
UC Irvine
UC Irvine Electronic Theses and Dissertations

Title
Sharing information across object templates

Permalink
https://escholarship.org/uc/item/0409b08s

Author
Zhu, Xiangxin

Publication Date
2014

Peer reviewed|Thesis/dissertation

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/0409b08s
https://escholarship.org
http://www.cdlib.org/

UNIVERSITY OF CALIFORNIA,
IRVINE

Sharing Information Across Object Templates

DISSERTATION

submitted in partial satisfaction of the requirements
for the degree of

DOCTOR OF PHILOSOPHY

in Computer Science

by

Xiangxin Zhu

Dissertation Committee:
Professor Deva Ramanan, Chair

Professor Charless Fowlkes
Professor Alexander Ihler

2014

c© 2014 Xiangxin Zhu

DEDICATION

To my family

ii

TABLE OF CONTENTS

Page

LIST OF FIGURES v

LIST OF TABLES vii

ACKNOWLEDGMENTS viii

CURRICULUM VITAE ix

ABSTRACT OF THE DISSERTATION x

1 Introduction 1
1.1 Summary of sharing approaches in this thesis . 4
1.2 Thesis Overview and Contributions . 5

2 Is big training data sufficient? 8
2.1 Introduction . 8
2.2 Related Work . 11
2.3 Big Detection Datasets . 11

2.3.1 Collecting PASCAL-10X . 13
2.3.2 Data Quality . 14

2.4 Mixture models . 16
2.5 Experiments . 18

2.5.1 The importance of proper regularization 22
2.5.2 The importance of clean training data . 22
2.5.3 Performance of mixture models . 24

2.6 Conclusion . 28

3 Capturing long-tail distributions of object subcategories 29
3.1 Long-tail and its challenges . 31
3.2 Related work . 33
3.3 Learning long-tail subcategory models . 35

3.3.1 Initialization . 36
3.3.2 Discriminative clustering with sharing . 37
3.3.3 Greedy model selection . 39

3.4 Experimental results . 40

iii

4 Sharing local appearance with parts 48
4.1 Deformable part model . 49

4.1.1 Tree structured part model . 49
4.1.2 Shape model . 50
4.1.3 Inference . 51
4.1.4 Learning . 52

4.2 Revisit mixture models . 53
4.2.1 Deformable Part Models (DPMs) . 54
4.2.2 Exemplar Part Models (EPMs) . 56
4.2.3 Exemplar DPMs (EDPMs) . 57
4.2.4 Inference . 58

4.3 Experiments . 60
4.4 Conclusion . 65

5 Face analysis in the wild: A case study 68
5.1 Introduction . 69
5.2 Related Work . 71
5.3 Model . 72
5.4 Inference . 74
5.5 Learning . 74
5.6 Experimental Results . 75

5.6.1 Datasets . 75
5.6.2 Our models . 77
5.6.3 Face detection . 78
5.6.4 Pose estimation . 83
5.6.5 Landmark localization . 85

5.7 Diagnostic analysis nd discussion . 88
5.8 Conclusion . 94

Bibliography 96

iv

LIST OF FIGURES

Page

1.1 Long-tail distributions exist for object subcategories 2
1.2 Illustration of sharing . 3
1.3 Explain different ways of sharing data . 5

2.1 Best reported results on PASCAL VOC over years 9
2.2 Ideal curves of performance vs training data size and model complexity 10
2.3 MTurk user interfaces for image classification and object annotation 15
2.4 Average images of the supervised and k-means face clusters 19
2.5 Average images of the supervised and k-means bus clusters 20
2.6 Training and testing errors with and without cross validate on C 21
2.7 Performance curves and templates of the single mixture models trained with all and

frontal only faces . 23
2.8 Visualization of the clean and noisy bicycle mixture components 24
2.9 Performance curves of the supervised vs k-mean clustering on face and bus 25
2.10 Average precision vs the number mixtures and the number training examples on

face and bus . 26
2.11 Average precision at varying amount of training data on 11 PASCAL categories . . 27

3.1 Long-tail distributions for object categories and performance per subcategory . . . 30
3.2 Long-tail distributions exist for both object categories and subcategories 32
3.3 Illustration of overlapping subcategories . 35
3.4 Overall pipeline of learned subcategory models 35
3.5 Visualization of the exemplar templates with and without sharing 36
3.6 Visualization of the size of each subcategory clusters, the averages image and

templates associated with the subcategories . 41
3.7 Examples of the image popularity in training . 42
3.8 Precision-recall curves of our DistDPM on two public dataset of cats and dogs . . . 43
3.9 Precision-recall curves of 8 PASCAL VOC categories 43
3.10 Performance vs the number of subcategory mixtures on car and cat 45
3.11 Comparison of various methods on hard and easy classes 46

4.1 Illustration of local sharing via parts . 49
4.2 Classic exemplar templates vs the EPM templates 57
4.3 Shape models for DPM, EPM and EDPM . 59
4.4 Complete plot of the performance of various methods on face detection 61

v

4.5 Complete plot of the performance of various methods on bus detection 62
4.6 Visualization of detections using our EDPM . 64

5.1 Example of joint face detection, pose estimation and landmark localization 70
5.2 Visualization of our face templates . 70
5.3 Deformation patterns of our FaceDPM and AAMs 73
5.4 Example images from our annotated faces-in-the-wild (AFW) testing set. 75
5.5 Example images from MultiPIE with annotated landmarks. 75
5.6 ROC curves for face detection on the FDDB benchmark 79
5.7 Number of positive examples for training . 80
5.8 Examples of missed faces on FDDB . 81
5.9 Precision-recall curves for face detection on our AFW testset 82
5.10 Qualitative results of our FaceDPL on AFW images 83
5.11 Cumulative error distribution curves for pose estimation 85
5.12 Cumulative localization error curves on the frontal faces from MultiPIE 86
5.13 Cumulative error distribution curves for landmark localization 87
5.14 Example AFW image with large mouth deformations 88
5.15 Performance vs the number of positive examples 90
5.16 Performance vs the number of negative images 91
5.17 Performance vs the number of mixture components 92
5.18 Visualization of star structures and the learned tree structures 93
5.19 Effects on the performance when changing various model settings 94

vi

LIST OF TABLES

Page

2.1 Statistics of our dataset and PASCAL 2010 trainval 12
2.2 Attributes of horse in our dataset, PASCAL 2007 and 2010 14

3.1 Results on PASCAL 2007 . 44

5.1 Counts of the missed faces by our FaceDPL on the FDDB dataset 80

vii

ACKNOWLEDGMENTS

I owe a great thanks to my advisor, Deva Ramanan. Anyone who has met him is struck by his
intelligence, kindness, and generosity. It has been a tremendous inspiration to work with them.
Without his tireless supports and guidance, this work would not be possible. It’s a pleasure to have
known him and I consider myself extremely lucky for having been his student.

Thanks to Charless Fowlkes and Max Welling for all the discussions through the years and providing
key insights and suggestions into my work. Working with them has been a memorable experience.

I have been fortunate to work with Drago Anguelov at Google’s visual search team. The way that
he approaches and solves real world problems shows me an excellent example of what makes a
great engineer.

Over the past five years it has been my honor to collaborate with my co-authors: Carl Vondrick,
Anoop Korattikara, John Lowengrub and Fang Jin.

Thanks to my committee: Deva, Charless and Alex Ihler, for carefully reading my thesis and
providing valuable suggestions on improving it.

Thanks to my wonderful colleagues and friends in the UCI vision lab, who made the PhD journey
much more enjoyable than I tought would be: Chaitanya Desai, Yi Yang, Dennis Park, Hamed
Pirsiavash, Sam Hallman, Mohsen Hejrati James Supancic, Bailey Kong, Raul Diaz and Golnaz
Ghiasi. I also thank all my friends, near and far, for their support and care.

Very special thanks to my wife, Yang Yang, for her love and supports during bright and dark days.
Debating on vision problems in the ktchen is actually fun. Thanks to my parents for everything.

viii

CURRICULUM VITAE

Xiangxin Zhu

EDUCATION

Doctor of Philosophy in Computer Science 2014
University of California Irvine Irvine, CA

Master of Science in Pattern Recognition 2008
Chinese Academy of Sciences Beijing, China

Bachelor of Science in Automation 2005
Tsinghua University Beijing, China

ix

ABSTRACT OF THE DISSERTATION

Sharing Information Across Object Templates

By

Xiangxin Zhu

Doctor of Philosophy in Computer Science

University of California, Irvine, 2014

Professor Deva Ramanan, Chair

Object detection is a central and challenging task in computer vision. In this thesis, we first examine

the “big data” hypothesis: object detection might be solved with simple models backed with massive

training data. We empirically show that the performance of one of the state-of-the-art methods

(discriminatively trained HoG templates) tends to saturate fast when fed with more data. The

required training data may need to grow exponentially in order to produce a fixed improvement in

accuracy. We also find that the key difficulties in detection are large variation in object appearance

and more importantly, that the variation exhibits a “long tail” distribution: there are many rare

cases with little training data, which makes those cases hard to model. This thesis addresses

such challenges by proposing new representations that share information within and across object

subcategories. Sharing allows one to learn models for rare subcategories in the long-tail where

traditional approaches suffer from lack of training data. We investigate two methods for sharing.

We first examine global models that share entire training examples across multiple subcategories.

For example, an SUV image might be used to train both a car and truck subcategory model. We also

examine local sharing that share subwindows of training examples through “parts”. For example,

nearly all vehicles contain wheel parts. By mixing and matching (or composing) different parts

together, one can implicitly encode an exponentially large set of subcategory models, which could

even represent those subcategories not encountered in the training data.

We extensively experiment and evaluate our models on different benchmarks, and show superior

x

performance over the state-of-the-art. Finally, we conclude with a detailed analysis of local part

sharing for face analysis, perhaps the most well studied of all object recognition problems. By using

semantically-defined parts (such as eyes, nose, lips), one can simultaneously perform face detection,

pose estimation, and landmark localization with state-of-the-art accuracy, with a single model.

xi

Chapter 1

Introduction

Object detection is of central importance in computer vision, where the goal is to automatically

localize and identify the extent of object instances within an image. Truly successful detection

systems will be the cornerstone for many applications such as robotics, surveillance, human-

computer interaction, biometrics, and image retrieval. Object detection is also one of the most

challenging tasks. Despite all the advances in the past 30 years, the dream of having a computer

interpret an image at the same level as a two-year old (such as find and count the animals and toys)

remains elusive.

Why is object detection so hard? There exist many explanations, but one standard answer is

that objects vary in appearance. In theory, if we collect a large enough dataset that cover all

possible appearance variations, and build separate mixture components or subcategory models on

different viewpoints, shape deformation, etc, that should address the problem (with possibly huge

computational costs). This thought aligns with an emerging idea in our community that object

detection might be solved with simple models backed with massive training data.

This leads us to consider a basic question: will continually increasing amounts of training data

along with large mixture models be sufficient to drive continued progress in object detection?

1

In this thesis, we empirically found that the answer is “no”. Our experimental results show that the

performance tends to saturate after a modest number of mixtures and a modest size of training data.

Then what prevents this “nonparametric” paradigm from working? There are many possible reasons.

One of the key difficulties is that the variation exhibits a “long tail” distribution (Fig. 1.1): there

are a small number of common cases and large (probably infinite) number of rare cases which

collectively make up a significant portion of the data. When collecting new data, sampling a long-tail

distribution tends to rarely hit a particular subcategory in the tail. This suggests that even as one

grows a training set, one is unlikely to encounter many examples of a particular rare subcategory in

the tail. Empirically, we observed that the required training data may need to grow exponentially

in order to produce a fixed improvement in accuracy. Given the size of existing datasets, a simple

extrapolation shows that the current state-of-the-art will need unrealistically large amount of data to

continue producing consistent improvements in performance.

0 10 20 30 40 50 60
0

20

40

60

80

100

Visibility pattern

N
um

be
r o

f e
xa

m
pl

es

bus

100 101100

101

102

Visibility pattern

N
um

be
r o

f e
xa

m
pl

es

0 200 400 600 800 1000
0

20

40

60

80

100

Visibility pattern

N
um

be
r o

f e
xa

m
pl

es

person

100 102100

101

102

Visibility pattern

N
um

be
r o

f e
xa

m
pl

es

Visibility pattern Visibility pattern

Bus Person

N
um

. o
f e

xa
m

pl
es

Figure 1.1: Long-tail distributions exist for object subcategories. This figure shows the distributions
of the keypoint visibility patterns for bus and person from PASCAL (using the manual annotations of
[13]). The blue curve in the inset show a log-log plot, along with a best-fit line in red. This suggests
that the distribution follows a long-tail power law. How to strictly define “subcategory” and how to
group examples into subcategories are still open questions. Visibility patterns of keypoints are used
as a proxy for general appearance in generating this figure, as they represent the variations due to
viewpoints and occlusions. In this thesis, we describe an approach to discover the subcategories,
rather than pre-define it. We empirically show that the visual subcategory distributions follow a
long-tail.

2

In this thesis, in order to address the lack of training data for the rare cases, we propose sharing

training examples across subcategories. Two types of sharing are discussed: global sharing allows

borrowing similar examples from other subcategories. This introduces a notion of overlapping

subcategories, which we will explore in some detail. For example, a sport utility vehicle could be

equally classified as a truck or a car. 45-degree viewpoint buses could be used to train both frontal

and side-view bus models (Fig. 1.2a). However, global sharing may still be limited in the one-shot

learning regime. Some rare subcategories – such as a lamborghini in profile with open wing doors –

may only be observed once in a training set. In such scenarios, we introduce the notion of local

sharing through “parts”. Parts are a representation that establish correspondence among certain

spatial regions across training examples. For example, lamborghini may still have headlights or

wheels that look similar to other common cars. Similarly, parts of the lip still look similar across

different viewpoints and expressions (Fig. 1.2b).

(a) Global sharing (b) Local sharing

Figure 1.2: (a) Global sharing: frontal (red) and side-view (blue) buses may share a large number of
3
4
-view examples. (b) A local region or “part” (cyan) is shared across faces in different viewpoints.

One important final difficulty remains. A long tail distribution suggests that there are many

subcategories that are never observed in the training data. Such a learning problem is sometimes

called zero-shot learning: how do we learn model for subcategories that have never been seen?

Sharing does not appear to be quite the answer, since we do not even observe any data that

can be shared. Rather, we argue that synthesis is a natural approach. By rearranging parts into

new arrangements and combinations (not observed in the training data), one can model unseen

3

subcategories. Our analysis suggests that the “sharing and synthesizing” approach is crucial and

effective for recognizing those unseen configurations.

From a broader perspective, an emerging idea in our community is that object detection might

be solved with simple models backed with massive training sets. This work suggests a slightly

refined view. Given the size of existing datasets, it appears that the current state-of-the-art will

need significant additional data (perhaps exponentially larger sets) to continue producing consistent

improvements in performance. We found that larger gains were possible by enforcing richer

constraints within the model, often through appearance sharing and compositional representations

that could make better use of data. In some sense, we need “better models” to make better use of

“big data”.

Another common hypothesis is that we should focus on developing better features, not better

learning algorithms. While HoG is certainly limited, we still see substantial performance gains

without any change in the features themselves or the class of discriminant functions. Instead, the

strategic issues appear to be parameter sharing, compositionality. Establishing and using accurate,

clean correspondence among training examples (e.g., that specify that certain examples belong to

the same subcategory, or that certain spatial regions correspond to the same part) and developing

compositional approaches that implicitly make use of augmented training sets appear the most

promising directions.

1.1 Summary of sharing approaches in this thesis

We summarize the different sharing approaches proposed and used in this thesis in Fig. 1.3 to avoid

future confusion.

Exemplar models learn a template from each example, there is no sharing involved. Partitioned

subcategory models as used in Chapter 2 divide training data into non-overlapping groups and

4

learn a template for each group. Overlapping subcategory models (introduced in Chapter 3 learn

templates with overlapping groups. Part model (introduced in Chapter 4) associates local regions

together as ”parts” instead of sharing the entire example images.

Figure 1.3: This figure explains how different models use the training data. We use a box to
represent an example image, and use colors to indicate how examples are shared. Exemplar models
learn a template from each example, there is no sharing involved. Partitioned subcategory models
as used in Chapter 2 divide training data into non-overlapping groups and learn a template for each
group. Overlapping subcategory models (introduced in Chapter 3 learn templates with overlapping
groups. Part model associates local regions together as ”parts” instead of sharing the entire example
images. Cartoon faces are created by Matthias Dörfelt.

1.2 Thesis Overview and Contributions

The rest of this thesis is organized as follows:

Chapter 2 is an extension of our previous work [95]. It investigates the question: “Can we keep

increasing object detection performance by collecting large amounts of training data while growing

the complexity of mixtures/subcategory models?”

We collected and annotated a dataset that contains approximately 10 times as many training examples

5

per category as the well-known object detection benchmark PASCAL 2010 dataset [33] provided,

allowing us to explore the potential gains of larger numbers of positive training instances.

We focus on the popular paradigm of discriminatively trained templates defined on oriented gradient

features. We investigate the performance of mixtures of templates as the number of mixture

components and the amount of training data grows. Surprisingly, the performance of classic mixture

models appears to saturate quickly (10 templates and 100 positive training examples per template).

It appears that the current state-of-the-art will need significant additional data (perhaps exponentially

larger sets) to continue producing consistent improvements in performance.

Chapter 3 argues that object subcategories follow a long-tail distribution: a few subcategories are

common, while many are rare. The long-tail distribution raises three challenges that complicate

object detection: (1) The “right” criteria for grouping examples into subcategories is not clear. (2)

Even given the optimal criteria, it is not clear how to algorithmically optimize for it. (3) Even given

the optimal clustering, how does one learn models for rare subcategories (small clusters) with little

training data?

We describe distributed algorithms for learning large-mixture models that capture long-tail dis-

tributions, which are hard to model with current approaches. We introduce a generalized notion

of mixtures (or subcategories) that allow for examples to be shared across multiple subcategories.

We optimize our models with a discriminative clustering algorithm that searches over mixtures

in a distributed, brute-force fashion. We used our scalable system to train tens of thousands of

deformable mixtures for VOC objects. We demonstrate significant performance improvements,

particularly for object classes that are characterized by large appearance variation.

The ideas described in this chapter were first published in [93].

Chapter 4 introduces the notion of local sharing through parts. We propose part models that can

represent an exponential number of subcategories by rearranging parts into new arrangements and

combinations.

6

We also introduce several non-parametric models such as Exemplar Part Models (EPMs) and

Exemplar Deformable Part Models (EDPMs) to diagnose the state of the art. We found that larger

gains were possible by compositional mixtures that share template parameters via parts and that can

synthesize new templates not encountered during training.

Chapter 5 is a case study of our discoveries. We build a strong model for face detection, pose

estimation and landmark localization in real-world cluttered image (namely FaceDPL for the initials

of the three tasks). It is based on our previous work [94], and is substantially extended with more

in-depth analyses and extensive evaluation.

We group training examples into viewpoint specific subcategories, and associated local regions

across subcategories together using facial landmark annotations. By assigning semantic meanings

to the subcategory mixture components and parts, our model can detect faces, estimate face pose,

and localize landmarks jointly.

We collected and labeled a in-the-wild face dataset with detailed annotations to benchmark our

models and the state of the arts. We did extensive evaluations on both our new dataset and other two

popular benchmarks: MultiPIE and FDDB. Our model compares favorably to the other methods

from academia, and even beat commercial systems on all three tasks.

We also conducted in-depth analysis of the results, investigated how different factors in the model

design affect the performance, which help to understand what is crucial for building good models.

We also carefully scrutinize the errors, and point out the existing challenges and the next steps to

move forward for research on this topic.

Related Work associated with each of these sub-problems has been incorporated inside the corre-

sponding chapter that addresses it.

7

Chapter 2

Is big training data sufficient?

Datasets for training object recognition systems are steadily increasing in size. This chapter

investigates the question of whether existing detectors will continue to improve as data grows, or

saturate in performance due to limited model complexity and the Bayes risk associated with the

feature spaces in which they operate. We focus on the popular paradigm of discriminatively trained

templates defined on oriented gradient features. We investigate the performance of mixtures of

templates as the number of mixture components and the amount of training data grows. Surprisingly,

even with proper treatment of regularization and “outliers”, the performance of classic mixture

models appears to saturate quickly (∼10 templates and ∼100 positive training examples per

template).

2.1 Introduction

Much of the impressive progress in object detection is built on the methodologies of statistical

machine learning, which make use of large training datasets to tune model parameters. Consider the

benchmark results of the well-known PASCAL VOC object challenge (Fig. 2.1). There is a clear

8

trend of increased benchmark performance over the years as new methods have been developed.

However, this improvement is also correlated with increasing amounts of training data. One might

be tempted to simply view this trend as a another case of the so-called “effectiveness of big-data”,

which posits that even very complex problems in artificial intelligence may be solved by simple

statistical models trained on massive datasets [42]. This leads us to consider a basic question

about the field: will continually increasing amounts of training data be sufficient to drive continued

progress in object recognition?

2006 2007 2008 2009 2010 2011

0.2

0.3

0.4

Year

A
vg

. A
P

400 600 800 1000 1200 1400

0.2

0.3

0.4

Avg. num. of training samples per class

A
vg

. A
P

Figure 2.1: The best reported performance on PASCAL VOC challenge has shown marked increases
since 2006 (left). This could be due to various factors: the dataset itself has evolved over time, the
best-performing methods differ across years, etc. In the right, we plot a particular factor – training
data size – which appears to correlate well with performance. This begs the question: has the
increase been largely driven from the availability of larger training sets?

To tackle this question, we collected a massive training set that is an order of magnitude larger than

existing collections such as PASCAL [33]. We follow the dominant paradigm of scanning-window

templates trained with linear SVMs on HOG features [22, 35, 13, 56], and evaluate detection

performance as a function of the amount of training data and the model complexity. We observe

that the detection performance quickly encountered diminishing returns with only modest amounts

of training data.

Challenges: We found there is a surprising amount of subtlety in scaling up training data sets in

current systems. For a fixed model, one would expect performance to generally increase with the

amount of data and eventually saturate (Fig. 2.2). Empirically, we often saw the bizarre result

that off-the-shelf implementations show decreased performance with additional data! One would

also expect that to take advantage of additional training data, it is necessary to grow the model

9

complexity, in this case by adding mixture components to capture different object sub-categories

and viewpoints. However, even with growing number of mixture components, we still run into

saturation quickly.

Data

Pe
rf

or
m

an
ce

Ideal

Model Complexity

Ideal

Figure 2.2: We plot idealized curves of performance versus training dataset size and model com-
plexity. The effect of additional training examples is diminished as the training dataset grows
(left), while we expect performance to grow with model complexity up to a point, after which an
overly-flexible model overfits the training dataset (right). Both these notions can be made precise
with learning theory bounds, see e.g. [59].

Proposed solutions: In this chapter, we offer explanations and solutions for many of these diffi-

culties. First, we found it crucial to set model regularization as a function of training dataset using

cross-validation, a standard technique which is often overlooked in current object detection systems.

Second, existing strategies for discovering sub-category structure, such as clustering aspect ratios

[35], appearance features [28], and keypoint labels [13] may not suffice. We found this was related

to the inability of classifiers to deal with “polluted” data when mixture labels were improperly

assigned. Increasing model complexity is thus only useful when mixture components capture the

“right” sub-category structure.

We discuss related work in Sec. 2.2, introduce our large-scale dataset in Sec. 2.3, describe our

mixture models in Sec. 2.4, present extensive experimental results in Sec. 2.5, and conclude with a

discussion in Sec. 2.6.

10

2.2 Related Work

We view our study as complementary to other meta-analysis of the object recognition problem,

such as studies of the dependence of performance on the number of object categories [26], visual

properties [44], dataset collection bias [77], and component-specific analysis of recognition pipelines

[63].

Our analysis is focused on template-based approaches to recognition, as such methods are currently

competitive on challenging recognition problems such as PASCAL. However, it behooves us to

recognize the large body of alternate approaches including hierarchical or “deep” feature learning

[50], local feature analysis [79], kernel methods [80], and decision trees [12], to name a few. Such

methods may produce different dependencies on performance as a function of dataset size due to

inherent differences in model architectures. We hypothesize that our conclusions may generally

hold for other architectures.

2.3 Big Detection Datasets

Throughout the chapter we carry out experiments using two datasets. We vary the number of

positive training examples, but in all cases keep the number of negative training images fixed. We

found that performance was relatively static with respect to the amount of negative training data,

once a sufficiently large negative training set was used.

PASCAL-10X: Our first dataset is a newly collected data set that we refer to as PASCAL-10X

and describe in detail in the following section 1. This dataset covers the 11 PASCAL categories

(see Tab. 2.1) and includes approximately 10 times as many training examples per category as the

standard training data provided by the PASCAL detection challenge, allowing us to explore the

1The dataset can be downloaded from http://vision.ics.uci.edu/datasets/

11

http://vision.ics.uci.edu/datasets/

potential gains of larger numbers of positive training instances. We evaluate detection accuracy on

the 11 PASCAL categories from the PASCAL 2010 trainval dataset (because test annotations are

not public), which contains 10000+ images.

PASCAL 2010 Our Data Set
Category Images Objects Images Objects
Bicycle 471 614 5,027 7,401
Bus 353 498 3,405 4,919
Cat 1,005 1,132 12,204 13,998
Cow 248 464 3,194 6,909
Dining Table 415 468 3,905 5,651
Horse 425 621 4,086 6,488
Motorbike 453 611 5,674 8,666
Sheep 290 701 2,351 6,018
Sofa 406 451 4,018 5,569
Train 453 524 6,403 7,648
TV Monitor 490 683 5,053 7,808
Totals 4,609 6,167 50,772 81,075

Table 2.1: PASCAL 2010 trainval and our data set for select categories. Our data set is an order of
magnitude larger.

Faces: In addition to examining performance on PASCAL object categories, we also trained models

for face detection. We found faces to contain more structured appearance variation, which often

allowed for more easily interpretable diagnostic experiments. Face models are trained using the

CMU MultiPIE dataset[39], a well-known benchmark dataset of faces spanning multiple viewpoints,

illumination conditions, and expressions. We use up to 900 faces across 13 view points. Each

viewpoint was spaced 15◦ apart spanning 180◦. 300 of the faces are frontal, while the remaining 600

are evenly distributed among the remaining viewpoints. For negatives, we use 1218 images from

the INRIAPerson database [22]. Detection accuracy of face models are evaluated on the annotated

face in-the-wild (AFW) [94], which contains images from real-world environments and tend to have

cluttered backgrounds with large variations in both face viewpoint and appearance.

12

2.3.1 Collecting PASCAL-10X

In this section, we describe our procedure for building a large, annotated dataset that is as similar as

possible to the PASCAL 2010 for object detection. We collected images from Flickr and annotations

from Amazon Mechanical Turk (MTurk), resulting in the data set summarized in Tab. 2.1. We built

training sets for 11 of the PASCAL VOC categories that are an order of magnitude larger than the

VOC 2010 standard trainval set. We selected these classes as they contain the smallest amount of

training examples, and so are most likely to improve from additional training data. We took care

to ensure high-quality bounding box annotations and high-similarity to the PASCAL 2010 dataset.

To our knowledge, this is the largest publicly available positive training set for these PASCAL

categories.

Collection: We downloaded over one hundred thousand large images from Flickr to build our

dataset. We took care to directly mimic the collection procedure used by the PASCAL organizers.

We begin with a set of keywords (provided by the organizers) associated with each object class.

For each class, we picked a random keyword, chose a random date since Flickr’s launch, selected

a random page on the results, and finally took a random image from that page. We repeat this

procedure until we had downloaded an order of magnitude larger number of images for each class.

Filtering: The downloaded images from Flickr did not necessarily contain objects for the category

that we were targeting. We created MTurk tasks that asked workers to classify the downloaded

images on whether they contained the category of interest. Our user interface in Fig. 2.3 gave

workers instructions on how to handle special cases and this resulted in acceptable annotation

quality without finding agreement between workers.

Annotation: After filtering the images, we created MTurk tasks instructing workers to draw

bounding boxes around a specific class. Workers were only asked to annotate up to five objects per

image using our interface as in Fig. 2.3, although many workers gave us more boxes. On average,

our system received annotations at three images per second, allowing us to build bounding boxes

13

for 10,000 images in under an hour. As not every object is labeled, our data set cannot be used to

perform detection benchmarking (it is not possible to distinguish false-positives from true-negatives).

We experimented with additional validation steps, but found they were not necessary to obtain

high-quality annotations.

2.3.2 Data Quality

To verify the quality of our annotations, we performed an in-depth diagnostic analysis of a particular

category (horses). Overall, our analysis suggests that our collection and annotation pipeline produces

high-quality training data that is similar to PASCAL.

Attribute distribution: We first compared various distributions of attributes of bounding boxes

from PASCAL-10X to those from both PASCAL 2010 and 2007 trainval. Attribute annotations

were provided by manual labeling. Our findings are summarized in Tab. 2.2. Interestingly, horses

collected in 2010 and 2007 vary significantly, while 2010 and PASCAL-10X match fairly well. Our

images were on average twice the resolution as those in PASCAL so we scaled our images down to

construct our final dataset.

PASCAL
Attributes Us 2010 2007
Truncated 30.8 31.5 15.8
Occluded 5.9 8.6 7.1
Jumping 4.0 4.3 15.8
Standing 69.9 68.8 54.6
Trotting 23.5 24.9 26.6
Sitting 2.0 1.4 0.7
Other 0.0 0.5 0
Person Top 24.8 29.1 57.5
Person Besides 8.8 10.0 8.6
No Person 66.0 59.8 33.8

Table 2.2: Frequencies of attributes (percent) across images in our 10x horse data set compared
to the PASCAL 2010 train-val data set. Bolded entries highlight significant differences relative to
our collected data. Our dataset has similar attribute distribution to the PASCAL 2010, but differs
significantly from 2007, which has many more sporting events.

14

Figure 2.3: Our MTurk user interfaces for image classification and object annotation. We provided
detailed instructions to workers, resulting in acceptable annotation quality.

15

User assessment: We also gauged the quality of our bounding boxes compared to PASCAL with

a user study. We flashed a pair of horse bounding boxes, one from PASCAL-10X and one from

PASCAL 2010, on a screen and instructed a subject to label which appeared to be better example.

Our subject preferred the PASCAL 2010 data set 49% of the time and our data set 51% of the

time. Since chance is 50%-50% and our subject operated close to chance, this further suggests

PASCAL-10X matched well with PASCAL. Qualitatively, the biggest difference observed between

the two datasets was that PASCAL-10X bounding boxes tend to be somewhat “looser” than the

(hand curated) PASCAL 2010 data.

Redundant annotations: We tested the use of multiple annotations for removing poorly labeled

positive examples. All horse images were labeled twice, and only those bounding boxes that

agreed across the two annotation sessions were kept for training. We found that training on these

cross-verified annotations did not significantly affect the performance of the learned detector.

2.4 Mixture models

To take full advantage of additional training data, it is vital to grow model complexity. We

accomplish this by adding a mixture component to capture additional “sub-category” structure. Our

basic building block will be a mixture of linear classifiers, or templates. Formally speaking, we

compute the detection score of an image window I as:

S(I) = max
m

[
wm · φ(I) + bm

]
(2.1)

wherem is a discrete mixture variable, Φ(I) is a HOG image descriptor [22], wm is a linearly-scored

template, and bm is an (optional) bias parameter that acts as a prior that favors particular templates

over others.

In this section, we describe approaches for learning mixture models by clustering positive examples

16

from our training set. We train independent linear classifiers (wm, bm) using positive examples from

each cluster. One difficulty in evaluating mixture models is that fluctuations in the (non-convex)

clustering results may mask variations in performance we wish to measure. We took care to devise

a procedure for varying K (the number of clusters) and N (the amount of training data) in such a

manner that would reduce stochastic effects of random sampling.

Unsupervised clustering: For our unsupervised baseline, we cluster the positive training images

of each category into 16 clusters using hierarchical k-means, recursively splitting each cluster into

k = 2 subclusters. For example, given a fixed training set, we would like the cluster partitions

for K = 8 to respect the cluster partition of K = 4. To capture both appearance and shape when

clustering, we warp an instance to a canonical aspect ratio, compute its HOG descriptor (reduce the

dimensionality with PCA for computational efficiency), and append the aspect ratio to the resulting

feature vector.

Partitioned sampling: Given a fixed training set of Nmax positive images, we would like to

construct a smaller sampled subset, say of N = Nmax

2
images, whose cluster partitions respect those

in the full dataset. This is similar in spirit to stratified sampling and attempts to reduce variance

in our performance estimates due to “binning artifacts” of inconsistent cluster partitions across

re-samplings of the data.

To do this, we first hierarchically-partition the full set of Nmax images by recursively applying

k-means. We then subsample the images in the leaf nodes of the hierarchy in order to generate a

smaller hierarchically partitioned dataset by using the same hierarchical tree defined over the original

leaf clusters. This sub-sampling procedure can be applied repeatedly to produce training datasets

with fewer and fewer examples that still respects the original data distribution and clustering.

The sampling algorithm, shown in Algorithm 1, yields a set of partitioned training sets, indexed

by (K,N) with two properties: (1) for a fixed number of clusters K, each smaller training set

is a subset of the larger ones, and (2) given a fixed training set size N , small clusters are strict

17

Input: {Nn}; {S(i)}
Output: {C(i)

n }
C

(i)
0 = S(i), C

(i)
n = ∅ ∀i,∀n > 11

for n = 1 : end do // For each Nn2

for t = 1 : Nn do3

z ∼ |C(z)
n−1|∑

j |C
(j)
n−1|

; // Pick a cluster randomly
4

C
(z)
n ⇐ C

(z)
n−1 ; // sample zth cluster without replacement5

end6

end7

Algorithm 1: Partitioned sampling of the clusters. Nn is the number of samples to return
for set n with N0 = Nmax; Nn > Nn+1. S(i) is the ith cluster from the lowest level of the
hierarchy (e.g., with K = 16 clusters) computed on the full dataset Nmax. Steps 4-5 randomly
samples Nn training samples from {C(i)

n−1} to construct K sub-sampled clusters {C(i)
n }, each

of which contain a subset of the training data while keeping the same distribution of the data
over clusters.

refinements of larger clusters. We compute confidence intervals in our experiments by repeating this

procedure multiple times to resample the dataset and produce multiple sets of (K,N)−consistent

partitions.

Supervised clustering: To examine the effect of supervision, we cluster the training data by

manually grouping visually similar samples. For CMU MultiPIE, we define clusters using viewpoint

annotations provided with the dataset. We generate a hierarchical clustering by having a human

operator merge similar viewpoints, following the partitioned sampling scheme above. Since

PASCAL-10X does not have viewpoint labels, we generate an “over-clustering” with k-means with

a large K, and have a human operator manually merge clusters. Fig. 2.4 and Fig. 2.5 show example

clusters for faces and buses.

2.5 Experiments

Armed with our array of non-parametric mixture models and datasets, we now present an extensive

diagnostic analysis on 11 PASCAL categories from the 2010 PASCAL trainval set and faces from

18

1

2

4

8

16

(a) Unsupervised

1

3

5

13

(b) Supervised

Figure 2.4: We compare supervised versus automatic (k-means) approaches for clustering by
displaying the average RGB image of each cluster. The supervised methods use viewpoint labels
to cluster the training data. Because our face data is relatively clean, both obtain reasonably good
clusters. However, at some levels of the hierarchy, unsupervised clustering does seem to produce
suboptimal partitions - for example, at K = 2. There is no natural way to group multi-view
faces into two groups. Automatically selecting K is a key difficulty with unsupervised clustering
algorithms.

the Annotated Faces in the Wild test set [94]. For each category, we train the model with varying

number of samples (N) and mixtures (K). To train our mixture models, we learn rigid HOG

templates [22] with linear SVMs [15]. We calibrated SVM scores using Platt scaling [66]. Since

the goal is to calibrate scores of mixture components relative to each other, we found it sufficient to

train scaling parameters using the original training set rather than using a held-out validation set.

To show the uncertainty of the performance with respect to different sets of training samples, we

randomly re-sample the training data 5 times for each N and K following the partitioned sampling

19

(a) Unsupervised

(b) Supervised

Figure 2.5: We compare supervised versus automatic (k-means) approaches for clustering images of
PASCAL buses. Supervised clustering produces more clear clusters, e.g. the 21 supervised clusters
correspond to viewpoints and object type (single vs double-decker). Supervised clusters perform
better in practice, as we show in Fig. 2.9.

scheme described in Sec. 2.4. The best regularization parameter C for the SVM was selected by

cross validation. For diagnostic analysis, we first focus on faces and buses.

Evaluation: We adopt the PASCAL VOC precision-recall protocol for object detection (requiring

50% overlap), and report average precision (AP). While learning theory often focuses on analyzing

0-1 classification error rather than AP [59], we experimentally verified that AP typically tracks 0-1

classification error and so focus on the former in our experiments.

20

0 500 1000

0.3

0.4

0.5

0.6
Single template face model

Num. of training samples

A
ve

ra
ge

 p
re

ci
si

on

Fixed C=0.002
Crossval on C

(a) Single template performance on the testing data

0 500 1000
0.4

0.6

0.8

1

Num. of training examples

A
ve

ra
ge

 p
re

ci
si

on

Fixed C=0.002
Crossval on C

(b) Single template performance on the training data

10
−7

10
−5

10
−3

10
−1

10
1

0.1

0.2

0.3

0.4

0.5

0.6

C

A
ve

ra
ge

 p
re

ci
si

on

C vs. AP

N=10
N=50
N=100
N=500
N=900

(c) Single template performance on the testing data w/ varying C

Figure 2.6: (a) More training data could hurt if we did not cross-validate to select the optimal C. (b)
Training error, when measured on a fixed training set of 900 faces and 1218 negative images, always
decreases as we train with more of those images. This further suggests that overfitting is the culprit,
and that proper regularization is the solution. (c) Test performance can change drastically with C.
Importantly, the optimal setting of C depends on the amount of positive training examples N .

21

2.5.1 The importance of proper regularization

We begin with a rather simple experiment: how does a single rigid HOG template tuned for

faces perform when we give it more training data N? Fig. 2.6 shows the surprising result that

additional training data can decrease performance! For imbalanced object detection datasets with

many more negatives than positives, the hinge loss appears to grow linearly with the amount of

positive training data; if one doubles the number of positives, the total hinge loss also doubles.

This leads to overfitting. To address this problem, we found it crucial to cross-validate C across

different N . By doing so, we do see better performance with more data (Fig. 2.6a). While cross-

validating regularization parameters is a standard procedure when applying a classifier to a new

dataset, most off-the-shelf detectors are trained using a fixed C across object categories with large

variations in the number of positives. We suspect other systems based on standard detectors [35, 22]

may also be suffering from suboptimal regularization and might show an improvement by proper

cross-validation.

2.5.2 The importance of clean training data

Although proper regularization parameters proved to be crucial, we still discovered scenarios where

additional training data hurt performance. Fig. 2.7 shows an experiment with a fixed set of N

training examples where we train two detectors: (1) All is trained with with all N examples, while

(2) Frontal is trained with a smaller, “clean” subset of examples containing frontal faces. We

cross-validate C for each model for each N . Surprisingly, Frontal outperforms All even though it is

trained with less data.

This outcome cannot be explained by a failure of the model to generalize from training to test data.

We examined the training loss for both models, evaluated on the full training set. As expected,

All has a lower SVM objective function than Frontal (1.29 vs 3.48). But in terms of 0-1 loss,

All makes nearly twice as many classification errors on the same training images (900 vs 470).

22

0 200 400 600 800

0.4

0.5

0.6

Single template face model

Number of training samples

A
ve

ra
ge

 p
re

ci
si

on

All
Frontal

(a)

(b) Frontal (c) All

Figure 2.7: In (a), we compare the performance of a single HOG template trained withN multi-view
face examples, versus a template trained with a subset of those N examples corresponding to frontal
faces. The frontal-face template (b) looks “cleaner” and makes fewer classification errors on both
testing and training data. The fully-trained template (c) looks noisy and performs worse, even
though it produces a lower SVM objective value (when both (b) and (c) are evaluated on the full
training set). This suggests that SVMs are sensitive to noise and benefit from training with “clean”
data.

This observation suggests that the hinge loss is a poor surrogate to the 0-1 loss because “noisy”

hard examples can wildly distort the decision boundary as they incur a large, unbounded hinge

penalty. Interestingly, latent mixture models can mimic the behavior of non-convex bounded loss

functions [84] by placing noisy examples into junk clusters that simply serve to explain outliers in

the training set. In some cases, a single “clean” mixture component by itself explains most of the

23

Figure 2.8: The single bicycle template (marked with red) alone achieves ap=29.4%, which is almost
equivalent to the performance of using all 8 mixtures (ap=29.7%). Both models strongly outperform
a single-mixture model trained on the full training set. This suggests that these additional mixtures
are useful during training to capture outliers and prevent “noisy” data from polluting a “clean”
template that does most of the work at test time.

test performance (Fig. 2.8).

The importance of “clean” training data suggests it could be fruitful to correctly cluster training

data into mixture components where each component is “clean”. We evaluated the effectiveness of

providing fully supervised clustering in producing clean mixtures. In Fig. 2.9, we see a small 2%

to 5% increase for manual clustering. In general, we find that unsupervised clustering can work

reasonably well but depends strongly on the category and features used. For example, the DPM

implementation of [35] initializes mixtures based on aspect ratios. Since faces in different viewpoint

share similar aspect ratios, this tends to produce “unclean” mixtures compared to our non-latent

clustering.

2.5.3 Performance of mixture models

Given the right regularization and clean mixtures trained independently, we now evaluate whether

performance asymptotes as the amount of training data and the model complexity increase.

24

0 500 1000

0.66

0.68

0.7

0.72

0.74

Num. of training samples

A
ve

ra
ge

 p
re

ci
si

on

Human cluster, K=5
Kmeans cluster, K=4

(a) Face

0 1000 2000 3000 4000 5000

0.35

0.4

0.45

0.5

0.55

0.6

Num. of training samples

A
ve

ra
ge

 p
re

ci
si

on

Human cluster, K=5
Kmeans cluster, K=4

(b) Bus

Figure 2.9: We compare the human clustering and automatic k-means clustering at near-identical K.
We find that supervised clustering provides a small but noticeable improvement of 2-5%.

Fig. 2.10 shows performance as we vary K and N after cross-validating C and using supervised

clustering. Fig. 2.10a demonstrates that increasing the amount of training data yields a clear

improvement in performance at the beginning, and the gain quickly becomes smaller later. Larger

models with more mixtures tend to perform worse with fewer examples due to over fitting, but

eventually win with more data. Surprisingly, improvement tends to saturate at ∼100 training

examples per mixture and with ∼10 mixtures. Fig. 2.10b shows performance as we vary model

complexity for a fixed amount of training data. Particularly at small data regimes, we see the critical

point one would expect from Fig. 2.2: a more complex model performs better up to a point, after

which it overfits. We found similar behavior for the buses category which we manually clustered by

viewpoint.

We performed similar experiments for all 11 PASCAL object categories in our PASCAL-10X

dataset shown in Fig. 2.11. We evaluate performance on the PASCAL 2010 trainval set since

the testset annotations are not public. We cluster the training data into K=[1,2,4,8,16] mixture

components, and N=[50, 100, 500, 1000, 3000, Nmax] training samples, where Nmax is the number

of training samples collected for the given category. For each N , we select the best C and K

through cross-validation. Fig. 2.11a, appears to suggest that performance is saturating across all

categories as we increase the amount of training data. However, if we plot performance on a log

25

0 200 400 600 800 1000
0.4

0.5

0.6

0.7

0.8
(a) Face: N vs. AP

Number of training data

A
P

K=1

K=3

K=5

K=13

K=26

(a) Face (AP vs N)

0 10 20 30
0.4

0.5

0.6

0.7

0.8
(b) Face: N vs. K

Number of mixtures

A
P

N=50

N=100

N=500

N=900

(b) Face (AP vs K)

0 500 1000 1500 2000

0.35

0.4

0.45

0.5

0.55

0.6

(c) Bus: N vs. AP

Number of training data

A
P

K=1

K=3

K=5

K=11

K=21

(c) Bus (AP vs N)

0 5 10 15 20 25
0.3

0.4

0.5

0.6

(d) Bus: K vs. AP

Number of mixtures

A
P

N=50

N=100

N=500

N=1000

N=1898

(d) Bus (AP vs K)

Figure 2.10: (a)(c) show the monotonic non-decreasing curves when we add more training data. The
performance saturates quickly at a few hundred training samples. (b)(d) show how the performance
changes with more mixtures K. Given a fixed number of training samples N , the performance
increases at the beginning, and decreases when we split the training data too much so that each
mixture only has few samples.

scale (Fig. 2.11b), it appears to increase roughly linearly. This suggests that the required training

data may need to grow exponentially to produce a fixed improvement in accuracy. For example, if

we extrapolate the steepest curve in Fig. 2.11b (motorbike), we will need 1012 motorbike samples to

reach 90% AP!

26

0 2000 4000 6000 8000 10000 12000 14000
0

0.1

0.2

0.3

0.4

0.5

Num. of training samples (linear scale)

A
ve

ra
ge

 p
re

ci
si

on

Horse
Bicycle

Bus

Cat
Cow

Diningtable

Motorbike
Sheep

Sofa

Train
Tvmonitor

(a) Linear scale

10
2

10
3

10
4

10
5

0

0.1

0.2

0.3

0.4

0.5

Num. of training samples (log scale)

A
ve

ra
ge

 p
re

ci
si

on

Horse
Bicycle

Bus

Cat
Cow

Diningtable

Motorbike
Sheep

Sofa

Train
Tvmonitor

(b) Log scale

Figure 2.11: We plot the best performance at varying amount of training data for 11 PASCAL
categories on PASCAL 2010 trainval set. (a) shows that all the curves look saturated with a relatively
small amount of training data; but in log scale (b) suggests a diminishing return instead of true
saturation. However the performance increases so slow that we will need more than 1012 examples
per category to reach 90% AP if we keep growing at the same rate.

27

2.6 Conclusion

We have performed an extensive analysis of the current dominant paradigm for object detection

using HOG feature templates. We specifically focused on performance as a function of the amount

of training data.

To scale current systems to larger datasets, we find that one must get certain “details” correct.

Specifically, (a) cross-validation of regularization parameters is mundane but crucial, (b) current

discriminative classification machinery is overly sensitive to noisy data, suggesting that (c) manual

cleanup and supervision or more clever latent optimization during learning may play an important

role for designing high-performance detection systems. We also demonstrate that HOG templates

have a relatively small effective capacity; one can train accurate HOG templates with 100-200

positive examples (rather than thousands of examples as is typically done [22]).

From a broader perspective, an emerging idea in our community is that object detection might be

solved with simple models backed with massive training sets. Our experiments suggest a slightly

refined view. Given the size of existing datasets, it appears that the current state-of-the-art will

need significant additional data (perhaps exponentially larger sets) to continue producing consistent

improvements in performance.

28

Chapter 3

Capturing long-tail distributions of object

subcategories

In the last chapter, we empirically examined the performance of subcategory models as one increases

the amount of training data, and found that performance saturated fairly quickly. If the performance

increases at the rate we show in Fig. 2.11, we will need more than 1012 training examples per

category to reach 90% AP. Collecting such a large training set for each object category is clearly

infeasible. This motivates us to ask two questions: (1) Why does the current model not work well

with a modest amount of training data? (2) Is it possible to boost the detection performance without

collecting an enormous amount of data?

We see the answer to the first question as a consequence of the “long-tail” distribution of object

subcategories (Fig. 3.1a): instances within an object category exhibits large appearance variation,

which follow long-tail distributions. There are a small number of common cases, and a large number

of unusual ones which collectively make up a large portion of the data. A particular subcategory

from the long tail may be difficult to observe in any finite training dataset. It is therefore hard to

model due to lack of training data. Fig. 3.1b shows that the current detector actually does well on the

29

common subcategories, yielding average precision of above 90% for the two largest subcategories,

but generally does much worse on rare cases.

20 40 60
0

20

40

60

80

100

120

Bus subcategory visibility pattern

N
um

be
r

of
 e

xa
m

pl
es

(a) Distributions of the visibility patterns for bus

0 20 40 60
0

0.2

0.4

0.6

0.8

1

Bus subcategory visibility pattern

A
ve

ra
ge

 p
re

ci
si

on

(b) Detection performance on each subcategory

10
0

10
1

10
2

0

0.2

0.4

0.6

0.8

Subcategory size (log)

A
ve

ra
ge

 p
re

ci
si

on

(c) Scatter plot of subcategory size vs average precision

Figure 3.1: (a) shows the distribution of the keypoint visibility patterns for bus from PASCAL (using
the manual annotations of [13]), which follows a long-tail. How to strictly define subcategory and
how to group examples into subcategories are still open questions. Visibility patterns of keypoints are
used as a proxy for general appearance in generating this figure, as they represent the variations due
to viewpoints and occlusions. In this chapter, we describe an approach to discover the subcategories,
rather than pre-define it. We empirically show that the discovered visual subcategories follow a
long-tail. (b) shows the detection performance for each subcategory. The current detector tends to
do well on the common ones (reaching above 90% on the top two), and work poorly on the rare
subcategories presumably due to lack to training data. (c) Merges (a)(b) into a scatter plot.

In this chapter, We propose the answer to the second question as to augment the data from the tail,

as this will probably give us a boost on the performance on the rare subcategories. We describe

distributed algorithms for learning mixture models that capture long-tail distributions, which are hard

30

to model with current approaches. We introduce a generalized notion of mixtures (or subcategories)

that allow for examples to be shared across multiple subcategories. We optimize our models with

a discriminative clustering algorithm that searches over mixtures in a distributed, “brute-force”

fashion. We used our scalable system to train tens of thousands of deformable mixtures for VOC

objects. We demonstrate significant performance improvements, particularly for object classes that

are characterized by large appearance variation.

3.1 Long-tail and its challenges

It is well-known that the frequency of object occurrence in natural scenes follows a long-tail

distribution [71]: for example, people and windows are much more common than coffins and

ziggurats (Fig. 3.2a). Long-tails complicate analysis because rare cases from the tail still collectively

make up a significant portion of the data and so cannot be ignored. Many approaches try to minimize

this phenomenon by working with balanced datasets of objects categories [27]. But long-tails still

exist for object subcategories: most people tend to stand, but people can assume a large number of

unusual poses (Fig.3.2b). We believe that current approaches may capture iconic object appearances

well, but are still limited due to inadequate modeling of the tail.

In theory, multi-mixture or subcategory models should address this, with possibly large computa-

tional costs: train a separate model for different viewpoints, shape deformation, etc. Empirically

though, these approaches tend to saturate early in performance after a modest number of mixtures

[95, 56, 29, 40, 35].

We argue that the long-tail raises three major challenges that current mixture models do not fully

address: (1) The “right” criteria for grouping examples into subcategories is not clear. Various

approaches have been suggested (including visual similarity [29], geometric similarity [9], semantic

ontologies [27]), but the optimal criteria remains unknown. (2) Even given the optimal criteria, it is

31

0 200 400 600 800 1000
0

100

200

300

400

500

N
um

be
r o

f o
cc

ur
re

nc
es

100 102100

101

102

103

104

Object classes

Nu
m

be
r o

f o
cc

ur
re

nc
es

log−log distribution
Line fit

Window Person Rope Spoon Locker Coffin Ziggurat...

(a) The number of examples by object class in SUN dataset

0 10 20 30 40 50 60
0

20

40

60

80

100

Visibility pattern

N
um

be
r o

f e
xa

m
pl

es

bus

100 101100

101

102

Visibility pattern

N
um

be
r o

f e
xa

m
pl

es

0 200 400 600 800 1000
0

20

40

60

80

100

Visibility pattern

N
um

be
r o

f e
xa

m
pl

es

person

100 102100

101

102

Visibility pattern

N
um

be
r o

f e
xa

m
pl

es

Visibility pattern Visibility pattern

Bus Person

N
um

. o
f e

xa
m

pl
es

(b) Distributions of the visibility patterns for bus and person

Figure 3.2: Long tail distributions exist for both object categories and subcategories. (a) shows the
number of examples by object class in the SUN dataset. The blue curve in the inset show a log-log
plot, along with a best-fit line in red. This suggests that the distribution follows a long-tail power
law. (b) shows the distributions of the keypoint visibility patterns for bus and person from PASCAL
(using the manual annotations of [13]), which also follow a long-tail. We describe methods for
automatically discovering long-tail distributions of subcategories with a distributed, “brute-force”
search without using additional annotations.

not clear how to algorithmically optimize for it. Typical methods employ some form of clustering,

but common algorithms (e.g., k-means) tend to report clusters of balanced sizes, while we hope to

get long-tail distributions. (3) Even given the optimal clustering, how does one learn models for

rare subcategories (small clusters) with little training data?

In our work, we address all three challenges: (1) We posit that the optimal grouping criteria is

simply recognition accuracy. But this presumably requires a “brute-force” search over all possible

clusterings, and an evaluation of the recognition accuracy of each grouping, which appears hopeless.

32

(2) We introduce a discriminative clustering algorithm that accomplishes this through distributed

computation, making use of massively-parallel architectures. We show that long-tail cluster sizes

naturally emerge from our algorithm. (3) To address the lack of training data for small clusters, we

allow rare subcategories to share training examples with dominant ones, introducing a notion of a

overlapping subcategories. Such fluid definitions of categories are common in psychology [69].

For example, a sport utility vehicle could be equally classified as a truck or a car. Overlapping

subcategories allow for cluster label assignment to decouple across subcategories, crucial for our

distributed optimization.

Noteably, our clustering algorithm does not explicitly enforce long-tail distributions as priors.

Rather, our underlying hypothesis is that long-tail distributions are an emergent property of the

“optimal” clustering, when measured with respect to recognition accuracy. We verify this hypothesis

experimentally. It is possible that brute-force clustering of other data types with respect to other

criteria may not produce long-tails. Rather, our experimental results reflect an empirical property of

our visual world, much like the empirical analysis of Fig. 3.2.

We review related work in Sec. 3.2, introduce our generalized subcategory model and discriminative

optimization algorithm in Sec. 3.3, and present results in Sec. 3.4. We demonstrate that our long-tail

mixture-models significantly outperform prior work on benchmark detection datasets, in some cases

achieving a factor of 2 improvement.

3.2 Related work

Subcategory discovery: Estimating subcategories is surprisingly hard; clustering based on key-

points [40, 9] and appearance [28, 7] have provided only modest performance increases [95]. [30]

uses combined appearance, shape, and context information to discover a small number of common

subcategories for object classification, however the rare cases are thrown away as “outliers”. One

33

attractive approach is to use a discriminative model to re-rank and identify other nearby train-

ing examples for clustering. This is often implemented through latent mixture assignment in a

max-margin model [35] or discriminative k-means [85]. In practice, such methods are sensitive

to initialization and can suffer from miscalibration [74]. We describe a discriminative clustering

algorithm that searches over all initializations in a distributed fashion without ever comparing scores

across different models during training. Finally, our models allow for overlapping clusters. This

differs from soft assignment in that the total contribution of an example need not be 1; indeed, we

show that certain examples are much more dominant than others (consistent with Rosch’s prototype

theory [68]).

Sharing across categories: There has been much work on sharing information between object

category models [71, 8, 54]. Most related is [54], which allows an object class to borrow examples

from similar categories, e.g. some armchairs can be used to train sofa models. While this approach

yields modest performance gains (1.4%AP), we produce larger gains presumably due to our brute-

force optimization over subcategory labels and sharing. Another attractive formalism is that of

attributes, or generic properties shared across object categories [52, 38, 82]. One could interpret

binary subcategory labels as a binary attribute vector; indeed, we perform multi-dimensional scaling

on such a vector to generate the visualization in Fig. 3.3. Our approach differs from much past work

in that our “attributes” are latently inferred in a data-driven manner.

Sharing across subcategories: Various approaches have also explored sharing across subcategories.

For example, it is common to share local features across view-based mixtures of an object [78, 94].

Typically, subcategory mixtures are supervised, but not always [62]. We share global examples

rather an local parts, as the former is more amenable to brute-force distributed optimization.

34

Figure 3.3: We describe overlapping subcategory models that allow for training data to belong to
multiple clusters with a large variation in size. For example, frontal (red) and side-view (blue) buses
may share a large number of 3

4
-view examples, and both are much more common than multi-body

articulated buses (yellow). We show that such models better characterize objects with “long-tail”
appearance distributions.

3.3 Learning long-tail subcategory models

In this section, we describe our approach for learning long-tail subcategory models. We model

each subcategory with a single-mixture deformable part model (DPM) [35]. Our overall pipeline is

summarized in Fig. 3.4. We explain each step in detail in the following.

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

CVPR
#328

CVPR
#328

CVPR 2013 Submission #328. CONFIDENTIAL REVIEW COPY. DO NOT DISTRIBUTE.

Figure 3: Our overall pipeline. We learn a massive num-
ber of candidate subcategory models in parallel, each ini-
tialized with its own training example and particular clus-
ter size. We train each subcategory with a discriminative
meanshift algorithm that iterates between selecting exam-
ples for sharing and learning detectors given those exam-
ples. Finally, we select a subset of candidate subcategory
detectors for each object class as to maximize recognition
accuracy. We show that this selection naturally produces
subcategories with long-tail distribution of sizes.

with a single-mixture deformable part model (DPM) [14].
Our overall pipeline is summarized in Fig. 3. We explain
each step in detail in the following.

3.1. Initialization

We begin by training a large “overcomplete” set of tens
of thousands of candidate subcategory models in parallel.
This large set of models will later be pruned. We initialize
our subcategory models by learning a discriminative tem-
plate for each positive example using exemplar SVMs [20].
We visualize exemplar root templates in Fig. 4. In terms of
category detection accuracy, they perform reasonably well
(25% AP). But because it easy to overfit to a single exam-
ple, many templates include noisy features from the back-
ground.

Regularization: To help smooth out noisy gradients,
let us retrain subcategory model m with the Nm highest-
scoring positive examples under the exemplar model. We
visualize these templates for Nm = 50 in Fig. 4. They
almost double performance, producing an AP of 42%. Intu-
itively, the Nm neighbors act as a regularizer for each exem-
plar, smoothing out the noisy gradients. Indeed, averaging
across Nm similar training examples maybe more natural
than penalizing the squared norm of a template, as is typ-
ically done to prevent overfiting. This motivating example
suggests that subcategory clusters need not be mutually ex-
clusive and may overlap. In fact, we find that some positive
examples are shared by many subcategories, a phenomena
that we will investigate further.

Iteration: We make two further observations. First, one
can iterate the procedure and find the Nm highest scoring
examples with the retrained subcategory model and repeat.
The optimal choice of neighbors for one cluster is indepen-

Iter0

Iter1

Figure 4: We visualize examples training images on the
top. We show initial exemplar models trained with them
in the middle. These templates perform well (25% AP on
VOC2007), but sometimes emphasize gradients in the back-
ground, such as the tree in the top-left corner of the top-left
image. Retraining with the Nm = 50 highest-scoring ex-
amples (bottom) smooths out the template, de-emphasizing
such noisy gradients (since they tend not be found in the
Nm neighbors). This significantly improves performance
to 42%. This suggests that optimal subcategory clusters
may be overlapping, and maybe computed independantly
for each subcategory. [Deva: Remake figure with larger
templates]

dant of the choice of another cluster, suggesting these iter-
ations can be performed independantly and in parallel. We
show that such a distributed, iterative algorithm is garuan-
teed to converge since it can be formalized as joint optimiza-
tion of a well-defined (discriminative) objective function.
We call the resulting algorithm discriminative meanshift-
clustering.

Cluster-size: Selecting the optimal cluster size Nm is
tricky. We want large Nm for common cases. Rare clus-
ters are particularly hard to model; from one perspective,
they should use a small Nm so that learned detectors aren’t
polluted by visually dissimilar examples. On the other
hand, models learned from very small clusters may tend
to overfit because they are trained with less data. As ar-
gued above, we treat Nm as a subcategory-specific regu-
larization parameter that is tuned on validation data (much
as one tunes the C regularization parameter for SVMs).
Specifically, we learn models for a range of Nm � N =
{50, 100, 200, 400, 800, 1600} values. Given a dataset with
P positives, we learn a total of K = |N |P candidate sub-
categories mixtures in parallel, spanning both examples and
cluster sizes. After training this large redundant set, we se-
lect a subset on validation data.

3.2. Discriminative meanshift-clustering

We formalize the iterative algorithm introduced in the
previous section. We do so by writing a objective function
for jointly training all K subcategory models, and describe
a coordinate descent optimization produce that naturally de-
couples across subcategories.

3

iterate

iterate

iterate

Figure 3.4: Our overall pipeline. We learn a massive number of candidate subcategory models in
parallel, each initialized with its own training example (an exemplar) and particular cluster size. We
train each subcategory with a discriminative clustering algorithm that iterates between selecting
examples for sharing and learning detectors given those examples. Finally, we select a subset of
candidate subcategory detectors for each object class as to maximize recognition accuracy. We
show that this selection naturally produces subcategories with long-tail distribution of sizes.

35

3.3.1 Initialization

We begin by training a large “overcomplete” set of thousands to tens of thousands of candidate

subcategory models in parallel. This large set of models will later be pruned. We initialize our

subcategory models by learning a discriminative template for each positive example using exemplar

SVMs [56]. We visualize exemplar root templates for cars in Fig. 3.5. In terms of category detection

accuracy, they perform reasonably well (25% AP). But because it is easy to overfit to a single

example, many templates include noisy features from the background.

Figure 3.5: We visualize examples training images on the top. We show initial exemplar models
trained with them in the middle. These templates perform well (25% AP on VOC2007), but
sometimes emphasize incorrect gradients, such as the foreground tree in the center image. Retraining
with the nm = 50 highest-scoring examples (bottom) smooths out the template, de-emphasizing
such noisy gradients (since they tend not be found in the nm neighbors). This significantly improves
performance to 42%. This suggests that optimal subcategory clusters may be overlapping, and
maybe computed independently for each subcategory.

Sharing as regularization: To help learning more reliable templates for the rare examples, we

retrain subcategory model m with the nm highest-scoring positive examples under the exemplar

model. We consider the sharing as a form of “regularization” that prevents overfitting to noisy

gradients. To demonstrate the effect of sharing, we visualize the exemplar templates and the

retrained templates for nm = 50 in Fig. 3.5. The templates “regularized” by shared examples have

less noisy gradients and almost double performance, producing an AP of 42%. Indeed, “averaging”

across nm similar training examples maybe more natural than penalizing the squared norm of

36

a template, as is typically done to prevent overfitting. This motivating example suggests that

subcategory clusters need not be mutually exclusive and may overlap. In fact, we find that some

positive examples are shared by many subcategories, a phenomenon that we will investigate later in

Fig. 3.7.

Iteration: We make two further observations. First, one can iterate the procedure and find the nm

highest scoring examples with the retrained subcategory model and repeat. The optimal choice of

neighbors for one cluster is independent of the choice of another cluster, suggesting these iterations

can be performed independently and in parallel. We show in Sec. 3.3.2 that such a distributed,

iterative algorithm is guaranteed to converge since it can be formalized as joint optimization of a

well-defined (discriminative) objective function.

Cluster-size: Selecting the optimal cluster size nm is tricky. We want large nm for common cases.

Rare clusters are particularly hard to model; from one perspective, they should use a small nm so that

learned detectors aren’t polluted by visually dissimilar examples. On the other hand, models learned

from very small clusters may tend to overfit because they are trained with less data. As argued above,

we treat nm as a subcategory-specific regularization parameter that is tuned on validation data.

Specifically, we learn models for a log-linear range of nm ∈ N = {50, 100, 200, 400, 800, 1600}

values. Given a dataset of positives P , we learn a large set of candidate subcategories mixtures

M (|M | = |N ||P |) in parallel, spanning both examples and cluster sizes. After training this large

redundant set, we select a subset on validation data.

3.3.2 Discriminative clustering with sharing

We formalize the iterative algorithm introduced in the previous subsection. We do so by writing a

objective function for jointly training all |M | subcategory models, and describe a coordinate descent

optimization that naturally decouples across subcategories.

37

Let us write a mixture of templates (can be part models or simply rigid templates) as

f(x) = max
m

wm · x where m ∈M (3.1)

where m indicates a subcategory mixture component. M is the set of all mixture components . wm

is the template for m. x is an example. Given a training dataset (xi, yi) where yi ∈ {−1, 1} (for

the detection problem), we explicitly write the non-convex learning objective as a function of both

mixture models {wm} and binary latent variables zim ∈ {0, 1} that take on the value 1 if the ith

positive belongs to mixture component m. [67] refers to the |P | × |M | binary matrix of Z = [zim]

as the “latent matrix”, where |P | is the number of positive examples:

L(w,Z) =
∑
m∈M

[1
2
||wm||2 (3.2)

+ C
∑
i∈pos

zim max(0, 1− wm · xi)

+ C
∑
i∈neg

max(0, 1 + wm · xi)
]
.

A standard latent SVM problem without sharing in [35] can be written as a joint minimization over

(w,Z) subject to the constraints the rows of Z sum to 1 (
∑

m zim = 1): each positive example i is

assigned to exactly one mixture component.

We now replace the hard-assignment constraint
∑

m zim = 1 with
∑

i zim = nm. Now we sum

over i instead of m. This means that rather than forcing each positive to be assigned to exactly one

mixture component, we force the mixture component m to consist of nm examples. This constraint

allows a single positive example i to be used to learn multiple mixtures, which provides a natural

form of sharing between mixtures.

We describe a coordinate descent optimization algorithm for optimizing (3.2) subject to our new

linear constraints:

38

1. (Sharing) minZ L(w,Z): Compute wm · xi for i ∈ pos. Sort scores and set zim for the nm

highest values to 1.

2. (Learning) minw L(w,Z): Learn wm with a convex program (SVM) using nm positives and

all negatives.

Step 1 optimizes latent assignment Z while keeping template weights w fixed. In detail, this step

assigns nm positive examples to each template wm so as to minimize the hinge loss. The loss is

exactly minimized by assigning the nm highest scoring positives to m. Step 2 optimizes w while

fixing Z. This step is a standard SVM problem. As both steps decrease the loss in (3.2), it is

guaranteed to converge to a local optima.

Unlike other clustering methods such as k-means, both of the above steps can be performed

independently and in parallel for all |M | clusters.

3.3.3 Greedy model selection

For each object class, we generate a pool of |M | candidate subcategory models. Typically, |M | is in

the thousands to tens of thousands. Many of these subcategory models will be redundant due to

sharing. We want to compress the models by selecting a subset S ⊆M .

We cast this as a combinatorial optimization problem: for a possible subset S, compute its average

precision performance AP (S) on a validation set, and select the subset that maximizes AP. To

evaluate AP (S), we run each subcategory model m ∈ S on the validation set, eliminate overlapping

detections from the subset S with non-maximum suppression (NMS), and compute a precision-recall

curve.

The search over the powerset of M is clearly intractable, but we find a greedy strategy to work quite

39

well. Initialize S = {} and repeatedly find the next-best mixture m to turn “on”:

1. m∗ := argmax
m

AP (S ∪m)

2. S := S ∪m∗

A natural stopping condition is an insufficient increase in AP. In practice, we stop after instantiating

a fixed number (|S| = 50) of subcategories. The first such instantiated subcategory tends to model

a dominant cluster trained with a large nm, while latter instantiations tend to consist of rare cases

with small nm.

To ensure that subcategory scores are comparable during NMS, we first calibrate the scores across

models by mapping them to object class probabilities [66]. We use the same set of validation images

for calibration and model selection. Calibration and selection is fast because the computationally-

demanding portion (training a large pool of detectors and running them on validation images) is

parallelized across all |M | subcategory models. We visualize instantiated mixtures in Fig. 3.6 and

Fig. 3.7.

3.4 Experimental results

Map-reduce: Our approach requires training and evaluating tens of thousands of DPMs across

large numbers of object categories. In order to manage learning at this scale, we have implemented

an in-house map-reduce version of the DPM codebase [1] . Map-reduce [18, 23] is an architecture

for parallel computing. In our system, we use mappers to collect positive examples and negative

images, and use mixture-specific reducers to learn the mixture models. This distributed architecture

allows us to learn mixtures in parallel according to the formulation of (3.2).

Computation: Because our distributed training algorithm can be parallelized across |M | cores,

40

size of subcategory

of subcategory detections

of subcategory detections

0 10 20 30 40 50
0

100

200

300

400
bus

0 10 20 30 40 50
0

50

100

150
person

0 10 20 30 40 50
0

5

10

15
bus

Bus

size of subcategory

0 10 20 30 40 50
0

500

1000

1500

2000
personPerson

Figure 3.6: For two categories (bus and person), we plot the size of each subcategory cluster, as
well as the number of true positive detections of that subcategory on test images (left). Both tend to
follow a long-tail distribution; some subcategories are dominant, while many are rare. We visualize
average images and templates associated with selected subcategories on the right. We find that
bus subcategories correspond to bus viewpoint, while person subcategories correspond to different
truncations, poses, and interactions with objects such as horses and bicycles.

each iteration of our learning algorithm is no slower than training a single-mixture DPM. We

perform a fixed number (6) of discriminative clustering iterations, but find that cluster labels tend to

stabilize after 3 iterations. At test-time, our long-tail subcategory models are equivalent to running

|S| = 50 single-mixture DPMs in parallel, which takes about 1 second per image in our in-house

implementation.

Benchmarks: Following much past work, we evaluate our detection system on PASCAL VOC

2007. Additionally, in order to test our implementation of DPMs (DistDPMs), we evaluate our

DistDPMs on the Columbia Dog Breed Dataset [55] and the CUHK Cat Head Dataset [90]. The

Columbia Dog dataset consist of 8000 dog images obtained from various repositories, while the

CUHK Cat Dataset consists of 10000 Flickr images of cats. We used their standard training/test

split: roughly 50%/50% for dogs and 70%/30% for cats.

Distributed DPMs: Before evaluating our proposed long-tail subcategory (LTS) models, we first

41

0 100 200 300 400 500
0

10

20

30

40

All examples

N
um

be
r o

f o
cc

ur
re

nc
e

0 2000 4000 6000 8000 10000
0

10

20

30

40

All examples

N
um

be
r o

f o
cc

ur
re

nc
e Person image popularity

Bus image popularity

Figure 3.7: This plot reveals “popular” positive training images that are selected by many sub-
categories. Popular training images (in red) are prototypes that are representative of the category.
Unpopular or rare images (such as multi-body articulated bus, in orange) are used by less subcate-
gories.

verify that our map-reduce DPM implementation can reproduce the state-of-the-art voc-release4

models of [1, 35], when we use the same number of mixtures and the same latent hard assignment

strategy (no sharing) as in [1]. We compare to the raw detectors without any post-processing

(bounding-box prediction or contextual rescoring) in Table 3.1. Our implementation produces an

average AP of 28.1%, compared to 31.8% from [1]. The 3% drop is mainly due to the fact that [1]

uses max-regularization over all mixtures and learns 3 pairs of mirrored mixtures rather than the 6

separate mixtures in our implementation. Both of these are hard to decouple and parallelize, but

known to help the empirical performance.

42

Even given this shortcoming, we will show our codebase can be used to construct state-of-the-art sub-

category models. We also verify that our re-implementation produces state-of-the-art performance

on other benchmark datasets in Fig. 3.8.

0.8 0.85 0.9 0.950.8

0.85

0.9

0.95

1
Cat head detection

Our 6−DPM
Shape+texture [24][25]

Recall

Pr
ec
is
io
n

0.2 0.4 0.6 0.8 10.2

0.4

0.6

0.8

1
Dog face detection

Our 6−DPM
SVM+RBF+SIFT [14][15]

Recall

Figure 3.8: We run our implementation of 6-DistDPM on two public datasets of dog[55] and cat[90]
face detection. Our 6-DistDPM outperforms the previously reported best methods on both datasets.
Our improvement is particular large on the dog dataset, which arguably is more challenging due to
the larger appearance variations of a dog face.

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1
cat

Pr
ec
is
io
n

Recall

50−GSC
6−DPM
50−DPM

LTS

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1
sofa

Pr
ec
is
io
n

Recall

50−GSC
6−DPM
50−DPM

LTS

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1
sheep

Pr
ec
is
io
n

Recall

50−GSC
6−DPM
50−DPM

LTS

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1
diningtable

Pr
ec
is
io
n

Recall

50−GSC
6−DPM
50−DPM

LTS

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1
aeroplane

Pr
ec
is
io
n

Recall

50−GSC
6−DPM
50−DPM

LTS

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1
bicycle

Pr
ec
is
io
n

Recall

50−GSC
6−DPM
50−DPM

LTS

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1
bus

Pr
ec
is
io
n

Recall

50−GSC
6−DPM
50−DPM

LTS

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1
train

Pr
ec
is
io
n

Recall

50−GSC
6−DPM
50−DPM

LTS

Figure 3.9: We plot precision-recall curves for PASCAL VOC 2007 categories. We show “hard”
classes on the top row, where the baseline 6-mixture DPM (in green) performs poorly. These classes
tend to have rich appearance variation (due to viewpoint, subclass structure, and occlusion from
other objects). Scaling the baseline to 50-mixture DPM (in cyan) yields worse performance due to
lack of training examples for each mixture component. Our 50-mixture long-tail subcategory model
(LTS, in red) provides a significant improvement in such cases. The “easy” classes in the bottom
row show similar trend. We further examine this performance increase in Fig. 3.11.

Long-tail subcategories (LTS). We use a subset of the VOC2011 training set (that does not

overlap with the 2007 dataset) as validation data to greedily select our long-tail subcategory models

43

Category pl
an

e

bi
cy

cl
e

bi
rd

bo
at

bo
ttl

e

bu
s

ca
r

ca
t

ch
ai

r

co
w

voc-rel4[1] 29.6 57.3 10.1 17.1 25.2 47.8 55.0 18.4 21.6 24.7
voc-rel5[2] 32.4 57.7 10.7 15.7 25.3 51.3 54.2 17.9 21.0 24.0
LEO[92] 29.4 55.8 9.4 14.3 28.6 44.0 51.3 21.3 20.0 19.3
DPM-WTA[24] 19 48 03 10 16 41 44 9 15 19
ESVM[56] 20.8 48.0 7.7 14.3 13.1 39.7 41.1 5.2 11.6 18.6
MCI+MCL[7] 33.3 53.6 9.6 15.6 22.9 48.8 51.5 16.3 16.3 20.0
Our 6-DistDPM 26.6 54.3 9.4 14.4 24.8 46.5 50.5 12.8 14.1 26.3
Our 50-LTS 34.1 61.2 10.1 18.0 28.9 58.3 58.9 27.4 21.0 32.3

Category ta
bl

e

do
g

ho
rs

e

m
bi

ke

pe
rs

on

pl
an

t

sh
ee

p

so
fa

tr
ai

n

tv to
ta

l

voc-rel4[1] 23.3 11.2 57.6 46.5 42.1 12.2 18.6 31.9 44.5 40.9 31.8
voc-rel5[2] 25.7 11.6 55.6 47.5 43.5 14.5 22.6 34.2 44.2 41.3 32.5
LEO[92] 25.2 12.5 50.4 38.4 36.6 15.1 19.7 25.1 36.8 39.3 29.6
DPM-WTA[24] 23 10 52 34 20 10 16 28 34 34 24
ESVM[56] 11.1 3.1 44.7 39.4 16.9 11.2 22.6 17.0 36.9 30.0 22.7
MCI+MCL[7] 23.8 11.0 55.3 43.8 36.9 10.7 22.7 23.5 38.6 41.0 29.8
Our 6-DistDPM 14.0 3.2 57.7 43.2 35.2 10.1 16.9 18.2 41.6 41.2 28.1
Our 50-LTS 34.6 15.7 54.1 47.2 41.2 18.1 27.2 34.6 49.3 42.2 35.7

Table 3.1: Average precision for different object categories in PASCAL 2007 dataset. We compare
our approach to the existing methods on the same benchmark. The first two rows contain the results
reported in the released code of [1, 2] without any post-processing. Our parallel implementation
with the same number of mixtures (6-DistDPM) is shown in the second last row. The last row is
our long-tail subcategory model (LTS), which significantly improves performance, particularly on
difficult categories with large appearance variation (Fig. 3.9).

(Sec. 3.3.3). Interestingly, we find that greedy selection on the original training data works well,

producing only a 2% drop from the 50-LTS numbers in Table 3.1. We compare to previously

published results that use the same feature set (HOG) without contextual post-processing, as the

choice of features/post-processing is orthogonal to our work. We obtain the highest performance

in 15/20 categories and the best overall performance. When compared to our in-house DPM

implementation, our long tail models increase performance from 28.1% to 35.7%. We diagnose this

performance increase (relative to our in-house implementation) in the following.

Hard vs easy classes: We split up the set of classes into hard vs easy, depending on baseline

performance. We hypothesize that low baseline performance is indicative of a long tail (more

44

varied appearances) that are not well modeled by the 6 mixtures of a standard DPM. We more than

double the average precision of the baseline for such categories (Fig. 3.11). On “easier” classes,

50-LTS still perform best, but 6-DPM is a close second. We posit that a smaller number of mixtures

sufficiently captures the limited appearance variation of such classes. We plot performance versus

the number of mixtures on the validation set in Fig. 3.10. For “easy” classes such as car, we find

that a few mixtures do well. For “hard” classes with more appearance variation (such as cats), we

find that adding additional mixtures, even beyond 50, will likely improve performance.

0 10 20 30 40 50
0.3

0.35

0.4

car

Number of mixtures

Av
er

ag
e

pr
ec

is
io

n

Car

Num. of mixtures
0 10 20 30 40 50

0.2

0.25

0.3

cat

Number of mixtures

Av
er

ag
e

pr
ec

is
io

n

Cat

Num. of mixtures

A
ve

r.
pr

ec
is

io
n

Figure 3.10: The performance as a function of the number of mixtures. For “easy” classes such as
car, we find that a few mixtures do well. For “hard” classes with more appearance variation (such
as cats), we find that adding additional mixtures, even beyond 50, improves performance.

50-LTS vs exemplars: We first compare to existing non-parametric models based on exemplar

SVMs [56, 28]. One may hypothesize that rare subcategories (in the tail) are well modeled with

a single exemplar. Our long-tail models with sharing considerably outperform such methods in

Table 3.1, suggesting that sharing is still crucial for the rare cases.

50-LTS vs 50-DPM: We also compare to the widely-used latent mixture-assignment algorithm of

[35] for large number of mixtures. At |S| = 50, although it seems that 50-LTS and 50-DPM have

the same capacity, our approach consistently performs significantly better. The improvement may

arise from two factors: (1) Our mixtures are trained with a brute-force search that avoids the local

minima of latent reassignment. (2) Our mixtures share training examples across clusters. We now

analyze the improvement due to (1) vs (2). We focus on examining the improvement due to “hard”

classes. The similar observations apply to the“easier” classes too.

45

0

10

20

30

40

50
M

ea
n

AP
"Hard" classes

50−GSC
6−DPM
50−DPM init w/ 50−GSC
50−DPM
Exemplar SVM [16]

LTS

20

LTS

0

10

20

30

40

50
"Easier" classes

M
ea

n
A

P

Figure 3.11: We separately analyze “hard” PASCAL classes with large appearance and viewpoint
variations {bird, cat, dog, sheep, plant, table, sofa and chair}; these typically have lower average
precision (AP) than other classes. On hard classes, our LTS doubles the AP of DPMs, increasing
accuracy from 12% to 25%. On easier categories, our LTS model still outperforms 6-mixture DPMs
by 5%. To analyze these improvements, we first scale DPMs to large (50) mixtures (50-DPM), which
consistently underperform the DPMs with 6 mixtures (6-DPM). When 50-DPMs are initialized
with our 50-LTS models, performance increases (suggesting that poor latent variable initialization
is one reason to blame). When these models are allowed to share training examples, we see the
largest performance increase, suggesting our overlapping subcategory models are crucial for
large-mixture representations.

Effect of brute-force search: One might argue that discriminative latent-reassignment may also

benefit from a brute-force search over initializations of the latent variables. To help answer this,

we initialize latent reassignment of 50-DPM using our 50-LTS detectors. This ensures that latent

reassignment is initialized with a set of 50 good models that produce an AP of 25% (on the “hard”

classes). This better initialization increases performance of 50-DPM from 7% to 13% AP, suggesting

that latent-reassignment in [35] does suffer from local-minima.

Effect of overlapping subcategories: The above experiment also points out a conspicuous drop

in performance; when initializing with 50 good detectors (25%AP), hard latent reassignment (that

eliminates sharing by forcing each positive example to belong to a single cluster) dramatically

drops performance to 13%AP. This suggests that the gains due to sharing are even more important

than the gains due to better initialization. In our algorithm, initialization and sharing are intimately

intertwined.

Conclusion: Many current approaches to object recognition successfully model the dominant iconic

46

appearances of objects, but struggle to model the long tail of rare appearances. We show that dis-

tributed optimization and example sharing partially address this issue. We introduce a discriminative

clustering algorithm that naturally allows for example sharing and distributed learning. We use this

algorithm to perform a “brute-force” search over subcategory initialization and subcategory size,

and demonstrate that the resulting models significantly outperform past work on difficult objects

with varied appearance. We posit that our performance is now limited by the lack of training data

for the rare subcategories in the tail. We may need large training datasets to fully encounter the

set of rare cases. Our analysis suggests that “big-rare-data”, which focuses on rare examples not

already seen, may be more beneficial than traditional “big-data”.

47

Chapter 4

Sharing local appearance with parts

In the last chapter, in order to address the lack of training data for the rare cases, we propose a

notion of overlapping subcategories: examples are shared across subcategories. We call this type of

sharing “global appearance sharing”, as illustrated in Fig.3.3. However, such global sharing may

still be limited as a long tail distribution suggests that there are many subcategories that are never

observed in the training set. How do we learn model for subcategories that have never been seen?

Global sharing does not appear to be quite the answer, since we do not even observe any data that

can be shared.

In this chapter, we introduce the notion of “local appearance sharing”. Local correspondences

among certain spatial regions are established via “parts” across training examples. For example,

a rarely seen lamborghini may still have headlights or wheels that look similar to other common

cars. Similarly, parts of the lip or eyes still look similar across different viewpoints and expressions

(Fig. 4.1). We argue that by rearranging parts into new arrangements and combinations (we call this

“synthesizing”) one can model an exponential number of subcategories, even those not observed in

the training data. Our analysis suggests that the “sharing and synthesizing” approach is crucial and

effective for recognizing those unseen configurations.

48

Figure 4.1: Local regions can be associated together to learn local “parts”.

In this chapter, we first introduce a deformable part model in Section 4.1. Section 4.2 shows that it

can be viewed as an compositional model to efficiently represent and score an exponential number of

rigid templates. We later describe other architectures of compositional models with local appearance

sharing and derive a unified formulation of all of them as mixture models. We show and discuss our

experimental results in Section 4.3.

4.1 Deformable part model

4.1.1 Tree structured part model

Our model is based on mixture of trees with a shared pool of parts V . We write each tree Tm =

(Vm, Em) as a linearly-parameterized, tree-structured pictorial structure [89], where m indicates a

mixture and Vm ⊆ V . Let us write I for an image, and li = (xi, yi) for the pixel location of part i.

We score a configuration of parts L = {li : i ∈ V } as:

49

S(I, L,m) = Appm(I, L) + Shapem(L) + αm (4.1)

Appm(I, L) =
∑
i∈Vm

wmi · φ(I, li) (4.2)

Shapem(L) =
∑
ij∈Em

amijdx
2 + bmijdx+ cmijdy

2 + dmijdy (4.3)

Eqn.4.2 sums the appearance evidence for placing a template wmi for part i, tuned for mixture m,

at location li. We write φ(I, li) for the feature vector (e.g., HoG descriptor) extracted from pixel

location li in image I . Eqn.4.3 scores the mixture-specific spatial arrangement of parts L, where

dx = xi − xj and dy = yi − yj are the displacement of the ith part relative to the jth part. Each

term in the sum can be interpreted as a spring that introduces spatial constraints between a pair of

parts, where the parameters (a, b, c, d) specify the rest location and rigidity of each spring. Finally,

the last term αm is a scalar bias or “prior” associated with viewpoint mixture m.

4.1.2 Shape model

Because the location variables li in Eqn.4.3 only appear in linear and quadratic terms, the shape

model can be rewritten as:

Shapem(L) = −(L− µm)TΛm(L− µm) + constant (4.4)

where (µ,Λ) are re-parameterizations of the shape model (a, b, c, d); this is akin to a canonical

versus natural parameterization of a Gaussian. In our case, Λm is a block sparse precision matrix,

with non-zero entries corresponding to pairs of parts i, j connected in Em. One can show Λm is

positive semidefinite if and only if the quadratic spring terms a and c are negative. We prove this in

Appendix. 4.4. This corresponds to a shape score that penalizes configurations of L that deform

from the ideal shape µm. The eigenvectors of Λm associated with the smallest eigenvalues represent

50

modes of deformation associated with small penalties. Notably, we discriminatively train (a, b, c, d)

(and hence µ and Λ) in a max-margin framework.

4.1.3 Inference

Inference corresponds to maximizing S(I, L,m) in Eqn.4.1 over L and m:

S∗(I) = max
m

[max
L

S(I, L,m)] (4.5)

Simply enumerate all mixtures, and for each mixture, find the best configuration of parts. Since

each mixture Tm = (Vm, Em) is a tree, the inner maximization can be done efficiently with dynamic

programming(DP) [37].

We let child(j) be the set of children of j in Vm. We compute the message that part j passes to its

parent part i by the following:

scorej(lj) = wj · φ(I, lj) +
∑

k∈child(j)

mk→j(lj) (4.6)

mj→i(li) = max
lj

scorej(lj) + wi,j · φ(li − lj) (4.7)

The DP process is the same for all the mixtures. We ignore the superscript m that indicates mixture

in Eqn.4.6, 4.7 for the simplicity of notation.

Eqn.4.6 computes the local score of part j at all pixel locations lj , by collecting messages from the

children of j. Eqn.4.7 computes for every locations of part i, the best scoring location of its child

part j. Once messages are passed to the root part (i = 1), score1(l1) represents the best scoring

configuration for each root position. One can use the root scores to generate multiple detections

in images I by thresholding them and applying non-maximum suppression (NMS). By keeping

51

track of the argmax indices, one can backtrack to find the locations of each part in each maximal

configuration.

4.1.4 Learning

We first learn the tree-structure, then learn both shape and appearance parameters discriminatively

using a structured prediction framework.

Learning tree structure: When local part correspondence is given (this can be obtained with

human supervision), we use the Chow-Liu algorithm [17] to find the maximum likelihood tree

structure T ∗ that best explains the part locations for a given mixture, assuming parts are Gaussian

distributed.

T ∗ = arg max
E

∏
n

[∏
i

p(li,n)
∏
i,j∈E

p(li,n, lj,n)

p(li,n)p(lj,n)

]
(4.8)

When E is restricted to a tree, the above is equivalent to computing the minimum spanning tree

(MST) of a undirected complete graph, where the weight of each edge is assigned to be the mutual

information between the location of part i and j that are connected by this edge[17]. Under a joint

Gaussian assumption of part locations, the mutual information (or edge weight) for a pair of parts is:

ei,j =
1

2

(
log |Σli |+ log |Σlj | − log |Σli,lj |

)
(4.9)

where Σli is the covariance matrix of li, Σli,lj is the covariance matrix of li and lj . We use sample

estimates of these parameters learned from labeled training data.

Learning model parameters: Given labeled positive examples {In, Ln,mn} and negative exam-

ples {In}, we will define a structured prediction objective function similar to one proposed in [89].

To do so, let’s write zn = {Ln,mn}. Note that the scoring function Eqn.4.1 is linear in the part

52

templates w, spring parameters (a, b, c, d), and mixture biases α. and mixture biases {m}. [35],

Concatenating these parameters into a single vector β, we can write the score as:

S(I, z) = β · Φ(I, z) (4.10)

The vector Φ(I, z) is sparse, with nonzero entries in a single interval corresponding to mixture m.

Now we can learn a model of the form:

arg min
β,ξn≥0

1

2
β · β + C

∑
n

ξn (4.11)

s.t. ∀n ∈ pos β · Φ(In, zn) ≥ 1− ξn

∀n ∈ neg,∀z β · Φ(In, z) ≤ −1 + ξn

∀k ∈ K, βk ≤ 0

The above constraint states that positive examples should score better than 1 (the margin), while

negative examples, for all configurations of part positions and mixtures, should score less than

-1. The objective function penalizes violations of these constraints using slack variables ξn. We

write K for the indices of the quadratic spring terms (a, c) in parameter vector β. The associated

negative constraints ensure that the shape matrix Λ is positive semidefinite (Sec.4.1.2). We solve

this problem using the dual coordinate-descent solver in [89], which accepts negativity constraints.

4.2 Revisit mixture models

The two models we proposed in previous chapters: partitioned subcategory models (Chapter 2)

and overlapping subcategory models (Chapter 3) can both be considered as a mixture of linear

classifiers, or templates. Formally speaking, we compute the detection score of an image window I

53

as:

S(I) = max
m

[
wm · φ(I) + bm

]
(4.12)

wherem is a discrete mixture variable, Φ(I) is a HOG image descriptor [22], wm is a linearly-scored

template, and bm is an (optional) bias parameter that acts as a prior that favors particular templates

over others.

In this section, we describe various architectures for compositional models that share local spatial

regions of templates, or parts. We formulate them in a unified view, and show how they can be

interpreted and extended as high-capacity mixture models.

4.2.1 Deformable Part Models (DPMs)

We begin with an analysis that shows that DPMs are equivalent to an exponentially-large mixture of

rigid templates Eqn. (4.12). This allows us to analyze (both theoretically and empirically) under what

conditions a classic mixture model will approach the behavior of a DPM. Let the location of part i be

(xi, yi). Given an image I , a DPM scores a configuration of P parts (x, y) = {(xi, yi) : i = 1..P}

as:

SDPM(I) = max
x,y

S(I, x, y) where

S(I, x, y) =
P∑
i=1

∑
(u,v)∈Wi

αi[u, v] · φ(I, xi + u, yi + v)

+
∑
ij∈E

βij · ψ(xi−xj−a(x)
ij , yi−yj−a(y)

ij) (4.13)

where Wi defines the spatial extent (length and width) of part i. The first term defines a local

appearance score, where αi is the appearance template for part i and φ(I, xi, yi) is the appearance

feature vector extracted from location (xi, yi). The second term defines a pairwise deformation

54

model that scores the relative placement of a pair of parts with respect to an anchor position

(a
(x)
ij , a

(y)
ij). For simplicity, we have assumed all filters are defined at the same scale, though the

above can be extended to the multi-scale case. When the associated relational graph G = (V,E)

is tree-structured, one can compute the best-scoring part configuration max(x,y)∈Ω S(I, x, y) with

dynamic programming, where Ω is the space of possible part placements. Given that each of P

parts can be placed at one of L locations, |Ω| = LP ≈ 1020 for our models.

By defining index variables in image coordinates u′ = xi + u and v′ = yi + v, we can rewrite

Eqn. (4.13) as:

S(I, x, y) =
∑
u′,v′

P∑
i=1

αi[u
′ − xi, v′ − yi] · φ(I, u′, v′)

+
∑
ij∈E

βij · ψij(xi − xj − a(x)
ij , yi − yj − a(y)

ij)

=
(∑
u′,v′

w(x, y)[u′, v′] · φ(I, u′, v′)
)

+ b(x, y)

= w(x, y) · φ(I) + b(x, y) (4.14)

where w(x, y)[u′, v′] =
∑P

i=1 αi[u
′ − xi, v′ − yi]. For notational convenience, we assume parts

templates are padded with zeros outside of their default spatial extent.

From the above expression it is easy to see that the DPM scoring function is formally equivalent to

an exponentially-large mixture model where each mixture component m is indexed by a particular

configuration of parts (x, y). The template corresponding to each mixture component w(x, y) is

constructed by adding together parts at shifted locations. The bias corresponding to each mixture

component b(x, y) is equivalent to the spatial deformation score for that configuration of parts.

DPMs differ from classic mixture models previously defined in that they (1) share parameters across

a large number of mixtures or rigid templates, (2) extrapolate by “synthesizing” new templates not

encountered during training, and finally, (3) use dynamic programming to efficiently search over a

55

large number of templates.

4.2.2 Exemplar Part Models (EPMs)

To analyze the relative importance of part parameter sharing and extrapolation to new part place-

ments, we define a part model that limits the possible configurations of parts to those seen in the N

training images, written as

SEPM(I) = max
(x,y)∈ΩN

S(I, x, y) where ΩN ⊆ Ω. (4.15)

We call such a model an Exemplar Part Model (EPM), since it can also be interpreted as set of

N rigid exemplars with shared parameters. EPMs are not to be confused with exemplar DPMs

(EDPMs), which we will shortly introduce as their deformable counterpart. EPMs can be optimized

with a discrete enumeration over N rigid templates rather than dynamic programming. However,

by caching scores of the local parts, this enumeration can be made quite efficient even for large N .

EPMs have the benefit of sharing, but cannot synthesize new templates that were not present in the

training data. We visualize example EPM templates in Fig. 4.2.

To take advantage of additional training data, we would like to explore non-parametric mixtures of

DPMs. One practical issue is that of computation. We show that with a particular form of sharing,

one can construct non-parametric DPMs that are no more computationally complex than standard

DPMs or EPMs, but considerably more flexible in that they extrapolate multi-modal shape models

to unseen configurations.

56

Independent
exemplars

EPM

DPM detection

Figure 4.2: Classic exemplars vs EPMs. On the top row, we show three rigid templates trained
as independent exemplar templates. Below them, we show their counterparts from an exemplar
part model (EPM), along with their corresponding training images. EPMs share spatially-localized
regions (or “parts”) between mixtures. Each rigid mixture is a superposition of overlapping parts. A
single part is drawn in blue. We show parts on the top row to emphasize that these template regions
are trained independently. On the [right], we show a template which is implicitly synthesized by a
DPM for a novel test image on-the-fly. In Fig. 4.4, we show that both sharing of parameters between
mixture components and implicit generation of mixture components corresponding to unseen part
configurations contribute to the strong performance of a DPM.

4.2.3 Exemplar DPMs (EDPMs)

To describe our model, we first define a mixture of DPMs with a shared appearance model, but

mixture-specific shape models. In the extreme case, each mixture will consist of a single training

exemplar. We describe an approach that shares both the part filter computations and dynamic

programming messages across all mixtures, allowing us to eliminate almost all of the mixture-

dependant computation. Specifically, we consider mixture of DPMs of the form:

S(I) = max
m∈{1...M}

max
z∈Ω

[
w(z) · φ(I) + bm(z)

]
(4.16)

57

where z = (x, y) and we write a DPM as an inner maximization over an exponentially-large set of

templates indexed by z ∈ Ω, as in Eqn. (4.14). Because the appearance model does not depend on

m, we can write:

S(I) = max
z∈Ω

[
w(z) · φ(I) + b(z)

]
(4.17)

where b(z) = maxm bm(z). Interestingly, we can write the DPM, EPM, and EDPM in the form of

Eqn. (4.17) by simply changing the shape model b(z):

bDPM(z) =
∑
ij∈E

βij · ψ(zi − zj − aij) (4.18)

bEDPM(z) = max
m∈{1...M}

∑
ij∈E

βij · ψ(zi − zj − amij) (4.19)

bEPM(z) = bDPM(z) + b∗EDPM(z) (4.20)

where amij is the anchor position for part i and j in mixture m. We write b∗EDPM(z) to denote a

limiting case of bEDPM(z) with βij = −∞ and thus takes on a value of 0 when z has the same

relative part locations as some exemplar m and −∞ otherwise.

While the EPM only considers M different part configurations to occur at test time, the EDPM

extrapolates away from these shape exemplars. The spring parameters β in the EDPM thus play a

role similar to the kernel width in kernel density estimation. We show a visualization of these shape

models as probabilistic priors in Fig. 4.3.

4.2.4 Inference

We now show that inference on EDPMs (Eqn. 4.19) can be quite efficient. Specifically, inference on

a star-structured EDPM is no more expensive than a EPM built from the same training examples.

Recall that EPMs can be efficiently optimized with a discrete enumeration of N rigid templates

58

z

eb(z)

DPM

z

EPM

z

EDPM

Figure 4.3: We visualize exponentiated shape models eb(z) corresponding to different part models.
A DPM uses a unimodal Gaussian-like model (left), while a EPM allows for only a discrete set of
shape configurations encountered at training (middle). An EDPM non-parametrically models an
arbitrary shape function using a small set of basis functions. From this perspective, one can view
EPMs as special cases of EDPMs using scaled delta functions as basis functions.

with “intelligent caching” of part scores.

Intuitively, one computes a response map for each part, and then scores a rigid template by looking

up shifted locations in the response maps. EDPMs operate in a similar same manner, but one

convolves a “min-filter” with each response map before looking up shifted locations.

To be precise, we explicitly write out the message-passing equations for a star-structured EDPM

below, where we assume part i = 1 is the root without loss of generality:

SEDPM(I) = max
z1,m

[
α1 · φ(I, z1) +

∑
j>1

mj(z1 + am1j)
]

(4.21)

mj(z1) = max
zj

[
αj · φ(I, zj) + β1j · ψ(z1 − zj)

]
(4.22)

The maximization in Eqn. (4.22) needs only be performed once across mixtures, and can be

computed efficiently with a single min-convolution or distance transform [36]. The resulting

message is then shifted by mixture-specific anchor positions am1j in Eqn. (4.21). Such mixture-

independent messages can be computed only for leaf parts, because internal parts in a tree will

receive mixture-specific messages from downstream children. Hence star EDPMs are essentially no

59

more expensive than a EPM (because a single min-convolution per part adds a negligible amount of

computation). In our experiments, running a 2000-mixture EDPM is almost as fast as a standard

6-mixture DPM. Other topologies beyond stars might provide greater flexibility. However, since

EDPMs encode shape non-parametrically using many mixtures, each individual mixture may need

not deform too much, making a star-structured deformation model a reasonable approximation

(Fig. 4.3).

4.3 Experiments

We now perform a detailed analysis of compositional mixture models, including DPMs, EPMs, and

EDPMs. We focus on face detection and Pascal buses. We consider the latent star-structured DPM of

[35] as our primary baseline. For face detection, we also compare to the supervised tree-structured

DPM of [94], which uses facial landmark annotations in training images as supervised part locations.

Each of these DPMs makes use of different parts, and so can be used to define different EPMs and

EDPMs. We plot performance of faces in Fig. 4.4 and buses in Fig.4.5.

Supervised DPMs: For face detection, we first note that a supervised DPM can perform quite well

(91% AP) with less than 200 example faces. This represents a lower bound on the maximum achiev-

able performance with a mixture of linear templates given a fixed training set. This performance is

noticeably higher than that of our partitioned subcategory model, which maxes out at an AP of 76%

with 900 training examples. By extrapolation, we predict that one would need N = 1010 training

examples to achieve the DPM performance. Both performs significant better than the exemplar

models who do not share examples across templates. To analyze where this performance gap is

coming from, we now evaluate the performance of various compositional mixtures models.

Latent parts: We begin by analyzing the performance of compositional mixtures defined by latent

parts, as they can be constructed for both faces and Pascal buses. Recall that EPMs have the

60

0 200 400 600 800 1000
0.5

0.55

0.6

0.65

0.7

0.75

0.8

0.85

0.9

Num. of training samples

A
ve

ra
ge

 p
re

ci
si

on

DPM (sup,tree)
DPM (sup,star)
EDPM (sup)
EPM (sup)
DPM (lat)
EDPM (lat)
EPM (lat)
Parttned. subctg. models
Exemplars
K=1, Frontal
K=1, All

Figure 4.4: We compare the performance of mixtures models with EPMs and latent/supervised
DPMs for the task of face detection. A single rigid template (K = 1) tuned for frontal faces
outperforms the one tuned for all faces (as shown in Fig. 2.7). Mixture models boost performance
to 76%, approaching the performance of a latent DPM (79%). The EPM shares supervised part
parameters across rigid templates, boosting performance to 85%. The supervised DPM (91%)
shares parameters but also implicitly scores additional templates not seen during training.

benefit of sharing parameters between rigid templates, but they cannot extrapolate to new shape

configurations not seen among the N training examples. EPMs noticeably improve performance

over partitioned subcategory models, improving AP from 76% to 78.5% for faces and improving

AP from 56% to 64% for buses. In fact, for large N , they approach the performance of latent

DPMs, which is 79% for faces and 63% for buses. For small N , EPMs somewhat underperform

DPMs. This makes sense: with very few observed shape configurations, exemplar-based methods

are limited.

Supervised parts: Here, supervised EPMs outperform partitioned subcategory mixtures 85% to

76%. Perhaps surprisingly, EPMs even outperform latent DPMs. However, supervised EPMs still

61

Bus

0 500 1000 1500 2000
0.4

0.45

0.5

0.55

0.6

0.65

Num. of training samples

A
ve

ra
ge

 p
re

ci
si

on

DPM (lat,K=5)

EDPM (lat)
EPM (lat)

Mix. of HoG templ.

Figure 4.5: We compare the performance of mixture models with latent EPMs, EDPMs, and DPMs
for bus detection. In the latent setting, EPMs significantly outperform the rigid mixtures of template
and match the performance of the standard latent DPMs.

underperform a supervised DPM. This suggests that, in the supervised case, the performance gap

(85% vs 91%) stems from the ability of DPMs to synthesize configurations that are not seen during

training. Moreover, the reduction in relative error due to extrapolation is more significant than the

reduction due to part sharing. [94] point out that a tree-structured DPM significantly outperforms a

star-structured DPM, even when both are trained with the same supervised parts. One argument is

that trees better capture nature spatial constraints of the model, such as the contour-like continuity

of small parts. Indeed, we also find that a star-structured DPM does a “poorer” job of extrapolation.

In fact, we show that an EDPM does as well a supervised star model, but not quite up to the

performance of a tree DPM.

Analysis: Our results suggest that part models can be seen as a mechanism for performing intelligent

parameter sharing across observed mixture components and extrapolation to implicit, unseen mixture

components. Both these aspects contribute to the strong performance of DPMs. However, with the

62

“right” set of (supervised) parts and the “right” geometric (tree- structured) constraints, extrapolation

to unseen templates has the potential to be much more significant. Once the representation for

sharing and extrapolation is accurately specified, fairly little training data is needed. Indeed, our

analysis shows that one can train a state-of-the-art face detector [94] with 50 face images.

Relation to Exemplar SVMs: In the setting of object detection, we were not able to see significant

performance improvements of EDPMs over DPMs. However, EDPMs may be useful for other tasks.

Specifically, they share an attractive property of exemplar SVMs (ESVMs) [56]: each detection can

be affiliated with its closest matching training example (given by the mixture index), allowing us to

transfer annotations from a training example to the test instance. [56] argue that non-parametric label

transfer is an effective way of transferring associative knowledge, such as 3D pose, segmentation

masks, attribute labels, etc. However, unlike ESVMs, EDPMs share computation among the

exemplars (and so are faster), can generalize to unseen configurations (since they can extrapolate to

new shapes), and also report a part deformation field associated with each detection (which maybe

useful to warp training labels to better match the detected instance). We show example detections

(and their matching exemplars) in Fig. 4.6.

Progression of performance: Fig. 4.4 shows an interesting progression of performance when

models become more sophisticatedly designed and data are carefully shared. Note that all the

methods in the figure are trained with the same set of 900 faces.

A single template model even with carefully data cleanup and model regularization described in

Chapter 2, performs the worst with an average precision (AP) of 61.6%. Exemplars, although

are prone to overfitting, can model appearance variations using multiple templates. It improves

the performance to 72.9%. The partitioned subcategory models, with cross validated example

grouping and parameter setting, achieve noticeable improvement over previous two, reaching

75.4%. This improvement is probably due to the sharing of examples which act as regularization

for learning model templates. EPMs share local appearances across mixture templates. They are

essentially exemplar templates with local part sharing. It achieves 85.0% ap, significantly higher

63

Best Matching Exemplar Test Example

Figure 4.6: We visualize detections using our exemplar DPM (EDPM) model. As opposed to
existing exemplar-based methods [56], our model shared parameters between exemplars (and so is
faster to evaluate) and can generalize to unseen shape configurations. Moreover, EDPMs returns
corresponding landmarks between an exemplar and a detected instance (and hence an associated set
of landmark deformation vectors), visualized on the top row of faces.

64

than the previous three models. Finally, DPMs have the ability to synthesize unseen new shapes

by deforming the parts. It achieves 91.3%. The 6% improvement over EPMs shows the power of

synthesizing unseen cases.

Our results suggest that we could gain substantial performance improvement without any change

in the features or the class of discriminant functions. Establishing and using accurate, clean

correspondence among training examples (e.g., that specify that certain examples belong to the

same sub-category, or that certain spatial regions correspond to the same part) and developing

parameter sharing and compositional approaches appear to be a promising direction.

4.4 Conclusion

This chapter proposes various compositional models that share local appearance using parts. We

show that all those models can be considered as mixture models of a set of rigid templates.

We show that the performance ceiling in Chapter 2 is not a consequence of HOG+linear classifiers.

We provide an analysis of the popular deformable part model (DPM), showing that it can be

viewed as an efficient way to implicitly encode and score an exponentially-large set of rigid mixture

components with shared parameters. With the appropriate sharing, DPMs produce substantial

performance gains over standard mixture models without local sharing. This suggests that larger

gains were possible by enforcing richer constraints within the model, often through parameter

sharing and compositional representations that that implicitly make use of augmented training sets

appear the most promising directions.

65

Appendices

Proof Λm is positive semi-definite (PSD) if and only if the quadratic spring terms are negative

In our main submission, we state that “Λm is positive semidefinite if and only if the quadratic spring

terms a and c are negative”. The proof is as follows, ignoring the mixture index m for simplicity:

Shape(L) =
∑
ij∈E

aijdx
2 + bijdx+ cijdy

2 + dijdy (4.23)

= −
∑
ij∈E

li − µi
lj − µj

T

Λi,j

li − µi
lj − µj

+ constant (4.24)

where Λi,j = −

aij 0 −aij 0

0 cij 0 −cij
−aij 0 aij 0

0 −cij 0 cij

(4.25)

where L = {li : i ∈ V } and li = (xi, yi) is the pixel location of part i. dx = xi − xj and

dy = yi − yj are the displacement of the ith part relative to the jth part. Λi,j can be estimated

by expanding Eqn.4.25 and matching up the quadratic terms with Eqn.4.23. The linear terms are

absorbed into µ, and don’t appear in Λi,j . We rewrite Eqn.4.25 as a single quadratic expression:

Shape(L) = −(L− µ)TΛ (L− µ) + constant (4.26)

66

The matrix Λ is PSD if and only if wTΛw ≥ 0, ∀w:

wTΛw =
∑
ij∈E

−aij(wij1 − wij3)2 − cij(wij2 − wij4)2 (4.27)

where [wij1 , w
ij
2 , w

ij
3 , w

ij
4] are the elements of w from the slots corresponding to the ith and jth parts.

For a tree-structured E, every part i has only one parent j. This means that each offset (wij1 − wij3),

(wij2 − wij4) can be set to any real number, independant of any other offset. Note that if E contained

loopy constraints, offsets are not independant (e.g., triplets of connected parts must obey the triangle

inequality). In order to ensure the right-hand-side of Eqn.4.27 is nonnegative for any collection of

(arbitrary) offsets, it is necessary and sufficient to set aij ≤ 0 and cij ≤ 0.

67

Chapter 5

Face analysis in the wild: A case study

In the last chapter, we introduced part models that share local information with parts. In this

chapter, we examine the idea of local sharing by building a part model for face detection, which

is perhaps the most well studied of all object detection problems. We propose a unified model

for face detection, pose estimation, and landmark estimation (namely FaceDPL for the initials of

the three tasks) in real-world, cluttered images. Our model is based on a mixtures of trees with a

shared pool of parts; we model every facial landmark as a part and use global mixtures to capture

topological changes due to viewpoint. We show that tree-structured models are surprisingly effective

at capturing global elastic deformation, while being easy to optimize unlike dense graph structures.

We present extensive results on standard face benchmarks, as well as a new “in the wild” annotated

dataset, that suggests our system advances the state-of-the-art, sometimes considerably, for all three

tasks. Though our model is modestly trained with hundreds of faces, it compares favorably to

commercial systems trained with billions of examples (such as Google Picasa and face.com).

68

5.1 Introduction

The problem of finding and analyzing faces is a foundational task in computer vision. Though great

strides have been made in face detection, it is still challenging to obtain reliable estimates of head

pose and facial landmarks, particularly in unconstrained “in the wild” images. Ambiguities due to

the latter are known to be confounding factors for face recognition [91]. Indeed, even face detection

is arguably still difficult for extreme poses.

These three tasks (detection, pose estimation, and landmark localization) have traditionally been

approached as separate problems with a disparate set of techniques, such as scanning window

classifiers, view-based eigenspace methods, and elastic graph models. In this work, we present

a single model that simultaneously advances the state-of-the-art, sometimes considerably, for all

three. We argue that a unified approach may make the problem easier; for example, much work

on landmark localization assumes images are pre-filtered by a face detector, and so suffers from a

near-frontal bias.

Our model is a novel but simple approach to encoding elastic deformation and three-dimensional

structure; we use mixtures of trees with a shared pool of parts (see Figure 5.1). We define a “part” at

each facial landmark and use global mixtures to model topological changes due to viewpoint; a part

will only be visible in certain mixtures/views. We allow different mixtures to share part templates.

This allows us to model a large number of views with low complexity. Finally, all parameters of

our model, including part templates, modes of elastic deformation, and view-based topology, are

discriminatively trained in a max-margin framework.

Notably, most previous work on landmark estimation use densely-connected elastic graphs [83, 19]

which are difficult to optimize. Consequently, much effort in the area has focused on optimization

algorithms for escaping local minima. We show that multi-view trees are an effective alternative

because (1) they can be globally optimized with dynamic programming and (2) surprisingly, they

still capture much relevant global elastic structure.

69

Figure 5.1: We present a unified approach to face detection, pose estimation, and landmark
estimation. Our model is based on a mixture of tree-structured part models. To evaluate all aspects
of our model, we also present a new, annotated dataset of “in the wild” images obtained from Flickr.

Figure 5.2: Our mixture-of-trees model encodes topological changes due to viewpoint. Red lines
denote springs between pairs of parts; note there are no closed loops, maintaining the tree property.
All trees make use of a common, shared pool of part templates, which makes learning and inference
efficient.

We present an extensive evaluation of our model for face detection, pose estimation, and landmark

estimation. We compare to the state-of-the-art from both the academic community and commercial

systems such as Google Picasa [3], Face++[4], and face.com [5] (acquired by Facebook).

We first show results in controlled lab settings, using the well-known MultiPIE benchmark [39]. We

70

definitively outperform past work in all tasks, particularly so for extreme viewpoints. As our results

saturate this benchmark, we introduce a new “in the wild” dataset of Flickr images annotated with

faces, poses, and landmarks. In all three tasks, our model is on par the best performers, substantially

outperforms most of the baselines including even the commercial systems. In order to compare with

broader set of existing methods, we also evaluated our model on the popular FDDB face detection

benchmark[46]. Our model outperforms all previous methods. It is particularly impressive since

our model is trained with hundreds of faces, while other top performers use 20X training data and

commercial systems use up to billions of examples [75].

5.2 Related Work

As far as we know, no previous work jointly addresses the tasks of face detection, pose estimation,

and landmark estimation. However, there is a rich history of all three in vision. We refer the reader

to the recent surveys [91, 60, 88] for a full review. We focus on methods most related to ours.

Face detection is dominated by discriminatively-trained scanning window classifiers [70, 48, 61,

43], most ubiquitous of which is the Viola Jones detector [81] due its open-source implementation

in the OpenCV library. Our system is also trained discriminatively, but with much less training data,

particularly when compared to commercial systems.

Pose estimation tends to be addressed in a video scenario [91], or a controlled lab setting that

assumes the detection problem is solved, such as the MultiPIE [39] or FERET [65] benchmarks.

Most methods use explicit 3D models [11, 41] or 2D view-based models [64, 20, 47]. We use

view-based models that share a central pool of parts. From this perspective, our approach is similar

to aspect-graphs that reason about topological changes between 2D views of an object [14].

Facial landmark estimation dates back to the classic approaches of Active Appearance Models

(AAMs) [19, 58] and elastic graph matching [53, 83]. Recent work has focused on global spatial

71

models built on top of local part detectors, sometimes known as Constrained Local Models (CLMs)

[21, 72, 10]. Notably, all such work assumes a densely connected spatial model, requiring the

need for approximate matching algorithms. By using a tree model, we can use efficient dynamic

programming algorithms to find globally optimal solutions.

From a modeling perspective, our approach is similar to those that reason about mixtures of

deformable part models [35, 89]. In particular [45] use mixtures of trees for face detection and

[32] use mixtures of trees for landmark estimation. Our model simultaneously addresses both

with state-of-the-art results, in part because it is aggressively trained to do so in a discriminative,

max-margin framework. We also explore part sharing for reducing model size and computation, as

in [78, 62].

Subsequent work: [87] [16] [57] [73] are proposed after our model was first published in [94], all

of which reported improved performance over the first version of our model in [94]. [87] adopts a

model with similar structure to [89]. In addition, it explores contextual information from a person

body detector to boost the accuracy of face detection. [73] casts detection as an information retrieval

problem. It searches a large pool of faces for the best matching of testing example. [57] learns a

set of rigid mixtures using boosted integral channel features. [16] is the only does joint detection

and landmark localization. It iteratively refines its predictions using cascade regressors. We will

compare with these new methods in our experiments.

5.3 Model

Our model is based on mixture of trees with a shared pool of parts V . The model formulation can be

found in Section 4.1. We model every facial landmark as a part and use global mixtures to capture

topological changes due to viewpoint. We show such mixtures for viewpoint in Fig.5.2. We will

later show that global mixtures can also be used to capture gross deformation changes for a single

72

viewpoint, such as changes in expression.

Part sharing: Eqn.4.1 requires a separate template wmi for each mixture/viewpoint m of part i.

However, parts may look consistent across some changes in viewpoint. In the extreme cases, a “fully

shared” model would use a single template for a particular part across all viewpoints, wmi = wi.

We explore a continuum between these two extremes, written as wf(m)
i , where f(m) is a function

that maps a mixture index (from 1 to M) to a smaller template index (from 1 to M ′). We explore

various values of M ′: no sharing (M ′ = M), sharing across neighboring views, and sharing across

all views (M ′ = 1).

Shape model: We compare our learned shape models with standard joint Gaussian models trained

generatively with maximum likelihood in Fig.5.3. Those models are commonly used in AAMs and

CLMs [21, 72]

(a) Tree-based SVM (b) AAM

Figure 5.3: In (a), we show the mean shape µm and deformation modes (eigenvectors of Λm) learned
in our tree-structured, max-margin model. In (b), we show the mean shape and deformation modes
of the full-covariance Gaussian shape model used by AAMs. Note we exaggerate the deformations
for visualization purposes. Model (a) captures much of the relevant elastic deformation, but produces
some unnatural deformations because it lacks loopy spatial constraints (e.g., the left corner of the
mouth in the lower right plot). Even so, it still outperforms model (b), presumably because it is
easier to optimize and allows for joint, discriminative training of part appearance models.

73

5.4 Inference

Inference corresponds to maximizing S(I, L,m) in Eqn.4.1 (we reproduce it below) over L and

m. The best scoring location L∗ indicates the landmark locations. The best scoring view-specific

mixture m∗ tells us the pose.

(L∗,m∗) = argmax
L,m

S(I, L,m) (5.1)

Computation: The total number of distinct part templates in our vocabulary is M ′|V |. Assuming

each part is of dimension D and assuming there exist N candidate part locations, the total cost of

evaluating all parts at all locations is O(DNM ′|V |). Using distance transforms [35], the cost of

message passing is O(NM |V |). This makes our overall model linear in the number of parts and the

size of the image, similar to other models such as AAMs and CLMs.

Because the distance transform is rather efficient and D is large, the first term (local part score

computation) is the computational bottleneck. A fully independent model uses M ′ = M , while a

fully-shared model uses M ′ = 1, roughly an order of magnitude difference. In our experimental

results, we show that the shared model may still be practically useful as it sacrifices some perfor-

mance for speed. This means our multiview model can run as fast as a single-view model. Moreover,

since single-view CLMs often pre-process their images to compute dense local part scores [72], our

multiview model is similar in speed to such popular approaches but globally-optimizable.

5.5 Learning

To learn our model, we assume a fully-supervised scenario, where we are provided positive images

with landmark and mixture labels, as well as negative images without faces. We learn both shape

and appearance parameters discriminatively using a structured prediction framework. The details

74

Figure 5.4: Example images from our annotated faces-in-the-wild (AFW) testing set.

Figure 5.5: Example images from MultiPIE with annotated landmarks.

are described in Section 4.1.4.

5.6 Experimental Results

5.6.1 Datasets

CMU MultiPIE: CMU MultiPIE face dataset [39] contains around 750,000 images of 337 people

under multiple viewpoints, different expressions and illumination conditions. Facial landmark

annotations (68 landmarks for frontal faces (−45◦ to 45◦), and 39 landmarks for profile faces) are

75

available from the benchmark curators for a relatively small subset of images. In our experiments,

we use 900 faces from 13 viewpoints spanning over 180◦ spacing at 15◦ for training, and another

900 faces for testing. 300 of those faces are frontal, while the remaining 600 are evenly distributed

among the remaining viewpoints. Hence our training set is considerably smaller than those typically

used for training face detectors. Fig. 5.5 shows example images from all the 13 viewpoints with the

annotated landmarks and face viewpoints. Faces in MultiPIE are almost of the same size around

160× 160.

FDDB: FDDB[46] is a popular benchmark for unconstrained face detection. This dataset contains

2845 images with a total of 5171 faces. It includes a wide range of difficulties including occlusions,

difficult poses, , low resolution and out-of-focus faces. The results of a large set of published

methods are available on the FDDB website, which makes comparisons to a broader set of baselines

possible without having to implement all of them.

Our annotated face in-the-wild (AFW) testset: FDDB only contains the elliptical annotations

for face detection. To further evaluate our model, especially its ability to estimate poses and localize

landmarks in real world settings, we built an annotated faces in-the-wild (AFW) dataset from Flickr

images (Fig. 5.4). Images tend to contain cluttered backgrounds with large variations in both face

viewpoint and appearance (aging, sunglasses, make-ups, skin color, expression etc.). Each face

is labeled with a bounding box, 6 landmarks (the center of eyes, tip of nose, the two corners and

center of mouth) and a discretized viewpoint (−90◦ to 90◦ every 15◦) along pitch and yaw directions

and (left, center, right) viewpoints along the roll direction. We randomly sampled images, keeping

each that contained at least one large face. This produced a 205-image dataset with 468 faces.

Our dataset differs from similar “in-the-wild” collections [46, 49, 10] in its detailed annotation of

multiple, non-frontal faces in a single image.

76

5.6.2 Our models

Model designs: Our FaceDPL is trained using 900 positive examples from MultiPIE, and 6000

negatives images from the PASCAL VOC 2010 trainval set that do not contain “person”. We model

a subset of landmarks defined in MultiPIE as parts. There are 26 parts in near frontal viewpoints and

14 parts in profile viewpoints. Each part is represented as a 5× 5 HoG cells with a spatial bin size

of 4. We use 13 viewpoints, and build three in-plane rotated mixtures for each viewpoints, yielding

a total of 13 × 3 = 39 mixtures. The parts are shared across neighboring viewpoints, ending up

with a total of 318 parts. For simplicity, we do not enforce symmetry between left/right views.

Computation: On a commodity desktop, our FaceDPL model takes roughly 10 seconds to run on a

VGA quality image. We will show in our diagnostic analysis that we can train our model using only

5 viewpoints instead of 13 without sacrificing the accuracy, which would reduce FaceDPL’s runtime

to 6 seconds per image. With more sharing, we can future reduce the number of parts by half,

and cut the runtime to ∼3 seconds, with only a small drop in accuracy. Eventually with parallel,

cascaded[34] implementations and other smart speedups[31, 25, 86], we believe our models could

be real-time.

Sharing: We explore two levels of sharing of our models. They includes: share templates across

neighboring viewpoints; share templates across only viewpoints with identical topology. We observe

a trade-off between the amount of sharing (thus the number of part templates and running speed)

and the performance. We will show the results in our diagnostic analysis in Sec. 5.7.

In-house baselines: In addition to comparing with numerous other systems, we evaluate restricted

versions of our approach. We define Multi.HoG to be rigid, multiview HoG template detectors,

trained on the same data as our models. We define Star Model to be the same with our models but

defined using a “star” connectivity graph, where all parts are directly connected to a root nose part.

This is similar to the popular star-based model of [35], but trained in a supervised manner given

landmark locations.

77

5.6.3 Face detection

FDDB

We first show our detection results on the FDDB benchmark, as MultiPIE consists of centered faces

thus is not suitable for evaluating detection.

FDDB has two evaluation protocols. The discrete (Disc) setting considers a detection to be correct if

it overlaps more than 50%, measured by the intersection-over-union ratio, to an annotated elliptical

face region. This is similar to the popular PASCAL VOC protocol. In the continuous (Cont) setting,

the detections are weighted by their overlap ratios, which encourages stricter overlapping to the

labeled groundtruth. We convert our detection to ellipse based on the dataset description. This

adjustment improves the overlap and has positive impact on the result curves.

We compare our FaceDPL with a large set of previously published methods whose results can be

dowloaded from the FDDB result website[6]. We show the ROC curves of our FaceDPL model

and the other methods in Fig. 5.6. Our FaceDPL achieves 88.0% true positive rate at 1000 false

positives, compares favorably to all the previous arts and outperforms the commercial systems such

as Olaworks (acquired by Intel), Face++ and Illuxtech.

In the discrete curves (Fig. 5.6a), the top competitors such as HeadHunter and Joint Cascade perform

very closely to our methods, but they are trained with ∼20X more faces than our FaceDPL model

which is learned with only 900 faces (Fig. 5.7). This demonstrates that our deformable nature of our

model allows it to learn the structural variations much more efficiently with a significantly smaller

training set. This property will be extremely desirable/beneficial for applications where collecting

data is expensive.

In the continuous setting (Fig. 5.6b), our FaceDPL also outperforms the other methods. We observe

that the gap between the top two performers (our FaceDPL, JointCascade) and the rest curves is

78

0 500 1000 1500 2000 2500 3000
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

False positives

T
ru

e
po

si
tiv

e
ra

te

 FaceDPL, 0.880
headhunter, 0.871
jointcascade, 0.863
structuredmodels, 0.852
BoostedExamplerBased, 0.848
Olaworks, 0.843
face++, 0.839
SURF−GentleBoost−MV, 0.837
ICCV−XZJY−PEPAdapt, 0.809
PEPAdapt, 0.809
XZJY, 0.786
shenzen, 0.777
santi, 0.763
LiIntel, 0.760
koestinger, 0.730
illuxtechFrontalFace, 0.718
jain, 0.677
subburaman, 0.630
ViolaJonesScore−n0, 0.600
Mikolajczyk, 0.548

(a) Disc ROC

0 500 1000 1500 2000 2500 3000
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

False positives

T
ru

e
po

si
tiv

e
ra

te

 FaceDPL, 0.763
jointcascade, 0.748
structuredmodels, 0.709
headhunter, 0.703
face++, 0.666
BoostedExamplerBased, 0.600
SURF−GentleBoost−MV, 0.569
Olaworks, 0.566
ICCV−XZJY−PEPAdapt, 0.528
PEPAdapt, 0.528
koestinger, 0.521
shenzen, 0.517
XZJY, 0.511
illuxtechFrontalFace, 0.509
santi, 0.498
LiIntel, 0.490
jain, 0.446
subburaman, 0.420
ViolaJonesScore−n0, 0.396
Mikolajczyk, 0.366

(b) Cont ROC

Figure 5.6: ROC curves for face detection on the FDDB benchmark. Our FaceDPL outperforms
other methods including commercial systems (the baseline curves are downloaded from [6]) on
both the discrete and continuous score evaluation.

79

0

5000

10000

15000

20000

FaceDPL-v2 HeadHunter JointCascade Struc. Model Shen et al.

Figure 5.7: We show the number of positive examples used for training by the top performers on
FDDB. Our FaceDPL is learned with 900 faces while the other methods use ∼20X more training
examples.

missed faces percentage
Heavily occluded 322 51.7%
Low resolution 266 42.7%

Other 35 5.6%
Total 623 100%

6%

43% 52%

Heavily occluded Low resolution Other

Table 5.1: Categorize the missed faces by our FaceDPL on the FDDB dataset. We show examples
of missed faces in Fig. 5.8.

larger than that in the discrete setting. Note that these two methods both jointly detect faces and

localize the landmarks. We conjecture that joint detection and landmark localization might help

improve the overlap to the groundtruth.

We also noticed that in Fig. 5.6a, the top performers all saturated at almost the same true positive

rate (85% ∼ 88%), despite the fact that they use very different models and features. This may

suggest that all these methods are suffering from common types of mistakes. In order to better

understand the errors, we categorized the missed faces of FaceDPL across all 2845 FDDB images

by manual inspection. The distribution of missed faces is shown in Tab. 5.1.

80

Figure 5.8: Examples of missed faces by our model on FDDB. Note that most of them are either
heavily occluded faces or have very low resolution due to out-of-focus or simply being too far from
the camera.

Our results suggest that 95% of the missed faces are due to two causes: largely occluded faces

(more than 50% of the face is not visible) and extremely low resolution faces that are out-of-focus

or too far from the camera. We show some examples in Fig. 5.8. To our surprise, commonly-

thought-of difficulties in the literature (illumination / expression / viewpoint variation) collectively

contribute to only 5% of the missed detections. Assuming that FDDB represents a realistic scenario

for face detection in the wild, our results suggest that occlusion and low-resolution are the true

remaining hurdles for face detection. That said, illumination, expression and viewpoint are likely

still challenging for other related tasks, such as pose estimation, landmark localization, and face

recognition.

AFW

The AFW benchmark adopts the PASCAL VOC precision-recall protocol for object detection

(requiring 50% overlap). We compare our approach and baselines with the following: (1) OpenCV

frontal + profile Viola-Jones, (2) Boosted frontal + profile face detector of [48], (3) Exemplar SVM

81

0.2 0.4 0.6 0.8 1
0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Recall

P
re

ci
si

on

Headhunter (ap=97.1%)
Joint cascade (ap=95.6%)
 Our FaceDPL (ap=95.3%)
Structured models (ap=95.1%)
Shen et al. (ap=89.0%)
DPM re4 (ap=88.6%)
Multi. HoG (ap=81.6%)
ESVM (ap=77.2%)
Kalal et al. (ap=69.8%)
Google Picasa
face.com
face++
2−view Viola Jones (OpenCV)

Figure 5.9: Precision-recall curves for face detection on our AFW testset. Our FaceDPL is on par
with the best performers and outperforms most of the baselines including commercial systems,
such as Google Picasa, Face++ and face.com. Note that the two leading methods, HeadHunter and
Joint Cascade are trained with ∼20x more examples than our models and commercial systems used
billions of examples[76].

[56], (4) Multiple rigid HoG templates, (5) Exemplar retrieval by Shen et al. [73], (6) Deformable

part model (DPM) [35, 1] trained on same data as our models, (7) Structural model [87], (8) Joint

cascade detector [16], (9) Head Hunter [57], (10) Google Picasa’s face detector, manually scored

by inspection, (11) Face++’s face detector, (12) face.com’s face detector, which reports detections,

viewpoints, and landmarks.

To generate an overly-optimistic multiview detection baseline for (1) and (2), we calibrated the

frontal and side detectors on the test set and applied non-maximum suppression (NMS) to generate

a final set of detections. We also improved (4) and (6) over what’s reported in [94] by optimizing

the template resolution and NMS overlapping threshold as suggested in [57].

82

Figure 5.10: Qualitative results of our model on AFW images, tuned for an equal error rate of
false positives and missed detections. We accurately detect faces, estimate pose, and estimate
deformations in cluttered, real-world scenes.

Results are summarized in Fig. 5.9. Our FaceDPL outperforms 2-view Viola-Jones and most of the

other baselines significantly, and is only slightly below the best performers HeadHunter and Joint

Cascade, which are trained with an order of magnitude more examples than we do (Fig. 5.7). Our

model also outperforms commercial systems, such as Google Picasa, Face++ and face.com.

Fig. 5.9 reveals an interesting progression of performance. Surprisingly, our rigid multiview HoG

baseline outperforms popular face detectors currently in use, achieving an average precision (AP)

of 81.6%. Adding latent star-structured parts, making them supervised with tree-structured relations

each contributes to performance, with APs of 88.6%, and 95.3% respectively.

5.6.4 Pose estimation

We evaluate pose and landmarks on large faces such that landmarks are visible as higher resolution

allows us to ask for more than detection. We plot the curves for all baselines on faces larger than

150 pixels in height (a total of 329, or 70% of the faces in AFW). We argue that high-resolution

83

images are rather common given HD video and megapixel cameras.

We compare our approach and baselines with the following: (1) Multiview AAMs: we train an

AAM for each viewpoint using the code from [51], and report the view-specific model with the

smallest reconstruction error on a test image. (2) face.com.

Fig.5.11 shows the cumulative error distribution curves on both datasets. We report the fraction

of faces for which the estimated pose is within some error tolerance. Our FaceDPL model, Multi.

AAMs and Multi. HoG all score above 99% when allowing ±15◦ error tolerance on MultiPIE,

significantly higher than Face.com.

In general, we find that many methods saturate in performance on MultiPIE, originally motivating

us to collect AFW.

Unlike on MultiPIE where we assume detections are given (as faces are well centered in image), we

evaluate the performance on AFW in a more realistic manner: we evaluate results on faces found

by a given algorithm and count missed detections as having an infinite error in pose estimation.

Because AAMs do not have an associated detector, we given them the best-possible initialization

with the ground-truth bounding box on the test set (denoted with an ∗ in Fig.5.11b). assign the

ground truth bounding boxes to it to give it best advantage (we mark the result of multiview AAMs

with an “∗” in Fig.5.11b to indicate this).

All curves decrease in performance in AFW (indicating the difficulty of the dataset), especially

multiview AAMs, which suggests AAMs generalize poorly to new data. Our FaceDPL model

achieves the best performance, correctly labeling 89.4% of the faces within ±15◦ error tolerance,

outperforms face.com and Multiview AAMs by a large margin. Note that we don’t penalize false

positives for pose estimation; the Multiview-HoG baseline would perform worse if we penalized

false positives as incorrect pose estimates (because they are worse detectors). Our results are

impressive given the difficulty of this unconstrained data.

84

0 5 10 15 20 25 30
0

0.2

0.4

0.6

0.8

1

Pose estimation error (in degrees)

F
ra

ct
io

n
of

 th
e

nu
m

. o
f t

es
tin

g
fa

ce
s

Multi. AAMs (100.0%)
 Our FaceDPL (99.8%)
Multi. HoG (99.7%)
face.com (71.2%)

(a) MultiPIE

0 5 10 15 20 25 30
0

0.2

0.4

0.6

0.8

1

Pose estimation error (in degrees)

 Our FaceDPL (89.4%)
Multi. HoG (74.6%)
face.com (64.3%)
Multi. AAMs (*36.8%)

(b) AFW

Figure 5.11: Cumulative error distribution curves for pose estimation. The numbers in the legend are
the percentage of faces that are correctly labeled within ±15◦ error tolerance. AAMs are initialized
with ground-truth bounding boxes (denoted by *). Even so, our FaceDPL models work best on both
MultiPIE and AFW.

5.6.5 Landmark localization

We compare our approach and baselines with the following: (1) Multiview AAMs (2) Constrained

local model (CLM): we use the off-the-shelf code from [72]. This work represents the current

state-of-the-art results on landmark estimation in MultiPIE. (3) face.com reports the location of a

few landmarks, we use 6 as output: eye centers, nose tip, mouth corners and center. (4) Oxford facial

landmark detector [32] reports 9 facial landmarks: corners of eyes, nostrils, nose tip and mouth

corners. (5) Joint Cascade: we re-plot the results on AFW from [16]. Both CLM and multiview

AAMs are carefully initialized using the ground truth bounding boxes on the test set.

Landmark localization error is often normalized with respect to the inter-ocular distance [10];

this however, presumes both eyes are visible. This is not always true, and reveals the bias of

current approaches for frontal faces! Rather, we normalize pixel error with respect to the face size,

computed as the mean of height and width.

Various algorithms assume different landmark sets; we train linear regressors to map between these

85

0.02 0.04 0.06 0.08 0.1 0.12 0.14
0

0.2

0.4

0.6

0.8

1

Average localization error as fraction of face size

F
ra

ct
io

n
of

 th
e

nu
m

. o
f t

es
tin

g
fa

ce
s

 Our FaceDPL (97.7%)
Oxford (94.3%)
Multi. AAMs (91.2%)
CLM (90.3%)
face.com (79.6%)

(a) Localization results on frontal faces from MultiPIE

Figure 5.12: Cumulative localization error curves on the frontal faces from MultiPIE. The numbers
in the legend are the percentage of faces whose localization error is less than .05 (5%) of the face
size. Our FaceDPL model produces such a small error for 97.7% faces in the testset.

sets. On AFW, we evaluate algorithms using a set of 6 landmarks common to all formats. On

MultiPIE, we use the original 68 landmarks when possible, but evaluate face.com and Oxford using

a subset of landmarks they report. Note this gives them an extra advantage because their localization

error tends to be smaller since they output fewer degrees of freedom.

We first evaluate performance on only frontal faces from MultiPIE in Fig.5.12a. All baselines

perform well, but our FaceDPL model still outperforms the state-of-the-art CLM model. When

evaluated on all view points, we see a performance drop across most baselines, particularly CLMs

(Fig.5.13a). It is worth noting that, since CLM and Oxford are trained to work on near-frontal

faces, we only evaluate them on faces between −45◦ and 45◦ where all frontal landmarks are visible

(marked as a ∗ in Fig.5.13a). Even given this advantage, our model outperforms all baselines by a

large margin.

On AFW (Fig.5.13b), we again realistically count missed faces as having a localization error of

infinity. We report results on large faces where landmarks are clearly visible (which includes 329

86

0.02 0.04 0.06 0.08 0.1 0.12 0.14
0

0.2

0.4

0.6

0.8

1

Average localization error as fraction of face size

F
ra

ct
io

n
of

 th
e

nu
m

. o
f t

es
tin

g
fa

ce
s

 Our FaceDPL (97.1%)
Multi. AAMs (85.8%)
Oxford (*73.5%)
face.com (64.0%)
CLM (*47.8%)

(a) MultiPIE

0 0.05 0.1 0.15
0

0.2

0.4

0.6

0.8

1

Average localization error as fraction of face size

F
ra

ct
io

n
of

 th
e

nu
m

. o
f t

es
tin

g
fa

ce
s

Joint cascade (87.4%)
 Our FaceDPL (78.6%)
face.com (69.6%)
Oxford (*57.9%)
CLM (*24.1%)
Multi. AAMs (*15.9%)

(b) AFW

Figure 5.13: Cumulative error distribution curves for landmark localization. The numbers in legend
are the percentage of testing faces that have average error below 0.05(5%) of the face size. (*)
denote models which are given an “unfair” advantage, such as hand-initialization or a restriction to
near-frontal faces (described further in the text). Even so, our FaceDPL models outperform popular
baselines on both MultiPIE and our AFW testset.

face instances in AFW testset). Joint cascade achieves the best result with 87.4% of faces having

landmark localization error below 5% of face size, followed by our models where FaceDPL gets

78.6%. AAMs and CLM’s accuracy plunges, which suggests these popular methods don’t generalize

well to in-the-wild images. We gave an advantage to AAM, CLM, and Oxford by initializing them

with ground truth bounding boxes on the test set (marked with “∗” in Fig.5.13b).

Our models outperform the popular methods in use such as AAM and CLMs on both datasets.

We outperform all methods by a large margin on MultiPIE. The large performance gap between

two datasets suggest our models maybe overfitting to the lab conditions of MultiPIE; this in turn

suggests they may do even better if trained on “in-the-wild” training data similar to AFW as Joint

Cascade does. Our model even outperforms commercial systems such as face.com. This result is

surprising since our model is only trained with 900 faces, while the latter appears to be trained using

billions of faces [76].

We show an example AFW image with large mouth deformations in Fig. 5.14. AAMs mis-estimate

87

(a) Our model (b) AAM (c) CLM

Figure 5.14: An example AFW image with large mouth deformations. AAMs mis-estimate the
overall scale in order to match the mouth correctly. CLM matches the face contour correctly, but
sacrifices accuracy at the nose and mouth. Our tree-structured model is flexible enough to capture
large face deformation and yields the lowest localization error.

the overall scale in order to match the mouth correctly. CLM matches the face contour correctly, but

sacrifices accuracy at the nose and mouth. Our tree-structured model is flexible enough to capture

large face deformation and yields the lowest localization error.

5.7 Diagnostic analysis nd discussion

In this section, we perform diagnostic analysis of our FaceDPL model, examining the impact of

various hyper-parameters on detection, pose estimation and landmark localization.

Positive data size: We argue in Chapter 2 that after reaching a modest size, additional increase in

the size of the training data yields diminishing returns (similar to a logarithmic curve). We vary

the number of positive examples in the range of {90, 180, 540, 900} and plot the performance of

three tasks in Fig. 5.15. Consistent with our observation in Chapter 2, the detection accuracy does

not improve much after 180 examples. Learning with 900 examples improves the final accuracy by

only 2% (Fig. 5.15a).

The other two tasks seem to benefit from more training data. In particular, landmark localization

88

improves by 12% (Fig. 5.15c) when increasing the amount of data from 90 to 900 positives.

Accurately localizing landmarks may require capturing subtleties in the appearance of a target

landmark, an so may benefit from more training data. This suggests that FaceDPL’s pose estimation

and landmark localization accuracy of our FaceDPL models may further improve with more training

data (say, of the size used by the majority of related work).

Negative data size: The experiments in Chapter 2 vary the number of positive examples while

keeping the negative set fixed. A natural question is to examine the impact of negative training data.

Here we fix the number of positive to be 900, and change the size of negatives starting from 250 up

to 6000. As Fig. 5.16 shows, although it seems that adding more negatives in general doesn’t hurt,

we did not observe a clear trend of improvement either.

Number of viewpoint-mixtures: We pick subsets of mixtures from our FaceDPL model by

uniformly downsampling the 13 viewpoints. This produces mixture sizes of [1, 3, 5, 7, 13] (we

ignore the in-plane rotated mixtures here for simplicity), where the single mixture model only

contains the frontal view mixture component, all the others contain mixtures from equally spacing

viewpoints with varying step size. The results are summarized in Fig. 5.17. Fig. 5.17a shows that

we do not lose any detection accuracy if the number of mixtures is reduced from 13 to 5. This

behavior is expected as our FaceDPL model can deform itself to capture modest viewpoint changes.

However the accuracy of the other two tasks suffers a noticeable drop. For pose estimation, fewer

mixtures imply that the model can only estimate poses in a coarser scale, hurting performance.

For landmark localization, the remaining mixtures have to struggle to stretch themselves harder to

match the landmarks from the absent viewpoint-specific mixtures.

Note that as the parts are shared in our FaceDPL models, the 5-mixture model and the 13-mixture

model have exactly the same number of part templates. Because distance transform is rather efficient

and the computational bottleneck is scoring part templates (by convolution), adding more mixture

components with shared parts is a cheap way to better capture shape and topological variations.

89

0 200 400 600 800 1000
0.8

0.85

0.9

0.95

1

Num. of positive examples

A
ve

ra
ge

 p
re

ci
si

on

(a) Detection

0 200 400 600 800 1000
0.8

0.85

0.9

0.95

1

Num. of positive examples

P
os

e
es

tim
at

io
n

ac
cu

ra
cy

(b) Pose

0 200 400 600 800 1000
0.65

0.7

0.75

0.8

Num. of positive examples

La
nd

m
ar

k
lo

ca
liz

at
io

n
ac

cu
ra

cy

(c) Landmark

Figure 5.15: Performance with varying number of positive examples. The detection performance
saturates early, while the pose estimation and landmark localization accuracy still seem to be
growing with more positives in the range we exam.

90

0 1000 2000 3000 4000 5000 6000
0.8

0.85

0.9

0.95

1

Num. of negative images

A
ve

ra
ge

 p
re

ci
si

on

(a) Detection

0 1000 2000 3000 4000 5000 6000
0.8

0.85

0.9

0.95

1

Num. of negative images

P
os

e
es

tim
at

io
n

ac
cu

ra
cy

(b) Pose

0 1000 2000 3000 4000 5000 6000
0.65

0.7

0.75

0.8

Num. of negative images

La
nd

m
ar

k
lo

ca
liz

at
io

n
ac

cu
ra

cy

(c) Landmark

Figure 5.16: Performance with varying number of negative images. There is no clear trend of
improvement when growing the number of negative images.

91

0 2 4 6 8 10 12 14
0.7

0.75

0.8

0.85

0.9

0.95

1

Num. of mixture components

A
ve

ra
ge

 p
re

ci
si

on

(a) Detection

0 2 4 6 8 10 12 14
0.5

0.6

0.7

0.8

0.9

1

Num. of mixture components

P
os

e
es

tim
at

io
n

ac
cu

ra
cy

(b) Pose

0 2 4 6 8 10 12 14
0.4

0.5

0.6

0.7

0.8

0.9

Num. of mixture components

La
nd

m
ar

k
lo

ca
liz

at
io

n
ac

cu
ra

cy

(c) Landmark

Figure 5.17: Performance with varying number of mixture components (before in-plane rotation).

92

Level of sharing:

In this experiment, we explore two levels of sharing as described in Sec. 5.6.2. More sharing reduces

the number of parts to 318 to 162. The results in Fig. 5.19 show that more sharing performs worse

on all three tasks.

In general, we find that less sharing improves performance. In the extreme case of no sharing, or

exemplar parts, we hypothesize that performance would drop (as suggested by the performance

of global exemplars in Fig. 5.9). This because sharing acts as a form of “regularization” that

prevents overfitting; we can learn a less-noisy nose template if we average in the appearance of

other similar-looking (in terms of viewpoints) nose patches.

Finally, another practical benefit of sharing is that one can trade small accuracy loss for possibly

large computation reduction by compressing the pool of parts.

Spatial structure (tree vs. star): We replace the learned tree structure with a simple star structure,

commonly used to capture object shape (as in [35]). The two structures are illustrated in Fig. 5.18.

We compare the performance of both models on all the three tasks on AFW in Fig. 5.19. Stars

perform surprisingly well for detection and pose estimation, but perform considerably worse

for landmark localization. This suggests that the learned tree structure can better represent the

deformation of faces.

123 4 5

6

7

8

9
10

1112

1314
15

16

17
18 19

20

2122 23

24 25
26

27

28
2930

31

3233
34

3536
37 38

39
40

4142
43

44
45

46

47

48

49
50

51

52
53

54

55

56

57

58

59

60

61

62

63

64

65

66

67

68

(a) star, frontal

1
2

3

4

5

6

78
9

10
11

1213

14

15

16
17

18
19

202122

23
2425
26

27

28

29

30
31

32

33

34

35

36

37

38

39

(b) star, profile

123 4 5

6

7

8

9
10

1112

1314
15

16

17
18 19

20

2122 23

24 25
26

27

28
2930

31

3233
34

3536
37 38

39
40

4142
43

44
45

46

47

48

49
50

51

52
53

54

55

56

57

58

59

60

61

62

63

64

65

66

67

68

(c) MST, frontal

1
2

3

4

5

6

78
9

10
11

1213

14

15

16
17

18
19

202122

23
2425
26

27

28

29

30
31

32

33

34

35

36

37

38

39

(d) MST, profile

Figure 5.18: Visualization of star structures and the learned tree structures

93

In-plane rotated mixtures: Removing the ±30 degrees in-plane rotated mixtures would speed up

the model by 3X, and also results in a mild loss in performance (Fig. 5.19).

No extrapolation to unseen shape (EPMs): As described in Chapter 2, Exemplar part models

(EPMs) can only represent the shape configurations included in the training data, while FaceDPMs

can deform the parts to represent an exponential number of unseen new shapes that EPMs can not

extrapolate to.

The results in Fig. 5.19 show that removing our model’s ability to extrapolate would consistently

hurt the performance for all three tasks, and especially causes huge accuracy drop in landmark

localization as it can not match any shapes that do not appear in the training data.

detection pose landmark
0.5

0.6

0.7

0.8

0.9

1

FaceDPL v2 baseline
More sharing
Star structure
No in−plane rotation
Multi. HoG
EPMs

Figure 5.19: Effects on the performance when changing various settings

5.8 Conclusion

We present a unified model for face detection, pose estimation and landmark localization using a

mixture of trees with a shared pool of parts. Our tree models are surprisingly effective in capturing

global elastic deformation, while being easy to optimize. Our model outperforms state-of-the-art

methods, including large-scale commercial systems, on all three tasks under both constrained and

94

in-the-wild environments. To demonstrate the latter, we present a new annotated dataset which we

hope will spur further progress.

95

Bibliography

[1] http://www.cs.brown.edu/˜pff/latent/voc-release4.tgz.

[2] http://www.cs.berkeley.edu/˜rgb/latent/voc-release5.tgz.

[3] http://picasa.google.com/.

[4] www.faceplusplus.com.

[5] http://face.com/.

[6] http://vis-www.cs.umass.edu/fddb/results.html.

[7] O. Aghazadeh, H. Azizpour, J. Sullivan, and S. Carlsson. Mixture component identification
and learning for visual recognition. In ECCV, 2012.

[8] Y. Aytar and A. Zisserman. Tabula rasa: Model transfer for object category detection. In ICCV.
IEEE, 2011.

[9] H. Azizpour and I. Laptev. Object detection using strongly-supervised deformable part models.
In ECCV, 2012.

[10] P. N. Belhumeur, D. W. Jacobs, D. J. Kriegman, and N. Kumar. Localizing parts of faces using
a consensus of exemplars. In CVPR 2011, 2011.

[11] V. Blanz and T. Vetter. Face recognition based on fitting a 3d morphable model. IEEE TPAMI,
2003.

[12] A. Bosch, A. Zisserman, and X. Muoz. Image classification using random forests and ferns.
In Computer Vision, 2007. ICCV 2007. IEEE 11th International Conference on, pages 1–8.
IEEE, 2007.

[13] L. Bourdev and J. Malik. Poselets: Body part detectors trained using 3d human pose annota-
tions. In International Conference on Computer Vision, 2009.

[14] K. Bowyer and C. Dyer. Aspect graphs: An introduction and survey of recent results.
International Journal of Imaging Systems and Technology, 1990.

[15] C. Chang and C. Lin. LIBSVM: A library for support vector machines. ACM Transactions
on Intelligent Systems and Technology, 2:27:1–27:27, 2011. Software available at http:
//www.csie.ntu.edu.tw/˜cjlin/libsvm.

96

http://www.cs.brown.edu/~pff/latent/voc-release4.tgz
http://www.cs.berkeley.edu/~rgb/latent/voc-release5.tgz
http://picasa.google.com/
www.faceplusplus.com
http://face.com/
http://vis-www.cs.umass.edu/fddb/results.html
http://www.csie.ntu.edu.tw/~cjlin/libsvm
http://www.csie.ntu.edu.tw/~cjlin/libsvm

[16] D. Chen, S. Ren, Y. Wei, X. Cao, and J. Sun. Joint cascade face detection and alignment. In
ECCV 2014, pages 109–122. Springer International Publishing, 2014.

[17] C. Chow and C. Liu. Approximating discrete probability distributions with dependence trees.
IEEE TIT, 1968.

[18] C. Chu, S. Kim, Y. Lin, Y. Yu, G. Bradski, A. Ng, and K. Olukotun. Map-reduce for machine
learning on multicore. NIPS, 19:281, 2007.

[19] T. Cootes, G. Edwards, and C. Taylor. Active appearance models. IEEE TPAMI, 2001.

[20] T. Cootes, K. Walker, and C. Taylor. View-based active appearance models. In IEEE FG 2000,
2000.

[21] D. Cristinacce and T. Cootes. Feature detection and tracking with constrained local models.
In BMVC 2006, 2006.

[22] N. Dalal and B. Triggs. Histograms of oriented gradients for human detection. In CVPR 2005.,
2005.

[23] J. Dean and S. Ghemawat. Mapreduce: simplified data processing on large clusters. Commu-
nications of the ACM, 51(1):107–113, 2008.

[24] T. Dean, M. A. Ruzon, M. Segal, J. Shlens, S. Vijayanarasimhan, and J. Yagnik. Fast, accurate
detection of 100,000 object classes on a single machine. In CVPR, 2013.

[25] T. Dean, M. A. Ruzon, M. Segal, J. Shlens, S. Vijayanarasimhan, and J. Yagnik. Fast, accurate
detection of 100,000 object classes on a single machine. In Proceedings of the 2013 IEEE
Conference on Computer Vision and Pattern Recognition, CVPR ’13, pages 1814–1821. IEEE
Computer Society, 2013.

[26] J. Deng, A. Berg, K. Li, and L. Fei-Fei. What Does Classifying More Than 10,000 Image
Categories Tell Us? In International Conference on Computer Vision, 2010.

[27] J. Deng, W. Dong, R. Socher, L. Li, K. Li, and L. Fei-Fei. Imagenet: A large-scale hierarchical
image database. In CVPR, pages 248–255. IEEE, 2009.

[28] S. K. Divvala, A. A. Efros, and M. Hebert. How important are deformable parts in the
deformable parts model? In European Conference on Computer Vision (ECCV), Parts and
Attributes Workshop, 2012.

[29] S. K. Divvala, A. A. Efros, and M. Hebert. Object instance sharing by enhanced bounding
box correspondence. In BMVC, 2012.

[30] J. Dong, W. Xia, Q. Chen, J. Feng, Z. Huang, and S. Yan. Subcategory-aware object classifica-
tion. In CVPR, 2013.

[31] C. Dubout and F. Fleuret. Exact acceleration of linear object detectors. In Computer Vision
ECCV 2012, volume 7574, pages 301–311. Springer Berlin Heidelberg, 2012.

97

[32] M. Everingham, J. Sivic, and A. Zisserman. “Hello! My name is... Buffy” – automatic naming
of characters in TV video. In BMVC 2006, 2006.

[33] M. Everingham, L. Van Gool, C. Williams, J. Winn, and A. Zisserman. The PASCAL visual
object classes (VOC) challenge. International Journal of Computer Vision, 88(2):303–338,
2010.

[34] P. Felzenszwalb, R. Girshick, and D. McAllester. Cascade object detection with deformable
part models. In Computer Vision and Pattern Recognition (CVPR), 2010 IEEE Conference on,
pages 2241–2248, June 2010.

[35] P. Felzenszwalb, R. Girshick, D. McAllester, and D. Ramanan. Object detection with discrimi-
natively trained part-based models. IEEE TPAMI, 2010.

[36] P. Felzenszwalb and D. Huttenlocher. Distance transforms of sampled functions. Theory of
Computing, 8(19), September 2012.

[37] P. F. Felzenszwalb and D. P. Huttenlocher. Pictorial structures for object recognition. IJCV,
2005.

[38] V. Ferrari and A. Zisserman. Learning visual attributes. In NIPS, Dec. 2007.

[39] R. Gross, I. Matthews, J. Cohn, T. Kanade, and S. Baker. Multi-pie. Image and Vision
Computing, 2010.

[40] C. Gu, P. Arbelaez, Y. Lin, K. Yu, and J. Malik. Multi-component models for object detection.
In ECCV, 2012.

[41] L. Gu and T. Kanade. 3d alignment of face in a single image. In CVPR 2006, 2006.

[42] A. Halevy, P. Norvig, and F. Pereira. The unreasonable effectiveness of data. Intelligent
Systems, IEEE, 24(2):8–12, 2009.

[43] B. Heisele, T. Serre, and T. Poggio. A Component-based Framework for Face Detection and
Identification. IJCV, 2007.

[44] D. Hoiem, Y. Chodpathumwan, and Q. Dai. Diagnosing error in object detectors. In Computer
Vision ECCV 2012, volume 7574, pages 340–353. Springer Berlin Heidelberg, 2012.

[45] S. Ioffe and D. Forsyth. Mixtures of trees for object recognition. In CVPR 2001., 2001.

[46] V. Jain and E. Learned-Miller. Fddb: A benchmark for face detection in unconstrained settings.
Technical Report UM-CS-2010-009, UMass, Amherst, 2010.

[47] M. Jones and P. Viola. Fast multi-view face detection. In CVPR 2003, 2003.

[48] Z. Kalal, J. Matas, and K. Mikolajczyk. Weighted sampling for large-scale boosting. In BMVC
2008., 2008.

98

[49] M. Köstinger, P. Wohlhart, P. M. Roth, and H. Bischof. Annotated facial landmarks in the wild:
A large-scale, real-world database for facial landmark localization. In First IEEE International
Workshop on Benchmarking Facial Image Analysis Technologies 2011, 2001.

[50] A. Krizhevsky, I. Sutskever, and G. Hinton. Imagenet classification with deep convolutional
neural networks. In Advances in Neural Information Processing Systems 25, pages 1106–1114,
2012.

[51] D.-J. Kroon. Active shape model and active appearance model. http://www.mathworks.
com/matlabcentral/fileexchange/26706.

[52] C. H. Lampert, H. Nickisch, and S. Harmeling. Learning to detect unseen object classes by
between-class attribute transfer. In CVPR, pages 951–958. IEEE, 2009.

[53] T. Leung, M. Burl, and P. Perona. Finding faces in cluttered scenes using random labeled
graph matching. In ICCV 1995, 1995.

[54] J. J. Lim, R. Salakhutdinov, and A. Torralba. Transfer learning by borrowing examples for
multiclass object detection. In NIPS, 2011.

[55] J. Liu, A. Kanazawa, D. Jacobs, and P. Belhumeur. Dog breed classification using part
localization. In ECCV, 2012.

[56] T. Malisiewicz, A. Gupta, and A. Efros. Ensemble of exemplar-svms for object detection and
beyond. In ICCV, pages 89–96, 2011.

[57] M. Mathias, R. Benenson, M. Pedersoli, and L. Van Gool. Face detection without bells and
whistles. In ECCV, 2014.

[58] I. Matthews and S. Baker. Active appearance models revisited. IJCV, 60(2):135–164, 2004.

[59] D. A. McAllester. Some pac-bayesian theorems. Machine Learning, 37(3):355–363, 1999.

[60] E. Murphy-Chutorian and M. Trivedi. Head pose estimation in computer vision: A survey.
IEEE TPAMI, 2009.

[61] M. Osadchy, Y. L. Cun, and M. L. Miller. Synergistic face detection and pose estimation with
energy-based models. JMLR, 2007.

[62] P. Ott and M. Everingham. Shared parts for deformable part-based models. In CVPR, pages
1513 –1520, june 2011.

[63] D. Parikh and C. Zitnick. Finding the weakest link in person detectors. In Computer Vision
and Pattern Recognition, pages 1425–1432. IEEE, 2011.

[64] A. Pentland, B. Moghaddam, and T. Starner. View-based and modular eigenspaces for face
recognition. In CVPR 1994., 1994.

[65] P. Phillips, H. Moon, S. Rizvi, and P. Rauss. The feret evaluation methodology for face-
recognition algorithms. IEEE TPAMI, 2000.

99

http://www.mathworks.com/matlabcentral/fileexchange/26706
http://www.mathworks.com/matlabcentral/fileexchange/26706

[66] J. Platt. Probabilistic outputs for support vector machines and comparisons to regularized
likelihood methods. In ADVANCES IN LARGE MARGIN CLASSIFIERS, pages 61–74. MIT
Press, 1999.

[67] N. Razavi, J. Gall, P. Kohli, and L. V. Gool. Latent hough transforms for object detection. In
ECCV, 2012.

[68] E. Rosch. Prototype classification and logical classification: The two systems. New trends in
conceptual representation: Challenges to Piagets theory, pages 73–86, 1983.

[69] E. Rosch and C. Mervis. Family resemblances: Studies in the internal structure of categories.
Cognitive psychology, 7(4):573–605, 1975.

[70] H. Rowley, S. Baluja, and T. Kanade. Neural network-based face detection. IEEE TPAMI,
1998.

[71] R. Salakhutdinov, A. Torralba, and J. Tenenbaum. Learning to share visual appearance for
multiclass object detection. In CVPR, pages 1481–1488. IEEE, 2011.

[72] J. Saragih, S. Lucey, and J. Cohn. Deformable model fitting by regularized landmark mean-
shift. IJCV, 2011.

[73] X. Shen, Z. Lin, J. Brandt, and Y. Wu. Detecting and aligning faces by image retrieval. In
Proceedings of the 2013 IEEE Conference on Computer Vision and Pattern Recognition,
CVPR ’13, pages 3460–3467. IEEE Computer Society, 2013.

[74] S. Singh, A. Gupta, and A. A. Efros. Unsupervised discovery of mid-level discriminative
patches. In ECCV, pages 73–86. Springer, 2012.

[75] Y. Taigman and L. Wolf. Leveraging Billions of Faces to Overcome Performance Barriers in
Unconstrained Face Recognition. ArXiv e-prints, Aug. 2011.

[76] Y. Taigman and L. Wolf. Leveraging billions of faces to overcome performance barriers in
unconstrained face recognition. Arxiv preprint arXiv:1108.1122, 2011.

[77] A. Torralba and A. Efros. Unbiased look at dataset bias. In Computer Vision and Pattern
Recognition, pages 1521–1528. IEEE, 2011.

[78] A. Torralba, K. P. Murphy, and W. T. Freeman. Sharing visual features for multiclass and
multiview object detection. IEEE TPAMI, 29(5):854–869, 2007.

[79] T. Tuytelaars and K. Mikolajczyk. Local invariant feature detectors: a survey. Foundations
and Trends R© in Computer Graphics and Vision, 3(3):177–280, 2008.

[80] A. Vedaldi, V. Gulshan, M. Varma, and A. Zisserman. Multiple kernels for object detection. In
Computer Vision, 2009 IEEE 12th International Conference on, pages 606–613. IEEE, 2009.

[81] P. Viola and M. J. Jones. Robust real-time face detection. IJCV, 2004.

100

[82] Y. Wang and G. Mori. A discriminative latent model of object classes and attributes. In ECCV,
pages 155–168. Springer, 2010.

[83] L. Wiskott, J.-M. Fellous, N. Kuiger, and C. von der Malsburg. Face recognition by elastic
bunch graph matching. IEEE TPAMI, Jul 1997.

[84] Y. Wu and Y. Liu. Robust truncated hinge loss support vector machines. Journal of the
American Statistical Association, 102(479):974–983, 2007.

[85] L. Xu, J. Neufeld, B. Larson, and D. Schuurmans. Maximum margin clustering. NIPS,
17:1537–1544, 2004.

[86] J. Yan, Z. Lei, L. Wen, and S. Z. Li. The fastest deformable part model for object detection.
June 2014.

[87] J. Yan, X. Zhang, Z. Lei, and S. Z. Li. Face detection by structural models. Image and Vision
Computing, 32(10):790 – 799, 2014.

[88] M.-H. Yang, D. Kriegman, and N. Ahuja. Detecting faces in images: a survey. IEEE TPAMI,
2002.

[89] Y. Yang and D. Ramanan. Articulated pose estimation using flexible mixtures of parts. In
CVPR 2011, 2011.

[90] W. Zhang, J. Sun, and X. Tang. Cat head detection - how to effectively exploit shape and
texture features. In ECCV, 2008.

[91] W. Zhao, R. Chellappa, P. Phillips, and A. Rosenfeld. Face recognition: A literature survey.
ACM Computing Surveys, 2003.

[92] L. Zhu, Y. Chen, A. L. Yuille, and W. T. Freeman. Latent hierarchical structural learning for
object detection. In CVPR, 2010.

[93] X. Zhu, D. Anguelov, and D. Ramanan. Capturing long-tail distributions of object subcate-
gories. In Computer Vision and Pattern Recognition, 2014.

[94] X. Zhu and D. Ramanan. Face detection, pose estimation, and landmark localization in the
wild. In Computer Vision and Pattern Recognition, 2012.

[95] X. Zhu, C. Vondrick, D. Ramanan, and C. Fowlkes. Do we need more training data or better
models for object detection? In BMVC, 2012.

101

	LIST OF FIGURES
	LIST OF TABLES
	ACKNOWLEDGMENTS
	CURRICULUM VITAE
	ABSTRACT OF THE DISSERTATION
	Introduction
	Summary of sharing approaches in this thesis
	Thesis Overview and Contributions

	Is big training data sufficient?
	Introduction
	Related Work
	Big Detection Datasets
	Collecting PASCAL-10X
	Data Quality

	Mixture models
	Experiments
	The importance of proper regularization
	The importance of clean training data
	Performance of mixture models

	Conclusion

	Capturing long-tail distributions of object subcategories
	Long-tail and its challenges
	Related work
	Learning long-tail subcategory models
	Initialization
	Discriminative clustering with sharing
	Greedy model selection

	Experimental results

	Sharing local appearance with parts
	Deformable part model
	Tree structured part model
	Shape model
	Inference
	Learning

	Revisit mixture models
	Deformable Part Models (DPMs)
	Exemplar Part Models (EPMs)
	Exemplar DPMs (EDPMs)
	Inference

	Experiments
	Conclusion

	Face analysis in the wild: A case study
	Introduction
	Related Work
	Model
	Inference
	Learning
	Experimental Results
	Datasets
	Our models
	Face detection
	Pose estimation
	Landmark localization

	Diagnostic analysis nd discussion
	Conclusion

	Bibliography

