Lawrence Berkeley National Laboratory

Lawrence Berkeley National Laboratory

Title

The Resolution of Chiral, Tetrahedral M4L6 Metal-Ligand Hosts

Permalink

https://escholarship.org/uc/item/03z5t73v

Authors

Davis, Anna V. Fiedler, Dorothea Ziegler, Marco <u>et al.</u>

Publication Date

2007-08-28

Peer reviewed

The Resolution of Chiral, Tetrahedral M₄L₆ Metal-Ligand Hosts

Anna V. Davis, Dorothea Fiedler, Marco Ziegler, Andreas Terpin, and Kenneth N. Raymond

Department of Chemistry, University of California, Berkeley, CA 94720-1460 and Lawrence Berkeley National Laboratory, Berkeley, CA 94720

ABSTRACT The supramolecular metal-ligand assemblies of M_4I_6 stoichiometry are chiral ($M = Ga^{III}$, AI^{III} , In^{III} , Fe^{III} , Ti^{IV} , or Ge^{IV} , $H_4I = N, N \cdot bis(2,3$ -dihydroxybenzoyl)-1,5-diaminonaphthalene). The resolution process of $\Delta\Delta\Delta\Delta$ - and $\Lambda\Lambda\Lambda\Lambda$ - $[M_4I_6]^{12}$ by the chiral cation s-nicotinium (*S*-nic⁺) is described for the Ga^{III} , AI^{III} , and Fe^{III} assemblies, and the resolution is shown to be proton dependent. From a methanol solution of $M(acac)_3$, H_4I , *S*-nicI, and KOH, the $\Delta\Delta\Delta\Delta$ -KH₃(*S*-nic)₇[(*S*-nic) $\subset M_4I_6$] complexes precipitate, and the $\Lambda\Lambda\Lambda\Lambda$ -K₆(*S*-nic)₅[(*S*-nic) $\subset M_4I_6$] complexes subsequently can be isolated from the supernatant. Ion exchange enables the isolation of the (NEt₄⁺)₁₂, (NMe₄⁺)₁₂ and K⁺₁₂ salts of the resolved structures, which have been characterized by CD and NMR spectroscopies. Resolution can also be accomplished with one equivalent of NEt₄⁺ blocking the cavity interior, demonstrating that external binding sites are responsible for the difference in *S*-nic⁺ enantiomer interactions. Circular dichroism data demonstrate that the (NMe₄⁺)₁₂ and (NEt₄⁺)₁₂ salts of the resolved [Ga₄I₆]¹²⁻ structures retain their chirality over extended periods of time (>20 d) at room temperature; heating the (NEt₄⁺)₁₂[Ga₄I₆] assembly to 75 °C also had no effect on its CD spectrum. Finally, experiments with the resolved K₁₂[Ga₄I₆] assemblies point to the role of a guest in stabilizing the resolved framework.

Figure 1. Schematic representations of the $M_4 \mathbf{1}_6$ (left) and $M_4 \mathbf{2}_6$ (right) tetrahedra.

Figure 2. Crystal structures of $[Fe_4\mathbf{1}_6]^{12}$ and $[Ga_4\mathbf{2}_6]^{10, 21}$ The C_2 axis is perpendicular to the ligand backbone of **1** but is in the plane of the ligand backbone of **2**.

Figure 3. Chiral (*S*)-*N*-methyl-nicotinium (*S*-nic⁺) cation used in $[M_4 \mathbf{1}_6]^{12}$ -resolution.

Figure 4. Space filling (left) and cylinder (right) representations of the crystal structure of $\Lambda\Lambda$ -K(*s*-nic)₅[Ga₂**3**₃]. For simplicity, only one *s*-nic⁺ counter ion is included.¹⁴

Figure 5. Left: simplified representation of the *s*-nic⁺- $[M_23_3]^{6-}$ helicate interaction. Middle: proposed *s*-nic⁺ interaction with the $[M_41_6]^{12-}$ tetrahedron which might account for pyrrolidine protonation and the differences between the steric demands of the helicate and tetrahedron ligands. A pyrrolidinium-catecholate hydrogen bond is highlighted in red. Right: Modeled *s*-nicH²⁺– $[M_41_6]^{12-}$ interaction (CAChe, MM3)²⁷, carbons of the *s*-nicH²⁺ cation are shown in green for clarity.

Figure 6. CD (solid lines) and UV-Vis (dotted lines) spectra of the *s*-nic⁺ salts of the resolved $[Ga_41_6]^{12^-}$, $[Al_45_6]^{12^-}$, and $[Fe_45_6]^{12^-}$ tetrahedral assemblies.

Figure 7. ¹H NMR (500 MHz, D₂O) spectra of the $\Lambda \Lambda \Lambda \Lambda (S-\text{nic})_7[(S-\text{nic}) \subset \text{Al}_4 \mathbf{1}_6]^{4-}$ and $\Delta \Delta \Delta \Delta (S-\text{nic})_5 [(S-\text{nic}) \subset \text{Al}_4 \mathbf{1}_6]^{6-}$ complexes. (\blacktriangle = host; o = exterior S-nic⁺; * = encapsulated S-nic⁺)

Figure 8. ¹³C NMR (100 MHz, D₂O) spectra of $\Lambda\Lambda\Lambda\Lambda$ -(*S*-nic⁺)₇[(*S*-nic⁺) \subset Ga₄**1**₆]⁴⁻ and $\Lambda\Delta\Delta\Delta$ -(*S*-nic)₅ [(*S*-nic) \subset Ga₄**1**₆]⁶⁻. (\blacktriangle = host; o = exterior *S*-nic⁺; * = encapsulated *S*-nic⁺, s = internal standard)

¹ H NMR	Ga <u>АААА</u>	Ga ΛΛΛΛ	AI <u>4444</u>	ΑΙ ΛΛΛΛ
Host Ar(H)				
naphthyl-H	7.81 (d, <i>J</i> = 7.6, 12H)	7.79 (d, <i>J</i> = 7.5, 12H)	7.81 (d, <i>J</i> = 7.6, 12H)	7.79 (d, <i>J</i> = 7.0, 12H)
naphthyl-H	7.49 (d, <i>J</i> = 8.4, 12H)	7.55 (d, <i>J</i> = 8.5, 12H)	7.48 (d, <i>J</i> = 8.7, 12H)	7.56 (d, J = 8.7, 12H)
catechol-H	7.28 (d, <i>J</i> = 8.4, 12H)	7.27 (d, <i>J</i> = 8.4, 12H)	7.24 (d, <i>J</i> = 8.2, 12H)	7.23 (d, <i>J</i> = 7.6, 12H)
naphthyl-H	6.84 (t, <i>J</i> = 8.0, 12H)	6.85 (t, <i>J</i> = 7.9, 12H)	6.86 (t, <i>J</i> = 8.0, 12H)	6.88 (t, <i>J</i> = 7.4, 12H)
catechol-H	6.75 (d, <i>J</i> = 7.3, 12H)	6.76 (d, <i>J</i> = 7.3, 12H)	6.68 (d, <i>J</i> = 7.3, 12H)	6.68 (d, <i>J</i> = 7.1, 12H)
catechol-H	6.59 (t, <i>J</i> = 7.6, 12H)	6.58 (t, <i>J</i> = 7.3, 12H)	6.59 (t, <i>J</i> = 8.0, 12H)	6.58 (t, <i>J</i> = 7.3, 12H)
S-nic ⁺ (exterior)				
pyridinium-H	7.67 (s, 7H)	7.56 (s, 5H)	7.65 (s, 7H)	7.55 (s, 5H)
pyridinium-H	7.53 (d, <i>J</i> = 7.9, 7H)	7.50 (d, <i>J</i> = 8.0, 5H)	7.49 (br m, 7H)	7.50 (d, <i>J</i> = 8.0, 5H)
pyridinium-H	7.42 (d, <i>J</i> = 5.2, 7H)	7.29 (d, <i>J</i> = n.d., 5H)	7.36 (br m, 7H)	7.23 (d, <i>J</i> = n.d., 5H)
pyridinium-H	6.97 (t, <i>J</i> = 6.6, 7H)	6.94 (t, <i>J</i> = 6.8, 5H)	6.96 (br m, 7H)	6.92 (t, <i>J</i> = 6.5, 5H)
pyridinium-NCH ₃	3.61 (s, 21H)	3.51 (s, 15H)	3.61 (s, 21H)	3.51 (s, 15H)
pyrrolidine-H	2.88 (t, <i>J</i> = 8.3, 7H)	2.88 (br m, 5H)	2.88 (br m, 7H)	2.88 (br m, 5H)
pyrrolidine-H	2.75 (t, <i>J</i> = 8.1, 7H)	2.60 (t, <i>J</i> = 8.3, 5H)	2.74 (br m, 7H)	2.61 (t, <i>J</i> = 8.1, 5H)
pyrrolidine-H	2.14 (q, <i>J</i> = 9.0, 7H)	2.13 (q, <i>J</i> = 8.9, 5H)	2.14 (br m, 7H)	2.14 (q, <i>J</i> = 8.7, 5H)
pyrrolidine-H	1.92 (br m, 7H)	1.82 (br m, 5H)	1.91 (br m, 7H)	1.86 (br m, 5H)
pyrrolidine-NCH ₃	1.79 (s, 21H)	1.73 (s, 15H)	1.78 (s, 21H)	1.73 (s, 15H)
pyrrolidine-H	1.66 (br m, 7H)	1.69 (br m, 10H)	1.66 (br m, 7H)	1.69 (br m, 10H)
pyrrolidine-H	1.59 (br m, 7H)	1.32 (br m, 5H)	1.59 (br m, 7H)	1.33 (br m, 5H)
pyrrolidine-H	1.20(br m, 7H)		1.20(br m, 7H)	
S-nic ⁺ (encapsulated)				
pyridinium-H	7.35 (t, <i>J</i> = 6.2, 1H)	7.93 (t, <i>J</i> = 6.2, 1H)	7.42 (t, <i>J</i> = 6.9, 1H)	8.05 (t, <i>J</i> = 6.20, 1H)
pyridinium-H	6.16 (d, <i>J</i> = 4.9, 1H)	6.71 (d, <i>J</i> = 5.2, 1H)	6.14 (t, <i>J</i> = 5.1, 1H)	6.73 (d, <i>J</i> = 5.0, 1H)
pyridinium-H	5.23 (d, <i>J</i> = 7.6, 1H)	5.02 (d, <i>J</i> = 7.7, 1H)	5.24 (d, <i>J</i> = 7.8, 1H)	5.03 (d, <i>J</i> = 7.9, 1H)
pyridinium-H	4.11 (s,1H)	4.72 (s,1H)	4.07 (s, 1H)	4.74 (s,1H)
pyridinium-NCH ₃	1.81 (s, 3H)	1.83 (s, 3H)	1.81 (s, 3H)	1.85 (s, 3H)
pyrrolidine-H	-0.07 (br m, 1H)	-0.34 (br m, 1H)	-0.12 (br m, 1H)	-0.30 (s, 3H)
pyrrolidine-H	-0.47 (t, <i>J</i> = 7.2, 1H)	-0.37 (s, 3H)	-0.49 (t, <i>J</i> = 7.7, 1H)	-0.34 (t, <i>J</i> = 7.3, 1H)
pyrrolidine-H	-0.76 (br m, 1H)	-0.77 (br m, 1H)	-0.77 (br m, 1H)	-0.84 (br m, 1H)
pyrrolidine-H	-0.97 (br m, 2H)	-0.98 (br m, 1H)	-1.01 (br m, 2H)	-0.99 (br m, 1H)
pyrrolidine- NCH ₃	-1.16 (s, 3H)	-1.27 (br m, 1H)	-1.21 (s, 3H)	-1.14 (br m, 1H)
pyrrolidine-H	-1.34 (br m, 1H)	-1.40 (br m, 1H)	-1.39 (br m, 1H)	-1.30 (br m, 1H)
pyrrolidine-H	-1.96 (br m, 1H)	-1.62 (br m, 1H)	-1.99 (br m, 1H)	-1.66 (br m, 1H)
pyrrolidine-H		-1.81 (br m, 1H)		-1.81 (br m, 1H)

Table 2. ¹³ C NMR data for <i>s</i> -nic ⁺						
$[M_4 1_6]^{12}$ compounds. (100 MHz, D ₂ O)						
130	Ga	Ga	Al	Al		
^{1°} C NMR	ΔΔΔΔ	лллл	ΔΔΔΔ	лллл		
Host						
carbonyl-CO	170.0	170.0	170.0	170.0		
catechol-CO	159.2	159.1	160.2	160.1		
catechol-CO	155.7	155.6	156.9	156.7		
catechol-C	134.0	134.0	134.0	134.0		
catechol-C	126.8	126.8	126.7	126.7		
catechol-C	126.5	126.6	126.5	126.6		
naphthyl-C	119.1	119.1	119.1	119.3		
naphthyl-C	117.9	118.0	117.9	118.0		
naphthyl-C	115.8	115.9	115.7	115.7		
naphthyl-C	115.7	115.6	115.5	115.5		
naphthyl-C	115.5	115.5	114.7	114.8		
Naphthyl-C	115.1	115.5	114.6	114.6		
S-nic⁺ (ext)						
pyridC	143.6	143.5	143.5	143.4		
pyridC	143.4	143.4	143.4	143.2		
pyridC	143.1	143.0	143.2	142.9		
pyridC	142.8	142.5	142.8	142.5		
pyridC	127.7	127.7	127.7	127.6		
pyridNCH ₃	67.1	66.9	67.1	66.9		
pyrolC	56.9	56.8	56.9	56.8		
pyrolC	48.3	48.2	48.3	48.3		
pyrolNCH ₃	39.6	39.4	39.6	39.5		
pyrolC	33.6	33.3	33.6	33.3		
pyrolC	22.7	22.6	22.7	22.6		
S-nic⁺ (enc.)						
pyridC	145.3	145.2	145.2	145.2		
pyridC	142.7	142.2	142.7	142.3		
pyridC	141.5	141.5	140.9	141.5		
pyridC	141.0	138.4	138.1	138.3		
pyridC	127.6	128.4	128.2	128.6		
pyridNCH ₃	64.1	64.7	64.0	64.6		
pyrolC	53.7	53.2	53.7	53.1		
pyrolC	46.1	46.2	46.1	46.2		
pyrolNCH ₃	37.0	37.9	37.0	38.2		
pyrolC	33.1	33.4	33.0	33.5		
pyrolC	21.5	20.6	21.6	20.6		
¹³ C Chemical shifts are referenced to a sodium 3- (trimethylsilyl)-propane sulfonate internal standard.						

Figure 9. ¹H NMR (500 MHz, D₂O) of the *S*-nic⁺ salts of the resolved $[(NEt_4) \subset Ga_4 \mathbf{1}_6]^{11-}$ enantiomers. (\blacktriangle = host; o = exterior *S*-nic⁺; N = encapsulated NEt_4⁺, x = external NEt_4⁺)

Figure 10. CD spectra of the *s*-nic⁺ salts of the resolved $[(NEt_4) \subset Ga_4 \mathbf{1}_6]^{11-}$ enantiomers.

Figure 11. Left: CD spectra of the NEt₄⁺ salts of the $\Delta\Delta\Delta\Delta$ - and $\Lambda\Lambda\Lambda\Lambda$ - enantiomers of $[Ga_4\mathbf{1}_6]^{12-}$, $[Al_4\mathbf{1}_6]^{12-}$ and $[Fe_4\mathbf{1}_6]^{12-}$. Right: CD spectra of the Ga^{III} compounds taken immediately after preparation of the 0.5 mM solution, after 45 days, and then after 24 h of heating to 75 °C.

Table 3. Summary of $[M_4 1_6]^{12-}$ CD data						
Complex	Ga [™]	AI ^{III}	Fe [™]			
$\Delta\Delta\Delta\Delta$ - (S-nic) ₆ [M ₄ 1 ₆] ⁶⁻	225 (+448); 242 (-889); 291 (+173); 340 (+187), 379 (-306)	223 (+443); 242 (-883); 290 (+165); 339 (+187); 378 (-292)	223 (+356); 241 (-659); 292 (+155); 339 (+146); 376 (+228); 468 (+7); 565 (-6)			
$\Lambda\Lambda\Lambda\Lambda$ - (S-nic) ₈ $[M_4 1_6]^{4-}$	221 (-448); 243 (+848); 288 (-177); 339 (-190); 377 (+304)	221 (-437); 241 (+854); 288 (-170); 337 (-194); 377 (+298)	224 (-344); 241 (+627); 292 (-157); 337 (-159); 375 (+228); 468 (-8); 565 (+6)			
$\Delta\Delta\Delta\Delta$ - (NEt ₄) ₁₂ [M ₄ 1 ₆]	225 (+664); 241 (-1102); 290 (+223); 340 (+230); 375 (-329)	225 (+701); 242 (-1173); 290 (+219); 339 (245); 375 (-339)	225 (+544); 241 (-869); 293 (+198); 337 (+191); 374 (-253); 465 (8); 560 (-7)			
$\begin{array}{l} \Lambda\Lambda\Lambda\Lambda\text{-}\\ (NEt_4)_{12}[M_41_6]\end{array}$	225 (-655); 242 (+1086); 290 (-216); 341 (-230); 375 (+330)	225 (-620); 242 (+1050); 289 (-197); 341(-225); 376 (+302)	225 (-583); 241 (+927); 292 (-212); 337 (-204); 371 (+267); 465 (-8); 560 (+7)			
$\frac{\Delta\Delta\Delta\Delta}{(NMe_4)_{12}[M_41_6]}$	222 (+485); 241 (-870); 289 (+173); 338 (+194); 372 (-265)	n.d.	n.d.			
$\Lambda\Lambda\Lambda\Lambda$ - (NMe ₄) ₁₂ [M ₄ 1 ₆]	223 (-473); 241 (+850); 288 (-179); 337 (-192); 373 (+267)	n.d.	n.d.			
Samples concentrations were 0.5 mM and were prepared in 5 mM KOH solution. (n.d. = not determined)						

Figure 12. Left: CD spectra of $\Lambda\Lambda\Lambda\Lambda$ -K₁₂[Ga₄**1**₆], monitored in MeOH at 10 min intervals. Right: CD spectra of $\Lambda\Lambda\Lambda\Lambda$ -K₁₂[Ga₄**1**₆] in MeOH with 5 mM KOH. Spectra were recorded at 10 minute intervals.

Figure 13. Left: CD spectra of $\Lambda\Lambda\Lambda\Lambda$ -K₁₂[Ga₄**1**₆], monitored at neutral pH in H₂O. Spectra were taken in 5 minute intervals. Right: CD spectra of $\Lambda\Lambda\Lambda\Lambda$ -K₁₂[Ga₄**1**₆] in the presence of one equivalent of NMe₄⁺, monitored at neutral pH in H₂O.

SYNOPSIS TOC Figure:

