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Abstract

This paper shows how to reduce the bullwhip effect by introducing advance demand information (ADI)
into the ordering schemes of supply chains. It quantifies the potential costs and benefits of ADI, and
demonstrates that they are not evenly distributed across the chain. Therefore, market-based strategies to
re-distribute wealth without penalizing any supplier are presented. The paper shows that if a centralized
operation can eliminate the bullwhip effect and reduce total cost, then some of this reduction can also be
achieved with decentralized negotiation schemes. Their performance is evaluated under different modes
of probabilistic supplier behavior. For some forms of behavior the optimum is reached. But if suppliers
are greedy and impatient the expected gain in wealth is relatively small. This is a case of economic
“market failure”.

1 Background and Definitions

In the supply chain literature, the term “bullwhip effect” refers to a phenomenon where the fluctuations in
order sequence are usually greater upstream than downstream of a chain. This phenomenon is repeatedly
shown in industry operations [7, 8, 15, 16], macroeconomic data [1, 2, 10, 11, 17, 20], and simulations such
as “beer games” [9, 12, 21]. The bullwhip effect results in huge extra operation costs for suppliers; in some
cases reported to be as much as 25% [3, 13, 14]. The rest of this section explains ADI and its effect on, both,
the bullwhip effect and the cost of operation; the key ideas are taken from [19].

1.1 Supply chain operation with ADI

Consider a multi-echelon chain with i = 1, 2, · · · , I + 1 suppliers and one final customer (treated as supplier
i = 0), as shown in Figure 1. Every supplier (i = 0, 1, 2, · · · , I) orders ui(t) items from its upstream neighbor
at discrete times t = · · · ,−2,−1, 0, 1, 2, · · · , and receives the items after a constant lead time li = 0, 1, 2, · · · .
The conservation equations for the supplier’s inventory position at time t (cumulative orders placed minus
orders received, xi(t)) and for the in-stock inventory at time t (cumulative items received minus orders
received, yi(t)) are:

xi(t + 1) = xi(t) + ui(t)− ui−1(t),∀i = 1, 2, · · · , (1)
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Figure 1: A representation of a supply chain.

and
yi(t + 1) = yi(t) + ui(t− li)− ui−1(t),∀i = 1, 2, · · · . (2)

The supply chain is decentralized if suppliers act independently, placing orders based on private infor-
mation; i.e., on all the inventory records and the histories of orders received and placed. Since it turns out
that the history of orders placed is redundant information [19], all the information available to supplier i at
time t is encapsulated in the following information set:

Ii(t) := {xi(t), xi(t− 1), · · · , xi(−∞); yi(t), yi(t− 1), · · · , yi(−∞);
ui−1(t− 1), ui−1(t− 2), · · · , ui−1(−∞)}.

Therefore, the most general linear and time-invariant (LTI) ordering policy only uses elements of this set as
inputs, and can be written as follows:

ui(t) = γi + Ai(P )xi(t) + Bi(P )yi(t) + Ci(P )ui−1(t− 1), i = 1, 2, · · · , (3)

where parameter γi is a real number, and Ai(·), Bi(·), Ci(·) are polynomials with real coefficients. The symbol
P is a backward lag operator; i.e., P kx(t) = x(t − k),∀k = 0, 1, 2, · · · . The polynomials Ai(P ) and Bi(P )
indicate the influence of inventory history, and Ci(P ) the history of orders received. We shall abbreviate the
policy of supplier i by Fi := {γi, Ai, Bi, Ci},∀i.

We can also allow suppliers to incorporate advance demand information (ADI) into their policies [4, 5,
6, 18, 19]. We say that ADI is available to supplier i + 1 if its downstream neighbor (i) announces at every t
the orders it will place in h̄i,i+1 = 0, 1, · · · future periods, and commits to these orders with a contract. We
call h̄i,i+1 the commitment index between i and i + 1, and the difference hi := h̄i−1,i − h̄i,i+1, i = 1, · · · , I
the ADI level of i; see Figure 2. 1

If the ADI level of a supplier is positive (hi > 0), the supplier (i) is a net consumer of ADI and can
incorporate extra information into its policies. Its order ui(t) is determined and committed at time t− h̄i,i+1

based on the following information set:

I ′i(t− h̄i,i+1) := Ii(t) ∪ {ui−1(t), ui−1(t + 1), · · · , ui−1(t + hi − 1)}, if hi > 0.

A general LTI policy based on this information set has the following form [19]:

ui(t) = γi + Ai(P )xi(t) + Bi(P )yi(t) + Ci(P )ui−1(t + hi − 1), ∀i, t, if hi > 0. (4)

Conversely, when hi < 0, supplier i is a net provider of ADI who bears risks and has less flexibility. Its
order size ui(t) is again determined at time t− h̄i,i+1 based on the following information set:

I ′′i (t− h̄i,i+1) := Ii(t + hi) ∪ {ui(t + hi), ui(t + hi + 1), · · · , ui(t− 1)}, if hi < 0.

1We assume that the customer and supplier I + 1 do not make commitments; i.e. we let h̄0,1 = h̄I+1,I+2 = 0.
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A general LTI policy based on this information set is:

ui(t) = γ̂i + Ai(P )xi(t + hi) + Bi(P )yi(t + hi) + Ci(P )ui−1(t + hi − 1)
+Di(P )[Ai(P ) + Bi(P )P li ]ui(t− 1), ∀i, t, if hi < 0, (5)

where Di(P ) = (1 + P + P 2 + · · · + P |hi|−1) and γ̂i = γ + hi[Ai(1) + Bi(1)]u∞.
We have chosen a somewhat awkward way of expressing (5) because then policies (3), (4) and (5) have the

same steady states (u∞, x∞i , y∞i ).2 Note that the only ADI parameter on the right side of these equations is
hi. Thus, these equations define a suite of ADI policies characterized by Fi, whose members are distinguished
by hi = 0, > 0, < 0.

We are interested in determining how different choices of {hi} affect the bullwhip effect. To this end, we
shall assume from now on that the system is in a steady state prior to t = 0, and the evaluation is done for
t = 0, 1, · · · ,∞.

1.2 The Bullwhip effect

Let σ0 be the root mean square error (RMSE) of the customer order sequence:

σ0 = lim
T→∞

[
1
T

T∑
t=0

(u0(t)− u∞)2
] 1

2

.

The policies of a supply chain uniquely transform this input sequence into a set of order sequences {ui(t)}
for each supplier. Because an analyst does not know or control {u0(t)}, we define σi as the largest possible
RMSE of {ui(t)} for all possible {u0(t)} with a given σ0; i.e.,

σi := sup
∀{u0(t)} with RMSE σ0

 lim
T→∞

[
1
T

T∑
t=0

(ui(t)− u∞)2
] 1

2
 . (6)

We say that the bullwhip effect exists at the upstream end of the chain if:

WI :=
σI

σ0
=

I∏
i=1

σi

σi−1
> 1. (7)

Recent studies [4, 5, 6, 18, 19] reveal that the amplification factor for stage i, Ai := σi
σi−1

, is given
by a formula, Ai = A(Fi, hi, li). A general expression for A is given in [19]. This formula establishes a
quantitative relationship between the ADI level of a supplier hi and its RMSE amplification (σi/σi−1), for
a given policy family. It is shown in [18, 19] that if Fi amplifies RMSE without ADI (i.e., A(Fi, 0, li) > 1),
then there is an hi > 0 that reduces the amplification. For many policies ADI completely eliminates it. It
can also be shown that for all hi < 0, A(Fi, hi, li) = A(Fi, 0, li); see Appendix A.

1.3 Supplier costs

A supplier’s operating costs (including production, storage, handling, inventory, and transportation) depend
on the character of the supplier’s input and its ordering policy. In our analysis, we shall hold constant the
demand trend, σ0, and Fi, and only focus on the interplay between the hi and the order variability. Thus,
we express the operating costs estimated by supplier i as:

Ci (σi−1, hi) , i = 1, 2, · · · , I + 1. (8)
2To see this, simply verify that in the steady state (3), (4) and (5) reduce to:

u∞ = γi + Ai(1)x∞i + Bi(1)y∞i + Ci(1)u
∞, i = 1, 2, · · · .

3



RMSE�of�order

stream

Supplier

I

!I

Supplier

I+1

!I – 1 !i – 1!i !0!1

Supplier

i

Supplier

1

hi

hi – 1,i

hi,i+1

h0,1 =0

h1,2

Customer

0

Supplier

i-1

!i – 2

(Absolute)�periods�of

committed�ADI

hI�,I+ 1

A
D
I

C
o
m
m
i
t
m
e
n
t

Figure 2: Supplier cost structure and ADI commitment index.

The function Ci should increase (or at least not decrease) with the variability of the orders received, σi−1,
and decrease (or at least not increase) with the ADI level, hi.

Properly implemented, ADI would extract commitments from downstream suppliers (imposing a cost) to
reduce order variability for upstream suppliers (providing a benefit). Therefore ADI would transfer wealth
from the downstream end of the chain to the upstream end. This unbalance needs to be addressed in an
ADI implementation.

This paper proposes negotiation and contracting options for the selection of h̄i,i+1 that improve cost
efficiency while maintaining balance. Section 2 studies an idealized cooperative scheme for the selection,
which yields a lower bound for the optimum system cost. Section 3 then proposes a decentralized, non-
cooperative market-based procedure and evaluates its performance.

2 Optimum Performance in Cooperative Chains

We compare here the supply chain costs with and without ADI for a given policy, Fi. At stage i, the non-ADI
benchmark for comparison is Ci(σ0

i−1, 0). The benchmark cost for the whole chain is
∑I+1

i=1 Ci(σ0
i−1, 0). Note

that the RMSEs in this expression are linked and fixed by the amplification relations σ0
i = σ0

i−1·A(Fi, 0, li), ∀i
and σ0

0 = σ0. Therefore, the benchmark cost is a constant. Because Fi and li are fixed, we shall write Ai(hi)
instead of A(Fi, hi, li) from now on.

If suppliers cooperate, an agent could find and set the commitment periods at each stage so as to minimize
the total operating cost; i.e., as the solution of:

Problem (MP): min
h̄1,2,··· ,h̄I,I+1,σ1,··· ,σI

I+1∑
i=1

Ci (σi−1, hi) (9)

s.t. σi = σi−1 · Ai(hi), ∀i = 1, 2, · · · , I (10)
hi = h̄i−1,i − h̄i,i+1,∀i (11)
h̄i,i+1 ∈ {0, 1, 2, · · · }, ∀i (12)

The agent does not need to specify the RMSEs because, as we see from (10), knowledge of the commitment
levels (hi’s) implies knowledge of the RMSEs (σi’s). The solution of (9) is the theoretical best one can do
with ADI. The benchmark (non-ADI) cost is obtained by setting hi = 0,∀i in (9). Since hi = 0, h̄i,i+1 = 0,∀i
is a feasible solution of problem MP, its cost must match or exceed the ADI optimum. Clearly then, ADI
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can only improve on the benchmark. The magnitude of the improvement generally depends on the cost and
amplification functions, (Ci,Ai), which vary across industries.

Section 3 will show that much of this improvement can be achieved in a non-cooperative, market-based
setting. But before this is done, some asymptotic results are presented for the cooperative case.

Assume that supplier 1 increases its commitment index with 2, h̄1,2, allowing 2 to increase its ADI level,
h2, without any change in h3, h4, · · · . Consideration of (10) shows that the increase in h2 reduces σ2, and
this in turn reduces σ3, σ4, · · · by the same factor. Thus, the single sacrifice made by supplier 1 benefits
suppliers 2, 3, · · · , I + 1. Clearly, the greater I the larger the benefit. And, if the benefit derived by the
individual suppliers is bounded from below by a positive constant, total cost would decline for sufficiently
large I. This shows that ADI will reduce cost for any realistic Ci if a chain is sufficiently long. That is why
it is so appealing.

This argument should be true even if value-adding activities are distributed across the chain, strongly
hinting that ADI policies have much potential for reducing cost. We now introduce a market mechanism
that allows all suppliers to capture some of this benefit without a central agent.

3 Non-cooperative Chains: A Market for ADI

So far, our analysis has assumed that suppliers cooperate with a central agent who knows all the supplier cost
and amplification functions (Ci and Ai). A truly powerful agent could enforce cooperation by compensating
or penalizing each supplier for the difference between the supplier’s new and benchmark operating costs, and
keep all the profits. In cases when one party in the chain possesses dominating negotiation power, the chain
may operate in ways that resemble this idealization.

In most practical cases, however, suppliers are reluctant to share cost information, except for information
that is indirectly released through bilateral negotiations in which transaction prices are set. Free market
mechanisms would set these prices somewhere between (i) the maximum price a supplier is willing to pay to its
downstream neighbor for a reduction in RMSE or an increase in the commitment index, and (ii) the minimum
price this neighbor is willing to take to adjust its ordering procedures (ADI and RMSE commitments). The
gap between these two bounds is the potential profit. We will assume that downstream suppliers make offers
and upstream suppliers accept or decline them.

3.1 Negotiation rounds

Suppliers i and i + 1 negotiate the values of state variables {h̄i,i+1, σi}, where σi now represents an RMSE
guarantee provided by supplier i. Of course, if this supplier is smart, the guarantee should equal its worst-
case RMSEs prediction (10). This is illustrated in Figure 3. To formalize these ideas we now introduce a
function pricei,i+1(h̄i,i+1, σi) to denote the minimum compensation (taken as a discount to the item price)
supplier i would be willing to receive from i + 1 in exchange for providing h̄i,i+1 periods of ADI and an
RMSE bound of σi. This may include a profit mark-up known only to supplier i.

During a negotiation, a supplier proposes a “price function” to its upstream neighbor. The upstream
supplier can then either decline the offer and stay with the status quo, or else choose the arguments of the
price function and agree to a new contract. The contract only defines the price function. The upstream
supplier retains the right to change the arguments of the function with sufficient notice. The detailed
mechanism of a bilateral negotiation is as follows.

Bilateral negotiation mechanism

Assume that supplier i = 1, 2, · · · decides to evaluate its ADI policy options and change pricei,i+1. If this
does not directly follow a recent update of pricei−1,i from supplier i−1, we say that supplier i has initiated a
new negotiation round. For any desired profiti and given the price function from its downstream neighbor,

5



( )h0,1 0=0, !

S
t

a
t

e

S
p

a
c

e

Supplier

Stage 01i i-1

( )h1,2 1, !( )hi,i+ i1 , ! ( )hi i i–1, –1, !

Figure 3: Stage-wise negotiations.

it should be able to calculate:

pricei,i+1(h̄i,i+1, σi) := min
h̄i−1,i,σi−1

[Ci(σi−1, hi) + pricei−1,i(h̄i−1,i, σi−1)
]
+ profiti (13)

s.t. σi ≥ σi−1 · Ai (hi) ,

hi = h̄i−1,i − h̄i,i+1.

Note that the first constraint is an inequality because supplier i can always try a σi−1 smaller than strictly
necessary. If its offer is accepted, supplier i obtains a profit, profiti, regardless of the choice made by i + 1.
Supplier i may have to change its state variables with i− 1 as a result of this choice, though.

Supplier i + 1 will accept the offer if there exists arguments:

{h̄∗i,i+1, σ
∗
i } := arg min

h̄i,i+1,σi

[Ci+1(σi, hi+1) + pricei,i+1(h̄i,i+1, σi)
]

(14)

s.t. σi+1 ≥ σi · Ai+1 (hi+1) ,

hi+1 = h̄i,i+1 − h̄i+1,i+2,

which increase its profit, profiti+1 = pricei+1,i+2 − (Ci+1 + pricei,i+1), from the current value without
changing pricei+1,i+2; i.e., if Ci+1(σ∗i , h∗i+1) + pricei,i+1(h̄∗i,i+1, σ

∗
i ) decreases.

Multilateral negotiation mechanism

Multilateral negotiations happen when supplier i+1, upon receiving a price function offer from i, pricei,i+1,
updates its price function offer to supplier i + 2, pricei+1,i+2, and waits for its response before replying to
i. The updating process uses (13), and may be repeated at suppliers i + 2, i + 3, · · · , j until supplier j + 1
finally accepts or declines the offer, using (14).

If the offer is accepted, supplier j +1 then pays pricej,j+1(h̄∗j,j+1, σ
∗
j ) to supplier j in exchange for h̄∗j,j+1

and σ∗j . Supplier j will then integrate the choice of j + 1 (even if the offer is declined) into (14) to make
its own choice. This process continues toward the downstream of the chain until reaching supplier i, who
initiated the negotiation round. At that point, all the suppliers involved in the multilateral transaction will
have revised their contracts and adjusted their state variables (i.e., the commitments).

Initially, the price function has to be consistent with the equilibrium that exists before the introduction
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of ADI. Therefore, we initialize the system with hi = 0 and price functions

pricei,i+1(h̄i,i+1, σi) =
{

0, if σi ≥ σ0
i and h̄i,i+1 = 0

∞, otherwise .

These price functions preclude greater variances than those obtained without ADI. The non-ADI equilibrium
is broken when suppliers realize that they can increase profit by changing this function and starting their
negotiations.

3.2 Behavioral Scenarios and Analytic Results

In decentralized chains, every supplier may independently initiate a negotiation round, set its own profit level,
and choose among accepting, transmitting or declining an offer. Some of these choices (e.g., the selection of
a profit level and the decision to transmit an offer) are random, and the probabilistic associated with the
choices can affect the course of the negotiations. We now show how much.

Systematic multi-lateral negotiations with negligible profit

First we consider an idealized process where only supplier 1 initiates a round, and all offers are transmitted
upstream with probability p = 1. We also assume that every supplier charges a negligible profit. Thus, the
only beneficiary of the cost reduction is supplier I + 1.

It should be obvious that such negotiation exactly solves problem MP in one round. This is because the
procedure is just the stage-wise optimization algorithm that solves dynamic-programming-type problems of
type (9).

Random negotiations with negligible profit

We still assume that profiti = 0,∀i but now allow all suppliers to initiate negotiations randomly, and upon
receiving offers to transmit them upstream with probability pi < 1. Since profiti = 0,∀i, suppliers have
total flexibility to choose any price at all time. Clearly then, an infinite number of negotiation rounds would
have a subsequence that updates pricei from i = 1 to I. This ensures asymptotic convergence — i.e., with
probability 1 the optimal solution of (9) is reached in finite time.

We can analytically calculate the number of negotiation rounds needed to achieve the optimum. Consider,
for example, a homogeneous chain with I + 1 suppliers where pi = p, and every supplier is equally likely to
initiate a negotiation round. It can be easily shown that the expected number of negotiation rounds, EXI ,
can be calculated from the following recursion (see Appendix B):

EXi =
I + (pi − pI+1)

∑i
j=1 p−jEXj−1

1 + (p− pI−i+1)/(1− p)
, ∀i = 1, 2, · · · , I, with E X0 = 0. (15)

Greedy suppliers

In reality, suppliers try to achieve some non-negligible profit and use negotiations as a means to increase
it. Nobody’s profit should decrease after a successful negotiation round. This behavior adds considerable
complexity to the process, and influences the possibility of reaching the optimum. We investigate this issue
with simulations.

3.3 Simulations

Consider a homogeneous chain with I + 1 = 7, W = 3, and h = 2. Each supplier has cost function
C(σi−1, hi) = σi−1

2 (2) 1
2 for hi > 0, and σi−1

2 (1 + W 2) 1
2 · max(1, 1 − hi) for hi ≤ 0. When a supplier enters

a new negotiation round, it tries to increase its profit by a random quantity that is uniformly distributed
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in [U/2, U ], where the limit U is set as a small percentage, λ, of a supplier’s share of the total possible cost
savings; i.e., as a percentage of (benchmark cost – optimal cost)/(I + 1). We then simulated many random
realizations of negotiation processes, assuming that all suppliers are equally likely to initiate a negotiation
round.

Section 3.2 showed that when the suppliers are not greedy (λ = 0), asymptotic convergence is ensured.
Figure 4(a) confirms this result. It shows a typical realization with p = 0.5, where the total cost converges
to the optimum in 27 rounds. Note the rapid improvement after just a few rounds.

We are interested in how negotiations, especially the first few rounds, reduce total system cost in the
(realistic) greedy case. Figure 4(b) shows the average total system cost achieved after 20 rounds (i.e., each
supplier on average initiates 3 rounds) for different values of p and λ. We see that for small λ, almost 100%
of the cost savings can be achieved if suppliers are enterprising (p > 0.6), and that 45% can be achieved even
if suppliers are totally passive (p = 0). When λ increases (i.e., suppliers try to increase profit more rapidly),
the total cost savings decreases. The problem is that if one of the suppliers succeeds in extracting too large
a profit early and if this is suboptimal, then the process will fail to get the optimum, since the supplier in
question will be unwilling to lower its profit in future negotiation rounds. Therefore, the suppliers’ rush for
profit (even if moderate) hinders convergence toward optimality and increases cost. This is an interesting
example of “market failure”.

We also study how parameters λ and p influence the rate of convergence to the optimum. Figure 4(c)
confirms that with zero profit (λ = 0), the optimum is asymptotically achieved. But when λ increases, the
convergence process is also more likely to fail. On the other hand, among those rounds that do converge,
the average number of rounds for convergence decreases with λ and p. This is shown in Figure 4(d), which
also includes theoretical result (15).

4 Conclusion

This paper built on previous findings on the bullwhip effect and ADI [4, 18, 19], by proposing new ordering
and contracting schemes that distribute wealth across the chain. It is found that significant benefits can be
achieved through a free market mechanism, but greed and impatience reduce the total benefit.

Our result assumed a specific negotiation process, in which downstream suppliers make offers to their
upstream neighbors, and the latter accept or decline the offers. But in reality, upstream suppliers can also
initiate offers and the real process is likely to be more disorganized. Symmetry considerations, however,
suggest that our qualitative result would not change.

This paper also assumed that suppliers follow up with their commitments, and thus does not discuss a
mechanism for enforcing compliance. A mechanism could be based on the price function itself, and could
include clauses with extra penalties for large deviations. This would require the contracts to be evaluated
over extended periods of time, and would preclude rapid changes.

Future research can be extended in several directions. First, our negotiation framework is based on
worst-case RMSE bounds. This may be changed to expected RMSEs, which can better match empirical
observations. We should also allow suppliers to change Fi when hi changes. This paper also assumed that
all suppliers know their own cost functions and are able to make optimal decisions in a very structured way.
In reality suppliers may not be perfectly competent or have enough information to be so precise. Thus, one
may wish to include an adaptive learning mechanism in the game. Maybe convergence can be improved with
more frequent negotiations and this learning mechanism. Real experiments with people (similar to the beer
game) could be a good way to verify these conjectures.
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A The amplification factor of (5) for hi < 0

This appendix shows that policy (5) with hi < 0 yields the same RMSE amplification as (3) with hi = 0.
To do this, let us first express policy (5) into a form similar to (3) by redefining the inventory and order
variables. Since Di(P ) := 1+P + · · ·+P−hi−1, the total number of advance orders committed by supplier i
at time t + hi equals Di(P )ui(t− 1) = ui−1(t− 1) + · · ·+ ui−1(t + hi). Then, define the following variables:

u′i(t) := ui(t), ∀t,
u′i−1(t) := ui−1(t + hi), ∀t,
x′i(t) := xi(t + hi) + Di(P )ui(t− 1), ∀t,
y′i(t) := yi(t + hi) + Di(P )ui(t− li − 1), ∀t.

By substituting these new variables into (5), we find:

u′i(t) = ui(t) = γ̂i + Ai(P )[x′i(t)−Di(P )ui(t− 1)] + Bi(P )[y′i(t)−Di(P )ui(t− li − 1)]
+Ci(P )u′i−1(t− 1) + Di(P )[Ai(P ) + Bi(P )P li ]ui(t− 1)

= γ̂i + Ai(P )x′i(t) + Bi(P )y′i(t) + Ci(P )u′i−1(t− 1) (16)

Note that policy (16) is based on an information set that does not include terms from the future:

I ′′′i (t) := {x′i(t), x
′
i(t− 1), · · · , x′i(−∞); y′i(t), y

′
i(t− 1), · · · , y′i(−∞);

u′i−1(t− 1), · · · , ui−1(−∞)}.
Note too that (17) has the same function form as policy (3), except for a different constant γ̂i. Since constants
do not influence RMSE, it follows that the worst-case RMSE amplification is the same for both policies.

B Proof for (15)

Let EXi denote the expected number of negotiation rounds needed to reach convergence when i = 0, 1, · · · , I
upstream suppliers (i.e., j = I, · · · , I−i+1) have not yet found their optimal pricej,j+1. Obviously EX0 = 0.
To prove (15), consider the realization of one additional round, which may be initiated by supplier k and
concluded by supplier s(> k). By conditional expectation,

EXi = 1 +
∑
k, s

1 ≤ k < s ≤ I + 1

{
(expected rounds after this realization)
·Pr{initiated by k, concluded by s}

}
. (17)

We examine all possible combinations of k, s and i, and (17) becomes

EXi = 1 +
i∑

s=1

{
EXs−1 ·

I∑
k=i

[
1
I
pk−s(1− p)]

}
+

I∑
s=i+1

{
EXi ·

I∑
k=s

[
1
I
pk−s(1− p)

]}

+
i− 1

I
EXi +

1
I

I∑
k=i

EX0

= 1 +
pi − pI+1

I

i∑
s=1

[
EXs−1p

−s
]
+

(
I − 1

I
− p− pI−i+1

I(1− p)

)
EXi.

Solving EXi from this equation yields (15).
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