UC Santa Cruz UC Santa Cruz Previously Published Works

Title

Dissolved hydrogen and nitrogen fixation in the oligotrophic North Pacific Subtropical Gyre

Permalink https://escholarship.org/uc/item/0430307m

Journal Environmental Microbiology Reports, 6(1)

ISSN 1758-2229

Authors

Wilson, Samuel T Valle, Daniela A Robidart, Julie C <u>et al.</u>

Publication Date

2014-02-01

DOI

10.1111/1758-2229.12127

Peer reviewed

1	Dissolved hydrogen and nitrogen fixation in the oligotrophic North Pacific Subtropical
2	Gyre

- 3
- 4 Samuel T. Wilson^{*1,2}, Daniela A. del Valle^{1,2}, Julie C. Robidart^{2,3}, Jonathan P. Zehr^{2,3}
- 5 and David M. Karl^{1,2}
- 6
- ⁷ ¹ Department of Oceanography, School of Ocean and Earth Science and Technology,
- 8 University of Hawaii, Honolulu, Hawaii 96822
- 9 ² Center for Microbial Oceanography: Research and Education, University of Hawaii,
- 10 1950 East-West Road, Honolulu, Hawaii 96822
- ³Ocean Sciences, University of California, Santa Cruz, California 95064
- 12
- 13 *corresponding author
- 14 Tel: 808-956-0565; Fax: 808-956-0581. Email: stwilson@hawaii.edu
- 15
- 16

17 Summary

18 The production of hydrogen (H_2) is an inherent component of the biological dinitrogen 19 (N_2) fixation process with the theoretical stoichiometry predicting an equimolar 20 production of H_2 for every mole of N_2 fixed. However, while the stoichiometry of N_2 21 fixation can be evaluated in high biomass cultures of diazotrophs, conducting the relevant 22 measurements for a field population is more complex. Independent measurements of N_2 23 fixation, H₂ consumption, and dissolved H₂ concentrations were performed on surface 24 water samples collected in the oligotrophic North Pacific Ocean to constrain the cycling 25 of H₂ associated with N₂ fixation. The quantity of H₂ consumed by microbial oxidation 26 was equal to 1-7% of ethylene produced during the acetylene reduction assay and to 11-63% of ¹⁵N₂ assimilation. Varying abundance of *Crocosphaera* and *Trichodesmium* as 27 28 revealed by *nifH* gene abundance broadly corresponded with diel changes observed in 29 both N₂ fixation and H₂ oxidation. However no corresponding changes were observed in 30 the dissolved H_2 concentrations which remained consistently supersaturated (147–560%) 31 relative to atmospheric equilibrium. The results from this field study allow the efficiency 32 of H₂ cycling by natural populations of diazotrophs to be compared to their cultured 33 representatives. The findings indicate that the extent to which dissolved H_2 34 concentrations correspond to N₂ fixation in the open ocean may depend less upon the 35 species of diazotrophs present in the water column and more upon relevant environmental 36 parameters e.g. light intensity or the presence of other H₂-metabolizing microorganisms. 37

38 Introduction

- 39 In the surface waters of the tropical and subtropical open ocean, dissolved H_2
- 40 concentrations typically range from $1-3 \text{ nmol } 1^{-1}$, equivalent to 300–900%
- 41 supersaturation relative to atmospheric equilibrium (Herr et al., 1984; Conrad and Seiler,
- 42 1988; Moore *et al.*, 2009). The magnitude of the dissolved H_2 pool is determined by the
- 43 'oceanic H₂ cycle' which reflects the balance between production and consumption
- 44 processes. As such, the main source of H_2 is considered to be biological dinitrogen (N_2)
- 45 fixation (Scranton *et al.*, 1987; Herr *et al.*, 1984; Moore *et al.*, 2009) whereby N₂ is
- 46 reduced to ammonia (NH₃), as shown in Equation 1:
- 47 (Eq. 1) $N_2 + 8 H^+ + 8 e^- + 16 ATP \rightarrow 2 NH_3 + H_2 + 16 ADP + 16 Pi$
- 48 where ADP and ATP are adenosine-5'-diphosphate and adenosine-5'-triphosphate
- respectively, H⁺ is hydrogen ion, e⁻ is electron, and Pi is inorganic phosphorus (Simpson
 and Burris 1984).
- 51 While N_2 fixation is more commonly measured than H_2 production, it is unwise to use the
- 52 theoretical stoichiometry predicted in Eq. 1 to provide an estimate of H_2 production
- 53 associated with nitrogenase activity. This is due to several inherent issues associated
- 54 with H_2 cycling linked to N_2 fixation, as listed below:

(i) Measurements of H_2 production alongside measurements of N_2 fixation are always less than the equimolar stoichiometry predicted in Equation 1 (Schubert and Evans, 1976; Wilson *et al.*, 2010). This is because all diazotrophs contain uptake hydrogenases that reassimilate a variable portion of H_2 released during N_2 fixation to conserve energy (Burns and Hardy, 1975, Tamgnini *et al.*, 2007).

60	(ii) Rates of net H ₂ production by diazotrophs appear to be highly species-specific.
61	Laboratory-maintained cultures of two diazotrophs, Crocosphaera and Trichodesmium
62	produce H_2 at approximately 1 and 25% of their respective rates of N_2 fixation, as
63	measured by the acetylene reduction (AR) assay (Wilson et al. 2010). The comparatively
64	high rates of net H ₂ production by <i>Trichodesmium</i> are a consequence of the cells fixing
65	N_2 during the day-time as the supply of photosynthetically-derived energy and reductant
66	decreases the need to re-assimilate the H_2 as an energy source, resulting in an increase of
67	net H ₂ production (Wilson et al., 2012b). By comparison, Crocosphaera fixes N ₂ during
68	the dark period restricting the supply of cellular energy to nitrogenase from the
69	respiration of photosynthetically-fixed carbon (Waterbury et al., 1988; Berman-Frank et
70	al., 2007). This causes a greater demand for the energy and reductant produced from
71	oxidizing H_2 and therefore decreases the net H_2 production (Wilson <i>et al.</i> , 2010).
72	(iii) Field measurements of N_2 fixation can be conducted using the $^{15}N_2$ assimilation
73	technique or the AR assay. The ${}^{15}N_2$ tracer technique is considered to be a measure of net
74	N ₂ fixation (Montoya et al., 1996; Mulholland et al., 2004). The AR assay measures total
75	nitrogenase activity by quantifying the reduction of acetylene (C_2H_2) to ethylene (C_2H_4)
76	and therefore represents an indirect assay of N_2 fixation (Burris, 1975). Because H_2
77	production would be expected to scale on gross N_2 fixation (Eq. 1), the AR assay could
78	represent a better correlative measurement to comparing N_2 fixation and H_2 cycling.
79	Due to the issues listed above, to define the role of N_2 fixation in the global H_2 cycle
80	(e.g. Price et al., 2007) it is imperative to conduct field measurements of both N_2 fixation
81	and H_2 production. In this study, simultaneous measurements of N_2 fixation, biological
82	H ₂ consumption, and dissolved H ₂ concentrations were conducted in the surface waters of

83	the open ocean where diazotrophs are present. Results are presented of the diazotrophic
84	community composition (as measured by <i>nifH</i> gene abundance and diversity), rates of net
85	and gross N_2 fixation (as measured by $^{15}N_2$ tracer assimilation and AR assay,
86	respectively), H_2 concentrations, and H_2 oxidation rates (using ${}^{3}H_2$ as a tracer).
87	Quantitative interpretation of the field data is aided by the recent measurement of net H_2
88	production and N_2 fixation in laboratory cultures of diazotrophs to infer the relative
89	contribution of the representative marine N_2 fixing microorganisms to the oceanic H_2
90	cycle.

91

92 **Results and discussion**

93 Sampling overview

94 The oceanographic cruise was located approximately 250 km north of Oahu, Hawaii in 95 the North Pacific Subtropical Gyre (NPSG) and occurred between 6 and 21 September 96 2011. The sampling stations were occupied along north-western edge of an anticyclonic 97 eddy spanning a total distance of 90 km and the subsequent westward section of the 98 cruise track which spanned 80 km. Vertical profiles of dissolved H₂ were conducted 99 daily alongside biogeochemical and hydrographic measurements. Biological rate 100 measurements of N₂ fixation and H₂ consumption were conducted at 3 sampling stations: 101 Station (Stn) 3, 7, and 13 which were sampled on the 7, 9, and 18 September 2011, 102 respectively. Descriptions of the hydrographic conditions and biogeochemical properties 103 of the water column are available in the accompanying Supplementary Information and 104 also online at http://hahana.soest.hawaii.edu/cmorebiolincs/biolincs.html.

105

106 *Dissolved* H₂ concentrations

107 Dissolved H₂ concentrations were super-saturated with respect to atmospheric 108 equilibrium in the upper 75 m of the water column (Fig. 1). Overall, dissolved H_2 concentrations in the surface mixed layer (0-45 m) ranged from $0.5-1.9 \text{ nmol } l^{-1}$, with an 109 average concentration of 0.83 nmol 1⁻¹, equivalent to 250% supersaturation. On four 110 111 separate occasions the concentrations of dissolved H₂ in the mixed layer exceeded 1 nmol 1^{-1} (Fig. 1). The concentrations of H_2 measured in surface seawater during this cruise are 112 113 consistent with measurements in other marine environments (e.g. the Atlantic, 114 Mediterranean, and Pacific Ocean) revealing a persistent supersaturation of dissolved H_2 115 in the near-surface seawater (Conrad and Seiler 1988, Herr et al., 1984, Moore et al., 116 2009, Scranton *et al.*, 1982). At depths exceeding 75 m a progressive depletion in H_2 117 concentrations was observed with values approaching undersaturation with respect to 118 atmospheric equilibrium by a depth of 100 m. Vertical profiles of N₂ fixation in the 119 NPSG measured on previous occasions (Church et al., 2009, Grabowski et al., 2008) 120 similarly show a decrease at 75 m, providing indirect evidence that the dissolved H_2 is 121 derived from nitrogenase activity.

122

123 N_2 fixation

124 N_2 fixation rate measurements, determined by both the ${}^{15}N_2$ tracer assimilation and the

125 AR assay, were conducted at Stn 3, 7 and 13. The overall temporal pattern of N_2 fixation

- 126 changed between the stations from an initial prevalence during the night-time, to a
- 127 subsequent dominance during the day-time. Specifically, rates of ${}^{15}N_2$ assimilation
- during the night-time (0.22 nmol $l^{-1} h^{-1}$) exceeded the day-time (0.08 nmol $l^{-1} h^{-1}$) at Stn 3

129	(Fig. 2A). In contrast, at Stn 13, rates of ${}^{15}N_2$ assimilation in whole seawater were
130	highest (0.26 nmol $l^{-1} h^{-1}$) during the day-time, compared to the rates during the night-
131	time (0.04 nmol $l^{-1} h^{-1}$) (Fig. 2C). No significant difference was observed between the
132	day-time and night-time measurements of N_2 fixation at Stn 7. At all sampling stations,
133	the rate of ${}^{15}N_2$ assimilation in whole seawater samples exceeded the comparative rates in
134	the accompanying $<\!10 \ \mu m$ size fractionated seawater samples. Comparison of the $<\!10$
135	μm size fraction across the three stations reveals low variability in the rate of $^{15}\mathrm{N}_2$
136	assimilation (0.04–0.06 nmol $l^{-1} h^{-1}$) during the day-time. In contrast, night-time rates of
137	$^{15}N_2$ assimilation for the ${<}10~\mu m$ size fraction varied by an order of magnitude,
138	decreasing from 0.14 nmol l^{-1} h ⁻¹ at Stn 3, to 0.01 nmol l^{-1} h ⁻¹ at Stn 13 (Fig. 2A-C).
139	AR was measured on whole seawater samples and a significant increase in C_2H_4
140	concentrations was always detected during the 3-4 h incubations (Fig. 2D-F). The rates
141	of C_2H_4 production support the $^{15}N_2$ assimilation measurements with higher rates during
142	the night-time (2.9 nmol $l^{-1} h^{-1}$) compared to the day-time (1.8 nmol $l^{-1} h^{-1}$) at Stn 3.
143	Furthermore, at Stn 13, the diel pattern of C_2H_4 production changed with day-time (3.3
144	nmol $l^{-1} h^{-1}$) exceeding night-time (0.4 nmol $l^{-1} h^{-1}$) (Fig. 2F). Overall, the ratio of C_2H_4 to
145	$^{15}N_2$ assimilation varied from 9–22 which exceeds the theoretical ratio of 3:1 (Capone
146	1993) by 3–7 fold. It should be noted that the theoretical ratio of 3:1 is based on the
147	difference between 2 hydrogen ions required to reduce C_2H_2 to C_2H_4 and 6 hydrogen ions
148	needed to reduce N_2 to $2NH_3$. The reasons for the discrepancies between the theoretical
149	and observed ratios have previously been discussed (e.g. Graham et al., 1980) and focus
150	mainly on the excretion of N from the cell and the role of H_2 . There is insufficient data in
151	this study to contribute to this discussion, however we do note from our work and the

152	relevant literature that there is increased discrepancy in the C_2H_4 : ${}^{15}N_2$ assimilation ratio
153	in field measurements compared to culture-based analyses. Furthermore there is a lack of
154	experimental testing on the effect of key environmental parameters on the C_2H_4 : ¹⁵ N ₂
155	assimilation ratio e.g. light intensity or nutrient concentrations (Mague et al., 1977).
156	
157	Diazotroph community structure
158	Representative N_2 fixing microorganisms in the open ocean include: (i) the
159	filamentous, non-heterocystous cyanobacterium Trichodesmium, (ii) the heterocystous
160	cyanobacteria (e.g. Richelia and Calothrix) that form symbioses with eukaryotic algae,
161	and (iii) unicellular cyanobacteria including Group A (termed UCYN-A) and Group B
162	(e.g. Crocosphaera) (Mague et al., 1977; Carpenter and Romans 1991; Zehr et al., 2001).
163	The analysis of <i>nifH</i> gene abundances revealed Group B was the most abundant
164	diazotroph for the first two sampling occasions (Stn 3 and 7), with 4.3 x 10^5 and 1.3 x 10^6
165	gene copies 1^{-1} . At the third sampling site (Stn 13), <i>nifH</i> gene copies of Group B
166	decreased to 2.9 x 10^4 gene copies l^{-1} , in contrast to <i>Trichodesmium nifH</i> gene copies
167	which increased to a maximum of 1.6×10^6 gene copies l^{-1} (Fig. 2). The shift from a
168	Group B-dominated to a Trichodesmium-dominated diazotroph community between Stn
169	3 and 13, respectively, could help account for the change in the pattern of N_2 fixation.
170	The unicellular Crocosphaera fixes N_2 in the dark and rates of N_2 fixation were highest
171	during the night-time when Crocosphaera gene copies were most abundant. Two other
172	groups of diazotrophs were present at lower abundances throughout the cruise; UCYN-A
173	<i>nifH</i> abundance ranged from 1.6 x 10^3 to 1.9 x 10^5 gene copies 1^{-1} and the total

175	measured with a maximum abundance of 6.2×10^3 gene copies l^{-1} at Stn 13.
176	
177	Microbial consumption of H_2
178	Biological ${}^{3}\text{H}_{2}$ oxidation was measured during the day and night-time, alongside N_{2}
179	fixation rate measurements at Stn 3 and 13. Overall, the rates of biological ${}^{3}\text{H}_{2}$ oxidation
180	ranged from 15 to 42 pmol $H_2 l^{-1} h^{-1}$ (Table 1). At Stn 3, night-time rates of biological
181	${}^{3}\text{H}_{2}$ oxidation (25 pmol H ₂ l ⁻¹ h ⁻¹) exceeded day-time rates (15 pmol H ₂ l ⁻¹ h ⁻¹) by 66%.
182	In contrast, at Stn 13 the day-time rates of biological ${}^{3}H_{2}$ oxidation (42 pmol H ₂ l ⁻¹ h ⁻¹)
183	were 68% higher than night-time (25 pmol $H_2 l^{-1} h^{-1}$) (Table 1). In this respect, the
184	temporal variability in biological ${}^{3}\text{H}_{2}$ oxidation rates reflect the temporal patterns
185	observed in the rate of $^{15}\text{N}_2$ assimilation and the AR assay. The measured rates of $^3\text{H}_2$
186	oxidation were equivalent to 11-63% of $^{15}\mathrm{N}_2$ assimilation and 1-7% of $C_2\mathrm{H}_4$ production
187	as measured by the AR assay.
188	Previous measurements of biological H ₂ consumption have been reported from other
189	aquatic habitats including coastal seawater (Punshon et al., 2007), shallow lakes (Conrad
190	et al., 1983), and river systems (Paerl 1982). These previous studies have revealed H_2
191	turnover times ranging from <1 h in a eutrophic shallow lake (Conrad <i>et al.</i> , 1983) to 2–3
192	days in high-latitude coastal seawater (Punshon <i>et al.</i> , 2007). In comparison, the H_2
193	turnover times measured in this study at two sampling stations ranged from 22-40 h
194	(Table 1).
195	

heterocystous cyanobacterial gene copies were the lowest of all nifH gene groups

174

196 Estimation of the production and consumption of H_2 associated with N_2 fixation

197	The measured rates of N_2 fixation using the AR assay at Stn 3 and 13 were used to
198	estimate the production of H_2 derived from nitrogenase (Table 2). We use laboratory-
199	derived measurements of net H ₂ production by Trichodesmium and Crocosphaera
200	cultures described in the Introduction to provide upper and lower boundaries for H_2
201	production. Therefore in contrast to Price <i>et al.</i> (2007) who estimated net H_2 production
202	at 55% of N_2 fixation in the marine environment, we set maximum and minimum net H_2
203	production rates at 25% and 1% of C_2H_4 production, respectively. The resulting
204	estimates of net H_2 production range from 0.004 to 0.84 nmol $H_2 l^{-1} h^{-1}$ in the upper water
205	column. Furthermore, the calculations indicate that N_2 fixation can replenish the
206	dissolved H_2 pool in as little as 1 h and extending up to 34 hrs, with the exception of 19
207	September during the night time which has an excessively long upper estimate of 245 h
208	(Table 2).
209	The estimates of net H_2 production in surface seawater as listed in Table 2 can be
210	compared with the biological ${}^{3}\text{H}_{2}$ oxidation measurements which were conducted on the
211	same seawater samples (Table 1). The rates of ${}^{3}\text{H}_{2}$ oxidation were equivalent to $0.8 - 6.6$
212	% of the AR assay (Table 2) indicating biological consumption was equivalent to the
213	lower end of estimated rates of net H ₂ production <i>i.e.</i> comparable to rates of net H ₂
214	production by Crocosphaera. This suggests that concentrations of dissolved H_2 may
215	increase in the presence of <i>Trichodesmium</i> and stimulate the diel cycles of H_2 in surface
216	seawater as observed by Herr et al. (1984) in the South Atlantic. However in this study,
217	the increase in <i>Trichodesmium</i> abundance was not matched by an increase in net H_2
218	concentrations (Fig. 1) suggesting that field populations of Trichodesmium may re-
219	assimilate more of the H ₂ produced via nitrogenase compared to their cultured counter-

parts and are therefore more energetically efficient. Alternatively, other sinks of H_2 in the upper ocean may contribute to the loss of dissolved H_2 and these are considered in the next section.

223

H_2 224 H_2 cycling in the open ocean

225 The oceanic H₂ cycle depends not only on biological production and consumption as

discussed with reference to diazotrophs, but also physical forcing mechanisms. The

227 physical processes can be considered with respect to the sink terms for H₂, comparing

228 estimates of air-sea gas exchange and downwards diffusion with biological oxidation.

229 The downward diffusion of H₂ can be estimated from the concentration gradient between

depths of 45 and 75 m, using the vertical eddy diffusion coefficient reported by Ledwell

et al. (1993) (Table 3). The flux of H₂ to the atmosphere can be estimated according to

Equation 2, where S is the Bunsen solubility coefficient (Wiesenburg and Guinasso,

233 1979), Δp is the difference in partial pressure (p) between the atmosphere and ocean, and

k is the transfer velocity. An atmospheric H₂ concentration of 0.53 ppmv was used in the

flux calculations (Novelli *et al.*, 1999). The transfer velocity (k) was calculated

according to Wanninkhof (1992) (Equation 3) where U is the wind speed (m sec⁻¹)

normalized to 10 m above the sea surface and Sc represents the Schmidt number for H₂ at

in situ seawater temperature and salinity (Jähne *et al.*, 1987).

239 (2)
$$\mathbf{F} = \mathbf{k} \cdot \mathbf{S} \cdot \Delta p$$

240 (3) $k = 0.31 U^2 (Sc/660)^{-0.5}$

241 To obtain depth-integrated estimates of H₂ consumption we used historical

242 measurements of N₂ fixation profiles at Stn ALOHA (HOT cruises #202-213) to calculate

243	the relationship between N_2 fixation measurements at 25 m and 0-45 m depth integrated
244	values (y=46.12x + 23.8, r^2 =0.82). The conversion factor was applied to the rates of N_2
245	fixation (Fig.1) using the percentage of AR assay and $^{15}N_2$ assimilation (Table 1) to
246	provide a lower and upper estimate of biological H ₂ consumption respectively, integrated
247	across the 0-45 m depth horizon. While there is approximately an order of magnitude
248	difference between the upper and lower estimates of biological consumption (Table 3),
249	the median values for turnover times compare favorably with the rates of H_2 consumption
250	calculated from the ³ H ₂ oxidation measurements for discrete seawater samples collected
251	from 25 m (Table 1). It is evident that for this time period, biological consumption and
252	downward diffusion represented the main loss pathways for dissolved H2 in the upper
253	ocean. The estimated flux of H_2 to the atmosphere ranged from 0.03 - 0.33 $\mu mol\ m^{-2}\ h^{-1}$
254	(Table 3) and should be considered a low estimate of H_2 loss to the overlying atmosphere
255	due to the predominantly low wind speeds ($<5 \text{ m sec}^{-1}$) during the cruise.

257 Conclusion

During a 10 day sampling period in the NPSG, dissolved H₂ concentrations were 258 147-560% supersaturated with respect to atmospheric equilibrium. Measured rates of 259 $^{15}\mathrm{N}_2$ assimilation and AR revealed a change in the prevalence of N_2 fixation from night-260 261 time to day-time, which was accompanied by a decrease in the abundance in Group B 262 nifH gene copies, and an increase in the abundance of Trichodesmium nifH gene copies. 263 Prior to this study it was hypothesized that varying abundance of larger, day-time N₂ fixing microorganisms e.g. Trichodesmium might influence the dissolved pool of H₂ in 264 265 surface seawater due to their relatively high rates of net H₂ production (Wilson et al.,

266	2010). However the absence of varying dissolved H_2 concentrations indicate that field
267	populations of <i>Trichodesmium</i> may be more efficient at recycling H ₂ compared to
268	laboratory cultures. Biological H_2 oxidation measurements in seawater sampled from 25
269	m depth indicate that H_2 production needed to exceed 1-6% of C_2H_4 production to cause
270	an increase in the ambient pool of dissolved H_2 (Table 1). This is considerably lower
271	than in laboratory-maintained <i>Trichodesmium</i> cultures where the rate of net H_2
272	production was equivalent to 25% of C_2H_4 production (Wilson <i>et al.</i> , 2012b). Using
273	either the AR assay or the ${}^{15}N_2$ assimilation technique caused approximately 1 order of
274	magnitude variability when calculating the efficiency of H_2 cycling. We consider the AR
275	assay to be more representative of nitrogenase activity but recognize that it is an indirect
276	measurement and not widely used in oceanographic studies on non-concentrated seawater
277	samples. Comparison of the loss mechanisms for dissolved H_2 in the upper ocean
278	indicated that biological oxidation represented the most prevalent sink compared to
279	downward diffusion and flux to the atmosphere (Table 3).
280	It should be noted that oceanic H_2 cycling is not limited to diazotrophs, and
281	opportunistic H ₂ -oxidizing microorganisms $e.g.$ aerobic anoxygenic photosynthetic
282	bacteria and heterotrophic bacteria will also metabolize H ₂ . Furthermore, other sources
283	of H ₂ such as photochemical degradation of dissolved organic matter (Punshon and
284	Moore 2008) and fermentation (Schropp et al., 1987) should be considered when
285	considering H_2 cycling in the upper water column. Nonetheless, this study confirms that
286	wherever diazotrophs occur in the natural environment, the ecosystem becomes enriched
287	in dissolved H_2 (Conrad 1988) although the cycling of H_2 is more subtle than suggested
288	from laboratory cultures of diazotrophs.

290 Method

291 Dissolved H₂ concentrations were measured with a reduced gas analyzer (Peak 292 Laboratories, Mountain View) adapting the method of Moore et al. (2009). The rate of H_2 consumption was quantified by measuring the production of ${}^{3}H_2O$ from tracer 293 additions of ${}^{3}\text{H}_{2}$ as previously used in laboratory cultures of diazotrophs (Chan *et al.*, 294 295 1980) and environmental microbial assemblages (Paerl, 1983). To determine the rate of N₂ fixation, measurements of ¹⁵N₂ assimilation and AR were carried out as described in 296 297 Wilson et al. (2012a). The *nifH* gene abundance was quantified using the methodological 298 protocols previously published by Moisander et al. (2010). Full descriptions of all the 299 analytical methods for measuring H_2 and N_2 fixation and also the accompanying 300 hydrographic datasets are in the Supplementary Information.

301

302 Acknowledgements

303 We are grateful to the numerous scientists who contributed to the success of the C-

304 MORE BioLINCS cruise, and in particular thank Blake Watkins, Tara Clemente, Ben

305 Rubin, Ariel Rabines, Daniela Böttjer, Susan Curless who assisted with sample collection

306 and analysis. François Ascani helped with modeled FSLE projections to aid cruise

307 planning. We also thank the R/V Kilo Moana captain and crew for their support. This

- 308 research was supported by the National Science Foundation supported Center for
- 309 Microbial Oceanography: Research and Education (C-MORE) (EF0424599 to D.M.K.,
- 310 P.I.), NSF Grant OCE-1153656 (D.M.K., P.I.) and the Gordon and Betty Moore
- 311 Foundation Marine Microbiology Investigator awards to J.P.Z. and D.M.K., including the

312 MEGAMER facility grant by the Gordon and Betty Moore Foundation..

313 References

- Berman-Frank, I., Quigg, A., Finkel, Z.V., Irwin, A.J., and Haramaty, L. (2007)
- 315 Nitrogen-fixation strategies and Fe requirements in cyanobacteria. *Limnol Oceanogr* **52**:
- 316 2260–2269.
- 317 Burns, R.C., and Hardy, R.W.F. (1975) Nitrogen fixation in bacteria and higher plants.
- 318 Molecular Biology, Biochemistry, and Biophysics. Vol 21. Springer Verlag, Heidelberg,
- 319 Berlin. pp.1–189.
- 320 Burris RH (1975) The acetylene-reduction technique. In Nitrogen fixation by free-living
- 321 microorganisms. Stewart, W.D.P. (ed) Cambridge University Press, New York, p 249-
- 322 257.
- 323 Capone, D.G. (1993) Determination of nitrogenase activity in aquatic samples using the
- 324 acetylene reduction procedure. In Handbook of microbial methods in aquatic microbial
- 325 ecology. Kemp, P.F., Sherr, B.F., Sherr, E.B., and Cole, J.J. (ed) Lewis Publishers, Boca
- 326 Raton, Florida, p 621–631.
- 327 Carpenter, E.J., and Romans, K. (1991) Major role of the cyanobacterium Trichodesmium
- in nutrient cycling in the North Atlantic Ocean. *Science* **254**: 1356–1358.
- 329 Chan, Y.K., Nelson, L.M., and Knowles, R. (1980) Hydrogen metabolism of
- 330 Axospirillum brasilense in nitrogen-free medium. Can J Microbiol 26: 1126–1131.
- 331 Church, M.J., Mahaffey, C., Letelier, R.M., Lukas, R., Zehr, J.P., and Karl, D.M. (2009)
- 332 Physical forcing of nitrogen fixation and diazotroph community structure in the North
- 333 Pacific subtropical gyre. *Global Biogechem Cycles* **23**: GB2020,
- doi:10.1029/2008GB003418.

- 335 Conrad, R. (1988) Biogeochemistry and ecophysiology of atmospheric CO and H₂.
- 336 Advances in Microbial Ecol 10: 231–283.
- 337 Conrad, R., Aragno, M., and Seiler, W. (1983) Production and consumption of hydrogen
- in a eutrophic lake. *Appl Environ Microbiol* **45**: 502–510.
- 339 Conrad, R., and Seiler, W. (1988) Methane and hydrogen in seawater (Atlantic Ocean).
- 340 *Deep-Sea Res* **35**: 1903–1917.
- 341 Grabowski, M.N.W., Church, M.J., and Karl, D.M. (2008) Nitrogen fixation rates and
- 342 controls at Stn ALOHA. *Aq Microb Ecol* **52**:175–183.
- 343 Graham B.M., Hamilton, R.D., and Campbell, N.E.R (1980) Comparison of the nitrogen-
- 344 15 uptake and acetylene reduction methods for estimating the rates of nitrogen fixation
- 345 by freshwater blue-green algae. *Can. J. Microbiol.* **37**:488–493.
- 346 Herr, F.L., Frank, E.C., Leones, G.M., and Kennicutt, M.C. (1984) Diurnal variability of
- 347 dissolved molecular hydrogen in the tropical South Atlantic Ocean. *Deep-Sea Res* 31:
- 348 13–20.
- Jähne, B., Heinz, G., and Dietrich, W. (1987) Measurement of the diffusion coefficients
- of sparingly soluble gases in water. *J Geophys Res* **92**: 10,767–10,775.
- 351 Ledwell, J.R., A.J. Watson and C.S. Law (1993) Evidence for slow mixing across the
- 352 pycnocline from an open-ocean tracer-release experiment. *Nature* **364**: 701–703.
- 353 Levitus, S. (1982) Climatological atlas of the world ocean. National Oceanic and
- 354 Atmospheric Administration. Professional Paper 13, Rockville, MD., pp 1–173.
- 355 Mague, T.H., Mague, F.C., and Holm-Hansen, O. (1977) Physiology and chemical
- 356 composition of nitrogen-fixing phytoplankton in the central North Pacific Ocean. Mar
- 357 *Biol* **41**: 213–227.

- 358 Moisander, P.H., Beinart, R.A., Hewson, I., White, A.E., Johnson, K.S., Carlson, C.A.,
- 359 Montoya, J.P., and Zehr, J.P. (2010) Unicellular cyanobacterial distributions
- broaden the oceanic N_2 fixation domain. Science **327**:1512–14.
- 361 Montoya, J.P., Voss, M., Kähler, P., and Capone, D.G. (1996) A simple, high-precision,
- 362 high-sensitivity tracer assay for N₂ fixation. *Appl Environ Microbiol* **62**: 986–993.
- 363 Moore, R.M., Punshon, S., Mahaffey, C., and Karl, D.M. (2009) The relationship
- 364 between dissolved hydrogen and nitrogen fixation in ocean waters. *Deep-Sea Res* 56:
- 365 1449–1458.
- 366 Mulholland, M.R., Bronk, D.A, and Capone, D.G. (2004) Dinitrogen fixation and release
- 367 of ammonium and dissolved organic nitrogen by Trichodesmium IMS101. Aq Microb
- 368 *Ecol* **37**: 85–94.
- 369 Novelli, P.C., Lang, P.M., Masarie, K.A., Hurst, D.F., Myers, R., and Elkins, J.W. (1999)
- 370 Molecular hydrogen in the troposphere: Global distribution and budget. J. Geophys. Res.
- **104**: 30,427–30,444.
- 372 Paerl, H.W. (1982) In situ H₂ production and utilization by natural populations of N₂-
- 373 fixing blue-green algae. *Canadian J Botany* **60**: 2542–2546.
- Paerl, H.W. (1983) Environmental regulation of H_2 utilization (³ H_2 exchange) among
- natural and laboratory populations of N_2 and non- N_2 fixing phytoplankton. *Microb Ecol* **9**: 79–97.
- 377 Price, H., Jaeglé, L., Rice, A., Quay, P., Novelli, P.C., and Gammon, R. (2007) Global
- 378 budget of molecular hydrogen and its deuterium content:constraints from ground station,
- 379 cruise, and aircraft observations. *J Geophys Res* **112**: D22108,
- 380 doi:10.1029/2006JD008152.

- 381 Punshon, S., Moore, R.M., and Xie, H. (2007) Net loss rates and distribution of
- 382 molecular hydrogen (H₂) in mid-latitude coastal waters. *Mar Chem* **105**: 129–139.
- 383 Punshon, S., and Moore, R.M. (2008) Photochemical production of molecular hydrogen
- in lake water and coastal seawater, *Mar Chem* **108**: 215–220.
- 385 Schropp, S.J., Scranton, M.I., and Schwarz, J.R. (1987) Dissolved hydrogen, facultatively
- anaerobic, hydrogen-producing bacteria, and potential hydrogen production rates in the
- 387 western North Atlantic Ocean and Gulf of Mexico. *Limnol Oceanogr* **32**: 396–402.
- 388 Schubert, K.R., and Evans, H.J. (1976) Hydrogen evolution: A major factor affecting the
- 389 efficiency of nitrogen fixation in nodulated symbionts. Proc Nat Acad Sci USA 73: 1207–
- 390 1211.
- 391 Scranton, M.I., Jones, M.M., and Herr, F.L. (1982) Distribution and variability of
- dissolved hydrogen in the Mediterranean Sea. *J Mar Res* **40**: 873–891.
- 393 Scranton, M.I., Novelli, P.C., Michaels, A., Horrrigan, S.G., and Carpenter, E.J. (1987)
- 394 Hydrogen production and nitrogen fixation by Oscillatoria thiebautii during in situ
- incubations. *Limnol Oceanogr* **32**: 998–1006.
- 396 Simpson, F.B., and Burris, R.H. (1984) A nitrogen pressure of 50 atmospheres does not
- 397 prevent evolution of hydrogen by nitrogenase. *Science* **224**: 1095–1097.
- 398 Tamagnini, P., Leitão, E., Oliveira, P., Ferreira, D., Pinto, F., Harris, D.J., Heidorn, T.,
- and Lindblad, P. (2007) Cyanobacterial hydrogenases: diversity, regulation and
- 400 applications. *FEMS Microbiol Reviews* **31**: 692–720.
- 401 Wanninkhof, R. (1992) Relationship between gas exchange and wind speed over the
- 402 ocean. J Geophys Res 97: 7373–7381.

- 403 Waterbury, J.B., Watson, S.W., and Valois, F.W. (1988) Temporal separation of
- 404 photosynthesis and dinitrogen fixation in the marine unicellular cyanobacterium:
- 405 *Erythrosphaera marina. EOS Transactions, American Geophys Union* **69**: 1089.
- 406 Wiesenburg, D.A., and Guinasso, N.L. (1979) Equilibrium solubilities of methane,
- 407 carbon monoxide and hydrogen in water and seawater. *J Chem Eng Data* 24: 356–360.
- 408 Wilson, S.T., Foster, R.A., Zehr, J.P., and Karl, D.M. (2010) Hydrogen production by
- 409 Trichodesmium erythraeum, Cyanothece sp. and Crocosphaera watsonii. Aq Microb Ecol
- 410 **59**: 197–206.
- 411 Wilson, S. T., Böttjer, D., Church, M. J., and Karl, D. M. (2012a) Comparative
- 412 assessment of nitrogen fixation methodologies conducted in the oligotrophic North
- 413 Pacific Ocean. *Appl Environ Microbiol* **78**: 6516–6523.
- 414 Wilson, S.T., Kolber, Z.S., Tozzi, S., Zehr, J.P., and Karl, D.M. (2012b) Nitrogen
- 415 fixation, hydrogen production and electron transport kinetics in *Trichodesmium*
- 416 erythraeum strain IMS101. J Phycol 48:595–506.
- 417 Zehr, J.P., Waterbury, J.B., Turner, P.J., Montoya, J.P., Omoregie, E., Steward, G.F.,
- 418 Hansen, A., and Karl, D.M. (2001) Unicellular cyanobacteria fix N₂ in the subtropical
- 419 North Pacific Ocean. *Nature* **412**: 635–638.

420 Tables

by biological oxidation.

421 Table 1. Rates of biological ${}^{3}\text{H}_{2}$ oxidation conducted on whole seawater samples 422 collected at 25 m (the error bars represent standard deviation of replicate samples, n=3). 423 The rate measurements are compared with the ${}^{15}\text{N}_{2}$ assimilation and C₂H₄ production 424 values in whole seawater (Fig. 1) to calculate the percentage of N₂ fixation accounted for

425 426

Station sampled	Water-column ${}^{3}H_{2}$ oxidation (pmol H ₂ L ⁻¹ h ⁻¹)	% of AR assay accounted for by ³ H ₂ oxidation	% of ${}^{15}N_2$ assimilation accounted for by ${}^{3}H_2$ oxidation	Turnover time of dissolved H ₂ pool (h)
Stn 3 (Day)	15 ± 1	0.8	18.8	40
Stn 3 (Night)	25 ± 4	0.9	11.4	23
Stn 13 (Day)	42 ± 6	1.3	16.2	22
Stn 13 (Night)	25 ± 2	6.6	62.5	36

435 436

437 Table 2. Estimation of H_2 production in the open ocean water-column at a depth of 25 m. 438 The minimum and maximum values are based on 1 and 25 % of C_2H_4 production.

39						2 11
40		Water-column		Estimate	d H ₂ prod.	Estimated time to
41	Date	H ₂ concentration	AR assay	(nmol H	$_2 L^{-1} h^{-1}$)	replenish H ₂ stock
42	sampled	$(nmol H_2 L^{-1})$	$(nmol C_2H_4 L^{-1} h^{-1})$	Min.	Max.	(h)
43	Stn 3 (Day)	0.6	1.77	0.018	0.44	1 – 34
14	Stn 3 (Night)	0.6	2.87	0.029	0.72	1 - 21
-5	Stn 13 (Day)	0.93	3.34	0.033	0.84	1 - 28
-6	Stn 13 (Night)	0.93	0.38	0.004	0.10	10 - 245

- 447
- 448

449 Table 3. Estimates of sea-air gas flux, downwards diffusion, and biological consumption 450 in comparison with depth-integrated (0-45 m) dissolved H_2 concentrations.

	Depth-integrated (0-45 m)	Water-column	Downward	Biological
Date	H ₂ concentrations	Sea-air H ₂ flux	diffusion	consumption
	$(\mu mol m^{-2})$	$(\mu mol H_2 m^{-2} h^{-1})$	$(\mu mol H_2 m^{-2} h^{-1})$	$(\mu mol H_2 m^{-2} h^{-1})$
Stn 3 (Day)	30.6	0.03 - 0.06	0.42	0.03 - 5.17
Stn 3 (Night)	30.6	0.04 - 0.08	0.42	0.31 - 3.87
Stn 13 (Day)	41.0	0.11 - 0.37	0.68	0.47 - 5.80
Stn 13 (Night)	41.0	0.08 - 0.33	0.68	1.69 - 16.05

460

461 Figure 1. Dissolved H₂ concentrations (nmol l^{-1}) between depths of 5 to 125 m in the 462 North Pacific Ocean. For each sampling occasion, seawater samples were collected at

463 1300 hrs. The theoretical value of dissolved H_2 concentrations in seawater at

464 atmospheric equilibrium (with an atmospheric concentration of 0.5 ppmv) is represented

465 by the dashed line. Error bars where shown represent standard deviation (n=3).

Figure 2. N_2 fixation rates as measured by (A-C) ${}^{15}N_2$ tracer assimilation and (D-F) the 469 470 AR assay for seawater samples collected at 25 m and incubated onboard the ship during 471 either the day or night period. Post-incubation size-fractionation was conducted for replicate ¹⁵N₂ tracer additions and not for the AR assay. The error bars in A-F represent 472 473 standard error (n=3). The *nifH* gene abundances collected from the same depth on the 474 same date are shown for UCYN-A, Group B (Crocosphaera spp.), (Tricho)

- 475 Trichodesmium and (het) heterocystous cyanobacteria (G-I).
- 476

Supplementary Information

478 Water column structure and biogeochemical properties

479 Shipboard sampling was conducted in the North Pacific Subtropical Gyre along a cruise

- 480 track which transited the edge of two anticyclonic mesoscale eddies (Fig S1). A total of
- 481 11 sampling stations were occupied during the cruise, spanning a total distance of
- 482 approximately 170 km. To characterize the upper water column, vertical profiles were
- 483 conducted using a Conductivity-Temperature-Depth (CTD) system coupled to a rosette
- 484 consisting of 24 x 12 liter Niskin-like 'Bullister' bottles. Oxygen (O₂) and fluorescence
- 485 sensors were calibrated against discrete measurements of dissolved O₂ (Carritt and
- 486 Carpenter, 1966) and chlorophyll *a* (chl *a*) extracted and analyzed by fluorometry (Turner

487 AU-10). Seawater for determination of nutrient concentrations ($NO_2^{-} + NO_3^{-}$, SRP, and

488 Si) was subsampled into acid washed 125 ml polyethylene bottles, capped, and then

489 stored frozen. Sample analysis was performed on land as documented in the online

490 manual for "HOT Laboratory Protocols" (*http://hahana.soest.hawaii.edu*).

491 An overview of the water-column biogeochemistry is provided by comparing vertical

492 profiles of nutrients and chl *a* from Stn 3 (24° 43.4′ N, 157° 33.2′ W) during the first part

493 of the transect and from Stn 13 (24° 48′ N, 158° 15.2′ W) during the latter part of the

494 transect (Fig. S1). At Stn 3, the maximum chl *a* concentrations were observed at a depth

495 of 115 m, compared to a depth of 105 m at Stn 13 (Fig. 2). The nutrient profiles revealed

- 496 a significant difference between concentrations of silicate (Si) (one-tailed t-test, P=0.04)
- 497 and soluble reactive phosphorus (SRP) (one-tailed t-test, P=0.03) in the surface mixed
- 498 layer (0–45m) between Stn 3 and 13. Furthermore, the vertical profile of SRP
- 499 concentrations at Stn 3 revealed a distinct subsurface minimum with concentrations

- 500 decreasing from 0.09 μ M at 25 m to 0.02 μ M at 100 m. Beneath 100 m, the
- 501 concentrations of nitrate + nitrite ($NO_3^- + NO_2^-$), Si, and SRP increased more rapidly with
- depth at Stn 13 where concentrations were 16, 42, and 210% higher than Stn 3 by 175 m,
- 503 respectively (Fig. S2).
- 504

505 H_2 measurements

506 Discrete seawater samples for measuring dissolved H₂ concentrations were collected into

507 acid-washed, glass-stoppered 300 ml Wheaton bottles. Samples were analyzed

508 immediately after collection with a total sample processing time of <2 h. To quantify H₂

509 concentrations, seawater was sub-sampled from the Wheaton bottles into a 50 ml glass

510 syringe (Perfektum) via 1/8" polyetheretherketone (PEEK) tubing. The syringe was

511 flushed twice with sample water, ensuring the last flush was free of air bubbles. A

512 custom-built syringe actuator ensured that a consistent volume of seawater (35 ml) was

513 always introduced into the syringe. Subsequently 5 ml of H₂-free (<10 parts per trillion)

514 air (Airgas) was introduced into the syringe, H₂ was extracted from the seawater using

515 headspace equilibration, and the headspace was subsequently injected into the gas

516 analyzer (described below). To prevent accidental addition of seawater following after

517 the headspace injection, the sampling inlet for the analyzer was fitted with a hydrophobic

518 syringe filter (13 mm PTFE membrane, 0.2 μm pore size).

519 We note that the samples are not preserved and therefore H_2 concentrations could

520 potentially change between the time of collection and analysis. The likelihood of this

521 occurring in oligotrophic seawater samples within < 2 h of sample collection is

522 considered minimal. The analysis of replicate samples in random order on previous

523 occasions did not result in any significant increase in the standard deviation of replicate 524 (typically 3) seawater samples. Also whilst this study shows that production of H_2 via N_2 525 fixation can replenish the dissolved H_2 pool in 1-38 h, we consider the upper estimate of 526 1 h to be high and the median value of 18 h to be more reasonable which exceeds the 1-2 527 h required for processing all samples.

528 H_2 was quantified with a reduced gas analyzer that couples a mercuric oxide (HgO) 529 bed to a reducing compound photometer (Peak Laboratories, USA). The stoichiometric 530 reduction of HgO by H₂ gas releases mercury vapor which is quantified using an 531 ultraviolet absorption photometer located immediately downstream of the HgO bed. For 532 safety purposes, the gas flow exiting the detector passes through an activated charcoal 533 mercury vapor scrubber before venting to the atmosphere. Prior to the detector, the 534 carrier gas (Ultra High Purity air) passes through two analytical columns maintained at 535 104 °C. The first column is packed with Unibeads 1S (60/80 mesh, 0.32 cm diameter and 536 41.9 cm length), and the second column with Molecular Sieve 13X (60/80 mesh, 0.32 cm 537 diameter and 206 cm length). The analytical precision based on the comparison of 4 samples at atmospheric equilibrium (0.3 nmol l^{-1}) was $\pm 2\%$. The analyzer was calibrated 538 539 using a 1 ppmv H₂ standard (Scott Marrin) that was diluted up to 100-fold using zero-H₂ 540 air. The concentration of dissolved H₂ in equilibrated seawater was calculated according 541 to the Bunsen solubility coefficients provided by Wiesenburg and Guinasso (1979). 542 On two separate occasions, the rate of H₂ consumption was quantified by measuring 543 the production of ${}^{3}\text{H}_{2}\text{O}$ from tracer additions (0.024–0.046 nM) of ${}^{3}\text{H}_{2}$. This method has previously been used to measure ${}^{3}H_{2}$ uptake in laboratory cultures of diazotrophs (Chan 544

545 et al., 1980) and environmental microbial assemblages (Paerl, 1983). The seawater

546	sample was collected in a 40 ml borosilicate glass vial with 2–3 times overflow and
547	sealed with no headspace using Teflon-faced butyl rubber stoppers. Tritium gas (specific
548	activity: 2 TBq/mmol; ViTrax, California) was injected into the vial in tracer quantities
549	(10 to 25 pM) and shaken before quickly venting non-dissolved ${}^{3}\text{H}_{2}$ in a fume hood.
550	Seawater samples amended with ${}^{3}\text{H}_{2}$ were incubated for 4 h in the deckboard incubators
551	at repeated intervals during the day and night periods of a diel cycle. Samples were
552	analyzed in triplicate with control samples for abiotic conversion of ${}^{3}\text{H}_{2}$ consisting of 0.2
553	μ m filtered seawater. No activity was observed in the control samples during the
554	experiments. At the end of the incubation, a 1 ml sub-sample was removed using a
555	syringe and injected into a scintillation vial containing scintillation cocktail (Ultima Gold
556	LLT, Perkin Elmer) and counted immediately in a liquid scintillation analyzer (Tri-Carb
557	2910 TR, Perkin Elmer) to determine the total activity added to the sample. To quantify
558	the amount of transformed ${}^{3}H_{2}$, a separate 2 ml subsample was added to a scintillation
559	vial and purged with N_2 (100 ml min ⁻¹ for 3 min) in a fume hood to remove any
560	remaining ${}^{3}\text{H}_{2}$. A 1 ml aliquot of the sparged samples was subsequently pipetted into a
561	second scintillation vial containing liquid scintillation cocktail and counted. To account
562	for isotopic discrimination effects when calculating the rate of H_2 oxidation, we used the
563	fractionation factor reported in Soffiento et al. (2006). It should be noted that as
564	acknowledged by Soffiento et al. (2006), fractionation effects may vary between the
565	different hydrogenase enzymes e.g. iron(Fe)-only hydrogenase compared to the nickel-
566	iron (NiFe) hydrogenases contained by cyanobacteria (Tamagnini et al., 2007). This
567	should be resolved by analyzing the fractionation factor in phylogenetically distinct

568 hydrogenase-containing microorganisms before assessing the consequences of measuring 569 ${}^{3}\text{H}_{2}$ oxidation in mixed microbial assemblages.

570

571 N_2 fixation rate measurements

Rates of N_2 fixation were measured using both the ${}^{15}N_2$ tracer technique and the acetylene 572 573 reduction (AR) assay at three sampling stations: Stn 3, 7, and 13, which were occupied on 574 the 9, 13, and 19 September, respectively. The AR assay was conducted using a reduced 575 gas analyzer, similar to the instrument described in ' H_2 measurements', for the 576 quantification of C_2H_4 production (Wilson *et al.*, 2012). The increased sensitivity (5) pmol l^{-1}) provided by the reducing compound photometer compared to standard C₂H₄ 577 578 quantification using gas chromatography-flame ionization detector (GC-FID) permits the 579 AR assay to be conducted on seawater samples with no preconcentration of the biomass. 580 Control treatments consisted of 0.2 µm filtered surface seawater, analyzed in triplicate 581 alongside the regular seawater samples. The blank to signal ratio, indicative of the 582 biological production relative to the background presence of C_2H_4 ranged from 75–82%. 583 Both samples and controls were incubated using deckboard incubators with typical 584 incubation periods of 3–4 h.

Alongside the AR assay the rate of ${}^{15}N_2$ assimilation into particulate biomass was also measured in seawater samples. The ${}^{15}N_2$ tracer was added to seawater samples as ${}^{c15}N_2$ enriched seawater', prepared onboard the ship by filtering seawater collected from 25 m through a 0.2 µm filter, followed by vacuum degasification (250 mbar for 40 min). The ${}^{15}N_2$ gas (98% purity; Isotech Laboratories, Inc.) was dissolved in the sterile, degassed seawater and 50 ml of ${}^{15}N_2$ enriched seawater was added to the seawater samples in 4.3

591	liter polycarbonate bottles to give a final ${}^{15}N_2$ enrichment of 1.5 atom%. Samples were
592	incubated in the presence of ${}^{15}N_2$ tracer for either 11 h or 13 h corresponding to the
593	day/night-time, respectively. Seawater samples designated for night-time analysis were
594	collected at the same time as the day-time samples and incubated without tracer additions
595	until spiked with ${}^{15}N_2$ enriched seawater at 2000 hrs. Post-incubation, the seawater
596	samples were filtered onto combusted 25 mm glass fiber filters as both unfiltered (whole)
597	seawater and the <10 μm size fraction (representing UCYN-A and Group B). The
598	samples were then stored at -20 $^{o}\mathrm{C}$ prior to analysis on land to quantify the $^{15}\mathrm{N}_{2}$
599	enrichment of particulate material using an elemental analyzer-isotope ratio mass
600	spectrometer, as described in Montoya et al. (1996).
601	
602	Molecular analysis of nifH
603	Discrete seawater samples (2–4 liters) were collected at 1300 hrs using the CTD-rosette
604	from a depth of 25 m, filtered using a peristaltic pump through a 0.22 μ m Sterivex filter
605	(Millipore, Billerica, MA, USA) and stored in liquid N ₂ . A full description of
606	methodological protocols including DNA extraction and quantitative PCR analyses has
607	been previously published by Moisander et al. (2010).

- 610 References
- 611 Carritt, D.E., and Carpenter, J.H. (1966) Comparison and evaluation of currently
- 612 employed modifications of the Winkler method for determining dissolved oxygen is
- 613 seawater: a NASCO report. J Mar Res 24: 286–318.
- 614 Chan, Y.K., Nelson, L.M., and Knowles, R. (1980) Hydrogen metabolism of
- 615 Axospirillum brasilense in nitrogen-free medium. Can J Microbiol 26: 1126–1131.
- 616 Levitus, S. (1982) Climatological atlas of the world ocean. National Oceanic and
- 617 Atmospheric Administration. Professional Paper 13, Rockville, MD., pp 1–173.
- Montoya, J.P., Voss, M., Kähler, P., and Capone, D.G. (1996) A simple, high-precision,
- 619 high-sensitivity tracer assay for N₂ fixation. *Appl Environ Microbiol* **62**: 986–993.
- 620 Paerl, H.W. (1983) Environmental regulation of H_2 utilization (³ H_2 exchange) among
- 621 natural and laboratory populations of N₂ and non-N₂ fixing phytoplankton. *Microb Ecol*
- 622 **9**: 79–97.
- 623 Scholin, C. (2010) What are 'ecogenomic sensors?' A review and thoughts for the future.
- 624 *Ocean Sci* **6**: 51–60.
- 625 Soffientino, B., Spivack, A.J., Smith, D.C., Roggenstein, E.B., and D'Hondt, S. (2006) A
- 626 versatile and sensitive tritium-based radioassay for measuring hydrogenase activity in
- 627 aquatic sediments. *J Microbiol Methods* **66**: 136–146.
- 628 Wiesenburg, D.A., and Guinasso, N.L. (1979) Equilibrium solubilities of methane,
- 629 carbon monoxide and hydrogen in water and seawater. *J Chem Eng Data* 24: 356–360.

631 Figure S1. 14 day composite of satellite derived SSHA 100 km north of the Hawaiian

Islands in the Pacific Ocean between 7-21 September 2011 (data from Moderate

633 Resolution Imaging Spectroradiometer). A summary of the cruise transect is indicated by

the solid black line and the labeled white circles represent the sampling stations discussed

635 in the text. Station ALOHA, the long term sampling station for the Hawaii Ocean Time-

636 series (HOT) program, located at 22 ° 45' N, 158° W is also highlighted.

639 Figure S2. Representative water column profiles for the two sections of the cruise track,

640 (A-B) Stn 3 and (C-D) Stn 13.