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Now in use on x-ray beamlines worldwide, shearing
interferometry and Hartmann wavefront sensing pro-
vide effective feedback for measuring and optimizing
high-quality beams. Conventionally, both approaches
spatially modulate the beam properties (amplitude or
phase) using two-tone, binary patterns, leading to dele-
terious diffraction effects that must be mitigated. In
shearing, the presence of multiple diffraction orders
affects measurement near boundaries. In Hartmann,
diffraction limits the measurement point density. We
demonstrate that the use of pseudo-grayscale halftone
patterns in the diffracting elements can improve the
performance of both techniques. © 2021 Optical Society

of America

http://dx.doi.org/10.1364/ao.XX.XXXXXX

In recent years, shearing interferometry and Hartmann
testing have emerged as effective and easily implemented
wavefront-sensing techniques for short-wavelength applications.
Complementing the creation of high-coherent-flux light sources,
advanced beamline optical systems for soft x-ray, tender x-ray,
and hard x-ray photon energies are reaching toward and achiev-
ing diffraction-limited optical performance. This capability
comes largely from improvements in mirror fabrication and
from the advent of adaptive optical elements coupled to feed-
back from wavefront sensors.

Shearing is an interferometric approach that uses a diffrac-
tion grating to produce displaced copies of the test wavefront
that overlap at the detection plane [1–4]. The most common
configurations are designed to exploit the Talbot self-imaging
condition, reproducing a high-contrast pattern while revealing
aberrations in the input wavefront.

In the Hartmann test, a grid of holes in an opaque screen
projects isolated, non-interfering beamlets onto the detection
plane [5–8]. Measured displacements show the local wave-
front slope across the beam. While shearing can use amplitude-
modulating or phase-shifting gratings, Hartmann requires high
contrast (i.e. opacity) to achieve a high signal-to-noise ratio. The
two techniques are shown schematically in Fig. 1.

To my knowledge, all reported x-ray applications of these
techniques have used binary (i.e. two tone) amplitude or phase
elements, patterned for shearing as square-wave line patterns [4,
9], cross-gratings [1], or checkerboards [10], and for Hartmann as

grating detector

a) shearing

grid detector

b) Hartmann

Fig. 1. Schematic representations of (a) single-grating shearing
interferometry and (b) Hartmann wavefront sensing, two
complementary approaches to wavefront measurement. The
beam is incident from the left.

open round or square holes [8] in an opaque screen (see Fig. 2).
X-ray transmission gratings are created with various litho-

graphic patterning techniques. Feature sizes are on the micron
to tens-of-microns scale for extreme ultraviolet, soft x-ray and
hard x-ray shearing and Hartmann applications.

In many forms of interferometric measurement, mutually
coherent test and reference beams interfere, and the resultant
fringes reveal path length differences. Shearing, however, com-
pares a test beam with displaced copies of itself. In single-grating
shearing configurations, the presence of multiple displaced
beams, emanating with various amplitudes from the grating’s
diffraction orders, complicates the reconstruction near pupil
boundaries and small features (see Fig. 3).

a) b) c)

d) e) f)

Fig. 2. Details of common grating types used for shearing
wavefront sensors: (a) linear grating, (b) cross grating, and
(c) checkerboard. The two tones can modulate amplitude (e.g.
opaque and transparent), phase, or both. Hartmann grids:
(d) circular holes, (e) square holes, and (f) rotated square holes.
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Fig. 3. Multi-beam overlap in 1D shearing is illustrated for an
annular pupil with a dark defect and three different grating
types, as labeled. The pupil amplitudes shown here sum up
to 15 weighted and shifted diffraction orders. Boundaries and
sharp features compromise wavefront analysis locally.

One implementation uses an image-plane spatial filter to
block all but two beams in each direction [2]. The Ronchi config-
uration shifts the beams by half the beam width [11], creating
two-beam interference. However, most single grating applica-
tions use a small shear magnitude to achieve a near total overlap
of the shifted beams across the aperture.

In the Hartmann case, diffraction causes the beamlets to
spread outward toward their neighbors, degrading measure-
ment or forcing the use of a grid with a larger hole-spacing.
Rotating the orientation of square holes (Fig. 2f) mitigates this
overlap to some extent by steering diffracted light between
neighboring beamlets [6].

Here, I propose the use of pseudo-grayscale, halftone pat-
terns to approximate smooth screen-transmission functions and
reduce the deleterious effects of diffraction. We can reduce the
amplitude of the higher-ordered beams in shearing and nar-
row the diffraction-spread of Hartmann beamlets (i.e. sidelobe
suppression) by pattern modulation at finer length scales. This
leaves the fundamental design of the elements intact while im-
proving their relative performance. With micron-scale patterns,
sub-micron patterning is well within reach. Halftones have
been used in the fabrication of kinoform diffractive optical el-
ements [12] and photomask patterns for similar purposes [13].
The benefits of this approach are apparent through spatial and
spatial-frequency descriptions of the devices.

The shearing grating patterns may be described using peri-
odic, piecewise-continuous, two-level transmission functions,
with complex values a and b, and a spatial period, or pitch, L. For
the conventional patterns, we use a rectangle or boxcar function,
assigning 1 to a and 0 to b, and we set an equal period in both x
and y directions. We define a function Π(t) over a single period,
with a duty-cycle parameter d ∈ [0, 1] for the linear ratio, such
that with t ∈ [0, L],

Π(t) =

{
1, 0 ≤ t < dL
0, dL ≤ t < L

. (1)

Commonly, d = 0.5. The shearing gratings in Fig. 2 can be de-
scribed as: (a) Π(x), (b) Π(x)Π(y), and (c) Π(x)⊕Π(y), where
the ⊕ symbol represents the XOR operation.

From a spatially uniform incident wave, the variation in
the transmitted field, U0(r), comes only from the screen. With
pattern features much larger than the wavelengths of interest,
and detector distances much greater than the lateral widths
under consideration, the diffraction-order amplitudes are well
described by the Fourier transformation of the field at the screen,
F{U0(r)}. For periodic structures illuminated by a coherent
monochromatic beam, the angular-spectrum reveals the ampli-

tudes of the various diffracted orders. Partially coherent and
spectrally broad extensions can be made from this basic case.

With k = 2π/L, the patterns c(x, y) can be decomposed into
complex, double Fourier series, and the Fourier coefficients can
be solved with Dirchelet (periodic) boundary conditions.

c(x, y) =
∞

∑
m,n=−∞

cm,neikmxeikny. (2)

cm,n =
1
L2

∫ L

0

∫ L

0
c(x, y) e−ikmxe−ikny dx dy. (3)

These coefficients describe the complex amplitudes of the inter-
fering beams. When only two beams are present for each or-
thogonal shear direction, the only non-zero values are the paired
coefficients {c−1,0, c1,0} for x, and {c0,−1, c0,1} for y. Multi-beam
interference in the unfiltered, single-grating shearing implemen-
tations can be characterized by the series of coefficient ampli-
tudes. The Fourier spectra of conventional gratings shown in
Fig. 4 reveal the presence of many orders.

0.100

0.010

1.000
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0

n

a)
two periods, binary
b) c)

2L

|cnm|

Fig. 4. Grating patterns and Fourier spectra for the three con-
ventional grating types in Fig. 2a–c. Shown are 2×2-period
details of the grating patterns c(x, y), with d = 0.5, alongside
the first 8×8 Fourier coefficients, cm,n, calculated from Eq. 3.
Within each case, the absolute values of the coefficients are nor-
malized to c0,0 (lower-left, red square). Central portions of the
first quadrant are shown. Colors represent a logarithmic scale.

Shearing interferograms are commonly analyzed using the
Fourier-transform method of fringe pattern analysis, filtering
the spatial-frequency domain to select the interferences among
specific orders [1, 14]. However by operating on the intensity
pattern, the filtering nonetheless allows the interaction of other,
different order pairs to affect the resultant measurement. For
example, in the Fourier transform of the measured intensity,
the interaction of the –1st and 1st order beams occupies the
same spatial frequency as the interaction of the 3rd and 5th or-
der beams. Similarly, contributions from the interactions of all
pairs of beams for which the index difference is 1 overlap in
the first frequency. Since interferograms are real valued, the
Fourier coefficients form polar-symmetric, equal-valued pairs:
cm,n = c−m,−n.

Limiting the number of interfering beams can improve single-
grating shearing interferometry, and we can shape the Fourier
spectrum to achieve that. In this way, we can view conventional
square-wave gratings as coarse approximations to optimized
cases. It is theoretically possible to create two- or three-beam
interferences from a single grating using sinusoidal transmis-
sion functions in amplitude or phase. Modulation of the form
f (x) = 1

2 [1 + sin(2πx/L)] generates only 0th-order and ±1st-or-
der Fourier coefficients. Sinusoidal amplitude modulations are
shown in Fig. 5. (Note that π-phase modulation is a special case
where it is possible to extinguish the 0th order [10].)
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Fig. 5. Continuous-tone versions of the gratings of Fig. 4 with
sinusoidal amplitude transmission functions. The coefficient
amplitudes show that only the 0th-order and 1st-order beams
would be present in the interferograms.

Recognizing that the grating lines and Hartmann grid-holes
used at x-ray wavelengths are typically much larger than the
patterning resolution of available lithography techniques, we
can use halftone patterns to approximate the optimal transmis-
sion functions. Commonly seen in newspaper and magazine
image rendering, halftoning is a class of techniques that uses
two brightness levels and fine patterning to approximate contin-
uously varying intensities, forming a pseudo-grayscale.

There are a number of mathematical approaches to halfton-
ing [15]. Simple methods spatially-modulate the density of
uniformly-sized points or the sizes of regularly spaced points to
control the open-area fraction across the screen. Selection and
optimization of the halftone mode depends on the characteristics
of the lithography and the pattern dimensions and is beyond
the scope of this article.

Figure 6 shows examples of halftoned approximations to
the shearing gratings from Fig. 5, rendered with two different
halftone resolutions: 90 and 60 pixels per period. The halftones
were calculated in the following way. Ideal sinusoidal field-
amplitude patterns were rendered on a grid, downsampled to
30 or 20 samples per period and reduced to 10 grayscale levels,
0 through 9. Each point was then replaced with a 3×3-pixel, bi-
nary grid, randomly generated with the number of bright pixels
matching the grayscale level. Another approach is to treat the
normalized, downsampled ideal pattern as a probability distri-
bution and compare it, point-by-point, to uniformly-distributed
random values between 0 and 1.

The halftones’ Fourier spectra show us that higher-orders
are present with significantly reduced amplitudes relative to the
conventional gratings in Fig. 4. The higher halftone pixel density
case comes closer to the ideal values from Fig. 5.

Challenges in Hartmann testing can also be addressed with
halftone patterns. Diffraction is an important aspect that gov-
erns the sensitivity of Hartmann wavefront slope measurements.
Optimal grids would produce compact beamlets that do not
overlap neighboring measurement points. Square and circular
grid holes produce well-known sinc and Airy diffraction pat-
terns with lobes and rings that extend outward from the center.
A Gaussian transmission pattern would produce the kind of spot
we seek, so we evaluate halftone approximations to it. We note
that diffraction from non-Gaussian, apodized aperture shapes
has been investigated in many contexts, including sidelobe sup-
pression and beam divergence control [16].

Figure 7 shows diffraction patterns from six ideal and
halftoned apertures. Coherent-wave Fresnel diffraction calcula-
tions [17] are made for 1 nm wavelength and 200 mm distance
from the aperture to the detector plane. The circular aperture
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Fig. 6. Halftone versions of the optimal gratings of Fig. 5 and
their Fourier spectra. The patterns in (a), (b), and (c) were
halftoned to 90 pixels per period. The patterns in (d), (e), and
(f) were halftoned to 60 pixels per period.
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Fig. 7. Ideal and halftoned Hartmann apertures and their
diffraction patterns, computed for λ = 1 nm and z = 200 mm.
The ideal apertures are square, w = 8.70 µm; circular, d = 10 µm;
and Gaussian amplitude, exp[−(r/a)2] with a = 7.26 µm. The
three halftones approximate the Gaussian aperture with 144,
72, and 48 pixels per 10 µm, respectively. The diffracted inten-
sities are shown on a logarithmic color scale.

has 10 µm diameter, and the sizes of the square and Gaussian-
transmission apertures are selected to approximately match the
same full-width at half maximum (FWHM) value. This is ap-
proximately 8.70 µm width for the square, and exp[−(r/a)2]
with a = 7.26 µm for the Gaussian.

Three halftone approximations of the Gaussian transmission
are shown with varying pixel densities of 144, 72, and 48 pixels
per 10 µm width, respectively. Relative to the smoothly attenu-
ating Gaussian pattern, the lobes and rings of the square and
circular apertures have significant intensity in the region from
15 µm to 40 µm radius. The halftone cases approach the Gaus-
sian intensity profile with a low-intensity speckle pattern that
decreases with increasing halftone pixel density.

The halftone approach can work for one-dimensional shear-
ing and Hartmann testing as well, where holes are replaced with
lines and the wavefront slope is measured in only one direction.
Such grids are being planned as feedback for adaptive x-ray
optics (i.e. bendable mirrors) [4, 18]. Figure 8 shows line pat-
terns and their diffracted intensities. Included are a conventional
10 µm line; Gaussian amplitude, exp[−(x/a)2] with a=4.41 µm
(selected to have the same diffracted FWHM); and linear halftone
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Fig. 8. Details of 1D, ideal vertical Hartmann grid lines and
halftone versions, shown with their intensity patterns. (a) A
10 µm line. (b) Gaussian. Halftone lines with (c) 192, (d) 48,
(e) 32, and (f) 24 pixels per 10 µm.

approximations of the Gaussian case with varying pixel density.
As before, λ = 1 nm, and z = 200 mm.

One-dimensional halftone patterns were randomly generated
using the Gaussian amplitude as a probability for each pixel
to be open. Mirror-symmetry was imposed to prevent lateral
position variation in the diffraction pattern. Separately, for each
of the four pixel densities, the halftones shown in Fig. 8 were
selected from 5,000 randomly generated cases, minimizing a
distance-weighted-intensity merit function. The halftone diffrac-
tion patterns show significant sidelobe suppression relative to
the conventional line, improving with increased pixel density.

Beyond Gaussian amplitude transmission, it is worth consid-
ering the benefit of a Shack-Hartmann approach in transmission,
turning the lines and holes into focusing diffractive lenslets,
photon sieves [19], or hole arrays [20], including halftoned ver-
sions, especially for cases where the energy bandwidth is lim-
ited. Arrays of reflective zone plates for this purpose have been
demonstrated at 46.9 nm wavelength [21].

In sum, for shearing interferometry and Hartmann wavefront
sensing, the pseudo-grayscale halftone approach can optimize
the properties of the diffracted beams and improve the resultant
wavefront measurements. This is especially true when the screen
fabrication supports the creation of arbitrary, pixelated patterns
with sufficient density. Performance improves with higher pixel
densities, up to the point where transmission is reduced by small
feature sizes. That is, while the diffraction properties would be
largely insensitive to the shape of individual pixels, they should
be sufficiently large that transmission is predictable.

Data analysis in both shearing and Hartmann testing mea-
sures small, relative displacements in the spot or line patterns.
Therefore, to avoid undesirable variation from feature to fea-
ture, the same calculated halftone pattern can be applied in a
repeating manner at each feature. In this way, the irregularities
from the halftoning simply repeat periodically and do not in-
duce spot-to-spot or line-to-line offsets. Otherwise, the inherent
variations would have to be treated as systematic errors and
removed in calibration.

Much as the Hartmann strategy of rotated squares helps to
avoid overlap among neighboring beams, there may be addi-
tional ways to engineer the halftone patterns to knock out certain
spatial frequencies or angle ranges in the diffracted light, pro-
tecting adjacent beams from overlap.

The shearing and Hartmann methods are sensitive to spec-
tral bandwidth and spatial coherence, and such considerations
must be included when developing case-specific designs. I an-

ticipate that the inclusion of pseudo-grayscale halftones will not
significantly change those sensitivities except to reduce speckle
contrast in the presence of partial coherence or finite bandwidth.
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