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Abstract
Background  Kinetic modeling of 18F-florbetaben provides important quantification of brain amyloid deposition in 
research and clinical settings but its use is limited by the requirement of arterial blood data for quantitative PET. The 
total-body EXPLORER PET scanner supports the dynamic acquisition of a full human body simultaneously and permits 
noninvasive image-derived input functions (IDIFs) as an alternative to arterial blood sampling. This study quantified 
brain amyloid burden with kinetic modeling, leveraging dynamic 18F-florbetaben PET in aorta IDIFs and the brain in 
an elderly cohort.

Methods  18F-florbetaben dynamic PET imaging was performed on the EXPLORER system with tracer injection (300 
MBq) in 3 individuals with Alzheimer’s disease (AD), 3 with mild cognitive impairment, and 9 healthy controls. Image-
derived input functions were extracted from the descending aorta with manual regions of interest based on the 
first 30 s after injection. Dynamic time-activity curves (TACs) for 110 min were fitted to the two-tissue compartment 
model (2TCM) using population-based metabolite corrected IDIFs to calculate total and specific distribution volumes 
(VT, Vs) in key brain regions with early amyloid accumulation. Non-displaceable binding potential (BPND)  was also 
calculated from the multi-reference tissue model (MRTM).

Results  Amyloid-positive (AD) patients showed the highest VT and VS in anterior cingulate, posterior cingulate, and 
precuneus, consistent with BPND  analysis. BPND and VT from kinetic models were correlated (r² = 0.46, P < 2e−16) 
with a stronger positive correlation observed in amyloid-positive participants, indicating reliable model fits with the 
IDIFs. VT from 2TCM was highly correlated (r2= 0.65, P < 2e−16 ) with Logan graphical VT estimation.

Conclusion  Non-invasive quantification of amyloid binding from total-body 18F-florbetaben PET data is feasible 
using aorta IDIFs with high agreement between kinetic distribution volume parameters compared to BPND in 
amyloid-positive and amyloid-negative older individuals.

Keywords  18F-florbetaben, Alzheimer disease, β-Amyloid, Total body EXPLORER PET, Kinetic modeling, image derived 
input function
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Introduction
Amyloid imaging with PET radiotracers has proven use-
ful for clinical assessment of Alzheimer’s disease and 
monitoring of response to recently developed anti-amy-
loid therapies [1, 2]. Typical PET assessment of amyloid 
is either based on a clinical read (amyloid positive or 
negative); or quantifies standardized uptake value ratio 
(SUVR) with reference to a predetermined reference 
region [3, 4]. However, SUVR does not consider poten-
tial confounding variables such as blood volume, tracer 
metabolism, blood flow, and other pharmacokinetic com-
ponents representative of tracer dynamics. Furthermore, 
dynamic PET information of amyloid uptake reveals 
additional, complementary physiological information 
at various uptake times, e.g., with early-phase images 
reflective of tracer delivery via cerebral blood flow and 
late-phase images reflective of equilibrium amyloid bind-
ing [5, 6].

Kinetic model-based approaches are a quantitative 
alternative to SUVR that characterize distinct tracer 
dynamics (e.g., blood flow) and account for various 
physiological processes. Current amyloid tracers such 
as 18F-florbetaben, a second-generation amyloid tracer 
with more specific binding and less off-target binding 
relative to the first generations, (such as 18F-DDNP). 
Although similar binding affinity is observed in 11C-PiB 
and 18F-florbetaben (Sabri et al., Figure 2), the half lives 
are 20  min and 110  min, respectively. The longer half-
life of 18F allows for greater distribution radius there-
fore increasing its availability [2, 7]. 18F-florbetaben is 
typically modeled with two tissue compartments. Due 
to florbetaben’s reversibly binding nature, the tissue-to-
plasma equilibrium ratio not only reflects the available 
specific binding site density but also free and nonspecific 
binding of tracer [8]. Non-displaceable binding potential 
(BPND ) is a typical measurement from reference tissue 
methods and can be measured without arterial plasma 
measurements and it describes the ratio at equilibrium 
of specifically bound tracer to that of non-displaceable 
radioligand in tissue. BPND measurements from dynamic 
PET also benefit from being less sensitive to changes in 
cerebral blood flow (CBF) and noise related to SUVR 
such as tracer clearance, blood flow, blood volume, and/
or extraction fraction [9]. On the other hand, full com-
partment modeling with a two-tissue model directly esti-
mates specific rate constants such as K1, which reflects 
both tracer delivery (perfusion) and extraction fraction, 
k3 reflecting metabolism or binding, clearance from the 
tissue back to the blood (k2, k4), and blood volume (Vb ). 
Additionally, parameters more directly related to recep-
tor binding density can be calculated, including the 
total (VT) and specific distribution volumes (VS) [10]. 
While binding potential and the volume of distribution 
measures are expected to correlate [8], the kinetic rate 

parameters estimated from two-tissue compartment 
modeling add further insight into specific underlying 
processes that govern amyloid PET uptake over time.

However, one disadvantage of full kinetic modeling 
is the requirement of an arterial blood input function, 
which is typically measured through multiple arterial 
blood samples during the PET scan. Arterial cannula-
tion blood sampling is invasive, potentially painful, time 
consuming, and often discourages patients from partici-
pating in clinical research involving dynamic PET imag-
ing. Sampling errors can also occur, and the arterial input 
function needs to be “low-noise” to avoid error propa-
gation to kinetic estimates [11]. In addition, there is an 
inherent tradeoff between spatial and temporal resolu-
tion to achieve adequate signal-to-noise of dynamic PET 
frames for robust kinetic parameter fits [12, 13]. Using 
conventional PET scanners with ∼20  cm field of view 
(FOV) only a limited FOV of continuous dynamic data 
is available and will suffer from multiple gaps in time if 
an image-derived input function (IDIF) is used. The uEX-
PLORER total-body PET system reduces these tradeoffs 
and allows for the acquisition of IDIFs from vessels and 
arteries in the body at early time frames to be used as a 
surrogate for arterial blood sampling while simultane-
ously acquiring dynamic brain activity. Moreover, the 
high sensitivity of the uEXPLORER scanner allows for 
fast temporal sampling, i.e., 2-second frames especially 
at early time points, while maintaining high image reso-
lution, thus overcoming previous challenges with IDIF 
methods [12, 14].

The purpose of this study is to leverage the total-body 
EXPLORER scanner to extract reliable IDIFs from the 
descending aorta and apply a kinetic modeling-based 
approach to quantify brain β-Amyloid in an elderly 
cohort. We used non-invasive two-tissue compartment 
modeling to quantify VT and VS across brain regions and 
evaluated them with BPND  values derived from a refer-
ence tissue-based model. Additionally, microparameters 
(K1, k2, k3, and k4) were derived and evaluated. Further-
more, we expected to see that regional measures of VT 
and VS from kinetic modeling are elevated in “index” 
brain regions that has previously been shown to accumu-
late amyloid in amyloid-positive versus amyloid-negative 
individuals [15].

Materials and methods
Subjects
We recruited 15 participants, including 3 participants 
with Alzheimer’s Disease (AD, 75.7 ± 4.6 years), 3 with 
mild cognitive impairment (MCI, 84.5 ± 10.6 years), and 
9 healthy controls (HC, 77.2 ± 6.0 years) from the UC 
Davis Alzheimer’s Disease Research Center cohort. All 
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Fig. 1  Dynamic total-body 18F-florbetaben data. (A) Literature-based metabolite fraction curve [21] (top), dynamic PET aorta image-derived input func-
tion representing whole blood(red) and plasma(blue)(middle). (B) Brain tissue time-activity curves (right) for a 73 year-old male with Alzheimer’s Disease. 
Anterior cingulate (ac), cerebellar gray matter (c), entorhinal cortex (e), lateral frontal cortex (lf ), lateral parietal cortex (lp), lateral temporal cortex (lt), 
medial frontal cortex (mf ), medial temporal cortex (mt), precuneus (p), posterior cingulate (pc), and temporal sulci (ts)
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3 AD patients were amyloid-positive (Aβ+), and all HC 
and MCI individuals were amyloid-negative (Aβ-), result-
ing in 3 amyloid-positive cases and 12 amyloid-negative 
cases. Eligibility criteria included: age over 65 years, able 
to undergo an MRI, and known cognitive status based 
on clinical assessment and neuropsychological testing. 
Individuals with pacemakers, brain tumors, alcoholism 
and/or those who were not able to lie still for 90  min 
were excluded from this study. The UC Davis Institu-
tional Review Board approved this protocol and written 
informed consent was obtained for all subjects involved 
in the study.

PET and MRI acquisition
Amyloid-PET
PET data were acquired with the UC Davis total-body 
uEXPLORER PET scanner [13, 16]. 18F-florbetaben 
was administered to 15 participants via bolus injection 
with an average dose of 277.1 ± 22.4 MBq. An ultra-low 
dose CT was obtained for anatomic localization and 
attenuation correction purposes immediately before the 
dynamic PET acquisition. The 140 kVp ultra-low dose CT 
had a tube current of ∼5 mAs with automatic dose mod-
ulation, leading to an estimated dose of 1 mSv per acqui-
sition. CT images were reconstructed into a 1024 × 1024 
matrix with a 2.344 mm slice thickness and 512 mm axial 
FOV. Dynamic PET data were acquired over 110 min and 
reconstructed into 30 × 2-second frames, 12 × 10-second 
frames, 7 × 1-minute frames, and 20 × 10-minute frames 
following a high-temporal resolution total-body PET 
protocol established previously [17]. All image data were 

reconstructed using time-of-flight based ordered-subset 
expectation-maximization (OSEM) with all standard 
corrections but without point spread function model-
ing. Four OSEM iterations of 20 subsets were employed. 
Images.

were reconstructed with a 2.344  mm isotropic voxel 
size and without post-reconstruction smoothing follow-
ing the UC Davis clinical protocol [18].

Amyloid positivity was determined by a clinical read on 
static PET scans by a trained neurologist (C.D.) with over 
30 years of experience and certified to clinically deter-
mine PET amyloid positivity.

MRI
All participants underwent MRI scans on a 3 Tesla Sie-
mens Tim Trio whole-body scanner equipped with 
a 32-channel head coil. The scanning parameters of 
the T1-weighted 3D magnetization-prepared rapid 
gradient-echo (MPRAGE) sequence included: matrix 
size = 240 × 256, in-plane spatial resolution = 1  mm, 
repetition time = 2300 ms, echo time = 2.98 ms, flip 
angle = 9 degrees, acquisition time = 9  min 14  s, inver-
sion time = 900–1100 s, and 176 sagittal slices with thick-
ness = 1.0–1.2  mm. PET and MRI scans were taken on 
average 2.5 ± 1.5 years apart from each other.

Image-derived input function
15 hand-drawn IDIFs were manually extracted in 
PMOD (PMOD Technologies, LLC) from the descend-
ing aorta from an early time window (mean initial frame 
25.3s ± 6.9s, mean volume = 19.4 ± 5.2  cm³) (Fig.  1). The 

Fig. 2  Two-tissue compartment model fits to measured time-activity curves for lateral frontal cortex,  medial temporal cortex, posterior cingulate, and 
cerebellar gray matter in (A) 82 year-old male, cognitively normal participant and (B) 81-year old male patient with Alzheimer’s disease. IDIFs from the 
aorta were corrected for population-based metabolite fraction and plasma fraction
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IDIF region of interest (ROI) length was kept consis-
tent across all individuals and was 18–20 voxels in the 
superior-inferior direction. IDIF ROI diameters varied 
to align with individual aorta anatomy but were eroded 
by 1 mm in all dimensions to avoid including the vessel 
walls. To completely avoid blood sampling, the IDIF was 
corrected for metabolite and plasma fractions using pop-
ulation-based curves from the literature prior to kinetic 
modeling. Plasma correction was applied by multiplying 
by a constant value of 0.73 for the whole blood: plasma 
ratio [19]. A bi-exponential function describing the frac-
tion of unmetabolized 18F-florbetaben over time was 
then applied for metabolite correction derived from a 
previous study consisting of 10 patients with AD and 10 
aged matched HCs [20].

Dynamic processing
The dynamic PET data for each individual underwent 
brain extraction using PMOD and the FMRIB Software 
Library (FSL) brain extraction tool [22]. Dynamic PET 
motion correction was first performed frame by frame 
to an average image using FSL’s MCFLIRT, and lin-
ear (affine) registration was performed to align the 4D 
motion-corrected dynamic PET data with their respec-
tive T1-weighted (T1W) images using FSL’s FLIRT [23, 
24].

Using the Desikan-Killiany-Tourville (DKT) atlas, brain 
regions of interest that are known to accumulate amy-
loid were placed in the 10 following index regions: lateral 
frontal cortex (LF), medial frontal cortex (MF), anterior 
cingulate (AC), posterior cingulate (PC), lateral temporal 
cortex (LT), lateral parietal cortex (LP), medial temporal 
cortex (MT), entorhinal cortex (E), temporal sulci (TS), 
and the precuneus (P) by combining several subregions 
based on literature [3, 25], (Supplemental Fig.  1). These 
ROIs were obtained using subject-specific T1-weighted 
image segmentation with in-house software [25]. Time-
activity curves were extracted from each of the brain 
regions and expressed as standardized uptake value 
(SUV, Fig. 1b). The cerebellar grey matter ROI was seg-
mented using the DKT atlas described above for refer-
ence tissue-based modeling and for SUVR calculation.

Kinetic modeling
Kinetic modeling of regional time-activity curves was 
performed both using the 2-tissue compartment model 
(2TCM) and Logan graphical analysis. Kinetic model-
ing was performed using in-house software and specific 
methods used for quantification are described in detail in 
the literature [17, 20]. For the 2TCM, delay between the 
aorta IDIF and brain time-activity curves (TACs) was cal-
culated using joint estimation using all 69 reconstructed 
timepoints [26]. Results were obtained using a nonlinear 

least-squares fitting process. Initialization parameters are 
described in Supplemental Table 1.

	
Vs =

K1k3

k2k4
� (1)

	
VT =

K1

k2
(1 +

k3

k4
)� (2)

2TCM kinetic parameters such as, Vb, K1, k2, k3, k4, spe-
cific distribution volume (VS, Eq.  1), and total distribu-
tion volume (VT, Eq.  2) were extracted independently 
for all 10 brain regions. Vb represents blood volume. K1 
(mL/min/cm3) describes tracer transport from arte-
rial plasma into the first tissue compartment, while k2 
(1/min) describes transport from the first tissue com-
partment back into the blood pool. The k3 and k4 rate 
parameters (units 1/min) describe forward and backward 
transport, respectively, of the tracer between the two tis-
sue compartments.

	
LoganVT =

∫ t
0 CT (t) dt

CT (t)
= VT

∫ t
0 CP (t) dt

CT (t)
+ Int � (3)

Logan graphical analysis was also performed to estimate 
total distribution volume (VT, Eq.  3) in MATLAB (ver-
sion 2020a), using the image-based input function CP(t) 
and the brain time-activity curve, CT(t), for each ROI 
[18]. t* was set to 30  min and VT was calculated sepa-
rately for each brain region.

	
BPND = DV R − 1 =

(VT − VND)
VND

� (4)

Multilinear reference tissue modeling (MRTM) was per-
formed to quantify non-displaceable binding potential 
using cerebellar grey as the reference. VND represents the 
distribution volume of nondisplaceable compartment rel-
ative to total concentration of tracer in plasma. t* was set 
to 30 min. (BPND, Eq. 4).

Statistical analysis
Because measurements of the outcomes of interest (VT, 
VS, BPND, and K1) were available in several brain regions 
for each person, linear mixed effects models were used to 
understand how amyloid status and brain regions were 
associated with outcomes, including a person-specific 
random effect to account for multiple regions within a 
person. Separate models were fit for each outcome mea-
sure. Similar linear mixed effects models were also used 
to describe the effect of amyloid status on each kinetic 
rate parameter. Exploratory analysis was performed to 
investigate any driving microparameters behind VT and 
VS outcome measures using the same principles of the 
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linear mixed effects models described above. Benjamini-
Hochberg False discovery rate (FDR) was applied to cor-
rect for multiple comparisons when reporting p-values 
[27]. To assess the correlation between VT, Vs, and SUVR 
with BPND, VT, Vs,BPND, and SUVR with K1, as well as 
to correlate VT measures from the two-tissue compart-
ment model versus Logan analysis, all measurements 
across regions were included. For these correlations, a 
linear mixed effects model was again used with a person-
specific random effect, although in these models, brain 
region was not of specific interest and therefore not 
included as a variable in the model. Allanalyses were con-
ducted using RStudio and a significance level of 0.05 was 
used [28].

Results
Compartment models
High quality fits of β-Amyloid binding were achieved 
through the 2TCM model with the corrected IDIF and 
accounting for time delay through joint estimation. Typi-
cal time-activity curves for 1 HC/Aβ- and 1 patient with 
AD/Aβ + are shown in Fig. 2, revealing good model fits to 
our data. In the Aβ- individual, the lateral frontal, medial 
temporal and posterior cingulate showed similar TAC 
patterns as the cerebellar gray. The signal reached peaks 
(∼3–4 SUV) for all regions and revealed no regional sep-
aration over later time points. In the Aβ + patient, TAC 
peaks during the early time point were similar (∼3–4 
SUV) across all regions; however, unlike the Aβ- case, 
brain index regions showed higher SUV compared to cer-
ebellar gray over time, especially after 30 min.

Kinetic modeling quantification
BPND was elevated across regions in Aβ + participants 
(2.47 ± 0.28) compared to Aβ- participants (1.14 ± 0.17), 
which agreed with the visual clinical assessment. Simi-
lar average elevations in VS (Aβ+ = 11.36 ± 3.05; Aβ- = 
6.48 ± 2.26) and VT (Aβ+ = 18.04 ± 3.44; Aβ- = 12.24 ± 3.01) 
were observed from 2TCM fitting (Fig.  3). Figure  3 
reports the significant difference between Aβ + and Aβ- 
groups within each region from mixed-effects model-
ing (i.e., where the region serves as its own reference in 
each interaction of the model). After applying this linear 
mixed-effects model to consider the interaction effect 
between amyloid status and brain region, FDR analysis 
revealed that the Aβ + group had significantly higher VT, 
and VS in all index regions, except for the cerebellum, 
entorhinal cortex, lateral parietal, and temporal sulci (**
**P < 0.0001,***P < 0.001,**P < 0.01, *P < 0.05, NS = not 
significant). BPND shows less discriminability and has 
fewer brain regions that were significantly higher for the 
Aβ + group. Multiple significant interactions between 
regions were also observed in all measures. The anterior 
cingulate and posterior cingulate showed the highest dis-
crimination between amyloid positive and amyloid nega-
tive groups in all measures.

Table  1 lists kinetic rate parameters estimated by the 
2TCM from three example cortical regions (lateral fron-
tal, medial temporal and posterior cingulate) and the 
cerebellar gray reference from the Aβ + and Aβ- groups. 
Identical but separate mixed effects models were used to 
describe statistical differences in VT, VS, and rate param-
eters. K1, k2, k3, k4, delay, and blood volume parameters 
values revealed no significant differences between the 

Fig. 3  Regional BPND(A), VT(B), and Vs(C) values for cortical regions: anterior cingulate (AC), entorhinal (E), lateral frontal (LF), lateral parietal (LP), lateral 
temporal (LT), medial frontal (MF), medial temporal (MT), precuneus (P), posterior cingulate (PC), temporal sulci (TS), and for cerebellar reference region 
(C). Amyloid-positive individuals showed the highest values in all three parameters compared to amyloid-negative cohorts in relation to the interquartile 
range. Unadjusted p-values for all brain regions where bold indicates significance above the threshold (D)
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two amyloid status groups. No significant difference was 
observed in VS or VT for the cerebellar cortex between 
the Aβ + and Aβ- groups as expected, indicating it is an 
appropriate reference. However, the Aβ + showed sig-
nificantly higher VT and Vs values in all three index 
regions compared to Aβ- (P < 0.05). Considering intra-
group comparisons, within the Aβ + group, VT and VS in 
all index regions were significantly higher than the same 
measures in cerebellar gray (P < 0.05), while no signifi-
cant difference was observed between regions within the 
Aβ- group.

Table  1. Parameter values from Aβ + and Aβ- indi-
viduals who underwent dynamic 18F-Florbetaben stud-
ies and subsequent kinetic modeling. AD individuals 
are included in the Aβ + columns and both MCI and HC 
individuals are in Aβ- columns. The cortical.

areas or index regions were included due to their 
involvement in early Braak staging.

These include the lateral frontal cortex (LF), medial 
temporal cortex (MT), and posterior cingulate (PC), with 
cerebellar gray matter(C) as the reference.

Perfusion differences in amyloid positive and amyloid 
negative individuals were not evident in the three index 
regions chosen for Table 1 but are highlighted in Fig. 4. 
Only the entorhinal cortex and temporal sulci had signifi-
cantly lower perfusion in the amyloid positive compared 
to amyloid negative (entorhinal: *P < 0.05), temporal 
sulci: ***P < 0.001). Perfusion was lower in all other brain 
regions in the amyloid positive group but was not signifi-
cant. Additionally, when considering a composite of all 
brain index regions there was a significant difference in 
perfusion between amyloid positive and amyloid negative 
groups (*P < 0.05).

Regression modeling of Model parameters: comparison of 
amyloid binding parameters
Both VS (P < 2e−16) and VT (P < 2e−16) were highly corre-
lated with BPND across participants (Fig. 5). SUVR corre-
lated with VT and VS, however as shown in Supplemental 
Fig.  2, SUVR reflects increased variability and overesti-
mation for amyloid-positive individuals in red compared 
to amyloid-negative individuals in black. In comparison, 
this overestimation is not observed in our kinetic mea-
sures as seen in Fig. 5. VT, VS, and BPND had no correla-
tions (P > 0.05) with K1 across all participants and SUVR 
correlated with K1 (P < 0.05) (Supplemental Figs.  3, 4). 
Separate K1 model statistics for the Aβ + group and Aβ- 
group showed slight correlation with VT (Aβ+: P = 0.05, 
Aβ-: P = 7.8e−6), VS (Aβ+: P = 0.04, Aβ-: P = 1.9e−5), and 
BPND (Aβ+: P = 0.04, Aβ-: P = 0.01). Similarly, no corre-
lation was observed between both VT and VS with the 
other microparameters (k2,k3,k4). VT from Logan analysis 
was directly compared to VT from the 2TCM, with both 
measures using the same aorta IDIF as input (Fig.  6). 
Logan VT was highly correlated with 2TCM VT across 
brain regions (r²=0.65, P < 2e−16).

Discussion
In this paper, we evaluated the feasibility of non-invasive 
amyloid quantification using kinetic modeling and aorta-
based IDIFs with total-body 18F-florbetaben dynamic 
PET. Aβ + individuals showed elevation compared to 
Aβ- individuals in index brain regions for BPND, VS, 
and VT measures. Compartment modeling parameters 
derived from IDIFs were highly correlated with non-
displaceable binding potential (BPND) derived from the 
multi-reference tissue model, demonstrating quantitative 
discrimination between Aβ + and Aβ- participants while 
contributing additional information about individual 

Table 1  Kinetic Parameter Values
Aβ+(n = 3) Aβ- (n = 12)

Index Regions Reference Index Regions Reference

Regions LF MT PC C LF MT PC C
K1 (mL.cm-3.min-1) 0.404 ± 0.087 0.44 ± 0.180 0.5 ± 0.065 0.498 ± 0.097 0.480 ± 0.083 0.505 ± 0.071 0.570 ± 0.082 0.629 ± 0.065
k2 (min-1) 0.076 ± 0.023 0.059 ± 0.034 0.069 ± 0.018 0.078 ± 0.021 0.094 ± 0.02 0.082 ± 0.018 0.102 ± 0.021 0.112 ± 0.027
k3 (min-1) 0.032 ± 0.008 0.023 ± 0.014 0.036 ± 0.011 0.012 ± 0.006 0.019 ± 0.008 0.022 ± 0.011 0.021 ± 0.008 0.044 ± 0.043
k4 (min-1) 0.018 ± 0.002 0.014 ± 0.003 0.018 ± 0.0009 0.024 ± 0.003 0.019 ± 0.005 0.023 ± 0.019 0.021 ± 0.009 0.042 ± 0.028
VT (cortex) 
VT ‘(cerebellum)
(mL.cm-3)

17.126 ± 0.300
* †

19.905 ± 1.607
* †

21.737 ± 3.181
* †

11.467 ± 0.268 10.761 ± 3.098 12.941 ± 3.110 12.071 ± 3.033 11.328 ± 1.941

Vs = “K1.k3” /“k2.k4” 
(mL.cm-3)

11.661 ± 1.010
* †

12.118 ± 2.513
* †

14.360 ± 3.297
* †

5.038 ± 0.757 5.481 ± 2.405 6.508 ± 2.078 6.332 ± 2.402 5.403 ± 0.965

Vb

(
mL
mL

)
0.040 ± 0.016 0.049 ± 0.037 0.052 ± 0.017 0.052 ± 0.017 0.042 ± 0.014 0.044 ± 0.011 0.056 ± 0.012 0.057 ± 0.018

Delay (s) 6.333 ± 1.528 6 ± 1 6.667 ± 1.528 7 ± 1 5.417 ± 1.730 5.417 ± 1.621 5.417 ± 1.929 6.083 ± 1.165
Significance was found for the following:

*For VT and Vs Aβ + index regions were significantly higher than Aβ- index regions *p < 0.05

† Within the Aβ + group index regions were significantly higher than cerebellar reference *p < 0.05
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kinetic rate outcome parameters and macroparameters 
(VT and VS).

Through kinetic modeling, we achieved VT and VS val-
ues that were comparable to Becker et al. and were able 
to quantify differences between amyloid positive versus 
amyloid negative cases [20]. In addition to significant 
differences between Aβ + and Aβ- for VT and Vs values 
across index regions, significant interactions were.

also identified, suggesting that the differences in these 
values between Aβ + and Aβ- varied by region. The gen-
eral pattern of differences across regions was similar.

across all measures (BPND, VT, and Vs). BPND showed 
less discriminability between the Aβ + and Aβ- groups. 
The may be due to the fact that it was derived from a 

reference tissue model (MRTM) versus kinetic modeling, 
however the general trend remains the same as expected. 
Of note, the anterior cingulate, posterior cingulate, and 
precuneus had the highest signal and most significant 
discrimination between the two groups (Aβ + versus Aβ-) 
that persisted across all three measures of tracer distribu-
tion. This observation is consistent with the regions’ key 
role in the default mode network which has been shown 
to have early accumulation of amyloid [29].

Quantification of distribution volumes and separate 
kinetic rate parameters has the potential to better char-
acterize amyloid burden and provides more information 
about tracer distribution [20]. VT and VS values quantify 
amyloid binding density with from rate parameters with 

Fig. 5  Linear regression analysis results accounting for subject clustering for Aβ+ (red), Aβ- (black), and all subjects (blue dashed). The following model 
statistics are for all subjects. (A) VT and BND, (r² = 0.46, P < 2e−16 ). (B) VS and BND, (r² = 0.51, P < 2e−16 )

 

Fig. 4  (A) Regional K1 values for cortical regions: cortical regions: anterior cingulate (AC), entorhinal (E), lateral frontal (LF), lateral parietal (LP), lateral 
temporal (LT), medial frontal (MF), medial temporal (MT), precuneus (P), posterior cingulate (PC), temporal sulci (TS), and for cerebellar reference region 
(C). Amyloid-positive individuals showed significantly lower perfusion in all entorhinal (P = 0.01) and temporal sulci (P = 0.0005) compared to amyloid-
negative cohorts. (B) Regional K1 values for composite of cortical index regions excluding the cerebellar reference region. Amyloid-positive individuals 
showed significantly higher perfusion compared to amyloid-negative (P = 0.0283)
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absolute units, and our average model values (Frontal 
cortex: VS: Aβ+ = 11.66; Aβ- = 5.48; VT: Aβ+ = 17.13; Aβ- 
= 10.76; Cerebellum: VT: Aβ+ = 11.47; Aβ- = 11.32) were 
consistent with Becker et al. Table 1 (Frontal cortex: VS: 
Aβ+ = 5.85; Aβ- = 1.86; VT: Aβ+ = 13.7; Aβ- = 7.22; Cer-
ebellum: VT: Aβ+ = 7.85; Aβ- = 5.36) [20].

From mixed-effects modeling of the parameter val-
ues in Table  1, no single kinetic rate parameter that 
explained the differences in VS and VT between Aβ + and 
Aβ- groups was found. In particular, Vs and VT did not 
correlate with K1 across all participants (Supplemental 
Fig.  4) in this cross-sectional study, which suggests that 
those measures were not heavily influenced by perfusion-
related tracer delivery to specific brain regions. In con-
trast, we observed a negative correlation of K1 with SUVR 
(Supplemental Fig.  3). This could be because perfusion 
is adding noise and biological variation to SUVR quan-
tification compared to the modeling techniques. How-
ever, some differences were observed when considering 
interactions between kinetic rate parameters, which may 
reflect their relationships in Eqs.  1 and 2. Additionally, 
whole body dynamic 18F-florbetaben PET can give insight 
to possible perfusion differences in amyloid positive and 
amyloid negative individuals. Perfusion was significantly 
lower in brain index regions (composite) in amyloid 
positive compared to amyloid negative (P < 0.05) (Fig. 4). 
When considering all brain regions seperately similar to 
Fig.  3, significance was only observed in the temporal 
sulci and entorhinal cortex. We propose, our non-inva-
sive quantification of multiple kinetic parameters could 
be combined with longitudinal follow-up in future stud-
ies to investigate these complex relationships along with 
disease progression between amyloid buildup and spe-
cific processes (e.g., reduced perfusion) in patients with 
cognitive decline [30].

SUVR has the tendency to overestimate compared 
to quantitative parameters (e.g., VT and VS), which we 

measured using image-derived input functions. Com-
pared to SUVR, compartment modeling of amyloid 
enables estimation of total distribution volume without 
assuming a pseudo-equilibrium, and thus is likely more 
reliable across variable scan durations and amyloid loads. 
Because it reflects pseudo-equilibrium of 18F-florbetaben 
as a reversibly binding tracer, SUVR can slightly overes-
timate model-based values especially for amyloid-pos-
itive individuals [20]. As shown in Supplemental Fig.  2, 
SUVR reflects increased variability and overestimation 
for amyloid-positive individuals in red compared to 
amyloid-negative individuals in black. As an alternative, 
incorporating a balance between model complexity and 
quantitative amyloid characterization may be preferred 
and is possible with Logan graphical analysis. We demon-
strated high correlation between VT from Logan analysis 
and 2TCM using the IDIF similar to Su et al., suggesting 
that Logan-based VT is a suitable quantitative measure 
without extensive computational modeling [31]. The vari-
ations in VT and VS across our amyloid-negative control 
group may reflect true inter-individual biological varia-
tions, which may not be reflected in SUVR values. These 
variations should be investigated further in future studies 
alongside a larger cohort of amyloid-positive individuals.

One of the major foci of our study was to assess the 
feasibility of using a descending aorta IDIF as the input 
function for compartment modeling. Carotid arter-
ies present an advantage when considering delay due 
to their proximity to brain tissues, however, are subject 
to major partial volume effects due to their size [14]. A 
comparison in our patients was not performed due to the 
availability of this comparison on the same EXPLORER 
system with a different tracer and similar reconstruction 
parameters as decribed in Li et al. 2019 [32]. Recent work 
with total-body FDG EXPLORER PET further demon-
strated that larger blood pools such as the aorta are more 
appropriate for 2TCM kinetic estimate compared to 

Fig. 6  Examples of logan graphical analysis for one subject in the cerebellar reference region (A) and the Posterior Cingulate (B). (C) Correlation between 
two-tissue compartment model and Logan analysis results for VT, accounting for subject clustering. VT [2TCM] and VT [Logan], (r² = 0.65,). VT[Logan] = 0.73 
VT [2TCM] + 3.15
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partial volume-limited carotid IDIF [32]. The aortic arch 
was not chosen due to the complex flow because of con-
necting arteries and greater cardiac motion that may have 
influenced modeling of tracer delivery [33]. Using the 
ascending portion compared to the descending portion 
of the aorta provided similar IDIF curves, however the 
descending portion typically demonstrated less curvature 
and was more easily visible for manual drawing in the 
sagittal slice. Variability in our IDIF peak and spread may 
have had some effect on K1 and k2 components during 
modeling and could reflect varying bolus volumes across 
participants. Our K1 was slightly higher than Becker et al. 
(0.2–0.25 vs. 0.3–0.51 mL.cm-3³.min-1¹), however all other 
kinetic parameters were consistent. Differences in values 
could be explained by variability between study popula-
tions, or use of arterial sampling of the blood input func-
tion and high-performance liquid chromatography for 
the metabolite correction in Becker et al., instead of an 
IDIF and literature values for corrections of the input 
function in our study. Relatively higher tracer delivery, 
K1, could also be due to the higher temporal framing pro-
vided by the high sensitivity of EXPLORER (i.e., short 
2-second framing compared to slower sampling in pre-
vious studies) [34]. For example, Fig. 7 from Volpi et al. 
demonstrates the effect of higher resolution 2s framing 
can lead to a higher peak for IDIFs and various regional 
TACs compared to lower resolution 10s framing [35].

In the present study, we measured quantitative amyloid 
in target and reference tissues, and the 2TCM was used to 
describe tracer kinetics in both regions. Kinetic modeling 
may be more accurate in cases where the cerebellum is 
not appropriate as a reference region, such as in familial 
AD that exhibits the presence of β-amyloid plaques in the 
cerebellum [36]. Future work could compare quantitative 
parameters in alternative reference regions such as whole 
cerebellum, white matter brain stem/pons, whole brain-
stem, and eroded subcortical white matter, which have 
shown good correlations with the gold standard plasma 
input-based quantification [37].

High quality kinetics and descending aorta IDIFs in this 
work were enabled by the uEXPLORER total-body PET/
CT scanner which has a 194  cm axial field of view and 
a very high detection sensitivity [13]. Although SUVR is 
still clinically useful and is a simple and effective way of 
quantifying amyloid, quantification with kinetic model-
ing can achieve multiple kinetic parameters and reduce 
overestimation bias in SUVR, which is a limitation of 
SUVR despite its shorter scan time. In addition to per-
fusion, we also aim to continue acquiring dynamic scans 
for research purposes to investigate amyloid signal and 
links across different organs in the body in AD pathogen-
esis similar to other studies of cancer that have been done 
with uEXPLORER [38].

Comprehensive quantification of amyloid PET has 
many applications for future clinical use, especially in the 
context of improving early diagnosis, therapeutic inter-
vention, and secondary prevention. Diagnostic decisions 
are often based on clinical reads of static SUVR, which 
does not reflect amyloid load as a continuous process. 
Absolute quantification can highlight specific pathologi-
cal changes at early stages of AD, both in amyloid and 
perfusion, which has a direct impact on enrolling sub-
jects and establishing an optimal window for therapeutic 
intervention. In addition, quantification is used to moni-
tor treatment in clinical trials; has been shown to change 
diagnosis, patient management, and predict cognitive 
decline [39]; and is enabled by non-invasive methodology 
as presented in this work.

There were several limitations to this study. Metabo-
lite fraction correction in the present study was based 
on a population average from Patt et al. to avoid invasive 
blood sampling [21]. Variability across individuals may 
be present in metabolite correction particularly at later 
time points, due to fast metabolism of 18F-labeled amy-
loid tracers, which can lead to partially inaccurate extrac-
tion fractions from kinetic modeling [40]. Variability due 
to metabolite correction can be further exaggerated as 
blood delivery varies between subjects and disease group, 
especially since aging and AD is linked to changes hepatic 
function and therefore the amount of radiometabolites 
[14]. On the contrary, Patt et al., found no significant dif-
ference between AD patients and healthy controls for 
both 18F-florbetaben metabolic profile, suggesting that 
applying the same metabolite fraction to both healthy 
and AD population, as done in our study, may still result 
in relatively low variability [21]. Nonetheless, applying 
a single population-based metabolite correction to two 
different populations may introduce additional statisti-
cal variability in our parameter estimates [14]. The true 
metabolite fraction estimation of our cohort may differ 
in this study despite similarities in the cohort of sub-
jects. Individualized radiometabolite correction remains 
an unsolved challenge. Although previous studies have 
attempted to derive metabolite-free arterial input func-
tions through the simultaneous estimation method 
(SIME) [41], estimation of tracer metabolism from mul-
tiple organ kinetics in a dynamic whole-body scan could 
be a future direction [42, 43]. Total-body imaging uEX-
PLORER, may allow for development of whole-body 
physiological model of radiotracer metabolism, which 
would allow more accurate estimation of IDIF with-
out needing information from separate populations or 
arterial sampling [35]. In addition, directly comparing 
acquired arterial blood sampling with an IDIF could have 
further supported IDIF-based kinetics as a non-invasive 
alternative but was not within the scope of the study. 
The number of subjects included in this initial study 
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was relatively small, which we mitigate by leveraging the 
large amount of kinetic information across multiple brain 
regions in mixed-effects models. Our small sample with 
relatively few amyloid-positive cases made it difficult to 
directly evaluate the quantitative outcome measures (VT, 
Vs) with BPND, which will be addressed with larger sam-
ples in future studies. As our focus was amyloid quantifi-
cation with IDIF, reference-tissue based kinetic modeling 
(e.g., estimation of distribution volume ratios) were out-
side the scope of the present study but may be included 
in future work as another amyloid measure [20].

Conclusion
The total-body EXPLORER PET allows for high quality, 
dynamic kinetic modeling of the whole body. Absolute 
quantification of β-Amyloid and multiple kinetic rate 
parameters from total-body 18F-florbetaben dynamic 
PET is feasible using a descending aorta IDIF. These two 
aspects enable non-invasive acquisition of accurate and 
quantitative measures of amyloid accumulation in clini-
cal research of aging and dementia.
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