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Key Points

• Nonoptimal rATG
exposure increases
nonrelapse mortality,
relapse, and chronic
GVHD and worsens
DFS in pediatric AB-
TCD haploidentical
HCT.

• Targeting rATG dosing
to a predicted
exposure may improve
immune reconstitution
and preserve graft-
versus-leukemia.
We hypothesized that the inferior disease-free survival (DFS) seen in older patients who

underwent αβ-T-cell/CD19–depleted (AB-TCD) haploidentical hematopoietic cell transplantation

(HCT) for hematologic malignancies is caused by excessive exposure to rabbit antithymocyte

globulin (rATG; Thymoglobulin). Between 2015 and 2023, 163 patients with a median age of 13

years (range, 0.4-27.4) underwent AB-TCD haploidentical HCT for the treatment of acute

lymphoblastic leukemia (n = 98), acute myeloid leukemia/myelodysplastic syndrome (n = 49), or

other malignancies (n = 16) at 9 centers in 2 prospective trials. Exposures to rATG before and

after HCT were predicted using a validated pharmacokinetic model. Receiver operating

characteristic curves were used to identify the optimal target windows for rATG exposure in

terms of outcomes.We identified 4 quadrants of rATG exposure, namely quadrant 1 (n = 52)with

a high pre-HCT area under curve (AUC;≥50 arbitrary units [AU] per day permilliliter) and a low

post-HCT AUC (<12 AU per day per liter); quadrant 2 (n = 47) with a low pre- and post-HCT AUC;

quadrant 3 (n = 13) with a low pre-HCT and a high post-HCT AUC; and quadrant 4 (n = 51) with a

high pre- and post-HCT AUC. Quadrant 1 had a 3-year DFS of 86.5%, quadrant 2 had a DFS of

64.6%, quadrant 3 had a DFS of 32.9%, and for quadrant 4 it was 48.2%. An adjusted regression

analysis demonstrated additional factors that were associated with an increased hazard for

worse DFS, namely minimal residual disease (MRD) positivity and cytomegalovirus (CMV) R+/D−

serostatus. Nonoptimal rATG exposure exhibited the strongest effect in unadjusted and adjusted

(MRD status or CMV serostatus) analyses. High exposure to rATG after HCT was associated with

inferior DFS following AB-TCD haploidentical HCT for pediatric patients with hematologic

malignancies.Model-baseddosing of rATG to achieve optimal exposuremay improveDFS. These

trials were registered at www.ClinicalTrials.gov as #NCT02646839 and #NCT04337515.
ly 2024; prepublished online on Blood
y 2024. https://doi.org/10.1182/

ionary are available on request from the
(christopher.dvorak@ucsf.edu).

The full-text version of this article contains a data supplement.
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Introduction

Hematopoietic cell transplantation (HCT) is a potentially curative
option for certain hematologic malignancies in children and young
adults. The availability of well-matched related and unrelated
donors is dependent on the patient’s genetic ancestry.1 The use of
haploidentical related donors eliminates this barrier for many
patients, but it is limited by bidirectional alloreactivity-mediated graft
rejection and graft-versus-host disease (GVHD). The recognition
that acute GVHD (aGVHD) is primarily mediated by α-β T-cell
receptor (AB-TCR)–positive T cells led to the development of
techniques for their selective elimination from the graft, along with
CD19+ cells that might serve as a reservoir for Epstein-Barr virus
that can stimulate Epstein-Barr virus lymphoproliferative disease.2-5

The Pediatric Transplantation and Cellular Therapy Consortium
(PTCTC) ONC1401 trial reported a 2-year disease-free survival
(DFS) rate of 75% for pediatric patients with acute leukemia or
myelodysplastic syndrome who underwent αβTCR-T-cell/CD19–
depleted (AB-TCD) haploidentical HCT.6 However, it was noted
that patients aged ≥10 years had significantly worse DFS. Con-
ditioning regimens for AB-TCD HCT in this trial and others have
included rabbit antithymocyte globulin (rATG; Thymoglobulin) at a
dose of 3 mg/kg per day on days -12 to -10, although variations
exist. Models of rATG pharmacokinetics (PK) and pharmacody-
namics show lower rates of drug clearance in older children, and in
other transplant approaches (T-replete, umbilical cord blood, and
CD34 selection), optimal exposure targets have been identified,
generally with higher exposure before HCT and lower exposure
after HCT.7-10 We hypothesized that the lower rates of DFS seen
in older patients may be caused by excessive in vivo T-cell deple-
tion by residual rATG after HCT with abrogation of an adequate
graft-versus-leukemia (GVL) effect and slowing of immune recon-
stitution. We then aimed to identify the optimal rATG exposure for
subsequent dose targeting as has been done for T-replete unre-
lated donors to enhance the likelihood of successful HCT for
pediatric malignant disease.11

Methods

Study design and participants

We performed an unplanned, post hoc evaluation of patients with
hematologic malignancies who underwent their first HCT using a
haploidentical related donor with AB-TCD in 1 of 2 prospective
trials of ex vivo T-cell depletion, namely (1) ONC1401 for AB-TCD
(NCT02646839; IDE#16412; M.A.P.) and (2) PBMT1902 for AB-
TCD (NCT04337515; IDE#19096; C.C.D.) with a data cutoff of
14 August 2023. The primary results of patients who received
natural killer inhibitory receptor-favorable HCTs in ONC1401 are
published.6 Patients who did not receive rATG (Thymoglobulin) as
part of conditioning were excluded. The trials were approved by
local institutional review boards, and informed consent was
obtained from patients/parents in accordance with the Declaration
of Helsinki.

Procedures

Conditioning was based on an alkylator backbone of total-body
irradiation, busulfan, or melphalan, as previously described.6 Tar-
geted cumulative area under curve (AUC) goal exposure was used
6004 DVORAK et al
for all participants who received busulfan-based regimens. Some
patients received model-based dosing of fludarabine to achieve a
goal cAUC exposure of 20 mg per hour/L.12-14 ONC1401 rec-
ommended administering rATG from day -12 at 3 mg/kg for 3
doses, although different start times were allowed and the protocol
did not specify whether actual or (adjusted) ideal body weights
should be used.6 The predicted AUCs for rATG in arbitrary units
(AU) per day per milliliter before and after HCT were determined
using an established PK model (accessible via InsightRx, Inc, San
Francisco, CA), which incorporates weight, absolute lymphocyte
count (ALC) on admission day, and dose and timing of rATG
relative to HCT.7 Both trials recommended the use of granulocyte–
colony stimulating factor only after day +14, if needed. Minimal
residual disease (MRD) status was determined by best available
techniques for the patient’s disease at the time, including multi-
parameter flow cytometry and next-generation sequencing of the
B- and T-cell receptors (Adaptive Biotech).15 Body mass index was
analyzed according to the age-based Centers for Disease Control
and Prevention guidelines in patients ≥2 years of age and was
classified as underweight, normal, overweight, or obese. Post-
transplant targeted agents that were administered included
dasatinib for patients with t(9;22)(q34;q11) or sorafenib for FLT3-
mutated disease.

Outcomes

The main outcome of interest was DFS, defined as the time from
HCT to either relapse of hematologic malignancy or death from a
cause other than relapse. Patients were censored at their date of
last follow-up. Other outcomes included primary graft rejection,
defined as failure to establish sustained donor cells with need for a
second HCT; nonrelapse mortality (NRM), defined as death from a
cause other than relapse with relapse as a competing event;
relapse with NRM as a competing event; event-free-survival,
defined as freedom from rejection, relapse, or NRM; overall sur-
vival (OS); aGVHD and chronic GVHD (cGVHD), which were
graded and staged according to standard criteria;16,17 and
cGVHD-free relapse-free survival (cGRFS). CD3, CD4, CD8, and
CD4/CD45RA T-cell and natural killer cell counts at approximately
day 100, 180, 270, and 365 were captured in patients without
events or GVHD before that time point.

Statistical analysis

Demographic and disease-related variables were described using
frequencies for categorical variables and medians and ranges for
quantitative variables. Associations between variables were
assessed using Fisher exact tests for categorical variables and
Wilcoxon-Mann-Whitney (for 2 groups) or Kruskal-Wallis (for >2
groups) tests for continuous variables. The time-to-event endpoints
were predicted using a Kaplan-Meier estimator and log-rank tests
for significance. Optimal target cutoff points for rATG exposure
associated with DFS were identified using receiver operating
characteristic curves with the maximum Youden’s J statistic based
on the optimal cutoff points; sensitivity analyses were used to
evaluate the effect of altering the exact cutoff point locations.
Unadjusted and adjusted regression analyses for the estimation of
hazard ratios for DFS events were performed using Cox regression
for all covariates with a univariate P value <.1. For NRM and relapse
outcomes, we used Fine-Gray competing risk models. For con-
sistency across outcomes, the analyses were adjusted for 1
10 DECEMBER 2024 • VOLUME 8, NUMBER 23



variable at a time to account for the limited event numbers when
analyzing NRM and relapse alone. Thereafter, the impact of pre-
dicted rATG exposure was assessed as a categorical variable.
Statistical analyses were performed using SPSS Statistics, version
29.0 (IBM, Armonk, NY) and STATA 18.0 (StataCorp, College
Station, TX).
Results

Patient and transplant characteristics

The data set included 163 patients who underwent their first
haploidentical HCT from 2015 to 2023 at 1 of 9 centers (Table 1).
The median follow-up of survivors was 2.6 years (range, 0.2-7.7).
The median age at HCT was 13.0 years (range, 0.4-27.4), and the
median donor age was 33 years (range, 5-61). Pediatric acute
lymphoblastic leukemia was the most common indication for HCT
(60.1%), followed by acute myeloid leukemia/myelodysplastic
syndrome (30.1%) and other malignant disease (9.8%). The group
had racial diversity (only 20% White non-Hispanic), reflecting the
geographical locations of the centers and the increased incidence
of non-White patients who only had mismatched donors available.
The median infused cell doses for CD34 and AB-T cells were
15.2 × 106 cells per kg (range, 2.5 × 106 to 45.8 × 106 cells per
kg) and 5.7 × 104 cells per kg (range, 0.1× 104 to 27.6 × 104 per
kg), respectively.

ATG before and after HCT exposures

The median ALC at admission before initiation of rATG was 0.95 ×
109/L (range, 0.0 × 109 to 5.11 × 109/L). The median day of rATG
initiation was day -12 (range, −14 to −5), and the median total
rATG dose was 9 mg/kg (range, 2.7-15) based on actual body
weight. The median predicted pre-HCT and post-HCT rATG
exposures were 59.1 AU per day per milliliter (range, 10.1-109)
and 9.7 AU per day per milliliter (range, 1.1-42.5), respectively.
Patients <10 years of age (n = 59) had a lower median pre-HCT
rATG exposure of 41.9 AU per day per milliliter (range, 10.1-
84.1) when compared with 71.9 AU per day per milliliter (range,
23.9-109) among those ≥10 years of age (n = 104; P < .001). The
median post-HCT rATG was also lower among those <10 years of
age, namely 6.2 AU per day per milliliter (range, 1.9-34.2) as
opposed to 14.6 AU per day per milliliter (range, 1.1-42.5) among
those ≥10 years of age (P < .001). Patients who received proximal
rATG dosing (starting day -10 or closer to HCT; n = 26) had a
lower median pre-HCT AUC of 40.4 AU per day per milliliter
(range, 10.1-83.9) as opposed to 62.8 AU per day per milliliter
(range, 16.4-109) among those who received distal dosing from
day -11 or further from HCT (n = 127; P < .001). Conversely,
patients who received proximal rATG dosing had a higher median
post-HCT AUC of 16.9 AU per day per milliliter (range, 3.1-42.5) as
opposed to 8.7 AU per day per milliliter (range, 1.1-34.9) among
those who received distal dosing (P = .003).

Engraftment and GVHD

The 100-day cumulative incidence of rejection was 9.3% (95%
confidence interval [CI], 4.8-13.8); 14 of 15 patients with rejection
had a successful engraftment with a subsequent HCT, and 2 of
those subsequently died (from relapse and GVHD, respectively),
such that 80% were long-term survivors. Lower rates of rejection
were seen among patients who received total-body irradiation–
10 DECEMBER 2024 • VOLUME 8, NUMBER 23
based conditioning (1.5%; 95% CI, 0.1-4.4; n = 67) as opposed
to busulfan (16.3%; 95% CI, 3.2-29.4; n = 31) or melphalan
(13.9%; 95% CI, 5.5-22.3; n = 65; P = .02; supplemental Table 1).
Rejection was more common among patients with a pre-rATG
ALC of ≥1.2 × 109/L (n = 58), namely 19% (95% CI, 8.8-29.2)
vs 3.9% (95% CI, 0.2-7.6) among those with low ALCs (n = 105;
P = .002).

The 100-day cumulative incidence of grades 2 to 4 and 3 to 4
aGVHD were 25% (95% CI, 17.6-32.4) and 8.5% (95% CI, 4-13),
respectively. The 3-year cumulative incidence of cGVHD was
19.2% (95% CI, 11.4-27).

NRM and relapse

The 3-year cumulative incidence of NRM and relapse was 14.4%
(95% CI, 7.9-20.9) and 23.8% (95% CI, 16.2-31.4), respectively.
The median time to relapse was 0.49 (range, 0.09-2.55) years;
90.3% of relapses occurred before 18 months. There was no dif-
ference in the 3-year relapse incidence whether a patient was MRD
negative when measured by flow cytometry (15.9%; 95% CI, 5.5-
26.3; n = 65) or by next-generation sequencing (18.3%; 95% CI,
5.2-31.4; n = 54); therefore, these were combined into a single
MRD-negative category for subsequent analyses. The 3-year event-
free survival, DFS, and OS were 57.9% (95% CI, 49.5-66.3),
65.1% (95% CI, 56.9-73.3), and 74.9% (95% CI, 67.3-82.5),
respectively. Of the patients who relapsed, 13 of 31 (41.9%) were
alive at the data cutoff. The causes of death, separated by condi-
tioning regimen, are listed in supplemental Table 2.

In the univariate analysis, no patient-related factors significantly
impacted the 3-year NRM (supplemental Table 3). However,
transplant factors impacted the 3-year NRM and included having
an R+/D− cytomegalovirus (CMV) serostatus (38.9%; 95% CI,
13.6-64.2; n = 26) as opposed to a CMV serostatus of R−/D−

(4.2%; 95% CI, 0.1-12.2; n = 29), R−/D+ (14.9%; 95% CI, 0.1-
30.6; n = 29), or R+/D+ (11.8%; 95% CI, 3-20.6; n = 79; P = .003;
supplemental Table 4). Furthermore, having a haploidentical sibling
donor was associated with higher NRM (27%; 95% CI, 13.5-40.5;
n = 52) as opposed to a paternal donor (2%; 95% CI, 0.1-5.9;
n = 56) or a maternal donor and (13.6%; 95% CI, 1.8-25.4; n = 51;
P = .01). Imbalances in other characteristics within the donor
groups may have influenced this finding (supplemental Table 5);
patients with sibling haploidentical donors were more likely to be
≥10 years of age (80.8%) than those with father or mother donors
(51% or 57.1%; P = .004), and the donors were younger (median
age of 18 years vs 40 or 36 years for fathers and mothers; P <
.001).

In the univariate analysis, factors that impacted the 3-year relapse
incidence included (1) being MRD positive before HCT (46.8%;
95% CI, 19.4-64.2; n = 39 vs 16.9%; 95% CI, 8.9-24.9; n = 119
for MRD-negative patients P < .001) and (2) the use of post-
transplant targeted agents (0%; 95% CI, 0-19.8; n = 19 vs 27.2%;
95% CI, 18.8-35.6; n = 127 without targeted agents P = .03).
Patients who received posttransplant targeted agents had a
median follow-up of 3.2 years (range, 0.8-6.8) as opposed to 2.4
years (range, 0.2-7.7 years) for those without targeted agents. In
the univariate analysis, factors that impacted the 3-year DFS
included (1) being MRD positive (50%; 95% CI, 32.9-67.1 vs 70%
for MRD negative 95% CI, 60.8-79.2; P = .01) and (2) CMV
serostatus (80.9%; 95% CI, 65.8-96 for R−/D− vs 63.7%; 95% CI,
rATG PK IN AB-TCD HAPLOIDENTICAL HCT 6005



Table 1. Patient demographics and transplant characteristics by disease

Patient or transplant factor Overall ALL* AML/MDS† Other‡

163 98 49 16

Age

<10 y (%) 59 (36.2) 104 (63.8) 21 (42.9) 6 (37.5)

≥10 y (%) 104 (63.8) 104 (63.8) 28 (57.1) 10 (62.5)

Sex

Male (%) 97 (59.5) 56 (57.1) 30 (61.2) 11 (68.7)

Female (%) 66 (40.5) 42 (42.9) 19 (38.8) 5 (31.3)

Race and ethnicity

White non-Hispanic (%) 33 (20.2) 16 (16.4) 13 (26.6) 4 (25)

White Hispanic (%) 73 (44.7) 50 (51) 17 (34.7) 6 (37.4)

Black (%) 19 (11.7) 9 (9.2) 6 (12.2) 4 (25)

Asian (%) 19 (11.7) 12 (12.2) 6 (12.2) 1 (6.3)

Other or >1 (%) 19 (11.7) 11 (11.2) 7 (14.3) 1 (6.3)

Weight, median (range), kg 50.6 (6.3-148.4) 51.9 (6.3-148.4) 39.6 (6.6-102.1) 55.9 (8.5-116)

Body mass index (per CDC)

Not done (<2 y) (%) 15 (9.2) 6 (6.1) 7 (18.4) 2 (12.5)

Underweight (%) 10 (6.1) 6 (6.1) 2 (4.1) 2 (12.5)

Healthy weight (%) 79 (48.5) 40 (40.8) 31 (63.2) 8 (50)

Overweight (%) 24 (14.7) 15 (15.3) 6 (12.2) 3 (18.7)

Obese (%) 35 (21.5) 31 (31.7) 3 (6.1) 1 (6.3)

Remission status

Active disease (%) 9 (5.5) 1 (1) 7 (14.3) 1 (6.3)

CR1 (%) 81 (49.7) 41 (41.8) 30 (61.2) 10 (62.5)

CR2 (%) 58 (35.6) 42 (42.9) 12 (24.5) 4 (25)

CR3+ (%) 15 (9.2) 14 (14.3) 0 1 (6.3)

MRD status

Negative by NGS (%) 54 (33.1) 65 (39.9) 4 (8.2) 4 (25)

Negative by flow (%) 65 (39.9) 39 (23.9) 32 (65.3) 3 (18.7)

Positive (by either method) (%) 39 (23.9) 5 (3.1) 12 (24.5) 5 (31.3)

Not done (%) 5 (3.1) 0 1 (2) 4 (25)

Admission ALC (×109/L), median (range) 0.95 (0.01-5.11) 0.88 (0.01-3.12) 1.05 (0.01-4.51) 1.23 (0.33-5.11)

Donor

Father (%) 51 (31.3) 26 (26.5) 20 (40.8) 5 (31.3)

Mother (%) 56 (34.4) 34 (34.7) 17 (34.7) 5 (31.2)

Sibling (full or half) (%) 52 (31.9) 36 (36.7) 10 (20.4) 6 (37.5)

Other§ (%) 4 (2.4) 2 (2.1) 2 (4.1) 0

CMV serostatus

R−/D− (%) 29 (17.8) 14 (14.3) 9 (18.4) 6 (37.5)

R−/D+ (%) 29 (17.8) 19 (19.4) 10 (20.4) 0

R+/D+ (%) 79 (48.5) 51 (52) 19 (38.8) 9 (56.2)

R+/D− (%) 26 (15.9) 14 (14.3) 11 (22.4) 1 (6.3)

ALL, acute lymphoblastic leukemia; AML, acute myeloblastic leukemia; CDC, Centers for Disease Control and Prevention; CR, complete remission; MDS, myelodysplastic syndrome; NGS,
next-generation sequencing; R+/D−, recipient seropositive and donor seronegative, TBI, total-body irradiation.
*Pre-B (n = 80), Ph+ Pre-B (n = 9), and T (n = 9).
†AML (n = 32), FLT3-interal tandem duplication AML (n = 5), MDS (n = 7), and secondary MDS/AML (n = 5).
‡Mixed phenotype acute leukemia (MPAL; n = 5), Ph+ MPAL (n = 3), non-Hodgkin Lymphoma (n = 5), juvenile myelomonocytic leukemia (n = 2), and chronic myelogenous leukemia

accelerated phase (n = 1).
§Other donors included: uncle (n = 2), cousin (n = 1), and daughter (n = 1).
||Targeted agents included dasatinib (n = 13) and sorafenib (n = 6).

6006 DVORAK et al 10 DECEMBER 2024 • VOLUME 8, NUMBER 23



Table 1 (continued)

Patient or transplant factor Overall ALL* AML/MDS† Other‡

Conditioning

Melphalan based (%) 65 (39.9) 31 (31.7) 22 (44.9) 12 (75)

Busulfan based (%) 31 (19) 6 (6.1) 23 (46.9) 2 (12.5)

TBI based (%) 67 (41.1) 61 (62.2) 4 (8.2) 2 (12.5)

ATG timing

Proximal (day -10 or closer) (%) 26 (16) 15 (15.3) 10 (20.4) 1 (6.3)

Distal (day -11 or further) (%) 127 (84) 83 (84.7) 39 (79.6) 15 (93.7)

Targeted agent after HCT|| (%) 19 (11.7) 9 (9.2) 5 (10.2) 5 (31.3)

ALL, acute lymphoblastic leukemia; AML, acute myeloblastic leukemia; CDC, Centers for Disease Control and Prevention; CR, complete remission; MDS, myelodysplastic syndrome; NGS,
next-generation sequencing; R+/D−, recipient seropositive and donor seronegative, TBI, total-body irradiation.
*Pre-B (n = 80), Ph+ Pre-B (n = 9), and T (n = 9).
†AML (n = 32), FLT3-interal tandem duplication AML (n = 5), MDS (n = 7), and secondary MDS/AML (n = 5).
‡Mixed phenotype acute leukemia (MPAL; n = 5), Ph+ MPAL (n = 3), non-Hodgkin Lymphoma (n = 5), juvenile myelomonocytic leukemia (n = 2), and chronic myelogenous leukemia

accelerated phase (n = 1).
§Other donors included: uncle (n = 2), cousin (n = 1), and daughter (n = 1).
||Targeted agents included dasatinib (n = 13) and sorafenib (n = 6).
42.5-84.9 for R−/D+ vs 70%; 95% CI, 59-81 for R+/D+ vs 30.9%;
95% CI, 9.5-52.3 for R+/D−; P < .001).

ATG exposure and outcomes

We identified 4 quadrants (Qs) of predicted pre- and post-HCT
ATG exposure associated with outcomes (Figure 1). Q1 (n = 52)
had a high pre-HCT AUC (≥50 AU per day per milliliter) and a low
AUC after HCT (<12 AU per day per liter); Q2 (n = 47) had a low
pre-HCT AUC (<50 AU per day per milliliter) and a low post-HCT
AUC (<12 AU per day per liter); Q3 (n = 13) had a low pre-HCT
AUC (<50 AU per day per milliliter) and a high post-HCT AUC
(≥12 AU per day per liter); and Q4 (n = 51) had a high pre-HCT
AUC (≥50 AU per day per milliliter) and a high AUC after HCT
(≥12 AU per day per liter). Q4 had the highest 3-year NRM rates of
29.7% (95% CI, 13.4-46) when compared with Q1 (6.2%;
95% CI, 0.1-13.1), Q2 (10.2%; 95% CI, 0.1-22.2), or Q3 (12.5%;
95% CI, 0.1-35.4) (P = .02). Q1 had the lowest 3-year relapse
incidence of 7.7% (95% CI, 0.1-16.1) when compared with Q2
(28.2%; 95% CI, 13.9-42.5), Q3 (62.4%; 95% CI, 8.9-99.9), or
Q4 (31.6%; 95% CI, 16.9-46.3) (P = .01). The lower NRM and
relapse translated into Q1 having the best 3-year DFS of 86.5%
(95% CI, 76.3-96.7) when compared with Q2 (64.6%; 95% CI,
49.1-80.1), Q3 (32.9%; 95% CI, 0.1-80.5), or Q4 (48.2%;
95% CI, 22.1-63.3) (P < .001; Figure 2A). When combining Q2 to
Q4 into a nonoptimal exposure group, a significantly worse 3-year
DFS of 54.8% (95% CI, 44.2-65.4; n = 111) was obtained when
compared with the optimal exposure of Q1 for which the 3-year
DFS was 86.5% (95% CI, 76.3-96.7; n = 52; P < .001;
Figure 2B). This was mainly driven by the lower relapse rates in Q1
(P = .002), although there was also a trend toward lower NRM in
Q1 (P = .08; supplemental Table 3). The optimal exposure group
had superior 3-year OS of 91.4% (95% CI, 83.4-99.4) as opposed
to 66.6% (95% CI, 56.2-77) in the nonoptimal exposure group
(P = .007).

There was no difference in the day 100 incidence of grade 2 to 4
(P = .6) or grade 3 to 4 (P = .52) aGVHD by predicted ATG
exposure (supplemental Table 6). The 3-year incidence of cGVHD
was higher in patients with a low pre-HCT AUC; when comparing
an AUC before HCT of ≥50 with an AUC of <50 AU per day per
10 DECEMBER 2024 • VOLUME 8, NUMBER 23
milliliter, the 3-year incidence of cGVHD was 12.6% (95% CI,
4.8-20.4) vs 34.1% (95% CI, 16.3-51.9; P = .01). Q1 had superior
3-year cGRFS of 77.8% (95% CI, 65.5-90.1) when compared with
grouped Q2 to 4 (42.3%; 95% CI, 32.1-52.5; P < .001; Figure 3).
CD3 and CD4 reconstitution were worse at day 100 for patients in
Q3 and Q4, driven by exposure after HCT of ≥12 AU per day per
liter (supplemental Tables 7 and 8).

Of note, in the sensitivity analyses, certain other cutoff points for
determining optimal exposure performed similar in terms of 3-year
DFS as the chosen exposure before HCT cutoff of ≥50 AU per
day per milliliter and the after HCT cutoff of <12 AU per day
per milliliter, especially at a before HCT cutoff of ≥45 AU per day
per milliliter and an after HCT cutoff of <10 AU per day per milliliter
(supplemental Table 11). However, the chosen cutoff points
represent an ideal balance between optimizing 3-year DFS, while
also being an exposure into which a large number of patients
naturally fell with standard mg/kg dosing and is thus a potentially
targetable exposure.

Factors that impacted ATG exposure and outcomes

The association of various patient and transplant characteristics
with rATG exposures and outcomes are reported in supplemental
Tables 9 and 10. The PK of rATG demonstrated higher clear-
ance in younger children; the model predicted that patients <10
years of age had rATG exposures most often found in Q2 (both the
pre- and post-HCT AUCs were low), whereas those ≥10 years of
age were most often found in Q4 (both pre- and post-HCT AUCs
were high) (supplemental Figure 1A). Patients with overweight or
obesity were overrepresented in exposure Q4 (supplemental
Figure 1B), although 29% of patients with overweight and 37%
of patients with obesity received an rATG dose of ≤2.5 mg/kg per
dose, which adjusted some of them into Q1 exposure. It should
also be noted that all patients <2 years of age were in exposure
Q2. The timing of administration of rATG impacted the predicted
exposure. Patients who started rATG more proximal to HCT (day
-10 or closer) were never in Q1 (high pre-HCT AUC, low post-HCT
AUC) and most often in Q3 (low pre-HCT AUC, high post-HCT
AUC; supplemental Figure 1C). As expected, patients with high
admission ALCs (≥1200 × 109/L) were primarily found in Q1 and
rATG PK IN AB-TCD HAPLOIDENTICAL HCT 6007
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Figure 1. Identification of predicted rATG pre- and post-HCT exposure quadrants. P values were determined using the 2-sided log-rank test.
Q2, whereas patients with low ALCs were most often found in Q4
(supplemental Figure 1D).

Bivariate and subgroup analyses

In the bivariate analyses, after controlling for ATG exposure
quadrant (optimal [Q1] vs nonoptimal [Q2-4]), being CMV-
seropositive with a seronegative donor (P = .002) and having a
haploidentical sibling (P = .007) were associated with an increased
hazard ratio (HR) for NRM (Table 2). When controlling for age,
donor type, and CMV serostatus, ATG exposure quadrant was not
associated with an increased HR for NRM (Table 3). However, for
patients with haploidentical sibling grafts, those with optimal rATG
exposure (Q1) had a 3-year NRM of 0% (95% CI, 0-23.9; n = 15)
as opposed to 40% (95% CI, 20.8-59.2; n = 37) for those with
suboptimal rATG exposure (Q2-4) (P = .01; supplemental
Figure 2). In the bivariate analysis that controlled for ATG expo-
sure quadrant (optimal vs nonoptimal), being MRD positive (P <
.001) and having CMV R+/D− serostatus (P = .02) were associated
with an increased HR for relapse (Table 2). When controlling for
MRD status and CMV serostatus, ATG exposure quadrant was
significantly associated with an increased HR for relapse (P = .003
and P = .007, respectively; Table 3).

In the bivariate analysis that controlled for ATG exposure quadrant
(optimal vs nonoptimal), being MRD positive (P = .003) and having
CMV R+/D− serostatus (P < .001) were associated with an
increased HR for 1-DFS (Table 2). When controlling for MRD
status, CMV serostatus, and CD34 dose, ATG exposure quadrant
was significantly associated with an increased HR for relapse
(P = .001; P = .002; and P = .002, respectively; Table 3). Patients
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who were ≥10 years of age with optimal rATG exposure (Q1) had
a 3-year DFS of 86.2% (95% CI, 73.5-98.9; n = 35) as opposed to
48.2% (95% CI, 34.3-62.1; n = 69) for those with suboptimal
rATG exposure (Q2-4) (P < .001). The difference among those
<10 years of age was less profound. The 3-year DFS was 87.4%
(95% CI, 70.9-99.9; n = 17) for those in Q1 vs 64.6% (95% CI,
48.7-80.5; n = 42) for those in Q2 to 3 (P = .19; Figure 2C).

For patients who were MRD negative, those with optimal rATG
exposure had a 3-year relapse incidence of 0% (95% CI, 0-11.8;
n = 35) as opposed to 24.1% (95% CI, 12.9-35.3; n = 84) among
those with suboptimal exposure (P = .008) (Figure 4A) and a 3-
year DFS of 90.6% (95% CI, 80.4-99.9) as opposed to 61.5%
(95% CI, 49.5-73.5) among those with suboptimal exposure
(P = .01; Figure 4B). For patients who were MRD positive, those
with optimal rATG exposure had a 3-year relapse incidence of
25.5% (95% CI, 0.1-51.2; n = 14) as opposed to 59.2% (95% CI,
38.2-80.2; n = 25) among those with suboptimal exposure
(P = .02; Figure 4A) and a 3-year DFS of 74.5% (95% CI, 48.8-
99.9) as opposed to 36.7% (95% CI, 17.1-56.3) among those with
suboptimal exposure (P = .01; Figure 4B).

Discussion

We identified that low pre-HCT exposures and high post-HCT
exposures of rATG were associated with worse NRM, relapse,
and survival among recipients who underwent AB-TCD hap-
loidentical HCT. The other patient-specific factors found to be
independent predictors of poor outcomes were positive MRD
status before HCT and the use of a CMV seronegative donor for a
10 DECEMBER 2024 • VOLUME 8, NUMBER 23
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seropositive patient. A pre-HCT exposure of >50 AU per day per
milliliter in conjunction with a post-HCT exposure of <12 AU per
day per milliliter was determined to represent the optimal exposure
to support DFS, primarily by minimizing relapse, although some
other rATG exposure cutoff points also performed well, suggesting
Table 2. Bivariate analysis of factors associated with NRM, relapse,

nonoptimal)

Variable and categories n

NRM

n events

SHR estimate*

(95% CI) P value n e

Age

<10 y 59 3 1.0 .055

≥10 y 104 15 3.38 (0.98-11.71)

MRD status‡

Negative 119 15 — —

Positive 39 2

Donor§

Parent 107 6 1.0 .007

Full or half sibling 52 12 3.89 (1.46-10.38)

CMV serostatus

All others 137 11 1.0 .002

R+/D− 26 7 4.68 (1.79-12.27)

CD34 dose

<15 × 106/kg 75 9 — —

≥15 × 106/kg 88 9

Boldface values are considered to be statistically significant.
R+/D−, recipient seropositive and donor seronegative.
*Determined using Fine-Gray competing risk regression.
†Determined using Cox regression proportional hazard models.
‡Omitted unknown MRD status (n = 4).
§Omitted other haploidentical donors (n = 4).
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that there may be a range of optimal doses to target in an effort to
mitigate poor outcomes for this transplant approach. A pre-HCT
exposure of >50 AU per day per milliliter was also associated
with lower rates of cGVHD, potentially via improved elimination of
host antigen-presenting cells, a finding that has been reported
previously.11,18 Optimal exposure of rATG was therefore also
associated with higher cGRFS. Previous studies on rATG expo-
sure suggested that higher pre-HCT exposures led to improved
clearance of host T cells, potentially facilitating improved post-HCT
expansion of infused donor T cells and GVL.19 Conversely, higher
post-HCT exposures may lead to excess in vivo depletion of
infused donor lymphocytes cells, thereby slowing immune recon-
stitution and abrogating GVL.

Previous PK- pharmacodynamics analyses demonstrated that
weight-based dosing of rATG led to highly variable exposures
before and after HCT, especially in patients >10 years of age.18

Exposure to rATG was associated with survival in several studies
of adult and pediatric patients who underwent T-replete HCT7,18,20

(optimal exposure was identified as a pre-HCT AUC of >40 AU per
day per milliliter and a post-HCT AUC of <50 AU per day per
milliliter), children who underwent umbilical cord blood HCT
(optimal post-HCT exposure was originally identified as <16 AU
per day per milliliter and more recently as <10 AU per day per
milliliter),8,10 and in adults and children who underwent CD34-
selected matched donor HCT without pharmacologic GVHD pro-
phylaxis (optimal post-HCT exposure was identified as <30 AU per
day per milliliter, but immune reconstitution was even better with
lower exposures).9 Because in AB-TCD haploidentical HCT, a low
dose of donor T cells (primarily TCR-G/D CD3+ cells with a median
of 7.7 × 106 cells per kg)6 is administered in a range comparable
and 1-DFS controlling for ATG exposure quadrant (optimal vs

Relapse 1-DFS

vents

SHR estimate*

(95% CI) P value n events

HR estimate†

(95% CI) P value

12 — — 15 — —

19 34

15 1.0 <.001 30 1.0 .003

16 4.45 (2.19-9.05) 18 2.45 (1.36-4.41)

25 — — 31 — —

5 17

23 1.0 .02 34 1.0 <.001

8 2.62 (1.16-5.91) 15 3.33 (1.8-6.16)

19 — — 28 1.0 .08

12 18 0.6 (0.34-1.06)
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Table 3. Bivariate analysis of ATG exposure association with NRM, relapse, and DFS with controlling for other factors

Variable and categories n

NRM
SHR estimate*

(95% CI) P value

Relapse
SHR estimate*

(95% CI) P value

1-DFS
HR estimate†

(95% CI) P valuen events n events n events

Univariate

ATG exposure quadrant

Q1 (before >50; after <12) 52 3 1.0 .1 3 1.0 <.001 6 1.0 <.001

Nonoptimal (Q2-4) 111 15 2.82 (0.82-9.78) 28 5.32 (1.62-17.53) 43 4.06 (1.72-9.54)

Bivariate controlling for age (<10 y vs ≥10 y)

ATG exposure quadrant

Q1 (before >50; after <12) 52 3 1.0 .07 — — — — — —

Nonoptimal (Q2-4) 111 15 3.1 (0.91-10.95)

Bivariate controlling for MRD status (negative vs
positive)

ATG exposure quadrant

Q1 (before >50; after <12) 52 — — — 3 1.0 .003 6 1.0 .001

Nonoptimal (Q2-Q4) 111 28 6.33 (1.91-20.97) 43 4.24 (1.79-10.03)

Bivariate controlling for donor type (parent vs sibling)

ATG exposure quadrant

Q1 (before >50; after <12) 52 3 1.0 .11 — — — — — —

Nonoptimal (Q2-Q4) 111 15 2.76 (0.8-9.6)

Bivariate controlling for CMV serostatus (all others vs
R+/D−)

ATG exposure Q3

Q1 (before >50; after <12) 52 3 1.0 .14 3 1.0 .007 6 1.0 .002

Nonoptimal (Q2-Q4) 111 15 2.59 (0.74-9.05) 28 5.11 (1.55-16.86) 43 3.84 (1.63-9.05)

Bivariate controlling for CD34 dose (<15 × 106/kg
vs ≥15 × 106/kg)

ATG exposure quadrant

Q1 (before >50; after <12) 52 — — — — — — 6 1.0 .002

Nonoptimal (Q2-Q4) 111 43 3.99 (1.7-9.4)

Boldface values are considered to be statistically significant.
R+/D−, recipient seropositive and donor seronegative.
*Determined using Fine-Gray competing risk regression.
†Determined using Cox regression proportional hazard models.
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Figure 4. Predicted rATG optimal exposure and MRD status effects on cumulative incidence of relapse (A) and DFS (B). P values were determined using the 2-sided

log-rank test.
with that of umbicial cord blood transplant (median dose of 3.3 ×
106 to 4.8 × 106 cells per kg),21,22 our identified optimal exposure
is similar to these findings. A prospective, single-arm phase 2 trial
of 58 pediatric patients who underwent T-replete HCT used model-
based dosing of rATG to achieve the goal exposure and to validate
the original reports. This demonstrated improved CD4 reconstitu-
tion when compared with historic controls and improved OS in the
group that received bone marrow grafts.11

Identification of an optimal rATG exposure for patients who are
undergoing AB-TCD HCT for hematologic malignant disease has
similar potential to improve outcomes. A report of 149 pediatric
patients who underwent AB-TCD HCT (mainly with haploidentical
donors) with complete omission of rATG and replacement with
abatacept and tocilizumab demonstrated similar rates of rejection
and GVHD with lower risks for NRM in the rATG-free group,
although there were some potentially important differences
between the study cohort and the historic control.23 In general, our
study suggests that the dosing strategy employed in the PTCTC
ONC1401 study of 3 mg/kg per day on days -12 to -10 for all
patients should be modified to account for slower clearance in
adolescents and young adults with low ALCs and faster clearance
in younger children with high ALCs. Our data also support the
continued use of a day -12 start date for rATG with this platform,
because more proximal timing generally leads to high post-HCT
levels and significantly higher relapse rates and suggests that
optimization of that dose based on model prediction may lead to
better outcomes. Of note, given the differential elimination of the 2
formulations of rATG, Thymoglobulin and Grafalon, these findings
are confined to approaches using Thymoglobulin.24
6012 DVORAK et al
We demonstrated that rATG exposure interacts with MRD status to
influence patient outcomes. Among patients who were MRD nega-
tive before HCT, no relapses occurred in the optimal rATG exposure
group (Q1), and the only deaths were the consequence of NRM. This
suggests that this is a patient group in which safety of the HCT
approach could be prioritized by using less intensive conditioning
regimens. Among patients who were MRD positive before HCT,
excellent 3-year DFS rates of 74.5% could be achieved in the optimal
rATG exposure group, demonstrating the preservation of GVL in this
high-risk population. The sample size of patients with targetable
lesions who received post-HCT maintenance with tyrosine-kinase or
FLT3 inhibitors was small (n = 19); however, it was noteworthy that
none of these patients relapsed. This suggests that the use of tar-
geted post-HCT maintenance may allow sufficient time for adequate
GVL to develop, but this need to be validated prospectively.

We did not confirm the previous finding from the PTCTC
ONC1401 study that patients ≥10 years of age had inferior DFS.
The population in this study differed by containing Complete
Remission 3+ patients, more MRD-positive patients, and diseases
other than acute lymphoblastic leukemia/acute myeloid leukemia.
Notably, older patients did have higher predicted pre- and post-
HCT rATG exposures, and the improvement in DFS for such
patients when in the optimal rATG exposure group was particularly
striking (86.2% vs 48.2% in the nonoptimal exposure group). We
identified a strong association between R+/D− CMV serostatus
and NRM. Because no patients were identified to die directly from
CMV, further work will be required to determine the mechanisms
underpinning this and to develop methods to abrogate this risk
when seronegative donors must be used for a seropositive patient.
10 DECEMBER 2024 • VOLUME 8, NUMBER 23



This study has several limitations. First, we used predicted expo-
sure of rATG based on a PK model validated in other transplant
settings instead of directly measured levels, and some patients may
have had actual exposures either slightly higher or lower than
predicted. However, the model could be studied prospectively and
correlated with actual levels for further refinement in this setting.
This finding requires validation in an independent cohort of patients
who are undergoing AB-TCD haploidentical HCT using Thymo-
globulin. The variability in dosing and timing of rATG, although
accounted for by the PK model, introduces potential bias regarding
why certain patients were given a regimen other than 3 mg/kg over
3 doses starting on day -12. Although, to our knowledge, this was
one of the largest reports of AB-TCD haploidentical HCT that used
Thymoglobulin to date, some analyses were limited by small
numbers in certain subgroups. Finally, the model employed to
predict rATG AUCs does not account for possible early exposure
to granulocyte–colony stimulating factor, administration of which
was not collected, and this might enhance T-cell clearance by
residual ATG exposure.25

In conclusion, we identified that among patients who underwent
AB-TCD haploidentical HCT for treatment of a hematologic
malignancy, certain rATG exposures (such as pre-HCT AUC >50
AU per day per milliliter and post-HCT AUC <12 AU per day per
milliliter) led to lower rates of NRM, relapse, and cGVHD and to
improved DFS and cGRFS. Validation with prospective drug levels
and an independent cohort would strengthen these conclusions.
Our data indicate that model-based dosing of rATG to target
optimal pre- and post-HCT exposure levels may be superior to
weight-based dosing in patients who are undergoing AB-TCD
HCT.
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