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LOCAL AND GLOBAL WELL-POSEDNESS OF STRONG SOLUTIONS TO THE
3D PRIMITIVE EQUATIONS WITH VERTICAL EDDY DIFFUSIVITY

CHONGSHENG CAO, JINKAI LI, AND EDRISS S. TITI

ABSTRACT. In this paper, we consider the initial-boundary value problem of the viscous 3D primi-
tive equations for oceanic and atmospheric dynamics with only vertical diffusion in the temperature
equation. Local and global well-posedness of strong solutions are established for this system with H?
initial data.

MSC Subject Classifications: 35Q35, 65M70, 86-08,86A10.
Keywords: well-posedness; strong solution; primitive equation; vertical diffusion; Boussinesq
equations.

1. INTRODUCTION

The primitive equations are derived from the full incompressible Navier-Stokes equations using the
Boussinesq and hydrostatic approximations. They are the fundamental models for weather prediction,
see, e.g., Lewandowski [13], Pedlovsky [18], and Washington and Parkinson [24]. In the context of
the oceans and the atmosphere dynamics the horizontal scales are much larger than the vertical one.
By taking advantage of this, the scale analysis (see, e.g., Pedlovsky [18] and Vallis [23]) leads to the
hydrostatic approximation, see also Azérad and Guillén [1] and Lions, Temam and Wang [15] for the
rigourous mathematical justification.

In this paper, we consider the primitive equations with only vertical diffusion. The primitive
equations are given by the following system (see, e.g., [14, [15, 17, [19, 22])

v+ (v-Vg)v+wo,v+ Vygp+ Liv+ fok xv=0, (1.1)
O.p+T =0, (1.2)

Vu- v+ 0w =0, (1.3)

0T+ (v-Vu)T +wo, T+ LT = Q, (1.4)

where the horizontal velocity v = (v!, v?), the vertical velocity w, the temperature T and the pressure
p are the unknowns, fjy is the Coriolis parameter, and @ is a given heat source. Here, for simplicity,
we assume that the heat source () is identically zero; however, the results obtained in this paper hold
true for the nonzero but appropriately regular Q. The operators L; and Ly in (1)) and (I.4]) are the
viscosity and the heat vertical diffusion operators, respectively, given by

1 1 1
L= ——Ag — —0? Ly = ——0°
Y i 2 :

R3

with positive constants Ri, Ry and Rz, where Ry, Ry represent the horizontal and vertical dimen-
sionless Reynolds numbers, respectively, while Rj3 is the vertical dimensionless eddy heat diffusivity
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turbulence mixing coefficient (see [7, 8] for example). In this paper, we use the notations Vg = (9, 0y)
and Ay = 9% + 85 to stand for the horizontal gradient and Laplacian, respectively.

The mathematical studies of primitive equations were initialed by Lions, Temam and Wang [14-
16] in 1990s, where the global existence of weak solutions were obtained. Weak solutions in 2D turn
out to be unique, see Bresch, Guillén-Gonzélez, Masmoudi and Rodriguez-Bellido [2]; however, the
uniqueness of weak solutions in the three-dimensional case is still unclear. Concerning the strong
solutions for the 2D case, the local existence result was established by Guillén-Gonzalez, Masmoudi
and Rodriguez-Bellido [9], while the global existence for 2D case was achieved by Bresch, Kazhikhov
and Lemoine in |3] and Temam and Ziane in [22]. The global existence of strong solutions for 3D case
was established by Cao and Titi [5]. In [5], the authors take advantage of the observation that the
pressure is essentially a function of the two-dimensional horizontal variables; as a result, they obtain
the LS estimates on the velocity vector field, which allows them to prove the global well-posedness of
strong solutions. The global existence of strong solutions were also obtained later by Kobelkov [10],
see also the subsequent articles of Kukavica and Ziane [11, [12] for different boundary condition. In
all the papers [3,/10-12], system are assumed to have diffusion in all directions. Recently, it is whown
by Cao and Titi [6] that these global existence results still hold true for system with only vertical
diffusion, provided the local in time strong solutions exist.

The aims of this paper are two folds: on one hand, we establish the local existence of strong
solutions to the primitive equations with only vertical diffusion, provided the initial data belong to
H?; on the other hand, we prove that this local strong solution can be in fact extended to be a global
one by adopting the energy estimates established in [6] and some suitable ¢t-weighted estimates, as
well as our local existence result. Note that the regularity assumptions on the initial data in this
paper are weaker than those in Cao and Titi [6] and consequently we improve the results of [6].

In this paper, we consider the problem in the domain Qy = M x (—h,0) with M = (0,1) x (0, 1).
We complement system (LI)—(L4) with the boundary conditions

v,w, T are periodic in x and y, (1.5)
(020, w)|,=—n,0 =0,
Tlo=p=1, T|.=0=0, (1.7)
and the initial data
(v, T)|t=0 = (vo, To)- (1.8)

Replacing T and p by T'+ £ and p — %, respectively, then system (LI)—(L4]) with (L3)—(L8) is
equivalent to the following system

v+ (v-Vg)v+wiw+ Vgp+ Liv+ fok xv=0, (1.9)
0.p+T =0, (1.10)
Vi v+ 0w =0, (1.11)
HT+ (v- V)T +w (0.7 + 1) + LT =0, (1.12)
complemented with the boundary and initial conditions
v,w, T are periodic in x and v, (1.13)
(0.0, W)|3=—p0 =0, T|o=—po=0, (1.14)

(v, T)|t=0 = (vo, Tp)- (1.15)
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Here, for simplicity, we still use Ty to denote the initial temperature in (LI3]), though it is now
different from that in (LS]).
Notice that the periodic subspace H, given by

H :={(v,w,p,T)|v,w,p and Tare spatially periodic in all three variables

and even, odd, even and odd in z variable, respectively},

is invariant under the dynamics system ([LI)—(L4]). That is if the initial data satisfy the properties
stated in the definition of #, then, as we will see later (see Theorem [II]), the solutions to system
(CI)-(C4) will obey the same symmetry as the initial data. This motivated us to consider the
following system

v+ (v-Vg)v+wo,vw+ Vygp+ Liv+ fok xv=0, (1.16)
d.p+T =0, (1.17)
Vu- v+ 0w =0, (1.18)
HT + (v- V)T +w (0, T + +) + LT = 0, (1.19)
in Q:= M x (—h,h), subject to the boundary and initial conditions
v,w,p and T are periodic in z, ¥, z, (1.20)
v and p are even in z, and w and T are odd in z, (1.21)
(v, T)|t=0 = (vo, To)- (1.22)

One can easily check that the restriction on the sub-domain g of a solution (v,w,p,T’) to system
(CI6)-(T22) is a solution to the original system (L9)—(T.I5]). Because of this, throughout this paper,
we mainly concern on the study of system ([L16)—(L.22]) defined on €2, while the well-posedness results

for system (LI)—(LI5]) defined on g follow as a corollary of those for system (LI6])-(L22).
For any function ¢(x,y, z) defined on 2, we denote

h ~ —
(Z;(x7y) = % /—h ¢(x7y7z)d27 ¢ = ¢ - ¢

System (LI6)-(L22) is equivalent to (see, e.g., [6])
ov+ Liv+ (v-Vg)v — <f_zh V- v(x,y,f,t)df) 0,

+fok x v+ Vi (po(@,y,) = [2, Tlw,y,€,1)d€) =0, (1.23)
Vi o=0, (1.24)
T + LoT +v-VyT — (f_zh Vi oz, y, €, t)d{) 0.7+ 1) =0 (1.25)
in Q = M x (—h,h), complemented with the following boundary and initial conditions
v and T are periodic in z,, 2, (1.26)
v and T are even and odd in z, respectively, (1.27)
(v, T)|t=0 = (vo, Tp)- (1.28)

In addition, one can also check that v and v satisfy the following system (see, e.g., [6])

00 — = ARU+ (0-V)o+ (0-Vu)o+ (Vi - 0)0 + fok x @
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+Vy (ps(x,y,t) — Ly T($,y,£,t)d£dz> —0, (1.29)
Vi =0, (1.30)
0+ L1o + (0 Vi) — (ffh Vi - »a(:c,y,g,t)d§> 8,6+ (0 - Vi )o
+(©-Vg)o—(0-Vg)o+ (Vg -0)o+ fok x 0
Vi (J7, T, €00 = g [, [7), T(w,y,€,1)dédz) =0, (1.31)

Throughout this paper, we denote by L(Q2), L(M) and W™4(Q), W™4(M) the standard Lebesgue
and Sobolev spaces, respectively. For ¢ = 2, we use H™ instead of W™2. We use Wpe! (2) and HEe,
to denote the spaces of periodic functions in W 4(Q) and H™(2), respectively. For simplicity, we
use the same notations LP and H™ to denote the N product spaces (LP)V and (H™)", respectively.
We always use ||ul|, to denote the LP norm of w.

Definitions of the strong solution, maximal existence time and global strong solution are stated in

the following three definitions, respectively.

Definition 1.1. Let vg € H%(Q) and Ty € H*(Q) be two periodic functions, such that they are even
and odd in z, respectively. Given a positive number to. A couple (v,T) is called a strong solution to

system (L23)-(L28) (or equivalently (1.16)-(1.22)) on Q x (0,t) if
(i) v and T are periodic in x,y, z, and they are even and odd in z, respectively;
(ii) v and T have the regularities

v e L=(0,to; H*(2)) N C([0, to]; H' () N L*(0,t0; H(R))
T € L=(0,t0; H*(2)) N C([0,t0]; H'(2)),  9.T € L*(0, to; H*(R)),
o € L*(0,tg; HY(Q)), 0, € L*(0,tp; H(Q));

(iii) v and T satisfies (L23)-(1.23) a.e. in Q x (0,ty) and the initial condition (L23).

Definition 1.2. A finite positive number T is called the maximal existence time of a strong solution
(v, T) to system (L.23)-(L23) if (v,T) is a strong solution to system on 2 x (0,tg) for any tg < T*
and T (ol +T|3e) = oc.

Definition 1.3. A couple (v,T) is called a global strong solution to system (1.23)-(1.28) if it is a
strong solution on Q x (0,tg) for any ty < oo.

The main result of this paper is the following:

Theorem 1.1. Suppose that the periodic functions vg, Ty € H?(Q) are even and odd in z, respectively.
Then system (IL16)-(1.22) has a unique global strong solution (v, T).

As a first step of proving Theorem [I.I, we prove the local existence of strong solutions. This is
done by regularizing the original system, solving the regularized system and then taking the limit
as the regularization parameter € tends to zero. More precisely, we first prove the local existence of
strong solutions to the regularized system by the contraction mapping principle, then we prove that
the existence time and the corresponding a priori estimates for these solutions are independent of the
regularization parameter €, and finally, thanks to these uniform estimates, we can take the limit to
obtain the local strong solutions the original system. By adopting the energy inequalities established
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in [6] and doing the ¢t-weighted estimates on the high order derivatives, we prove that the H? norms
of the solutions keep finite for any finite time, and thus prove the global existence of strong solutions.

As a corollary of Theorem [[.I] we have the following theorem, which states the well-posedness of
strong solutions to system (L9)—-(LI5)). The strong solutions to system (L9)-(LI5]) are defined in
the similar way as before.

Theorem 1.2. Let vy and T be two functions such that they are periodic in x and y. Denote by v

and TE® the even and odd extensions in z of vo and Ty, respectively. Suppose that v§™, TE € ngr(Q).
Then system (1.9)-(113) has a unique global strong solution (v,T).

The existence part follows directly by applying Theorem [Tl with initial data (v§*,7¢*") and
restricting the solution on the sub-domain 23. While the uniqueness part can be proven in the same
way as that for Theorem [I.11

Remark 1.1. The condition that v§™, T§™ € ngr(Q) in the above theorem is necessary for the
existence of strong solutions to system (L.9)-(1.13). Using the similar arguments as stated in the
appendiz section of this paper, one can show that strong solutions are in fact smooth away from the
initial time. It follows from equation (I.12) and the boundary condition (1.17) that O*T|,— _po =0
for any t > 0, and thus we can extend T oddly and periodically in z such that T is odd in z
and belongs to ng,,(Q) for any t > 0. By the definition of strong solutions, it follows that T €
L>(0,t0; H2(Q0))NC([0,t0); L2(Q0)), and thus T € L>(0,to; H2(22))NC ([0, t0]; L*()). Combining
these statements, by Banach-Alaoglu theorem, it must have T§™ € ngr. Similarly, one can verify
that v must belong to HZ,,(€2).

per

The rest of this paper is arranged as follows: in the next section, section 2, we prove the local
existence of strong solutions to the regularized system; in section Bl we establish the local existence
and uniqueness of strong solutions to system (LI6)—(L.22]); in section [d we show that the local strong
solution can be extended to be a global one and thus obtain a global strong solution; some necessary
regularities used in section [l are justified in the appendix section.

Throughout this paper, the constant C' denotes a general constant which may be different from
line to line.

2. THE REGULARIZED SYSTEM WITH FULL DIFFUSION

In this section, we prove the local existence of strong solutions to the following modified system

O + Lyv + (U : VH)U - <f_zh Vi - U(x7y7£7t)d£) 0.v

ok x v+ Vi (po(@,y,) = [7, Tlw,y,€,1)d€) =0, (2.1)

Vg -v=0, (2.2)

0T + LoT — eAgT +v-VyT — (f_zh Vi - v(:n,y,&,t)dﬁ) (OZT + %) =0, (2.3)
complemented with the boundary and initial conditions

v and T are periodic in x,, 2, (2.4)

v and T are even and odd in z, respectively, (2.5

(0, T)|t=0 = (vo, Tp). (2.6)
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Strong solutions to system (2.I)—(2.6]) are defined in the similar way as Definition [LTT We have
the following proposition.

Proposition 2.1. Given e > 0. Let vy and Ty € H?(Q) be two periodic functions, such that they are
even and odd in z, respectively. Then system (2.1))-(2.8) has a strong solution (v, T) on € x (0,t.)
such that

(Ua T) S L2(07 te; H3(Q))7 (8{0, 8tT) S L2(07 te; Hl (Q))a
where t. > 0 depends only on Ry, Ra, R3, h,e and the initial data.

We will use the contractive mapping principle to prove this proposition. We first introduce the
function spaces and define the mapping. For any given positive number £y, we define the spaces

Xo={¢| ¢ € C([0,to); H*(M)) N L*(0, to; H*(M)), ¢ is periodic},
X ={v | ve C(0,to); H*(Q)) N L*(0,to; H*(Q)), Vg -0 =0,
v is periodic in z,y, z and even in z},
Y ={T | T € C([0,t0); H*(2)) N L*(0, t0; H*(2)),
T is periodic in z, ¥y, z and odd in z},

and set My, = X x Y. The norms of these function spaces are defined in the natural way.
For any given (v,T) € My,, define a map § : My, — My, as follows

where (U, V,T) is the unique solution to

U — RLIAHU +Vap = A, T), in M x (0, %), (2.8)
Vg -U=0, in M x (0, to), (2.9)
OV + L1V = B(v,T), in Q x (0, ), (2.10)
T —eAuT + LT = E(v,T), in Q x (0,tg), (2.11)
with boundary and initial conditions
U is periodic in = and y, (2.12)
V and T are periodic in x,v, z, (2.13)
V and T are even and odd in z, respectively, (2.14)
(U, V. T)lt=0 = (vo, o, To)- (2.15)

Here the nonlinear operators A(v,T'), B(v,T) and E(v,T) in [2.8)—(2II) are given by
A, T)=—=(©-Vg)o — (0-Vg)o + (Vg -0)0 — fok x v

+Vu <% /_}; /_1T(m,y,§,t)d§dz> , (2.16)
B(o,T) = — (& V)i + </_h Vi T)(az,y,f,t)d§> 0.5 — (8- Vu)v

—(0-Ve)o+(0-Vr)o+ (Vg -0)0 — fok x v
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z h p
Vu ([ e g [ repenas). (217

B, T) = —v-VuT + </_h Vi v(z,0,6, t)d§> <8ZT + %) . (2.18)

For any (v,T) € My,, one can check that A(v,T) is periodic in z,y, B(v,T) is periodic in z,y, 2
and even in z, and E(v,T) is periodic in z,y, z and odd in z. In addition, one has B(v,T) = 0, and
thus by equation (2.I0]), V satisfies

— 1 —
atV—R—AHVZO, in M x (O,to).
1

This implies that V' = 0. One can easily check that, for any given (v,T) € My,

A(u,T) € L2(0, to; H' (M),

B(v,T),E(v,T) € L*(0,to; H*(Q)).
By standard L? theory of linear Stokes equations and parabolic equations, there is a unique solution
(U,V,T) € Xo x X XY to system (2.8)—(2.15]), such that
oU € L*(0,to; HY(M)), 9,V € L?(0,to; H'(Q)), 0;T € L*(0,to; H(Q)).

Recalling that Vg -U =0 and V = 0, it follows that Vg -V = Vg -U + VgV = 0. Combining these
statements, the mapping §, given by (2.7)), is well defined, and it has an extra regularity

OF(V,T) € L2(0, to; H (). (2.19)

One can easily check that

AW, T)+ Bv,T) = — (v-Vi)o + </_h v t)d£> D.v

+VH (/1T(x,y,£,t)d£> — fok xv=:D(v,T),

and that

D(v,T) = A(v,T), B(v,T)=D(v,T) — D(v,T).
As a result, recalling 238)-(@I5) and V =0, (V,T) satisfies
Y + L1V + Vyp(z,y,t) = D(v,T),
ViV =0,
0T —eAyT + LT = E(v,T),
subject to the boundary and initial value conditions
VY and T are periodic in z,y, z,
VY and T are even and odd in z, respectively,
YV, T)t=0 = (vo, Tp).
Therefore, to find a strong solution to system (Z.I)—(2.0)), it suffices to find a fixed point of the
mapping § in My,.
Before continuing our arguments, let’s state and prove the following lemma on differentiation under
the integral sign and integration by parts.
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Lemma 2.1. Let f and g be two spatial periodic functions such that
f € L20,tg; H3(Q)), 0uf € L?(0,tq; H (),
g € L*(0,t; H*(Q)), 09 € L%(0,t0; L*(Q)).
Then it follows that

i/ |Af|2dedydz = —2/ Vo.f - VAfdxdydz,

/ Vo2 f - VAfdedydz = / 0, A f|*dedydz
Q Q
and

i/ |0,ig|*dzdydz = —2/ atgaiigdzndydz,

/@%igaijgdxdydz:/ 10,:0,,3 g|>dxdydz
Q Q

for a.e. t € (0,tg), where x*, 27 € {x,y, z}.

Proof. The idea of proof follows in the similar lines like the proof of a lemma of Lions (see, e.g.,
Lemma 1.2 in page 260 of Temam [21]). We only prove the identities concerning f, those for g can
be done in the same way. By standard regularization, one can easily show that there is a sequence of
smooth functions {f,}, such that f,, is periodic in space variables and

fo—= [ in L2(0,t0; HX(Q)),  Oufu = 0f  in L2(0,t0; ().
Take arbitrary function ¢(t) € C§°((0,%9)). It is obviously that

to
/ ¢ (t) </ |Af|2d:ndydz> dt
0 Q

to
= lim 40 ( / |A fn|2d:ndydz> dt
Q

n—oo 0

to
= —2 lim o(t) </ Aanﬁtfndajdydz> dt
Q

n—oo 0

to

=2 lim o(t) (/ V@tanAfnd:Edydz> dt
Q

n—o0 0

_ / " o) ( / Vo, fVA fd:ndydz) dt,
0 Q

and

/ ! ©(t) < / V% VA fdxdydz> dt
0 Q

to
= lim o(t) (/ V@gianAfndazdydz> dt
Q

n—oo 0

to

= lim ©(t) ( / |8xiAfn|2d:Edydz> dt
Q

n—oo 0
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to
= / o(t) < / \@ciAf]zdxdydz) dt.
0 Q

These identities imply the conclusion. O

Proposition 2.2. Given arbitrary positive number K and time tg, such that K > 1 and 0 <ty <1,
and set B = {(v,T) € MtOH](v,T)HMtO < K}. Then for any (v1,T1), (v2,Ts) € Br, we have

1§ (01, T1) = §(v2, T2) ||y, < CeEty (01 — v2, Tt = T) |,y
where C is a constant depending only on R1, Ro, R3, h and €.

Proof. 1t follows from the Holder and the Sobolev embedding inequalities that

/Q(\D(Ul,Tl) — D(v2, To)|* 4 |V(D(v1, T1) — D(vs, T3))*)dadydz

+ ‘Ul — U2’2‘V2’02‘2 + ’V(Ul — U2)’2(’V’Ul‘2 + ‘V'UQP)
2

+(/ Z viri - mide) + ([ Z V(0 — T
2

i ( / Z |Vv1|d§>2 V(o —w) + ( / Z V(0 — v2>|ds) Vo2

h 2 h 2
+(/ |w1|ds> |v2<v1—v2>|2+(/ |v<v1—v2>|d£) V20, 2
—h h

+(/ Z Vo) (Vo )P + / }; 9201 — ua)

<Ol llool|V (01 = v2) 13 + lo1 = w2l 2 [[V02]l3 + o121V (v1 — va) 3
+ [lor = val 2 V0213 + [V (v1 — w2) 31V 01 [l + [ V02ll7) + V(T = To) |13
+ [ Vurl[§IIV (1 = 02) 2]V (01 = v2)ll6 + IV (01 — v2)[[§] Vwall2 [ Vzlle
+ [ Vurl[§1IV2 (01 = v2)[l2[[VZ (01 = v2)[l6 + IV (01 — v2)[[5] V0212 V2026
+ ([ V20r[|a][ V201 6]V (01 = v2) I + (V2 (01 — v2) 2] V2 (01 = v2) 6] Vvallg

<Cl(llo1llFr2 + llv2llz)lvr = vall7r + o1l lor — vall gz llor — v2l g

2

2 2

|Vvg \2] dxdydz

+ l[vall 2 w2l s llvr = vallFra + llvrll g2 o |l s lor — vallF2
+ [[vall 72 lor = vall g2 llor = vallgs + 1Ty = Tall32)
<Cl(lv1 32 + llvallzr2) o1 = vallg2llor = vallgs + 1T — Tal3a
+ (lorllzllor |l gs + lloall gzllvallzs) lor — v 7] (2.20)

and

/Q(|C(1)17T1) — Clv2, T2)]* + |V(C(v1,T1) — C(v2, Tp))]*)dadydz
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SC/Q [\UlP!V(Tl T2+ o — 02 VT2 + [V 2| V(T — )2

+ ‘V(Ul — Ug)ﬂVTg‘z + ’U1‘2’V2(T1 — Tg)‘2 + ‘Ul — U2’2‘V2T2’2

h 2 2
+ </_h ‘V?)ﬂdf)

V(T — To)]* + </_}; [V (v1 — vz)Wf) (IVT2* +1)
+ </_}; |V2v1|d5>

2
h 2 h 2

+ (/ |VU1|d5> V(T - To))* + (/ |V(v1 — U2)d5> |V2T2|2] dxdydz
h h

2

h
\V(Ty — To)* + </_h |V2(v; — vz)|d£> (IVTa)* + 1)

<C[o1lloo [V (T1 = T3 + llv1 — w2l 2NV T2 ]l + | Vur [[FIV(Ty — T2) |13
+ V(o1 = ) [FIIVTIT + o3V (T = To) |13 + [lor — w22 [ VP T2]3
+ IVl FIV(TL = To) )13 + IV (01 — v2)IFIV T[T + [V (v1 — v2) 3
+ V202 V20u 61V (T2 = T2) I + V2 (01 — v2)I[3
+ [V (01 = v2)l[2] V2 (01 = v2)[[6 [ VT2 + [V (v1 = v2) 5| VT2 |2l VT2 |6
+ [V [[§IVZ(T1 = To) [2IV*(Ty — T2)|6]
<C(JvilF= Ty = TallFz + llvr — vall B2l Tall3 + [lor — vl
+ loall gzllor | s 1Ty = Tall32 + llor = vall g2l — vl gsl| T2l
+ o = val 7 1 Tl 2 | ol s + N[0 |32 170 = Tall g2 |1 Th — Tl ys)
<Cl(lorllFz + I Tell32) (lor = vall g2 llor = vallgs + [Ty = Tallg2 | Ty = Talgs)
+ (lorllzz losll s + | Tall 2 1 Tall s + D (lor = vall3e + 1T3 — T2ll2)-
Setting v = v — vy and T' = T} — Tb, then it follows from (2.20) and (2.21]) that

I(t) :/Q(’D(Ul:Tl) — D(vg, T»)|* + |[V(D(v1, T1) — D(ve, T»))|?)dxdydz

+ / (IC(v1,T1) = C(vg, o) * + [V (C(v1,Th) = C(v2, To))*)dadyd:=
Q
<C(orll g2 llvrll s + o2l 2 llvzll s + 1 Toll 2 | Toll s + V(0] 72 + 1T 1[2)
+ C(llorllFz + llvallzge + 1Tl Ze) TN 2 1T s + ol zz2 [0l a2s)-
Thus, for any (vy,T1), (v, T2) € By, it holds that

to to
/0 1(Hdt <CK (0,7, / (orllzs + oallgs + [ Tall s + 1)t
to
T+ OR2(0,T) |, /0 (Tl s + [0l s )t

to 1/2
1/2
<ORN TR, | [ onls + loalis + [Tl +

(2.21)
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to 1/2
1/2
LR (0, )| 1Y [ 0T + ol

<CEty/*|(0,T)34,, - (2.22)
Setting V =V; — Ve and T = T1 — Ta, then (V,T) satisfies
OV + LV + Vyp(z,y,t) = D(v1, T1) — D(va, Ty), (2.23)
Vu-V=0, (2.24)
WT —eApT + LT = C(v1,Ty) — Clvg, Tp) (2.25)

and boundary and initial conditions

VY and T are periodic in z,y, z,
VY and T are even and odd in z, respectively,
V, T)lt=0 = (0,0).
Recalling (219), it is obviously that 8;V, 9, T € L?(0,to; H*(Q2)). Multiplying (223) and (Z25) by

VY and T, respectively, and summing the resulting equations up, then it follows from integrating by
parts that

1d
2dt

1 1 1
+ | | = IVaVP + 10V + eV T2+—82T2>dxd dz
[ (G TV + VP + elVaTE + o lo.TF ) dudy

(|V]? + [T ?)dzdydz

= /Q[(D(’Ul, Tl) — D(?}g, TQ))V + (C(’Ul, Tl) — C(’Ug, Tg))ﬂdazdydz. (2.26)

Applying the operator V to equations (2.23)), (2.25]) and multiplying the resulting equations by —VAY
and —VAT, respectively, and summing these equations up, then it follows from Lemma 2.1] that

1d
2dt
1 2, 1 2 2, 1 2
+ — |VuAV|® + —|0,AV|* + ¢|VyAT|" + —|0.AT|* |dzedydz
o\ Ry R3

/ AV + |ATP)dzdydz
Q

_ /Q (V(D(01, Ty) — D(ve, To)) VAV + V(C(vy, Ty) — Clvg, To)) VAT dadydz.

Summing this equation with (2.26]) up, and using the Cauchy-Schwarz inequality, one obtains
1d
2 dt

1 1
+/ [—(\VHV!2+!VHAvy2)+—(yazw2+\azAvP)
Q Rl R2

/<|V|2 FIAVE 4 [T + |AT?) dzdudz
Q

1
+e(VaTP + [VaATE) + o (10:TI* + 0:AT %) | dzdyd=
3

:/Q (D01, T1) — D(vs, T))V — V(D(01, T1) — D(vs, T)) VAV
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+ (C(’Ul, Tl) — C(’Ug, Tg))T - V(C(’Ul, T1) — C(’Ug, TQ))VAT] d:Edde
SJ/(|V|2 + [VAVP +|T]? + |[VAT|?)dadydz
Q

+ C/Q(]D(vl,Tl) — D(0s, Ty) + [V(D(01, Ty) — D(va, Ty)) ) dadyd
+C [ (1000 T0) = Cloa )+ V(C(01.Th) = Cloa To)P)odydz
<y [[(VE+ [VAVE + T2 + [VATP)dadydz + CI(2),
where v = min {ﬁ, ﬁ}. On account of ([2.22]), it follows from the above inequality that

to
swmw;+WMm+Auww;+wm#w

0<t<tg
to 1/2
gC/ I(t)ydt < CK’t/|(v, T3,
0

which gives
1/2
1§01, T2) — § (02, T2) 3, < K260, T2,

proving the conclusion. O

Proposition 2.3. There is a positive constant Ky depending only on Ry, R, R3, h,e and (vg,Tp),
such that

15 (v, T) [ ;. < 2Ko,

for any (v, T) with ||(v,T)||pm,. < 2Ko, where t. = min {(4C-Ko)™*,1} and C. is the same constant
as in Proposition [2.2.

Proof. Recalling the definition of §, the L? theory of Stokes equations and linear parabolic equations
provide that there is a constant Ky > 1, depending only on Ry, Ry, R3, h,e and (v, Tp), such that for
any 0 < tg < 1, one has

Hg(ov O)HMtO < Kp.

By the aid of this estimate, applying Proposition 2.2 for any (v,T), with ||(v, T')||a1,. < 2Ky, it holds
that

180, Tl IS0, 0)l| e, + I8 (v, T) = F(0, 0)|a.
<Ko + 2C-Kot/*|| (v, T) || a,.
<Ko+ 4C. K3t/ < 2K,
provided ¢, < min {(4C'€K0)_4, 1}. This completes the proof. O
Now we are ready to give the proof of Proposition 2.1

Proof of Proposition [2.1. Let Ky be the constant stated in Proposition 2.3l By Lemma and
Proposition 23] the mapping defined by (27 satisfies

g . BQKO — B2K07
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1§ (01, T1) = F(v2, To)llme. < 5ll(01 = v2, Ty = T2) | M.
for any (v1,T1), (ve,T2) € Bag,, where
te = min {(4C.Ko) "%, 1}, Bag, = {(v,D)|[|(v,T)|m,. < 2Ko}-
By the contraction mapping principle, there is a unique fixed point (v,7") for § in Bog,. This fixed

point of § is a strong solution to system (ZI)-(26). The regularities dyv, T € L%(0,t.; H ()
follow from (2.19]), completing the proof of Proposition 2.1 O

3. THE SYSTEM WITH ONLY VERTICAL DIFFUSION
In this section, we prove the local existence and uniqueness of strong solution to system (I6])—

(L22), or equivalently system (L23)—(L28]). The existence is obtained by taking the limit ¢ — 0 of

the solutions (ve, T:) to system (2.1)—(2.6]).
We first establish the uniform in € lower bounds of the existence times and the estimates on (v., T7).

In fact, we have the following;:

Proposition 3.1. There is a positive constant Ko and a positive time t), depending only on Ry, Ro, R3, h
and (vo,Ty), such that system (21)-(2.6) has a solution (ve,T:) in Q x (0,t)) with

£
S ([vellFre + 17201 72) +/ ENVET:N2 + 10:Tel e + IVvelF2)dt < K
<t<t} 0

and "
| 0 + 10T et < 1
where K is a positive constant depending only on Ry, Ra, Rs, h and (vg,Tp).
Proof. Let t} be the maximal existence time of strong solution (ve,7%) to system (2.J)—(2.6]). Multi-
plying (2.1) by v. and integrating over 2 yields

1d 9 1 5 1 N
2dt/§2|ve| al:ndyalz—l—/Q <R1|VHU€| + R2|8ZU€| >d:ndydz

:/ Vi </ T€d£> vedadydz.
Q —h

Applying the operator V to (2Z.I]), multiplying the resulting equation by —VAv,, summing them up
and integrating over ), then it follows from Lemma 2] (recall the regularities of (v, 7)) that

1d 1 1
—— | |Av.|Pdzdyd — |VyAu]? + =8, Av.|? | dadyd
2dt/9‘ Ve | xyz—k/ﬂ(Rl] 1AV +R2\ Ve rdydz

:/ v |:(’UE -V H)ve — </Z Vg - vgd§> 0,0: — (/Z VHT€d§>] VAv.drdydz.
Q —h —h

Summing the above equation with the previous one up, and using the Holder, Sobolev, Poincaré and
Cauchy inequalities, we have

1d
24dt Jo,
1 1
+/ —(|VHU€|2 + |VHA’U5|2) + —(|82v5|2 + |62Av5|2) dzrdydz
o Ll Ry

(‘Ua’2 + ‘A%P)dxdydz



14 CHONGSHENG CAO, JINKAI LI, AND EDRISS S. TITI

:/Q {VH </_ZhT€d§> ve +V [(va -VE)ve — (/_h V- vad§> 02 0¢

— </Z VHTE(a;,y,f,t)d§>] VAUa} dxdydz
—h

h
<CIVLfalecle+C [ [mnvw Vel + ( /[ |v2v€|ds) 9,02

h h
- ( / |Vv€|d§> (V20| + ( / |V2T€|d£>] |V Av, |dzdydz
—h —h

<o [ [VAuPdudyds + CITT. ool +C [ [josPI720. 2 + Vol
Q Q

+ </_};’Vzva\d2>2!8zva!2 + (/_Z\an!dz)Q\v%aP + (/_};\V2Ta\dz>2]dxdydz
<o [ VAP dedydz -+ CITT.fallela + (o EIV20e o[ 920 o

Il 4 920l g8t 2 + [0 B9 0 | + [V 213)
SU/Q |V Av.|?dzdydz + C||VTe||2|vel|2 + C(”%H%p 1920, |2 |V A |2

+ llvellze + lvel3 [V Avell2 + [V2T23)

§2a/ IV Av. Pdadydz + C(1+ o] + [ T]62),
Q

. _ . 1 1
with ¢ = min {m, m}, and thus we have

t
sup [lol% + / IV 0 2pads
0<s<t 0

t
<Cllunlfye +C [ (14 T + ol ds
0

for any 0 <t < ¢}.
Multiplying equation (2.2)) by 7., then it follows from integrating by parts that

1 1
—i/ |T. |2dxdydz + / <€\VHTE]2 + —]ZLT&F) dxdydz
2dt Jq Q Rs3

1 z
:E/ (/ V- Uad§> Tedxdydz < C||Tz||2]|Vvel|2-
Q h

Recalling the Gagliado-Nirenberg inequality of the form
1flee < CIFISZISIHE,  VF € HY(Q),Q C R,
it follows from the Hélder, Sobolev and Poincaré inequalities that
1/2 1/2 1/2
10:T: oo <CIO:T 15 (IV20: 211y + 0.7 1")

1/2 1/2 1/2
<C|IATLY (|20 1215 + 0.7 Y?)

(3.2)

(3.4)
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and
1/2 1/2 1/2
IVeelloo <CIVells™ (1720 12" + 1V ee ")
1/2 1/2 1/2 1/2
<ONVZ0. |y VP 0lly* = CllAvlly* |V Av ). (3.5)
Applying the operator V to equation (2.3 and multiplying the resulting equation by —VAT, and

integrating over €, then it follows from Lemma 2] (recall the regularities of (ve,7%)), 4), B35,
the Holder, Soblolev Poincaré and Cauchy-Schwarz inequalities that

2dt/ |AT| d:z:dydz+/ <€|VHAT€|2+RLS|8ZAT€|2> dxdydz

:/ A K/ VH'v€d£> <8ZT6 + l> (ve - V)T, ] AT.dxdydz
Q —h h
:/Q (/_h AVy - ved£> <8ZTE + %) + 2 </_h VVyg- ved£> Vo,T,

— (Av. - V)T — 2V, - VHVTE} AT.dxdydz

- .
:/ (/ AV - v€d£> <8ZT€ + E) — (Av. - V)T — 2V, - VHVTg] AT.dxdydz
QL\J-nr

— 2/Q [VVH -0 VT AT, + (/Zh VVy- v€d£> VTeAazTg] dxdydz
<C(|AVVE 20T | AT ll2 + |AV V|2 AT: 2 + | Ave 5]V T 16| ATz |2
1V oo | V2T + 920 [5| Te 6| AT 12 + V20|13 VT2 I5l] A8: T2 |2)
<C|IV A2 ATy 2 (1A0.T 5 + 110721y I ATz 2 + | AV 2| ATl
A0 521V Ave 52 AT + 1 Ave |32V Ave 3 * AT o] AD Tz 12
<o(|AB T3 + [IVAVE][3) + Co (1 + [Joellfz + I1T2]1572), (3.6)

where ¢ is a sufficiently small positive constant.
Combining ([B.3) with (3.6]), it follows that

t
sup |1 Tel%e + / VT3 + 10-T |2 )ds
0<s<t 0

t t
<O|[To|%e + o / IV Ave|Zds + C, / (L4 T3 + [foel2e)Pds,
0 0

with a sufficiently small positive constant o, for any 0 < ¢ < t%. This, combined with (8.2]), implies

t
Sup, (lvellzzz + I Tl1772) + /0 NV HT e + 110:T: |72 + [ Vve | F2)ds

s<

<C(l[oollps + | Toll22) + C / (L4 T + [foc] ) Pds
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for any 0 <t < tf. Set
ft) = 02‘;25””6“%2 Tl +1) + /Ot(e||VHT€H§{2 +0:Te |32 + [ Vve | 72 )ds
for t € [0,t%). Then one has
f(t) < CCy+ 0/ 5))3ds, teo,t), (3.7)

where Cy = [[vo||3,2 + [|To|F2- Set F(¢ fo 3)ds + 1, then by ([B.7) one has
F'(t) = (f(t)) < Cl(F(t))?’a vt € [0,t7),

where C] is a positive constant depending only on Ry, Ry, R, h and (vg, Tp). This inequality implies
1

F(t) < ﬁ)’

1
Yt elo,t)Nn]o,
S Aosoi 0,¢2) N

and thus

t
s (ol + T3 + | I H T+ 10T e + 1 vely)ds
SSS 0

C
v1—-2C4t

for any t € [0,t*) N [0, 7% 17 )- Recalling that ¢7 is the maximal existence time, the above inequality

<CCy+ CF(t) < CCy + C(Co+ V2),

implies ¢7 > ﬁ, and thus, we can choose t; = E’ and

t*
oup. (el + 1) + / Va2

0<s<
+10:Te |32 + | Vvell32)ds < C(Co+ V2). (3.8)

We still need to establish estimates on 0;v. and 9;T;. The estimates on 9,7, follow from equation
(23)), the estimates ([3.8) and the Sobolev embedding inequality as follows

tS 2 ta 2 2 2 2
[P0t <c [ (102203 + elAuT + lo. - VaTI,
0 0

z 1 2
+ H/ Vi - v€d£<62T€ + —> >dt
o )|

128
<c [ (Haznu%p VAT e + el (VT2 20 + 1)
0

2
Jat
2

28
<c / 0.T2lPpe + eV E Tl + lve 2o IV T2l + 1)
0

+ H/ ViV - 0de(0.TL] + 1)
—h

+ (10: T3 + DIIV0e|3ldt
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)
SC/ 10Tl 72 + el VaTelzge + lvell s (1TelZ2 + 1) + 10:TellZ2 ve 1721t
0

<C(Co+ V2)2(t§ + 1).

For the estimates on Oy, we split v. as v. = 0. + U. (recall the definitions of gz~5 and ¢ in the
Introduction). Then 7. and . satisfy system (see e.g. Cao and Titi [3])

00 — - Ane + (0 - Vi) oe + (Te - Vi )oe + (Vi - 0)0e + fok X 0
Vi (pol,9,6) = 5 S0 J20 Ty, €, dgdz) =0,
V- -v:=0,
Oute + Late + (0 - Via)oe — (7, Vi - 02, , €, 0)d€) 0.0 + (5. - Vg
(Vs - V)0 = (Ve - Vi )0z + (Vi - 02)0: + fok X 0c
Vi (7 T, 6,008 = 3 [, [, Te(w,y,€, Hydgdz) = 0. (3.9)

Thanks to the estimates (3.8), we can apply the L? theory of Stokes equations and the Sobolev
embedding inequality to deduce

2 15
/0 100 (| 71 (apydt < C/O <HAH56||§{1(M) + 1% - Va1 0y + 1106 - Va7 )

2
)dt
H' (M)

2
<c / (V0120 + 02 [Vl + [0 2o + T2 )t

h z
T sy + W0l + |V [ [ Tteas
—h J—h

to
SC/ (IVellr2 + llvegallve 2 + llvs I3 + T2l )dt < O(Co + V2) (85 + 1),

0

and similarily, it follows from equation (3.9]) and the Sobolev embedding inequality that
to
/0 1042 |2dt < C(Co + V2 (8 + 1).
Therefore, one obtains
£ to
| 100t <. [ (1000 B + 1000 sy < CCo+ VDR + ).

This completes the proof. O

We will use the following lemma to prove the uniqueness.

Lemma 3.1. The following inequalities hold true

‘/M </_}; f(x,y,z)dz) </_Zg(x,y,z)h(x,y,z)dz> da;dy‘

<CUA (1157 + 1V 152 Dgllz 1015 (1005 + 1V ahl5?)
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h h
([ faais) ([ o to)az ) doay
M —h —h
<Clfllallgls”® (gl + 1V aglls”®) Il (10115 + 19 snl5)

Proof. The proof can be established in the same way as in Proposition 2.2 of [4], and thus it is omitted
here. O

and

We also need the following version of the Aubin-Lions lemma.

Lemma 3.2. (Aubin-Lions Lemma, See Simon [20] Corollary 4) Assume that X, B and'Y are three
Banach spaces, with X —<— B — Y. Then it holds that

(i) If F is a bounded subset of LP(0,T; X) where 1 < p < oo, and %—f = {%U’ € F} s bounded in
LY0,T;Y), then F is relatively compact in LP(0,T; B);

(ii) If F is bounded in L*>°(0,T;X) and %—IZ is bounded in L"(0,T;Y) where r > 1, then F is
relatively compact in C([0,T]; B).
Proposition 3.2. Let vy and Ty € H?(Q) be two periodic functions, such that they are even and odd
in z, respectively. Then system (I.16)-(1.22) has a unique strong solution (v,T') in Q x (0,t;), such
that

(v,T) € L®(0,t5; H*(2)) N C([0, t5); H' (), (Vv,8.T) € L*(0,t5; H?(2)
and
(0w, 0 T) € L*(0,t5; H' (),

where t§; is the same positive time stated in Proposition [3.1l

Moreover, the strong solutions are continuously dependent on the initial data, in other words, for
any two strong solutions (v1,Th) and (ve,Ts) to system (L16)-(122) on Q x (0,ty), with initial data
(v10, T10) and (vag, Tg), respectively, it holds that

to 4 4
sup (ol + | T5) < Ce "l WL fug | + | 7o) ).
=>to

with (vo, To) = (vio — vao, T10, To0)-
Proof. By Proposition B], for any given ¢ > 0, system (ZI)-(2:6) has a solution (v., 1) in Q x (0, )
such that
£
sup (J|oe ()52 + |1 T=(t) 1) +/ ENVaT T + 10Tl 72 + [ Voel72)dt < K
0<t<ty 0
and "
0
[ ol + 10T e < K,
0
where K is a constant which is independent of e. On account of these estimates, by Lemma [3.2] there
is a subsequence of (ve,,T:;) and (v,T'), such that
(Ut'fj?TEj) - (U7T)7 in C([OvtO];Hl(Q))a
ve; v, in L*(0,t0; H*(2)), 9.T:; — d.v,  in L*(0,t0; H'(Q)),
(ve;, Tz;) = (v,T),  in L°(0,t0; H*(2)),
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ve, = v, in L2(0,t0; H3(Q)), 0.T., = 0.T,  in L*(0,t0; H*(V)),
(Byve,;, O T:,;) — (O, 0,T),  in L*(0,t0; H'(2)),

where — and —* are the weak and weak-* convergence, respectively. Due to these convergence,
one can take the limit €; — 0 to see that (v,T') is a strong solution to the system (I[23)-(T28]), or
equivalently system (LI6)—(L22]). The regularities of (v,T) follow from the uniform, in e, estimates
on (ve;,T:;) stated above and the weakly lower semi-continuity of the norms.

We now prove the continuous dependence on the initial data and the uniqueness of strong solutions.
Let (v1,T1) and (ve,T%) be two strong solutions to system (LI6)-(T22]) in ©Q x (0,%y), with initial
data (v19,T10) and (veg, Tho), respectively. Set v = v; —ve and T' = T} — T,. One can easily check
that (v, T) satisfies the following system

O+ Liv+ (v1 - Vy)v+ (v-Vig)vg — (ffh V- v1d§) 0, — (f_zh V- fudf) 0,9

+f0k XU+ vas(x7y7t) —Vu (f_zh T($7y7£7t)d£) =0, (310)
Vg-v=0,
OT + LyT + vy - VT +v- YTy — (5, Vi - v1d) 0.7
- (ffh Vi - vdf) (0T +4) =0 (3.11)

and the boundary and initial conditions

v and T are periodic in z, v, z,
v and T are even and odd in z, respectively,
(v, T)|t=0 = (vo, Tp)-

Multiplying (B.I0) by v and integrating by parts (recalling the regularities of v that we have just
proved) yield

1d 9 1 5 1 )
2dt/9|v| dxdydz—l—/Q <R1|VHU| + R2|azv| >dxdydz

:/Q{K/_ZVH'M&) azv2_(v.vH)U2]v_ </_1ng> VH'U} drdydz.  (3.12)

By Lemma [B1] and using Cauchy’s inequality, we have the following estimates

z h h
/ </ V- Ud§> 0,09 - vdxdydz| < / </ \VHU\dz> </ ’az’l)QH’U’dZ> dxdy
Q \J-h M \J-h —h

1/2 1/2 1/2 1/2 1/2 1/2
<C||V gollal|0zva 1y > (100215 + IV 00213 ) [0ls > (lolly + 1V aoll )

1/2 3/2
<Cllval g2 ([0l IV mrv ]l + [0lly 21V ar0l|3?) < o[V rrvll3 + Co(1 + [zl 42)[[0]13,

with a sufficiently small positive constant o. Noticing that |va(z)| < 5 fh |va(2)|dz + ffh |0,v2|dz,
applying Lemma [3.1] again and using the Cauchy-Schwarz inequality, we then obtain

/(v -V i)ve - vdrdydz
Q
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=— / Vi -vvg v+ (v Vi) -vldedydz < / |V gol|v||ve|dedydz
Q

<0/ </ (Jvs] + |8s])d ) (/_h |VHU||v|dz> dady

<C|0,vally > (0: 021y + [V 5z vally ) IV srollal|vlly> (olly? + 1V arolly)
+ Clloally 2 (loally”? + 1V o2y IV arollallolly> (olly”> + [V aolly)
1/2 3/2
ool g2 ([oll2 IV aroll2 + [0ll5 21V moll3?) < oIV aroll3 + Co(1 + oalli2) 0113,

with a sufficiently small positive constant o. Substituting these inequalities into ([3.12]) implies

d 2 1 o 1 2
— dxdyd — —10, dxdyd
dt/ﬂ]v[ a;yz—l—/Q<R1\VHfu] +R2\8U\> xdydz
<O+ Jloallg2) (lol3 + I1T13)- (3.13)

Multiplying (3I1]) by 7" and integrating by parts (recalling the regularities of 7' that have just been
proved) yield

1
T — T|?
2dt/| ?dzdydz + s /|8 |“dxdydz

__ /Q [U T — ( /_ Vi vd£> (azTg + %)] Tdrdyd:. (3.14)

Note that [T'(z)| < 5= ffh |T(z)|dz + ffh |0,T|dz, we can apply Lemma [3.1] and using the Cauchy-
Schwarz inequality to deduce

/ v - VyTyTdxdydz
Q

<[ (] RO oriz) ([ ' oIV Teldz) sy

<C(ITll2 + 0:TlI)lolly* (lolly + [V vlly?)
< [VaTelly 2 (IV e Tl + V3Tl )
C(ITll2 + 18:Tll2) (lollz + Iolly 1V rolly )| T2 | 2
<o(l0-TI13 + IVavl3) + Co (1 + 1 Tall32) (I0I3 + 1T113),
and integration by parts yields

</ Vi- Ud§> 0, Ty Tdxdydz
Q \J-n

—/ [VH T T + </ V- vd£> Tg@zT] dxdydz
Q —h
<0|0.T|3 + Co(1 + | T2)2)(ITII5 + [V av]3)

<0 0:T3 + Co (1 + | T2l7) (ITN3 + [V vll3),
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with a sufficiently small positive constant o. Substituting these estimates into (3.I4]), one has

d 1
— [ |TPdedydz + — [ |0.Tdzdyd
% [ 1rPasdyds + - [ (0.1 dodyis
<SCA+ T2l IV rvl3 + CQ+ T2l g) (I0lI3 + 1713). (3.15)
Since (vg,T») is a strong solution in Q x (0,), it satisfies

sup ([[vz]l72 + [ T2l72) < 0.
0<t<to

Multiplying inequality (BI3]) by a sufficiently large positive number «, and summing the resulting
inequality with (B.I5]), one reaches

dt
By the Gronwall inequality, it follows from this inequality that

d
— /Q(Oélvl2 +|T?)dadydz < C(1+ ||vallzz + [ T2l zg) (0113 + I T1I3)-

to 4 4
sup ([[oll3 + I1T) < CeC Jo" At T2 )2t 11y 12 4 || T |13).
SUX00

This proves the continuous dependence of the initial data. In particular, if (vig,T10) = (v20,720),
then (v,T) = (0,0), i.e. (v1,71) = (ve,T3), proving the uniqueness. This completes the proof. O

4. GLOBAL EXISTENCE OF STRONG SOLUTIONS

In this section, we show that the local strong solution obtained in section Bl can be extended to be
a global one. That is, we give below the proof of Theorem [T11

Proof of Theorem [1.1l. By Proposition 3.2 there is a unique strong solution (v,T") to system

(CI6)-(T22) on £ x (0,t5) such that
£
sup (| T[I32 + [lv]|2) +/ (IVo|| %2 + |0.T||%2)dt < C. (4.1)
0<t<ts 0

Set u = 9,v and define functions n and 6
n = Vg-u=0u®— dut (4.2)
0 = Vg -u+RT=0u"+ ayu2 + RiT.
By Proposition (53] (see the Appendix section below), one has
t
OSSgl;t[SQ(IIU(S)Iliﬂ +10()|72)] +/0 s*(In(s)l1 s
+10() 1 + 100 () |17 + 10:0(5) |7 )ds < K1) (4.4)

for all ¢t € [0, 5], where K3(t) is a bounded function on [0, ¢§].

We consider the strong solution (v, T") on the maximal interval of existence (0, 7). We are going to
prove that T* = oo. Suppose that T* < co. Thanks to the regularity properties stated in Proposition
(.3l and Proposition 5.4 below we define, for any t € (0,7%),

X(t) = 14 |VaAao®)|3+ CrlAaT®)|3 + CrlIVHO.T(1)[5
HAgn®)|3 + Vadn®)|3 + 186013 + Vro-6(1)]3
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1AL + [AROT W3 + IVa 2T @)1 + IV Aun(t)]3
HAgdn®)|3 + IVaAudt)|3 + |And-0(t)|3,
Z(t) = logX(t),

2R% (Rl +R2)(R2 —R3)2
R%Rs

Y(#)

where Cr =

ax _
5 T Y =Clll2(IVavllaan + 1T o + lInllz + (101 1) & log X

+ [T+ IT% + 1013 + 19131 + [[olF0) + (1 + 10:ull3) ] 0- 7
+( A+ Il zn + @+ 101210117 ] X + Ul 1Vl
+ 10131V HOlI3 + I T1I5 + 10-ull3]|V 1 0:ul3)

. Therefore, it follows (see (122) in [6])

and
dz _
o SOV EOlm oy + 1 Tlloo + Il + 0] 72) 2
+ [L+ IT5% + 10T 13 + 19131 + [[olF0) + (1 + 10:ull) ] 0- 7
+( A+ D) nlzn + @+ 1013 16117:]
for any ¢t € (0,77).
Recalling (A1) and the definitions of 1,6 in ([4.2)) and ([@3)), it follows from (4.6]) that
dz
— SC(U+ [ll)Z + C+ lollgs), ¥t € (0,0),
and thus
d o 2 dZ
—(t°Z =t"— 4+ 2t Z(t
Lwez) = 22 Lz
SCA+|ullf)?2() + CA + |fulFa )t + 2t2(t)

(4.7)

for t € (0,t5). Thanks to (A1) and (44]), it holds that fga tX(t)dt < C, and thus, noticing that

X > 1, we have

t t t
/ " 12 (t)dt = / " Hog(X(1))dt < C / "Xt < C.
0 0 0
Combing the above with (A7) gives

t
22(t) < CeC o OHIvlEs)ds / [(1+ [[0]13s)s? + 2sZ(t)]ds < C,
0

for any ¢ € (0,t). Recalling the definitions of X and Z, the above inequality implies
sup X(t) <C.
Py
Thanks to the estimates (59), (69), (91), (103) and (113) in [6], one has

sup ([0l + IT135 + IV 0]13 + [10:ul3 + [Inl3 + 11013)
0<t<T™*

T*
+/0 (IVoll3 + 10:-T(13 + 1Az 0[I3 + [IVOull3 + [IV9]3 + [ VOl3)dt < C,
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and consequently, we have

t
/0 1ol IV a1 oty + [ Tllso + il + 8]z )ds < C.
and
t
/0 IITIL + 18712 + [913(1 + [3]2) + (1 + [0-ul2)10sul%

L+ [l + @+ 10110117 ] ds < C,
for any t € (0,7%). By the aid of these two inequalities, using (4.8]), it follows from (4.6]) that

sup  Z(t) <C.
14 /2<t<T™
Thus by (4£5]) we have
T*
sup  X(t) + Y(t)dt < C. (4.10)
15 /2<t<T* t5/2

It is clear that Lo g
v(z,y,z,t) =v(z,y,t) + /), /Z/ Ov(z,y, & t)deds
and thus, it follows from elliptic estimates and Poincaré’s inequality that
IV Voll3 = VH[ + [V rd.ol3 = [VH0[3 + Vel
<C|IVHlI3 + [IVul3 + IV rul3)
<C|AmD3+ IVa(Vi - w5+ IVa(Va - w)l3 + Vi - ull3 + [V - ull3)
<C(IVuAwll3 + IV enl3 + IV abll3 + IV a T3 + I3 + 1613 + I T13)
<C(IVuAnl3 + [V Vunl3 + IVVEb|3 + VVaT|3 + [nl3 + 16115+ |1T13)
<C(IVuAmolz + [Amn|3 + [ Abl3 + |ART(S + IV adanll + IV H0-6]3
+[IVHd T3+ |lnll3 + 11612 + |1 T13)
<C(X () + [[nll3 + 1613 + |1 T13)
and
IV VI3 = VE0-0l3 + [ VEvl3 = IViull3 + [ VEll3
<C(IVuVp -ull3 + VeV -l + [VEO3 + [ VEull3)
<C(IVunlls + IV b3 + IVaTl3 + IVuAo|3 + IV Ve -ul3 + V3V - ull3)
<C(IVunll3 + IV ubl3 + IVa VTS + VA0 |3 + Vil + IVEO3 + IVET3)
<C(IVunll3 + IVubl3 + IV a0 Tl + [V Av|3 + | Aunl3 + A3 + |AuT|3)
SC(X(@) + [Vamll3 + 1V 1013)-

Combining these two estimates it follows from (£9]) and (4.10]) that
T*

sup  [o(®)]%e + / IV30(t) |3t
t /2<t<T t /2
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T*
< suwp wm@+u£m@+uvva@»+c/’<HW@&m%vﬂvwam
t5/2<t<T* t5/2

=C sup _ (Joll3 + [10-ull3 + X (&) + [nll3 + 1013 + I T13)

ty/2<t<T*
T*
. (IV0zull3 + X (&) + IV anll3 + | Vab]3)dt < C,
t5/2
and thus
T*
swp ol + [ Jolfuat < (4.11)
£ /2<t<T™ t5/2
Thanks to (£.9), (410 and using the Poincaré inequality, it follows that
T*
sup (T8 + IVaTli) + [ (10TI5 + 0.V ) < . (1.12)
t5/2<t<T* t5/2

Applying the operator 9, to (L25) and multiplying the resulting equation by —d2T, then it follows
after integrating by parts and using Lemma 2.1] that

1d 912 1 -
—_— T L T
Q

—2(Vpg - v)@fT) O*Tdxdydz

<C(|0203IV 5T ll6 + 10:0lloo ||V 10T |12 + [10:V rr0]|3[10:T 6
+ 10:Vavll2 + IV a0l 07T [|2) 10T |12
<C([oll g IV a VT |2 + 0]l 53]V T2 + [[vll a2) 02T
<C([ollgs IV u Tl gr + 1ol g3 18T ll2 + [[oll z2) 182T |12
<Clollgs(IVuT| gt + 1) + Cllv]| gs[|OZT15.
By the aid of ([@.1]), (11]) and (@12, it follows from the above inequality that

T*
mpn@ﬂ@+/’n$Tﬁﬁ
0<t<T* 0

- t
<Celo Ml <||5§To||§ +/ [0/l s (1 + ||VHT||§12)dS> <C. (4.13)
0
Combining ([@.1]) with (£I1)-@I3]), we obtain
T*
sup (Jolfys + IT1) + [ (lolBys + 171)dt < C.
0<t<T* 0
As a result, we apply Proposition to extend the strong solution (v,T") beyond T*, contradicting

to the fact that T™ is a finite maximal time of existence. This contradiction implies that T = oo,
and this completes the proof. O
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5. APPENDIX: REGULARITIES

In this appendix, we justify some necessary regularities used in the previous section, section @l Let
(v, T) be a strong solution to system (L23)-(T28)) in Q x (0,ty) with 0 < ty < oo. For any ¢ € [0, tp),
we set

t
Ko(t) = sup (ol +171e) + [ (10l + 10T ).
>85>

Recall the definition of the functions u,n, 8 and ¢
u = 0,v, ¢ = 0.u,
n=Vg- u=0u* - dul, (5.1)
0=V -u+RT=0du"+ ayu2 + RT.

We are going to study the regularities of u, (,n,0 and v.

For convenience, we also use the notation x = (z', 22, 23) to denote the spacial variables, that is

using 2!, 22 and 3 to replace z,y and z, respectively. We will use both x and (z,v, 2) to denote the
spacial variables. Set e; = (1,0,0), ea = (0,1,0) and e3 = (0,0,1). For any spatial periodic function
f and [ # 0, we define the difference quotient operators 67,7 = 1,2, 3 as follows

; 1
01 f(x) = 7 (flx +lei) = f(x)).
Since we will use 513 more frequently than 5},@' = 1,2, we will often use ¢; instead of 513.
Straightforward calculations show, for any periodic functions f and g, that
01,61, = 01,01,, V=464V,
0 = =y, e fQ 6 fgdx = — fQ fo_igdx,

a(fg) = forg+ g(- + les)dr f,
160fllp < ClOfllp, V€ wWir(Q),1 <p < oo,

where 6} stands for the adjoint operator of &, and C is an absolute constant. The operators §},i = 1,2
have the same properties as those of 9;.

Lemma 5.1. Suppose that the spatial periodic function f satisfies
t
sup (s*161718) + [ sV 3t < (o)
0<s<t 0
for any t € (0,ty) and for any 0 < |I] < 1, where K(t) is a bounded increasing function on (0,tp).
Then
t
sup (10,13 + [ sHIV0ufIar < K0,

0<s<t

for any t € (0,tp).
Proof. Set g = s*/2f then

t
sup |6ig]3 + / IVsigl3de < K (1),
0<s<t 0
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for any t € (0,tg). Given t € (0,%p), using the sequentially weak compactness of closed balls in L?(Q)
and L2(Q x (0,t)), any sequence l,, with I, — 0 as n — oo has a subsequence, still denoted by I,,,
such that
5;ng('7t) - <I>7 in L2(Q)7

and

6 Vg — W, in L*(Q x (0,1)).
Using the properties of 5; stated above, for any two spatial periodic functions ¢ € C*(R3) and
1 € C*®(R3 x [0,1]), one has

/Q 61, g(-, t)pix = — /Q g0 )8, ddx - — /Q o )0 ddx

t t t
/ /5lianl/1dxds: —/ /Vg&i_lnwdxds% —/ /Vg(‘)ﬂ/;dxds,
0 Jo 0 Jo 0 JQ

On the other hand, the weak convergence of §; g(-,t) and §; Vg in L?(Q) and L?(Q x (0,t)), respec-
tively, implies

and

/5an(',t)¢dx—>/<1>¢dx,
Q Q
¢ ¢
/ /5angi/)dxds—>/ /\IJT,Z)dXdS.
0 JQ 0 JQ
Therefore, we have

/Q<I>¢dx: —/Qg(',t)&-qﬁdx, /Ot/ﬂ\lfzbdxds: —/Ot/gvgwdxds,

® = ai.g('7t)7 U= 82V.g
Combing the above statements, we have proven that for any sequence [,, with [, — 0, it has a
subsequence, still denoted by [,,, such that

5llng(7t) - Zg(7t)7 in L2(9)7

and

which imply

and

§; Vg — 9;Vg, in L*(Q x (0,1)).
Thanks to the above two weak convergence, using the weakly lower semi-continuity of the norms and
by assumption, we have

t t
0wl + [ lovalgds < lim (If,a013 + [ 10, Valkas) < Ko
which, recalling the definition of g, gives
t
0 £ (DI + /0 SH0,V £ 2ds < K (2),

for any t € (0,t9). The conclusion follows from taking the supremum with respect to time ¢. This
completes the proof. O

We first consider the regularities of u, that is the following proposition.
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Proposition 5.1. Let (v,T) be a strong solution to system (1.23)-(1.28) in Q x (0,ty) and set
u = 0,v. Then
Viu € L®(0,to; H*(Q)) N L*(0,to; H(Y)),  Vtdyu € L*(0,t0; H'(2))
and

t
sup (sllul%e) + / sl + 19rul%)ds < Ka ()
0<s<t 0

for any t € (0,tg), where K1(t) is a bounded increasing function on (0,1p).

Proof. Strong solution (v, T) has the following regularity properties v € L?(0,to; H3(Q2)) and dyv €
L2(0,t9; H'(£2)). One can differentiate equation (L23)) with respect to 2 to derive

ou+ Liu+ (v-Vg)u— (f_zh V- fu(az,y,f,t)dg) o,u
+(u-Vg)v— (Vg -v)u+ fok xu—-VgT =0. (5.3)

Note that dyu € L?(0,t0; L*(Q)) and u € L*(0,to; H*(Q)). Multiplying the above equation by
—0;0;Au and applying Lemma 2] it follows from the Sobolev embedding inequality and the Cauchy-
Schwarz inequality that

1d 1 1
—— 1 2d —1é 24 —60.Vu? ) d
2dt/9‘ 1Vl x—i—/ﬂ(Rl\ Vi Vu| +R2! 10 Vu\) X

= / [(w-Vg)v— (Vg -v)u—VuT]é o Audx
Q

4—/Q [(v -Vg)u— </_Zh V- v(x,y,{,t)d&) 824 8/ 0 Audx

:/ 0l(u-Vg)v— (Vg -v)u — VyT]oAudx
Q
+ / [(511) -Vp)u(x +les, t) — 0 </ V- vd£> dyu(x + leg,t)} 0 Audx
Q —h

+/ [(v -Vug)u— </Z Vg - v(a:,y,{,t)d§> 8Z51u} O Audx
Q —h

= /Q l(u-Vg)v— (Vg -v)u — VyT]|dAudx

(v - Vi)u(x + les, t) — </ Vg vd{) du(x + leg,t)} 0 Audx
—h

(Vu-Vg)iu— </ VVy- v(x,y,f,t)d{) 8Z51u} o Vudx
—h

(v-Vg)oVu— </ Vi - v(:z:,y,&,t)dﬁ) 8Z<5qu} 0;Vudx
—h

= [ Ol(u-Va)v — (Vg -v)u — VuT]6Audx
Q

+ / {(511) -Vi)u(x +les, t) — </ Vg vd{) du(x + leg,t)} 01 Audx
Q —h
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—/ [(Vfu -Vg)u— </Z VVg- v(x,y,f,t)d{) 82514 o Vudx
Q

—h
<Cl&[(u- Vi) = (Vi - v)u]|2[6Aullz + Cl|6V £ T|2]| 6 Aull2

5l</ vH.Udg> |]82uH2>H(51AuH2
_h o

+ C([Vllo |0 Vull3 + V20|36 V2|6 Vull6)
<C|0:[(u-Va)v = (Vi - v)u]|2]|6iAullz + C||0-V uT||2]| 61 Aull

—h 0o

+ C([VllsollorVull3 + V20316 Vull2]| 6V ul|2)

" c(|rawuoo|rvHu|rz n

" (kuoarvHuuz "

1/2
<c [ [ awupivo + \umv%ﬂdx} 16 Auls + CIV T2 6 Aulls
Q

+ C(llvll s llvll 2 |0 Aullz + ol s 16V ull3 + o]l s 116 Vull2 |6V 2ull2)
<C(IVollsoVullz + l[ulloo [ VZvll2 + [IV2T|2) |6 Aull2

+ C(llvll s lloll 2 |0 Aullz + ol s 16V ull3 + o]l g 116 Vullz |6V *ull2)
<C(lvllg2llvllgs + [Tl g2)ll0iAull2 + Cl[vl g [[vll g2 |61 Aull2

+ ol sl 6V ul3 + ol s 16 Vall2]| 6V ull2)
<o||aV?ul3 + Co (1 + lollza) (10 Vul3 + [0l + I T1172),

with a sufficiently small positive constant o, and thus
d 1
all&VUII% + EH&V%II% <O+ [[oll3) 18V ull3 + [[olF + 1T (1)
with R = R; 4+ R, from which we obtain
d 1
E(tHcSquH% + Et\|5lv2u||%
<O+ [0l F)t10Vull3 + [olF + 1T F2) + 6 Va3

)

)
<CA+|ullg)tlavul3 + vlFe + I1T172) + Cl0:Vull3
<C(+ |lollza) oV ull3 + O+ [ollz) (lollzz + 1T 172) (¢ + 1)

Integrating this inequality with respect to t and applying Lemma[5.1], we obtain v/t0.u € L>°(0, to; H*(Q2))N
L2(0,t9; H?(2)) and

¢
sup (SHV@ZUH%)—F/ 3HV282uH%ds
0<s<t 0

+ t
<Ce@ lo (M )ds /0 (L+ [l ) (oliFre + 1T 132) (s + )ds

<CeCUHRO) (Ko (8)t + K2(1))(t + 1),
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and therefore

t
sup (slull) + [ slo.ulfeds < Ki (o) (5.4
0<s<t 0

for all t € (0,1o).
Set
fl(xuyuzat):_(v'vH)u—'_ </ vHv(xayué-?t)dg) 82”
—h

—(u-Vg)v+ (Vg -v)u— fok xu+VgT.
Then it follows that

h 2
IVl < [ [|v|2|v2u|2+|w2|w|2+( / |v2v|ds> 19l
Q —h
h 2
- (/ \W\d§> Vo, ul? + [u]?|V?0|* + |Vul? + \VzT\Q} dx
h

<C(ol2 1923 + Vol Vull? + [920]318.ul%
IVl IV Baulls + [l V2013 + [Vul + [ V2T3)
<Ol [0l2 + 02 10sulZe + ol a9l + TollZpe + [T 1252),
and thus
¢ 2 ¢ 2 2 2 2
/0 S|V fil3ds <C / Sl 013 + [[0]25 182

ol 9l + [0l3 + ITI)ds
t
—c / sl 02 + [0]2 + [ T120)ds

t
e /0 sl 10ulZ + o]0 Dt Zpe)ds

<CHKG(t) + Ko(t)t) + CKo(t)K1 (1)
=CKo(t)(Ko(t)t + K} (t) + %) =: K7 (t). (5.5)
Note that u satisfies equation
Ou + Liu = f1. (5.6)
Recalling that u € L?(0,t0; H*(Q)) and dyu € L%(0;tp; L?(R2)). Multiplying the above equation by
—(8))*6;Au,i = 1,2, by Lemma 2], we obtain

d i, |2 Lo 2, g 2
dt/ﬂ|5qu| d:ndydz%—/Q <R1|5lVHVu| + R2|5l8ZVu| >dxdydz
:—/5lif15liAu§n/ \5;Au]2dxdydz+C/ |67 f1)?dxdydz,
Q Q Q
and thus

EH@VUII% + §\|51V21L||§ < Clo fll3 < Cllosfall
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with R = R; 4+ R, from which we obtain
(15Ul + 153 < CHV AL+ 1Vul
Integrating this inequality in ¢, thanks to (5.5]) and applying Lemma [5.1] we then obtain

¢
sup (sHVHVuH%)—i—/ SHVHV2UH%CZS
0<s<t 0

t t
g()/ s||Vf1H§ds+C/ S|V Vul2ds < C(Ko(t) + K"(1)).
0 0

Combining this with (5.4]) and using (5.5]), (5.6), we obtain

t
sup (slulfe) + [ s(lulfs + vl )ds < K10 1)
0<s<t 0

for all ¢ € (0,tp). This completes the proof. O

Next, we establish the regularity properties of  as stated in the following proposition.

Proposition 5.2. Let (v,T) be a strong solution to system (1.23)-(1.28) in Q x (0,ty) and set
¢ = 0%v. Then

t¢ € L®(0,to; H2(Q)) N L2(0,to; H3(Q)), t0:¢ € L*(0,t0; HY(Q))
and

t
sup (s2//C|%) + /0 (1¢I5 + 10,12 ds, < Ka(?)

0<s<t

for any t € (0,ty), where Ko(t) is an increasing bounded function on (0,tg).
Proof. By Proposition 5.1, one can differentiate equation (5.3]) with respect to z to deduce
O + LaC + fok x ¢ = (7, Vi - 0d€) 0. + Vg - v,
+V0, T —0,[(v-Vr)u+ (u-Vi)v— (Vg -v)ul. (5.8)

Multiplying this equation by —d;§A(, then it follows from Lemma 2.1} the Sobolev embedding
inequality and the Cauchy-Schwarz inequality that

1d ) 1 , 1 ,
s [ lavckexs [ <R1|<WHV<| A >dx

:/ 51{@[(@ . VH)U + (u . VH)U — (VH . v)u] — VH . v@zu — VH(‘)ZT}(SIACdx
Q

—/Qal K/_h vH.ud§> azg} 5 ACdx

§C||5182[(v . VH)’LL + (u . VH)U — (VH . v)u] — 5l(VH ~v0,u + VH@ZT)HQH(SIACHQ

+/Q |:5l </_Zh VH . Udf) Z?ZC(er leg,t) + </_Zh VH . ’Udf) (5[82C:| (5[ACdX

<C&Z|(v-Va)u+ (u- Vi) = (Vi - v)u] = 0:(Ve - v0:u+ Vad.T) 2| G AC|2
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+c<

1/2
<C [ LRI + 19T + V207 + ruﬂv%r?)dx] 15ACs
Q

" </_h Vi ”d5> H 10:Cl2 + HVvHooHaMI!z) 161 AC ]2

+C <|yazTHH2 + ‘

0, ( IR vdé) H lull e + |!UHH3H51VCH2> 1A

<C(vllsollullzs + Vollsollull 2 + [Vulls vl 2 + l[ullos 0]l s
F10:T [ g2 + [ Vvllsollull 2 + [[0ll a3 [16:VCI[2)[|6:AC] 2
<C(llm=llullgs + llullmzllvlms + 10Tl g2 + vl gs 10V ll2) 161 AC] |2
<ol5ACI3 + CollolZall6rVEI3 + Collullysllole + ol lullZe + 10:T 1),
with a sufficiently small positive constant o, and thus
A EA RN EA
<Ovll3s 16V I3 + CllullFrs [0llF2 + ol Fs lullFz + 10T (12),
from which it follows that
LUGVIRR) + £ 573
<Clloll3s 18V ¢ 1158 + C[full3gs [0l + 0l 7rs ]| 32
1071 + 2618 C 3
Combining this inequality with (57, it follows

t
(157 C]22) + /0 $2/|6,V2¢|2ds

sup
0<s<t
t
t 2
<CeCJo lyss /0 [l 2 012 + [0l 2 lull2e + 10:T1%2)s* + sl|6:V¢|13lds
t
t 2
<CeCJo lyss /0 [l 2 012 + ol 2 lull2e + 10:T1%2)s* + s]|82Vul3]ds

<CePFoW (1Ko (1) K1 () + Ko(t)t* + K1(t)),
which, by Lemma .11 implies 20.¢ € L®°(0,to; H'(2)) N L2(0,to; H*(2)) and

t
sup (s2/10:C|%1) + /0 52)10.C|%ads < K1) (5.9)

0<s<t

for any ¢ € (0,t).
Set

fol,y, =, t) = ( /_ h Vi - vd£> 0.C + Vi1 - v0u+ VT
—0.[(v- Vir)u+ (- Vo — (Vi - v)u] — fok x C.
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Then it follows that
2

h 2 h
vl <c [ [( / hrv%rds) razcr%( / hrwds) VO.CP + [0.V°T]?

+ 02| V3u)? + |Vo?|V2ul? 4 |V20)? | Vu? + |u|2|V3v|2] dxdydz

<C(IV*0l310:¢11% + V021V 8:C15 + 10Tl + ol3 V3 ull3
VUl IV 23 + Va3 IV 20l3 + [full% VP ]13)
<C10:¢ 1=l Fr2 + 10l 7s 10N Fr2 + 10Tl
+ lolle lulfgs + 1ol lullfe),
and thus

t t
/O s*||V f2l3ds SC/O [52(10:=C 2 0772 + 0373 110:€ I372)
+ 87 (ol lull 2 + [l Fs vl 72) + 5210 T 1132 ds

<C(Ko(t)Ky(t) + tKo(t) K1 (t) + Ko (t))

=CKo(t)(K5(t) + tKi(t) + %) := KJ(¢).
Recalling the definition of fy, by (5.8), one can easily see that ( satisfies

O+ L1¢ = fo.

Multiplying equation (5.11I) by —(5})*5;A§ ,1=1,2, thanks to Lemma 2.1] we have

. 1. I
i/ ya;vgy2dxdydz+/ <—]5;VHVQ2+—]5;8ZVQ2> dxdydz
dt Q Q Rl R2

—— [ 605180 < [ 16acPdrdyds +C [ 15 faPdudyds
Q Q Q
and thus J )
EH&?VCH% + vazg”g < C|16; fall5 < Cll0i f2l3,
with R = R; + R, from which we obtain

it 21167V ¢lI3) + EtQIIQVzCII% < CP|[V £23 + 2|6,V C|13.

Integrating (5.12]) with respect to ¢, by (5.7)), (5.10) and Lemma [51] we then obtain

t
sup (2| VaVel3) + / ||V V¢ |3ds
0<s<t 0

t t
<C [ SIValds + C [ sV ullds < CD) + KF (1),
0 0
Combining this with (5.9)) and using (5.10), (5.11]), we obtain

t
sup (2[C]13) + / (¢35 + 1012 )ds < Falt)
0<s<t 0

(5.10)

(5.11)

(5.12)

(5.13)
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for all ¢ € (0,tp). This completes the proof. O
Next we prove the regularity properties of n and 6, that is the following:

Proposition 5.3. Let (v,T) be a strong solution to system (L.23)-(128) in Q x (0,t9). Let n and 6
be the functions giwen by (51l) and (2.2), respectively. Then it holds that

tn,t0 € L°°(0,to; H*(Q)) N L3(0,to; H3(R)),  tdm, 10,0 € L*(0,to; H(Q))
and .
sup [l + 161301+ | 5%l + 10155 + 10wl + 10101 ds < Kt
for any t € (0,ty), where K3(t) is a bounded increasing function on (0,tp).

Proof. One can easily check that n and 6 satisfy

o+ Lin = fs, (5.14)
060 + 110 = fu, (5.15)
where
fa(z,y,2,t) = —V§- [(U -Vy)u— <f_zh Vu- Udf) O:u+ (u- Vi)

~(Vir - v)u + fo(BaT — 0),
falz,y, 2t) = —Vi- [(U V) — <ffh Vi - vdg) dou+ (u- Vi
~(Vi-v)u] + fon+ Ry (g - ) 02T
Ry [0+ VT = (J7, Vo -vdg) (0.7 + })] .
Direct calculations show

IV £33 SC/ [IUIZIV?’UIQ + Vol V2ul? + V2P [Vl + [u? V20
Q

h 2 h 2
2 ~12 2 2
T </_hrwcis> V2P + (/_hrv v\d§> v¢]
h 2
3
+ </_h |V fu]df)

<C (0% IV2ull3 + Vol 2 IV 2ull3 + Jul31V2ol3
+ Vullso IV2CII3 + V2031V + IVl 13
+IV20l3 VUl + 19T + [ VP0l13)

<C(Ill llullzrs + lollZs lullZr + ol 7 1<

+ oll7s 11z + 1T 15 + lvllFs).

IC)? +|VT)? + yv%y?] dxdydz

and

IV £4l13 SC/ [IUIQIV?’UI2 + [VOP[V2ul? + V2P [ Vul? + [uf*| VP
Q
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([ )

h 2
+ (/ |V3v|d§> IC]2 + | V302 + [VO*T + |V 2| VT + v} V2T |2
—h

2 2

h
rv2<\2+( / \V2v\d€> Ve
—h

h 2 h 2
+ (/ yv%ug) (10.T)? +1) + </ ywmg) yvazTP} dxdydz
—h —h

<C(llvlzzellulizps + lollgs lullzr + ol ¢z + vl ¢
+ ol + 10Tz + Vol NVTIZ + 02 VT3
+10:TIZNIV0l13 + [ Voll3 V2T 13)

<C(lvlizzellulizs + lolFs lullZr + ol ¢z + vl ¢
+ollFs + 10T 72 + [0l 1Tl + [olF2ll0-T 1)

<C(lvlzzellulizs + lolFs lullfe + 1ol 1¢01Fs + ol 1¢172)
+ C (10T 72 + 0l F) (1 + lvllz2 + I T1I32)-

By the aid of (5.7)) and (5.13)), it follows from the above two inequalities that

t t
/0 2|V f3]l2ds <C / S2(|[0l2 ulZs + 1ol llZg2 + Toll2p2 1C 12
ol €13 + 1T e + o) ds
<CKo(t)(tK (t) + Ko(t) + 13 + t2) =: K4(t)

and
t 2 2 t 2 2 2 2 2 2 2
/0 S|V fill3ds <C /0 S2(ol2p lullZgs + 1ol lal 2 + o]l 1112

+ ol llCE) + (0T + 0l ) (L + ol + 1T 72)]ds
SCKo(t)(Ka(t) + tK1(t) + Ko(t)t* +1°) = K5 (t).
Using the above two inequalities, multiplying (5.14) and (E.I5) by —(6})*6!An and —(5})*6I A0, i =

1,2, 3, respectively, and summing the resulting equations up, then using similar argument as for (5.12))
leads to

SISV + 1FV0IR)] + e (10790l + 115/9%613)
<CH(||V fall5 + [V fall3) + 2t(/|6; VI3 + [|5] VO 13)
<CE(IV 313 + IV £4]13) + C([Vnl3 + [ V26]3)
<CE(IV £33 + IV £4l13) + Ct(llullFs + | T F2)-
Integrating this inequality with respect to ¢t and applying Lemma [5.I] then it follows from (5.7) and
the estimates on f3, fy that

t
Oiugt[sz(\\vznllg +[v?0]13)] +/0 s(IV3nl3 + [1V°0][5)ds
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<C(Kj(t) + K5 (t) + t*Ko(t) + Ka (1)),
By the aid of this inequality and using the estimates for f3, f4, equations (5.14]) and (5.I5]), we obtain
t
sup %l + 1018+ [ (Il + 1813 + 10unlEs + 1001 )ds < K
_s_

for any t € (0,t9). This completes the proof. O

Finally, we consider the regularity properties of v.

Proposition 5.4. Let (v,T) be a strong solution to system (L23)-(128) in Q x (0,t). Let v be the
vertical average of v as it was defined in the Introduction. Then

Vit € L%(0,to; H*()) N L*(0,t0; H*(Q)), V9,0 € L*(0,t0; H*(2)),
and

t
sup (s]/o]%s) + / s(1012 + [04020)ds < Ka(t),
0<s<t 0

for any t € (0,tg), where K4(t) is a bounded increasing function on (0,tg).
Proof. By equation (I.29) and (L30), v satisfies

Vi -o=0, (5.17)

<l

where

- 1 h z
p(x7y7t) :ps(x7y7t) - ﬁ/h/ T(‘Tayafut)dgdz7

h
fs(@,y,t) == (0-Vy)o—(0-Vg)o+ (Vg -0)0 — fok x v.
It follows from the Sobolev embedding inequality that

IVEF515 < /M IVHI@-Va)o+ (- V)i + (Vg - 0)7 + fok x 0]|*dzdy

g()/ Hv%l ((@-VH)f)Jr(vH-@)@)‘QHEIQIV%T)IQ
M

+ Vo[ Vol + Vol dady

g/M [(/_};(wnviﬁl + IVHﬁllv?qﬁl)d&>2

T ORIV + [V oIV + rv%,vrﬂ dady
<O V4013 + [V o2 V%513 + 112 V%012
LIV V%R + IV3ol2)

<C(l[vllzpsvliFe + lvle)-
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Note that © € L?(0,to; H*(M)) and 0,0 € L2(0,tg; Hl(M)) Applying the operator Vg to equation
(5.16), multiplying the resulting equation by —(6;)*0;VuyAgv,i = 1,2 and using (5.17), then similar
argument to that for (5.12]) leads to

d. . 1 i
a(tH(SlAHUH%)+R—175H51VHAHUH§

2 ¢ 2 iAo 12 2 2 —112
<Ct|Vyfslz + 10 Anvllz < C@IVEf5lz + [VEARD3).
Integrating this inequality with respect to ¢ and applying Lemma [5.1], then one has

¢
sup (SHVHAHU”%)—I-/ SHV%AH??H%ds
0

0<s<t
t
sq/@W@M@+M@aw§OMﬁxmwﬁ+ﬂ+n
0

By the aid of this inequality, applying the L? theory of Stokes equations and using the estimate on
f5, we obtain
t
sup (slole) + [ s(lols + 10role)ds < Koo
0<s<t 0
for any ¢t € (0,t9). This completes the proof. O
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