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MULTIGRID METHODS FOR CONSTRAINED MINIMIZATION PROBLEMS
AND APPLICATION TO SADDLE POINT PROBLEMS

LONG CHEN

ABSTRACT. The first order condition of the constrained minimization problem leads to
a saddle point problem. A multigrid method using a multiplicative Schwarz smoother
for saddle point problems can thus be interpreted as a successive subspace optimization
method based on a multilevel decomposition of the constraint space. Convergence theory is
developed for successive subspace optimization methods based on two assumptions on the
space decomposition: stable decomposition and strengthened Cauchy-Schwarz inequality,
and successfully applied to the saddle point systems arising from mixed finite element
methods for Poisson and Stokes equations. Uniform convergence is obtained without the
full regularity assumption of the underlying partial differential equations. As a byproduct,
a V-cycle multigrid method for non-conforming finite elements is developed and proved to
be uniform convergent with even one smoothing step.

1. INTRODUCTION

Given a quadratic energy E(v) defined on a Hilbert space V , we consider the con-
strained minimization problem:

(1) min
v∈K

E(v),

where K ⊂ V is the null space of a linear and bounded operator B defined on V . By
introducing the Lagrange multiplier for the constraint, we can find the minimizer of (1) by
solving a saddle point system. In this paper, we shall design and analyze multigrid methods
for the constrained minimization problem (1) and apply them to the saddle point systems
arisings from mixed finite element discretization of Poisson, Darcy, and Stokes equations.

We shall adapt the constraint decomposition methods developed by Tai for nonlinear
variational inequalities [55] to the constrained minimization problem. Let K =

∑N
i=1Ki

be a space decomposition. Our method consists of solving a local constrained minimization
problem in each subspace Ki which is equivalent to solving a small saddle point problem.
Thus our relaxation can be interpreted as a multiplicative overlapping Schwarz method
which is known as Vanka smoother [58] in the context of computational fluid dynamics.
With a proper multilevel decomposition, our method becomes the classical V-cycle multi-
grid method.

Assuming that the decomposition K =
∑N
i=1Ki satisfies two assumptions: energy

stable decomposition (SD) and strengthened Cauchy-Schwarz inequality (SCS), we are
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2 L. CHEN

able to prove the convergence of our method

E(uk+1)− E(u) ≤
(

1− 1

1 + CACS

)[
E(uk)− E(u)

]
,

where uk is the k-th iteration, and CA and CS are positive constants in (SD) and (SCS).
We also extend the analysis to the case where the local constrained minimization problem
is not solved exactly but one gradient iteration is applied.

It is known that numerically multiplicative Schwarz smoother leads to an efficient multi-
grid methods for saddle point problems [52, 53], however, theoretical analysis for the con-
vergence is only available for less efficient additive versions [52, 53]. Our new framework
can fill this gap. Furthermore, the optimal choice of the relaxation parameter used in the
inexact solvers of local problems can be derived from the minimization point of view.

We then apply our method to the saddle point systems arising from mixed finite ele-
ment methods of Poisson, Darcy, and Stokes equations. By verifying assumptions (SD)
and (SCS) for multilevel decompositions of H(div) element spaces, we will prove the uni-
form convergence of a V-cycle multigrid method for mixed finite element methods for the
Poisson and Darcy equations. Our smoother is related to the overlapping Schwarz method
developed for H(div) problems in [32, 59, 42, 41, 3]. But our analysis from the energy
minimization point of view is more transparent. We note that a similar stable multilevel
decomposition for the Raviart-Thomas space has been proposed in [59] in two dimensions
and in [34, 3] in three dimensions. Our decomposition for three dimensional case is new
and does not require the duality argument and thus relax the full regularity assumption
needed in [34, 3].

We use the equivalence between Crouzeix-Raviart (CR) non-conforming methods and
mixed methods to develop a V-cycle multigrid method for non-conforming methods of
Poisson equation and prove its uniform convergence. Existing convergence proofs of multi-
grid methods for non-conforming methods [11, 48, 15, 16, 49] cannot cover V-cycles with
few smoothing steps while our new framework can. The two ingredients of our new multi-
grid method for non-conforming methods are: the overlapping Schwarz smoothers, and
inter-grid transfer operators through the nested flux spaces.

For discrete Stokes equations, we apply our theory to divergence free and nested finite
element spaces, e.g., Scott-Voligious elements [54]. Again traditional multigrid conver-
gence proofs for Stokes equations requires the full regularity assumption [60, 12, 14, 8, 68,
47]. Using the framework developed in this paper, we can obtain multigrid convergence
without the full regularity assumption. Very recently, Brenner, Li, and Sung [17] have de-
veloped new multigrid methods for Stokes equations and have proved the uniform conver-
gence without the full regularity assumption. The convergence result of [17] is, however,
restricted to W-cycle multigrid methods with sufficient many smoothing steps. Here we
consider V-cycle multigrid with only one smoothing. Furthermore, smoothers developed
in [17] are less efficient than Vanka-type smoothers considered here; see numerical exam-
ples in [52, 17]. On the other hand, the framework developed in [17] can be applied to any
stable mixed finite element discretization of Stokes equation and in [18] such convergence
theory is also extended to the Darcy systems, while the current theory can be only applied
to the case when the constrained subspaces are nested. For non-nested constrained sub-
spaces, an additional projector is needed and an analysis for W-cycle multigrid without the
full regularity assumption can be found in [23]. For popular finite element pairs of Stokes
equations, a fast multigrid method using least square distributive Gauss-Sedel smoother
has been developed in [62] for Stokes equations and generalize to Oseen problem in [25].
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Although most of the abstract theory, either based on the Xu-Zikatanov identity [67] or
following the Tai-Xu approach [56], has been developed in certain form in the literature,
the application to multigrid methods for solving saddle point systems are new and lead to
several new contribution of the multigrid theory for saddle point systems: a convergence
proof of V-cycle with even one smoothing step, a convergence proof without full regularity
assumption, and a convergence proof for the multiplicative Schwarz smoother. Stable de-
composition of several finite element spaces established in this paper also have their own
interest.

The rest of this paper is structured as follows. In Section 2, we introduce the algorithm.
In Section 3, we give a convergence proof using the X-Z identity and in Section 4, we
present an alternative proof based on the constraint subspace optimization method. We
extend the convergence proof to the inexact local solver in Section 5. In Section 6, 7,
and 8, we apply our method to mixed finite element methods for the Poisson and Darcy
equations, non-conforming finite element methods for the Poisson equation, and mixed
finite element methods for the Stokes equations, respectively. In the last section, we give
conclusion and outlook for future work.

2. ALGORITHM

Let H be a Hilbert space equipped with inner product (·, ·) and V ⊂ H be a closed
subspace and thus V is also a Hilbert space. Suppose A : V → V is a symmetric and
positive definite (SPD) operator with respect to (·, ·), which introduces a new inner product
(u, v)A := (Au, v) = (u,Av) on V . The norm associated to (·, ·) or (·, ·)A will be denoted
by ‖ · ‖ or ‖ · ‖A, respectively. Let P be another Hilbert space and let B : V → P be
a linear operator. With a slight abuse of notation, we still denote the inner product of P
by (·, ·). In most problems of consideration, the inner product (·, ·) for H is the vector
L2-inner product while for P it is the scalar L2-inner product. The transpose BT : P → V
is the adjoint of B in the (·, ·) inner product, i.e., (Bv, q) = (v,BT q) for all v ∈ V, q ∈ P .

For an f ∈ H, we define the Dirichlet-type energy:

(2) E(v) =
1

2
‖v‖2A − (f, v), for v ∈ V.

In this paper we always identify a functional in the dual space H′ as an element in H
through the Riesz map induced by (·, ·). Denote byK = ker(B) the subspace satisfying the
constraint Bv = 0, i.e., the null space of B. We are interested in the following constrained
minimization problem:

(3) min
v∈K

E(v).

Since the energy is quadratic and convex, there exists a unique solution to (3) and the
minimizer u of (3) is characterized as the solution of the equation: Find u ∈ K such that

(4) (Au, v) = (f, v) for all v ∈ K.
We introduce the operator AK : K → K as (AKu, v) = (Au, v) for all u, v ∈ K and the
operator QK : H → K as the (·, ·)-projection, i.e., for a given function f ∈ H, QKf ∈ K
satisfies (QKf, v) = (f, v) for all v ∈ K. Then the operator form of (4) is: Find u ∈ K
such that

(5) AKu = QKf in K.
As it might be difficult to find bases for the subspace K, instead of solving the symmetric
positive definite formulation (5), we shall consider an equivalent saddle point formulation.
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Let us introduce the Lagrange multiplier p ∈ P , equation (4) can be rewritten as the
following saddle point system: Find u ∈ V, p ∈ P such that

(Au, v) + (p,Bv) = (f, v) for all v ∈ V,
(Bu, q) = 0 for all q ∈ P,

which will be written in the operator form

(6)
(
A BT

B O

)(
u
p

)
=

(
f
0

)
.

Let ‖ · ‖V and ‖ · ‖P be two appropriate norms for space V and P , respectively. It is
well known that (6) is well posed if and only if the following so-called Brezzi conditions
[19] hold:

(1) Continuity of operators A and B: there exist constants ca, cb > 0 such that

(Au, v) ≤ ca‖u‖V ‖v‖V , (Bv, q) ≤ cb‖v‖V ‖q‖P , for all u, v ∈ V, q ∈ P.
(2) Coercivity of A in the kernel space. There exists a constant α > 0 such that

(Au, u) ≥ α‖u‖2V for all u ∈ ker(B).

(3) Inf-sup condition of B. There exists a constant β > 0 such that

inf
p∈P,p6=0

sup
v∈V,τ 6=0

(Bv, p)

‖v‖V ‖p‖P
≥ β.

Choices of norms ‖·‖V and ‖·‖P are not unique [69] and ‖·‖V = ‖·‖A may not be always
a good choice since B may not be continuous in ‖ · ‖A norm, c.f. the mixed formulation of
Poisson equation in Section 6. Throughout this paper, we will assume the well-posedness
of (6) and focus on its efficient solvers.

Problems (5) and (6) are equivalent theoretically but will lead to different algorithms.
In practice, the saddle point formulation will be easier to solve when bases of K are not
available or expensive to form.

We shall develop and analyze multigrid methods for solving the saddle point system (6)
based on subspace correction methods [65] and its adaptation to optimization problems [56,
55]. Let

V = V1 + V2 + · · ·+ VN , Vi ⊂ V, i = 1, . . . , N,

be a space decomposition of V satisfying the condition

K = K1 +K2 + · · ·+KN , Ki = Vi ∩ ker(B), i = 1, . . . , N.

For k ≥ 0 and a given approximated solution uk ∈ K, one step of the Successive Subspace
Optimization (SSO) method [56] is as follows:

4 L. CHEN

Let us introduce the Lagrange multiplier p 2 P , equation (4) can be rewritten as the
following saddle point system: Find u 2 V, p 2 P such that

(Au, v) + (p, Bv) = (f, v) for all v 2 V,

(Bu, q) = 0 for all q 2 P,

which will be written in the operator form

(6)
✓

A BT

B O

◆✓
u
p

◆
=

✓
f
0

◆
.

Let k · kV and k · kP be two appropriate norms for space V and P , respectively. It is
well known that (6) is well posed if and only if the following so-called Brezzi conditions
[19] hold:

(1) Continuity of operators A and B: there exist constants ca, cb > 0 such that

(Au, v)  cakukV kvkV , (Bv, q)  cbkvkV kqkP , for all u, v 2 V, q 2 P.

(2) Coercivity of A in the kernel space. There exists a constant ↵ > 0 such that

(Au, u) � ↵kuk2V for all u 2 ker(B).

(3) Inf-sup condition of B. There exists a constant � > 0 such that

inf
p2P,p 6=0

sup
v2V,⌧ 6=0

(Bv, p)

kvkV kpkP
� �.

Choices of norms k·kV and k·kP are not unique [69] and k·kV = k·kA may not be always
a good choice since B may not be continuous in k · kA norm, c.f. the mixed formulation of
Poisson equation in Section 6. Throughout this paper, we will assume the well-posedness
of (6) and focus on its efficient solvers.

Problems (5) and (6) are equivalent theoretically but will lead to different algorithms.
In practice, the saddle point formulation will be easier to solve when bases of K are not
available or expensive to form.

We shall develop and analyze multigrid methods for solving the saddle point system (6)
based on subspace correction methods [65] and its adaptation to optimization problems [56,
55]. Let

V = V1 + V2 + · · · + VN , Vi ⇢ V, i = 1, . . . , N,

be a space decomposition of V satisfying the condition

K = K1 + K2 + · · · + KN , Ki = Vi \ ker(B), i = 1, . . . , N.

For k � 0 and a given approximated solution uk 2 K, one step of the Successive Subspace
Optimization (SSO) method [56] is as follows:

Algorithm: uk+1 = SSO(uk)

v0 = uk;
for i = 1 : N do

ei = argminwi2Ki
E(vi�1 + wi);

vi = vi�1 + ei;
end
uk+1 = vN ;

Algorithm 1: Successive Subspace Optimization Method.
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If we write the Euler equation of the local minimization problem, it reads as

(7) (Aei, φi) = (f −Avi−1, φi) for all φi ∈ Ki.
Namely ei is the solution of the residual equation restrict to Ki. We can thus treat SSO
as the subspace correction method for solving (4) using the space decomposition K =∑N
i=1Ki. We can analyze the convergence from this point of view.
Using the fact Au = f in K′ and vi = vi−1 + ei, equation (7) is also equivalent to the

A-orthogonality

(8) (u− vi, φi)A = 0 for all φi ∈ Ki,
which can be also written as

(9) (E′(vi), φi) = 0 for all φi ∈ Ki.
Let Pi = P ∩ B(Vi). Define Ai : Vi → Vi as for ui ∈ Vi, Aui ∈ Vi such that

(Aiui, vi) = (Aui, vi) for all vi ∈ Vi, and Bi : Vi → Pi as for ui ∈ Vi, Bui ∈ Pi such
that (Biui, qi) = (Bui, qi) for all qi ∈ Pi. Let Qi : H → Vi be the projection in (·, ·)
inner product. The constrained minimization problem in the constraint subspace Ki will
be solved by solving a small saddle point system in Vi:

(10)
(
Ai BTi
Bi O

)(
ei
pi

)
=

(
Qi(f −Avi−1)

0

)
.

A typical multilevel decomposition is given as follows. First we construct a macro-
decomposition V =

∑J
k=1 Vk with nested subspaces V1 ⊂ V2 ⊂ . . . ⊂ VJ = V . Usually

they are based on a sequence of successively refined meshes. For each subspace Vk, k =

1, . . . , J , we introduce a micro-decomposition Vk =
∑Nk

i=1 Vk,i and set Kk,i = Vk,i ∩
ker(B). Note that the assumption K =

∑J
k=1

∑Nk

i=1Kk,i requires a careful choice of the
micro-decomposition of Vk. Roughly speaking, each subspace Vk,i should be big enough
to contain a basis function of K and each basis function of K should be contained in at
least one Vk,i. Similar decomposition is required to design robust multigrid methods for
nearly singular system [38].

Remark 2.1. Solving local saddle problems in Vk,i sequentially in the k-th level can
be interpret as a multiplicative Schwarz smoother which is better known as the Vanka
smoother [58] for Navier-Stokes equations. �

Due to the nestedness of the macro-decomposition, restriction and prolongation opera-
tors are needed only for two consecutive levels. In summary, SSO based on this multilevel
decomposition leads to a V-cycle multigrid method for the saddle point problem (6) with a
multiplicative Schwarz smoother.

Thanks to the assumption Kk,i ⊂ K, if uk ∈ K, then uk+1 = SSO(uk) is still in
K. Namely the iteration remains in the constrained subspace. Uzawa method [57], an-
other popular iterative method for solving the saddle point problem, will not preserve the
constraint and thus is not considered here.

We shall use either the unconstrained SPD formulation (4) and (7) or constrained saddle
point formulation (6) and (10). They are equivalent forms for the convergence analysis but
different algorithmically.

We end this section with a discussion of the non-homogenous constraint, i.e., the saddle
point problem

(11)
(
A BT

B O

)(
u
p

)
=

(
f
g

)
.
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To change to the form (6), we can first find a u∗ ∈ V satisfying Bu∗ = g and let u =
u∗ + δu. Then the equation for δu is in the form (6).

There are several ways to find such u∗. One way is to solve

(12)
(
I BT

B O

)(
u∗
p∗

)
=

(
0
g

)
,

which is supposed to be easier than solving (11). For Stokes equations, solving (12) essen-
tially requires a Poisson solver for pressure for which fast solvers are available. For Darcy
equations, A is a weighted mass matrix with possibly highly oscillatory coefficients, while
(12) is again just a Poisson operator.

When the space P consists of discontinuous elements, which is the case of most appli-
cations considered in this paper, we can find such u∗ by one V-cycle with post-smoothing
only; see Section 6 for details.

3. CONVERGENCE ANALYSIS BASED ON THE XZ IDENTITY

In this section, we provide a convergence analysis using the SPD formulation (4) and (7).
The analysis is based on the XZ identity [67] for the multiplicative iterative methods and
can be found in [66].

Denoted by Pi the A-orthogonal projection onto Ki for i = 1, . . . , N . Then the error
operator of SSO can be written as (I − PN )(I − PN−1) · · · (I − P1), i.e., u − uk+1 =∏N
i=1(I − Pi)(u − uk), where uk+1 = SSO(uk). The following XZ identity was estab-

lished in [67]

(13)
∥∥∥
N∏

i=1

(I − Pi)
∥∥∥

2

A
= 1− 1

1 + c0
,

where

c0 = sup
‖v‖A=1

inf∑J
i=1 vi=v,vi∈Ki

N∑

i=1

∥∥∥Pi
J∑

j=i+1

vj

∥∥∥
2

A
.

For an elementary proof of (13), we refer to Chen [22].
In order to estimate the constant c0, we propose two important properties of the space

decomposition.
Stable decomposition (SD): for every v ∈ K, there exists vi ∈ Ki, i = 1, . . . , N such that

v =

N∑

i=1

vi, and
N∑

i=1

‖vi‖2A ≤ CA‖v‖2A.

Strengthened Cauchy Schwarz inequality (SCS): for any ui ∈ Ki and vj ∈ Kj
N∑

i=1

N∑

j=i+1

(ui, vj)A ≤ C1/2
S

(
N∑

i=1

‖ui‖2A

)1/2



N∑

j=1

‖vj‖2A




1/2

.

With assumptions (SD) and (SCS), we shall provide a upper bound of c0 and thus obtain a
convergence proof of SSO method for solving the saddle point problem (6).

Theorem 3.1. Assume that the space decomposition K =
∑N
i=1Ki satisfy assumptions

(SD) and (SCS). For SSO method, we have
∥∥∥
N∏

i=1

(I − Pi)
∥∥∥

2

A
≤ 1− 1

1 + CACS
.
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Proof. We apply (SCS) with ui = Pi
∑N
j=i+1 vj to obtain

N∑

i=1

‖ui‖2A =

N∑

i=1

(ui, Pi

N∑

j=i+1

vj)A =

N∑

i=1

N∑

j=i+1

(ui, vj)A

≤ C1/2
S

(
N∑

i=1

‖ui‖2A

)1/2( N∑

i=1

‖vi‖2A

)1/2

,

which leads to the inequality

(14)
N∑

i=1

‖ui‖2A ≤ CS
N∑

i=1

‖vi‖2A.

Consequently, we choose v =
∑N
i=1 vi as a stable decomposition satisfying (SD) to get

N∑

i=1

∥∥∥Pi
N∑

j=i+1

vj

∥∥∥
2

A
=

N∑

i=1

‖ui‖2A ≤ CS
N∑

i=1

‖vi‖2A ≤ CSCA‖v‖2A,

which implies c0 ≤ CSCA. The desired result then follows from the X-Z identity (13). �

The assumption (SCS) is relatively easy to verify. The key is to construct a stable
decomposition of the constraint space K.

4. CONVERGENCE ANALYSIS BASED ON CONSTRAINED OPTIMIZATION

In this section we provide an alternative proof using the constraint optimization ap-
proach established by Tai [55]. It also provides a better approach to extend the convergence
proof to inexact and/or nonlinear local solvers.

We will always denote by u the global minimizer of (3). Given an initial guess u0 ∈ K,
let uk be the kth iteration in SSO algorithm for k = 1, 2, · · · . We aim to prove a linear
reduction of the energy difference

(15) E(uk+1)− E(u) ≤ ρ
[
E(uk)− E(u)

]
,

with a contraction factor ρ ∈ (0, 1). Ideally ρ is independent of the size of the problem.
The proof is developed in [56, 55] for a nonlinear and convex energy but simplified here
for the quadratic energy.

We first explore the relation between the energy and the A-norm of the error.

Lemma 4.1. For any w, v ∈ V , we have

(16) E(w)− E(v) =
1

2
‖w − v‖2A + (E′(v), w − v).

Consequently for the minimizer u ∈ K and any w ∈ K,

(17) E(w)− E(u) =
1

2
‖w − u‖2A.

Proof. Verification of (16) and (17) is straightforward. �

Based on the identity (17), the target inequality (15) becomes a more familiar one

(18) ‖uk+1 − u‖A ≤ ρ1/2‖uk − u‖A.
Let dk = E(uk) − E(u) and δk = E(uk) − E(uk+1). The quantity dk is the distance

of the current energy to the lowest one, δk is the amount of the energy decreased in one
iteration, and they are connected by the identity δk = dk − dk+1. By Lemma 4.1, we
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have dk = 1
2‖uk − u‖2A but in general δk 6= 1

2‖uk − uk+1‖2A since uk+1 may not be the
minimizer. For each vi, i = 1, . . . , N, in SSO, we do have

E(vi−1)− E(vi) =
1

2
‖vi−1 − vi‖2A,

since vi is the local minimizer and vi−1 − vi = −ei ∈ Ki; see also the orthogonal-
ity (9). Borrowing the terminology of the convergence theory of adaptive finite element
methods [46], we shall present our proof based on the following two inequalities.

Discrete Lower Bound. There exists a positive constant CL such that for k = 0, 1, 2, . . .

δk ≥ CL
N∑

i=1

‖ei‖2A.

Upper Bound. There exists a positive constant CU such that for k = 0, 1, 2, . . .

dk+1 ≤ CU
N∑

i=1

‖ei‖2A.

Theorem 4.2. Assume that the discrete lower bound and upper bound hold with constants
CL and CU respectively. We then have

dk+1 ≤
c0

1 + c0
dk,

where c0 = CU/CL.

Proof. The proof is straightforward by assumptions and rearrangement of the following
inequality

dk+1 ≤ CU
N∑

i=1

‖ei‖2A ≤ CU/CLδk = c0(dk − dk+1).

�

Verifying the lower bound is relatively easy since E is convex. Indeed we have the
following identity which characterizes exactly the amount of energy decreased in one step
of SSO. Again in the sequel, uk+1 = SSO(uk) and ei is the ith correction in Ki, for
i = 1, . . . , N .

Theorem 4.3.

E(uk)− E(uk+1) =
1

2

N∑

i=1

‖ei‖2A.

Proof. By the identity (16) and the orthogonality (9), we have, for i = 1, . . . , N ,

E(vi−1)− E(vi) =
1

2
‖vi−1 − vi‖2A =

1

2
‖ei‖2A,

and consequently

E(uk)− E(uk+1) =

N∑

i=1

[E(vi−1)− E(vi)] =
1

2

N∑

i=1

‖ei‖2A.

�

Proving the upper bound is more delicate. We first present a lemma which can be
verified directly by definition and Lemma 4.1.
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Lemma 4.4.

(19) (E′(uk+1)− E′(u), uk+1 − u) = ‖uk+1 − u‖2A = 2
[
E(uk+1)− E(u)

]
.

We then give a multilevel decomposition of the left-hand side of (19).

Lemma 4.5. For any decomposition uk+1 − u =
∑N
i=1 wi, wi ∈ Ki, i = 1, 2, . . . , N ,

(E′(uk+1)− E′(u), uk+1 − u) =

N∑

i=1

N∑

j>i

(ej , wi)A.

Proof.

(E′(uk+1)− E′(u), uk+1 − u) = (E′(uk+1), uk+1 − u)

=

N∑

i=1

(E′(uk+1)− E′(vi), wi) =

N∑

i=1

N∑

j>i

(E′(vj)− E′(vj−1), wi) =

N∑

i=1

N∑

j>i

(ej , wi)A.

In the first step, we use the factE′(u) = 0 inK′ since u is the minimizer and uk+1−u ∈ K.
In the second step we use E′(vi) = 0 in K′i since vi is the minimizer in Ki and wi ∈ Ki;
see also (8). �

Lemma 4.6. Assume that the space decomposition satisfies assumptions (SD) and (SCS).
Then we have the upper bound

E(uk+1)− E(u) ≤ 1

2
CSCA

N∑

i=1

‖ei‖2A.

Proof. We shall chose a stable decomposition for uk+1 − u =
∑N
i=1 wi, wi ∈ Ki, i =

1, 2, . . . , N . By Lemma 4.5 and (SCS), we have

(E′(uk+1)− E′(u), uk+1 − u) =

N∑

i=1

N∑

j>i

(ej , wi)A

≤ C1/2
S




N∑

j=1

‖ej‖2A




1/2(
N∑

i=1

‖wi‖2A

)1/2

≤ (CSCA)1/2

(
N∑

i=1

‖ei‖2A

)1/2

‖uk+1 − u‖A.

Substituting the identity (see Lemma 4.4)

‖uk+1 − u‖2A = (E′(uk+1)− E′(u), uk+1 − u)

into the above inequality and canceling one ‖uk+1 − u‖A, we can obtain

‖uk+1 − u‖2A ≤ CSCA
N∑

i=1

‖ei‖2A.

Using the identity E(uk+1)− E(u) = ‖uk+1 − u‖2A/2, we obtain the desired result. �

We summarize our convergence result into the following theorem.



10 L. CHEN

Theorem 4.7. Assume that the space decomposition K =
∑N
i=1Ki satisfies assumptions

(SD) and (SCS). Then

E(uk+1)− E(u) ≤
(

1− 1

1 + CACS

)[
E(uk)− E(u)

]
.

Remark 4.8. The estimate is consistent with the one obtained by the XZ identity which
indicates that our energy estimate is sharp.

5. CONVERGENCE ANALYSIS WITH INEXACT LOCAL SOLVERS

In the algorithm SSO, we assume that the local problem is solved exactly which may be
costly when the dimension of the local space is large. In this section, we consider inexact
solvers using one gradient iteration and establish the corresponding convergence proof.
Note that XZ identity cannot be applied to the nonlinear solvers considered here.

Recall that the local constrained minimization problem is: let ri = Qi(f−Avi−1), find
e∗i ∈ Ki such that

(20)
(
Ai BTi
Bi O

)(
e∗i
p∗i

)
=

(
ri
0

)
.

Here we use e∗i , p
∗
i to denote the solution obtained by the exact solver. In the inexact solver

proposed below, the constraint is still satisfied but operator Ai is replaced by a simpler one
Di, e.g., the diagonal of Ai. In general, let Di be an SPD operator on Vi, we first solve the
local problem

(21)
(
Di BTi
Bi O

)(
si
pi

)
=

(
ri
0

)
.

Then we apply the line search along the direction si to find an optimal scaling:

(22) min
α∈R

E(vi−1 − αsi),

whose solution is

(23) α =
(ri, si)

(Asi, si)
.

We update
vi = vi−1 − αsi.

This is one step of a preconditioned gradient method and Di is a preconditioner of Ai.
In this section, we will always denote by e∗i the solution of (20) and ei = αsi with si

being the solution of (21) and α giving by (23). With such choice of α, we still have the
first order condition

(24) (E′(vi), ei) = 0.

Remark 5.1. In the original Vanka smoother for Navier-Stokes equation,Di = ω diag(Ai)
with a suitable parameter ω ∈ (0.5, 0.8) [58] and no line search is applied, i.e., α = 1. �

Using the first order condition (24), we still have the following identity.

Lemma 5.2.

E(uk)− E(uk+1) =
1

2

N∑

i=1

‖ei‖2A.
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Again the upper bound is more delicate. We first adapt the analysis in [7] to establish the
following inequalities. Recall that for an SPD operator M , κ(M) = λmax(M)/λmin(M)
is the condition number of M .

Lemma 5.3. For the inexact local solver described above, we have

(25) ‖e∗i − ei‖A ≤ ε‖e∗i ‖A, with ε =
κ(D−1

i Ai)− 1

κ(D−1
i Ai) + 1

∈ (0, 1).

Consequently by the triangle inequality

(26) ‖e∗i − ei‖A ≤
ε

1− ε‖ei‖A =
1

2
(κ(D−1

i Ai)− 1)‖ei‖A.

Proof. To simplify the notation, we suppress the subscript i in the proof. Let ẽ = ωswhere
s is determined by (21) and ω ∈ R is a parameter. Then following [8, 7] we have the error
equation

(27) e∗ − ẽ = PD(I − ωD−1A)e∗ = (I − ωD−1AK)e∗,

where PD = I −D−1BT (BD−1BT )−1B is the projection to K in the (·, ·)D := (D·, ·)
inner product, and AK = DPDD

−1APD.
Note that PD is symmetric in (·, ·)D. We can then verify AK is symmetric and semi-

positive definite and (·, ·)AK = (·, ·)A restricted to K. Since the operator D−1AK is sym-
metric w.r.t. (·, ·)AK and e∗, ẽ ∈ K, we have

‖e∗ − ẽ‖A = ‖e∗ − ẽ‖AK ≤ ‖I − ωD−1AK‖AK‖e∗‖A.

By subtracting a fixed energy E(v∗i ) from E(vi−1 − αsi), it is easy to see the line
search (22) is equivalent to minα∈R ‖e∗i − αsi‖A. Therefore

‖e∗ − e‖A ≤ ‖e∗ − ẽ‖A ≤ ‖I − ωD−1AK‖AK‖e∗‖A.

Consequently

‖e∗ − e‖A ≤ inf
ω∈R
‖I − ωD−1AK‖AK‖e∗‖A =

κ(D−1AK)− 1

κ(D−1AK) + 1
‖e∗‖A.

The condition number κ(D−1AK), which is not easy to estimate since AK is not formed
explicitly, can be bounded by

κ(D−1AK) = κ(PDD
−1APD) ≤ κ(D−1A).

�

Lemma 5.4. Assume that the space decomposition satisfies assumptions (SD) and (SCS).
For SSO with the local in-exact solver described in this section, we have

E(uk+1)− E(u) ≤ 1

2
CA

[
C

1/2
S +

1

2

(
max

1≤i≤N
κ(D−1

i Ai)− 1

)]2 N∑

i=1

‖ei‖2A.



12 L. CHEN

Proof. As before, we chose a stable decomposition for uk+1−u =
∑N
i=1 wi, wi ∈ Ki, i =

1, 2, . . . , N and split as

(E′(uk+1)− E′(u), uk+1 − u) = (E′(uk+1), uk+1 − u)

=

N∑

i=1

(E′(uk+1)− E′(vi), wi) + (E′(vi)− E′(v∗i ), wi)

=

N∑

i=1



N∑

j>i

(E′(vj)− E′(vj−1), wi) + (vi − v∗i , wi)A


 .

The first term can be bounded as before, c.f. Lemma 4.6

N∑

i=1

N∑

j>i

(E′(vj)− E′(vj−1), wi) ≤ (CSCA)1/2

(
N∑

i=1

‖ei‖2A

)1/2

‖uk+1 − u‖A.

For the second term, using (26), we have

N∑

i=1

(vi − v∗i , wi)A ≤
ε

1− ε
N∑

i=1

‖ei‖A‖wi‖A

≤ ε

1− ε

(
N∑

i=1

‖ei‖2A

)1/2( N∑

i=1

‖wi‖2A

)1/2

≤ ε

1− εC
1/2
A

(
N∑

i=1

‖ei‖2A

)1/2

‖u− uk+1‖A.

Combining these two estimates, we then get the desired result. �

Theorem 5.5. Assume that the space decomposition satisfies assumptions (SD) and (SCS).
For SSO with the local in-exact solver described in this section, we have

E(uk+1)− E(u) ≤ ρ
[
E(uk)− E(u)

]
,

with contraction rate

ρ = 1− 1

1 + CA

[
C

1/2
S + (max1≤i≤N κ(D−1

i Ai)− 1)/2
]2 .

We end this section with several remarks.

Remark 5.6. To be an efficient local solver, Di is usually a diagonal matrix which may
not be a good preconditioner for elliptic operators. The rate will deteriorate as ε becomes
close to one, i.e., κ(D−1

i Ai)� 1. On the other hand, for elliptic operators in Rn, and for
Di = diag(Ai), we have estimate κ(D−1

i Ai) . dim(Vi)2/n [5]. We can thus apply the
estimate to a decomposition such that each local problem is of size O(1). �

Remark 5.7. The solver considered here is one step of the preconditioned gradient method.
The same analysis is applicable to a more efficient Preconditioned Conjugate-Gradient
(PCG) solver with more than one iteration. The first order condition (24) still holds for the
PCG iterations. �
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Remark 5.8. The local gradient method is a nonlinear iterative method since the param-
eter α depends on the iteration. To prove the energy contraction for the linear constraint
smoother, i.e., with a fixed parameter α, we need to estimate the spectrum of the operator
PDD

−1APD which is not easy since the projection PD is in a L2-type inner product not
the A-inner product. Technically, the first order condition (24) may not hold for a fixed
parameter α. �

6. APPLICATION TO MIXED METHODS FOR POISSON AND DARCY EQUATION

In this section, we consider mixed finite element methods for solving the Poisson equa-
tion and Darcy equation in two and three dimensions. Let Ω be a polygon or polyhedron
domain and triangulated into a quasi-uniform mesh Th with mesh size h. Assume that Th is
obtained by uniform refinements from an initial mesh T1 of Ω, i.e., there exists a sequence
of meshes T1, T2, . . . , TJ = Th. The triangulation T1 is a shape regular triangulation of Ω
and Tk+1 is obtained by dividing each element in Tk into four congruent small elements
(two dimensions) or eight small elements (three dimensions). The mesh size Tk will be
denoted by hk. By the construction hk/hk+1 = 2.

6.1. Problem setting. We consider the Poisson equation with Neumann boundary

−∆p = f in Ω, ∂np = 0 on ∂Ω

where n is the outwards normal vector of ∂Ω. Let u = ∇p. We obtain the mixed
formulation of Poisson equation: find u ∈ H0(div; Ω) := {v ∈ (L2(Ω))2,div v ∈
L2(Ω), v · n|∂Ω = 0}, where v · n should be understood in the trace sense, and p ∈
L2

0(Ω) := {q ∈ L2(Ω),
∫

Ω
q dx = 0} such that

(u, v)− (div v, p) = 0, ∀v ∈ H0(div; Ω),

−(div u, q) = (f, q), ∀q ∈ L2
0(Ω).

Choose finite element spaces V ⊂ H0(div; Ω) and P ⊂ L2
0(Ω) so that the following

sequence is exact

(28) S curl−→ V div−→ P → 0,

where S is another appropriate finite element space. Choices of S,V , and P will be made
clear in the context. Subscript k will be used when spaces are associated with triangulation
Tk and when k = J the subscript will be suppressed.

The saddle point problem can be written as follows: Given f ∈ P , find w ∈ V, p ∈ P
such that

(29)
(
M BT

B O

)(
w
p

)
=

(
0
f

)
,

where M is the mass matrix of V and B is the discretization of −div operator. For this
problem, A = M and the A-norm is just the standard L2-norm.

Our method and analysis can be readily adapted to the second order elliptic equation
with variable coefficients K i.e., Darcy equation, for which the constitutive equation be-
comes (K−1u, v) − (div v, p) = 0. The A-norm is a weighted L2-norm and the exact
sequence (28) still holds. The constant CA, however, could depend on the condition num-
ber of K; see Remark 6.3.
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To apply our framework, we should first find a u∗ ∈ V satisfying Bu∗ = f . Set
w = u∗ + u, the system (29) can be changed to the form of (6):

(30)
(
M BT

B O

)(
u
p

)
=

(
−Mu∗

0

)
.

As discussed in Section 2, we can find such u∗ by solving BBTu∗ = Bf . We now
discuss a more efficient way utilizing the hierarchical structure of meshes. We start from
a solution u1

∗ of (29) on the coarsest mesh T1 which can be found by direct solvers. For
k = 1, . . . , J − 1, when uk∗ on Tk with property Buk∗ = f holds element-wise on Tk is
found, for each element T ∈ Tk, we solve (29) in Vk+1 restricted to T and with boundary
condition u · n|∂T = uk∗ · n|∂T . That is we use Tk to get a domain decomposition of Tk+1

and uk∗ as the boundary condition to decompose a global problem into local problems on
elements. The local problem is well defined since the compatible condition is enforced
by Buk∗ = f on T and the solution of the local problem will give uk+1

∗ with the property
Buk+1
∗ = f for each element in Tk+1. The whole procedure is just one V-cycle with

post-smoothing only and using a non-overlapping Schwarz method as a smoother. The
computational cost is thus negligible.

Thanks to the exact sequence (28), we have a clear characterization of ker(B) =
curl (S) which will be helpful to construct a stable multilevel decomposition of K. Based
on the hierarchy of the meshes, we have a macro-decomposition of S =

∑J
k=1 Sk. For

each space Sk, we decompose into one dimensional subspaces Φk,j spanned by one basis
function, i.e., Sk =

∑Nk

j=1 Φk,j with Nk = dimSk. Let Ωk,i be the support of Φk,i. We
chose Vk,i = H0(div; Ωk,i) ∩ Vk for i = 1, . . . , Nk. Then we have the decomposition

(31) V =

J∑

k=1

Nk∑

i=1

Vk,i,

and

K =

J∑

k=1

Nk∑

i=1

Kk,i with Kk,i = curl Φk,i.

We shall apply SSO based on the space decomposition K =
∑J
k=1

∑Nk

i=1Kk,i and
prove its uniform convergence. As an example, for the lowest order RT element [50],
the smoother is an overlapping multiplicative Schwarz smoother requiring solving a small
saddle point system at in the patch of each vertex in two dimensions and in the patch of
each edge in three dimensions. Since the construction of a stable decomposition in two
and three dimensions is different, we split the discussion into two subsections.

Remark 6.1. One can use a basis of S to reduce the saddle point system into a SPD one and
develop multigrid methods or domain decomposition methods for the SPD formulation; see
e.g. [32, 34, 20]. �

6.2. Two dimensions. In two dimensions, the space S ⊂ H1
0 (Ω) is a Lagrange element

space based on the mesh Th. To be specific, we will consider the important case when S
is the simplest linear finite element space, V is the lowest order Raviart-Thomas element
space [50], and P is the piecewise constant space. Extension to high order elements is
straightforward. The subspace Vk,i is spanned by basis vectors of edges connecting to the
ith vertex in triangulation Tk.
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We first verify the stable decomposition for the macro-decomposition K =
∑J
k=1Kk.

We denoted by Qk the L2 projection Qk : SJ → Sk for k = 1, . . . , J and set Q0 = 0.
Note that due to the nestedness QlQk = Ql for l ≤ k.

Lemma 6.2. For every v ∈ K, there exists vk ∈ Ki, k = 1, . . . , J such that v =
∑J
k=1 vk

and
∑J
k=1 ‖vk‖2 . ‖v‖2.

Proof. In two dimensions, we have the relation (curlφ, curlψ) = (∇φ,∇ψ). There-
fore the stable decomposition (SD) comes from that for the Lagrange elements. More
specifically, since u ∈ K, there exists a unique φ ∈ S such that u = curlφ. We then
chose the H1-stable decomposition of φ as φ =

∑J
k=1(Qk − Qk−1)φ and let uk =

curl (Qk − Qk−1)φ. The stable decomposition for the decomposition u =
∑
k uk in

M -norm is equivalent to that of φ =
∑J
k=1(Qk − Qk−1)φ in H1-norm which is well

known; see e.g. [65]. �

Remark 6.3. For Darcy equation with variable coefficientsK, theA-norm of v is changed
to a weighted H1 norm of φ for v = curlφ. If assuming K is piecewise constant on the
coarsest mesh, we can find a multilevel decomposition using hierarchical basis such that
the inequality

∑J
k=1 ‖vk‖2 ≤ C| log h|‖v‖2 holds with a penalty factor | log h| but with a

constant C independent of the variation of K; see [4]. �

We then verify the micro-decomposition is stable.

Lemma 6.4. Let φk = (Qk−Qk−1)φ =
∑Nk

i=1 φk,i be the nodal basis decomposition and
let uk,i = curlφk,i. Then the decomposition uk =

∑Nk

i=1 uk,i is stable in L2-norm.

Proof. We apply the inverse inequality and the stability of the nodal basis decomposition
in L2-norm to get

Nk∑

i=1

‖uk,i‖2 =

Nk∑

i=1

‖curlφk,i‖2 . h−2
k

Nk∑

i=1

‖φk,i‖2 . h−2
k ‖φk‖2.

We write the term φk = (Qk −Qk−1)φ = (I −Qk−1)(Qk −Qk−1)φ and bound it as

‖φk‖ . hk‖curl (Qk −Qk−1)φ‖ = hk‖uk‖.
The desired inequality then follows. �

Combination of Lemma 6.2 and 6.4 leads to a stable multilevel decomposition.

Theorem 6.5. For every v ∈ K, there exists vk,i ∈ Kk,i, k = 1, . . . , J, i = 1, . . . , Nk such
that v =

∑J
k=1

∑Nk

i=1 vk,i and
∑J
k=1

∑Nk

i=1 ‖vk,i‖2 . ‖v‖2.

To verify assumption (SCS), we first present the following inequality and refer to [65]
for a proof.

Lemma 6.6. For any φk ∈ Sk, φl ∈ Sl, l ≥ k, we have

(curlφk, curlφl) .

(
1

2

)l−k
‖curlφk‖h−1

l ‖φl‖.

We use the lexicographical order of the double index, i.e., (l, j) > (k, i) if l > k or
l = k, j > i.
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Theorem 6.7. For any uk,i ∈ Kk,i and vl,j ∈ Kl,j , we have

J∑

k=1

Nk∑

i=1

∑

(l,j)>(k,i)

(uk,i, vl,j) .

(
J∑

k=1

Nk∑

i=1

‖uk,i‖2
)1/2




J∑

l=1

Nl∑

j=1

‖vl,j‖2



1/2

.

Proof. We can write uk,i = curlφk,i and vl,j = curlψl,j for some φk,i ∈ Sk, ψl,j ∈ Sl.
We split the summation

∑
(l,j)>(k,i) into two parts

∑
l>k

∑Nl

j=1 and
∑Nk

l=k,j>i. For the
first part, we apply Lemma 6.6 and note that h−1

l ‖ψl,j‖ h ‖curlψl,j‖ to get

J∑

k=1

Nk∑

i=1

∑

l>k

Nl∑

j=1

(uk,i, vl,j) =

J∑

k=1

Nk∑

i=1

∑

l>k

Nl∑

j=1

(curlφk,i, curlψl,j)

≤
J∑

k=1

Nk∑

i=1

∑

l>k

Nl∑

j=1

(
1

2

)l−k
‖curlφk,i‖‖curlψl,j‖

.

(
J∑

k=1

Nk∑

i=1

‖uk,i‖2
)1/2




J∑

l=1

Nl∑

j=1

‖vl,j‖2



1/2

.

For the second part, we use the finite overlapping property of finite element spaces. Namely,
in the kth level, the index set nk(i) = {j ∈ {1, . . . , Nk},Ωk,i ∩ Ωk,j 6= ∅} is finite. Then

J∑

k=1

Nk∑

i=1

Nk∑

j>i

(uk,i, vk,j) =

J∑

k=1

Nk∑

i=1

∑

j∈nk(i)

(uk,i, vk,j)

.

(
J∑

k=1

Nk∑

i=1

‖uk,i‖2
)1/2




J∑

l=1

Nl∑

j=1

‖vl,j‖2



1/2

.

�

6.3. Three dimensions. We consider the same problem in three dimensions which is
much more difficult than the two dimensional case. The reason is that the previous space
S is an edge element space and a stable multilevel decomposition for S is non-trivial.

We again consider the lowest order case. Now S is the lowest order Nédélec edge
element space [44, 45] of H0(curl ,Ω) := {v ∈ (L2(Ω))3, curl v ∈ (L2(Ω))3, v×n|∂Ω =
0}, V is the lowest order Raviart-Thomas element space of H0(div,Ω), and P ⊂ L2

0(Ω)
is the piecewise constant space. Furthermore let U ⊂ H1

0 (Ω) be the linear finite element
space. We have the following exact sequence [33, 1]

0 ↪→ U grad−→ S curl−→ V div−→ P → 0.

To verify (SD), we need the following discrete regular decomposition for edge ele-
ments [35]. In the sequel, the operator Πcurl

h is the canonical interpolation to S: for a
smooth enough function w, Πcurl

h w ∈ S satisfying
∫
E

Πcurl
h w · tds =

∫
E
w · tds for

all edges E of Th where t is a tangential vector of E. Similarly Πcurl
k is the canonical

interpolation to Sk on mesh Tk for k = 1, . . . , J .
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Lemma 6.8 (Discrete Regular Decomposition [35]). For every φ ∈ S , there exist φ̃ ∈
S, w ∈ U3, and ψ ∈ S ∩ ker(curl ) such that

φ = φ̃+ Πcurl
h w + ψ, and(32)

‖h−1φ̃‖+ ‖w‖1 . ‖curlφ‖.(33)

In the decomposition (32), ψ ∈ ker(curl ) and there is no need to control the norm
of ψ. The component φ̃ is of high frequency and the component w ∈ U3 for which a
stable multilevel decomposition for the linear finite element can be applied. The following
decomposition can be found in [66].

Lemma 6.9. For every φ ∈ S, there exist φ̃ ∈ S, wk ∈ U3
k , and ψ ∈ S ∩ ker(curl ) such

that

φ = φ̃+

J∑

k=1

Πcurl
k wk + ψ, and(34)

‖h−1φ̃‖2 +

J∑

k=1

h−1
k ‖wk‖2 . ‖curlφ‖2.(35)

Theorem 6.10. For every v ∈ V ∩ ker(div), there exists a decomposition v =
∑J
k=1

∑Nk

i=1 vk,i
such that

(36)
J∑

k=1

Nk∑

i=1

‖vk,i‖2 . ‖v‖2.

Proof. For v ∈ V ∩ ker(div), there exists φ ∈ S such that v = curlφ. We then apply
Lemma 6.9 to obtain a decomposition of φ in the form of (34). We can write the first two
terms in (34) into multilevel basis decomposition, i.e.,

(37) φ̃+

J∑

k=1

Πcurl
k wk =

J∑

k=1

Nk∑

i=1

φk,i.

Decomposition of v is obtained by choosing vk,i = curlφk,i. The stability (36) is from the
inverse inequality, the stability of bases decomposition of edge element spaces in L2-norm,
and the stability of the decomposition (35):

J∑

k=1

Nk∑

i=1

‖vk,i‖2 .
J∑

k=1

h−2
k

Nk∑

i=1

‖φk,i‖2 . ‖h−1φ̃‖2 +

J∑

k=1

h−1
k ‖wk‖2 . ‖curlφ‖2.

�

The (SCS) can be proved similarly as in the two dimensional case.

6.4. Numerical examples. In this subsection we present two numerical examples to sup-
port our theory. We perform the numerical experiments using the iFEM package [21].

We consider four examples on the Darcy equations

K−1u+∇p = 0, div u = f in Ω

with given flux boundary condition u · n = g on ∂Ω. We chose Ω = (0, 1)2. Since we
focus on the performance of solvers, we only specify the tensor K used in these examples.

• Example 1. K is the identity 2× 2 matrix, i.e., Id2×2 and the grid is uniform.
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• Example 2. The grid is still uniform but the tensor is non-diagonal

K =

(
1 + 4(x2 + y2) 3xy

3xy 1 + 11(x2 + y2)

)
.

This is the Example 5.2 considered in [51]. The spectrum of K is in [1, 25] and
thus contains certain anisotropy.

• Example 3. The tensor K = a(x)Id2×2 with piecewise constant a(x) on the
initial 4 × 4 uniform partition of Ω. The scalar function a = 10−p where p is a
random integer such that 0 ≤ p ≤ 5.

• Example 4. The same tensor in Example 3, except the initial grid is distorted; see
Fig. 6.4 (b). The interior grid points are randomly perturbed by up to 40% of the
mesh size h = 1/4. Example 3 and 4 are two dimensional version of the example
used in [64].

(a) The uniform mesh with h = 1/4 (b) A distorted mesh

FIGURE 1. The initial mesh of Example 1 - 3 is the uniform mesh in (a)
and the initial mesh of Example 4 is a distorted mesh in (b).

We discretize the Darcy equations using the lowest orderRT element and apply the SSO
method with the decomposition (31). We implement SSO in a V-cycle formulation and
perform only one pre-smoothing and one post-smoothing. The smoother is an overlapping
multiplicative Schwarz smoother requiring solving a small saddle point system in the patch
of each vertex. The local problem is solved exactly as the dimension of the local problem
is small and admit a very efficient direct solver described below. Let ni denote the number
of edges connected to the i-th vertex patch. If we orientated these interior edges with
normal direction counterclockwise, then locally the divergence free basis is represented by
the constant vector (1, . . . , 1)Tni×1. Note that the local mass matrix M is tridiagonal, given
a residual vector, the local problem can be solved in 4ni addition and one division (no
multiplication required as the divergence basis corresponds to a constant vector). Let N
be the number of interior vertices. The total cost of the local solver is thus 4

∑N
i=1 ni. In

average ni ≈ 6 and thus the cost is around 24N . On the other hand, the size of the saddle
point system is the number of interior edges plus the number of triangles, which is around
5N , and the number of non zeros of this matrix is around 21N . A matrix-vector product
thus requires 21N multiplication which is way costly than the 24N addition needed in the
local solvers. Similar calculation holds for the 3D local problem with different constant.
We conclude that the dominated cost of the smoother will be the evaluation of the residual
and one step of the smoother requires just one matrix-vector product.

We stop the iteration when an approximated relative error in the energy norm is less
than or equal to 10−8. Let r be the current residual of the iterate u and Br is the correction
obtained by one V-cycle. Then we use the error formulae

√
(Br, r)/(u, f) which is better
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than using the relative residual error as B ≈ A−1. We report iteration steps of V-cycle
required for the four examples. We did not include the CPU time since it depends on
the implementation and testing environment: the programming language, optimization of
codes, and the hardware (memory and cache), etc. The operation count we did before
indicates that our method can be implemented very efficiently.

TABLE 1. Iteration steps of V-cycle multigrid for the saddle point sys-
tem with 1 pre-smoothing and 1 post-smoothing step. Stopping criterion
is the approximated relative error is less than 10−8.

h size Ex 1 Ex 2 Ex 3 Ex 4
1/8 336 10 13 7 20

1/16 1,312 11 15 10 19
1/32 5,184 11 16 13 25
1/64 20,608 11 16 13 25

Based on the numerical results in Table 1, we conclude that our multigrid method is
convergent uniformly to the mesh size and pretty robust to the variation of the tensor K
and the distortion of meshes.

A popular Uzawa type preconditioned conjugate gradient (PCG) method for solving the
Schur complementBM−1BT equation requires the evaluation ofM−1 (the so-called inner
iteration) for each PCG iteration (the so-called outer iteration) and an effective precondi-
tioner for the Schur complement. As noticed in [10, 51], the inner iteration of computing
M−1 should be very accurate and thus the overall inner-outer iteration process is costly.
And in [64], it is shown that preconditioners forBM−1BT should be tuned to the variation
of the tensor and the distortion of the mesh. Better preconditioned iterative methods have
been developed in [10, 51].

7. APPLICATION TO NON-CONFORMING METHODS

In this section, we use the equivalence between non-conforming methods and mixed
methods to develop a V-cycle multigrid method for non-conforming methods and prove
its uniform convergence. The two ingredients of our new multigrid method for non-
conforming methods are: the overlapping Schwarz smoothers, and inter-grid transfer op-
erators through the nested flux spaces.

Again we consider the Poisson equation with Neumann boundary condition −∆p = f
in Ω with ∂np|∂Ω = 0. Based on a triangulation Th of Ω, the Crouzeix-Raviart (CR)
non-conforming finite element space [31] is defined as follows

Λh = {λ|T ∈ P1(T ),∀T ∈ Th,
∫

E

λ ds is continuous for all sides E of Th}.

The space Λh is not a subspace of H1(Ω) due to the loss of continuity across the sides
of elements. An elementwise gradient operator∇h is defined as

(∇hλ)|T := ∇(λ|T ) ∀T ∈ Th,
and the bilinear form is defined as

(∇hλ,∇hµ) :=
∑

T∈Th

∫

T

∇hλ · ∇hµ dx for all λ, µ ∈ Λh.
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The CR non-conforming finite element discretization is as follows: Given an f ∈ L2(Ω),
find λ ∈ Λh ∩ L2

0(Ω) such that

(38) (∇hλ,∇hµ) = (f, µ), for all µ ∈ Λh.

Let u ∈ V be the mixed finite element approximation of the flux using the lowest order
RT element. It is well known that [40], for every T ∈ Th,

(39) u|T = −∇hλ|T +
1

d
fT (x− xT ), ∀x ∈ T,

where xT is the barycenter of the triangle T and fT is the average of f over T . Throughout
this section we shall always consider a piecewise constant function f . We always denote
by u the solution to (29) and by λ the solution to (38).

We note that such equivalence has been used to design multigrid methods for mixed
methods with the help of non-conforming methods [13, 26]. We are exploiting this equiv-
alence in the other way around.

Based on a sequence of hierarchy meshes, we will have a sequence of spaces Λ1,Λ2, . . . ,
ΛJ = Λh. We shall develop a V-cycle multigrid method for solving the equation (38)
on the finest level. The notorious difficulty is the non-nestedness of hierarchies of non-
conforming finite element spaces. Robust inter-grid operators (restriction and prolongation
operators) should be designed carefully [11, 9, 48, 27, 15, 36, 37]. The existing conver-
gence proof of multigrid methods for non-conforming methods [11, 15, 48, 16, 49] do not
cover V-cycles with few smoothing steps but for multigrid cycles with sufficiently many
smoothing steps. We shall design a V-cycle multigrid method for CR element and prove
its convergence even for only one smoothing step.

Essentially our method is just a different interpretation of the SSO method applied to
the mixed finite element discretization. Therefore during the iteration, we always keep two
quantities (uk, λk) which is the kth iteration of (u, λ).

The smoother in the finest level is an overlapping Schwarz smoother with Neumann
boundary condition. It consists of solving a local problem−∆λki = f in Ωi with Neumann
boundary condition ∂nλki |∂Ωi = uki−1 · n, where Ωi is the patch of the ith vertex. Here we
loop over the vertex i = 1, . . . , N of Th and use subscript i to denote the iteration at the ith
vertex. We set uk0 = uk and uk+1 = ukN . Once λki is computed, it will be used to update
the flux uki by the relation (39) since the relation holds for the local problem as well. To
begin with, we need to compute flux u∗ on the finest level such that the local Neumann
problem is well defined, i.e, the source f is compatible with the prescribed boundary flux.
Such flux u∗ can be found by a V-cycle multigrid iteration similar to the procedure for
non-homogenous constraint discussed before.

In the implementation level, the matrix of local problems can be obtained by extracting
sub-matrices of the global one. The right-hand side is the corresponding components of f
plus the contribution from the boundary condition. It is the degree of freedom

∫
E
u ·n that

enters the computation which can be calculated by the formulae

(40)
∫

E

uki · nE ds =
|T |
d+ 1

f +

∫

E

∇hλki · ne ds.

The relation (40) can be used to eliminate the flux and get a direct updated formulation
λki−1 → λki without recording the flux approximation uki . Algebraically it can be realized
by matrix multiplication of λki . Conceptually it is better to record the flux explicitly.

We then discuss the prolongation from the coarse grid to the fine grid. Since now only
two levels are involved, we will follow the convention to use subscript (·)H for quantities in
the coarse grid and (·)h for that in the fine grid. In the coarse grid, we will solve a residual
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equation to be considered in a moment. Suppose we have obtained a correction of the flux
eH , we prolongate eH in the RT space in the coarse grid to that in the fine grid and denoted
by IhHeH . Note that although spaces of CR non-conforming elements are non-nested, the
RT spaces for flux are, and IhH is just the natural inclusion. The correction is applied to the
flux uh ← uh + IhHeH . With the updated flux, we have different boundary conditions for
the local problems (the source is always f in the finest level) and the smoother in the finest
level can be applied again.

We then discuss in detail the residual equation to be solved in the coarse grid. We first
describe the restriction. Denoted by uh the current approximation of flux in the fine grid.
The residual equation of the corresponding mixed method in the fine grid is

(41)
(
M BT

B O

)(
eh
ph

)
=

(
−Muh

0

)
.

So the restriction operator will apply to the residual −Muh, i.e., rH = −(IhH)TMuh. On
the coarse grid, we will still solve local problems on vertex patches. We start with the zero
initial guess of flux eH , i.e., eH,0 = 0, and solve local problems to update eH,i patch-
wise for i = 1, . . . , NH . The updated flux eH,i in patch ΩH,i will provide a boundary
condition for the next patch ΩH,i+1. To use the non-conforming formulation, we need to
figure out the source data for each local problem. This can be done as follows. Let riH be
the restriction of rH to the ith patch ΩH,i, and let M i

H be the corresponding mass matrix.
Then the source for the local problem on ΩH,i will be given by δfH,i = −divM−1

H,ir
i
H

which is piecewise constant on ΩH,i. The inverse M−1
H,i can be computed efficiently since

MH,i is tri-diagonal. Now we can solve the non-conforming discretization of the problem
−∆HλH,i = δfH with Neumann boundary condition ∂nλH,i|∂ΩH,i

= eH,i−1 · n and use
λH,i to update the flux correction eH,i. Again such procedure can be implemented as one
matrix multiplication which leads to a non-trivial restriction matrix.

As usual, a V-cycle multigrid method is obtained by applying the above two-level
method recursively to the coarse grid problem.

Convergence of this multigrid algorithm is striaghtforward since it is just a different
way to compute the same solution of the mixed formulation for each local problem. The
quantity 2(E(uk)−E(u)) = ‖u−uk‖2 = ‖∇hλ−∇hλk‖2 since the relation (39) always
holds during the iteration.

The same algorithm and convergence proof can be applied to other non-conforming
methods, e.g., hybridized discontinuous Galerkin (HDG) methods [2, 29, 30] and weak
Galerkin (WG) method [61, 43], which are equivalent to the mixed methods. The only
difference is the relation of λ and the flux u. For example, for WG, we can simply use the
following formulae to update the flux: u = ∇wλ, where∇w is the weak gradient operator.

We thus have obtained a V-cycle multigrid method for non-conforming finite elements
and have proved the uniform convergent with even one smoothing step. Such results are
very rare in literature and a recent work on a multigrid method for HDG methods with only
one smoothing step can be found in [28].

8. APPLICATION TO STOKES EQUATIONS

In this section, we apply our approach to designing a multigrid method for a discrete
Stokes system in two dimensions and prove its uniform convergence.

Let Ω be a polygon and triangulated into a quasi-uniform mesh Th with mesh size
h. Again we assume that there exists a sequence of meshes T1, T2, . . . , TJ = Th. The
triangulation T1 is a shape regular triangulation of Ω and Tk+1 is obtained by dividing
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each triangle in Tk into four congruent small triangles. We further assume triangulations
contain no singular vertex defined in [54].

Consider Stokes equations

−∆u+∇p = f, div u = 0

with Dirichlet boundary condition u|∂Ω = 0. The homogenous boundary condition is
not essential. As discussed before, the non-homogenous boundary condition will lead to
a non-homogenous constraint and can be eliminated by one V-cycle or by a fast Poisson
solver.

We shall use exact divergence free elements and assume Ki = ker(div) ∩ Vi, i =
1, . . . , J are nested, i.e.,

K1 ⊂ K2 ⊂ . . . ⊂ KJ = K.
Examples of such Stokes elements include Scott-Vogelius elements [54] for which the
assumption that all triangulations contain non-singular vertex is needed. We chose V ⊂
(H1

0 (Ω))2 and P ⊂ L2
0(Ω) as Scott-Vogelius elements [54]. For this problem, the A-norm

is the H1 semi-norm | · |1 = ‖∇(·)‖ which is a norm on H1
0 .

Let U be the C1 finite element space on T such that curlU = K. Namely we have the
so-called Stokes complex:

(42) U curl−→ V div−→ P → 0.

Similar exact sequence exists in each level k = 1, 2, . . . , J .
We further decompose each Kk into subspaces associated to vertices. For a vertex

xk,j ∈ Tk, we denote by Ωk,j the patch of xk,j , i.e., union of all triangles containing xk,j .
Let Uk,j = C1

0 (Ωk,j)∩ Uk and Vk,j = (H1
0 (Ωk,j))

2∩ Vk be the subspaces spanned by all
basis functions with support in Ωk,j and set Ki,j = Vi,j ∩ker(div). By the construction of
Scott-Vogeligus element, Kk,j = curlUk,j . The final decomposition is

V =

J∑

k=1

Nk∑

j=1

Vk,j , and K =

J∑

k=1

Nk∑

j=1

Kk,j .

In the correction form, the smoother applied to this decomposition is equivalent to solving
a local Stokes problem with force f − Avi in the subdomain surrounding of a vertex with
zero Dirichlet boundary condition on ∂Ωk,j . In the update form, it is solving the original
Stokes problem with force f but the boundary condition on ∂Ωk,j is given by the current
approximation of the velocity. Now the local problem is of considerable size (around a
200 × 200 saddle point system) and the inexact solver using diagonal matrix of A can
reduce it to a SPD problem of smaller size (around 60× 60).

Remark 8.1. We are aware that more effective block preconditioners for the Stokes equa-
tions are available [6, 39]. Multigrid method based on solving local problems is of more
theoretic value since multigrid convergence theory for Stokes equations with the partial
regularity assumption and/or for V-cycle method with few smoothing steps is rare. �

We define Qk : U → Uk the L2 projection, for k = 1, 2, . . . , J . For v ∈ K, since
div v = 0, we can find a unique φ ∈ U such that v = curlφ. We then define Πkv =
curlQkφ. It is easy to show that ΠlΠk = Πl for l ≤ k due to the nestedness of spaces.

We document the stability and error estimate of Πk in the following lemmas.

Lemma 8.2. The operator Πk is stable in L2 norm and

(43) ‖v −Πkv‖ . hk|v|1, for all v ∈ K.
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Proof. It is well known thatQk is stable in both L2-norm and curl -norm on quasi-uniform
meshes. Consequently Πk = curlQk is stable in L2-norm. It is obvious that Πkv = v for
all v ∈ Kk. Therefore v −Πkv = (I −Πk)(v − vk) for any vk ∈ Kk and consequently

‖v −Πkv‖ . inf
vk∈Kk

‖v − vk‖ = inf
φk∈Uk

‖curlφ− curlφk‖ . hk|φ|2 = hk|v|1.

�

Lemma 8.3. The operator Πk is stable in Hσ-norm for σ ∈ [0, 1/2), i.e.,

(44) ‖Πkv‖σ . ‖v‖σ, for all v ∈ K.
Proof. For σ = 0, i.e., the stability of Πk in L2-norm has been proved in Lemma 8.2. For
v ∈ K, we define v̄ as the piecewise constant approximation of v defined by

∫
T
v̄ =

∫
T
v

for all T ∈ Tk. Obviously ‖v − v̄‖ . hk|v|1.
We prove the stability of Πk in H1-norm as follows:

|Πkv|1 = |Πkv − v̄|1 . h−1
k ‖Πkv − v̄‖ . h−1

k (‖Πkv − v‖+ ‖v − v̄‖) . |v|1.
In the last step, we have used the approximation property of Πk; c.f. Lemma 8.2.

By the interpolation of divergence free spaces, c.f. Proposition 3.7 in [63], we obtain
the desired inequality (44).

�

Following Xu [65], we can obtain the following stable decomposition. For complete-
ness, we include a proof here.

Theorem 8.4. The decomposition v =
∑J
k=1(Πk −Πk−1)v is stable in A-norm, i.e.,

(45)
J∑

k=1

|(Πk −Πk−1)v|21 . |v|21, for all v ∈ K.

Proof. Let Pi : K → Ki be the projection in A-inner product. Then by the duality
argument, c.f. Theorem 6.9 in [23], we have the following error estimate, for some
α ∈ (1/2, 1],

(46) ‖v − Piv‖1−α . hαi ‖v‖1, for all v ∈ H1
0 (Ω).

Let Π̃k = Πk − Πk−1, and vi = (Pi − Pi−1)v for i = 1, 2, · · · , J with notation P0 = 0.
Using Cauchy-Swarchz inequality, it holds

J∑

k=1

‖∇(Π̃kv)‖2 =

J∑

k=1

J∑

i,j=k

∫

Ω

∇(Π̃kvi) · ∇(Π̃kvj) dx

=

J∑

i,j=1

i∧j∑

k=1

∫

Ω

∇(Π̃kvi) · ∇(Π̃kvj) dx

≤
J∑

i,j=1

i∧j∑

k=1

‖∇(Π̃kvi)‖‖∇(Π̃kvj)‖,

where i∧ j = min{i, j}. According to the inverse inequality, the stability of Πk, c.f., (44),
and the error estimate of Pi c.f. (46), we have

‖∇(Π̃kvi)‖ . h−αk ‖Π̃kvi‖1−α . h−αk ‖vi‖1−α . h−αk hαi |vi|1.
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Combining last two inequalities, we get from the strengthened Cauchy-Swarchz inequality

J∑

k=1

‖∇(Πk −Πk−1)v‖2 .
J∑

i,j=1

i∧j∑

k=1

h−2α
k hαj h

α
i |vi|1|vj |1 .

J∑

i,j=1

h−2α
i∧j h

α
j h

α
i |vi|1|vj |1

.
J∑

i,j=1

(
1

2

)α|i−j|
|vi|1|vj |1 .

J∑

i=1

|vi|21 = |v|21.

�

We continue to show the micro-decomposition of the slice (Πk − Πk−1)v is stable in
the energy norm.

Lemma 8.5. For vk = (Πk−Πk−1)v ∈ Kk, there exists a decomposition vk =
∑Nk

j=1 vk,j
with vk,j ∈ Kk,j such that

Nj∑

j=1

|vk,j |21 . |vk|21.

Proof. Recall that φk = Qkφ and v = curlφ. Let φk − φk−1 =
∑Nk

j=1 ψk,j be a decom-
position such that suppψk,j ∈ Ωk,j . Such decomposition can be obtained by partition the
basis decomposition. For example, for a basis function associated to an edge, it can be split
as half and half to the patch of each vertex of this edge. We then set vk,j = curlψk,j and
obtain the decomposition vk =

∑Nk

j=1 vk,j . Then

Nk∑

j=1

|vk,j |21 ≤
Nk∑

j=1

|ψk,j |22 .
Nk∑

j=1

h−4
k ‖ψk,j‖2 . h−4

k ‖φk − φk−1‖2

= h−4
k ‖(I −Qk−1)(φk − φk−1)‖2 . h−2

k ‖curl (φk − φk−1)‖2 = h−2
k ‖vk‖2.

We write vk = (Πk −Πk−1)v = (I −Πk−1)(Πk −Πk−1)v = (I −Πk−1)vk and use the
L2-norm estimate of Πk to conclude

h−2
k ‖vk‖2 . |vk|21.

Then the desired inequality follows. �

Combination of Theorem 8.4 and Lemma 8.5 leads to the stability of the decomposition
K =

∑J
k=1

∑Nj

j=1Kk,j in A-norm.

Theorem 8.6. For every v ∈ K, there exists a decomposition v =
∑J
k=1

∑Nk

j=1 vk,j with
vk,j ∈ Kk,j such that

J∑

k=1

Nj∑

j=1

|vk,j |21 . |v|21.

The assumption (SCS) is just that for multilevel H1 finite element spaces V1 ⊂ V2 ⊂
. . . ⊂ VJ and can be proved similarly as before. Note that since Vk,j ⊂ (H1

0 (Ωk,j))
2,

for functions vk,j in Vk,j , the norm equivalence h−2
k ‖vk,j‖ h |vk,j |1 holds with an O(1)

constant.
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9. CONCLUSION AND FUTURE WORK

In this paper we have developed a multigrid method for saddle point systems based
on a multilevel subspace decomposition of the constraint space K. We have proved the
convergence of such method based on the stable decomposition and strengthened Cauchy
Schwarz inequality. For some mixed finite element discretizations of Poisson, Darcy, and
Stokes equations, we have verified SD and SCS assumptions and consequently obtained a
multigrid method for the resulting saddle point systems. In a forthcoming work [24], we
shall examine a plate bending problem which is a fourth order elliptic equation. The key is
to find a underlying exact sequence.
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