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Abstract Primary sclerosing cholangitis (PSC) is a chronic
cholestatic liver disease histologically characterized by the
presence of intrahepatic and/or extrahepatic biliary duct
concentric, obliterative fibrosis, eventually leading to
cirrhosis. Approximately 75% of patients with PSC have
inflammatory bowel disease. The male predominance of
PSC, the lack of a defined, pathogenic autoantigen, and the
potential role of the innate immune system suggest that it
may be due to dysregulation of immunity rather than a
classic autoimmune disease. However, PSC is associated
with several classic autoimmune diseases, and the strongest
genetic link to PSC identified to date is with the human
leukocyte antigen DRB01*03 haplotype. The precise
immunopathogenesis of PSC is largely unknown but likely
involves activation of the innate immune system by
bacterial components delivered to the liver via the portal
vein. Induction of adhesion molecules and chemokines
leads to the recruitment of intestinal lymphocytes. Bile duct
injury results from the sustained inflammation and produc-
tion of inflammatory cytokines. Biliary strictures may cause
further damage as a result of bile stasis and recurrent
secondary bacterial cholangitis. Currently, there is no
effective therapy for PSC and developing a rational
therapeutic strategy demands a better understanding of the
disease.
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Abbreviations
PSC Primary sclerosing cholangitis
IBD Inflammatory bowel disease
HLA Human leukocyte antigen
UC Ulcerative colitis
Mdr2 Multidrug resistance-2
VCAM-1 Vascular cellular adhesion molecule-1
PG-PS Peptidoglycan–polysaccharide
DNBS Dinitrobenezenesulfonic acid
TNBS Trinitrobenzene sulfonic acid
DSS Dextran sulfate sodium
α-GalCer α-Galactosylceramide
NK Natural killer
KIRs Killer immunoglobulin-like receptors
ITIMs Immunoreceptor tyrosine-based inhibitory

motifs
ITAMs Immunoreceptor tyrosine-based activating

motifs
MIC Major histocompatibility complex class I

chain-related
CCR5 CC-type chemokine receptor 5
TCR T-cell receptor
MAdCAM-1 Mucosal adressin cell adhesion molecule-1
CLA Cutaneous lymphocyte antigen
AIH Autoimmune hepatitis
PBC Primary biliary cirrhosis
LIL Liver-infiltrating lymphocytes
VAP-1 Vascular adhesion protein-1
HEV High endothelial venules
TGF Transforming growth factor
NOS2 Nitric oxide synthase 2
p-ANCA Perinuclear anti-neutrophil antibodies
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BPI Bactericidal/permeability increasing
BEC Biliary epithelial cells
PAMPs Pathogen-associated molecular patterns
LPS Lipopolysaccharide
TLRs Toll-like receptors

Introduction

Primary sclerosing cholangitis (PSC) is a chronic chole-
static liver disease characterized by concentric and obliter-
ative fibrosis of the intrahepatic and/or extrahepatic bile
ducts and a lymphocytic portal tract inflammation leading
to cholestasis, cholangitis, and cirrhosis [1, 2]. In addition
to liver disease, 75–90% of PSC patients have either a
history of or co-existent inflammatory bowel disease (IBD),
primarily ulcerative colitis (UC) [2, 3]. Interestingly, unlike
IBD which has a slight female predominance, PSC has a
2:1 male predominance. Although the disease may affect
children and older adults, the median age of onset is in the
fourth decade [4]. The natural history of the disease is quite
variable with an average time from diagnosis to death or
liver transplant of 12 to 15 years. In addition to cirrhosis,
approximately 10–15% of PSC patients will develop
cholangiocarcinoma during their lifetime [3]. Short of liver
transplantation, no therapy has been shown to alter the
natural history of PSC. Herein we review the current
understanding of the immunobiology of PSC with partic-
ular attention to the epidemiologic, genetic, and functional
characteristics of this disease.

Epidemiology

Epidemiologic studies of PSC are challenging because the
disease is rare, often requires specialized expertise, and
until recently, could only be diagnosed by invasive
procedures. Therefore, population-based studies likely
underestimate the true prevalence and incidence of PSC.
Nevertheless, the incidence (0.9–1.3 per 100,000/year) and
prevalence (8.5–14.2 per 100,000) of PSC have been
reported to be similar in Oslo, Norway, Wales, and
Olmstead County, Minnesota [5–8]. However, in the largest
study published to date, the incidence and prevalence were
considerably lower in a general medical practice database
of the UK [9]. There appears to be a lower prevalence in
Southern Europe, Asia, and Alaska [10–12].

While the male to female predominance of 2:1 for PSC
has been largely reported, a study from Turkey reported that
15/16 PSC patients in their series were women [13] and a
Canadian study reported a slight male predominance that
did not reach statistical significance, with an age-adjusted

incidence rate of 1.01 per 100,000 person-years for men
versus 0.84 per 100,000 person-years for women [8]. Age
at diagnosis has also varied by geographic region. While
the majority of patients have been reported to be diagnosed
in their thirties [14], studies from Japan note a bimodal
age distribution with most diagnoses occurring in the
third decade and a second peak in the seventh decade of
life. Within this distribution, younger patients were
more likely to have IBD than older patients and older
patients were more likely to have autoimmune pancre-
atitis and cholangiocarcinoma [15, 16]. The average age
of patients diagnosed with cholangiocarcinoma in the
Japan study was 58. The overall incidence of cholangio-
carcinoma reported in this population was 3.6%, much
lower than the 10–15% that has been reported in previous
studies [3, 15].

The strength of the association of PSC with IBD also
differs by geographic origin. Approximately 80% of PSC
patients from northern Europe and the USA have concom-
itant IBD [17–20], while only 50% from Southern Europe
[12, 21] and 35% from Asia have IBD [11, 22, 23]. The
majority of PSC patients with IBD have ulcerative colitis
although Kaplan et al. reported that 38.8% of patients with
PSC in Canada have Crohn’s disease versus only 5.7–
13.6% reported in other studies [8]. To explain this
discrepancy, they noted that the prevalence of CD in
Alberta was 1.5 times the prevalence of UC, whereas UC
is more prevalent than CD in the rest of the world. They
hypothesized that the increased rates of CD seen among
PSC patients may reflect an unexplained occurrence of
rising incidence of CD in Canada and worldwide [8].
Alternatively, the IBD associated with PSC often shares
features with both UC and CD [24].

Immunopathogenesis of PSC

The association of PSC with IBD suggests that like the
latter, PSC is not necessarily a classic autoimmune disease
in the sense that there is targeted destruction of tissue
directed at a specific self-antigen. Rather, IBD is the result
of an abnormal innate immune response to antigens of the
intestinal flora, which activates an adaptive immune
response [25]. Genome-wide association studies and sub-
sequent functional studies have implicated several genes
such as NOD2 and ATG16L1, both involved in the
intracellular processing of bacterial antigens [26–28]. In
the case of CD, this leads to a predominantly TH-1 type of
immune response and increases in IL-17-producing lym-
phocytes. In contrast, ulcerative colitis tends to be more of
a TH-2 response. Whether PSC, which tends to be
characterized by TH-1 cytokines and stricturing reminiscent
of CD, involves similar mechanisms has not been fully
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investigated. Further complicating the matter is the associ-
ation of PSC with (1) classic autoimmune diseases such as
type I diabetes, thyroid disease, rheumatoid arthritis, and
others; (2) the human leukocyte antigen (HLA)-
DRB1*0301 haplotype; and (3) autoantigens to neutrophils
and biliary epithelial cells.

Several working models have been proposed to explain
many of the peculiar features of PSC, namely, the strong
association with IBD, the observation that PSC may
develop after total colectomy and that the liver disease
activity of PSC does not correlate with the intestinal disease
activity of IBD [1, 29]. In fact, IBD is often quiescent even
in the most severe cases of PSC. Notably, the IBD
associated with PSC, whether classified as UC or CD,
almost invariably affects the entire colon. In addition, rectal
sparing and involvement of the ileum are more common in
UC patients with PSC compared to those without PSC
(58% and 51% versus 6% and 7%, respectively) [24].

Although hypotheses related to the etiology of PSC have
been generated and several lines of evidence support
various aspects of each model, a unifying hypothesis
remains to be proposed. Vierling proposed that the
immunopathogenesis of PSC involves multiple steps start-
ing with the activation of a cholangiocyte by a bacterial
pathogen that translocates to the liver from the gut [30].
Over time, there is chronic inflammation, periductal
fibrosis, and ischemic atrophy of biliary epithelia leading
to cholestasis, obstructive strictures, and eventually biliary
cirrhosis [31].

The second hypothesis addresses how intestinal mucosal
lymphocytes home to the liver. This theory suggests that
lymphocytes are activated in the bowel of IBD patients and
then aberrantly recruited to extraintestinal sites. The
prodigious work of Adams et al. supports their hypothesis
that a network of adhesion molecules and chemokine
receptors that are normally restricted to the gut are
aberrantly expressed in the liver leading to the recruitment
of intestinal lymphocytes through the enterohepatic circu-
lation [32–37]. However, the mechanisms leading to the
aberrant expression of adhesion molecules and chemokines
in the liver or even if they are dependent upon liver or
intestinal factors remain unknown.

A third theory recently introduced by Fickert et al.
compares the pathogenesis of PSC to arteriosclerosis [38].
Bile acids which can induce apoptosis and necrosis of
cholangiocytes are normally excreted in mixed micelles
with phospholipids and cholesterol to protect cholangio-
cytes. In the multidrug resistance knockout mouse
(Mdr2−/−) which develops a PSC-like liver pathology
(discussed in detail below), absence of phospholipids as a
consequence of the Mdr2 defects results in bile acid toxicity
and also in cholesterol-supersaturated bile, which could
facilitate oxidation similar to the process of atherosclerosis.

In addition, cholangiocytes from Mdr2−/− mice express
cell adhesion molecules such as vascular cellular adhesion
molecule-1. Further similarities in chemokines, growth
factors, and cytokines support some commonality between
atherosclerosis and PSC. However, support for this theory
of toxic bile from humans is lacking. Genetic studies of the
human ortholog of Mdr2 (MDR3) have not found any
association of genetic variants with PSC susceptibility, and
in PSC patients with a normal bilirubin, biliary secretion of
bile acids and lipids has previously been shown to be
normal [39–41].

Animal models of PSC

Given the abundance and variety of animal models from
rodents to primates with spontaneous and induced inflam-
matory bowel diseases, it is surprising that none of these
animal models have been reported to recapitulate all of the
features of PSC (Table 1). Whether there is a unique
characteristic of the human liver that is not shared by these
model organisms or there has been a lack of systematic
phenotyping of IBD models is unclear.

In addition to colitis, an ideal animal model of PSC
would include histologic evidence of fibrous obliterative
cholangitis and cholangiographic evidence of both intra-
and extrahepatic duct involvement. Animal models de-
scribed to date include those involving bacterial cell wall
components or colitis; those induced by injury to biliary
epithelial cells or endothelial cells of hepatic arterioles or
peribiliary capillaries; and those induced by toxic, infec-
tious, or intraluminal injury of the biliary tract [42].

Bacterial components

A potential link between bacterial components and hep-
atobiliary inflammation was first substantiated by Chad-
wick and colleagues who demonstrated that N-formylated
chemotactic peptides that are produced by several species
of intestinal bacteria undergo enterohepatic circulation and
that the level of these compounds is increased in
experimental colitis [43–45]. In addition, rectal adminis-
tration of N-formyl L-methionine L-leucine L-tyrosine in
rats with acetate-induced colitis results in a biliary-based
inflammation consisting of macrophages and neutrophils
in the early stages and subsequently CD4+ and CD8+ T
cells [46, 47].

In a series of experiments with surgically created self-
filling jejunal blind loops leading to bacterial overgrowth,
Lichtman and colleagues demonstrated that in genetically
susceptible rat strains hepatobiliary injury with features
similar to PSC develops including bile duct proliferation,
fibrosis, and acute and chronic periportal and focal
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parenchymal inflammation [48]. The lack of similar
findings in self-emptying blind loops that do not develop
bacterial overgrowth suggested a role for bacteria or their
cell wall components. The role of bacterial peptidoglycans
was supported when the effects of the blind loops were
abrogated by oral metronidazole and tetracycline or by
mutanolysin, a muralytic enzyme which cleaves the beta 1-
4 N-acetylmuramyl-N-acetylglucosamine linkage of pepti-
doglycan–polysaccharide [49, 50]. These studies along with
human studies suggesting an increase in intestinal perme-
ability in IBD make plausible a theory of PSC involving the
translocation of bacterial cell wall components via the
portal circulation to the liver and inducing hepatobiliary
inflammation and injury presumably through a pathway
that initially involves activation of the innate immune
response. However, this model does not have colitis and
there is no evidence that bacterial overgrowth in humans
leads to PSC. In fact, Bjornsson et al. concluded that small
intestinal bacterial overgrowth and increased intestinal
permeability are not important in the pathogenesis of
chronic PSC based on their results that only one of 22
PSC patients had small intestine bacterial overgrowth and
intestinal permeability of their patients did not differ
significantly from that of controls [51].

Induced colitis

Several models of spontaneous and induced colitis have
been studied to determine the pathologic basis of the
association between colitis and PSC. Intrarectal instillation
of 2,4-dinitrobenezenesulfonic acid (DNBS) consistently
results in colitis in rodents, but there is no evidence of liver
injury in this model. In C57BL/6 mice, DNBS treatment
has led to P-selectin-dependent recruitment of lymphocytes
to post-sinusoidal venules, but this was transient and not
associated with an increase in liver enzymes [52]. In IL-10-
deficient mice that are prone to spontaneous colitis, DNBS
treatment resulted in elevation of ALT and bilirubin which
was significantly greater compared to wild-type mice but

this was not associated with any histologic evidence of
inflammation [53]. Trinitrobenzene sulfonic acid (TNBS)-
induced colitis, which is more similar to Crohn’s disease,
has failed to result in elevation of liver enzymes or
demonstrate any histologic abnormality in the liver [54].

Despite a lack of liver inflammation in these models, the
permeability of hepatocyte tight junctions is increased by
both DNBS- and TNBS-induced colitis, the former being
enhanced by IL-10 deficiency [53, 54]. This is not a direct
effect of these agents on the liver as endoportal injection of
TNBS does not cause changes in tight junction permeability
[54]. These findings leave open the possibility that
alteration of hepatocyte tight junctions in response to
intestinal inflammation leads to passage of intestinal
antigens or bacterial components from the sinusoid across
the tight junction and into the canilicular space leading to
macrophage and neutrophil recruitment, bile duct inflam-
mation, and injury.

In contrast to DNBS and TNBS, colitis induced in CD-1
mice by dextran sulfate sodium (DSS) in drinking water is
associated with histologic changes including cell infiltration
around bile duct and focal necrosis [55]. Interestingly, in
this model, cholangitis appeared to follow the development
of colitis. After 14 days of DSS treatment, nearly all
animals developed colitis whereas fewer than 10% devel-
oped liver inflammation and only 1/3 of mice developed
cholangitis after 28 days. However, even prior to histologic
changes, there was an increase in the CD4/CD8 ratio of
liver lymphocytes, and analysis of mononuclear cell
function revealed high levels of interferon-γ production in
contrast to IL-4 and IL-10. In addition, repeated injections
of α-galactosylceramide, a ligand for natural killer T (NKT)
cells, ameliorated the liver inflammation but had no effect
on the colitis [56]. The improvement in liver histology was
accompanied by changes in liver mononuclear cells
including a reduced CD4/CD8 ratio, reduced percentages
of NKT and natural killer (NK) cells, decreased interferon-
γ production, and increased IL-4 production. Although this
model provides an interesting opportunity to examine the

Table 1 Animal models of primary sclerosing cholangitis

Animal Treatment IBD Portal Inflammation Biliary strictures

Rat [47] N-formyl L-methionine
L-leucine L-tyrosine

Yes
(acetate-induced)

Macrophages/neutrophils
(early) T cells (late)

Unknown

Rat [48–50, 133] Self-filling jejunal blind loops No Yes Fibrosis, strictures not documented

CD-1 mouse [55] Dextran sulfate sodium Yes Yes Unknown

Cftr−/− [57] Dextran sulfate sodium Yes Yes Unknown

SAMP1/YitFc [58] None Yes Yes Unknown

Mdr2−/− [59] None No Yes Yes
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link between colitis and liver inflammation, it has not been
demonstrated to develop bile duct damage or fibrosis.

Given the similarities between PSC and the biliary
disease associated with cystic fibrosis, Freedman et al.
have investigated the possible role of the gene responsible
for cystic fibrosis (cftr) in PSC. They demonstrated that
while cftr−/− mice have normal liver histology, DSS-
treated cftr−/− mice not only develop colitis but also
increased serum alkaline phosphatase and inflammation
around the portal tracts including bile duct infiltration by
mononuclear cells and bile duct proliferation [57].

Spontaneous models of colitis

SAMP1/YitFc mice develop spontaneous ileitis and have
been reported to develop inflammation around intrahepatic
and extrahepatic bile ducts [58]. Although expression of the
chemokine CCL25 which has been associated with human
PSC was not identified in the liver of these mice, further
characterization of the liver disease in this model is
awaited.

Genetically altered models

One of the more recent mouse models of PSC is the
multidrug resistance gene (Mdr2) knockout mouse. Tar-
geted disruption of Mdr2 leads to sclerosing of the biliary
tree in mice. Mdr2−/− mice develop extra- and intrahepatic
biliary strictures and dilations, onion skin-type periductal
fibrosis, and focal obliteration of bile ducts similar to that
seen with primary and secondary sclerosing cholangitis in
humans. Presumably, biliary phospholipids that are nor-
mally transported into bile via the canalicular phospholipids
flippase Mdr2 and form mixed phospholipid-bile acid
micelles protect cholangiocytes from bile acid-induced cell
injury. Biliary phospholipids are absent in Mdr2−/− which
may lead to toxic bile acid-induced damage resulting in
sclerosing cholangitis [59]. The portal inflammation in
Mdr2−/− is unlikely to be of infectious origin as no
bacterial translocation has been found in these animals,
and bacterial counts and cultures are not different from
controls [59]. However, unlike human PSC, the Mdr2−/−
do not develop IBD [38]. Like the Cftr−/− mice, this model
points to the potential role of hepatobiliary transporters and
changes of bile composition in the pathogenesis of PSC
[60].

Genetic factors predisposing to PSC

There is more than an 80-fold increased risk of PSC among
first degree relatives suggesting a genetic link to the
etiology of PSC [4]. Bergquist et al. reported that among

a national Swedish cohort of PSC patients (n=678), the risk
of cholangitis was increased in offspring, siblings, and
parents of the PSC patients, compared with relatives of a
control group with hazard ratios of 11.5, 11.1, and 2.3,
respectively [61]. Despite this strong genetic risk, the
precise genes underlying this susceptibility have not been
identified. Candidate genes ranging from mediators of
fibrosis to bile acid transporters as well as immune-related
genes have been reported. In most cases, the studies are
underpowered, and with the exception of the human
leukocyte antigen, the results have failed to be replicated
in additional cohorts. A comprehensive accounting of the
genetics of PSC is beyond the scope of this review. Rather,
we will highlight those genetic studies that give insight into
the immunopathogenesis of PSC.

HLA and related gene associations

Like many autoimmune diseases, an association with the
HLA complex on chromosome 6p21 with PSC has been
well documented. The initial reports of an HLA association
with PSC came over 20 years ago from Norway and the UK
when Schrumpf et al. and Chapman et al. reported a greater
prevalence of the HLA class I allele B8 in PSC patients
compared to controls [62, 63]. Although similar frequencies
of HLA-B8 have been reported in PSC patients from
Finland and Australia, no associations with HLA-B8 or
other HLA-B alleles were identified when studied in PSC
populations from Italy or Brazil [64–67].

The initial report of an association between PSC and
HLA class II genes utilized serologic methods and
identified DR3 and DR52a as susceptibility markers. The
first study from Norway reported that 70% of PSC patients
with UC carried the HLA-DR3 antigen [62]. Subsequently,
all 29 PSC patients who underwent liver transplant at
UCLA were remarkably reported to be DR52a-positive
[68]; however, this report was later retracted [69]. Soon
after, molecular typing suggested that at least two suscep-
tibility alleles are encoded in the class II HLA, specifically
DRB1*0301 (DR3) and DRB1*13 (DR6), which are
associated with the haplotypes defined by DRB1*0301,
DQA1*0501,DQB1*0201, and DRB1*13,DQA1*0103,
DQB1*0603 [70, 71]. In fact, approximately half of all
PSC patients in Norway and Sweden carry at least one of
these two haplotypes compared to less than 20% of the
general population. It is important to note, however, that
these haplotype associations were not seen in PSC patients
from Italy and of the two, only the association with
DRB1*13,DQA1*0103,DQB1*0603 was present in PSC
patients from Brazil [64, 65, 71]. In contrast, the DRB1*04,
DQA1*03,DQB1*0302 haplotype (DR4) has been associat-
ed with a protective effect in Scandinavia and the UK.
Because of the strong linkage disequilibrium within the HLA
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region, identifying the gene or genes that account for the
associations with these haplotypes has been problematic.

In addition to HLA associations, combinations of HLA
class I alleles and killer immunoglobulin-like receptors
(KIRs) have been found to affect susceptibility to autoim-
mune disease and infection. NK cell effector function is
balanced by inhibitory and activating receptors [72]. A key
set of NK receptors is KIR which bind HLA class I
molecules. At least 14 functional KIR genes are present on
chromosome 19q13.4 where they exhibit significant allelic
and haplotypic variability, the latter of which is largely
related to the presence or absence of activating KIR genes.
Inhibitory KIRs encode immunoreceptor tyrosine-based
inhibitory motifs in their cytoplasmic tails. Activating KIRs
interact with DAP12 homodimers that contain immuno-
receptor tyrosine-based activating motifs. Genetic studies
implicate specific combinations of HLA and KIR alleles in
autoimmunity, tumor immunosurveillance, and viral dis-
eases. Combinations expected to increase activation of NK
cells are associated with autoimmunity [73], slow progres-
sion of human immunodeficiency virus [74], and protection
against hepatocellular carcinoma in hepatitis C virus (HCV)
infection [75]. In contrast, the combination of HLA-CAsn80
(HLA-C1) and KIR2DL3 has been associated with clearance of
HCV [76]. Karlsen et al. investigated the possible interaction
between HLA class I alleles and KIR genes in 365
Scandinavian PSC patients and 368 healthy controls [77].
The frequency of HLA-Bw4 and HLA-C2, ligands for the
inhibitory KIRs 3DL1 and 2DL1, respectively, was significant-
ly reduced in PSC patients compared with controls suggesting
an increase in NK cell activity by decreased inhibition.

In addition to the decreased suppression of NK cell
activity through HLA–KIR interactions, genetic evidence
suggests a possible role for the direct activation of NK cells
through the major histocompatibility complex class I chain-
related (MIC) genes. MICA and MICB are encoded with the
HLA region and their proteins activate NKG2D receptors
on NK cells. Norris et al. found a strong protective effect of
the MICA*002 allele with an allele frequency of 0.180 in
controls compared to 0.032 and 0.0 in two independently
collected cohorts of PSC cases [78]. In contrast, the
MICA*008 allele frequency was increased in both sets of
cases (0.66 in both) compared to controls (0.48). Although
the MICA*008 allele is part of the B8-DR3 haplotype, the
association was also observed when the MICA*008 allele
was on a B7-DR15 haplotype. In contrast to these UK
cohorts, a study of 130 Norwegian PSC patients and 306
healthy controls found associations with the MICA5.1 and
MICB24 alleles [79]. However, these alleles are also found
on the extended B8-MICA5.1-MICB24-DR3 haplotype and
are not independent of HLA-B8 or DR3. Attempts at
further dissection of the HLA region have only extended
the HLA-DR3-associated haplotype more telomerically

[80]. Future efforts with larger patient cohorts and more
densely spaced markers may eventually lead to the
identification of the causative variant or variants, but the
strong linkage disequilibrium of the region may prove to be
an insurmountable barrier.

Candidate genes

With the strong association between PSC and UC, it would
not be surprising to find that they shared some common
genetic basis. However, this has not proven to be the case
so far. Unlike PSC, the association between UC and HLA
has been weak and inconsistent. Most consistent in UC are
the positive associations with the DRB1*0103 and
DRB1*1502 alleles, and a negative association with
DRB1*0401. In a direct comparison of 365 Scandinavian
PSC patients, 330 Norwegian ulcerative colitis patients, and
368 healthy controls, Karlsen et al. concluded that HLA
associations in PSC were of greater impact and mostly
distinct from those in UC [81]. Similarly, studies comparing
IBD susceptibility genes in PSC and IBD cohorts have
failed to show any common genetic links including studies
of NOD2/CARD15, TLR-4, CARD4, SLC22A4,
SLC22A5, DLG5, and MDR1 [82, 83].

In addition to HLA alleles, ICAM-1 gene polymor-
phisms have been implicated in UC as well as a number of
other inflammatory disorders including multiple sclerosis
and Behcet’s disease. ICAM-1 mediates leukocyte adhesion
during immune responses and is important in transendo-
thelial migration of neutrophils and T-cell activation.
Previous studies have demonstrated expression of ICAM
on proliferating bile ductules and interlobular bile ducts in
PSC patients with advanced disease. The polymorphism
K469E in exon 6 leads to a change from glutamic acid to
lysine in the Ig-like domain 5 of ICAM-1 which is thought
to affect interactions between LFA-1 and B cells. Yang et
al. reported that in 104 PSC patients and 213 healthy
controls from the UK the E/E frequency of the K469E
polymorphism was significantly lower in PSC than in the
control population (12% versus 24%, OR 0.41) [84].
However, a larger study of a Scandinavian PSC cohort
was not able to reproduce these findings [85].

CC-type chemokine receptor 5 (CCR5) is a cell surface
receptor expressed on T cells and macrophages which is
activated by several chemokines, including RANTES,
MIP1a, and MIP1b. A 32-base pair deletion (CCR5-Δ32)
in the CCR5 gene leads to a frame shift and encodes a non-
functioning receptor. Studies in several population have
reported associations of PSC with the Δ32 polymorphism
[86–89]. However, two studies showed a protective effect
of the allele, while two others suggested that the allele
increased susceptibility. Still, the largest study found no
association at all [90].
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Cellular immune response in PSC

Teasing out the causative immune response of PSC from the
reactive responses to cholangitis, inflammatory bowel disease,
and cirrhosis has been a major obstacle in the understanding of
PSC. Although the inflammatory infiltrate of PSC is largely
comprised of T cells, other cell types including NK cells,
macrophages, B cells, and biliary epithelial cells are likely to play
important roles in the immunopathogenesis of PSC (Fig. 1).

Innate immune responses

The activation of the innate immune system as a primary
inciting event of PSC has been proposed by several

investigators [31]. According to this theory, PSC is
triggered by bacteria or more likely, pathogen-associated
molecular patterns (PAMPs) such as lipopolysaccharide
(LPS), lipoteichoic acid, peptidoglycans, and unmethy-
lated bacterial dinucleotide motifs that enter the portal
circulation through an inflamed permeable intestine.
PAMPs activate macrophages, dendritic cells, and NK
cells through pattern recognition receptors, including Toll-
like receptors (TLRs) and CD14 leading to the secretion of
cytokines which in turn activate NK cells (IL-12) and
promote recruitment and activation of lymphocytes (TNF-
α, IL-1β, and CXCL8). NK cells may also be activated by
MHC Class I chain-related gene products MICA and
MICB, which are stress-induced proteins that can promote

Fig. 1 Proposed mechanism for the immunopathogenesis of primary
sclerosing cholangitis. Prior to the development of PSC, intestinal
lymphocytes are activated in gut-associated lymph tissue and primed
by dendritic cells to express α4β7 and CCR9 which result in the
homing of these cells to MAdCAM-1 and CCL25, respectively.
Normally, the expression of MAdCAM-1 and CCL25 is restricted to
the gut, but in PSC, MADCAM-1 is found on portal vein endothelium
and CCL25 on periportal sinusoidal endothelium. Although it has yet
to be defined where lymphocytes enter the liver (portal venules,
sinusoids, or post-sinusoidal capillaries), the expression of MAdCAM-1
and CCL25 leads to the recruitment of CD44+ α4β7+ CCR9+ memory
cells from the gut. The mechanisms leading to the expression of
MAdCAM-1 and CCL25 in the liver are unknown but the latter appears
to be PSC-specific. In addition, the recurrence of PSC after liver
transplantation suggests that this is not an aberrant property inherent in
the PSC liver. Induction of MAdCAM-1 and CCL25 may be in
response to pathogen-associated molecular patterns (PAMPs) that enter
the liver from the gut via the portal vein or sinusoids and bind Toll-like

receptors (TLRs) on macrophages (Kuppfer cells, KC) and dendritic
cells. Activation of these cells leads to the secretion of inflammatory
cytokines which have been shown to induce MAdCAM-1 expression
on hepatic endothelial cells. The reported enrichment of αEβ7
lymphocytes in the PSC has been suggested to result from a transition
of α4β7+ to αEβ7+ induced by transforming growth factor-β (TGF-β).
The localization of lymphocytes to the biliary epithelium is poorly
understood. Biliary epithelial cells (BEC) can express a variety of
cytokines and chemokines as well as MHC class I and II, CD44, and
TLRs. LPS, a potent TLR-4 ligand, induces CCL28 production by BEC
leading to the recruitment of α4β1+ CCR10+ regulatory T cells (Treg).
However, this phenomenon is seen in a variety of inflammatory liver
diseases and is not specific for PSC. We should also note that while
TLRs are present on BEC, they are localized to the apical membrane
and likely only have contact with PAMPs in the case of ascending
cholangitis. Anti-BEC antibodies have been detected in PSC patients
and stimulate the production of several cytokines by BEC that could
lead to localized recruitment of inflammatory cells

Semin Immunopathol (2009) 31:383–397 389



the cytotoxic function of NK, NKT, and γδT cells through
the NKG2D receptor.

Similar to the intestinal mucosa, the biliary mucosa
expresses multiple TLRs and their expression has been shown
to be induced in a variety of liver diseases [91]. Interestingly,
IgG directed against biliary epithelial cells (BEC) has been
found in the sera of some PSC patients. These sera induce
the expression of TLR4 and TLR9 on BEC in culture and
can be found to co-localize with these same TLRs on BEC in
situ [92]. In fact, treatment of BEC with PSC sera containing
anti-BEC antibodies induces secretion of GM-CSF, IL-1β,
and IL-8, which in turn may lead to the recruitment of
neutrophils, macrophages, and T cells.

However, the targets of these anti-BEC antibodies remain
unknown and other evidence that innate immune responses are
dysregulated in PSC is largely circumstantial. Histologically,
macrophages appear to accumulate in the sinusoidal and
perisinusoidal spaces in PSC but not in primary biliary
cirrhosis (PBC) and other biliary tract diseases. The accumu-
lation is independent of necrosis, cholestasis, or neutrophil
infiltration but whether the increased number of macrophages
is a primary cause of PSC or secondary to chronic cholangitis
remains to be determined [93].

Further complicating the interpretation of these types of
studies are the high rates of gram-negative biliary isolates
from patients with dominant stenosis. Compared to those
without a dominant stenosis, these PSC patients have a
higher load of bacteria and a shorter time to liver
transplantation [94]. Other organisms postulated to be
involved in the induction of the innate immune response
in PSC include Chlamydia spp. and Helicobacter pylori.
Ponsioen et al. found an elevated seroprevalence of
Chlamydia-LPS antibodies in PSC patients compared to a
matched control group. The lack of Chlamydia spp. in
cultures of bile from these patients suggested that these
findings were not due to active infection [95]. Amplifica-
tion of 16S ribosomal RNA from explanted livers of 25
patients with PSC detected Helicobacter sequences in
perihilar ductal and liver tissue of six of these patients.
However, three of 31 control livers with non-biliary tract
disease also demonstrated Helicobacter rRNA sequences
[96]. Similarly, Boomkens et al. reported no significant
difference between the incidence of Helicobacter DNA in
liver tissue form PSC patients compared to controls [97]. In
addition, there has not been any evidence that Helicobacter
affects the histology of biliary epithelium [98].

Liver T cells

While the lymphocytic infiltrate of PSC has been repeatedly
shown to be primarily T cells, the composition of T-cell
subsets varies by study. A predominance of CD4+ T cells
with a Th-1 phenotype [99] has been shown by some, while

others have found a predominance of CD8+ T cells [100,
101] or no difference in the CD4/CD8 ratio compared to
other liver diseases [102]. These inconsistencies may be
explained by the distribution of T-cell subsets within the
liver in which CD4+ T cells predominate the portal infiltrate,
while CD8+ T cells comprise the majority of the lobular
infiltrate [103]. Thus, PSC patients with more significant
lobular inflammation may display a greater percentage of
CD8+ T cells.

There is some evidence that the T cells may have
oligoclonal restriction. Probert et al. reported that T cells
isolated from the common bile duct epithelium obtained
during endoscopic retrograde cholangiography of two PSC
patients had a large number of CD3+ CD43+ CD45RO+
lymphocytes [104]. Analysis of the variability of the T-cell
receptor (TCR), specifically the complimentarity determin-
ing region 3 length and TCRVβ usage, suggested that the
derived cell lines were oligoclonal. Consistent with these
findings, Broome et al. demonstrated that the liver infiltrates
of PSC patients more often stain positive for TCRVβ3
compared to those with PBC and healthy controls [105].

In addition to the αβ T cells infiltrating the liver, there
are increased proportions of γδ+ T cells in PSC. The
percentage of γδ+ T cells in peripheral blood of PSC
patients is greater than healthy controls and co-express IL-2
receptor and CD45RO suggesting that they have an
activated memory phenotype [106, 107]. An increase in
the absolute number and proportion of γδ T cells has also
been reported in the portal area of PSC patients [106].

Integrins, chemokines, and chemokine receptors

Tissue-specific recruitment of lymphocytes to inflammation
involves the coordinated recognition of “addressins”
expressed by vascular endothelial cells by homing receptors
on the lymphocyte along with interactions of chemokines
and chemokine receptors. For example, lymphocytes
activated by dendritic cells in gut-associated lymphatic
tissue are programmed to express the α4β7 integrin and the
CCR9 chemokine receptor. The ligand for α4β7 is the
mucosal adressin cell adhesion molecule-1 (MAdCAM-1)
which is specifically expressed on the intestinal endotheli-
um and during inflammation on intestinal mucosa. The
CCR9 ligand CCL25, which is also capable of activating
α4β7, is expressed preferentially in the intestine as well. The
combination of MAdCAM-1 and CCL25 is critical for the
specific recruitment of α4β7+CCR9+ lymphocytes to
the intestine. Similarly, homing to the skin involves
interactions between cutaneous lymphocyte antigen with E-
selectin and CCL17 with CCR4. However, recruitment of
lymphocytes to the liver does not appear to involve a specific
pairing of adhesion molecules and chemokines. Rather,
multiple adhesion molecules and chemokines appear to
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recruit lymphocytes to the liver. Several of these molecules
have been implicated in the pathogenesis of PSC, but their
specificity to PSC as opposed to being generic in liver
inflammation requires further exploration.

Most notably, MAdCAM-1 was initially thought to be
confined to gut endothelium, but has since been shown to
be expressed in the portal vein and sinusoidal endothelium
in autoimmune-mediated liver disease. Grant et al. reported
the presence of MAdCAM-1 staining in the portal veins of
11/16 PSC patients, 6/10 autoimmune hepatitis (AIH)
patients and 3/11 PBC patients [36]. Dual-color immuno-
fluorescence demonstrated the proximity of α4β7 T cells to
MAdCAM-1-positive vessels, and adhesion assays con-
firmed the functionality of the interaction. Somewhat
surprisingly, however, the frequency of αEβ7+, but not
α4β7+ liver-infiltrating lymphocytes (LIL) was increased
relative to peripheral blood in PSC. In the only other study
of the expression of MAdCAM-1 in human liver diseases,
Hillan et al. detected MAdCAM-1 associated with portal
tract inflammation in chronic hepatitis C and B as well as
PBC and PSC [108].

In contrast to α4β7+ LIL, CCR9+ LIL do appear to be
specifically increased in PSC compared to PBC. Although
the frequency of CCR9+ lymphocytes is not increased in
peripheral blood, approximately 20% of LIL from PSC
livers express CCR9 compared to <2% in normal livers or
PBC [34]. This is in comparison to nearly 100% of lamina
propria lymphocytes expressing CCR9+ in Crohn’s disease.
These CCR9+ LIL include CD8+ and CD4+ T cells, the
former demonstrating a memory phenotype. Notably in
apparent contradiction to their earlier work in which only
6% of CD3+ LIL expressed α4β7 [36], Eksteen et al.
reported that α4β7 is co-expressed with CCR9. Neverthe-
less, the origin of these α4β7+ CCR9+ lymphocytes being
the intestine is supported by the recent finding that liver
dendritic cells and stellate cells were unable to imprint these
homing markers on CD8+ T cells [32].

The CCR9 ligand CCL25 also appears to be specifically
upregulated in PSC liver. Furthermore, CCR9+ LIL
preferentially migrate to CCL25 rather than to CXCL12
or CCL5 and are triggered by CCL25 to bind immobilized
MAdCAM-1 via α4β7.

Vascular adhesion protein-1 (VAP-1) is present on
sinusoidal and vascular endothelium of most organs,
including the liver with the greatest abundance found in
high endothelial venules of peripheral lymph nodes. Neither
bile ducts nor hepatocytes appear to express VAP-1 [109–
111]. However, it does not belong to the selectin, integrin,
or immunoglobulin super families [112]. In addition to
adhesion of lymphocytes to peripheral lymph node high
endothelial venules [113], it promotes shear-dependent
lymphocyte adhesion to and transmigration across hepatic
sinusoidal endothelium in vitro [109, 110, 114]. Further-

more, Lalor et al. reported that binding of benzylamine to
VAP-1 in hepatic endothelial cells resulted in rapid activation
of NF-κB. This led to expression of CXCL8, E-selectin, and
ICAM-1 and upregulation of leukocyte adhesion [115].
Bonder et al. reported that Th1 cells use α4β1 and Th2
cells use VAP-1 to adhere to sinusoidal epithelium. This was
in contrast to previous theories that leukocyte recruitment in
the sinusoids was mediated by physical trapping rather than
adhesion [116]. The lymphocyte ligand of VAP-1 has not
been identified and its role in the homing of lymphocytes to
the liver in PSC has not been established.

Integrin αVβ6 is expressed in large amounts on certain
activated epithelia, mediating attachment to fibronectin and
acting as a coreceptor for the activation of latent trans-
forming growth factor (TGF)-β1. In order to elucidate its
role in liver fibrosis, Patsenker et al. studied αVβ6 function
in rats after bile duct ligation and in Mdr2−/− mice. αVβ6
was expressed in large amounts on proliferating bile duct
epithelia in fibrosis. In addition, EMD527040, a αVβ6
antagonist, decreased bile ductular proliferation and peri-
biliary collagen deposition and downregulated fibrogenic
genes while upregulating fibrolytic genes. It also reduced
endogenous activation of TGF-β1 [117]. In human liver,
αVβ6 is absent in normal liver but is expressed on
activated bile duct epithelia and transitional hepatocytes.
In chronic hepatitis C, integrin β6 mRNA increases with
stage of fibrosis. Thus, αVβ6 does not appear to be a
specific receptor targeting lymphocytes in PSC. Clearly,
more research into the basic biology of lymphocyte homing
to the liver and specificity of homing in PSC will expand
our understanding of its pathogenesis tremendously.

Intestinal lymphocytes of PSC

If the liver inflammation of PSC is related to the aberrant
homing of intestinal lymphocytes from IBD, perhaps the
intestinal lymphocytes of the IBD associated with PSC
differ phenotypically from IBD without PSC. A limited
number of studies have examined intestinal lymphocytes
from PSC patients and demonstrated that there are
differences compared to IBD patients and healthy
controls. PSC intestinal lymphocytes tend to have a
lower frequency of IFN-γ and IL-4-producing cells and
have a blunted proliferative response to IL-2 compared
to IBD lymphocytes [118, 119]. Increased numbers of
intestinal NK cells in PSC–IBD compared to IBD have
also been documented [118].

Cytokines

Th1 inflammatory mediators are the predominant type in
PSC. Bo et al. reported significantly higher levels of TNF-α
and IL-1β and lower concentrations of IL-2, IL-10, and

Semin Immunopathol (2009) 31:383–397 391



IFN-γ in supernatants of LIL from PSC patients compared
with PBC, AIH, and normal controls [99]. Anti-TNF-α
antibodies restored the previously diminished proliferative
response. Impaired cytolytic activity of NK and T cells was
also observed, and this was partially restored after treatment
with TNF-α antibody treatment. The authors concluded that
it is unlikely that the injury in PSC is mediated by direct
cytotoxic effects because of the inability to detect normal
cytotoxic activity of the LIL. Consistent with this are the
results of a recently completed pilot study of the anti-TNF-α
monoclonal antibody infliximab which showed no improve-
ment in liver biochemistry or histology compared to placebo.

Aoki et al. used RNA microarray analysis of peripheral
blood mononuclear cells to identify immune-related genes
and pathways that are differentially expressed in PSC. They
discovered that genes within the IL-2 receptor beta, IL-6,
and MAP kinase pathways were expressed differently in
PSC patients compared to controls. They also noted that
individual genes, TNF-α-induced protein 6 and membrane
spanning 4-domains, subfamily A were upregulated in PSC
while Mothers against decapentaplegic homolog 5 was
downregulated. These findings are consistent with a systemic
Th-1-mediated inflammatory response [120].

The effects of TNF-α and IFN-γ may also have specific
effects on bile acid secretion in PSC. Spirli et al.
demonstrated that TNF-α and INF-γ act synergistically to
enhance nitric oxide production by increased nitric oxide
synthase 2 (NOS2) gene and protein expression [121]. This
in turn led to inhibition of cyclic-AMP dependent secretion
by cholangiocytes. In contrast to PBC and chronic hepatitis
C, PSC samples with advanced histologic stage had a
significantly greater immunostaining of NOS2 in large and
small bile ducts. The lack of increased staining in early
stage PSC suggests that this change is in response to the
underlying disease process, perhaps related to Th1-type
responses to bouts of cholangitis.

Humoral immune responses

Autoantibodies are frequent in PSC but their pathologic
significance remains unknown. Anti-neutrophil antibodies
are often found in a perinuclear (p-ANCA) or atypical
perinuclear pattern in approximately 80% of patients, but
the diagnostic utility of this is somewhat limited because of
the overlap with autoimmune hepatitis [122]. The atypical
perinuclear pattern appears to be specific to PSC and AIH
with staining of the nuclear periphery and multiple intra-
nuclear foci. Both IgG and IgA classes of ANCA are
prevalent in AIH and PSC; however, the atypical perinu-
clear staining pattern appears to be the predominant
staining pattern for the IgG class in PSC. In contrast, the
IgA class is found in an equal proportion of the atypical
perinuclear pattern and the classical pattern. In patients with

both IgG and IgA ANCA, IgA appears to be responsible for
the classic p-ANCA staining while the IgG produces the
atypical p-ANCA [123]. There is some preliminary evi-
dence that the presence of p-ANCA may be able to be used
as a prognostic indicator in PSC [124], although others
have not been able to confirm this and the titer does not
correlate with disease activity [123, 125].

The autoantigen to which both the classic and atypical p-
ANCA in PSC react has yet to be identified. Orth et al.
reported that catalase autoantibodies were present in 60% of
their PSC cohort and alpha-enolase autoantibodies were
present in 27% [126]. Catalase is an antioxidant that
protects against cell damage from highly reactive oxygen-
derived free radicals. Inhibition of catalase function might
lead to increased oxidative stress in PSC. Bactericidal/
permeability increasing (BPI) protein, an endotoxin-binding
neutrophil leukocyte-granule protein that has antibacterial
and anti-endotoxin properties, has also been suggested as a
potential target of p-ANCA in PSC [127, 128]. Stoffel et al.
reported that BPI-ANCA was present in 36% (13/36) of
PSC patients compared to less than 10% of patients with
ANCA-associated vasculitidies and disease controls [128].
They hypothesized that BPI-ANCA dampens the
endotoxin-neutralizing ability of BPI leading to over-
expression of bacterial antigenic stimuli. However, BPI-
ANCA has also been found in cystic fibrosis, IBD, and
vasculitis and is associated with higher inflammatory
disease activity and greater organ damage [127].

More recently, it has been reported that atypical p-
ANCA recognizes tubulin beta isoform 5 in human
neutrophils and the bacterial cell division protein FtsZ
which is present in almost all bacteria of the intestinal
microflora [129, 130]. The authors suggest that this may
reflect molecular mimicry in which autoantibodies triggered
by a bacterial infection cross-react and inhibit normal
immune cell functions [131]. Unfortunately, these results
have only been published in preliminary form.

As mentioned above, there is evidence that BEC are targets
of autoantibodies in PSC. Xu et al. reported that autoanti-
bodies against surface antigens on BEC were found in a
significantly greater percentage of PSC patients (63.3%)
compared to PBC (37%) or AIH (16%) patients or normal
controls (8%). Anti-BEC sera also caused BEC to increase
expression of CD44 and production of IL-6 potentially
leading to the recruitment of memory T cells via CD44 [132].

Concluding remarks

The etiopathogenesis of PSC remains enigmatic. Genetic
susceptibility to the disease is clearly an important factor
and as the specific genetic components are identified, better
insights into the mechanisms of this disease will be
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understood. Although progress has been made into the
recruitment of lymphocytes from the gut to the liver, why
chronic inflammation and fibrosis occurs only in a subset of
IBD patients remains to be defined. In addition, an
important question remains as to whether this same process
holds true for the growing percentage of PSC patients
without IBD. The lack of an adequate animal model and the
relative infrequency of the disease remain major obstacles
to progress and will only be overcome with close
collaboration and focused research into the immunopatho-
genesis of PSC.
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mits any noncommercial use, distribution, and reproduction in any
medium, provided the original author(s) and source are credited.
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