UC Santa Cruz
UC Santa Cruz Previously Published Works

Title

Cooperative mode: Comparative storage metadata verification applied to the
Xbox 360

Permalink

https://escholarship.org/uc/item/0437b58b

Journal
Digital Investigation, 11(SUPPL. 2)

ISSN
1742-2876

Authors

Nelson, Alex |
Steggall, Erik Q
Long, Darrell DE

Publication Date
2014-08-01

DOI
10.1016/j.diin.2014.05.004

Copyright Information

This work is made available under the terms of a Creative Commons Attribution
License, availalbe at https://creativecommons.org/licenses/by/4.0/

Peer reviewed

eScholarship.org Powered by the California Diqgital Library

University of California

https://escholarship.org/uc/item/0437b58b
https://creativecommons.org/licenses/by/4.0/
https://escholarship.org
http://www.cdlib.org/

Digital Investigation 11 (2014) S46—S56

Contents lists available at ScienceDirect

ital
Investlgat}On

Digital Investigation

journal homepage: www.elsevier.com/locate/diin

Cooperative mode: Comparative storage metadata
verification applied to the Xbox 360

@ CrossMark

Alex J. Nelson ™, Erik Q. Steggall ¢, Darrell D. E. Long °

2 University of California, 1156 High Street, Santa Cruz, CA 95064, USA
b prometheus Computing, LLC., 6514 Twin Lake Drive, New Market, MD 21774, USA

ABSTRACT

Keywords:
Differencing

Forensic strategies
Tool measurements
Embedded systems
Xbox 360

Digital forensics XML

This work addresses the question of determining the correctness of forensic file system
analysis software. Current storage systems are built on theory that is robust but not
invincible to faults, from software, hardware, or adversaries. Given a parsing of a storage
system of unknown provenance, the lack of a sound and complete analytic theory means
the parsing's correctness cannot be proven. However, with recent advances in digital
forensic theory, a measure of its incorrectness can be taken.

We present FSNView, an N-Version programming utility. FSNView reports exhaustively the
metadata of a single disk image, using multiple storage system parsers. Each parser reports
its perspective of the metadata in Digital Forensics XML, a storage language used recently
in a study on differential analysis. We repurpose the tools used for studying the changes in
file systems from time to the changes in file systems from perspective. The differences in
metadata summaries immediately note bugs in at least one of the tools employed. Di-
versity in tools and their analysis algorithms strengthens the analysis of a storage subject.
We apply file system differencing to study the external storage of the Microsoft Xbox 360
game console. The console's storage serves as an exemplar analysis subject; the described
strategy is general to storage system analysis. The custom volume management and new-
though-familiar file system are features typical to an embedded system analysis. Two
open-source utilities developed solely for analyzing this game console, and a third
developed for general file system forensics, are extended to compare storage system
metadata perspectives. We present a new file system and revisions to the DEXML language,
library, and differencing process, which were necessary to enable a principled, automatic
evaluation of storage analysis tools.

© 2014 Digital Forensics Research Workshop. Published by Elsevier Ltd. All rights reserved.

Introduction Unknown data veracity The storage data an analyst re-

ceives may be the results of arbitrary corruption, from

Storage forensics is one of the oldest branches of the
digital forensics field. Yet, even today, the question of
complete storage analysis correctness from case to case
goes unanswered. There are two underlying reasons for
this uncertainty:

* Corresponding author.
E-mail address: ajnelson@cs.ucsc.edu (AJ. Nelson).

http://dx.doi.org/10.1016/j.diin.2014.05.004

deliberate actions or operating system faults.

Unknown tool veracity The behaviors of a storage analysis
tool on every possible case of storage corruption, even no
corruption at all, may be unknown.

Due to the sheer scale of data involved in any case, an-
alysts must employ storage-interpreting tools. Unfortu-
nately, the correctness of any of these tools is not yet
possible to formally validate. If a validated storage analyzer

1742-2876/© 2014 Digital Forensics Research Workshop. Published by Elsevier Ltd. All rights reserved.

mailto:ajnelson@cs.ucsc.edu
http://crossmark.crossref.org/dialog/?doi=10.1016/j.diin.2014.05.004&domain=pdf
www.sciencedirect.com/science/journal/17422876
http://www.elsevier.com/locate/diin
http://dx.doi.org/10.1016/j.diin.2014.05.004
http://dx.doi.org/10.1016/j.diin.2014.05.004
http://dx.doi.org/10.1016/j.diin.2014.05.004

AJ. Nelson et al. / Digital Investigation 11 (2014) S46—S56 S47

existed, it would implement a formal specification for
parsing file systems and volume systems (Chen and
Avizienis, 1978). However, no formal specification exists
for the at-rest recorded state of file systems commonly in
use, especially as they are employed by arbitrary operating
system versions. Formally specifying and verifying a file
system's run-time behavior would lessen fault chances to
the chances of bit rot occurring, but formalizing file system
behavior is an active research area (Keller et al., 2013). If the
trends of Linux kernel development generalize to other
operating systems, file system code is a significant, volatile
portion of kernel code (Lu et al., 2013), leaving little chance
for formalizing. In short, validating storage system analysis
is far from a solved problem.

Validation is not so pressing a concern in most in-
vestigations. Some file systems require enough collective
attention that much documentation, reverse engineering,
and well-supported analysis software exists, such as with
FAT and NTEFS (Carrier, 2005; Hibshi et al., 2011). However,
it is possible the subject data may be in a format not sup-
ported by an analyst's regular array of tools. For instance,
undocumented, embedded systems sometimes use com-
mon file systems (Fang et al., 2012), and sometimes develop
their own with no developer reference available. In the
custom-storage cases, specialized analysis tools may exist,
even sometimes from hobbyist developers; but the cor-
rectness of that software is completely unknown.

This work addresses the problem of verifying storage
analytic tool results, versus validating them. Instead of
proving that the results one has attained are correct,
instead a mechanism is developed to show that the results
are consistent.

We employ an automated peer review technique among
multiple tools, by having them vote on file system meta-
data. When compared, tools' metadata interpretations
denote the portions of storage systems under dispute by
any set of parsers. Metadata is the analytic target because
higher-level results of a tool inevitably depend on the tool's
interpretation of the subject metadata. Inconsistencies
between tools highlight tool bugs, but do not hinder anal-
ysis if the disputed namespace portions—generally far
smaller than the whole subject namespace—are irrelevant
to a case.

Metadata voting, using a time-tested software engi-
neering method, only became possible with recent de-
velopments in the digital forensics literature.

e The language Digital Forensics XML (DFXML) expresses
the metadata of a storage system (Garfinkel, 2012). It
includes some succinct data summaries, like file
hashes.

e Garfinkel et al. (2012) described a general strategy for
data differencing in several digital forensic applications.
They describe applying the differences to data, in order
to learn about the data.

e The actual voting method comes from N-Version pro-
gramming (Chen and Avizienis, 1978). Solutions to a
problem are measured by consensus of multiple tools.
Those tools implement the same formal specification,
and their answers, expressed in a mutually agreed-upon

format, determine the correct or approximate answer to
the problem.

DFXML, with its differentiability, is the first data inter-
change format that makes practical storage tool compari-
son possible. This is an essential advancement to the
analytic process, where review of multiple tool results is
cumbersome at best presently. For instance, it is simple to
verify that a key evidentiary file in an investigation—e.g. a
contraband image—is found with multiple tools, if they
each say the same file is at a particular location. However,
with mechanically enumerated differences in results, it is
also possible and practical to identify that no exonerating
evidence was missed. In the same example, some malware
may hide in obscured files, designed to download that exact
evidentiary data to frame a suspect.

Practical tool comparison also enables development of
new capabilities, and refinement of existing capabilities.
This paper demonstrates such a knowledge sharing. This
work analyzes the storage system of the Xbox 360 gaming
device. Its commercial forensic support is not broadly
announced—for instance, one anonymous vendor we
spoke with reserved the necessary interface components
for people who called to ask. We found reverse-engineering
documentation and some open source analytic tools, one a
hobbyist project, that performed analysis of the console's
specialized file system, XTAF. We extended the tools to
generate DFXML, turning them into valuable contributors
on understanding console research data we generated.
They also became “peer reviewers” of an implementation
of Xbox storage analysis within The SleuthKit (TSK) (Carrier,
2003). TSK's FAT implementation, in turn, could inform odd
corner cases of XTAF behavior, as the two file systems are
quite similar.

While the XBox 360 storage system is the exemplar
subject of this work, the theory and techniques described
herein apply to any storage system. For less-understood,
less-supported embedded systems, the techniques can
give some robustness to metadata results, even if many of
the results must be derived from little-known or custom-
written utilities. For better-understood storage systems,
comparative metadata verification is an important step to
answering an over-decade-old call to openly review low-
level extraction engines of forensic tools (Carrier, 2002).

This work makes these contributions of theory:

e A technique for measuring and reporting discrepancies
in single-subject, multiple-investigating-tool analysis of
storage systems.

e The use of DFXML and differential analysis as automated
peer review of different tools on the same data.

e Methods to turn open-source storage analysis programs
of unknown correctness into practical and valuable
extra “eyes” on a problem.

This work makes these contributions of practice:
e A new userspace file system, UPartsFS, which expands

the applicability of storage tools that only understand a
single partition as input.

548 AlJ. Nelson et al. / Digital Investigation 11 (2014) S46—S56

e Extensive refinements to the DFXML language, its Py-
thon interface, and its differencing process.

e An XML schema that precisely describes the structure of
DFXML documents.
A storage analysis comparator utility, FSNView.
An Xbox 360 storage analysis extension to The
SleuthKit.

e An analysis of the structures of the Xbox 360 storage
system, verified by three tools.

Outline

Section 2 provides the background on previous work
that helped begin multi-tool analysis automation. Sections
2.1 and 2.2 cover the comparison algorithm and summary
language. Section 3 moves from the analytic strategy to the
analytic subject of this paper, by describing technical
characteristics and challenges of the Xbox 360 external
storage system. From the similarities to the FAT file system,
it becomes evident why this storage system serves well as
an exemplar file system for a tool comparison study.

For experimental materials, Section 4 describes data
produced, to both evaluate file system parsers, and to
investigate game console artifact generation. Sections 5, 6
and 7 describe the various implementations, including
updates to the background materials that made the file
system comparator tool FSNView possible.

For evaluation, Section 8 measures the consensus of the
adapted tools on the generated disk images. Section 8.1
describes some of the types of artifacts that could be
found amongst the data, focusing on artifacts that were
improved by knowledge of the tested file system.

For present and future context, Section 9 notes related
work, and Section 10 describes directions for future
research. Finally, Section 11 concludes.

Background: theory and frameworks

Until recently, comparing storage parsers was a specialized
task, difficult to perform between n (>2) tools. Since many
tools to which users are accustomed are based on graphical
user interfaces (Hibshi et al., 2011), comparing results would
mean performing a significant amount of extra work:

1. Analysis of the data would need to be performed with
each of the n tools, each producing some sort of me-
chanically readable output.

2. Each of the n outputs would need to be compared with
each of the other n — 1. This step can be represented as a
complete directed graph (complete digraph), where
nodes are tool results and edges are comparisons. The
graph is directed because tool comparisons are not
guaranteed to be symmetric. Because the digraph is
complete, there are n(n — 1) comparisons performed.

3. Each comparison technique employed, e.g. mapping CSV
columns from one format to another, should also un-
dergo evaluation for soundness and completeness of
differential results. For instance, the set of files added
comparing in one direction should equal the set of files
removed if comparing in the reverse direction. This can

mean up to n(n — 1) evaluations performed — one
evaluation per distinct comparison technique.

These steps mean it takes an impractical amount of work
to compare multiple storage parsers, if each output and
comparison requires extra attention. However, implementing
asingle common, differentiable format reduces the amount of
work necessary: the n — 1 comparisons in step 2 can happen
with one method. The rest of this section describes a
comparison-ready output format for storage parsers, and the
prior work in analyzing differences with that format.

Digital forensics XML

DFXML is an XML syntax that summarizes storage sys-
tems. It is capable of expressing partitions of a storage
device, file metadata, hash sets, and provenance of its
documents (Garfinkel, 2012). Its principal value is in suffi-
ciently describing storage systems for most processing and
analytic needs, without requiring access to the storage
system itself. For files, DFXML encodes metadata one ex-
pects of an inode, and some data summary attributes, like
content checksums. The XML is straightforward to generate
by programmatically writing strings. A Python library has
been available and used for years to read DFXML docu-
ments (Garfinkel, 2009, 2012).

Most decisions a forensic analysis tool will make hinge
on its understanding of the storage metadata. DFXML
makes it possible for tools to both enumerate and thor-
oughly compare their fundamental views of a storage
subject (Garfinkel et al., 2012).

Differential analysis

Differential analysis is a fundamental act in scientific
work: comparing two samples of data, and enumerating
differences as one can and needs. Garfinkel et al. previously
described a general differencing strategy in forensics
(Garfinkel et al., 2012). In their work, the focus was on
exploring differences in various types of subject data, and
though the generating tool was not of specific importance,
DEXML arose frequently in their examples.

The general strategy considered two images, a preimage
and a postimage. Each image would contain a set of features;
e.g. for a disk, features could be distinct email addresses
found with text search, or files found with a file system
walk. The strategy formalized a set of change primitives
that would transform the feature set of the preimage to the
post's. More granularly, an algorithm following the strategy
would operate on, or simply return, sets of features that:

e Were new or removed;

e Had a name or some names added or removed (which
together would capture renames);

e Changed location within the image; or

e Had some other non-identity metadata changed.

The strategy summarized differential analytic tasks
from several domains. However, file systems require extra
attention that we will describe in Section 5.3.

AJ. Nelson et al. / Digital Investigation 11 (2014) S46—S56 S49

Analytic subject: Xbox 360 and the XTAF file system

Though the Xbox 360 is generally regarded as a gaming
console, it has the capabilities of a modern personal com-
puter, and thus is a potential target for forensic analysis.
The Xbox 360 is networked, multi-user, and uses standard
2.5” SATA hard disks. The console's file system, XTAF, is
similar to the well understood FAT-16 and FAT-32. XTAF
was only meant to be configured for a small family of
storage devices, centered around a single console device. As
a result, it requires and records less configuration infor-
mation than found in FAT.

The Xbox 360 manages its disk partitions with a custom
volume manager. Partition locations are hard-coded, and
the last partition's size is a function of the hard disk size.
Fortunately, the partitions are easy to detect with some
simple rules. Much of the file system data structure infor-
mation has been previously documented by others, such as
on the Free60 Wiki (Free60, 2012).

XTAF is not the only file system the console un-
derstands. The console is capable of reading FAT from USB
thumb drives, including some sold to distribute system
updates (Hryb, 2010). Microsoft appears to have aban-
doned the use of XTAF after the 360 generation, opting to
use NTFS in their Xbox One console (iFixit, 2013). While
the value of analyzing XTAF systems will dwindle with
decreasing 360 popularity, analyzing it has provided
valuable lessons.

The XTAF file system

XTAF is a file system similar to FAT (Free60, 2012; Xynos
et al,, 2010). File allocations are still handled with block
chains in a File Allocation Table. Directory entries and
inodes are a single, conflated concept. The superblock is
also a simple structure. This section summarizes the cus-
tomizations XTAF has taken on since FAT, by others' reports
and manual inspection.

XTAF has simplified some of the fields that FAT used in
its directory entries. The most significant changes in
interpreting the directory entry data are how timestamps
and names are handled. Timestamps use one format for
modification, access, and creation times, with a granularity
of two seconds. Names are a single 42-byte field, that are
only designed to store ASCII characters. Hence, if suspected
directory entries with non-ASCII characters are reported by
a tool, they are more likely a bug in the parser than an
alternate encoding.

Partition management

The Xbox 360's external drive does not maintain a table
of partitions. Instead, the partition locations and sizes are
simply hard-coded, and one must scan a drive to determine
precisely how many are present. As many as six partitions
appear on an XTAF drive, at the offsets given in Table 1.
These partitions are found by scanning the drive for the
string XTAF, checking the byte offset for sector alignment,
and checking if its surrounding bytes appeared to be a
superblock.

Table 1

XTAF partitions. Sectors are 512 bytes. Descriptions were supplied by the
Free60 wiki (Free60, 2012). Similarities to the FAT variant are determined
by the size of the file system being over approximately a gigabyte.

Offset Length Like Partition description
(sectors) (sectors) FAT-n

1024 4194304 FAT32 System cache (encrypted)
4195328 4587520 FAT32 Game cache (encrypted)

8782848 422272 FAT16
9205120 262144 FAT16
9467264 524288 FAT16

System Extended

System Extended 2
Backwards-compatibility for prior
generation of Xbox software

9991552 Rest FAT32 User data

Cryptanalysis of encrypted drive partitions is out of the
scope of this paper.

Designing XTAF data

From related studies on the Xbox 360's storage, we
found hints of information available in a console one would
not typically expect.

e In a string inspection of the drive, without access to file
system details, Bolt noted that he had managed to
recover a URL [16, Figure 7.22]. What he did not note in
the text was that the URL was embedded within the text
pattern of an HTTP header, indicating the possibility that
network traffic may be recorded on the drive. Bolt's
console actions were clearly described, encouraging
experimental repeatability.

e There has been some controversy over the possibility of
transaction details, particularly credit card numbers,
being recoverable from used Xbox 360 consoles
(Podhradsky et al., 2011; Protalinski, 2012).

We designed standard console behavior data as a series
of disk images of two consoles. Several personas perform
actions using only the standard GUI: sending messages;
watching a movie; playing single-player games; and play-
ing multi-player games between the two consoles, which
required paying for Xbox Live “Gold” level accounts. Ac-
count payments were done two ways through the game
console: with redeemable Xbox Live cards; and low-limit,
prepaid, non-refillable debit cards. Disk images were
taken at every step believed to create a distinct type of disk
artifact, such as downloading a player profile. At comple-
tion of the disk image sequences, the debit card balances
were exhausted to prevent future charges. Actions were
photographed with smart phones from the same manu-
facturer and cellular network, in an attempt to keep
consistent clocks external to the consoles. In all, a longi-
tudinal disk image series of two disks resulted, containing
artifacts of standard game console behavior, and possibly
payment artifacts.

An extensive analysis of these data, including artifact
discovery, file attribution, and user ascription, is out of
scope of this work on comparative metadata verification.
We discuss some of the disk artifacts that are enhanced
with knowledge of the file system.

S50 AlJ. Nelson et al. / Digital Investigation 11 (2014) S46—S56

Improving DFXML and differencing for tool evaluation

The prior work on using DFXML to compare different
storage system states can translate into comparing different
storage system parsers. However, the adaptation was not
straightforward, and required improving or in some cases
re-implementing the background material (Section 2).

Formalizing the DFXML language

DFXML was an ad-hoc standard, with documents
generated by two C/C++-based tools and a handful of Py-
thon scripts. The dfxmlpy Python library was designed to
process DFXML files, allowing users to work with streams of
fileobject objectsin a SAX framework (Garfinkel, 2009).
Informally, what this library could read would be consid-
ered “valid” DFXML. However, this validity was only scoped
in practice to Python programs that included dfxmlpy.

In order for other tools to implement DFXML with a
clearer definition of “valid,” we developed an XML schema
that formalizes the DFXML language (DFXML Working
Group, 2013). Now, a tool that purports to generate
DFXML can validate its output against the DFXML schema
with the xmllint utility (Veillard, 1999).

Implementing new DFXML Python bindings

DFXML lacked a mutative object model. Analyzing
storage systems with DFXML required generating DFXML
files and then reading them with dfxmlpy. To improve
flexibility, we implemented a type-safe, object-oriented
model in Python. Now, objects have mutable properties;
are serializable and de-serializable, conformant to the
DFXML schema when reading and writing; and are capable
of doing extensive equality comparisons.

To illustrate the API change on accessing file attributes,
consider a fileobject with an inode number. Before, the
API would allow accessing with “fi . inode () ”; but modi-
fication, or initially setting, required serializing an XML string
and re-reading it to access the property later. Alternatively, a
non-public object interface would allow setting values, but
the fragility of such a programming approach should be
immediately evident. Now, a FileObject (capitalized) can
have itsinode number set, with “fi . inode = 5555”. Python
property getters and setters (Python Software Foundation,
2014) make type-checking transparent.

This new API is of particular benefit to Python-based file
system parsers. They can create entire DFXML documents,
DFXMLObjects, using these bindings. A DFXMLObject
contains a list of VolumeObjects and/or FileObjects,
and volumeObjects contain a list of FileObjects. Also,
each object type can now perform a verbose difference with
its type, which enabled us to modify the previous differen-
tial analysis model of Garfinkel et al. (Garfinkel et al., 2012).

Modularizing idifference.py

Formerly, comparing DFXML was specialized to a single
utility, idifference.py (Garfinkel et al., 2012). idifference was
designed to report the differences of two disk images, or
their DEXML summaries. To inspect file system parsers, we

initially re-purposed idifference to compare DFXML of
different tools interpreting the same image. However, the
tool was performing too many of the differential analysis
steps, to the detriment of its analytic capability. We split the
functionality of idifference into distinct tools, enabling more
general analysis. This modularizing induced a new inter-
mediary analytic state, which represents file system dif-
ferences as DFXML. This opens new applications of the
DEXML language.

Comparing tools using DFXML requires a more complete
enumeration of file attribute differences. The idifference
utility produced a practical enumeration of differences,
primarily file names, timestamps, and checksums. How-
ever, a tool's report of a file can vary in any of the file's
known attributes. These new features in particular enabled
re-implementing comparison:

e The FileObject equality operator is recursively
defined as evaluating whether each of the properties of
two FileObjects are equal. Some properties, e.g. the
id property defined as unique to any run of a tool, are
ignored. Comparing tools, the id would declare almost
all files as unequal if the tools don't extract the exact
same features, in the same order.

e A more general comparison operator returns the set of
properties that differ.

e To deal with unimportant and likely too-numerous
differences, the difference set can be determined as a
relevant change or not as a run-time configuration of
the called application.

e FileObjects also support holding a baseline object as
the property original_fileobject. Essentially, each
FileObject tracks the differences of itself, once
matched.

To analyze changes to an entire storage system, no
special logic is necessary to analyze files’ property differ-
ences — aside from choosing some property changes to
ignore. The task of storage differencing is now mapping
files from one metadata summary to the other.

The idifference.py utility performed two tasks, which are
now separated using the new object bindings:

1. Identify the relevantly-changed files.
2. Report on the changes. This report is a tabular format
derived from the in-memory file objects.

Using the new Objects, these tasks are now two utilities
that communicate with differentially-annotated DFXML as
an intermediary state. The first step is replaced with a pro-
gram that maps old files to new, make_differential_dfxmlLpy.
This program's matching algorithm simplifies in the case of
FAT or XTAF, thanks to these file systems not having a
concept of “inode” beyond directory entries. The algorithm
is quite similar to the general differential analysis strategy
described by Garfinkel et al. (2012):

1. For two disk images or their DFEXML summaries, assign
one to be the preimage, and the other the postimage.
Define four dictionaries, fileSyreaiioc, fileSpreunatioc:

AJ. Nelson et al. / Digital Investigation 11 (2014) S46—S56 S51

filespost.alioc: and fileSpost,unatioc- Each of these dictionaries
will store file references, keyed by the pair (parti-
tion_number, path). The unalloc dictionaries store sets of
references for each key, as deleted content is free to be
encountered multiple times.

2. For each allocated file encountered in the preimage, store
a reference to the file in filespre iioc.

3. Store unallocated files of the preimage in filespre unatioc.

4. For each allocated file encountered in the postimage, see
if its (partition_number, path) pair is in filespre,aiioc. If it is,
the file has been matched to one in the preimage.
Remove the file from the preimage's dictionary. If it isn't,
store the file in the filespostaiioc dictionary, using the
partition and path pair as a key.

5. Store unallocated files of the postimage in filespost,unatioc-

The matching algorithm diverges from the general dif-
ferential analysis strategy here, due to file systems storing
potentially multiple deleted versions of files. These steps
match the remnants:

6. Forall the sets in the unalloc dictionaries that contain just
one reference, match any of the files that have matching
partition numbers and paths. If there are multiple refer-
ences, the directory entry byte address may serve to
match; but thatis on the assumption that deleted content
remains in place until it is garbage-collected.

7. At this point, filespre giioc lists files that were present, but
have since been deleted. If there is a single matching
entry remaining in filespost,unaiioc: the files are matched,
allowing us to infer some intermediary state between
the two images if analyzing a single disk at two times.
That is, before the file was deleted, other metadata of the
file may have changed.

8. All remaining files in the pre and post alloc dictionaries
are considered deleted and added, respectively.

9. All remaining files in the pre and post unalloc dictionaries
are considered deleted and added, respectively; and
possibly too ambiguous to match.

Matching in XTAF or FAT is simpler than in other file
systems that separate inodes and directory entries. The
original idifference algorithm (Garfinkel et al., 2012) used
inode numbers as well as paths, for matching and rename
detection. While the reimplementation of idifference.py still
uses inode numbers, it also includes matching steps that
obviate their need in case a file at a path is given a new
inode number. Inode number reassignment happens when
a program updates files by using a temporary “working”
file, performing saves by renaming the working file to the
original file path. For XTAF, an “inode number” is computed
the same as The SleuthKit computes a FAT “inode number,”
as a function of the directory entry's byte address within
the file system. Hence, the inode number is effectively
ignored in the matching algorithm when analyzing FAT or
XTAF. A discussion of matching in other file systems is
beyond the scope of this paper.

The matching program outputs all of the differences as
an annotated DFXML stream. File properties that change
receive a delta:changed_property=*“1" attribute; new

files, a delta:created_file=*1"; and similarly for
deleted, modified, and metadata-changed files. Partitions
receive similar annotations. Partition annotations are
particularly useful when entire partitions can be missed
due to a tool crashing.

The second idifference.py step is replaced with another
program that summarizes that DEXML stream in the same
format as the idifference report, summarize_differ-
ential_dfxml.py. Files are listed in path or modification time
order, grouped as new, deleted, modified, or merely having
changed metadata. However, summarize_differ-
ential_dfxmlpy is no longer the logical end of differential
analysis with the idifference program flow. Several benefits
arise from this separation of duties and use of intermediary
state:

e The differences are now completely enumerable and dis-
tributable. Previously, limitations of the reporting
format, coupled with difficulties caused from missing
file identification information, lead the idifference de-
velopers to ignore files marked unallocated. Producing a
DFXML stream means these unallocated files can once
again be included for analysis, though matching them
presents new challenges. Most of these challenges are
out of the scope of this paper, for reasons discussed in
Section 10.

e The differences can be analyzed separately from producing
them. The idifference report format is one way to review
changes in a storage system. However, using
differentially-annotated DFXML opens storage changes
up to wide-scale, metadata-level analysis, in line with
some of the original goals of DFXML (Garfinkel, 2009).

e Including the original_fileobject is a useful
mechanism for distributing file sets as well. A mani-
fest of files extracted from a disk image can accom-
pany those files, including the original fileobject
data locations used for extraction. This is important
for any forensic analysis process that relies on file
extraction with follow-up analysis performed by other
tools.

Byte runs to note more than content locations

Discrepancies in DFXML between tools often meant
needing to look at metadata structures. We propose addi-
tional byte_runs elements to denote metadata addresses
as well as data addresses, using these facets:

data Regular file content, which is the byte_runs
element as presently used.

inode The byte addresses of the inode and inode-indirect
blocks in POSIX file systems; or the MFT entry, including
non-resident extensions, in NTFS.

name The byte addresses of the directory entry that refer-
ences the inode.

These additional byte runs would greatly benefit
analyzing deleted files and finding mis-matches in differ-
encing. They would be particularly valuable for comparing
tool results. Ideally, multiple tools run on the same data will

S52 AlJ. Nelson et al. / Digital Investigation 11 (2014) S46—S56

identify the same file references, which may include many
deleted files that lack much identifying information. Byte
addresses of their metadata would serve to match them
between the tools’ results. Fortunately, in XTAF and FAT,
metadata address information is proxied by the formulaic
“inode number” definition used in TSK, a function of the
byte address of the directory entry.

Programs extended for DFXML comparison

The tools in this section were selected according to
these criteria:

e Open-source, with permissive modification licenses.
e Language, preferring C and Python.
e Execution in userspace.

Uxtaf

uxtaf (Ladan, 2007) is a userspace implementation of an
XTAF file system parser in C. The developer used this as a
reference implementation for a BSD kernel module for
interacting with the file system. The utility provides a
simple shell for navigating a file system, and reporting
information similar to the stat command. DFXML
generation was implemented by copying and extending
logic from the shell's cg, 1s, and cat functions, outputting
XML with string printing.

Py360

py360 (Arkem, 2011a) is a file analysis suite for the Xbox
360, implemented in Python. The suite provides a file sys-
tem walker, and modules for analyzing file formats
particular to the gaming console. Instead of print state-
ments, we added functions to populate objects of the new
DEXML bindings.

The SleuthKit

The SleuthKit (TSK) (Carrier, 2003) is a file system
forensic suite, capable of analyzing many partition and file
systems. The TSK libraries powered the initial imple-
mentation of DFXML, via fiwalk (Garfinkel, 2009).

TSK did not have an XTAF implementation at the time
this research commenced. However, its FAT implementa-
tion could be adapted to read XTAF data structures, car-
rying forward over a decade of parser stabilizations.

Tools developed for DFXML comparison
UPartsFS: extending single-partition file system parsers

Specialized tools designed for single-file-system anal-
ysis frequently lack two important features: analyzing file
systems embedded in a partition system; and bindings to
compressed formats. Some of the tools selected for
comparative analysis of the Xbox 360's storage could only
analyze a partition image. One could operate in a “disk
mode,” by jumping to the disk's primary data partition; but
it skipped over up to five other partitions doing so.

Initially, each XTAF parser was instrumented to also
detect whether it was analyzing a partition or a disk,
conditionally translating within-file-system offsets to
within-disk. Implementing partitions turned out be a sig-
nificant engineering effort that would be impractical to
repeat for every single-file-system tool one would want to
compare. We realized through multiple implementations
of the same logic that any amount of volume detection,
even mostly hard-coding XTAF internal regions, is an issue
that is simply out of scope of analyzing an individual
partition image. However, the logic would need to be
written at least once, with an interface fit for any file system
analysis tool.

We implemented UPartsFS, a userspace file system
that reads a disk image's partition table, and presents
the partitions as large, virtual files. UPartsFS is based
on FUSE (Szeredi, 2003) and The SleuthKit's volume
parsing system. Using this file system, file system parsers
neither need to deal with partition logic themselves, nor
rely on a kernel-level partition table reader. Tools also do
not need to implement bindings to disk image formats. This
last point may seem menial at first glance; but without
image format bindings and partition delineations, a tool
one needs to use could require a spare hard drive and
machine-work day per case. In storage analysis, that is a
significant distraction.

DFXML files produced using the files of UPartsFS are
scoped to single partitions. A concatenating script, cat_vo-
lumes.py, takes the resulting files and creates DFXML of a
whole-disk walk, including translating file system offsets to
disk offsets.

FSNView: a single-data, multi-interpreter DFXML reporter

This research culminates in the FSNView utility. This tool
produces two tables for a set of tools and a single disk
image:

1. A summary of the number of files and partitions
encountered by each tool. Differences in file counts
foreshadow the differences found between the tools.

2. A summary of the file attribute difference counts, when
each tool is compared to each other tool. Each compar-
ison is performed twice, switching which is considered
the “Baseline” image.

Evaluating multi-tool analysis of Xbox 360 storage

Using the DFXML-based reporting system FSNView, we
were able to identify development bugs as we melded code
bases from three independent open source projects and
scattered, incomplete documentation into an Xbox 360
storage parser in The SleuthKit.

Tables 2 and 3 were generated with the FSNView utility.
Table 2 provides an overview of the relative recovery sta-
tistics of each parser used in the test. Table 3 shows a
pairwise comparison of all the tools, each comparison
performed twice in case test results would turn out
asymmetric. The statistics of Table 3 illustrate differences in
metadata.

AJ. Nelson et al. / Digital Investigation 11 (2014) S46—S56 S53

Table 2
Summary processing statistics for three DFXML-producing XTAF
analyzers.

fiwalk py360 uxtaf
Partitions processed 5 6 4
Allocated directories 65 58 56
Allocated files 293 231 231
Allocated other 0 0 0
Unallocated directories 1 14 8
Unallocated files 2 15 11
Unallocated other 15 0 0

The counts of these tables show many different issues,
each a valuable lesson in tool behaviors. Among the bugs
made evident from non-zero counts, these were particu-
larly instructive:

e An early iteration of Table 3 showed disagreement be-
tween two tools on the timestamps of a single file. On
closer inspection, we found this was actually a mis-
identification: a file in a directory had a prior, marked-
unallocated version in the same directory as its cur-
rent, allocated version with different timestamps. One
tool had misidentified the old version as the current,
allocated version.

e We did not expect any renames, given the definition of
inode numbers in XTAF. However, early iterations of
Table 3 reported over a hundred renames when
comparing tools to uxtaf. uxtaf was truncating the last
file extension, e.g. cutting “.xex.tmp” to “.xex.” In-
spection of the code showed uxtafs general name

Table 3

Counts of file system parsing discrepancies between three Xbox 360
analysis utilities, fiwalk (fi), uxtaf (ux) and py360 (p3). Counts are in dif-
ferences from the first program's DEXML output to the second program;
e.g., “missed files” indicates the number of files the first program found
that the second didn’t. “Files” includes directories, unless otherwise
noted. These statistics are from 1 disk image.

Differences in ... fi-p3 fi-ux p3-fi p3-ux ux-fi ux-p3

Additional files 13 3 53 0 55 12
Allocated 5 3 37 0 37 2
Unallocated 8 0 16 0 18 10

Missed files 53 55 32 12 22 0
Allocated 37 37 5 2 3 0
Unallocated 16 18 27 10 19 0

Renamed files 0 0 0 0 0 0
Allocated 0 0 0 0 0 0
Unallocated 0 0 0 0 0 0

Metadata
SHA-1 (dirs) 6 60 1 55 52 55
SHA-1 (files) 8 2 2 8 1 8
SHA-1 (other) 0 0 0 0 0 0
Filesize (dirs) 62 61 53 0 52 0
Filesize (files) 0 0 1 0 1 0
Filesize (other) 0 0 0 0 0 0
Modified time 0 0 0 0 0 0
Access time 0 0 0 0 0 0
Metadata change time 0 0 0 0 0 0
Creation time 0 0 1 0 1 0
Data byte runs (dirs) 1 61 0 64 52 64
Data byte runs (files) 1 0 2 0 1 0

extraction strategy was to rely on the file name length
recorded as a field of the directory entry. However, the
recorded directory name length does not include the
last extension, which could be extracted by reading up
to the first 0xFF byte. uxtaf was the only tool relying on
recorded name lengths, causing massive file mis-
matches that have since been corrected.

e Another early issue we resolved was interpreting the
correct end of FAT cluster chains. py360 initially defined
a single end-of-file cluster value, 0x0FFFFFFF with
masking appropriate to the XTAF variant. However,
fiwalk and uxtaf used special FAT entry values inherited
from the original FAT file systems, including the EOF
marker range 0x0FFFFFF7—0x0FFFFFFF. py360 had
the less-correct definition, as some of those high cluster
values appeared in our data, and were clearly incorrect
as data cluster pointers.

e Some of the differences come from subtle interpretation
issues. Directory size is always recorded as O in XTAF.
Following the FAT chain of clusters allows the size to be
interpreted differently, and a decision must be made on
whether to include the entire cluster after the allocated
directory entries. This precision is necessary to deter-
mine a rule for hashing the directory's contents. These
tools do not agree on a consistent interpretation of
directory contents.

e fiwalk reported more files than the other tools, even
accounting for a partition uxtaf failed to parse. However,
some of these additional files were clear false positives,
generated by reading the overwritten contents of an
unallocated directory. This bug, presently unresolved,
occurred multiple times in fiwalk, each time pointing to
the same cluster address as content. We initially found
this bug by observing a path, consisting of the empty
string, being reported multiple times. Non-unique paths
had previously indicated bugs in reporting file allocation
status.

This experience affirms that there is value in seeing a
thorough enumeration of metadata differences across the
entire file system. When run individually, each of these
tools appeared to be working properly. However, upon
inspecting the contrast of their outputs it becomes obvious
that each tool has unique flaws due to the differing stra-
tegies, algorithms, and conventions each has for parsing
and reporting a file system. Programmatically comparing
their metadata reports has helped to uncover significant
and subtle parser bugs that would have gone missed using
any one in isolation. The tools can be fixed and adjusted to
make their results converge; but this would merely remove
tool discrepancies on known data, and should not be
mistaken for the impossible ideal of completely correcting
tool behavior.

Artifact recovery

An exhaustive analysis of the artifacts discoverable on
the Xbox 360 is beyond the scope of this paper. However,
some of the questions that motivated the data design could
be answered with DFXML-based techniques, raising the

S54 AlJ. Nelson et al. / Digital Investigation 11 (2014) S46—S56

importance of verifying the file system metadata
perspective.

We used Bulk Extractor (Garfinkel, 2013) to investigate
artifact creation. Bulk Extractor is a pattern-matching en-
gine, capable of matching regular expressions; identifying
data in several encodings, such as GZip-compression; and
recursively scanning for patterns within encoded regions.
Data that matches a scanner is reported with an address on
the disk, possibly noting decoders used to translate con-
tent. An accompanying script, identify_filenames.py,
matches the address to files found with a DFXML mapping.
Among Bulk Extractor's built-in scanners are URL recog-
nizers, which could supply context for HTTP headers; and a
credit card data scanner.

The view of the file system analysis affected whether
some artifacts could be attributed to files. Bulk Extractor
could not find on the drive any of the used credit card
numbers. One false positive arose that did not match an
initially-reported number (Podhradsky et al., 2011). HTTP
headers were found on the drive. The identify_filenames.py
script identified cookie content stored in files named
BrowserData. fiwalk and uxtaf found the same file paths;
py360 had missed the files. Those same files include XBox
Live account names, making it possible to attribute browser
activity to an account on the console. Some timeline anal-
ysis was made difficult by the system clock resetting to
November, 2005 if the console was left unplugged.

Overall, this experience with DFXML and Bulk Extractor
demonstrates there are multiple benefits to creating new
DEXML generators. Tool integration was one of DFXML's
early goals. Tool testing has now come about as another
form of integration.

Related work
Practices

Hibshi et al. surveyed forensic practitioners at a con-
ference, providing some insight into tool use practices and
motivations (Hibshi et al, 2011). Their survey results
include discussion on multi-tool use for verifying results,
but no statistics on frequency. One key point that has
influenced tool comparability is that the majority of users
prefer interacting with tools through GUIs. If there were
instead a preference for script-driven interactions in the
field, it is probable that an analytic framework for tool
comparison, or even tool differencing, would have emerged
sooner. However, the product development needs follow
the demand, for the GUI, and for performance. Evaluation
of the extraction engines, called for over a decade ago
(Carrier, 2002), has not been in such a strong demand.

The National Institute of Standards and Technology
(NIST) released a draft standard on deleted file content
reporting (NIST, 2009). This standard is complementary to
our approach. NIST publishes standards, against which
other tools are measured. In contrast, testing tools against
each other is a continuous test of both the tools and be-
haviors in data. Some of the discovered behaviors in either
may later be codified in standard tests such as NIST's.

Nelson used real-system data to evaluate a forensic tool
in development. He analyzed realistic-use (Woods et al.,

2011) and real-use (Garfinkel et al., 2009) disk image data
as he developed a syntax for representing the Windows
Registry as an XML format, RegXML (Nelson et al., 2012).
The differential analysis algorithm examples include
RegXML differencing (Garfinkel et al., 2012).

Other tool comparison in storage forensics

In storage forensics research, tools have a common set of
denominators when compared. Usability is an important
factor in product development and presentation (Hibshi
et al., 2011), though somewhat independent of baseline
functionality such as disk imaging (Carrier, 2002). Single-
datum, multi-tool storage analysis is a topic of infrequent
publishing outside of NIST's testing team (National Institute
of Standards and Technology, 2003).

Casey and Stanley evaluated two tools in a “live” inci-
dent response scenario. The design of the scenario pre-
cluded consistent disk imaging. Their evaluation tested
capabilities in common between the tools on the same
compromised system. Manson et al. (2007) evaluated
multiple tools on a set of disk images, with an emphasis on
verifying results using multiple tools. They performed
some qualitative file system analysis with each tested tool,
e.g. verifying that deleted and encrypted files were found
and clearly identified, respectively. They did not perform
quantitative file system analysis, e.g. matching all deleted
files among tools. However, their report did compare many
other factors of their employed software. Grispos et al.
(2011) compared two acquisition methods and several
analysis tools on a single Windows Mobile device, exten-
sively comparing recovery results for over eighty generated
smartphone artifacts. Some of their tools demonstrated
difficulty with the phone's file system, TFAT, another
variant of FAT.

Single-datum, multi-tool testing has occurred also for
anti-forensics. Geiger evaluated six commercial tools
designed to eliminate evidence (Geiger, 2005). His work
contributed heuristics for detecting if any of the tools were
used, and evaluating their coverage of artifact removal. The
emphasis was on differences in tool behaviors, somewhat
like in this work. However, aside from discrepancies in
identifying relevant features, Geiger reached the additional
goal of developing some fingerprints of tool actions.

Xbox analysis

As an undocumented system, ripe for reverse engi-
neering, the Xbox 360 has attracted analytic attention. In
forensic analysis, some have covered acquisition and high-
level disk artifacts (Bolt, 2011; Xynos et al., 2010). The
py360 project produced documention on some of the file
structures (Arkem, 2011b). The console has seen the hard-
ware re-purposed, for alternate gaming or operating sys-
tems (LibXenon.org, 2011).

The 360 generation of Xbox did not require the same
feats needed to analyze the storage of the original Xbox
(Huang, 2002). RAM extraction is as dependent on software
exploits for the original generation (Rabaiotti and
Hargreaves, 2010) as it is for the 360, which requires
techniques such as the “Reset glitch hack” (Free60, 2012).

AJ. Nelson et al. / Digital Investigation 11 (2014) S46—S56 S55

Future research

Today, the amount of forensic research disk images,
freely available to immediately download, is small. The
total count of distinct machines behind disk images that
have any records of ground truth is presently under forty,
per the listings on the Forensics Wiki (2014). It would
benefit the forensic community at large if more data were
available for tool testing. However, generating realistic
data includes risks, such as identifying aspects of the
researchers; vulnerabilities in their environment; or even
the users in the data set, despite anonymization attempts
(Narayanan and Shmatikov, 2008). Generating data more
restricted in form (Adelstein et al., 2005) carries less risk,
but provides less analysis opportunity. Acquiring data
without provenance—such as the Real Data Corpus
(Garfinkel et al., 2009)—provides the greatest system
entropy and most varied analysis, but at near-total loss of
most ground truth. We made a realistic data set of game
console usage, including real financial transactions. It was
a logistical challenge to divide the actions of the fake
console personas from the real people required to
transact real money. It would benefit the forensics com-
munity to have further experiences, guidelines, and
adversarial research on creating forensic data sets. This
may be aided by a survey of experiences in creating and
releasing forensic data. The more research data are
available, the more tools and techniques can be tested
and refined.

These experiences with measuring tool differences
showed areas where the language of storage summariza-
tion, even abstracted past DFXML, can be improved.
Analyzing XTAF was quite simplified by not needing to deal
with inodes separate from directory entries. Analyzing
other file systems will require clarifying some program-
matic definitions of storage artifacts, such as the identity of
deleted files.

The definition of “correct” results in general storage
analysis is a controversial issue, due to the possibilities of
encountering genuinely ambiguous artifact results. For
instance, a corrupted FAT directory can store two files with
the same name, byte-for-byte. Research in identifying
classes of ambiguities in storage would help to reduce the
confusion possible from interpreting inconsistent file sys-
tem states, and possibly bring us closer to the ideal of
complete, agreeable knowledge of a storage system's active
state and fragments. Again, the more realistic and real data
are available, the more enriched the vocabulary of storage
analysis will be.

Conclusion

Digital storage forensics is reliant on storage-parsing
tools. If one of these tools has errors, users and de-
velopers deserve to hear about them. Unfortunately,
because tool result comparison has to date been so
manually intensive, these errors are less likely to be
discovered, let alone reported. If the tool produces results
in a well-structured format, such as DFXML, this work
shows it is easier to automate discovery of tool discrep-
ancies. Further, small projects, well-versed in analyzing a

single, exotic file system, can contribute to any analysis by
implementing the same well-structured format.

Storage metadata is fundamental to any investigation.
Hence, total reporting on the metadata improves confi-
dence in all storage analysis. We may not be able to fully,
formally validate arbitrary results soon; but we can now
verify with ease.

Resource availability

Xbox 360 disk images supporting this work are available
at Digital Corpora. FSNView, UPartsFS, and our modifications
to the projects mentioned are available on Github. The page
at this URL lists the locations of data, code repositories, and
versions used to support this work: https://users.soe.ucsc.
edu/~ajnelson/research/nelson_dfrws14/.

Acknowledgments

We thank D] Capelis, Jim Whitehead, Simson Garfinkel,
Kam Woods, Cora Frantz, Thomas Matthew, Sébastien
Bourdon-Richard, Sarah Martin, Barbara Guttman, Mary
Laamanen, and the anonymous reviewers for providing
valuable discussion and input for this paper.

This publication results from research supported by the
Naval Postgraduate School Assistance Grant/Agreement No.
N00244-12-1-0066 awarded by the NAVSUP Fleet Logistics
Center San Diego (NAVSUP FLC San Diego). The views
expressed in written materials or publications, and/or
made by speakers, moderators, and presenters, do not
necessarily reflect the official policies of the Naval Post-
graduate School nor does mention of trade names, com-
mercial practices, or organizations imply endorsement by
the U.S. Government.

References

Adelstein F, Gao Y, Richard Il GG. Automatically creating realistic targets
for digital forensics investigation. In: DFRWS °05; 2005.

Arkem. Xbox 360 file specifications reference http://www.arkem.org/
xbox360-file-reference.pdf; 2011b.

Arkem. py360 user guide http://www.arkem.org/py360-user-guide.pdf;
2011a.

Bolt S. XBOX 360 forensics: a digital forensics guide to examining arti-
facts. 1st ed. Syngress; 2011.

Carrier B. Open source digital forensics tools: the legal argument. Tech.
Rep., @Stake; 2002.

Carrier B. File system forensic analysis. Addison-Wesley; 2005.

Carrier B. The Sleuth Kit (TSK) & autopsy: open source digital forensics
tools http://sleuthkit.org/; 2003 [last accessed 27.01.14].

Chen L, Avizienis A. N-version programming: a fault-tolerance approach
to reliability of software operation. In: FTCS-8; 1978.

Fang J, Jiang Z, Chow K-P, Yiu S-M, Hui L, Zhou G, et al. Forensic analysis of
pirated Chinese Shanzhai mobile phones. In: Peterson G, Shenoi S,
editors. Advances in digital forensics VIII, IFIP advances in information
and communication technology. Berlin Heidelberg: Springer; 2012.
pp. 129—42.

Free60. http://free60.org/; 2012 [last accessed 04.02.14].

Garfinkel SL. Automating disk forensic processing with SleuthKit, XML
and Python. In: SADFE °09; 2009. pp. 73—84.

Garfinkel S. Digital forensics XML and the DFXML toolset. Digital Inves-
tigation 2012;8(3—4):161—74.

Garfinkel S. Digital media triage with bulk data analysis and bulk_
extractor. Computers & Security 2013;32:57—72.

Garfinkel SL, Farrell P, Roussev V, Dinolt G. Bringing science to digital
forensics with standardized forensic corpora. In: DFRWS °09, Quebec,
Canada; 2009.

https://users.soe.ucsc.edu/~ajnelson/research/nelson_dfrws14/
https://users.soe.ucsc.edu/~ajnelson/research/nelson_dfrws14/
http://refhub.elsevier.com/S1742-2876(14)00047-4/sref2
http://refhub.elsevier.com/S1742-2876(14)00047-4/sref2
http://www.arkem.org/xbox360-file-reference.pdf
http://www.arkem.org/xbox360-file-reference.pdf
http://www.arkem.org/py360-user-guide.pdf
http://refhub.elsevier.com/S1742-2876(14)00047-4/sref5
http://refhub.elsevier.com/S1742-2876(14)00047-4/sref5
http://refhub.elsevier.com/S1742-2876(14)00047-4/sref6
http://refhub.elsevier.com/S1742-2876(14)00047-4/sref6
http://refhub.elsevier.com/S1742-2876(14)00047-4/sref7
http://sleuthkit.org/
http://refhub.elsevier.com/S1742-2876(14)00047-4/sref9
http://refhub.elsevier.com/S1742-2876(14)00047-4/sref9
http://refhub.elsevier.com/S1742-2876(14)00047-4/sref10
http://refhub.elsevier.com/S1742-2876(14)00047-4/sref10
http://refhub.elsevier.com/S1742-2876(14)00047-4/sref10
http://refhub.elsevier.com/S1742-2876(14)00047-4/sref10
http://refhub.elsevier.com/S1742-2876(14)00047-4/sref10
http://refhub.elsevier.com/S1742-2876(14)00047-4/sref10
http://free60.org/
http://refhub.elsevier.com/S1742-2876(14)00047-4/sref12
http://refhub.elsevier.com/S1742-2876(14)00047-4/sref12
http://refhub.elsevier.com/S1742-2876(14)00047-4/sref12
http://refhub.elsevier.com/S1742-2876(14)00047-4/sref13
http://refhub.elsevier.com/S1742-2876(14)00047-4/sref13
http://refhub.elsevier.com/S1742-2876(14)00047-4/sref13
http://refhub.elsevier.com/S1742-2876(14)00047-4/sref13
http://refhub.elsevier.com/S1742-2876(14)00047-4/sref14
http://refhub.elsevier.com/S1742-2876(14)00047-4/sref14
http://refhub.elsevier.com/S1742-2876(14)00047-4/sref14
http://refhub.elsevier.com/S1742-2876(14)00047-4/sref14
http://refhub.elsevier.com/S1742-2876(14)00047-4/sref15
http://refhub.elsevier.com/S1742-2876(14)00047-4/sref15
http://refhub.elsevier.com/S1742-2876(14)00047-4/sref15

S56 AlJ. Nelson et al. / Digital Investigation 11 (2014) S46—S56

Garfinkel S, Nelson A], Young]. A general strategy for differential forensic
analysis. In: DFRWS °12; 2012.

Geiger M. Evaluating commercial counter-forensic tools. In: DFRWS °05;
2005.

Grispos G, Storer T, Glisson WB. A comparison of forensic evidence re-
covery techniques for a windows mobile smart phone. Digital
Investigation 2011;8(1):23—36.

Hibshi H, Vidas T, Cranor L. Usability of forensics tools: a user study. In:
IMF °11; 2011.

Hryb L. USB memory support for the Xbox 360 coming April 6th [last
accessed 27.01.14], http://majornelson.com/2010/03/26/usb-memory-
support-for-the-xbox-360-coming-april-6th/; 2010.

Huang A “bunnie”. Keeping secrets in hardware: the Microsoft XBox™
case study. Tech. Rep. AIM-2002-008. Massachusetts Institute of
Technology; 2002.

iFixit. ~ Xbox one teardown http://www.ifixit.com/Teardown/
Xbox+O0ne+Teardown/19718; 2013 [last accessed 27.01.14].

Keller G, Murray T, Amani S, O’Connor L, Chen Z, Ryzhyk L, et al. File
systems deserve verification too!. In: PLOS *13; 2013.

Ladan R. uxtaf https://github.com/rene0/xbox360; 2007 [last accessed
11.02.14].

LibXenon.org. http://libxenon.org/; 2011 [last accessed 05.02.14].

Lu L, Arpaci-Dusseau AC, Arpaci-Dusseau RH, Lu S. A study of Linux file
system evolution. In: FAST *13; 2013.

Manson D, Carlin A, Ramos S, Gyger A, Kaufman M, Treichelt J. Is the open
way a better way? Digital forensics using open source tools. In: HICCS
*07; 2007.

Narayanan A, Shmatikov V. Robust de-anonymization of large sparse
datasets. In: IEEE S&P *08; 2008.

National Institute of Standards and Technology. NIST computer forensic
tool testing program http://www.cftt.nist.gov/; 2003 [last accessed
06.02.14].

Nelson A. RegXML: XML conversion of the Windows registry for forensic
processing and distribution. In: Peterson G, Shenoi S, editors. Ad-
vances in digital forensics VIII, IFIP advances in information and
communication technology. Berlin Heidelberg: Springer; 2012.
pp. 51-65.

NIST. Active file identification & deleted file recovery tool specification
(draft for comments) http://www.cftt.nist.gov/DFR-req-1.1-pd-01.pdf;
2009 [last accessed 09.02.13].

DFXML Working Group. dfxml_schema https://github.com/dfxml-working-
group/dfxml_schema/tree/v1.1.0; 2013 [last accessed 27.01.14].

Podhradsky AL, D’Ovidio R, Casey C. Identity Theft and Used Gaming
Consoles: recovering personal information from Xbox hard drives. In:
AMCIS °11; 2011.

Protalinski E. Microsoft investigating used Xbox 360 credit card hack
http://www.zdnet.com/blog/security/microsoft-investigating-used-
xbox-360-credit-card-hack/11260; 2012 [last accessed 27.01.14].

Python Software Foundation. Built-in functions http://docs.python.org/3.
3/library/functions.html/#property; 2014 [last accessed 25.01.14].

Rabaiotti JR, Hargreaves CJ. Using a software exploit to image RAM on an
embedded system. Digital Investigation 2010;6(3—4):95—103.

Szeredi M. File system in user space README http://www.stillhq.com/
extracted/fuse/README; 2003.

Veillard D. The XML C parser and toolkit of Gnome http://xmlsoft.org/;
1999 [last accessed 27.01.14].

Forensics Wiki. Forensic corpora http://www.forensicswiki.org/wiki/
Forensic_corpora; 2014 [last accessed 12.02.14].

Woods K, Lee C, Garfinkel S, Dittrich D, Russel A, Kearton K. Creating
realistic corpora for forensic and security education. In: ADFSL '11;
2011.

Xynos K, Harries S, Sutherland I, Davies G, Blyth A. Xbox 360: a digital
forensic investigation of the hard disk drive. Digital Investigation
2010;6(3—4):104—11.

http://refhub.elsevier.com/S1742-2876(14)00047-4/sref16
http://refhub.elsevier.com/S1742-2876(14)00047-4/sref16
http://refhub.elsevier.com/S1742-2876(14)00047-4/sref17
http://refhub.elsevier.com/S1742-2876(14)00047-4/sref17
http://refhub.elsevier.com/S1742-2876(14)00047-4/sref18
http://refhub.elsevier.com/S1742-2876(14)00047-4/sref18
http://refhub.elsevier.com/S1742-2876(14)00047-4/sref18
http://refhub.elsevier.com/S1742-2876(14)00047-4/sref18
http://refhub.elsevier.com/S1742-2876(14)00047-4/sref19
http://refhub.elsevier.com/S1742-2876(14)00047-4/sref19
http://majornelson.com/2010/03/26/usb-memory-support-for-the-xbox-360-coming-april-6th/
http://majornelson.com/2010/03/26/usb-memory-support-for-the-xbox-360-coming-april-6th/
http://refhub.elsevier.com/S1742-2876(14)00047-4/sref1
http://refhub.elsevier.com/S1742-2876(14)00047-4/sref1
http://refhub.elsevier.com/S1742-2876(14)00047-4/sref1
http://www.ifixit.com/Teardown/Xbox+One+Teardown/19718
http://www.ifixit.com/Teardown/Xbox+One+Teardown/19718
http://www.ifixit.com/Teardown/Xbox+One+Teardown/19718
http://www.ifixit.com/Teardown/Xbox+One+Teardown/19718
http://refhub.elsevier.com/S1742-2876(14)00047-4/sref22
http://refhub.elsevier.com/S1742-2876(14)00047-4/sref22
https://github.com/rene0/xbox360
http://libxenon.org/
http://refhub.elsevier.com/S1742-2876(14)00047-4/sref25
http://refhub.elsevier.com/S1742-2876(14)00047-4/sref25
http://refhub.elsevier.com/S1742-2876(14)00047-4/sref26
http://refhub.elsevier.com/S1742-2876(14)00047-4/sref26
http://refhub.elsevier.com/S1742-2876(14)00047-4/sref26
http://refhub.elsevier.com/S1742-2876(14)00047-4/sref27
http://refhub.elsevier.com/S1742-2876(14)00047-4/sref27
http://refhub.elsevier.com/S1742-2876(14)00047-4/sref27
http://www.cftt.nist.gov/
http://refhub.elsevier.com/S1742-2876(14)00047-4/sref29
http://refhub.elsevier.com/S1742-2876(14)00047-4/sref29
http://refhub.elsevier.com/S1742-2876(14)00047-4/sref29
http://refhub.elsevier.com/S1742-2876(14)00047-4/sref29
http://refhub.elsevier.com/S1742-2876(14)00047-4/sref29
http://refhub.elsevier.com/S1742-2876(14)00047-4/sref29
http://www.cftt.nist.gov/DFR-req-1.1-pd-01.pdf
https://github.com/dfxml-working-group/dfxml_schema/tree/v1.1.0
https://github.com/dfxml-working-group/dfxml_schema/tree/v1.1.0
http://refhub.elsevier.com/S1742-2876(14)00047-4/sref32
http://refhub.elsevier.com/S1742-2876(14)00047-4/sref32
http://refhub.elsevier.com/S1742-2876(14)00047-4/sref32
http://www.zdnet.com/blog/security/microsoft-investigating-used-xbox-360-credit-card-hack/11260
http://www.zdnet.com/blog/security/microsoft-investigating-used-xbox-360-credit-card-hack/11260
http://docs.python.org/3.3/library/functions.html/#property
http://docs.python.org/3.3/library/functions.html/#property
http://refhub.elsevier.com/S1742-2876(14)00047-4/sref35
http://refhub.elsevier.com/S1742-2876(14)00047-4/sref35
http://refhub.elsevier.com/S1742-2876(14)00047-4/sref35
http://refhub.elsevier.com/S1742-2876(14)00047-4/sref35
http://www.stillhq.com/extracted/fuse/README
http://www.stillhq.com/extracted/fuse/README
http://xmlsoft.org/
http://www.forensicswiki.org/wiki/Forensic_corpora
http://www.forensicswiki.org/wiki/Forensic_corpora
http://refhub.elsevier.com/S1742-2876(14)00047-4/sref39
http://refhub.elsevier.com/S1742-2876(14)00047-4/sref39
http://refhub.elsevier.com/S1742-2876(14)00047-4/sref39
http://refhub.elsevier.com/S1742-2876(14)00047-4/sref40
http://refhub.elsevier.com/S1742-2876(14)00047-4/sref40
http://refhub.elsevier.com/S1742-2876(14)00047-4/sref40
http://refhub.elsevier.com/S1742-2876(14)00047-4/sref40
http://refhub.elsevier.com/S1742-2876(14)00047-4/sref40

	Cooperative mode: Comparative storage metadata verification applied to the Xbox 360
	Introduction
	Outline

	Background: theory and frameworks
	Digital forensics XML
	Differential analysis

	Analytic subject: Xbox 360 and the XTAF file system
	The XTAF file system
	Partition management

	Designing XTAF data
	Improving DFXML and differencing for tool evaluation
	Formalizing the DFXML language
	Implementing new DFXML Python bindings
	Modularizing idifference.py
	Byte runs to note more than content locations

	Programs extended for DFXML comparison
	Uxtaf
	Py360
	The SleuthKit

	Tools developed for DFXML comparison
	UPartsFS: extending single-partition file system parsers
	FSNView: a single-data, multi-interpreter DFXML reporter

	Evaluating multi-tool analysis of Xbox 360 storage
	Artifact recovery

	Related work
	Practices
	Other tool comparison in storage forensics
	Xbox analysis

	Future research
	Conclusion
	Resource availability

	Acknowledgments
	References

