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ABSTRACT OF THE DISSERTATION
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Electrocorticography (ECoG), also known as intracranial electroencephalogra-

phy (iEEG), is the practice of recording electrical potentials on the cerebral cortex via

electrodes placed on the exposed brain surface. ECoG has been a critical component of

epilepsy medical treatment protocols involving neurosurgery for more than half a century.

More recently, ECoG has emerged as a promising recording modality for brain-machine

interfaces and neuroscience research. The BRAIN Initiative is representative of a renewed

and concerted effort to push the boundaries of possibility in medical care and technology,
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and to expand our understanding of brain function. Concomitant with this new drive is

a need for techniques that address the challenges posed by high-channel count ECoG

signal analysis as well as by neural data collection limited due to the invasiveness of

ECoG. In this dissertation, we introduce the use of a discrete-state based probabilistic

method for modeling ECoG-derived signals, and contrast this method with previously

existing analogous probabilistic models without a discrete component. We then explore

a class of discrete-state based probabilistic models, and identify spatial and temporal

model constraints that were advantageous in the analysis of a high-channel count ECoG

dataset. Finally, we introduce another probabilistic model that we use for unsupervised

learning of ECoG trial spatiotemporal structure, and clustering of the ECoG trials in a

data-limited context.
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Chapter 1

Introduction

Electrocorticography (ECoG) is a neural recording modality involving the intracra-

nial placement of electrodes on the cerebral cortex for electrical potential measurements.

ECoG lies at the center of a plexus of applications. More than half a century ago, Wilder

Penfield and Herbert Jasper pioneered the use of ECoG as part of the protocol in the

surgical treatment of intractable epilepsy. They used ECoG to identify cortical regions

important for critical functions like speech processing, while excising noncritical brain

tissue implicated in epilepsy. Penfield also made important contributions to Neuroscience

research, providing fairly detailed maps associating regions on the surface of the cortex

with the sensory stimulation and motor activity of specific anatomical divisions of the

body. Today, neuroscientists continue to employ ECoG in probing the mechanisms

underlying different aspects of perception, action, and cognition.

A more recent application of ECoG is in the area of brain-machine interfaces

(BMIs). In 2013, Wang et al. published results of an ECoG BMI research study with a

tetraplegic subject [WCD+13], demonstrating the control of a display cursor through a

neural link (communication neuroprosthetic) and the use of a robotic arm to hit targets

(motor neuroprosthetic). Individuals affected by tetraplegia are only one segment among

1
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others in the population that would benefit from versions of the BMIs in this study that

are commercially viable and robust under a variety of conditions and across individuals.

One program of research that may be crucial to advancing to this point of

widespread BMI accessibility is identifying models of neural activity that allow us

to more clearly express the relationship between perception, behavior, and cognition

and properties of the ECoG signal of groups of electrodes in a multi-electrode record-

ing—properties such as average activity, shared variability, and the neuroanatomical

placement of the electrodes.

An emerging approach to modeling neural activity is to learn a function or set

of functions that maps the activity at one point in the ECoG state space to the next

point in time. This is the approach exemplified by dynamical systems and recurrent

neural networks. The nature of the ECoG signal is such that the kinds of functions

that would be appropriate with these approaches would be highly nonlinear. Indeed,

nonlinear dynamical systems and neural networks are designed just for that. However,

the invasiveness of the ECoG recording modality means that we are often data-limited

which could be an obstacle to learning such functions. High-dimensionality is also a

challenge as we are dealing with tens to hundreds of electrodes with only tens of minutes

of ECoG recordings.

The general approach that we take here is one of clustering or discretization in

the ECoG state space, and the ultimate goal is to build rigorous connections between the

ECoG state space with the clustering and the much more abstract “neural state” space

of perception, behavior and cognition. It is our hope that the work in this dissertation

represents at least a few steps in the right direction.

In Chapter 2, we juxtapose our probabilistic approach to quantizing the neural

space with other probabilistic approaches that are closer to the dynamical systems

approach. Our method makes use of signal variance or noise to define neural activity
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transitions in state space while the other techniques use temporal smoothing to reduce

noise in the neural trajectories in state space. In Chapter 3, we explore a class of discrete-

state based probabilistic models, and identify spatial and temporal model constraints that

were advantageous in the analysis of a high-channel count ECoG dataset. The various

spatial constraints entail different assumptions about the ECoG signal covariance. We

consider models with and without a Markov temporal constraint. In Chapter 4, we present

a probabilistic model that we developed for the unsupervised learning of ECoG trial

spatiotemporal structure, and clustering of the ECoG trials in a data-limited context. The

models in our treatment here are extensions of models advanced in Chapter 3. Chapter 5

contains concluding remarks and proposed future directions.



Chapter 2

Hidden-Markov Factor Analysis as a

Spatiotemporal Model for

Electrocorticography

We present a new approach to extracting low-dimensional neural trajectories that

summarize the electrocorticographic (ECoG) signals recorded with high-channel-count

electrode arrays implanted subdurally. In our approach, Hidden-Markov Factor Analysis

(HMFA), a finite set of factor analyzers are used to model the relationship between the

high-dimensional ECoG neural space and a low-dimensional latent neural space; the

factor analyzers at different time points are in turn linked together with a hidden Markov

model. The recorded ECoG signals were band-pass filtered such that our analysis was

focused on a sub-band (76-100Hz) of high gamma. HMFA affords the quantization of

the ECoG neural space and dimensionality reduction in a common probabilistic space.

We applied this method to the ECoG recordings of two subjects who responded with

button presses to audiovisual stimuli in an experimental task. Our results from comparing

HMFA with Gaussian-Process Factor Analysis (GPFA) and other related spatiotemporal

4
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modeling techniques, using a goodness-of-fit metric that measures how well the ECoG

activity of each electrode can be reconstructed from the other electrodes, suggest that

switching between multiple linear models may better capture neural activity across the

electrodes. In contradistinction to HMFA, GPFA and the other techniques integrate

temporal smoothing with a single linear dimensionality reduction model. We believe that

HMFA will provide a powerful tool for relating high-channel-count ECoG signals to the

perception and behavior of subjects.

2.1 Introduction

With the advent of the BRAIN Initiative, we are closer to an era in which cortical

implants with hundreds and even thousands of neural probes are standard in brain

diagnostic and brain-machine interface (BMI) applications. While such technology could

help with unlocking new perspectives about cortical activity hitherto unavailable, the

challenge of generating readily interpretable views of cortical dynamics will become

even greater. In cases where cortical mechanisms are observable only by considering

collections of channels recording neural activity and not at the level of single electrodes

[CY14], the statistical challenges associated with with using experimental trial averages

to combat noise increase. Moreover, subtle aspects (e.g. slight timing differences, etc.) of

perception, decision making, attention, or motor planning can be obscured altogether with

approaches primarily based on trial averages. There is a greater urgency for approaches

that facilitate single-trial analyses [YCS+09, ASGA96]. With single-trial analytical

methods, experimental conditions may not have to be as tightly controlled. In the context

of analyzing neural spiking data, Yu et al. developed one such approach, GPFA, in which

they combined temporal smoothing, to account for noise, with dimensionality reduction,

to generate lower dimensional neural signal representations that can be more readily
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interpreted.

The primary motivation for our work was to consider the related problem of

simultaneously extracting low-dimensional neural trajectories and identifying a finite set

of low-dimensional subspaces that contain the extracted neural trajectories. The manner

in which these neural trajectories — for different experimental epochs — move between

these subspaces could be used to relate the epochs in terms of human perception and

behavior in an unsupervised fashion [WOO+16]. Figure 2.1 illustrates how a neural

trajectory is extracted from a multi-electrode recording using HMFA. The extracted high

gamma power from a hypothetical 2-electrode recording is shown in panel A of Figure 2.1.

We have chosen to have 2 electrodes in the illustration for simple comprehension of the

problem we approach in the high-dimensional space (typically with tens to hundreds of

electrodes). In panel B, a high-dimensional (2-dimensional) space is shown where each

axis corresponds to the activity of an electrode. Shown in panel C are 3 low-dimensional

(1-dimensional) subspaces learned in our approach. The number of subspaces to be

learned is specified for the model. In panel D, ellipses corresponding to the subspaces

are shown to indicate a quantization of the high-dimensional space. We note here that

because of the temporal structure of the model, the proximity of a point along a trajectory

to the center of an ellipse does not necessitate its projection into the corresponding

subspace. Finally, the neural trajectories extracted are in panel E. They are constrained

to lie in the subspaces. We can view each neural trajectory as a progression among the

subspaces.

The key distinguishing features of HMFA from GPFA and the other techniques

discussed here are (1) the absence of temporal smoothing and (2) presence of multiple

low-dimensional subspaces. We first describe HMFA—an approach that enables us to

integrate the quantization and dimensionality reduction operations on the neural space.

We also adapt a goodness-of-fit metric [YCS+09] that allows us to compare HMFA with
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GPFA and other methods, in terms of the ability to reconstruct electrode channel activity.

With these in place, we apply HMFA and the other neural trajectory extraction methods

to ECoG recordings from a cross-modal speech experiment.

Electrode	1
(arb.	unit)

Electrode	2
(arb.	unit)

A B

Multielectroderecordings

time

Electrode	1	(arb.	unit)

High-dimensional	neural	activity

epoch1

epoch2

C

Electrode	1	(arb.	unit)

Learned	low-dimensional	subspaces

subspace1

subspace3

subspace2

E

Extracted	neural	trajectories

subspace1 subspace2 subspace3

t1 =	0 t2 =	0

D

Electrode	1	(arb.	unit)

Quantization	of	high-dimensional	space

subspace1

subspace3

subspace2

Figure 2.1: Extracting neural trajectories from multielectrode recordings with Hidden-
Markov Factor Analysis. For clarity the activity of only 2 electrodes is considered in
this illustration. A: activity recorded simultaneously from 2 electrodes (after signal pro-
cessing). B: the time evolution of the recorded neural activity plotted in a 2-dimensional
space, where each axis corresponds to the activity of an electrode. C: 3 learned 1-
dimensional subspaces. D: quantization of high-dimensional space E: neural trajectories
viewed in the low-dimensional subspaces
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2.2 Methods

2.2.1 Hidden-Markov Factor Analysis

In Hidden-Markov Factor Analysis (HMFA), a finite set of factor analyzers are

used to model the relationship between the high-dimensional neural space and a low-

dimensional latent neural space; factor analyzers at different time points are linked

together with a hidden Markov model (HMM). While HMFA has been used in other

domains for clustering in gene expression analysis [MM12] and classification of acoustic

features in speech recognition [SR98], we are—to the best of our knowledge—the first

to pursue the unsupervised analysis of ECoG neural signals with it.

ωt-1=r ωt=s

Σs

Λs,	μs

zt

xt

Factor	Analyzer
ωt:	hidden	Markov	model	state	at	time	t.
zt:	latent	neural	activity.
xt:	electrode	channel	activity.
Λs:	mapping	from	latent	neural	space	to	electrode	channel	space.
μs:	average	activity	for	channels.
Σs:	noise	variance	for	channels.

xt|zt,	ωt =	s	~𝒩(Λszt +	μs,	Σs).
Σs is	diagonal.

πs =	P(ω1=s)
Ars =	P(ωt=s|ωt-1=r)

zt ~𝒩(0,	I)

Figure 2.2: Hidden-Markov Factor Analysis

Let xt of dimension n denote the high-dimensional vector of the preprocessed

electrode channels’ activity at time point t ∈ {1, ...,T}, where n is the number of elec-

trodes. Our goal is to extract a corresponding low-dimensional latent neural state zt of

dimension l < n, as well as the index ωt ∈ {1, ...,S} of the factor analyzer at that time

point. We define the following linear-Gaussian relationship between the electrode activity

xt and the latent neural state zt :

xt |zt ,ωt = s ∼ N (Λszt +µs,Σs), (2.1)
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where Λs (n by l matrix), µs (n-dimensional vector), and Σs (n by n matrix) are model

parameters to be learned for s ∈ {1, ...,S}. Λs is referred to as a factor loading matrix. As

is standard in Factor Analysis (FA), we constrain the covariance matrix Σs to be diagonal,

where the diagonal elements are the independent noise variances of each electrode. We

also define zt as a multivariate standard normal random variable, which is typical in FA

(2.2).

zt ∼N (0, I). (2.2)

The factor analyzers at different time points are related through an HMM to capture the

idea of neural trajectories moving within as well as between low-dimensional subspaces.

Start and transition probability parameters are learned for the S-state HMM.

πs = P(ω1 = s), Ars = P(ωt = s|ωt−1 = r), s,r ∈ {1, ...,S}. (2.3)

The parameters of the HMFA model Θ== {π,A,(µs,Λs,Σs)
S
s=1} can be fit using a variant

of the widely used expectation maximization (EM) algorithm known as the Alternating

Expectation Conditional Maximization (AECM) algorithm [MM12, MVD97]. The

algorithm seeks the model parameters that maximize the probability of the observations:

preprocessed electrode activity in this case. The parameter S must be specified before the

model fitting can be done.

Once the HMFA model is learned, we can use the Viterbi algorithm [Rab89]

to compute the most probable sequence of factor analyzer states ΩViterbi = [ω1, ...,ωT ].

For notational convenience, let us group the latent neural states for different time points

together in an l by T matrix, Z = [z1, ...,zT ] and the observations in an n by T matrix,

X = [x1, ...,xT ]. With the Viterbi state sequence path ΩViterbi, we can extract neural tra-

jectories E[Z|X,ΩViterbi] from the preprocessed electrode activity X by taking advantage

of the jointly Gaussian relationship between Z and X given ΩViterbi.
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2.2.2 Leave-one-electrode-out Reconstruction Error

In order to compare HMFA with GPFA and other methods considered in [YCS+09],

we adapted a goodness-of-fit metric that Yu et al. introduced in their work. For each of

the methods, model parameters were fit to training data. With data not used for model

fitting, we leave out each electrode in turn and compute how well the fitted model can

be used to reconstruct the activity of an electrode, given the activity of all the other

electrodes.

Let X− j, (n-1) by T matrix, be the matrix of observations without the jth electrode

and X j, of dimension T , be the vector of the jth electrode observations. Once again

taking advantage of a jointly Gaussian relationship—this time—between X j and X− j

given ΩViterbi, we can use E[X j|X− j,ΩViterbi] as our reconstruction of the jth electrode

observations. (Please see Leave-one-electrode-out Prediction Error in Subsection

3.2.4.) The reconstruction error (RE) is defined as the sum-of-squared differences

between the model reconstruction and the observed activity across all electrodes and time

points.

RE =
n

∑
j=1
||E[X j|X− j,ΩViterbi]−X j||. (2.4)

2.2.3 Cross-modal Speech Experiment and ECoG Recordings

Experimental protocols were approved by the New York University School of

Medicine Institutional Review Board and subjects undergoing ECoG-based cortical

mapping for brain surgery gave their informed consent to participate in the experiment.

In the experiment, the subjects were presented with a series of audiovisual stimuli

involving a speaker on a screen. The subjects were instructed to press a button whenever

they heard or saw the speaker say one of two words: “cafe” and “avenue”. In terms of

the audiovisual stimuli, there were 7 trial types in the experiment: (1) stimuli for which
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the word heard matched the word seen (2) audio-only stimuli (3) stimuli for which the

word heard did not match the word seen (4) video-only stimuli (5) video with the speaker

making grotesque mouth movements (6) phase-scrambled audio with the speaker making

grotesque mouth movements (7) phase-scrambled audio alone. Valid button presses were

only possible in trial types (1), (2) and (4); indeed, none of the subjects registered button

responses in any of the other trial types. In summary, 10 trial types were possible in

terms of the stimuli and behavioral response. The experiment was divided into 5 blocks

of 82 trials.

We used the data of two subjects, NY451 and NY453, in our analyses here.

Electrodes in both grid and strip configurations were implanted subdurally. We used only

the grid electrodes in our work. There were 112 electrodes for each subject: 64 in an

8 by 8 grid with smaller electrode separation and 48 in another 8 by 8 grid with larger

separation. (The grids overlapped with the smaller grid taking the place of 16 electrodes

in the larger grid.) The grid electrodes were implanted over the right hemisphere for both

subjects. The ECoG signal was sampled at 512 Hz and measured in microvolts.

We carried out the following signal processing steps: (1) Electrodes with un-

usual—more than 3 standard deviations from the mean across the electrodes of—rms

power, maximum or median absolute potentials, or mean potentials were rejected from

our analyses. (2) We used notch filtering to remove the harmonics of line noise at 60 Hz,

120 Hz, 180 Hz and 240 Hz respectively. (3) We applied common average referencing to

eliminate noise common to all the ECoG channels. (4) We removed the best fit line in the

least-squares sense from each ECoG channel time series to eliminate systematic overall

increases and decreases in electrode potentials. (5) We band-pass filtered the 76-100

Hz sub-band of high gamma. Thereby, we attempted to limit the effects of the 1st and

2nd harmonics of line noise on our analyses. There are a number of studies that have

shown connections between gamma-band activity and motor behavior [MLS+07] and
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perceptual cognition [JK09]. (6) We extracted 5-second windows of trials from the ECoG

recordings: 2 seconds before the stimulus onset to 3 seconds after. (7) In a similar fashion

to the electrode rejection, we eliminated trials with unusual ECoG activity. (8) Lastly,

with a 50-millisecond sliding window we computed the rms power in nonoverlapping

bins for each trial. We analyzed a total of 236 trials (from 3 blocks) for NY451 and 245

trials (from 3 blocks) for NY453, with 105 and 109 electrodes respectively.

2.3 Results

Using the goodness-of-fit metric described in Subsection 2.2.2, we compared

HMFA, GPFA, reduced GPFA, and approaches in which the preprocessed electrode

activity was first smoothed over time using a Gaussian kernel before the application

of static dimensionality-reduction techniques: Principal Components Analysis (PCA),

Probabilistic PCA (PPCA), or Factor Analysis (FA) [YCS+09]. We shall refer to the

latter as two-stage methods hereinafter. In GPFA, the columns of the estimated factor

loading matrix correspond to directions in the low-dimensional space. While not or-

thogonal in general, the columns can be orthonormalized and ordered by the amount

of data covariance explained. The top l′(l′ ≤ l) dimensions can be used to extract an

l′-dimensional neural trajectory for the reduced GPFA model. Please note that when

l′ and l are equal, GPFA and reduced GPFA are identical. We also note that HMFA

with 1 hidden state is equivalent to FA without temporal smoothing. We used 4-fold

cross-validation in all the analyses.

Figure 2.3, panel A(I) shows the reconstruction error for NY451 for all the

methods across different latent state dimensionalities (l = 1–25) with a Gaussian kernel

width of 0.14 seconds for the two-stage methods and 4 hidden states for HMFA. (The

reconstruction error for HMFA stops at l = 8 due to data limitations on the parameter es-
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Figure 2.3: Reconstruction error. A: For NY451 across (I) state dimensionalities (kernel
width = 0.14 seconds and S = 4). (II) kernel widths (l = 8 and S = 4). (III) numbers of
hidden states (kernel width = 0.14 seconds and l = 8). B: For NY453 across (I) state
dimensionalities (kernel width = 0.14 seconds and S = 4). (II) kernel widths (l = 25 and
S = 4). (III) numbers of hidden states (kernel width = 0.14 seconds and l = 25).

timation.) Figure 2.3, panels A(II)-(III) show the reconstruction error for all the methods

across Gaussian kernel widths 0.02–0.5 seconds and 1–4 hidden states respectively. For

l ≥ 3, PCA, PPCA, and FA resulted in lower reconstruction errors respectively (Wilcoxon

paired-sample test, P < 0.001). Yu et al observed a similar trend in their analyses of

neuronal recordings. Statistical significance was assessed by looking across all trials for

each method at its optimal latent state dimensionality l, Gaussian kernel width, and/or

number of hidden states, S. Contrary to observations by Yu et al, we did not observe

lower reconstruction error with GPFA relative to the two-stage FA method, or with

reduced GPFA relative to GPFA. However, while their analysis [YCS+09] was done on

neural spiking data, we used ECoG data in our work presented here. HMFA produced

the lowest reconstruction error among all the methods (Wilcoxon paired-sample test, P <

0.001). Figure 2.3, panels B(I)-(III) show reconstruction error with different methods for
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subject NY453, and HMFA also produced the lowest reconstruction error among all the

methods (Wilcoxon paired-sample test, P < 0.001).

2.4 Discussion

We have introduced a new method, HMFA, for extracting single-trial neural

trajectories from ECoG recordings. We have also adapted a goodness-of-fit metric that

has allowed us to compare the ability to reconstruct channel activity of HMFA with

GPFA, and other neural trajectory extraction methods. While temporal smoothing is not

incorporated in HMFA as it is in the other methods, only HMFA allows for multiple

low-dimensional subspaces. We have explored the space of HMFA models with 1–4

low-dimensional subspaces (hidden states). With 4 hidden states, the reconstruction error

of HMFA was lower than those of the other methods with the data from both subjects. In

the following chapters, we will explore the relationship between HMFA-derived state

sequences, and the perception and behavior of subjects.
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Chapter 3

Discrete state based approaches to

analyzing electrocorticographic data

We explore a class of latent variable model–based clustering methods in the

context of high-channel count electrocorticographic (ECoG) signal analysis. The ECoG

signals were recorded with electrode arrays implanted subdurally. Our analysis was

focused on a sub-band (76-100 Hz) of high gamma. In each of the methods, the pre-

processed ECoG neural activity at each time point was modeled with a mixture of

multivariate normal distributions, which accounts for shifts in average neural activity as

well as changes in channel covariance structure over time. We applied the methods to

the ECoG recordings of six subjects who responded with button presses to audiovisual

stimuli in an experimental task. We used two metrics in comparing the methods: (1)

a goodness-of-fit metric that measures how well the ECoG activity of each electrode

can be predicted by all the other electrodes and (2) the mutual information between the

ECoG experimental task trial label and the most probable mixture component at each

time point. The four key features of interest in the comparison of models were (1) the

ability to model channels’ shared variance, (2) a constraint on how much shared variance

15
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is captured (by models with the ability to model shared variance), (3) invariance across

mixture components in a channel private noise or variance parameter (for models with

the shared variance constraint), and (4) a Markov temporal constraint. We found that

models with all four features were the most successful at encoding stimuli and behavior

information of the trials as well as modeling changes in channel covariance structure.

3.1 Introduction

As medical doctors, neuroscientists, and neuroengineers push towards more

effective prevention and treatment of brain dysfunction, greater understanding of brain

structure and function, and more successful brain-machine interface (BMI) system design,

it is likely that the use of cortical implants with hundreds and even thousands of neural

probes will become more widespread. One of the challenges that this trend will present

is generating readily interpretable perspectives of high channel count electrode signals.

In situations where cortical mechanisms can be observed only by considering multi-

channel neural activity recordings and not at the level of single electrodes [CY14],

greater statistical challenges are associated with using experimental trial averages to deal

with noise. In addition, subtle aspects (e.g. slight timing differences, etc.) of decision

making or motor planning may be lost in using approaches primarily based on trial

averaging. Moreover, many methods—single-trial and otherwise—have the assumption

that the covariance structure of the neural activity channels is constant in the course of an

experimentally defined trial [BMJC13, YCS+09], which may not necessarily be the case

[CKC+11].

Hidden-Markov Factor Analysis (HMFA) and the other methods that we explore

here allow us to account for changes in covariance structure over the duration of an

experimental trial. We consider the benefits of different spatial and temporal constraints
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specific to different methods. We identify a class of HMFA models that performs better

than other models in accounting for different stimuli and behavioral responses along

with associated ECoG neural signal means and covariances in a cross-modal speech

experiment.

3.2 Materials and Methods

3.2.1 Cross-modal Speech Experiment and ECoG Recordings

The description of the experiment, recordings, and signal processing is abbrevi-

ated here. Please refer to a more complete description in Subsection 2.2.3. The number

of subjects in the analyses here was expanded to six from two. Tables 3.1 and 3.2 contain

information on the electrodes and trials respectively for each subject.

Electrodes in both grid and strip configurations were implanted subdurally. Again,

we used only the grid electrodes in our work. There were 112 electrodes for NY441,

NY451, NY453 and NY468: 64 in an 8 by 8 grid with smaller electrode separation and

48 in another 8 by 8 grid with larger separation. (The grids overlapped with the smaller

grid taking the place of 16 electrodes in the larger grid.) NY400 and NY455 had 64

electrodes in a single 8 by 8 grid with larger separation. We note that the activity for a

number of the electrodes was not recorded with the signal acquisition systems for NY400

and NY441 and hence, there is a discrepancy between the number of electrodes available

before signal processing for NY400 and NY455 as well as between those of NY441 and

NY451, NY453, and NY468.

There were modifications to some of our ECoG signal extraction1,2 and process-

1We carried out our signal processing steps on the complete ECoG recording available rather than
limiting signal processing to the portion of the recording particularly pertinent to the Cross-modal Speech
Experiment.

2We also introduced an experimental block with incomplete data for NY453. (NY451, NY453, NY455,
and NY468 had blocks that were missing and/or incomplete.)
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ing3,4 steps detailed in Subsection 2.2.3 that resulted in different numbers of electrodes

and trials than before for NY451 and NY453.

Table 3.1: Cross-modal speech subject electrode information

Subject Number of electrodes (grid only) Hemisphere
implanted with
grid(s)

Before signal
processing

After signal
processing

NY400 32 31 Left
NY441 104 99 Left
NY451 112 109 Right
NY453 112 107 Right
NY455 64 58 Left
NY468 112 105 Right

Table 3.2: Cross-modal speech subject trial information

Subject Number of valid
experimental
blocks

Number of valid trials

Before signal
processing

After signal
processing

NY400 5 410 410
NY441 5 410 410
NY451 3 238 236
NY453 4 288 287
NY455 5 409 409
NY468 5 406 406

3There were two data acquisition systems used in parallel to record from the neural implants for all
the subjects except for NY400. Here, we limited common average referencing to channels belonging to the
same system.

4In addition to a neural signal time step of 50 milliseconds, we also considered 100 and 200 millisec-
onds in our analyses in Chapter 3.



19

3.2.2 Latent Variable Models

Gaussian Mixture Model with Full Covariance (GMMfull)

GMMfull is a statistical model that relates a real-valued observed variable such as

ECoG neural activity to a discrete latent variable. The discrete latent variable can take

on the values of the members of a set of discrete values. Each discrete value in the set

corresponds to a Gaussian distribution parameterized by a mean and full covariance. The

Gaussian distributions are the mixture components of the model.

Figure 3.1a shows the ECoG activity (after signal processing) of 2 electrodes

during 2 experimental trials for a subject. In Figure 3.1b, we have a state-space represen-

tation of the ECoG activity from the 2 trials, with each axis corresponding to the activity

for an electrode. Many more trials are included in Figure 3.1c. In Figure 3.2a, a depiction

of the 3 mixture components of a GMMfull model fit to the ECoG activity in Figure 3.1c

is shown with the trial time points color-coded according to the most probable Gaussian

mixture component at each time point. (The depiction is purely for illustrative purposes.)

Gaussian Mixture Model with Diagonal Covariance (GMMdiag)

GMMdiag differs from GMMfull in that the covariance of each mixture component

is diagonal. Only the variance specific to each channel is captured by the model. The

reduction in model complexity from GMMfull to GMMdiag is significant when the number

of electrode channels is large. In Figure 3.2b, a depiction of the 3 mixture components of

a GMMdiag model fit to the ECoG activity in Figure 3.1c is shown. Please note that the

covariance ellipse for each mixture component is aligned with the coordinate axes just as

we should expect for GMMdiag.
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Figure 3.1: Time series and state space representations
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Figure 3.2: Latent variable models (various spatial constraints)
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Mixture of Factor Analyzers with Component-Variant Private Noise (MFACVPN)

MFACVPN possesses a real-valued latent variable in addition to a discrete latent

variable. The discrete latent variable plays a similar role as in GMMfull and GMMdiag.

However, the real-valued latent variable, known as a factor, can be viewed as a lower-

dimensional latent neural state corresponding to the observed higher-dimensional ECoG

neural activity. Let xt of dimension n represent the ECoG neural activity at time t, where

n is the number of electrodes; let zt of dimension l < n denote the factor at time t,

and ωt ∈ {1, ...,S}, the discrete latent variable. We have the following linear-Gaussian

relationship between xt and zt , given ωt :

P(xt |zt ,ωt = s) = N (Λszt +µs,Σs), (3.1)

where Λs (n by l matrix), µs (n-dimensional vector), and Σs (n by n matrix) are model

parameters to be learned for s ∈ {1, ...,S}. Λs is called a factor loading matrix. Σs is

constrained to be diagonal and

P(zt) = N (0, I). (3.2)

It follows from Equations 3.1 and 3.2 that:

P(xt |ωt = s) = N (µs,Λs(Λs)
′+Σs), (3.3)

Consequently, MFACVPN is a model with Gaussian mixture component covariances

of intermediate complexity between GMMfull and GMMdiag. Λs captures the shared

variance or noise and Σs models the private noise. Each mixture component has its

own private noise parameter and hence the private noise is component-variant. Finally,

MFACVPN also has a parameter, π of dimension s, for the mixture component prior
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probabilities:

πs = P(ωt = s). (3.4)

In Figure 3.2c, a depiction of the 3 mixture components of a MFACVPN model fit to the

ECoG activity in Figure 3.1c is shown. The covariance ellipses for private noise are

shown with dashed lines.

Mixture of Factor Analyzers with Component-Invariant Private Noise (MFACIPN)

MFACIPN differs from MFACVPN in that the private noise is component-invariant;

the mixture components have a single private noise parameter. Ghahramani & Hinton

[GH96] derived an expectation maximization (EM) algorithm for learning the parameters

of MFACIPN; a slight modification of the algorithm is applicable to MFACVPN. In

Figure 3.2d, a depiction of the 3 mixture components of a MFACIPN model fit to the

ECoG activity in Figure 3.1c is shown. The covariance ellipses for private noise, shown

with dashed lines, all have the same shape. One motivation for considering MFACIPN

together with MFACVPN was to explore the connection between ECoG changing private

noise and stimulus-behavior information as has been done with single-neuron recordings

[CKC+11].

Hidden Markov Model (HMM) and Hidden Markov Factor Analysis (HMFA)

HMM (full or diagonal) and HMFA (CVPN or CIPN) have almost all the machin-

ery of GMM (full or diagonal) and MFA (CVPN or CIPN) respectively but in lieu of a

parameter for the mixture component prior probabilities, there are start and transition

probability parameters:

πs = P(ω1 = s), Ars = P(ωt = s|ωt−1 = r), s,r ∈ {1, ...,S}. (3.5)
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These enable a temporal component of modeling for the ECoG neural activity. The pa-

rameters of the models, ΘHMM = {π,A,(µs,Σs)
S
s=1} and ΘHMFA = {π,A,(µs,Λs,Σs)

S
s=1},

can be learned with the Baum–Welch EM-based algorithm [Rab89] and a variant of the

EM algorithm known as the Alternating Expectation Conditional Maximization (AECM)

algorithm [MM12] respectively. Then, with the Viterbi algorithm we can infer the most

probable sequence of mixture components, ΩViterbi. Figure 2.2 shows two time points

and the factor analyzer at one of them in a graphical model of HMFACVPN.

Mixture Model augmented by a Markov Model (GMM-MM or MFA-MM)

We introduced the parameter estimation approach here to probe the advantages of

joint spatial and temporal parameter estimation for HMM and HMFA. In the first stage,

the parameters of a GMM (full or diagonal) or an MFA model (CVPN or CIPN) are

learned, and then the latent variables are inferred given the model and ECoG data. In the

second stage, the inferred discrete latent variables (specifically the indices of the most

probable mixture components) are treated as observed variables and used in learning the

parameters of a Markov model. GMM-MM and MFA-MM have the same parameters as

HMM and HMFA respectively.

3.2.3 Model Fitting

We employed 4-fold cross-validation in model fitting. We ensured that all 10 trial

types were present in each cross-validation fold. In addition, we limited the variation in

the proportions of trial types among different folds. Otherwise, the assignment of trials

to cross-validation folds was random. The learning tolerance threshold was 10−2 for all

models with the exception of the GMM models5, for which it was 10−6.

5This was to account for the fact that the MATLAB Gaussian Mixture Model EM algorithm stopping
criterion is implemented differently.
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3.2.4 Metrics

Normalized Mutual Information (NMI)

For each latent variable model, we can infer the most probable mixture component

at each time point for each trial, ωt . We define the ground truth discrete state at each

time point as the trial type index, ξt (ξt ∈ {1, ...,10}). (The ideal choice of ground truth

discrete state would be an index corresponding to the stimuli and behavior at each time

point of a trial. However, our access to such information is limited.)

Then, we can compute the mutual information, I(Ω;Ξ). Intuitively, I(Ω;Ξ) is

a measure of how much ωt tells us about ξt or vice-versa. We note that because ξt is

by definition constant for each trial, if we compute I(Ω;Ξ) limited to a single trial the

result is 0; the same is true if the computation of I(Ω;Ξ) is limited to a single trial type.

We endeavored in our analyses here to ensure that all trial types are present and the

proportions of trial types is similar across all computations of I(Ω;Ξ). The computation

of I(Ω;Ξ) was limited to each cross-validation fold due to the fact that there was no

straightforward correspondence between mixture components learned for different cross-

validation folds. Finally, I(Ω;Ξ) was normalized as shown in Equation 4.20 to obtain the

normalized mutual information.

Leave-one-electrode-out Prediction Error (PE)

For each model, with data not used in model fitting, we leave out each electrode

in turn and compute how well the model can predict the activity of an electrode, given

the activity of all the other electrodes. Let X− j, an (n-1) by T matrix, be the matrix

of observations without the jth electrode and X j of dimension T , be the vector of the

jth electrode observations. With X− j and appropriately modified latent variable model

mixture component parameters, we can infer the most probable mixture component at
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each time point, ω− j,t . Let Ω− j of dimension T, be the vector of the inferred mixture

component indices. Using the joint normality of X− j and X j given Ω− j, we can use

E[X j|X− j,Ω− j] as our prediction of the jth electrode observations. The prediction

error is defined as the sum-of-squared differences between the model prediction and the

observed activity across electrodes and time points:

PE =
n

∑
j=1
||E[X j|X− j,Ω− j]−X j||. (3.6)

This metric is similar to the metric introduced in Subsection 2.2.2. The difference is in

the use here of Ω− j instead of Ω in calculating prediction error; the “left-out” channel is

used in inferring Ω.

3.2.5 Model Class Comparisons

Model comparisons for the model types discussed in Subsection 3.2.2 were made

across subjects, bin widths (50, 100, and 200 milliseconds), percentage of training data

used (10%, 50%, and 100%), number of model mixture components (2-4), and latent

variable dimensionality (1-3) with respect to the metrics introduced in Subsection 3.2.4.

For comparing corresponding6 individual models, the Wilcoxon paired-sample

test was used. We tested for differences with the two-sided test, and in both directions

with one-sided tests. In comparing the NMI for model pairs, test trials in each cross-

validation fold were partitioned into as many sets as possible while ensuring that all

10 trial types were present in each set and the proportions of trial types was similar

across the sets. NMI was then computed for each set. NMI across the sets and cross-

validation folds was then compared. The PE was computed for each test trial in each

cross-validation fold for model pairs and then the PE across trials and cross-validation

6For instance, a GMMdiag with 2 mixture components and a GMMfull with the same number of mixture
components.
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folds compared. Because there were many individual model comparisons, we controlled

the false discovery rate with the Benjamini-Hochberg procedure [BH95], using a false

discovery rate of 0.05.

There were two criteria for determining that a model class does better with respect

to PE or NMI. The first criterion was that the percentage of significant (with a one-sided

test and the two-sided test concurring) individual model comparison results for that model

class is at least 5% more than the percentage of significant results for the other.7 The

second criterion was that the result is consistent across a majority of the subjects.8

3.3 Results

We observed that GMMfull had greater PE than GMMdiag, MFACIPN, and

MFACVPN when 10% of the available training data was used, but then had lower PE when

50% and 100% of the available training data was used. However, GMMdiag, MFACIPN,

and MFACVPN had greater NMI regardless of the percentage of training data used. We

observed a similar effect for GMMfull-MM and HMMfull (full covariance models) with

the corresponding spatiotemporal models. Figure 3.3 is for NY441 with a time point bin

width of 50 milliseconds, 3 mixture components, and where applicable, a latent variable

dimensionality of 1; and is representative of the aforementioned result summarized in

tables A.1 to A.9.

We also observed that the models without shared variance (diagonal covariance

models) only had lower NMI than a model with shared variance—specifically constrained

shared variance models with the CIPN constraint— when a Markov temporal constraint

was incorporated into the model. Figure 3.4 is for NY453 with a time point bin width

7As a concrete example, if the GMMdiag class does better than GMMfull in 35% of the model
comparisons with respect the NMI, while GMMfull does better in 30% of model comparisons, then our
determination is that the GMMdiag class as a whole does better.

8Results that did not satisfy the second criterion were omitted from the tables in appendix A.
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Figure 3.3: Prediction error and normalized mutual information of HMMdiag, HMMfull,
HMFACIPN, and HMFACVPN with 10%, 50%, and 100% of training data used for subject
NY441 with a time point bin width of 50 milliseconds, 3 mixture components, and
where applicable, a latent variable dimensionality of 1. The PE shown here is the
median of medians of the PEs for the trials in the cross-validation folds. The NMI
shown here is the median of the NMIs for the cross-validation folds.
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Figure 3.4: Normalized mutual information of all model types with 100% of training
data used for subject NY453. The NMI shown here is the median of the of the NMIs
for the cross-validation folds.
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of 50 milliseconds, 3 mixture components, and where applicable, a latent variable

dimensionality of 1; and is representative of the aforementioned result summarized in

tables A.12 and A.13.

Another finding was that adding the Markov temporal constraint led to an increase

in NMI with the joint estimation resulting in higher NMI than the two-stage estimation.

Figure 3.4 is representative of this result which is summarized in Table A.14. Finally,

HMFACIPN had the greatest NMI among all the models. This result is detailed in

tables A.13 and A.14.

3.4 Discussion

Of the two metrics, NMI and PE, employed in our analyses, only NMI leverages

the stimulus-behavior information of the dataset; PE is more directly connected with the

covariance. We found that while full covariance models are better able than the other

models to capture covariance in the Cross-Modal Speech neural activity with increasing

training data, much of the additional covariance captured does not seem to be connected

with the stimulus-behavior information.

Even with the constrained shared variance models, there was an advantage relative

to the diagonal covariance methods in modeling stimulus-behavior information only

with the addition of a Markov temporal constraint. This advantage was specific to the

constrained shared variance model with the assumption of component-invariant private

noise. The question of whether this is due to a fundamental property of the ECoG

signal or simply the result of a certain degree of limited data availability arises. A more

thorough investigation would require access to more data as well as ensuring that the

model complexity in terms of total parameter element count is matched for the CIPN and

CVPN model variants.
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Introducing the Markov temporal constraint resulted in improved modeling of

stimulus-behavior information for all models, with the joint estimation further improving

performance. Interestingly, the CIPN model variant only does better than CVPN variant

with respect to modeling both the stimulus-behavior information and covariance with

joint estimation. (Please see tables A.10, A.12 and A.13.)
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Chapter 4

Clustering multivariate

electrocorticographic signal derived

sequences with mixture of hidden

Markov factor analyzer models

We introduce a Hidden-Markov Factor Analysis (HMFA)-based approach for

clustering multivariate data sequences. We compare this novel HMFA-based approach

with analogous hidden Markov model (HMM)-based methods. Experimental results

from electrocorticographic (ECoG) signal trial clustering suggest that the appropriately

constrained HMFA-based technique has advantages over the HMM-based methods in the

context of data limited multivariate sequences.
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4.1 Introduction

There is a growing need for techniques that address the problem of modeling

sequential multivariate data, particularly in scenarios where the dataset size is limited.

Indeed, such tools would be of utility in the neurophysiology and neuroengineering

applications touched on in Chapter 1. In the case where access to brain signals is

achieved through clinically invasive procedures and through patient interactions, there

may be significant constraints on the quantity of data that can be obtained.

One approach to analyzing multivariate sequence data is to evaluate potentially

salient dynamics by applying an unsupervised clustering based approach. The problem of

clustering sequences with mixtures of hidden Markov models (HMMs) [Smy97] has been

considered before. However, the application of this class of models with limited data

availability introduces a significant challenge. Thus, we develop and evaluate methods for

clustering multivariate sequences with a Hidden-Markov Factor Analysis [MM12] based

approach in a data-limited context. Factor analysis is well-established as a statistical tool

for modeling covariance structure with fewer degrees of freedom than assuming a full

covariance matrix [GH96]. (Please see Equation 3.3 and the enveloping discussion.)

In our presentation here, we first introduce a Mixture of Hidden Markov Factor

Analyzers (MHMFA) and we consider two variants of MHMFA. These variants are

extensions of the HMFA models introduced in Subsection 3.2.2. Then, we touch on a

general approach—based on the methods in [Smy97]—to initializing the mixture models

considered here. We discuss the experiments that we use in assessing the different

mixture models. Lastly, we present our results, which suggest that the more successful

MHMFA variant is the extension of the HMFA model that performs best in Chapter 3.
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4.2 Methods

4.2.1 Mixture of Hidden Markov Factor Analyzers (MHMFA)

We describe the MHMFA latent variable model as follows. Let xit ∈Rr represent

the multivariate observation at time step t ∈ {1, ...,Ti} of data sequence xi, i ∈ 1, ...,n.

Let zit ∈ Rs (s < r), and ωit ∈ {1, ...,m} respectively denote the factor and Markov state

corresponding to xit . Just as in the formulation of the mixture of factor analyzers [GH96],

we have the following linear-Gaussian relationship for each factor analyzer:

P(xit |zit ,ωit = j) = N (Λ jzit +µ j,Σ j), (4.1)

where Λ j ∈ Rr×s, µ j ∈ Rr, and the covariance matrix, Σ j ∈ Rr×r ( j ∈ {1, ...,m}) are

model parameters that are learned. As in standard Factor Analysis, Σ j is constrained to

be diagonal (with the diagonal entries representing the private noise or variance in each

observed dimension) and

P(zit) = N (0, I). (4.2)

The factor analyzers at different time points are linked through an m-state HMM with

start probability vector, π, and transition probability matrix, A, parameters that are also

learned:

π j = P(ωi1 = j), A jk = P(ωit = k|ωi,t−1 = j), j,k ∈ {1, ...,m}. (4.3)

This completes the description of the HMFA (subsection 2.2.1) model:

M = {π,A,(µ j,Λ j,Σ j)
m
j=1}. (4.4)
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Now we can consider the case where we have a finite set of c HMFA models with the

h-th model:

M h = {πh,Ah,(µh
j ,Λ

h
j ,Σ

h
j)

m
j=1}, h ∈ {1, ...,c}, (4.5)

and a probability vector ρ that parametrizes the mixing proportions:

ρh = P(νh = 1). (4.6)

νh is an indicator variable that equals 1 when a sequence xi is generated by M h and 0

otherwise. The complete MHMFA model is as follows:

M = {ρ,(πh,Ah,(µh
j ,Λ

h
j ,Σ

h
j)

m
j=1)

c
h=1}. (4.7)

Just like HMFA, MHMFA has its own AECM algorithm for parameter estimation and

we outline the algorithm below.

First E-Step In this step, the factors zit are marginalized out and only the state labels

remain as missing data in the expected log-likelihood:

l1(M ) =
n

∑
i=1

c

∑
h=1

E[νh|xi]

(
logρh +

m

∑
j=1

P(ωh
i1 = j|xi) logπ

h
j

+
Ti

∑
t=2

m

∑
j=1

m

∑
k=1

P(ωh
it = k|ωh

i,t−1 = j,xi) logAh
jk

+
Ti

∑
t=1

m

∑
j=1

P(ωh
it = j|xi) logPh(xit |ωh

it = j)

)
,

(4.8)

where

E[νh|xi] ∝ P(xi,νh = 1) = ρhP(xi|νh = 1). (4.9)
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P(ωh
it = j|xi) and P(ωh

it = k|ωh
i,t−1 = j,xi) are calculated using the forward-backward

algorithm for HMMs, and Ph(xit |ωh
it = j) can be determined from Equations 4.1 and 4.2:

logPh(xit |ωh
it = j) ∝

− 1
2

log |Λh
j(Λ

h
j)
′
+Σ

h
j |−

1
2
(xit−µh

j)
′
(Λh

j(Λ
h
j)
′
+Σ

h
j)
−1(xit−µh

j).
(4.10)

First CM-Step l1(M ) is maximized with respect to ρ and (πh,Ah,(µh
j)

m
j=1)

c
h=1 to

obtain the following update rules:

ρh =
1
n

n

∑
i=1

E[νh|xi]

µh
j =

∑
n
i=1E[νh|xi]∑

Ti
t=1 P(ωh

it = j|xi)xit

∑
n
i=1E[νh|xi]∑

Ti
t=1 P(ωh

it = j|xi))

π
h
j =

∑
n
i=1E[νh|xi]Ph(ω

h
i1 = j|xi)

n

Ah
jk =

∑
n
i=1E[νh|xi]∑

Ti
t=2 P(ωh

it = k|ωh
i,t−1 = j,xi)

∑
n
i=1E[νh|xi]∑

Ti
t=2 ∑

m
k=1 P(ωh

it = k|ωh
i,t−1 = j,xi)

(4.11)

Second E-Step In this step, both the factors and state labels are taken as missing data

in the expected log-likelihood:

l2(M ) =
n

∑
i=1

c

∑
h=1

E[νh|xi]

(
logρh +

m

∑
j=1

P(ωh
i1 = j|xi) logπ

h
j

+
Ti

∑
t=2

m

∑
j=1

m

∑
k=1

P(ωh
it = k|ωh

i,t−1 = j,xi) logAh
jk

+
Ti

∑
t=1

m

∑
j=1

P(ωh
it = j|xi)E[logPh(xit |zit ,ω

h
it = j)|xi]

+
Ti

∑
t=1

m

∑
j=1

P(ωh
it = j|xi) logP(zit)

)
,

(4.12)
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where:

E[logPh(xit |zit ,ω
h
it = j)|xi] ∝

− 1
2

log |Σh
j |−

1
2
E[(xit−µh

j −Λ
h
jzit)

′(Σh
j)
−1
(xit−µh

j −Λ
h
jzit)|xi].

(4.13)

Second CM-Step With the estimates from the first CM-Step we have the following

updates for ((Λh
j ,Σ

h
j)

m
j=1)

c
h=1:

Λ
h
j =

n

∑
i=1

E[νh|xi]
Ti

∑
t=1

P(ωh
it = j|xi) · (xit−µh

j) ·Eh[zit
′|xit ,ω

h
it = j]

·

(
n

∑
i=1

E[νh|xi]
Ti

∑
t=1

P(ωh
it = j|xi) ·Eh[zitzit

′|xit ,ω
h
it = j]

)−1

Σ
h
j =

1

∑
n
i=1E[νh|xi]∑

Ti
t=1 P(ωh

it = j|xi)

·diag

[
n

∑
i=1

E[νh|xi]
Ti

∑
t=1

P(ωh
it = j|xi)

(
(xit−µh

j)(xit−µh
j)
′

−Λ
h
jEh[zit |xit ,ω

h
it = j](xit−µh

j)
′
)]

,

(4.14)

where:

Eh[zit |xit ,ω
h
it = j] = β

h
j(xit−µh

j)

Eh[zitzit
′|xit ,ωit = j] = I−β

h
jΛ

h
j +β

h
j(xit−µh

j)(xit−µh
j)
′
(βh

j)
′

β
h
j = (Λh

j)
′
(

Σ
h
j +Λ

h
j(Λ

h
j)
′
)−1

.

(4.15)

We will refer to the model, M , in Equation 4.7 as MHMFACVPN hereafter, with CVPN

standing for Component-Variant Private Noise. Please note that all the mixture models

introduced here are extensions of the Markov models treated in Subsection 3.2.2. We
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also consider MHMFACIPN:

M = {ρ,(πh,Ah,(µh
j ,Λ

h
j)

m
j=1,Σ

h)c
h=1}, (4.16)

in which the private noise parameter Σh is invariant among the factor analyzers within

each underlying HMFA model. The intuition behind considering a model in which private

noise is invariant across the hidden discrete states is that while the covariance structure

may shift over time, for some problems we may expect the private noise characteristics

to remain fixed. For example, if private noise is interpreted as sensor specific data

acquisition noise, it is reasonable to expect the private noise variance to be constant

across time. For this variant, the update rule for Σh is as follows:

Σ
h =

1

∑
c
h=1 ∑

n
i=1E[νh|xi]∑

Ti
t=1 P(ωh

it = j|xi)

·diag

[
c

∑
h=1

n

∑
i=1

E[νh|xi]
Ti

∑
t=1

P(ωh
it = j|xi)

(
(xit−µh

j)(xit−µh
j)
′

−Λ
h
jEh[zit |xit ,ω

h
it = j](xit−µh

j)
′
)]

.

(4.17)

Furthermore, two HMM mixture model types—MHMMfull and MHMMdiag—are con-

sidered in our analyses. The Gaussian covariance parameters are unconstrained for

MHMMfull, but constrained to be diagonal for MHMMdiag.

4.2.2 Algorithm Initialization

Let Mi denote an underlying Markov model (HMMdiag, HMMfull, HMFACIPN,

or HMFACVPN) fit to data sequence xi, i ∈ 1, ...,n. We constructed a symmetric log-
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likelihood distance matrix, L, with each entry defined as:

Lil = logP(xl|Mi)+ logP(xi|Ml) (4.18)

as prescribed in [Smy97]. We then used L for (1) removing outlier sequences, and

(2) selecting dissimilar underlying Markov models to initialize the components of the

mixture model. We adopted these two steps described here (as the rest of the procedure

laid out in [Smy97] did not produce satisfactory results).

Outlier Sequence Removal The intuition behind the algorithm here is to identify

and eliminate—from model fitting—particular sequences that are dissimilar from a

supermajority of the other sequences. In our work here, we used a threshold of d(2/3)ne.

The procedure is as follows:

1. Compute the index corresponding to the minimum of each row of L.

2. Among those indices that correspond to row minima, determine those (not already

identified) that occur more than a specified threshold number of rows.

3. If no indices cross the threshold, terminate the procedure. Otherwise, reduce the

threshold number of rows by the number of newly identified indices that cross the

threshold and repeat steps 1-3.

Dissimilar Markov Models Selection The goal of Algorithm 1 is to identify a subset

of models that are the most dissimilar from one another.
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Algorithm 1 Dissimilar Markov Models Selection
Input: log-likelihood matrix L, number of sequences n, number of mixture compo-
nents m
[i1, i2] = argmin1≤i<l≤n Lil
S = {i1, i2}
for j = 3 to m do

i j = argmin1≤i≤n,i/∈S ∑l∈S Lil
S = S∪{i j}

end for
return S

4.2.3 Cross-modal Speech Experiment and ECoG Recordings

The relevant Cross-modal Speech Experiment and ECoG signal processing infor-

mation are contained in Subsection 3.2.1.1

4.2.4 Model Experiments

For our work here, we performed a one-way Analysis of Variance for each

electrode across samples from each trial type, and used the p-values to rank electrodes.

We performed analyses with the 5 top-ranked electrodes (having the 5 lowest p-values)

as well as the 10 top-ranked electrodes for each subject. Even after limiting the number

of electrodes to 5 and 10, we experienced significant model fitting issues2 with using

the HMMfull-based initialization for MHMMfull. This gives a sense of how data-limited

we were; we used 100% of the available training data in all analyses. We used the

HMFACIPN-based initialization instead for MHMMfull as it performed better than the

analagous HMFACVPN-based initialization. The initial MHMMfull Markov process

covariance matrices, Σh
j,full, are constructed as follows:

Σ
h
j,full = Λ

h
j(Λ

h
j)
′
+Σ

h, j ∈ {1, ...,m}, h ∈ {1, ...,c} (4.19)

1We used only 50-millisecond neural signal time steps in our analyses here.
2These model fitting issues were due to the occurrence of singular matrices.
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In all pertinent analyses herein, the dimensionality, s, of the factors, zit , was set

to 1. We considered underlying Markov models with 2 and 3 hidden Markov states. We

conducted two experiments.

First Experiment We compared MHMMdiag, MHMMfull, MHMFACIPN, and

MHMFACVPN in a two-cluster problem on Cross-Modal Speech Experiment trials with

and without audio. Trials with phase-scrambled audio were excluded from this analysis.

We evaluated the models in terms of accuracy and normalized mutual information, NMI,

defined as:

NMI =
I(U ;V )

H(V )
(4.20)

where U corresponds to trial cluster assignments and V corresponds to trial labels (audio

present or absent). Since this was a two-cluster problem, the number of component

Markov models in the mixture models was set to 2.

Second Experiment All ten Cross-Modal Speech Experiment trial types were consid-

ered in this comparison of MHMMdiag, MHMMfull, MHMFACIPN, and MHMFACVPN.

We evaluated the models in terms of normalized mutual information, NMI, with U corre-

sponding to trial cluster assignments and V to an index between 1 and 10. We considered

Markov mixture models with 2, 3, and 4 component Markov models.

4.2.5 Model Fitting and Class Comparisons

We employed 4-fold cross-validation in model fitting. Model comparisons for

the model types discussed in Subsection 4.2.1 were made across subjects, the number of

electrodes, the number of Markov process hidden states, and the number of component

Markov models in the mixture model, with respect to accuracy and NMI. In statistical

tests comparing the accuracy and NMI of models, test trials in each cross-validation fold
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were partitioned into as many sets as possible while ensuring that all trials types were

present in each set, and the proportions of trial types were similar across the sets. The

accuracy and NMI were then computed for each set, and then the values across the sets

and cross-validation folds were compared in a Wilcoxon paired-sample test. We only

consider the comparisons between MHMMfull and MHMFACIPN (and not MHMMfull

with the other model classes) because MHMMfull and MHMFACIPN share the same

initialization stage in our work here. The criteria for determining whether a model class

performed better with respect to accuracy and/or NMI were the same as in Subsection

3.2.5.

4.3 Results

For the first experiment, model comparisons were made across patients, the

number of electrodes, and the number of Markov process hidden states (Wilcoxon paired-

sample test, Benjamini-Hochberg false discovery rate of 0.05). The results in Table 4.1

are for accuracy and normalized mutual information. Figure 4.1 shows the accuracy

and normalized mutual information results for subject NY455 across the number of

electrodes, and the number of Markov process hidden states. This figure is representative

of the results summarized in Table 4.1.

In the second experiment, we evaluated models in terms of normalized mutual

information, and made comparisons across patients, the number of electrodes, the number

of Markov process hidden states, and the number of component Markov models in the

mixture model. The results are shown in Table 4.2. Figure 4.2 shows the normalized

mutual information results for NY441 across the number of electrodes, the number of

Markov process hidden states, and the number of Markov models in the mixture. This

figure is representative of the results summarized in Table 4.2.
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Table 4.1: Model class comparisons

Accuracy

Model Class Outcome

A B Total number of
model
comparisons

A statistically
significantly
greater

B statistically
significantly
greater

MHMFACIPN MHMMfull 24 8 (33.33%) 0 (0%)
MHMFACIPN MHMFACVPN 23 5 (21.74%) 0 (0%)
MHMFACIPN MHMMdiag 24 4 (16.67%) 0 (0%)
MHMMdiag MHMFACVPN 23 0 (0%) 0 (0%)

Normalized Mutual Information

Model Class Outcome

A B Total number of
model
comparisons

A statistically
significantly
greater

B statistically
significantly
greater

MHMFACIPN MHMMfull 24 8 (33.33%) 0 (0%)
MHMFACIPN MHMFACVPN 23 8 (34.78%) 0 (0%)
MHMFACIPN MHMMdiag 24 4 (16.67%) 0 (0%)
MHMMdiag MHMFACVPN 23 0 (0%) 0 (0%)

2 3 
Markov process 

states
5 electrodes

2              3 
Markov process 

states
10 electrodes

(a) Median accuracy

2 3 
Markov process 

states
5 electrodes

2              3 
Markov process 

states
10 electrodes

MHMMdiag
MHMMfull
MHMFACIPN
MHMFACVPN

(b) Median normalized mutual information

Figure 4.1: Results of the first experiment for subject NY455
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Table 4.2: Model class normalized mutual information comparisons

Model Class Outcome

A B Total number of
model
comparisons

A statistically
significantly
greater

B statistically
significantly
greater

MHMFACIPN MHMMfull 72 13 (18.06%) 0 (0%)
MHMFACIPN MHMFACVPN 71 28 (39.44%) 0 (0%)
MHMFACIPN MHMMdiag 72 15 (20.83%) 0 (0%)
MHMMdiag MHMFACVPN 71 1 (1.41%) 0 (0%)

Number of Markov Models in Mixture

(a) 5 electrodes, 2 Markov process states

Number of Markov Models in Mixture

MHMMdiag
MHMMfull
MHMFACIPN
MHMFACVPN

(b) 5 electrodes, 3 Markov process states

Number of Markov Models in Mixture

(c) 10 electrodes, 2 Markov process states

Number of Markov Models in Mixture

(d) 10 electrodes, 3 Markov process states

Figure 4.2: Results of the second experiment for NY441
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4.4 Discussion

In the first experiment, we found that MHMFACIPN outperformed the other model

classes with respect to accuracy and normalized mutual information. However, we did not

observe a difference between MHMFACVPN and MHMMdiag. This suggests that while

there may be benefits to modeling changes over time in shared variance between electrode

channels, the additional model complexity of a private noise parameter for each Markov

process Gaussian component disadvantaged MHMFACVPN relative to MHMFACIPN,

which has a single private noise parameter shared by the Gaussian components within

each Markov model. This finding is consistent not only with our observations in Section

3.4 but also with our intuition about the nature of ECoG recording3 that the electrodes’

shared variance has a more reliable connection than private noise with that underlying

neural modulation. As we mentioned in Section 3.4, more work is necessary to make any

determination in this matter.

We also note that MHMFACIPN did better than MHMMfull even though the models

had the same initialization stage in our work here, and that there were model fitting issues

albeit very limited with MHMFACVPN
4. These seem to point to how data-limited we are.

Finally, the main results of the second experiment, in which the number of trial conditions

was expanded from two to ten, match those of the first experiment very closely.
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Chapter 5

Conclusion and Future Directions

Our work on trial clustering in Chapter 4 serves as a proof of concept of an

algorithmic BMI system component for identifying stimuli and behavior with salient

ECoG neural responses. The current paradigm in studies with neuroprosthetic assistive

devices is to identify suitable neural responses for BMI system control during a period of

instructed behavior. But what if that period of instructed behavior is replaced with period

of free behavior during which a BMI system component identifies behavior that has a

consistent and salient neural activation pattern?

Additionally, the model framework laid out in chapters 3 and 4 could serve

as a useful tool for understanding the connections between aspects of perception and

cognition, and different components of ECoG neural signal variability. For instance,

does the result about the private variance constraint tell us something about the nature of

the ECoG signal or is it just a reflection of how data-limited we are? If the constraint

does tell us something fundamental, what is the scope in terms of different aspects of

perception, behavior, and cognition?

Thirdly, the advancement of BMI technology and neurophysiology that the meth-

ods proposed in this dissertation may enable could lead to new clinical diagnostic and

47
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therapeutic techniques.



Appendix A

Model Class Comparison Tables

The results of the analyses in 3 are detailed in the following tables.

Table A.1: Model class comparison of GMMdiag and GMMfull

Prediction Error

Percentage
of training
data used

Total number
of model
comparisons

GMMdiag
statistically
significantly
smaller

GMMfull
statistically
significantly
smaller

10% 54 40 (74.07%) 11 (20.37%)
50% 54 1 (1.85%) 49 (90.74%)
100% 54 0 (0%) 53 (98.15%)

Normalized Mutual Information

Percentage
of training
data used

Total number
of model
comparisons

GMMdiag
statistically
significantly
greater

GMMfull
statistically
significantly
greater

10% 54 45 (83.33%) 0 (0%)
50% 54 30 (55.56%) 0 (0%)
100% 54 23 (42.59%) 0 (0%)

49
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Table A.2: Model class comparison of MFACVPN and GMMfull

Prediction Error

Percentage
of training
data used

Latent variable
dimensionality
of MFACVPN

Total number
of model
comparisons

MFACVPN
statistically
significantly
smaller

GMMfull
statistically
significantly
smaller

10% 1 54 47 (87.04%) 3 (5.56%)
50% 1 54 9 (16.67%) 41 (75.93%)
100% 1 54 1 (1.85%) 49 (90.74%)

10% 2 54 51 (94.44%) 0 (0%)
50% 2 54 12 (22.22%) 37 (68.52%)
100% 2 54 4 (7.41%) 45 (83.33%)

10% 3 54 52 (96.30%) 0 (0%)
50% 3 54 15 (27.78%) 32 (59.26%)
100% 3 54 4 (7.41%) 43 (79.63%)

Normalized Mutual Information

Percentage
of training
data used

Latent variable
dimensionality
of MFACVPN

Total number
of model
comparisons

MFACVPN
statistically
significantly
greater

GMMfull
statistically
significantly
greater

10% 1 54 47 (87.04%) 0 (0%)
50% 1 54 27 (50%) 0 (0%)
100% 1 54 27 (50%) 0 (0%)

10% 2 54 46 (85.19%) 0 (0%)
50% 2 54 25 (46.30%) 0 (0%)
100% 2 54 23 (42.59%) 0 (0%)

10% 3 54 47 (87.04%) 0 (0%)
50% 3 54 27 (50%) 0 (0%)
100% 3 54 23 (42.59%) 0 (0%)
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Table A.3: Model class comparison of MFACIPN and GMMfull

Prediction Error

Percentage
of training
data used

Latent variable
dimensionality
of MFACIPN

Total number
of model
comparisons

MFACIPN
statistically
significantly
smaller

GMMfull
statistically
significantly
smaller

10% 1 54 51 (94.44%) 1 (1.85%)
50% 1 54 9 (16.67%) 41 (77.78%)
100% 1 54 2 (3.70%) 50 (92.59%)

10% 2 54 52 (96.30%) 0 (0%)
50% 2 54 13 (24.07%) 37 (68.52%)
100% 2 54 3 (5.56%) 46 (85.19%)

10% 3 54 52 (96.30%) 0 (0%)
50% 3 54 14 (25.93%) 34 (62.96%)
100% 3 54 3 (5.56%) 45 (83.33%)

Normalized Mutual Information

Percentage
of training
data used

Latent variable
dimensionality
of MFACIPN

Total number
of model
comparisons

MFACIPN
statistically
significantly
greater

GMMfull
statistically
significantly
greater

10% 1 54 34 (62.96%) 3 (5.56%)
50% 1 54 27 (50%) 5 (9.26%)
100% 1 54 22 (40.74%) 7 (12.96%)

10% 2 54 36 (66.67%) 1 (1.85%)
50% 2 54 22 (40.74%) 4 (7.41%)
100% 2 54 24 (44.44%) 3 (5.56%)

10% 3 54 38 (70.37%) 1 (1.85%)
50% 3 54 25 (46.30%) 0 (0%)
100% 3 54 27 (50%) 2 (3.70%)
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Table A.4: Model class comparison of GMMdiag-MM and GMMfull-MM

Prediction Error

Percentage
of training
data used

Total number
of model
comparisons

GMMdiag-MM
statistically
significantly
smaller

GMMfull-MM
statistically
significantly
smaller

10% 54 40 (74.07%) 10 (18.52%)
50% 54 2 (3.70%) 50 (92.59%)
100% 54 0 (0%) 52 (96.30%)

Normalized Mutual Information

Percentage
of training
data used

Total number
of model
comparisons

GMMdiag-MM
statistically
significantly
greater

GMMfull-MM
statistically
significantly
greater

10% 54 20 (37.04%) 0 (0%)
50% 54 17 (31.48%) 0 (0%)
100% 54 15 (27.78%) 0 (0%)
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Table A.5: Model class comparison of MFACVPN-MM and GMMfull-MM

Prediction Error

Percentage
of training
data used

Latent variable
dimensionality
of
MFACVPN-MM

Total number of
model
comparisons

MFACVPN-MM
statistically
significantly
smaller

GMMfull-MM
statistically
significantly
smaller

10% 1 54 48 (88.89%) 3 (5.56%)
50% 1 54 9 (16.67%) 42 (77.78%)
100% 1 54 3 (5.56%) 48 (88.89%)

10% 2 54 51 (94.44%) 0 (0%)
50% 2 54 12 (22.22%) 36 (66.67%)
100% 2 54 5 (9.26%) 44 (81.48%)

10% 3 54 52 (96.30%) 0 (0%)
50% 3 54 15 (27.78%) 32 (59.26%)
100% 3 54 5 (9.26%) 42 (77.78%)

Normalized Mutual Information

Percentage
of training
data used

Latent variable
dimensionality
of
MFACVPN-MM

Total number of
model
comparisons

MFACVPN-MM
statistically
significantly
greater

GMMfull-MM
statistically
significantly
greater

10% 1 54 24 (44.44%) 0 (0%)
50% 1 54 20 (37.04%) 0 (0%)
100% 1 54 15 (27.78%) 0 (0%)

10% 2 54 20 (37.04%) 0 (0%)
50% 2 54 17 (31.48%) 0 (0%)
100% 2 54 14 (25.93%) 0 (0%)

10% 3 54 22 (40.74%) 0 (0%)
50% 3 54 20 (37.04%) 0 (0%)
100% 3 54 13 (24.07%) 0 (0%)
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Table A.6: Model class comparison of MFACIPN-MM and GMMfull-MM

Prediction Error

Percentage
of training
data used

Latent variable
dimensionality
of
MFACIPN-MM

Total number of
model
comparisons

MFACIPN-MM
statistically
significantly
smaller

GMMfull-MM
statistically
significantly
smaller

10% 1 54 48 (88.89%) 2 (3.70%)
50% 1 54 10 (18.52%) 40 (74.07%)
100% 1 54 4 (7.41%) 50 (92.59%)

10% 2 54 51 (94.44%) 0 (0%)
50% 2 54 14 (25.93%) 39 (72.22%)
100% 2 54 4 (7.41%) 45 (83.33%)

10% 3 54 52 (96.30%) 0 (0%)
50% 3 54 14 (25.93%) 34 (62.96%)
100% 3 54 4 (7.41%) 44 (81.48%)

Normalized Mutual Information

Percentage
of training
data used

Latent variable
dimensionality
of
MFACIPN-MM

Total number of
model
comparisons

MFACIPN-MM
statistically
significantly
greater

GMMfull-MM
statistically
significantly
greater

10% 1 54 23 (42.59%) 1 (1.85%)
50% 1 54 28 (51.85%) 2 (3.70%)
100% 1 54 26 (48.15%) 1 (1.85%)

10% 2 54 21 (38.89%) 0 (0%)
50% 2 54 25 (46.30%) 0 (0%)
100% 2 54 26 (48.15%) 0 (0%)

10% 3 54 20 (37.04%) 0 (0%)
50% 3 54 29 (53.70%) 0 (0%)
100% 3 54 25 (46.30%) 0 (0%)
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Table A.7: Model class comparison of HMMdiag and HMMfull

Prediction Error

Percentage
of training
data used

Total number
of model
comparisons

HMMdiag
statistically
significantly
smaller

HMMfull
statistically
significantly
smaller

10% 53 39 (73.58%) 12 (22.64%)
50% 54 1 (1.85%) 50 (94.44%)
100% 54 0 (0%) 54 (100%)

Normalized Mutual Information

Percentage
of training
data used

Total number
of model
comparisons

HMMdiag
statistically
significantly
greater

HMMfull
statistically
significantly
greater

10% 53 21 (39.62%) 0 (0%)
50% 54 18 (33.33%) 0 (0%)
100% 54 8 (14.81%) 0 (0%)
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Table A.8: Model class comparison of HMFACVPN and HMMfull

Prediction Error

Percentage
of training
data used

Latent variable
dimensionality
of HMFACVPN

Total number
of model
comparisons

HMFACVPN
statistically
significantly
smaller

HMMfull
statistically
significantly
smaller

10% 1 53 47 (88.68%) 4 (7.55%)
50% 1 54 8 (14.81%) 44 (81.48%)
100% 1 54 1 (1.85%) 51 (94.44%)

10% 2 53 50 (94.34%) 2 (3.77%)
50% 2 54 13 (24.07%) 39 (72.22%)
100% 2 54 3 (5.56%) 49 (90.74%)

10% 3 53 51 (96.23%) 1 (1.89%)
50% 3 54 18 (33.33%) 28 (51.85%)
100% 3 54 4 (7.41%) 45 (83.33%)

Normalized Mutual Information

Percentage
of training
data used

Latent variable
dimensionality
of HMFACVPN

Total number
of model
comparisons

HMFACVPN
statistically
significantly
greater

HMMfull
statistically
significantly
greater

10% 1 53 23 (43.40%) 0 (0%)
50% 1 54 17 (31.48%) 0 (0%)
100% 1 54 7 (12.96%) 0 (0%)

10% 2 53 22 (41.51%) 0 (0%)
50% 2 54 19 (35.19%) 0 (0%)
100% 2 54 5 (9.26%) 0 (0%)

10% 3 53 18 (33.96%) 0 (0%)
50% 3 54 17 (31.48%) 0 (0%)
100% 3 54 5 (9.26%) 0 (0%)
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Table A.9: Model class comparison of HMFACIPN and HMMfull

Prediction Error

Percentage
of training
data used

Latent variable
dimensionality
of HMFACIPN

Total number
of model
comparisons

HMFACIPN
statistically
significantly
smaller

HMMfull
statistically
significantly
smaller

10% 1 53 46 (86.79%) 3 (5.66%)
50% 1 54 7 (12.96%) 42 (77.78%)
100% 1 54 1 (1.85%) 52 (96.30%)

10% 2 53 48 (90.57%) 3 (5.66%)
50% 2 54 13 (24.07%) 33 (61.11%)
100% 2 54 3 (5.56%) 47 (87.04%)

10% 3 53 50 (94.34%) 1 (1.89%)
50% 3 54 19 (35.19%) 31 (57.41%)
100% 3 54 3 (5.56%) 45 (83.33%)

Normalized Mutual Information

Percentage
of training
data used

Latent variable
dimensionality
of HMFACIPN

Total number
of model
comparisons

HMFACIPN
statistically
significantly
greater

HMMfull
statistically
significantly
greater

10% 1 53 21 (39.62%) 0 (0%)
50% 1 54 26 (48.15%) 0 (0%)
100% 1 54 20 (37.04%) 0 (0%)

10% 2 53 26 (49.06%) 0 (0%)
50% 2 54 32 (59.26%) 0 (0%)
100% 2 54 22 (40.74%) 0 (0%)

10% 3 53 27 (50.94%) 0 (0%)
50% 3 54 34 (62.96%) 0 (0%)
100% 3 54 26 (48.15%) 0 (0%)
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Table A.10: Model class prediction error comparisons (spatial constraints)

Model Class Outcome

A B Latent variable
dimensionality
of factor
analysis–based
models,
Total number of
model
comparisons

A statistically
significantly
smaller

B statistically
significantly
smaller

MFACVPN GMMdiag 1, 162 162 (100%) 0 (0%)
MFACVPN GMMdiag 2, 162 161 (99.38%) 0 (0%)
MFACVPN GMMdiag 3, 162 162 (100%) 0 (0%)
MFACIPN GMMdiag 1, 162 151 (93.21%) 0 (0%)
MFACIPN GMMdiag 2, 162 152 (93.83%) 1 (0.62%)
MFACIPN GMMdiag 3, 162 154 (95.06%) 1 (0.62%)
MFACIPN MFACVPN 1-3, 486 231 (47.53%) 98 (20.16%)

MFACVPN-MM GMMdiag-MM 1, 162 162 (100%) 0 (0%)
MFACVPN-MM GMMdiag-MM 2, 162 162 (100%) 0 (0%)
MFACVPN-MM GMMdiag-MM 3, 162 162 (100%) 0 (0%)
MFACIPN-MM GMMdiag-MM 1, 162 148 (91.36%) 1 (0.62%)
MFACIPN-MM GMMdiag-MM 2, 162 151 (93.21%) 2 (1.23%)
MFACIPN-MM GMMdiag-MM 3, 162 152 (93.83%) 2 (1.23%)

HMFACVPN HMMdiag 1, 162 162 (100%) 0 (0%)
HMFACVPN HMMdiag 2, 162 162 (100%) 0 (0%)
HMFACVPN HMMdiag 3, 162 162 (100%) 0 (0%)
HMFACIPN HMMdiag 1, 162 149 (91.98%) 2 (1.23%)
HMFACIPN HMMdiag 2, 162 151 (93.21%) 1 (0.62%)
HMFACIPN HMMdiag 3, 162 156 (96.30%) 0 (0%)
HMFACIPN HMFACVPN 1-3, 486 147 (30.25%) 0 (0%)
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Table A.11: Model class prediction error comparisons (Markov temporal constraint)

Model Class Outcome

A B Latent variable
dimensionality
of factor
analysis–based
models,
Total number of
model
comparisons

A statistically
significantly
smaller

B statistically
significantly
smaller

GMMfull-MM GMMfull none, 162 72 (44.44%) 4 (2.47%)
GMMdiag-MM GMMdiag none, 162 108 (66.67%) 1 (0.62%)
MFACVPN-MM MFACVPN 1-3, 486 325 (66.87%) 0 (0%)
MFACIPN-MM MFACIPN 1-3, 486 242 (49.79%) 15 (3.09%)

HMMfull GMMfull none, 161 71 (44.10%) 33 (20.50%)
HMMdiag GMMdiag none, 162 96 (59.26%) 1 (0.62%)
HMFACVPN MFACVPN 1-3, 486 336 (69.14%) 19 (3.91%)
HMFACIPN MFACIPN 1-3, 486 310 (63.79%) 43 (8.85%)

HMMfull GMMfull-MM none, 161 65 (40.37%) 33 (20.50%)
HMMdiag GMMdiag-MM none, 162 48 (29.63%) 2 (1.23%)
HMFACVPN MFACVPN-MM 1-3, 486 275 (56.58%) 38 (7.82%)
HMFACIPN MFACIPN-MM 1-3, 486 294 (60.49%) 40 (8.23%)
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Table A.12: Model class normalized mutual information comparisons (spatial
constraints) for models without the Markov temporal constraint

Model Class Outcome

A B Latent variable
dimensionality
of factor
analysis–based
models,
Total number of
model
comparisons

A statistically
significantly
greater

B statistically
significantly
greater

GMMdiag GMMfull none, 162 98 (60.49%) 0 (0%)
MFACVPN GMMfull 1, 162 101 (62.35%) 0 (0%)
MFACVPN GMMfull 2, 162 94 (58.02%) 0 (0%)
MFACVPN GMMfull 3, 162 97 (59.88%) 0 (0%)
MFACIPN GMMfull 1, 162 83 (51.23%) 15 (9.26%)
MFACIPN GMMfull 2, 162 82 (50.62%) 8 (4.94%)
MFACIPN GMMfull 3, 162 90 (55.56%) 3 (1.85%)
MFACVPN GMMdiag 1, 162 0 (0%) 2 (1.23%)
MFACVPN GMMdiag 2, 162 0 (0%) 5 (3.09%)
MFACVPN GMMdiag 3, 162 0 (0%) 7 (4.32%)
MFACIPN GMMdiag 1, 162 3 (1.85%) 22 (13.58%)
MFACIPN GMMdiag 2, 162 1 (0.62%) 11 (6.79%)
MFACIPN GMMdiag 3, 162 0 (0%) 11 (6.79%)
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Table A.13: Model class normalized mutual information comparisons (spatial
constraints) for models with the Markov temporal constraint

Model Class Outcome

A B Latent variable
dimensionality
of factor
analysis–based
models,
Total number of
model
comparisons

A statistically
significantly
greater

B statistically
significantly
greater

GMMdiag-MM GMMfull-MM none, 162 52 (32.10%) 0 (0%)
MFACVPN-MM GMMfull-MM 1, 162 59 (36.42%) 0 (0%)
MFACVPN-MM GMMfull-MM 2, 162 51 (31.48%) 0 (0%)
MFACVPN-MM GMMfull-MM 3, 162 55 (33.95%) 0 (0%)
MFACIPN-MM GMMfull-MM 1, 162 77 (47.53%) 4 (2.47%)
MFACIPN-MM GMMfull-MM 2, 162 72 (44.44%) 0 (0%)
MFACIPN-MM GMMfull-MM 3, 162 74 (45.68%) 0 (0%)
MFACVPN-MM GMMdiag-MM 1, 162 0 (0%) 4 (2.47%)
MFACVPN-MM GMMdiag-MM 2, 162 0 (0%) 4 (2.47%)
MFACVPN-MM GMMdiag-MM 3, 162 0 (0%) 5 (3.09%)
MFACIPN-MM GMMdiag-MM 1, 162 35 (21.60%) 8 (4.94%)
MFACIPN-MM GMMdiag-MM 2, 162 30 (18.52%) 2 (1.23%)
MFACIPN-MM GMMdiag-MM 3, 162 25 (15.43%) 1 (0.62%)
MFACIPN-MM MFACVPN-MM 1-3, 486 112 (23.05%) 9 (1.85%)

HMMdiag HMMfull none, 161 47 (29.19%) 0 (0%)
HMFACVPN HMMfull 1, 161 47 (29.19%) 0 (0%)
HMFACVPN HMMfull 2, 161 46 (28.57%) 0 (0%)
HMFACVPN HMMfull 3, 161 40 (24.84%) 0 (0%)
HMFACIPN HMMfull 1, 161 67 (41.61%) 0 (0%)
HMFACIPN HMMfull 2, 161 80 (49.69%) 0 (0%)
HMFACIPN HMMfull 3, 161 87 (54.04%) 0 (0%)
HMFACVPN HMMdiag 1, 162 7 (4.32%) 10 (6.17%)
HMFACVPN HMMdiag 2, 162 4 (2.47%) 20 (12.35%)
HMFACVPN HMMdiag 3, 162 0 (0%) 17 (10.49%)
HMFACIPN HMMdiag 1, 162 49 (30.25%) 0 (0%)
HMFACIPN HMMdiag 2, 162 54 (33.33%) 0 (0%)
HMFACIPN HMMdiag 3, 162 46 (28.40%) 0 (0%)
HMFACIPN HMFACVPN 1-3, 486 147 (30.25%) 0 (0%)
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Table A.14: Model class normalized mutual information comparisons (Markov temporal
constraint)

Model Class Outcome

A B Latent variable
dimensionality
of factor
analysis–based
models,
Total number of
model
comparisons

A statistically
significantly
greater

B statistically
significantly
greater

GMMfull-MM GMMfull none, 162 114 (70.37%) 0 (0%)
GMMdiag-MM GMMdiag none, 162 129 (79.63%) 0 (0%)
MFACVPN-MM MFACVPN 1-3, 486 418 (86.01%) 0 (0%)
MFACIPN-MM MFACIPN 1-3, 486 411 (84.57%) 10 (6.17%)

HMMfull GMMfull none, 161 75 (46.58%) 0 (0%)
HMMdiag GMMdiag none, 162 85 (52.47%) 0 (0%)
HMFACVPN MFACVPN 1-3, 486 388 (79.84%) 0 (0%)
HMFACIPN MFACIPN 1-3, 486 411 (84.57%) 0 (0%)

HMMfull GMMfull-MM none, 161 20 (12.42%) 0 (0%)
HMMdiag GMMdiag-MM none, 162 27 (16.67%) 0 (0%)
HMFACVPN MFACVPN-MM 1-3, 486 138 (28.40%) 1 (0.21%)
HMFACIPN MFACIPN-MM 1-3, 486 212 (43.62%) 0 (0%)
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