stress 

tolerance. 

However, the study of cell wide of protein-protein interactions that 

importantly link genomic, transcriptomic, and proteomic data to cellular activity 

has been hindered by technical limitations, and the need to survey and track 

billions of possible combinatorial protein interactions. Moreover, many omics 

technologies have not yet been developed or applied to non-model organisms, 

particularly to ecologically and economically important species that may be 

negatively impacted by climate change. To address these shortcomings, I 

developed a modified yeast two-hybrid technology called CrY2H-seq that 

enables massively multiplexed protein interaction screening through a Cre-lox 

reporter and next generation sequencing, and demonstrated its applications for 

generating interactome resources by screening a comprehensive set of 

Arabidopsis transcription factors. Lastly, I applied metabolomics analysis to 

investigate how ocean acidification might impact the Dungeness crab. I found 

transcription factor families preferentially interact with others, and relationships 

among families supported by recent independent studies may drive 

mechanisms underlying reproductive development and hormone signaling. I 

also found that metabolomes of developing Dungeness crab show treatment 

specific responses to low oxygen and low pH seawater treatments. Taken all 



 xix 

together, the new biological insight gained from these novel omics approaches 

can valuably be used to inform targeted future experiments aimed at optimizing 

crop cultivation and predicting how economically and economically important 

species might response to future environmental stress. 
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ABSTRACT 

Knowledge of proteome-wide protein-protein interaction (PPI) networks, 

or interactomes, that promote robust growth or that are perturbed by 

environmental stress could progress strategies for improving crop cultivation 

and conservation management. However, current technologies for obtaining 

interactome data are not suitable for non-model organisms because of time, 

cost, and sensitivity constraints. To better resolve interactomes for both model 

and non-model organisms, modifications to the yeast two-hybrid system were 

explored. The addition of a new Cre recombinase reporter gene with mutant lox 

sequence-containing expression plasmids enabled one-pot screening of 

complex libraries, and massively paralleled sequencing to detect intracellularly-

created DNA identifiers of interaction pairs. Compared to the gold standard 

yeast two-hybrid assay, this modified system showed improved sensitivity and 

reproducibility in the screening of an ORF collection previously used for assay 

benchmarking. This new technological development facilitates obtaining 

experimentally derived interactome data, with promising applications for non-

model organism studies.  
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INTRODUCTION 

Most biological processes involve an enormous number of different 

proteins functioning in complex and dynamic networks. Mapping these networks 

in the form of an interactome, a complete list of physical interactions mediated 

by all proteins of an organism, provides a more comprehensive perspective of 

the overall physical and functional cellular landscape than the traditional 

reductionist approach1,2. Interactomes show functions for uncharacterized 

genes, inconspicuous crosstalk between inter and intracellular networks, 

network evolution, and mechanisms of disease manifestation3–6. More 

specifically, interactomes reveal highly connected proteins, involved in multiple 

pathways, which are often the targets of pathogens7–9. Observing how networks 

become re-wired when exposed to stimuli can elucidate vulnerable network 

regions and how fragile or flexible certain pathways are. Understanding these 

system characteristics will help improve the way disease is treated, our 

understanding of evolution, and perhaps approaches for optimizing crop 

productivity10–14.  

Although interactomes reveal global and profound connections, the 

interactomics field has historically been hindered by insufficient technology to 

study the sheer volume of proteome-wide interactions. For the model plant 

species Arabidopsis thaliana, screening the estimated 35,000 distinct protein 

coding genes easily translates into screening over 1.2 x 109 interactions, 

considering isoforms and post-translational modifications. An ideal 

methodology would measure all interactions in real-time as they are happening 
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in the cell, however technology has not yet evolved to simultaneously image 

and identify a complex pool of interacting protein pairs. The convention is 

typically to express proteins from cloned coding sequences in expression 

plasmids, and assay for one set of interactions at a time. The challenge to 

develop a systematic, cost-effective, time-efficient, non-targeted approach has 

led to two widely-used technologies for large-scale interactome mapping: high-

throughput yeast two-hybrid (HT-Y2H) and high-throughput affinity 

purification/mass spectroscopy (HT-AP/MS) screening. 

While HT-Y2H and HT-AP/MS are complementary approaches that 

together have led to uncovering large interactome space15, they address 

different questions about protein interactions. HT-AP/MS characterizes proteins 

that co-purify with an affinity-tagged protein from lysate, yielding information 

about complexes, but not about direct interactions between two proteins. HT-

Y2H assays for direct, binary protein interactions and measures phenotypic 

changes in yeast that result from the interaction of two proteins being expressed 

in each cell. More specifically, one gene is expressed as a bait protein fused to 

a DNA-binding domain and the other gene is expressed as a prey protein fused 

to an activation domain. Thus, upon protein interaction, a functional transcription 

factor is reconstituted and can only then drive the expression of a reporter gene.  

Matrix formatting has dramatically improved the throughput of these 

techniques. Some of the latest HT-AP/MS technology has made it possible to 

screen 96 samples per hour16, however this platform requires tens of thousands 

of costly assay plates to cover a proteome. HT-Y2H screening strategies include 
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either individual pairwise screening where a single bait protein is screened 

against a single prey protein, or library screening where a single bait protein is 

screened against a pool of prey proteins. Both strategies rely on matrix format 

to maintain the identity of at least one of the proteins being screened. The time 

and cost constraints that this amounts to is exemplified in the generation of the 

Arabidopsis Interactome 1 (AI-1), where all pairwise combinations of 8,000 

proteins were tested, taking upwards of 5 years and $8,000,000 to complete6. 

The 6,205 AI-1 interactions identified correspond to about only 2% of the 

estimated complete Arabidopsis interactome. The low coverage indicates that 

despite thorough screening, the number of screens was insufficient for this Y2H 

gold standard assay to achieve saturation. This problem has historically been a 

major source for little overlap between HT-Y2H-derived interactome datasets17.  

To cover the depth of proteome-wide interactions, requires a massively 

paralleled strategy similar to next-generation sequencing that can identify over 

a billion of different sequences in one sequencing run. Efforts to couple next-

generation sequencing with yeast two-hybrid experiments have led to the 

development of many assay variations, for instance, Stitch-seq18 where coding 

sequences are individually amplified from positive colonies and stitched 

together by a subsequent PCR. While Stich-seq largely increased rate of 

protein-protein interaction identification, the requirement of a matrix-based 

format for tracking interacting partners during screening persisted. Soon after, 

another variation was developed called QIS-seq, where one bait protein is 

screened against a library of prey proteins19. Because the identity of the one 
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bait is known, only prey proteins need to be identified and can be pooled and 

sequenced en masse. QIS-seq solved the problem of keeping individual 

colonies isolated, but still required tens of thousands of assays to screen 

different baits. If the identity of both interacting partners could be maintained 

despite pooling, it would be possible to rapidly screen a proteome in Y2H. In 

2007, a proof of concept rendition of this idea exploiting cre-lox unidirection 

recombination, called BI (binary interaction)-tag Y2H20, showed small bait and 

prey cDNA libraries could be screened en masse by inducing a physical linkage 

between corresponding coding sequences of interacting proteins in cells 

surviving selection. However, limited overlap between traditional Y2H analysis 

and BI-tag Y2H hindered this concept from further development. Given the ease 

and cost-effectiveness of this strategy, an optimized variation of this technology 

could progress Systems Biology to a new level by enabling the rapid generation 

of interactomes. 

The ability to rapidly screen whole expression clone libraries in one tube 

would greatly facilitate interactome data collection, and finally enable near 

complete interactomes to be generated21. Larger search spaces could be 

interrogated, making screens untargeted and datasets less biased. Unlimited 

replicate screens could easily be carried out, allowing for interactions to be 

screened to saturation. Next-generation sequencing for PPI detection would 

eliminate the variability from scoring by visual phenotyping, leading to more 

consistent interaction scoring and higher sensitivity for transient interactions. 

The ability to sensitively quantitate PPIs from linked coding sequences could 
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even potentially measure interaction affinity. Combining existing technology for 

creating comprehensive full length cDNA yeast expression libraries22,23 with cre-

lox unidirectional recombination for intracellular PPI tracking would lead to a 

revolutionary advancement in the interactomics field, and provide a platform 

from which to screen cDNA library x cDNA library. This would open new doors 

enabling interactomes to be generated for nearly any species, and comparative 

interactomics where network changes could be observed between interactomes 

generated from different tissues ecotypes, treatments, disease states, 

development stages, and beyond.  

Towards achieving an improved interactome mapping technology, we 

built a Cre recombinase reporter gene-based yeast two-hybrid approach such 

that interacting proteins trigger the endogenous expression of Cre recombinase. 

Cre activity then irreversibly recombines mutant lox sites that flank protein 

coding sequences on bait and prey expression plasmids, forming a physical 

linkage between protein coding sequences (Fig. 1). 

 

RESULTS  

We chose to use the yeast two-hybird mating strains Y8800 (MATa) and 

Y8930 (MATα), and expression plasmids pDEST-AD and pDEST DB, which 

have all previously been described in detail18,24. These strains have become the 

gold standard strains5,6,9,25–27 because they show a heightened sensitivity to 

histidine deprivation and the plasmids are low copy which protects the cells from 

toxic effects from overabundance of foreign protein. Additionally, they allow 
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plasmid shuffling for identifying self-activating DB fusion proteins. We modified 

the plasmids to contain mutant lox sequences downstream the Gateway cloning 

site. Cre recombinase was integrated into the GAL7::LacZ reporter gene locus 

of Y8930 by homologous recombination, replacing the LacZ reporter.  

For a proof-of-concept test, the modified Y8930 (now called CRY8930) 

and its mate strain Y8800 were transformed with lox-modified bait and prey 

plasmids that harbored the well-characterized BZIP63 and BZIP53 plant 

transcription factor protein-protein interaction, respectively, and subsequently 

screened. As a negative control, the original Y8930 strain harboring the same 

BZIP63-containing bait plasmid was screened with Y8800 in parallel. 

Y8800/CRY8930 colonies surviving HIS3 reporter gene selection gave rise to 

amplicons (Fig. 2) containing BZIP53 and BZIP63 coding sequences linked 

together in a tail-to-tail manner (Fig 1d). The Y8800/Y8930 colonies surviving 

selection did not give rise to these amplicons. Unmodified plasmids in either 

combination of strains also did not give rise to these amplicons (Fig 2). 

To benchmark this modified Y2H, we screened the ORF set AI-1REPEAT 

that had previously been thoroughly screened in Y2H iterations and for which 

high confidence PPI data existed6. These ORFs were cherry picked from the 

AtORFeome 2.0 collection, individually Gateway cloned into pDEST AD and DB 

lox plasmids and transformed into yeast strains in matrix format, as described 

previously24. In the yeast two-hybrid system, false positives may arise from self-

activating proteins; that is a protein capable of inducing reporter gene 

expression on its own24. To identify these prior to library pooling and en masse 
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screening, DB proteins were screened 1x1 against an pDEST-AD empty 

plasmid strain, and clones identified as self-activating were not included in 

library pooling. The remaining non-self-activating clones were finally pooled 

from individually grown yeast clones in approximately equal amounts, and 

frozen library stock aliquots were prepared from the pooled libraries.  

Three replicate screens of AI-1REPEAT were carried out as pictured in Fig. 

3. Briefly, bait and prey libraries were mated en masse and selected for on 

synthetic complete media lacking histidine and supplemented with 1mM 3AT. 

AD and DB primers were used in a multi-template PCR to amplify Cre-

recombined coding sequences from a bulk yeast plasmid prep. Amplicons were 

fragmented at 300-500bp and 3 sequencing libraries (1 for each replicate) were 

prepared following the Illumina Truseq library prep protocol. We named this 

assay CrY2H-seq, Cre reporter-mediated yeast-two hybrid using next-

generation sequencing. 

Because self-activating proteins can also result from mutation or 

truncation during the screening process, an internal control pDEST-AD empty 

plasmid strain was spiked in to the library. This way, any coding sequence found 

fused to pDEST AD-empty plasmid could be removed computationally from the 

PPI data. With about 5,000,000 possible pairs maximally arising from a 

screening space of 1,500 bait x 2,900 prey clones, we aimed for a low 4X 

coverage and a high 16X coverage. The combined sequencing data from each 

replicate amounted to 277,000,000 reads and mapped to 36,261 protein pairs. 

After bioinformatically removing all pairs with self-activating proteins that 
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showed a protein coding sequence fused to pDEST AD-empty plasmid 

sequence, 3,500 proteins pairs remained.  

Assay reproducibility 

CrY2H-seq showed increased overlap between replicate assays 

compared to the overlap between AI-1 replicate assay, and showed similar 

overlap between replicates to the overlap between intralaboratory HT-AP/MS 

replicate assays28 (Fig. 4a). To assess reproducibility of PPIs detected by 

CrY2H-seq in a 1x1 pairwise traditional Y2H, a set of PPIs ranging in sequence 

abundance was retested and yeast colony spot growth were scored. 

Interactions retested positive at a higher rate when they overlapped across 

replicates or when they were in abundance higher than 5 reads in one replicate 

(Fig. 4b). CrY2H-seq interactions overlap with 30% AIREPEAT interactions 

reported in AI-1, an increase to the 9% overlap between high confidence yeast 

two-hybrid datasets observed in the past29. This suggests that one CrY2H-seq 

screen can more comprehensively capture high quality PPIs.  

Assay sensitivity 

Considering the interaction detection rate (5-10 PPIs/10,000 PPIs tested) 

observed across interactome datasets generated by HT-Y2H screens6, we 

expected about 2,500 interactions to result from screening the AIREPEAT ORF set 

in CrY2H-seq. Three replicate CrY2H-seq assays identified 3,500 interactions, 

which is more than three times more than those identified in AI-1. Despite this 

increase in overall interaction detection (Fig. 5), CrY2H-seq does not show a 

plateauing pattern after three replicates, indicating the entire screen was not 
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saturated and potentially more interactions could be detected with more 

screens. To more directly measure CrY2H-seq saturation, a set of PPIs reported 

in AI-1 and not identified in CrY2H-seq was also tested in a pairwise 1x1 Y2H 

test. These interactions tested positively at a rate of 70% (data not shown), 

which suggests that more CrY2H-seq replicate screens are necessary to see 

these interactions. Sub-saturation is most likely fully attributable to low mating 

efficiency (~2%), which limited the number of PPI combinations tested in each 

replicate. Because mating efficiencies have only been reported to be optimized 

up to 17%30, exhaustive screening through increasing the number replicate 

assays and oversampling likely better strategies for ensuring all combinations 

are screened. However, number of CrY2H-seq replicate assays necessary to 

reach saturation remains to be determined.  

To estimate assay sensitivity in terms of the ratio of true positives to false 

positives detected, a subset of well-characterized positive reference set 

(AtPRSv1)6 was internally included in the screen. As another benchmark, the 

detection of literature-cited interactions was used to estimate a true positive 

detection rate. To estimate false negatives, because it is impossible to generate 

a set of negative interacting pairs with absolute confidence24, a set of 

interactions was chosen at random from a list of all possible interactions and 

called random reference set. CrY2H-seq showed a higher detection rate of well-

characterized interactions and a lower detection rate of random interactions 

compared to the AI-1 gold standard assays (Fig. 6). This suggests CrY2H-seq 

is a more sensitive assay, likely due to using sequencing for interaction 
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detection.   

 

DISCUSSION 

The feasibility of the en masse recombination-based Y2H approach was 

tested with a thoroughly screened subset of the Ecker Lab Arabidopsis ORF 

collection, AIREPEAT. After comparing detected PPIs with previously published 

datasets, it is apparent CrY2H-seq captures more interactions at higher 

sensitivity and reproducibility than current Y2H systems. Because CrY2H-seq 

screening was not saturated after 3 replicate screens, additional optimizations 

must be made to reach saturation and total number of replicate screens must 

be determined. Strategies for optimizing mating efficiency, including pre-

growing cells in low pH media, mating in media supplemented with PEG, 

concentrating cells on filters for mating, and optimizing MATa to MATα ratio30, 

could be implemented. Towards determining the number of replicate assays 

necessary for saturation, a saturation curve could be generated based on the 

decreasing rate of new interactions identified in each of the three replicate 

screen and based on the estimated number of PPIs CrY2H-seq can detect. 

Finally, an additional optimization that could reduce the sequencing space 

needed for identifying all PPIs in one screen could be enriching for DNA 

fragments containing double mutant lox sequences using a target enrichment 

strategy31. Overall, CrY2H-seq shows promise for en masse protein interaction 

screening capabilities far beyond existing technologies.  
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Figure 1.1. Cre reporter gene and mutant lox sequence modifications to yeast two-hybrid. (a) 
Summary of yeast two-hybrid technology. (b) Yeast two-hybrid outcome is no growth when no 
protein interaction occurs. (c) Yeast two-hybrid outcome is growth when a protein interaction 
does occur. (d) Cre reporter gene and mutant lox sequence modified yeast two-hybrid outcome 
is growth and intracellular, irreversible recombination of bait and prey plasmids. From the newly 
formed hybrid plasmid, activation domain (AD) and DNA binding (DB) domain specific primers 
(grey arrows) can the amplify coding sequences containing the protein interaction identity that 
can be sequenced.  
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Figure 1.3. Cre reporter modified yeast two-hybrid screening of the AIREPEAT ORF collection. 
Complex bait and prey libraries were mated en masse and selected for on synthetic complete 
media lacking histidine and supplemented with 1mM 3AT. AD and DB primers were used in 
a multi-template PCR to amplify Cre-recombined coding sequences from a bulk yeast plasmid 
prep. Amplicons were fragmented at 300-500bp and 3 sequencing libraries (1 for each 
replicate) were prepared following the Illumina Truseq library prep protocol.  

~2900	
ORFs

~1500
ORFs

3 replicate screens

Figure 1.2. In vivo functionality pilot test of lox plasmids and Cre expressing yeast strain. 
Following interaction selection of positive control interactors BZIP53 and BZIP63 on synthetic 
complete media lacking histidine and supplemented with 1mM 3AT, Cre reporter activity was 
detected with AD and DB primers that only amplify a product in the Cre reporter yeast strain 
in plasmids with lox sequences. Samples 1-3 and 5-7 represent independent HIS+ colonies 
in + Cre and – Cre yeast strains; samples 4 and 8 are diluted in vitro Cre recombination 
reactions of lox plasmids with Cre (+) or without Cre (-). 
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CrY2H-seq captures more interactions overall

CrY2H-seq PPIs 

Figure 1.4. CrY2H-seq shows improved assay reproducibility. (a) shows increased overlap 
between replicate assays than AI-1 and similar overlap to interlaboratory AP/MS replicate 
assays. (b) Retest rate from 1x1 pairwise Y2H screen. Interactions identified in more than 
one replicate and interactions identified in one replicate with abundance higher than 5 reads 
retest positively at a higher rate than interactions identified in one replicate with abundance 
of 5 reads or less.  

Figure 1.5. Saturation of HT-Y2H and CrY2H-seq assays compared. CrY2H-seq (teal) 
detects more interactions in fewer repeat screens, achieving the estimated true number of 
interactions after only 3 screens, but does not show a plateauing pattern that would indicate 
saturation has been reached. The HT-Y2H Gold Standard Assay (yellow) used in AI-1 
(AIREPEAT; called AI_subspace here) does not achieve the estimated number of true 
interactions or screening saturation after 6 repeat screens. 
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Figure 1.6. Accuracy of HT-Y2H and CrY2H-seq assays compared. CrY2H-seq (teal) shows 
an increased detection of published interactions than AI-1 (Gold).  

CrY2H-seq captures more known positive interactions and 
maintains low detection of random interactions

CrY2H-seq	PPIs	
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ABSTRACT  

Broad-scale protein-protein interaction mapping is a major challenge 

given the cost, time, and sensitivity constraints of existing technologies. Here, 

we present a massively multiplexed yeast two-hybrid method, CrY2H-seq, 

which uses a Cre recombinase interaction reporter to intracellularly fuse the 

coding sequences of two interacting proteins, and next-generation DNA 

sequencing to identify these interactions en masse. We applied CrY2H-seq to 

investigate sparsely annotated Arabidopsis thaliana transcription factor 

interactions. By performing ten independent screens testing 36 million binary 

interaction combinations, and uncovering a network of 8,577 interactions among 

1,453 transcription factors, we demonstrate CrY2H-seq’s improved screening 

capacity, efficiency, and sensitivity over those of existing technologies. The 

deep-6coverage network resource we call AtTFIN-1 recapitulates one third of 

previously reported interactions derived from diverse methods, expands the 

number of known plant transcription factor interactions by three-fold, and 

reveals previously unknown family-specific interaction module associations with 

plant reproductive development, root architecture, and circadian coordination.  
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INTRODUCTION 

The yeast two-hybrid (Y2H) assay is one of the most widely adopted 

methods for high-throughput mapping of binary protein-protein interactions. 

Y2H data sets1–3 have contributed substantially to protein interaction 

repositories4  and probabilistic interactome databases5,6. Moreover, Y2H data 

have revealed complexes regulating disease7 and helped researchers identify 

cancer subtypes where similar network regions are affected by different somatic 

tumor mutations8 and conditional subnetworks underlying different plant-

pathogen infections9. However, broad-scale Y2H data acquisition remains 

constrained by cost and labor requirements of tracking interactions and the 

iterative screening necessary to generate complete interactome maps10.  

Advancements that leverage next-generation sequencing to identify 

interactions have made large-scale Y2H screening more feasible1,11,12. To 

circumvent the isolated screening of bait proteins for tracking interactions, 

multiplexed screening strategies that enable pools of baits to be screened 

against pools of preys were recently developed12,13. Barcode Fusion Genetics 

(BFG-Y2H)12 uses intracellular DNA recombination of barcoded open reading 

frame (ORF) clones to identify interacting proteins, thus allowing Y2H-positive 

colonies to be pooled and sequenced simultaneously. However, this technology 

quickly becomes costly for large-scale screening on account of the isolation and 

sequencing requirements of each barcoded bait and prey clones before 

screening to make barcode-ORF associations.  
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To more efficiently enable iterative screening, we developed Cre-

reporter-mediated yeast two-hybrid coupled with next-generation sequencing 

(CrY2H-seq). CrY2H-seq uses Cre recombinase as a Y2H protein-protein 

interaction reporter that functions intracellularly to covalently and 

unidirectionally link interacting bait and prey plasmids via specialized loxP sites 

that flank the protein-coding sequences. The linked protein-coding sequences 

serve as interaction-identifying DNA molecules that enable massively 

multiplexed screening coupled with next-generation DNA sequencing to detect 

protein-protein interactions. 

We applied CrY2H-seq to comprehensively screen in an ‘all-by-all’ 

fashion a collection of 1,956 Arabidopsis transcription factors and regulators 

(collectively called TFs)14. From ten independent CrY2H-seq ‘all-by-all’ screens, 

we report a deep-coverage Arabidopsis transcription factor interactome 

composed of 8,577 binary interactions, 7,994 of which were previously 

unreported. After experimentally and computationally validating interactions, we 

identified several network modules associated with plant reproductive 

development, root growth, environmental regulation of circadian rhythms, and 

stress- and hormone-response pathway crosstalk.  

 

RESULTS 

CrY2H-seq assay development  

To establish CrY2H-seq, we first generated a yeast strain, CRY8930, that 

carries both a Gal4-inducible GAL7::CRE expression cassette and two well-
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characterized GAL1::HIS3 and GAL2::ADE2 auxotrophic expression cassettes1 

(Fig. 2.1a). We then modified a widely used ARS/CEN Gateway-compatible 

plasmid set1,3 to contain unidirectional lox sequences15 flanking the 3’ end of 

ORF inserts, such that upon Cre recombination both ORF inserts would be on 

the same DNA molecule in a fixed orientation (Fig. 2.1b). By screening yeast 

transformants harboring known positive and negative interaction pairs in these 

modified plasmids (see Online Methods), we confirmed that positive pairs 

induced Cre expression in addition to enabling growth selection 

(Supplementary Fig. 1). Yeast colony PCR with Gal4-AD and Gal4-DB primers 

(Fig. 2.1b and Supplementary Table 1) produced amplicons only for positive 

pairs, which indicated that plasmids underwent Cre-recombination 

(Supplementary Fig. 1b,c). Sanger sequencing of Cre-recombination PCR 

products verified that a newly formed double-mutant lox site became 

sandwiched between the two ORF sequences, and recombination occurred in 

a fixed 3’-end-to-3’-end fashion (Fig. 2.1c). Moreover, interactions gave the 

same either positive or negative result regardless of whether CRY8930 or the 

unmodified Y8930 was used (Supplementary Fig. 2).  

There are two main distinctions between CrY2H-seq and existing 

multiplexed Y2H technologies12,13. First, interactions detected by CrY2H-seq 

require the parallel activation of two reporter genes driven by distinct promoters 

for detection of interactions; an auxotrophic rescue reporter and CRE. We used 

HIS3 in conjunction with CRE because GAL1:HIS3 is known to be more 

sensitive than ADE2 for detecting interacting proteins16, and the use of the 
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independent GAL7 promoter to drive CRE expression reduces promoter-

specific false positives17. Furthermore, including CRE as a secondary reporter 

gene minimizes the time and reagents required of a steroid-inducible Cre 

expression system12,13. The second distinction is that CrY2H-seq uses 

interacting protein coding sequences themselves to form an intracellular DNA 

identifier (Fig. 2.1c) rather than barcode identifiers12 that could become a 

bottleneck in large-scale screens. These key features allowed us to circumvent 

current Y2H limitations and establish a general CrY2H-seq pipeline for all-by-all 

massively multiplexed screening (Fig. 2.2). 

 

Deep interaction screening of an Arabidopsis transcription factor 

ORFeome  

We loaded a set of 1,956 Arabidopsis TFs14 into the CrY2H-seq pipeline 

and performed ten all-by-all screens with final bait and prey libraries containing 

1,877 and 1,933 unique yeast clones, respectively (Supplementary Table 2a 

and Online Methods). These starting library populations showed an ORF size 

distribution consistent with the expected size distribution (Supplementary Fig. 

3a), and the data showed minimal ORF size bias (Supplementary Fig. 3b,c). 

While bait proteins are typically screened for self-activation before Y2H 

screening, we chose to eliminate this step in order to rigorously challenge 

whether the assay would be able detect real interaction signal above the ‘noise’ 

from self-activator interactions. Instead, to internally control for self-activating 

bait proteins18, we spiked into each screen an excess amount of a Y8800 strain 
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harboring an empty pADlox plasmid. Libraries were mated and underwent HIS3 

reporter selection ten independent times. This deep screening tested 3.6 million 

potential protein combinations approximately 300 times, for an estimated total 

of one billion interactions surveyed (see Online Methods).  

After carrying out multi-template PCR amplification on plasmid pools 

isolated from each screen, we randomly sheared the PCR products to ~300 bp 

and generated standard Illumina-based DNA sequencing libraries (Fig. 2.2). We 

then performed 100-bp paired-end Illumina sequencing, aiming for a previously 

established optimized coverage of 40 million reads per screen (Supplementary 

Fig. 4 and Online Methods). Paired-end reads were mapped and quality filtered, 

and fragments corresponding to Cre-recombined ORF junctions were extracted 

(Supplementary Fig. 5a-e and Online Methods). We applied a predetermined 

basal fragment cutoff to eliminate any putative interactors that were represented 

by less than three junction fragments (Supplementary Fig. 5f and Online 

Methods). The remaining interaction-identifying fragments (see Online 

Methods) were normalized across the ten independent screens to control for 

variation between sequencing runs (Supplementary Fig. 5g and Online 

Methods), and they were classified as ‘normalized protein interaction fragments’ 

(NPIFs; Fig. 2.2). Very minimal amplicon size bias was observed in our data set 

(Supplementary Fig. 3d,e), although fragments mapping to homodimers were 

notably absent from the data, likely due to difficulty in amplification of the hairpin 

structure formed by fused identical ORFs, as was previously observed in small-

scale experiments (Supplementary Fig. 6).  
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In total, 10.9 million NPIFs were identified from the ten CrY2H-seq 

screens, and these NPIFs mapped to 173,000 unique Cre-recombined ORF 

junctions (Fig. 2.3a). Among these were 299 different pDBlox ORFs fused to an 

empty pADlox vector, indicating that 16% of baits exhibited self-activation 

(Supplementary Table 3a). All 164,293 unique ORF combinations containing 

these TFs (Supplementary Table 3b) were excluded from the data. The 

remaining 1.4 million (13%) NPIFs mapped to 8,577 protein interactions, with a 

median of 7 NPIFs per interaction (Fig. 2.3b). The 8,577 interactions form the 

deep-coverage interactome we refer to as “Arabidopsis thaliana transcription 

factor interaction network, version 1” (AtTFIN-1) 

(http://signal.salk.edu/interactome/AtTFIN-1.html, Supplementary Table 2b,c, 

see Online Methods). 

 

Validation of AtTFIN-1 Interactions 

To estimate sampling sensitivity, the fraction of all identifiable 

interactions found in one screen10, we simulated results for all possible 

orderings of replicate screens and found that one screen alone on average 

yielded 2012 ± 354 interactions (mean ± standard deviation). Calculating the 

average number of new interactions gained after each of the ten screens (Fig. 

2.3c) revealed that, even after ten screens, saturation was not reached. We fit 

this data to a Michaelis-Menton modeled curve to estimate the degree of 

saturation and determined that, of the 15,610 ± 2,661 interactions that could 
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have been maximally detected (Supplementary Fig. 7 and Online Methods), 

we detected more than half (54.6%).  

To estimate reproducibility, we retested 771 (9%) AtTFIN-1 interactions 

(678 of which were novel) that showed a range of NPIFs and screen 

occurrences (Supplementary Table 4) using a standard pairwise 1x1 array 

style Y2H screen18 (Supplementary Fig. 8a). Excluding de novo self-activating 

baits identified by parallel plating on cycloheximide selection media18, we 

observed an overall retest rate of 73% (422/580 novel interactions and 57/76 

‘known’ interactions, defined below). Additionally, we observed an increased 

retest rate for interactions appearing in multiple screens (Fig. 2.4a) but a 

relatively similar retest rate among interactions showing different ranges of 

NPIFs (Supplementary Fig. 8b). We also tested 94 AtTFIN-1 interactions (59 

of which were novel) (Supplementary Table 5a) using the wNAPPA assay19 

and observed that 50% of all AtTFIN-1 interactions and 25.4% of novel AtTFIN-

1 interactions tested positive (Fig. 2.4b and Supplementary Fig. 9). These 

rates contrasted significantly with the 2.8% positive rate observed for 36 random 

TF interactions tested in wNAPPA.  

To estimate assay sensitivity, the fraction of all detectable biophysical 

interactions10, we mined both literature3 and databases4–6 for TF interactions 

that were screened in CrY2H-seq (Supplementary Table 2b). We refer to these 

mined interactions collectively as ‘known’ interactions. Interactions involving 

self-activating TFs and homodimers were excluded from this analysis. AtTFIN-

1 showed the greatest overlap (52.2%) with Arabidopsis Interactome-1 
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interactions3 and the least overlap with AraNet6 interactions (13.4%) (Fig. 2.4c). 

We estimated a false positive rate of 0.69% ± 0.12% (mean ± standard 

deviation), by calculating the overlap of AtTFIN-1 interactions with ten different 

data sets, each composed of 8,577 randomly generated TF interactions (see 

Online Methods). Overall, AtTFIN-1 interactions showed significantly greater 

recapitulation of known interactions, including those derived from a variety of 

assays (Supplementary Fig. 10a), relative to random interactions (Fig. 2.4c). 

A precision-recall curve of these detection rates plotted as a function of the 

number of screen occurrences showed a large drop in precision with little gain 

in recall between one and two screens, which led us to classify high-confidence 

interactions as those identified in two or more screens (Fig. 2.4d).  

To measure performance improvements over array-based high-

throughput Y2H (HT-Y2H), we compared TF interaction detection rates between 

CrY2H-seq and HT-Y2H used to generate the Arabidopsis-Interactome-13. 

CrY2H-seq showed a five-fold increase in general TF interaction detection 

relative to HT-Y2H (Supplementary Fig. 11a). Of the commonly screened TF 

interactions, CrY2H-seq showed a seven-fold increase in detection—it 

recovered 1,609 TF interactions, whereas HT-Y2H detected only 229 

(Supplementary Fig. 11b). Of the commonly tested literature-curated 

interaction (LCI) pairs3, CrY2H-seq recalled 33.3% while HT-Y2H recalled only 

12.3% (Supplementary Fig. 11c). While CrY2H-seq showed a clear overall 

improvement to HT-Y2H, it should be noted that the Arabidopsis Interactome-1 

was based on the union of two primary screens and was filtered by pairwise 
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retesting, where AtTFIN-1 was based on ten primary screens that were not 

filtered by pairwise retesting.  

To evaluate the biological relevance of AtTFIN-1 interactions, we 

compared expression correlations between AtTFIN-1 interactions and a random 

interaction data set using 6,057 different expression data sets20. We observed 

significantly higher expression correlation for transcripts encoding AtTFIN-1 

interactions than for transcripts encoding random interactions (Supplementary 

Fig. 12), supporting the potential of AtTFIN-1 interactions to interact in vivo. 

 

AtTFIN-1 defines expanded transcription factor modules. 

We further investigated the biological significance of the 3,086 high-

confidence AtTFIN-1 interactions (2,578 novel) by looking for ‘preferential’ 

intrafamily and interfamily interactions that occurred more frequently than would 

be expected by chance. AtTFIN-1 interactions classified by previously assigned 

familes14 were compared to those in 10,000 randomly rewired degree-

conserved networks (Fig. 2.5a, Supplementary Fig. 13 and Online Methods). 

We observed highly significant preferential intrafamily interactions among family 

members known to dimerize including those in the bHLH, MADS, bZIP, NAC, 

WRKY, AUX-IAAs, and ARF families. We also observed highly significant 

preferential interfamily interactions between plant-specific families known to 

dimerize including growth regulating factors (GRFs) and growth regulating 

factor interacting factors (GIFs)21, LUGs and YABBYs22, and AUX-IAAs and 

ARFs23. The teosinte-branched/cycloidea/proliferating cell factor (TCP) family 
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showed significant preference for 18 TF families (Supplementary Fig. 13), a 

broad preference consistent with previously observations of TCPs as ‘hub’ 

proteins3,24. 

We further examined highly significant, previously unknown preferential 

interfamily interactions; and we found that the preference of the ABI3-VP1/B3 

family for GeBP and TRIHELIX proteins was driven by one ABI3-VP1/B3 

member, AT5G60142, which showed many interactions with various TRIHELIX 

and GeBP members (Fig. 2.5b). While the GeBP and TRIHELIX members have 

sparse gene ontology (GO) annotations, AT5G60142 has recently been found 

upregulated in isolated early-stage gynoecium medial domain cells25. 

Interestingly, not only were AT5G60142 and 93% (13/14) of its TRIHELIX and 

GeBP interacting partners found co-expressed in this study, but five of 

AT5G60142’s partners (ASIL2, AT3G58630, AT1G76870, AT3G04930, and 

STKL1) were significantly upregulated in cells from the same distinct domain. 

These interactions may form part of a previously unrecognized module 

underlying early-stage reproductive development. We also found the preference 

of G2-like proteins for the GRAS family was driven by multiple phosphate 

response-like factors and the scarecrow-like factors (Fig. 2.5c). This network 

reveals a logical link between phosphate sensing and root development, 

consistent with the notion that phosphate deprivation drives altered root 

architecture and increased root hair density26,27. C2C2-CO-like TFs showed 

significant preferential interaction with the ‘orphans’ category of unassigned TFs 

(Fig. 2.5d). Closer examination of these interactions revealed that all proteins 
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contained BBX domains, including the C2C2-CO-like proteins themselves. 

These interactions could be mediated by BBX domains as these have been 

shown to be crucial in mediating protein-protein interactions and transcriptional 

regulation28. Many BBX domain-containing proteins are known to have specific 

and sometimes opposing functions in regulating flowering, circadian clock, biotic 

or abiotic stress response28. Moreover, it was recently reported that 

overexpressing AtBBX32 in soybean plants increased grain yield by altering 

light input and expression patterns of clock genes necessary for initiation of 

different stages of reproductive development29. This AtTFIN-1 module suggests 

that combinatorial complexity among BBX proteins may play a role in integrating 

environmental signals and flowering time potentially through feedback or feed-

forward loops.   

Beyond the well-characterized interfamily interaction between ARFs and 

AUX/IAAs23, for which we observed a significant preferential family interaction 

between eight ARF members and 23 AUX/IAA members, individual AUX-IAA 

members showed distinct interactions with other families (Fig. 2.6). For 

instance, compared with other IAAs, IAA17 heavily interacted with TCPs; this 

suggests that IAA17 could be the main player mediating crosstalk between 

auxin and TCP transcriptional regulation. IAA2, IAA10, IAA17, and IAA18 

commonly interacted with methyl-CpG binding domain (MBD) proteins, which 

indicated the potential involvement of these IAAs in regulating DNA methylation. 

Particular IAAs and ARFs showed interactions with specific hormone and stress 

associated TFs—IAA11 with hormone or abiotic stress response factors ERF70 
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and DRIP2, IAA10 with defense response factors LOL2 and GEBP, and ARF18 

with abscisic acid response factors VAL1 and VAL2. This suggests how these 

factors potentially integrate auxin response with different hormone and stress 

signals. This expanded ARF-AUX-IAA interactome reveals how particular TFs 

may play specific roles in mediating cross-talk between auxin response and 

other plant pathways.  

 

DISCUSSION   

CrY2H-seq offers an untargeted, highly scalable screening approach to 

directly assay binary protein-protein interactions in yeast. We demonstrated that 

36 million interactions could be assayed to >50% saturation with ten cost-

effective and time-efficient CrY2H-seq replicate screens (Supplementary Fig. 

14)—a scale which, to our knowledge, has not been previously achievable. Its 

increased interaction detection rates and significantly greater overlap with 

previously reported interactions (Fig. 2.4c, Supplementary Fig. 10a, 

Supplementary Fig. 11) suggest CrY2H-seq could increase overlap between 

interlaboratory Y2H screens30 . We attribute these increases to the use of next-

generation sequencing for interaction detection and to the ease of iterative 

screening. Moreover, the sensitivity of CrY2H-seq may even be 

underestimated; removal of self-activating proteins before screening could lead 

to the detection of missed interactions. Nonetheless, our CrY2H-seq screening 

was not exhaustive, nor did it completely capture all known interactions, alluding 

to inherent limitations of yeast two-hybrid methods, including sub-optimal 
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protein expression levels or strain copy number in pools. CrY2H-seq could be 

further optimized to reduce sequencing costs by applying strategies for targeted 

capture of fused lox-containing DNA fragments and depletion of over-abundant 

DNA from sequencing libraries. Additionally, the incorporation of a unique DNA 

sequence into the lox region on one of the CrY2H-seq plasmids could disrupt 

the hairpin structure to allow the potential detection of homodimers and 

optimized tracking of bait/prey orientations.  

The AtTFIN-1 resource generated from CrY2H-seq screening substantially 

expands the available interaction data among Arabidopsis TFs, tripling the 

3,170 interactions documented in BioGRID4. The novel interactions we 

identified reveal potential involvement of poorly annotated TFs in various 

biological processes, including root and reproductive development, and the 

integration of environmental stimulus with circadian rhythms. These data can be 

used for future genomic analyses and data integration pipelines to further define 

these network modules and help identify candidate genes that could be used 

for crop improvement. This expanded TF network can be used to generate 

hypotheses regarding the specific roles of individual TFs or TF families 

throughout development and in response to a multitude of biotic and abiotic 

stressors. For instance, the activity of AtTFIN-1 interactions could be tested on 

different promoters to examine how interactions affect target gene expression31. 

Further understanding the roles of TF interaction partners in combinatorial gene 

regulation is particularly valuable for improving crop optimization strategies that 

currently target individual TFs32.   
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Lastly, CrY2H-seq technology could be applied to Y2H assay variations. For 

instance, CrY2H-seq could be adapted to the split-ubiquitin system33 or 

potentially even to mammalian membrane two-hybrid34 for screening 

hydrophobic proteins, or to yeast one-hybrid for screening genome-wide 

protein-DNA interactions35. The ease of setting up CrY2H-seq replicate 

experiments permits screening on multiple media types for selection of different 

reporter genes, or selection on media supplemented with various hormones that 

may influence interactions36. Furthermore, while we used an array cloning 

strategy18 here for mobilizing ORFs into CrY2H-seq plasmids, en masse cloning 

strategies37,38 can be used to reduce cost and (importantly) extend the 

application of CrY2H-seq to cDNA library-against-cDNA library screening. This 

would enable comparisons of unprecedentedly large-scale interactomes 

derived from different ecotypes, growth conditions, or tissue types; and it would 

enable the identification of network differences underlying different phenotypes. 

Interaction maps generated by CrY2H-seq could be integrated with other ‘omics’ 

data to provide deeper insight into the functional relationships between 

genotype and phenotype, the network effects of variants, and interactome 

modules that certain transcriptional programs give rise to.  
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Figure 2.1. CrY2H-seq strain and plasmid design. (a) CrY2H-seq uses yeast strains CRY8930 
and Y8800. (b) CrY2H-seq bait and prey plasmids pDBlox and pADlox contain mutant lox sites 
(lox66 and lox71, respectively) flanking the 3’ end of ORF inserts. Upon Cre/lox-recombination 
of plasmids, a fused ORF product can be recovered by PCR amplification using activation (AD) 
and DNA binding (DB) domain-specific primers, indicated by the grey arrows. (c) Representative 
PCR amplicon from AD and DB primers showing fused ORFs. Mutant lox sites are underlined.  
 

 
 
Figure 2.2. The CrY2H-seq screening pipeline. On day 1, archival stocks of bait and prey 
libraries are combined in one massively multiplexed mate culture that undergoes diploid 
selection overnight. On day 2, the diploid culture is plated on media to select for cells with 
protein-interaction-mediated Gal4 reconstitution and subsequent transcriptional activation of the 
HIS3 and CRE reporter genes. HIS3 expression allows cells to survive on selection media, and 
CRE expression permits unidirectional plasmid linkage, where ORF combinations 
corresponding to protein-protein interactions become fixed together inside cells. After 3 d of 
selection, surviving cells are harvested en masse, plasmids are purified in a single prep, and 
Cre-recombined ORF junctions are amplified in multitemplate PCR reactions. From these 
amplicons, an Illumina sequencing library is prepared and sequenced. A bioinformatics pipeline 
is used to identify fragments derived from Cre recombination PCR products (see 
Supplementary Fig. 5 and Online Methods for more details, including those regarding media 
composition). 
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Figure 2.3. Coverage of AtTFIN-1. (a) Summary of TF ORFeome screening. (b) Cumulative 
coverage of unique interacting pairs detected in paired-end sequencing of all ten CrY2H-seq 
screens after self-activator removal. (c) Sampling sensitivity shown by the average number of 
new interactions detected after each CrY2H-seq screen considering all possible (10!) orderings 
of screens. Error bars, s.d.  
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Figure 2.4. Quality of AtTFIN-1. (a) Fraction of AtTFIN-1 protein-protein interactions (PPIs) that 
were positive in 1x1 matrix style Y2H retest screen (retest rate) as a function of the number of 
CrY2H-seq screens that interactions were observed in. Bin sizes, 1-3: 65, 4-6: 342, and 7-10: 
249. (b) Fraction of AtTFIN-1 PPIs that were positive in wNAPPA. Error bars, standard error of 
proportion. P values, one-sided Fisher’s exact test (*** = 3.57e-08, and * = 0.002395). (c) 
Fraction of 1,368 BioGRID, 1,198 STRING, 1,355 AraNet, 182 Arabidopsis Interactome-1 (AI-
1), 501 Arabidopsis Interactome literature-curated interactions (LCI), and 8,577 random 
interactions in AtTFIN-1. Error bars, standard error of proportion. Literature and database 
interactions are detected significantly more often than random interactions (P values, one-sided 
Fisher’s exact test, * = 2.2e-16). (d) Precision-recall curve calculated using the union of known 
interactions as true positives and a random interaction data set as false positives plotted as a 
function of the number of CrY2H-seq screens in which interactions were observed. Interactions 
observed in two or more replicate experiments are classified as high-confidence interactions as 
indicated by the pale blue box.  
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Figure 2.5. Biological functions underlying TF family interactions in AtTFIN-1. (a) Discrete 
empirical P values of family interactions observed more frequently in AtTFIN-1 than expected 
by random chance. Families are hierarchically clustered by common family interactions. Color 
key: ND = not detected; NS = not significant; *, P <0.05; **, P < 0.01; ***, P <0.001. See 
Supplementary Fig. 13 for a matrix showing all TF family interactions observed. (b) An ABI3-
VP1/B3 transcription factor preferentially interacts with many members of TRIHELIX and GeBP 
families, a module potentially involved in gynoecium development. (c) GRAS family members 
preferentially interact with G2-like family members providing a potential molecular link between 
phosphate sensing and the regulation of root development. (d) Preferential interaction between 
BBX domain-containing ‘Orphans’ proteins and C2C2-CO-like family members suggests a 
potential means by which stimulus signals are integrated with circadian rhythms.  
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Figure 2.6. An expanded ARF-AUX-IAA transcription factor network. Distinct interactions 
among AUX-IAA and ARF proteins suggest certain family members have specific functions. 
IAA17 shows preferential enrichment for TCP family members. IAA2, IAA10, IAA17, and IAA18 
commonly interact with MBD proteins. IAA11 shows distinct interactions with hormone and 
water stress related factors, ERF70 and DRIP2. ARF18 specifically interacts with VAL1 and 
VAL2 abscisic acid response factors. IAA10 interacts with LOL2 and GEBP defense response-
related factors. 
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METHODS 

A step-by-step protocol is available as a Supplementary Protocol 

(Supplementary File 5) and at the Protocol Exchange39. 

 

Strain and plasmid construction 

Primers used to modify plasmids and the CRY8930 strain are listed in 

Supplementary Table 1. The genotype of CRY8930 is MATa leu2-3,112 trp1-

901 his3-200 ura3-52 gal4D gal80D PGAL2-ADE2 LYS2::PGAL1-HIS3 

MET2::PGAL7-CRE-HPHMX6 cyh2R. The genotype of Y8800 is MATa leu2-3,112 

trp1-901 his3-200 ura3-52 gal4D gal80D PGAL2-ADE2 LYS2::PGAL1-HIS3 

MET2::PGAL7-lacZ cyh2R. Y8800 and CRY8930 strain stocks, and pADlox and 

pDBlox plasmid stocks, have been deposited with the Arabidopsis Biological 

Resource Center (https://abrc.osu.edu/).  

Cre reporter strain construction. The bacteriophage P1 Cre recombinase 

gene40 was PCR amplified from pQTL123 GST-Cre with flanking SalI and PacI 

sites and ligated into SalI/PacI digested pFA6α-HPHMX6. The Cre-hygromycin 

resistance marker cassette was PCR amplified from the resulting plasmid and 

used in a homologous recombination reaction to replace the LacZ reporter gene 

within the GAL7::LacZ cassette integrated at the MET2 locus of yeast strain 

Y89301. Correct integration of CRE in the modified strain, referred to as 

CRY8930, was confirmed by sequencing of the MET2 locus. To test CRE 

reporter gene expression, RNA was extracted from a histidine-positive diploid 

culture containing the known interaction pair AD-bZIP53 and DB-bZIP6341 using 
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the Qiagen RNeasy kit. Reverse transcription was carried out on DNAse treated 

RNA extract using SuperScript II (Life Technologies) followed by PCR to detect 

the presence of Cre cDNA (Supplementary Fig. 1a; primers listed in 

Supplementary Table 1).  

 Construction of lox site-containing bait and prey destination vectors. Lox71 

and lox66 sequences42 were inserted into the XmaI and AatII sites located 

downstream of the attB2 site in pDEST-AD1 and pDEST-DB1 respectively, using 

standard cloning methods. The resulting destination vectors, pADlox and 

pDBlox, were Sanger sequenced confirmed and transformed into One Shot 

ccdB Survival 2 T1R competent cells (Life Technologies). Lox71 and lox66 sites 

are modified versions of the standard loxP sites that display favorable forward 

recombination reaction equilibrium13,15.  

 Pilot tests for Cre-lox recombination functionality in yeast two-hybrid. 

Small-scale tests were conducted to confirm the functionality of the CrY2H-seq 

system in yeast (Supplementary Fig. 1b,c; Supplementary Fig. 2; and 

Supplementary Fig. 6). In brief, ORFs were GatewayTM cloned into pADlox and 

pDBlox using LR clonase and transformed into DH5a chemically competent 

cells. pAD-ORF-lox and pDB-ORF-lox plasmids were purified using a QIAprep 

Spin Miniprep kit (Qiagen) and transformed into yeast strains Y8800 and 

CRY8930, respectively, using a standard lithium acetate method. ORFs were 

also transformed into the Y8930 parental strain to serve as negative controls. 

Strains were mated according to published protocols18, and grown for 3 d on 

interaction selection media (-Leu/-Trp/-His + 1mM 3-Amino-1,2,4-Triazole (3-
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AT)). For Supplementary Figure 1, the known positive interaction pair bZIP53-

bZIP6341 and non-interacting pairs bZIP53-ZTL, and ZTL-bZIP63 were tested. 

Mated strains were also grown in parallel on diploid selection media (-Leu/-Trp).  

Colonies were then picked from all plates, and in the case of the non-interacting 

pair on interaction selection media, all background cells were scraped. Lysates 

were prepared as previously described18, and PCR using AD and DB primers 

(Supplementary Table 1) was performed to detect Cre recombination 

products. For Supplementary Figure 2, before plating diploids on selection 

media, culture concentrations (OD600) were measured on a Tecan Safire2 plate 

reader (Supplementary Fig. 2b). CRY8930/Y8800 diploids were plated 

adjacent to Y8930/Y8800 diploids to assess strain differences (Supplementary 

Fig. 2c). For Supplementary Figure 6, HIS3-positive colonies were picked, 

lysates prepared as previously described18, and PCR using AD and DB primers 

(Supplementary Table 1) was performed to detect Cre recombination 

products. All PCR reactions were prepared with 1 µL of template, 0.1 µL 

Phusion Polymerase (NEB), 2 µL 5xGC buffer (NEB), 2 µL 5 M betaine, 200 µM 

each dNTP, and 0.25 µM of AD and DB primers (Supplementary Table 1). 

Reactions were run at 98°C for 2 min, 30 cycles of 98°C for 10 s, 60°C for 30 s, 

and 72°C for 90 s, then a final extension at 72°C for 7 min. 5 µL of each PCR 

reaction was run on a 1% agarose 1x TAE gel. 
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Transcription factor library construction for CrY2H-seq screening 

All cloning and transformations were carried out according to published 

protocols18. Briefly, 1,956 entry clones from an Arabidopsis transcription factor 

ORF collection14 were individually GatewayTM cloned in 96-well format into both 

pADlox and pDBlox vectors using LR clonase and transformed into chemically 

competent DH5a-T1R cells. Transformants were selected in Terrific Broth 

containing carbenicillin, and plasmid DNA was extracted and purified using 

QiaPrep 96 turbo kits (Qiagen). Next, pADlox TF plasmids and pDBlox TF 

plasmids were individually transformed into the yeast strains Y8800 and 

CRY8930, respectively, using a 96-well lithium acetate transformation 

protocol18 as follows. Plasmid DNA and yeast competent cells were combined, 

96-well plates were incubated at 42°C for 1 h, cells were centrifuged, washed, 

spotted on SC –Trp (pADlox clones) or SC –Leu (pDBlox clones), and grown at 

30°C for 3 d. Colonies were then picked and inoculated into liquid SC –Trp or –

Leu, and cultures were grown for 3 d at 30°C at 200 r.p.m. to reach saturation. 

Equal volumes of cells from individual TF clones were pooled to make the 

CrY2H-seq libraries for mating. Aliquots of 1 mL containing ~3 OD600 were 

mixed with 500 µL of 50% glycerol and stored at –80°C. Additionally, 96-well 

glycerol stocks of individual TF clones were also made for archival storage 

purposes. 

Characterizing starting bait and prey libraries. Plasmid DNA was purified 

from a 1 mL aliquot of each library, from which ORF DNA was PCR amplified 

with either AD or DB primer and a primer that anneals to a common sequence 
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downstream ORF inserts (Supplementary Table 1). An Illumina sequencing 

library was then prepared from each starting library by fragmenting ORF 

amplicons to 300 bp with a Covaris S2 sonicator, end-repairing fragments with 

the End-It DNA End-Repair Kit (Epicentre-Illumina), A-tailing repaired fragments 

with Klenow 3’-5’exo- (NEB), and ligating Illumina Truseq adapters to fragments 

using T4 ligase (NEB) overnight at 16°C. The adapter-ligated libraries were then 

run on a 2% agarose gel, and a 400-600 bp region was excised and purified 

using a QIAquick gel extraction kit (Qiagen). Purified DNA was then amplified 

with Phusion Polymerase supplemented with 1 M betaine and Illumina Truseq 

primers for three cycles using Illumina-recommended conditions. A final 

purification with SeraMag Speedbeads (GE; 2% v/v SeraMag Speedbeads, 

18% w/v PEG-8000, 1 M NaCl, 10 mM Tris HCl, 1 mM EDTA) at a 1:1 bead-to-

DNA ratio was performed to remove unincorporated Truseq primers; and 

libraries were sequenced on an Illumina paired-end 200 cycle Rapid Run on an 

Illumina HiSeq 2500 platform. Each library was sequenced to ~1000x coverage 

(bait library, 3.7 M reads; prey library, 2.3 M reads; equivalent to 1.7% of a Rapid 

Run flowcell). Reads were analyzed following the next-generation sequencing 

analysis pipeline detailed below with the following difference:  paired reads for 

which each of the mates aligned to the same ORF and showed different strand 

orientation underwent a size filter that required that the difference of the start 

position of one read and the end position of the read pair fall within the expected 

library size of 400-600bp. After this filtering, ORF-mapped fragments were 

totaled and libraries were further characterized by plotting the size distribution 
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and representation of detected ORFs (Supplementary Fig. 3a-c). A total of 

1,933 and 1,877 unique AD and DB clones respectively were identified, giving 

rise to ~3.6 million possible combinations. 

 

CrY2H-seq screening of transcription factor libraries 

Each replicate screen consisted of mating ~20 OD600 of each TF clone 

library (pADlox in Y8800 and pDBlox in CRY8930). Based on cell titers of 2 x 

107 cells/OD that we observed for each library, we estimated that each replicate 

screen would test the ~3.6 million possible protein combinations at ten-fold 

excess, assuming a 10% mating efficiency.  

Frozen aliquots of the 1,933 TF pADlox library and the 1,877 TF pDBlox 

library were thawed, separately inoculated into 200 mL of YEPD media, and 

grown for 1 h at 30°C and 150 r.p.m. before mating. Cell concentrations were 

measured and libraries were combined such that each replicate screen 

contained ~20 OD600 of each CrY2H-seq library. To internally test for self-

activating proteins, a pADlox empty plasmid in the Y8800 strain was spiked into 

each replicate mating batch in at least three-fold excess of the average 

individual clone population (~2 x 105 cells/clone). For each replicate, mating in 

liquid YEPD was carried out at 30°C for 4.5 h with shaking at 50 r.p.m. 

Subsequently, a 10 µL aliquot of the mated culture was diluted and plated on -

Leu, -Trp, and -Leu/-Trp media to determine mating efficiency, which was on 

average 6% with ~1.25 x 108 diploids formed per screen. Assuming all 

combinations of proteins were equally represented among the diploid 
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population, we estimate that each possible combination was sampled ~34x in 

each screen (1.25 x 108 diploids/3.63x 106 total protein combinations).  

The remainder of the mated cultures were washed with 1x SC and 

individually resuspended in 100 mL 1x SC –Leu/-Trp supplemented with 125 

µg/mL hygromycin to enrich for diploids and reduce background growth. These 

cultures were grown at 30°C overnight shaking at 150 r.p.m. Diploid cells for 

each screen were then collected, washed with 1x SC, and resuspended in water 

at 1 OD600 per mL. Cells were plated at roughly 0.5 OD per plate on 1x SC –Leu 

–Trp –His +1mM 3-AT plates (~48 plates per screen) and grown for 3 d at 30°C 

to select for interactors. 48 plates, each containing more than 10,000 colony 

forming units, were individually scraped into 48 wells of a 96-well deep-well 

plate. Cells were heated at 75°C for 20 min to inactivate Cre recombinase. Cells 

were next treated with 300 µL zymolyase buffer (0.1 M sodium phosphate buffer 

pH 7.4, 1% betamercaptethanol, and 2.5 mg/mL Zymolyase 20T (US 

Biological), and 100 µg/mL RNase A (Qiagen) and incubated at 37°C for 1 h at 

50 r.p.m. Zymolyase-treated cell suspensions were split into two wells of a 96-

well deepwell plate, and plasmid DNA was prepared following the QiaPrep 96 

turbo miniprep kit protocol and recommendations for purifying low-copy 

plasmids. DNA concentrations were measured using the dsDNA Quantifluor 

System (Promega) and ~5-10 ng from each well was used to PCR amplify Cre-

recombined ORF pairs using Phusion Polymerase (NEB), 1x GC buffer (NEB), 

1 M betaine, 200 µM each dNTP, and 0.25 µM of AD and DB primers 

(Supplemental Table 1). Reactions were run at 98°C for 2 min, 21 cycles of 
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98°C for 10 s, 65°C for 30 s, and 72°C for 90 s, then a final extension at 72°C 

for 7 min. 5 µL of each PCR reaction was run on a 1% agarose gel and showed 

a DNA smear corresponding to the size range expected for Cre-recombined 

products (~1 kb to > 4 kb). Amplicons from each PCR reaction were pooled, 

isopropanol precipitated, and purified with SeraMag Speedbeads (GE; 2% v/v 

SeraMag Speedbeads, 18% w/v PEG-8000, 1 M NaCl, 10 mM Tris HCl, 1 mM 

EDTA) at a 1:1 bead-to-DNA ratio to remove primers, typically yielding ~2 µg of 

DNA. Illumina sequencing libraries were then prepared following the exact same 

steps as previously mentioned for the starting bait and prey libraries.  

Pilot sequencing test to determine optimal sequencing depth. The same 

sequencing library from one CrY2H-seq screen was sequenced to a read depth 

of 20 million (20M) and 80 million (80M) reads. We observed that interactions 

with at least three distinct identifying fragments in 20M showed an expected 

increase in coverage of about 4x at 80M, while those with less than 3 fragments 

in 20M were not consistently reproducible (Supplementary Fig. 4). We 

therefore established a cutoff requiring at least three fragments for a PPI to be 

included in a screen data set. Moreover, since deeper sequencing 

predominantly revealed PPIs represented by less than three fragments (i.e., 

below our cutoff), we concluded that 20 million reads was sufficient and aimed 

for 40 million reads per screen library.  

 Sequencing of CrY2H-seq screen libraries. Libraries were sequenced 

with an Illumina paired-end 200 cycle Rapid Run on an Illumina HiSeq 2500 
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platform. The total paired reads obtained from sequencing was 583 M, 

equivalent to the output of 1.65 Rapid Run flowcells.  

 

Next-generation sequence analysis of CrY2H-seq screen libraries 

Reads were mapped using Bowtie2-2.0.243 local alignment with default 

settings to a custom genome composed of Arabidopsis TF-coding sequences 

from TAIR10, the Saccharomyces cerevisiae genome, Gal4 AD and Gal4 DB 

domain sequences, and the empty CrY2H-seq plasmid sequences 

(Supplementary Fig. 5a). A quality filter was applied that required reads to map 

with at least 30 matching bases, allowing a maximum of two mismatches, two 

insertions or deletions, and two bases of trimming from the beginning of the read 

(Supplementary Fig. 5b). Reads were then joined with their corresponding 

read pairs and included in the next analysis step only if both reads passed the 

first filter and mapped to Arabidopsis TF ORF sequences. Clonal fragments 

were removed from read pairs if both reads in a fragment contained the same 

start positions. Paired reads for which each of the mates aligned to a different 

ORF and showed the same strand orientation (Cre recombination occurs such 

that ORFs on pADlox and pDBlox plasmids become inverted in a 3’-to-3’ 

orientation; Supplementary Fig. 5c) were included in further analysis. 

Fragments were further subjected to a size filter that required that the sum of 

the lengths of each read (start position of each read to the end of each ORF) 

and the lox region conformed to the expected library size of 400-600bp 

(Supplementary Fig. 5c). Remaining fragments that mapped to Cre-
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recombined ORF junctions were totaled (Supplementary Fig. 5e). Each screen 

had on average ~1.4 million fragments corresponding to ORF junction sites and 

~16 million fragments mapping to gene bodies. Remaining data mapped to 

priming site region ORF junctions or did not align. Analysis scripts can be found 

in Supplementary Software. After applying the basal fragment cutoff 

mentioned above to all data sets (Supplementary Fig. 5f), fragments were 

normalized by the median filtered fragments as follows. A scale factor for each 

replicate data set was determined by dividing the filtered protein interaction 

fragments by the median filtered protein interaction fragments. The number of 

fragments per protein pair was multiplied by this scale factor and rounded down 

to the nearest integer to normalize protein interaction fragments 

(Supplementary Fig. 5g). 

Identification and removal of self-activating bait proteins. Any TF found 

to be linked with an empty pADlox plasmid by the mapping pipeline was labeled 

self-activating and was not included in AtTFIN-1. A list of proteins identified as 

self-activating can be found in Supplementary Table 3.  

Bait and prey orientation analysis of AtTFIN-1 interaction fragments. As 

the double-mutant lox sequence from Cre-recombined plasmids is not a full 

palindrome, the middle region can be used to determine bait and prey 

orientations of interacting proteins (Supplementary Fig. 15a). An analysis 

script was written to assess the bases at this middle region for fragments where 

at least one read mapped to one ORF and 15 base pairs into the lox77 

sequence (Supplementary Software). It should be noted that the region of the 
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read being mapped to lox77 was within the last 10bp of the read where 

sequencing quality is known to be low on account of the nature of sequencing 

by synthesis. Of fragments mapping to non-self-activating PPIs, 5.5% 

(9,662,266/14,588,892) could identify bait and prey orientations of 49.71% of 

(4,264/8,577) AtTFIN-1 pairs (Supplementary Fig. 15a,b; Supplementary 

Table 2c).  We acknowledge that this is a partial analysis and more data would 

be needed to confirm the bait and prey orientations for all pairs in AtTFIN-1.    

 

Estimating CrY2H-seq screen saturation 

To estimate CrY2H-seq screening saturation (the number of interactions 

detected out of the number of interactions CrY2H-seq could detect for this ORF 

collection), we simulated results for all possible orderings (10!) for the ten 

replicate screens. We calculated the average number and s.d. of interactions 

detected at each step, considering all possible orderings (Fig. 2.3c). We built a 

model based on the average new interaction detection rate after each replicate 

and fit it to a Michaelis-Menten curve to predict the number of interactions 

detectable by CrY2H-seq after any number of screens (Supplementary 

Software and Supplementary Fig. 7).  

 

Yeast two-hybrid retest 

A set of 950 interaction pairs that showed a range of screen occurrences 

and NPIFs was selected for use in a retest assay carried out using standard 1 

x 1 array-style HT-Y2H methods. Clones corresponding to interaction pairs were 
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cherry picked from pAD-lox and pDB-lox plasmid stock plates and freshly 

transformed into yeast strains Y8800 and CRY8930 as described above. 771 

yeast transformant pairs were recovered that could be screened in both bait and 

prey orientations (Supplementary Table 4). This ensured that both orientations 

in which the interaction could have been initially detected were accounted for. 

A Y2H screening pipeline was followed as described previously18, including 

inoculation of individual AD and DB yeast cultures, 1 x 1 mating onto YEPD 

medium, replica-plating onto selective SC –Leu, -Trp for diploid selection, and 

replica-plating onto selective SC –Leu, -Trp, -His +1mM 3-AT plates and SC -

Leu, -His +1mM 3-AT plates containing 1mg/L cycloheximide. Cycloheximide 

containing plates select for cells that do not have the AD plasmid due to plasmid 

shuffling and can identify spontaneous self-activators18. After replica-plating 

onto SC –Leu, -Trp, -His +1mM 3-AT, plates were incubated at 30°C overnight, 

then replica-cleaned by placing each plate on a piece of velvet stretched over a 

replica-plating block and pressing evenly to remove excess yeast cells. Plates 

were incubated an additional 3 d at 30°C and phenotypes were independently 

scored by two researchers (for representative colonies and scoring, refer to 

Supplementary Fig. 8a). Only pairs scored as positive for HIS3 reporter gene 

activation and negative for growth on cycloheximide by both researchers were 

considered positive interactions in the retest assay. 115 pairs (~15%) activated 

the HIS3 reporter gene and showed growth on cycloheximide. These 

interactions were scored as self-activating and not included in subsequent 

analysis of the retest data set.  
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wNAPPA assay 

TFs corresponding to 59 novel interactions that showed a range of 

screen occurrences and NPIFs were selected for validation in the wNAPPA 

assay. Additionally, 35 previously reported protein interactions that were 

present in At-TFIN-1 and 36 random interactions not present in AtTFIN-1 were 

also processed in parallel. Clones were cherry picked from TF entry clone stock 

plates and recombined into pIX-GST and pIX-HA destination vectors3 using LR 

clonase. Reactions were transformed into DH5a-T1R, and plasmid DNA was 

purified using QiaPrep 96 Turbo kits. Plasmid DNA was measured using the 

Quantifluor dsDNA System and a Tecan SafireII plate reader. DNA was 

concentrated to roughly 250 ng/µL and 1 µg of each plasmid was combined for 

use in vitro transcription-translation reactions as follows. Bait and prey proteins 

were co-expressed using the TNT SP6 Coupled Wheat Germ Extract System 

(Promega) following manufacturer recommendations. Protein expression 

reactions were then added to anti-GST antibody-coated detection plates (GE 

Healthcare, cat. no. 27-4592-01) and incubated at 15°C for 2 h. Wells were 

washed and blocked with 1x PBS with 0.1% Tween and 5% nonfat dry milk 

(PBS/T/NFM) for 1 h at room temperature, then incubated with mouse anti-HA 

monoclonal antibody (Covance, cat. no. MMS-101R) diluted 1:5,000 in 

PBS/T/NFM for 1 h at room temperature. Antibody was washed from wells with 

PBS/T/NFM with three quick washes followed by three longer washes, each 

with a five-min room temperature incubation period with gentle rotation. Wells 

were then incubated with anti-mouse HRP-coupled secondary antibody (GE 
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Healthcare, cat. no. NA931) diluted 1:2,000 in PBS/T/NFM for 1 h at room 

temperature. Secondary antibody was washed from the wells with PBS/T with 

three quick washes followed by three 5-min washes. Wells were rinsed twice 

with 1x PBS before adding Supersignal ELISA Femto substrate (Pierce), and 

then incubated for 1.5 min at room temperature with gentle shaking. 

Luminescence (RLU) was measured using a Tecan SafireII plate reader. 

Interactions were tested in both vector combinations and observed z-scores are 

listed in Supplementary Table 5a.  

To control for plate-to-plate variation, a set of 16 pairs previously used 

for normalization3 (Supplementary Table 5b) was included on each plate. Plate 

normalization and scoring were done according to previously described 

methods3. Briefly, for each plate the normalization pair average and s.d. were 

calculated after subtracting the average blank (empty pIX GST and empty HA 

plasmid mix) and taking the log2 RLU value. A z-score for each well was then 

calculated by first subtracting the normalization pair average from the RLU value 

and then dividing by the normalization pair s.d. To determine the recall rates, 

the maximum z-score of the two orientations tested for each pair was 

considered, and a scoring threshold was determined by maximizing for the 

number of positively scoring known interactions and minimizing for the number 

of positively scoring random interactions (Supplementary Fig. 9). A scoring 

threshold of 1.6 was selected based on these criteria. 
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Literature, database, and randomly generated data comparison with 

AtTFIN-1 

Literature and database interaction data files were downloaded from links 

listed in Supplementary Table 6, and all interactions between TFs screened in 

CrY2H-seq were compiled. Interactions from different sources showed some 

overlap, but also many unique interactions (Supplementary Fig. 10b). For this 

reason, comparisons were made between AtTFIN-1 and individual data sets 

(Fig. 2.4c). Only high-confidence STRING and AraNet interactions with scores 

above 900 and 4.5 were used. To generate random TF interactions, a list of all 

possible combinations was first generated. From this list, 8,577 interactions 

were selected randomly using the script in Supplementary Software. This step 

was done a total of ten times to produce ten random interaction data sets. From 

each of these data sets, we excluded homodimers and interactions with TFs 

detected as self-activating in the CrY2H-seq screens. Comparisons between 

AtTFIN-1 and each list were performed and the average overlap was reported 

(Fig. 2.4c). Supplementary Figure 10b was generated using the web interface 

provided by VIB/University of Ghent Bioinformatics and Evolutionary Genomics 

Division, Belgium (http://bioinformatics.psb.ugent.be/webtools/Venn/). The 

precision-recall curve (Fig. 2.4d) was generated using the R package 

PRROC44. 
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Preferential family-specific interaction analysis 

The R package igraph45 was used to generate randomly rewired 

interactions from a list of high-confidence AtTFIN-1 interactions using the rewire 

function with degree conservation. The gene IDs in the subsequent list of 

random interactions were converted into family names, sorted and family 

interactions were counted. This was done 10,000 times. The high-confidence 

AtTFIN-1 interactions were similarly converted to family names, and family 

interactions were counted. The AtTFIN-1 family-interaction observations were 

then compared to the 10,000 random observations and P values were 

calculated based on where the AtTFIN-1 family interaction observation occurred 

in the empirical distribution of all observations for each family interaction. 

Heatmaps (Fig. 2.5 and Supplementary Fig. 13) were generated using the R 

package, Heatmap346. Interaction networks (Fig. 2.5 and 2.6) were generated 

using Cytoscape47.  

 

Cost and time comparisons to existing HT-Y2H methods  

Traditional Y2H and BFG-Y2H cost approximations (Supplementary 

Fig. 14) are based on appendix figure S4 in Yachie et al.12. Costs for traditional 

Y2H were calculated on a per-plate basis assuming minipools of 50 preys and 

assuming the recovery of 500 and 10,000 positive interactions from 1,000,000, 

and 900,000,000 PPIs screened, respectively. CrY2H-seq sequencing costs are 

estimated from 1 Illumina HiSeq Rapid PE Sequencing Run (cluster kit and 200 

cycle kit) costing $3,126, and yielding on average 350,000,000 reads. 
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Statistics 

Exact n values are reported in main text and legends for Figure 2.4a-c, 

and Supplementary Figure 8b, 11, and 12. For Figure 2.4b,c and 

Supplementary Figure 12, a one-sided Fisher’s exact test was done to 

compare the detection rates of known and novel interactions to random 

interactions. For Figure 2.5a and Supplementary Figure 13, empirical P 

values were calculated by ranking the observed family-interaction frequency 

among frequencies generated from 10,000 different degree-conserved network 

rewirings. 

 

Materials availability 

CrY2H-seq plasmids and yeast strains are available through the 

Arabidopsis Biological Resources Center, https://abrc.osu.edu/ (stock numbers 

CD3-2420, CD3-2421, CD5-239, and CD5-240). 

 

Code availability 

Code generated for analysis during this study is available as 

Supplementary Files 1-4.  

 

Data availability 

Protein interaction data from this study are included in Supplementary 

Tables 2-5 and have been submitted to the IMEx 

(http://www.imexconsortium.org) consortium through IntAct accession number 
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IM-25740; and interactome visualization can be found at 

http://signal.salk.edu/interactome/AtTFIN-1.html. Raw read data files and 

alignment indexes have been submitted to the Sequence Read Archive 

(https://www.ncbi.nlm.nih.gov/sra) through SRA accession number 

SRX2825531. Source data files for the figures in the study are available from 

the authors upon request.  
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ABSTRACT 

The Dungeness crab is an economically and ecologically important 

species distributed along the North American Pacific coast. It is not currently 

known how sensitive Dungeness crab will be to the ocean chemistry conditions 

predicted with global climate change. To investigate this, we used untargeted 

metabolomics approaches to characterize metabolite and lipid profiles in 

individual Dungeness crab juveniles reared in treatments that mimicked current 

and projected future pH and dissolved oxygen conditions. Despite limited 

metabolome annotation and high variation within treatment groups, we identified 

94 metabolites and 127 lipids that respond in a treatment-specific manner. We 

show that exposure to low dissolved oxygen leads to overall greater fluctuations 

in known compound abundances than exposure to low pH, and that low pH 

affects fewer known compounds. We found through pathway analysis that 

juveniles may be generally responding to low dissolved oxygen through 

evolutionarily conserved processes including downregulating glutathione 

biosynthesis and upregulating glycogen storage, and may be generally 

responding to low pH by increasing ATP production. Most interestingly, we 

found that under combined low pH and low dissolved oxygen stress juveniles 

respond most similarly to the low oxygen single stress treatment, indicating low 

dissolved oxygen more significantly affects the physiology of juvenile crabs than 

pH. Our study elucidates metabolic flexibility and adaptations that expand our 

overall understanding of how the species might respond to future ocean 

conditions.  
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INTRO 

The continued increase in anthropogenic carbon dioxide emissions is 

leading to ocean acidification, with the ocean absorbing an average of 25% of 

human-caused emissions annually1. If atmospheric carbon dioxide 

concentration continues to rise at the current rate, the pH of oceans is predicted 

to fall 0.3-0.4 units by the end of the century2,3. This pH drop could exacerbate 

conditions in the U.S. Pacific Northwest, where the ocean pH is lower than that 

of the global ocean due to natural oceanographic processes including regional 

upwelling, and could pose a greater challenge to the marine inhabitants already 

coping with this lower pH. An additional and compounding factor to ocean 

acidification is ocean deoxygenation, which co-varies with pH and temperature. 

Given that global ocean temperatures will rise with global warming from 

continued greenhouse gas emissions, hypoxic zones are expected to increase 

in duration, intensity, and frequency4. It is not certain how future ocean 

acidification and deoxygenation environmental stress might affect important 

Pacific Northwest fisheries like the Dungeness crab fishery, which is the most 

lucrative and valued at more than $200 million annually5.  

Ocean acidification is predicted to have negative indirect effects on 

Dungeness crab through loss of prey directly affected by ocean acidification6, 

but knowledge of how ocean acidification might directly impact Dungeness crab 

is limited. It has been postulated that Dungeness crab may exhibit limited 

tolerance for acid-base disturbances given past observations of Dungeness 

crab as weak osmoregulators7–10 and that acid-base balance and 
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osmoregulation are tightly coupled in decapod crustaceans11. However, it was 

shown that following a brief two-week exposure to a future-predicted seawater 

pH of 7.4, adult Dungeness crab are able to acclimate by increasing hemolymph 

ion levels (bicarbonate, calcium, chloride, sulfate, and sodium), and by 

decreasing both oxygen consumption and nitrogen excretion12. One the other 

hand, Dungeness crab larvae have shown reduced survival and development 

rate in response to a 45-day exposure to the future-predicted seawater pH of 

7.5 and 7.113. Moreover, adult Dungeness crab have shown behavioral 

responses to declining oxygen conditions (21-1.5 kPa pO2 over a 5-hour period), 

including reduced feeding and a preference for the area with the highest pO2 

level when placed in a seawater oxygen gradient (2.5-10.5 kPa pO2 for 1 hour)14. 

Dungeness crab also have shown physiological responses to declining oxygen 

conditions (18-3 kPa pO2 over a 6-hour period), including redistributing 

hemolymph to high-energy-demand tissues15. Despite these clear biological 

responses to low pH and oxygen, the biochemical mechanisms underlying 

Dungeness crab response to combined pH and oxygen stress have not yet been 

defined.  

 To gain broad insight into the biochemical processes underlying the 

physiological status of organisms, it is now possible to survey metabolomes of 

nearly any species with the advancement of high-throughput metabolite 

profiling, also known as metabolomics. Exploratory untargeted metabolomics 

approaches can offer unbiased analyses of the composition of all detectable 

metabolites for the rapid and quantitative detection of stress responses, which 
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often leads to the development of targeted approaches and identification of 

stress-indicating biomarkers16,17. Functional analyses using pathway inference 

can subsequently be performed by integrating metabolomics data with 

databases and other “-omics” datasets using bioinformatics tools to ultimately 

establish causal networks between different experimental conditions and 

outcomes. Untargeted metabolomics in the context of understanding ocean 

acidification has recently been applied to reef-building coral, and revealed 

metabolite profiles that were predictive of primary production activity and 

molecules that could be used as potential biomarkers of ocean acidification18.  

To better understand which biochemical pathways might be altered in the 

response of Dungeness crab to ocean acidification, we applied untargeted 

metabolomics and lipidomics to individual juvenile crabs exposed to current pH 

(7.8) and future pH (7.4) conditions for an average of 32 days. Because 

dissolved carbon dioxide and dissolved oxygen (DO) concentrations tend to co-

vary in ocean habitiats4, we included both ambient oxygen (8.5 mg/L or 80% O2 

saturation) and low oxygen (3 mg/L or 30% O2 saturation) treatments with our 

pH conditions in a factorial design to understand how pH, oxygen, and/or their 

interaction might influence metabolite abundances.  

 

RESULTS 

Untargeted lipidomics and metabolomics were carried out on 60 

individual juvenile crabs exposed to ocean acidification treatments (Table 3.1) 

through the entire duration of their first juvenile instar until 2 days after molting 
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to their second juvenile instar. From the lipidomics and metabolomics profiles 

generated by the West Coast Metabolomics Core using in-house open-access 

bioinformatics pipelines19,20 (see Methods for additional details), a total of 3113 

lipids and 651 general metabolites were detected of which 88% (3320/3764 total 

detected compounds) had spectra that did not match LipidBlast21 or BinBase22 

records and were classified as unknown compounds (Supplementary Table 1 

and 2). Eighteen lipids were detected in fewer than 50% of individual profiles 

and were therefore excluded from all downstream analyses. The MS 

identification techniques found 29/281 metabolite classes among the 246 

compounds detected and listed in Human Metabolome Database (HMDB)23 and 

13/77 lipid classes among 195 compounds detected and listed in LIPID MAPS 

Structural Database24 (Supplementary Fig. 1). Among the largest classes 

represented in all identified compounds were LIPID MAPS classes 

glycerophosphocholines, triradylglycerols, and fatty acids, and HMDB classes 

organic acids, carboxylic acids, and organic oxygen compounds.  

In general, individual metabolite and lipid profiles showed high variation 

regardless of treatment group. Clustering the relative abundances of all 

compounds across treatment groups revealed no obvious patterns 

(Supplementary Fig. 2). Examining the distributions of coefficients of variation 

for individual compounds across treatment groups showed collective compound 

variation was generally not treatment dependent, and that individual crabs elicit 

diverse and dynamic responses regardless of treatment (Supplementary Fig. 

3). To identify important features, we applied both univariate and multivariate 
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statistical methods to combine the strengths of different methods25. First, to 

assess individual effects as well as interaction effects from pH and DO 

treatments on individual compounds, we used a two-way analysis of variance 

(ANOVA) on the raw abundance data (Supplementary Table 1 and 2). Prior to 

performing ANOVA, we verified compounds showed homogeneity of variances 

across treatment groups (>96% compounds showed a Levene test P value > 

0.05), and that metabolite and lipid abundances were mostly (on average 69% 

compounds showed a Shapiro-Wilks test P value > 0.05) normally distributed 

within treatment groups (Supplementary Table 3). Although about one-third of 

compounds violated the ANOVA normality assumption, ANOVA can be 

considered robust to violations of this assumption when datasets have more 

than 10 samples per treatment group26,27. Of all compounds analyzed, 56/651 

metabolites (including 24/160 known metabolites) and 98/3095 lipids (including 

7/284 known lipids) showed overall model significance at P < 0.1 and at least 

one model term (pH, DO, and/or pH x DO interaction) significant at P < 0.05 

(Supplementary Fig. 4 and 5). However, when a Benjamini-Hochberg P value 

correction for multiple testing was applied to overall model P values 

(Supplementary Table 4), no metabolite or lipid showed significance failing to 

pass its respective 10% false discovery rate Benjamini-Hochberg P value 

threshold of 1 x 10-4 and less than 3 x 10-5.  

To identify discriminatory features and model the relationship between 

metabolite profiles and exposure treatments using a multivariate linear 

regression approach, we used partial least square discriminatory analysis (PLS-
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DA). For facilitating comparisons of metabolite composition among treatment 

groups, compound abundances were centered around the mean and scaled by 

the reference group (ambient pH:ambient DO) compound standard deviations 

prior to multivariate analysis28. The PLS-DA model for both the metabolite and 

lipid data showed partial separation of low pH-treated samples from ambient 

pH-treated samples in the first and second components, accounting for a total 

of 31% and 15% of the variation in the metabolite and lipid data, respectively 

(Fig. 3.1a-b, Supplementary Table 5). Additionally, the PLS-DA model for the 

metabolite data showed a separation of low DO-treated samples in the second 

and third components, explaining an additional 6.8% of variation, but the PLS-

DA model for the lipid data did not show this (Supplementary Fig. 6). Because 

the overall PLS-DA model had weak predictive power (Supplementary Fig. 8), 

we used importance thresholds defined by points of diminishing returns in PLS-

DA component loadings plots (Supplementary Fig 7. and Methods), and 

identified a total of 45 metabolites (including 14/160 known metabolites) and 18 

unknown lipids as important discriminatory features.  

Finally, we used a multivariate nonlinear-based supervised random 

forest classification, using the metabolomics and lipidomic data to predict 

treatment classes (Supplementary Fig. 9a-b). A total of 9 metabolites 

(including 4/160 known metabolites) and 15 lipids (including 1/284 known lipids) 

were considered important features based on their mean decrease in prediction 

accuracy (Supplementary Fig. 9c-d, Supplementary Table 6, and Methods). 

While no compounds were commonly identified by all 3 statistical methods, 7 
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metabolites were commonly identified by ANOVA and PLS-DA, 8 metabolites 

were in common between ANOVA and random forest, 1 metabolite overlapped 

between random forest and PLS-DA, and 4 lipids overlapped between ANOVA 

and random forest (Fig. 3.2a-b). Because these three statistical methods are 

fundamentally different approaches, we did not expect a high degree of overlap 

in important features that each method identified. We did expect to capture a 

comprehensive set of important features that no one method was capable of 

capturing on its own, and our set of important features identified by combining 

all three statistical methods was consistent with that. 

Heatmaps of the statistically selected 94 metabolites (including 35 

known) and 127 lipids (including 7 known), shows several compounds respond 

to low pH and oxygen stress treatments by commonly increasing or decreasing 

abundance relative to the ambient treatment (Fig. 3.3a-b). For known 

compounds, this is also summarized by violin plots of compound abundances 

in Figure 3.4a-c. For example, 5-methoxytryptamine, butyrolactam, cysteine, 

cysteine, homoserine, pipecolinic acid, piperidone, ribose, and xanthine 

commonly showed a decrease in abundance in treatments with low DO relative 

to treatments with ambient DO, where glutamic acid, maltose, and maltotriose 

commonly showed an increase in abundance in treatments with low DO relative 

to treatments with ambient DO (Figure 3.4a). In general, metabolites tend to 

decrease in abundance in low DO treatments relative to ambient DO treatments 

exemplified by the mostly blue color of compound abundance averages for the 

low DO treatment group (green) in Figure 3.3a. Specific to the low pH treatment, 
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more metabolites show average abundances similar to ambient treatment 

signifying pH has a less dramatic effect on metabolites compared to low DO 

treatment (Fig. 3.3a-b and Fig. 3.4a-b). This is also apparent in the combined 

low pH, low DO treatment, where metabolites and lipids show average 

abundances similar to the low DO treatment signifying low DO has a more 

dominant effect on compounds than low pH (Fig. 3.3a-b).  

To explore the physiological relevance of treatment responsive 

compounds, we performed biochemical pathway analysis on all known 

compounds.  While compounds classified as sugars and fatty acids were 

affected by the low pH and DO treatments, most of the significantly affected 

compounds were part of the amino acids class, indicating amino acid 

metabolism was most significantly altered by the treatments. Abbreviated 

biochemical pathway networks focusing on affected amino acids are shown in 

Figure 3.5, and the complete biochemical pathway networks affected by low 

pH, low DO, and low pH and DO treatments can be found in Supplementary 

Figures 10-12. The trends in amino acid abundances resulting from either low 

pH, low DO, or the combined low pH and DO treatment (Fig. 3.5a-c), suggest 

different amino acid metabolic pathways are affected in response to each factor 

or combination of factors.  

Specific to low DO treatment response compared to the normoxic 

treatment, energy conservation pathways were most apparent. The increased 

lysine with decreased pipecolinic acid and the piperidine derivative piperidone 

abundance is suggestive of downregulation of the lysine degradation 
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pathway29,30. The decreased abundance of cysteine and the cysteine 

homodimer cystine suggests that cysteine catabolism is upregulated. This 

coupled with the increased abundance of glutamic acid suggests the glutathione 

synthesis pathway could be downregulated, as both cysteine and glutamic acid 

are precursor molecules in glutathione synthesis31,32. Glutathione itself was not 

detected, and can typically be challenging to detect by MS techniques in marine 

animals due to its reactivity33. The glycogen intermediates maltose and 

maltotriose show an increase in abundance consistent with previously observed 

glycogen synthesis pathway upregulation during hypoxic stress34. Purine and 

pyrimidine metabolic intermediates orotic acid, ribose, and xanthine show 

decreased abundance suggesting purine and pyrimidine metabolic pathways 

could be downregulated35.  

Specific to low pH treatment response compared to ambient pH 

treatment, ATP generation pathways were most apparent. The decreased 

abundance of aspartic acid and the subtle decreased abundance of maleic acid 

may suggest the citric acid cycle intermediates that they form (oxaloacetate, 

malic acid, and fumaric acid)36,37 are favored. Although, oxaloacetate was not 

detected (likely due to the instability of the alpha keto acid compound)38, and 

malic acid and fumaric acid did not show a significant difference across 

treatments. However, citric acid shows an increase in abundance and taken all 

together suggest the citric acid cycle activity could be upregulated in response 

to low pH39. An increase in glutaric acid in response to low pH suggests the 

catabolism of its parent molecule, glutaryl CoA, which produces ATP in addition 
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to glutaric acid40. Glutaryl CoA catabolism supports citric acid cycle activity 

because glutaryl CoA can uncompetitively inhibit the alpha-ketoglutarate 

dehydrogenase complex that facilitates a rate limiting step in the citric acid 

cycle41.  

Among the compounds affected by low pH and low DO treatment, 

phosphoethanolamine and phophatidylethanolamine (PE(p-34:2) or PE(o-

34:3)) show increased abundance compared to ambient treatment 

(Supplementary Fig. 11), suggesting that low pH and DO might alter the 

glycerophospholipid synthesis pathway of which phosphatidulethanolamine is a 

product and phosphoethanolamine is a substrate intermediate in a rate limiting 

step42. Alanine shows a decrease in abundance, suggesting that alanine 

synthesis is decreased and that its substrate for synthesis, pyruvate, may be 

limited43. The increased abundance of cystathionine and subtle increase of 

methionine suggest cysteine and homoserine synthesis is likely stalled44 in 

response to both low pH and low DO. This supports the decrease in homoserine 

abundance and upregulation of cysteine catabolism observed in low DO 

treatment.  

 

DISCUSSION 

We used metabolomics to explore how the Dungeness crab might 

respond to the simultaneous change in oxygen and carbon dioxide in predicted 

future climate change scenarios in the Pacific Northwest. Although the 

untargeted metabolomics and lipidomics approaches rapidly identified 
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hundreds of different molecular species, the majority of compounds identified in 

our study, including most compounds selected by statistical methods, lack 

annotations in existing metabolite databases. Thus, our understanding of their 

role in response to low pH and low DO treatment is limited without extensive 

further validation. Still, through shedding light on the simultaneous activity of 

hundreds of known compounds, we were able to observe a dynamic range of 

metabolic responses among individuals within treatment groups that indicates 

that Dungeness crab have flexibility in how their biochemistry compensates for 

environmental change. While we attempted to control for variation between 

individuals by collecting animals from the same location within a 2-month period, 

we were unable to control for prior environmental exposure or genetic 

background of the wild-caught animals we used. Where prior studies have found 

high genetic variation among individuals within one sampling site45,46, we 

suspect that both genetics and  prior environmental exposure likely contributed 

to the high variation in metabolite abundances among individuals within 

treatment groups, which may have obscured the different treatment effects.  

We applied three different statistical methods (ANOVA, PLS-DA, and 

random forest) for selecting important metabolites in order to combine the 

strengths of powerful univariate and multivariate analyses25.  Although using 

univariate statistics in the strictest sense with an FDR to control for false 

discoveries showed no statistically significant variation for metabolites across 

treatments, not all compounds were identified with the same confidence level 

and were subject to the sensitivity of the mass spectrometry method used. 
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Applying an FDR correction to all detected compounds assumes that all 

compounds had equal chance for discovery, which can mask important biology 

in highly variable datasets47. For this reason and due to our use of wild-caught 

animals, we chose a more liberal focus on all compounds showing an overall 

ANOVA model P value < 0.1 and at least one model term P value of < 0.05, or 

identified as important in PLS-DA or random forest models in our pathway 

analysis.  

While we acknowledge a level of uncertainty in our pathway analysis due 

to liberal feature selection criteria, the resulting proposed affected pathways are 

consistent with previous observations of pH and hypoxia effects on different 

organisms. In general, amino acid metabolism in general is a well-documented 

mechanism for stress tolerance48,49. This class of compounds contains versatile 

chemical structures that serve as buffering molecules, antioxidants, signaling 

molecules, and chemical building blocks for the synthesis of proteins important 

in stress response (i.e., heat shock proteins, unfolded protein response 

proteins, ion channels). Under low oxygen conditions, it is in the best interest of 

the animal to limit non-essential energy consuming pathways50. One way 

Dungeness crab may do this is through reducing the activity of evolutionarily 

conserved gamma-glutamyl cycle that synthesizes glutathione and consumes 

ATP51,52 by limiting cysteine availability through catabolism. Interestingly, 

glutathione reduction in response to hypoxia has been observed in multiple 

mammalian cell lines53–56. Also under low oxygen conditions in nature, food can 

be scarce, and it is theorized that glycogen storage during low oxygen can help 
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prepare cells for low nutrient conditions. In multiple mouse and human cancer 

cell lines34,57,58, glycogen storage has been observed in response to hypoxia, 

induced by highly evolutionarily conserved hypoxia-inducible factor 

transcriptional signalling34. It seems that Dungeness crab may also adopt this 

strategy in combating low oxygen conditions. Under low pH, adult Dungeness 

crab initially develop hypercapnia which then abates over time via elevated 

hemolymph bicarbonate likely generated through gill restructuring and the 

upregulation of energy consuming ion-exchange proteins12. Our results indicate 

that this process may occur in early juveniles in low pH conditions given that we 

found metabolite profiles that support energy generation via increased citric acid 

cycle activity.  

Having parsed out effects from low oxygen and low pH, we found that in 

combined low oxygen and low pH conditions, low oxygen has a more dramatic 

effect on metabolite abundance. However, the animals in this treatment group 

were still able to alter their metabolism to allow for upregulation of citric-acid-

cycle-related metabolites and potentially cell respiration. It is not yet clear what 

the longer-term consequences are of these metabolic adjustments or how long 

these responses could be sustained. Future avenues of research to expand on 

these findings should include targeted metabolomics to confirm the compounds 

identified in this study as well as capture more antioxidants and citric acid cycle 

intermediates that were not detected in this study. Targeted expression profiling 

would also be helpful in confirming the biochemical pathway activity predictions 

from this study. Ultimately, longer-term exposure experiments on crabs reared 
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over generations might best reveal the maximal duration of these metabolic 

responses and any long-term consequences of low pH and oxygen exposure. 

This exploratory metabolomics and lipidomics analysis uncovered potential 

biochemical pathways affected by experiments simulating ocean acidification 

and hypoxia, and can now serve as preliminary hypotheses for deeper 

investigations of how the Dungeness crab (and even other crustaceans) may 

tolerate global ocean change. 
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ambient pH, ambient O2

ambient pH, low O2

low pH, ambient O2

low pH, low O2

ambient pH, ambient O2

ambient pH, low O2

low pH, ambient O2

low pH, low O2

a b

ANOVA	 PLS-DA

Random
Forest

41
(43.6%)

37
(39.4%)

0
(0%)

7
(7.4%)

8
(8.5%)

1
(1.1%)

0
(0%)

94
(73.4%)

19
(14.9%)

11
(8.6%)

0
(0%)

4
(3.1%)

0
(0%)

0
(0%)

PLS-DAANOVA	

Random
Forest

a b

treatment number 
of crabs time (days) temp 

(∘C) pH DO 
(mg/L) 

ambient pH and DO 15 31.33 ± 1.11 12 7.8 8.5 
ambient pH and low DO  15 31.57 ± 0.94 12 7.8 3 
low pH and ambient DO 15 31.07 ± 0.88 12 7.4 8.5 
low pH and low DO  15 31.73 ± 0.96 12 7.4 3 

Figure 3.1. Summary of PLS-DA analysis. Partial separation of low pH treatment 
groups from low DO treatment groups shown by (a) PLS-DA components 1 and 2 for 
metabolite data and (b) PLS-DA components 2 and 3 for lipid data.  
  

Table 3.1. Summary of experimental treatments.   

 

Figure 3.2. Overlap of important features identified by different statistical methods. 
Venn diagrams of all (a) metabolites and (b) lipids identified as significantly 
changed by ANOVA, PLS-DA, and/or random forest.  
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Figure 2. Heatmaps showing the relative abundance of known and unknown compounds
selected by multivariate and univariate statistical methods evaluating pH x DO treatment
effects for A) general metabolites and B) lipids. Rows are representative of treatment group
average metabolite levels and columns correspond to individual compounds.

Statistically selected compounds show treatment-specific patterns
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Figure 3.3. Treatment-specific effects on the relative abundance of compounds selected 
by multivariate and univariate statistical methods. Heatmap plots show the average 
compound abundance (average peak intensity) for each treatment group for the (a) 94 
general metabolites and (b) 127 lipids selected by multivariate and univariate statistical 
methods used to evaluate treatment effects. Individual known and unknown (“unk”) 
compound names are listed over the columns and treatment groups are listed over the rows 
(orange, ambient pH, ambient O2; green, ambient pH, low O2; purple, low pH, ambient O2; 
and blue, low pH, low O2). Compound average abundances are shown as auto-scaled 
within each compound (“relative abundance”).  
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Figure 3.4. Abundance levels (peak intensities) of known compounds selected by 
univariate and multivariate statistical methods. Violin plots with boxplot insets show the 
distribution of compound abundances within each treatment group for compounds 
statistically showing (a) DO treatment effect, (b) pH treatment effect, and (c) DO:pH 
interaction effect. Binbase names for each known compound are listed across the top of 
each plot. Abundance levels (peak intensities, noted as “quant”) are listed on the y-axis 
while treatments are listed along the x-axis. Statistical methods that each known 
compound was identified by are noted by shapes in the upper corners of each plot 
(ANOVA, triangle; PLS-DA, square; and random forest, diamond).  
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Figure 3.5. Treatment-specific differences in amino acid metabolic networks. Networks 
show effects from (a) low DO, (b) low pH, and (c) combined low pH and low DO. 
Compounds are clustered by chemical similarity. Node fill color is colored by Cohen D 
effect size comparing the treatment group to the ambient pH,ambient DO group, and node 
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METHODS 

Animals 

Cancer magister megaolopae were collected from a single site in Puget 

Sound (47.950232, -122.301784) on several days between the June and 

September 2016 using light traps that were set overnight. The contents of each 

trap were immediately transferred into a 5-gallon bucket that was, within 5 

minutes, pooled into a cooler with ice packs and an air bubbler. After transferring 

contents from 7 traps in approximately 1 hour, the cooler containing megalopae 

was brought within 5 minutes into the lab and megalopae were individually 

transferred onto the water flow-through system described below. The total time 

for transferring megalopae from the cooler onto the seawater flow-through 

system was about 2 hours.  

 

CO2 exposure experiments 

Megalopae were held in individual 250 mL customized jars on Mobile 

Ocean Acidification Treatment Systems (MOATS). These systems flowed one-

micron-filtered, UV-sterilized, Puget Sound seawater maintained at 12°C. Prior 

to flowing through jars, seawater was degassed and oxygen, nitrogen and 

carbon dioxide gases were resupplied to finely control dissolved gas levels. 

Temperature, pH, and dissolved oxygen were continuously monitored 

throughout the duration of the experiment by Omega thermistors, Honeywell 

Durafet III probes, and Vernier optical dissolved oxygen probes, respectively. 

The pH was additionally validated by periodic sampling of water for dissolved 
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inorganic carbon and total alkalinity, and by bi-weekly spectrophotometric pH 

measurements using an Ocean Optics USB 230 2000+ Fiber Optic Spectometer 

with SpectraSuite software and a 5mM solution of Sigma Aldritch m-cresol 

purple indicator dye. MOATS chemistry parameters were automatically adjusted 

through a data-driven feedback system. Megalopae were fed Artermia salina 

(San Francisco Bay brand) at a target concentration of 1 nauplius per mL every 

3 days. Once megalopae transitioned to stage one juveniles, they were fed 

small pieces of squid. Upon transitioning to stage 2 juveniles, crabs were held 

on the MOATS for an additional 48 hours in attempt to reduce variation due to 

potential stochastic physiological processes associated with molting 59,60. Stage 

2 juveniles were then immediately frozen and stored at -80°C after lightly 

blotting with a paper towel to remove excess seawater. To reduce variation from 

length of exposure, which ranged from 20-65 days, only 60 crabs with the 

average exposure time (30-33 days) were chosen for metabolomics analysis 

with 15 individuals from each treatment group.  

 

Sample preparation 

Frozen samples were sent to the West Coast Metabolomics Center, 

Davis, CA for sample preparation, metabolomics and lipidomics profiling. Whole 

animals were thawed, weighed, and derivatized as previously described61,62 

Briefly, samples were extracted at -20°C with 2 mL of degassed 

acetonitrile/isopropanol/water (3:3:2) solution and solvents were evaporated to 

complete dryness with a Labconco Centrivap cold trap concentrator. Membrane 
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lipids and triglycerides were subsequently removed from dried samples with 

50% acetonitrile, and samples were again concentrated to complete dryness. 

15 mg of each sample preparation was used for metabolomic profiling. For 

lipidomic profiling, 15 mg of the same sample preparation was also used to 

which internal standards, C8-C30 fatty acid methyl esters were added. 

Aliquoted samples were derivatized with methoxyamine hydrochloride (Sigma-

Aldrich) in pyridine (Acros Organics) and then by N-methyl-N-(trimethylsilyl) 

trifluoroacetamide (Sigma-Aldrich) for trimethylsilylation of acidic protons.  

 

Metabolite and lipid data acquisition  

General metabolite and lipid abundances were quantified from 

derivatized samples by gas-chromatography, time-of-flight mass spectrometry 

(GC-TOF/MS) and charged-surface, hybrid-column, electrospray-quadrupole, 

time-of-flight mass spectrometry (CSH-ESI QTOF MS/MS), respectively. For 

metabolites, an Agilent 6890 gas chromatograph (Santa Clara, CA) was used 

with a Leco Pagasus IV time-of-flight mass spectrometer running Leco 

ChromaTOF software 2.32 (St. Joseph, MI). The following temperature profile 

was used: 50°C to 275°C final temperature at a rate of 12°C/s and hold for 3 

minutes. Injection volume was 0.5 μl with 10 μl/s injection speed on a splitless 

injector with a purge time of 25 seconds. Liner (Gerstel #011711-010-00) was 

changed after every 10 samples, (using the Maestro1 Gerstel software vs. 

1.1.4.18). Before and after each injection, the 10 μL injection syringe was 

washed 3 times with 10 μL ethyl acetate. For gas chromatography, a 30 m long, 
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0.25 mm i.d. Rtx-5Sil MS column (0.25 μm 95% dimethyl 5% diphenyl 

polysiloxane film) with additional 10 m integrated guard column was used 

(Restek, Bellefonte PA). 99.9999% pure Helium with a built-in purifier (Airgas, 

Radnor PA) was set at a constant flow of 1 mL/minute. The oven temperature 

was held constant at 50°C for 1 minute and then ramped at 20°C/minute to 

330°C at which it is held constant for 5 minutes. The transfer line temperature 

between gas chromatograph and mass spectrometer was set to 280°C. 

Electron-impact ionization at 70V was employed with an ion source temperature 

of 250°C. Acquisition rate was 17 spectra/second, with a scan mass range of 

85-500 Da. 

For positively charged lipids, an Agilent 6530 QTOF mass spectrometer 

with resolution 10,000 was used and for negatively charged lipids, an Agilent 

6550 QTOF mass spectrometer with resolution 20,000 was used. Electrospray 

ionization was used to ionize column elutants in both positive and negative 

modes. Compounds were separated using a Waters Acquity ultra-high-

pressure, liquid-chromatography charged surface hybrid column C18 (100 mm 

length x 2.1 mm internal diameter; 1.7 um particles) using the following 

conditions: mobile phase A (60:40 acetonitrile:water + 10 mM ammonium 

formiate + 0.1% formic acid, mobile phase B (90:10 isopropanol:acetonitrile + 

10 mM ammonium formiate + 0.1% formic acid), 65°C column temperature, a 

flow rate of 0.6 mL/minute, an injection volume of 3 uL, an injection temperature 

of 4 C, and a gradient of 0 minutes 15%, 0-2 minutes 30%, 2-2.5 minutes 48%, 

2.5-11 minutes 82%, 11-11.5 minutes 99%, 11.5-12 minutes 99%, 12-12.1 
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minutes 15%, and 12.1-15 minutes 15%. The capillary voltage was set to +3.5 

and -3.5 kV, and the collision energy to 25 or 40 eV for positive and negative 

modes. Mass-to-charge ratios (m/z) were scanned from 60 to 1700 Da and 

spectra acquired every 2 seconds.  

 

Spectral data processing 

Acquired metabolite data were processed using UC Davis’s BinBase 

workflow, which performs data processing including peak detection at signal-to-

noise levels of 5:1 throughout the chromatogram. Resulting apex masses are 

reported for use in the BinBase algorithm to facilitate metabolite identification 

and quantification19. Metabolites were identified through comparison to the 

BinBase database22 and peak heights were normalized to total metabolite 

content20. 

For acquired lipid data, MassHunter (Qual v. B05.00) was used to find 

peaks from the raw data in up to 300 chromatograms. These peaks were 

imported into Mass Profiler Professional for alignment to determine which peaks 

occur in at least 30 % of the chromatograms. These peaks were then quantified 

with MassHunter. Resulting accurate mass data and tandem MS/MS spectra 

were compared to LipidBlast libraries for compound identification21.  
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Statistical analyses 

All statistical analyses were carried out in R, except for PLS-DA and 

random forest analyses which were carried out using the MetaboAnalyst web 

interface.  

The coefficient of variation (standard deviation/mean) for the abundance 

of each compound was calculated for each treatment group. The standard 

deviation of each compound in a treatment group was calculated and then 

divided by the metabolite mean within the treatment group. The distribution of 

coefficient of variations was plotted for each treatment group to see if compound 

abundance variability showed a dependency on treatment (Supplementary 

Fig. 3a-b). A Kruskall-Wallis test was used to check for significant differences 

between treatment group coefficient of variation distributions. Heatmaps in 

Figure 3.3 and Supplementary Figure 2 were made using the heatmap 

function in the MetaboAnalyst web interface with Euclidean distance, ward 

clustering, plotting auto-scaled compound abundance averages for each 

treatment group. Normality and heteroscedasticity of compound abundances 

within treatment groups were tested using the Shapiro-Wilks test and the 

Levene test, respectively.  

 

Univariate statistics 

Excluding compounds that were detected in less than half of the 

individual crabs surveyed, two-way ANOVA was applied to each compound in 

the dataset. A Benjamini-Hochberg FDR correction was applied to ANOVA P 
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values to correct for multiple testing, but corrected P values were not used in 

selecting important compounds. Metabolites and lipids were selected for 

pathway analyses if they had a raw overall model ANOVA P value less than 0.1 

and an effect P value with less than 0.05 without an FDR correction applied.  

 

Multivariate statistics 

Prior to applying multivariate testing, data were normalized by mean-

centering and scaling by the reference-group standard-deviation for each 

compound in order to make compounds more comparable to one another28. 

Normalized data was then uploaded to MetaboAnalyst with no further 

normalizations applied. The PLS-DA function was run with default settings and 

component loadings were exported from MetaboAnalyst (Supplementary 

Table 5). Loadings were plotted for PLS-DA components, and importance 

thresholds were placed at the point of diminishing returns in the plot curves 

(Supplementary Fig. 7). Specifically for metabolites, loadings were plotted 

PLS-DA components 1, 2, and 3 (Supplementary Fig. 7a-c) since these PLS-

DA components gave the greatest separation between treatment groups (Fig. 

3.1a and Supplementary Fig. 6a). The points of diminishing returns that 

importance thresholds were placed in the metabolite loadings plots were as 

follows: component 1, loadings threshold > 0.05; component 2, loadings 

threshold > 0.1; and component 3, loadings threshold > 0.05. Specifically for 

lipids, loadings were plotted for PLS-DA components 2 and 3 (Supplementary 

Fig. 7d-e) since these gave the best separation between treatment groups, 
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while component 1 could only distinguish the ambient from the altered treatment 

groups (Fig. 3.1b and Supplementary Fig. 6b). The points of diminishing 

returns that importance thresholds were placed in the lipids loadings plots were 

as follows: component 2, loadings threshold > 0.05; and component 3, loadings 

threshold > 0.05. For the random forest analysis, the Random Forest function 

was run with 2000 decision trees and either 25 predictors for the metabolite 

dataset or 56 predictors for the lipid dataset, conforming to the default 

classification value being the square root of the number of variables63. The 

complete table of important variables and their mean decrease in random forest 

accuracy prediction exported from MetaboAnalyst (Supplementary Table 6). 

The mean decrease in prediction accuracy for each compound was ordered 

from largest to smallest and plotted (Supplementary Fig. 9c-d). Importance 

thresholds were drawn from the plots at the points of diminishing returns, which 

for metabolites was a mean decrease in accuracy > 0.001 and for lipids was a 

mean decrease in accuracy > 0.00047.  

 

Pathway analysis 

For visualizing the pH, DO, and pH:DO interaction effects, mean 

abundance fold change and Cohen D effect size values were calculated for 

each compound within a treatment group relative to the ambient treatment 

group. Cohen D effect size ( ) was calculated for each 

compound raw abundance within a treatment group relative to the ambient 

treatment group using the R package effsize64. A table was then generated with 
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treatment group -log2 fold change values, Cohen D effsize output from R, and 

corresponding -log10 P values from the ANOVA analysis for each metabolite 

(Supplementary Table 7). Pubchem and KEGG identifiers were obtained for 

metabolites and lipid international chemical identifier keys provided by the West 

Coast Metabolomics Core using Chemical Translation Service65 and Pubchem 

Identifier exchange66. Metamapp67 was then used to map metabolites by 

chemical and biochemical relationships. The generated SIF file 

(Supplementary File 1) and modified node attribute file (Supplementary Table 

7) were imported into Cytoscape68. Low pH, low DO, and low pH:low DO 

networks were stylized using the following settings: node shapes were set 

according to statistical method used to select the compound (ANOVA, triangle; 

PLS-DA, square; random forest, diamond; both PLS-DA and ANOVA, hexagon; 

not selected as important by any method, circle); node border was color by the 

treatment group mean compound abundance fold change relative to ambient 

(1.25X – 2X fold change, yellow gradient; -1.25X – 1.25X fold change, grey; -

1.25X – -4X fold change, blue gradient); node fill was colored by the Cohen D 

effect size of treatment on compound abundance relative to ambient (effect size 

of 0.5 – 1, yellow gradient; -0.5 – 0.5, white; and -0.5 – -1, blue gradient); node 

shape size and label size were set to fixed values (100 height and width with 

size 50 font for statistically selected compounds, and 40 height and width with 

size 12 font for compounds not identified by statistics (Supplementary Fig. 10-

12).  
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