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Abstract

Geoparsing: Solved or Biased? An Evaluation of Geographic Biases in Geoparsing

by

Zilong Liu

Geoparsing, the task of extracting toponyms from texts and associating them with

geographic locations, has witnessed remarkable progress over the past years. However,

despite its intrinsically geospatial nature, existing evaluations tend to focus on overall

performance while paying little attention to its variation across geographic space. In this

work, we attempt to answer the question whether geoparsing is solved or biased by con-

ducting a spatially-explicit evaluation, namely an evaluation of the regional variability

in geoparsing performance. Particularly, we will analyze the spatial autocorrelation un-

derlying this regional variability. By performing hot and cold spot detection over results

of several open-source geoparsers, we observe that none of them performs equally well

across geographic space, and some are geographically biased towards some regions but

against others. We also carry out a comparative experiment showing that state-of-the-art

geoparsers developed with neural networks do not necessarily outperform the off-the-shelf

tools across geographic space. To understand the implications behind this observed re-

gional variability, we evaluate geographic biases involved in geoparsing research centered

around data contribution and usage, algorithm design, and performance evaluations.

Particularly, our spatially-explicit performance evaluation serves as an approach to eval-

uation bias mitigation in geoparsing. We conclude that previous performance evaluations

published in the literature are overly optimistic, thus hiding the fact that geoparsing is

far from solved, and geoparsers require debiasing in addition to further considerations

when being applied to (geospatial) downstream tasks.
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Chapter 1

Introduction

Geoparsing is a key part of geographic information retrieval [1]. Two consecutive steps

constitute the pipeline of geoparsing systems (i.e., geoparsers), namely toponym recog-

nition and toponym resolution. Toponym recognition is often treated as a sub-task of

Named Entity Recognition (NER), or more precisely speaking, Named Entity Recogn-

tion and Classification (NERC) [2]. It refers to the process of identifying toponyms from

texts in various forms of literature, such as news and Wikipedia articles. Each recog-

nized toponym is then fed into a toponym resolution model that selects the correct place

reference along with its geo-location information from all candidates with the same place

name. Toponym resolution is also referred to as place name disambiguation [3, 4] in the

related literature.

In recent years, neural network architectures have contributed to the improvement

in the quality of geoparsers. Examples in toponym recognition include Wang et al. [5]

that used an improved version of the bidirectional Long Short-Term Memory (LSTM)

neural network with a Conditional Random Field (CRF) layer (BiLSTM-CRF) [6], and

Hu et al. [7] that used C-LSTM [8] combining a Convolutional Neural Network (CNN)

with LSTM. Similarly, Gritta et al. [9] and Kulkarni et al. [10] applied CNN while Fize
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Introduction Chapter 1

et al. [11] used LSTM in toponym resolution. As the use of deep learning techniques

has greatly improved geoparsing performance, Wang and Hu [12] recently asked whether

the geoparsing performance obtained with state-of-the-art geoparsers is good enough to

essentially call the problem solved. The authors argued that geoparsing can be claimed

to be solved when it comes to prominent place names in well-formatted texts because

their evaluation shows that these geoparsers, particularly deep-learning-based ones, can

reach an outstanding level of toponym recognition performance and also relatively low

errors in toponym resolution on multiple benchmark datasets.

However, there is a loophole in how the performance evaluation is carried out. Current

evaluations only measure the overall performance of a geoparser on a corpus, thereby

ignoring the fact that, as a geospatial task geoparsing also needs to be evaluated from a

geospatial perspective. Put differently, how geoparsers perform across geographic space is

not evaluated, thus making such evaluations susceptible to biases, e.g., uneven geographic

coverage. Recent work has shown spatial heterogeneity in the performance of a deep-

learning-based toponym resolution model developed by Fize et al. [11], which fails to

work in most of the southern and western regions in the US except several major cities,

and similar poor performance is also obtained in small regions in the southwest of France

and the north of Japan. Our work tries to expand the scale of geoparsing performance

evaluation to both toponym recognition and resolution.

In addition, we aim to look beyond spatial heterogeneity, and study spatial auto-

correlation [13, 14, 15] underlying regional variability in geoparsing performance. There

are two reasons why we choose spatial autocorrelation as the focus of our performance

evaluation. First, spatial autocorrelation is inherent in data with a spatial structure

[16, 17, 18], and geoparsing is affected by such autocorrelation effects in place names

that also exhibit distance decay patterns in their collective similarity [19]. Second, we

consider that an analysis of second-order spatial variations in geoparsing performance will

2



Introduction Chapter 1

shed light on where a geoparser is biased towards or against, which we argue is necessary

for a spatially-explicit evaluation on geoparsing performance. The term spatially-explicit

has been frequently used in ecological studies [20, 21, 22], and has been recently regarded

as an vital characteristic that a GeoAI [23] should demonstrate by satisfying at least

one of four tests, including the invariance test, representation test, formulation test, and

outcome test [24]. Examples of such spatially-explicit machine learning models include

geo-aware image classification [25] and multi-scale spatial representation learning [26].

Similarly, we consider an evaluation to be spatially-explicit if it fulfills any of the four

tests above.

If we observe strong spatial effects in geoparsing performance, this would be an impor-

tant indicator of geographic biases in existing systems and their evaluations. Geographic

biases cause disparities in the geographic distributions between sampled and ground-

truth data [27, 28, 29], and they can also lead to quality issues in data contribution to

volunteered geographic information through crowdsourcing [30, 31]. Such biases have in-

spired an interest in sampling bias mitigation [29, 32] and representativeness assessment

[33]. Meanwhile, they have also drawn attention from the machine learning community

as machine learning researchers have faced with the same lack of geographic diversity in

open datasets, such as ImageNet [34] and Open Images [35], which results in biasing their

image classifiers towards Europe and North America [36]. In addition, geographic biases

also affect spatial data aggregation, which can result in reduced reliability of multivariate

statistical analysis [37] and perturbations in feature embeddings that destabilize neural

networks used in scenarios such as deep-learning-based traffic predictive modeling [38].

These potential consequences of geographic biases motivate us to investigate geographic

bias issues that have not been discussed in geoparsing by studying the datasets and be-

yond, i.e., algorithms and performance evaluations. Put differently, we examine whether

the claim that geoparsing is essentially solved is true, or whether the data, models, and

3



Introduction Chapter 1

the usage of evaluation metrics are simply biased.

Our research contributions are as follows:

• Rather than focusing on overall geoparsing performance, we conduct a spatially-

explicit evaluation on how geoparsers perform across geographic space. We unveil

spatial autocorrelation underlying regional variability in geoparsing performance,

and analyze its comparison between deep-learning-based models and off-the-shelf

tools in terms of toponym recognition and toponym resolution, respectively.

• We analyze and summarize representation biases, aggregation biases, algorithmic

biases, and evaluation biases in geoparsing, along with recent work that attempts

to mitigate them. Particularly, our spatially-explicit performance evaluation serves

as an approach to evaluation bias mitigation. To the best of our knowledge, our

work is the first to provide such geographic bias evaluation in the field of geoparsing

(evaluation).

The remainder of this thesis is organized as follows. Chapter 2 provides an overview

of related work on spatially-explicit performance evaluations and different kinds of geop-

arsing evaluation studies. Chapter 3 introduces our spatially-explicit evaluation of geop-

arsing performance. Chapter 4 describes an exploratory analysis on normalized frequency

distributions of geoparsing performance indicators, and the results about our performance

evaluation. Chapter 5 discusses geographic biases involved in geoparsing research, and

how recent work attempts to mitigate these issues. Finally, we summarize our work and

propose future directions in Chapter 6.

4



Chapter 2

Related Work

2.1 Spatially-Explicit Performance Evaluations

There are two potential avenues for a performance evaluation to become spatially-explicit.

First, a spatially-explicit performance evaluation might use evaluation metrics where spa-

tial information (e.g., distance) is incorporated. For instance, Xu and Zhang [39] con-

ducted a sensitivity analysis on land suitability evaluation (LSE), in which the Earth

Mover’s Distance is applied to identify spatial variations between the original map and

the simulated LSE map. Second, there is usually a geospatial perspective from which a

spatially-explicit performance evaluation is carried out. Examples include a “policyscape

analysis” for biodiversity conservation [40], an evaluation framework for integrated car-

bon sequestration and biodiversity conservation [41], and a land use conflict evaluation

approach [42].

According to a recent review of evaluation metrics used in geoparsing [43], toponym

recognition performance can be evaluated with metrics such as Precision, Recall, and

F-Score. Precision measures the percentage of correctly-recognized toponyms among

all recognized toponyms, and Recall measures the percentage of correctly-recognized
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toponyms among all annotated toponyms. F-Score is the harmonic mean of Precision

and Recall. No spatial information is involved in the calculation of these metrics, thus

hindering the spatial explicitness of performance evaluations of toponym recognition.

On the other hand, evaluation metrics are mostly distance-based for toponym resolution.

Commonly-used metrics include Mean Error Distance (MED), Median Error Distance

(MdnED), Accuracy@161, and Area Under the Curve (AUC). These metrics evaluate

toponym resolution performance by comparing the error distance determined by how far

a resolved location is from its corresponding annotated location. MED, MdnED, and

AUC calculate the mean, median, and overall deviation of error distances, respectively.

Accuracy@161 is used to calculate the percentage of correctly-resolved locations among

all annotated locations. It considers a distance threshold of 161 kilometers, within which

a resolved location is regarded as correct. However, when using these metrics to evaluate

toponym resolution, the performance across geographic space was often not considered.

2.2 Geoparsing Evaluation

Geoparsing evaluation is an important part of geoparsing research, which is concerned

with concrete metrics, progress reviews, reproducibility issues, and benchmark dataset

construction in geoparsing.

Gritta et al. [44] discussed standard metrics used to evaluate geoparsing performance,

and provided an evaluation framework. For example, they divided toponym resolution

evaluation metrics into coordinate-based, set-based, and ranking-based metrics. Also,

the authors highlighted that spatial scopes of geoparsing, i.e., whether a geoparser is

applied to a local or global coverage, should be taken into considerations in performance

evaluations.

Wang and Hu [43] moved one step forward by not only conducting a more compre-
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hensive review of evaluation corpora, state-of-the-art models, and evaluation metrics.

The authors built an Extensible and Unified Platform for Evaluating Geoparsers (EU-

PEG)1, which is a benchmark platform aimed at improving reproducibility in geoparsing

research for comparative experiments. Both geoparsers and evaluation corpora hosted on

this platform are open-source. These geoparsers use different toponym recognition tech-

niques, such as general NER tools (e.g., Stanford NER2) and in-house NER tools (e.g.,

LT-TTT2 [45]). In the meantime, various toponym resolution models were adopted, such

as heuristic rule-based models (e.g., CLAVIN3), geostatistical models (e.g., TopoCluster

[46]), and deep-learning-based models (e.g., CamCoder [9]). In addition, there are mul-

tiple categories of evaluation corpora available, including news articles (e.g., TR-News

[47]), Wikipedia articles (e.g., WikToR [48]), social media posts (e.g., GeoCorpora [49]),

and web pages (e.g., Hu2014 [50]).

Along with eight annotated benchmark datasets and eight evaluation metrics on top

of EUPEG, Wang and Hu [12] carried out a performance evaluation on nine SOTA neural-

network-based geoparsers, including those already hosted on the platform and others de-

veloped by top-ranked teams in a geoparsing competition called SemEval-2019 Task 12.

They discussed the circumstance under which geoparsing can be considered as solved, and

introduced three future directions in geoparsing. These directions include population-

free toponym resolution, fine-grained geoparsing, and the usage of additional gazetteers

in toponym resolution. In this thesis, we will showcase that their performance evalu-

ation would benefit from being more spatially-explicit, because such spatially-explicit

evaluations will allow us to compare geoparsing performance among different locations.

More recently, Laparra and Bethard [51] combined Wikipedia4 and OpenStreetMap5

1https://geoai.geog.buffalo.edu/EUPEG/
2https://nlp.stanford.edu/software/CRF-NER.html
3https://github.com/Novetta/CLAVIN
4https://www.wikipedia.org/
5https://www.openstreetmap.org/
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to construct a new kind of benchmark dataset for geoparsing compositions of place men-

tions into geographic regions. The authors also proposed accompanying evaluation met-

rics that can be used to compare predicted geometries with ground-truth geometries in

either a strict or relaxed way. As our intention is to reproduce studies on geoparsing

individual toponyms rather than complex geographic descriptions, we do not use their

evaluation framework in our study.

8



Chapter 3

A Spatially-Explicit Geoparsing

Performance Evaluation

3.1 Geoparser and Evaluation Corpora

Previous work has studied toponym recognition and resolution individually, and there-

fore, we evaluate each of them separately. The criterion of our model selection is that

their relevant resources, including evaluation corpora (and training corpora, if applied),

are available online so that they can be easily reproduced as baseline models for geop-

arsing research. For both toponym recognition and resolution, we use a deep-learning-

based model that has achieved state-of-the-art results and an off-the-shelf tool to analyze

whether the former necessarily outperforms the latter across geographic space.

Toponym Recognition Models For toponym recognition, we choose a pre-trained

version of NeuroTPR1 and the named entity recognition module of spaCy2 (version 2.1)

1https://github.com/geoai-lab/NeuroTPR
2https://spacy.io
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A Spatially-Explicit Geoparsing Performance Evaluation Chapter 3

coupled with a large-sized trained English pipeline3. NeuroTPR is a BiLSTM-conditional

random field toponym recognition model that deals with social media messages [5], and

spaCy is an open-source Python library for natural language processing.

Toponym Resolution Models For toponym resolution, we compare a pre-trained

version of CamCoder4, a CNN-based toponym resolution model that integrates both

lexical and geographic knowledge [9], with the rule-based Edinburgh Geoparser5 [52]

(version 1.2).

Toponym Recognition Corpus To evaluate toponym recognition, we select Geo-

Corpora [49], a social media corpus containing geo-annotated tweets along with place

mentions (see their geographic distribution in Figure 3.1). This dataset was also used as

one of the two evaluation corpora in Wang et al. [5], and is available on Github6. Among

all annotated toponyms in the 2,122 tweets, only those that have labeled coordinates are

covered in our evaluation.

Toponym Resolution Corpora For toponym resolution evaluation, we select LGL

[53], GeoVirus [9], and WikToR [48], which were also used in the evaluation of Gritta

et al. [9] and shared along with CamCoder4. Geographic distributions of annotated

locations in LGL, GeoVirus, and WikToR can be seen from Figure 3.2, Figure 3.3, and

Figure 3.4, respectively. Both LGL and GeoVirus are news corpora. LGL is also the

most frequently-used geoparsing evaluation dataset, consisting of 588 news articles from

78 local newspapers. GeoVirus contains 229 news articles from WikiNews, and they are

centered around global disease outbreaks and epidemics. WikToR is a Wikipedia dataset

3https://spacy.io/models/en#en_core_web_lg
4https://github.com/milangritta/Geocoding-with-Map-Vector
5https://www.ltg.ed.ac.uk/software/geoparser/
6https://github.com/geovista/GeoCorpora
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Figure 3.1: The geographic distribution of annotated locations in GeoCorpora

containing 5,000 articles within which annotated toponyms are widely distributed across

the world. The reason why we choose the three corpora here is that we want to analyze

how CamCoder performs across geographic space on benchmark datasets with different

levels of ambiguity. According to Gritta et al. [9], WikToR has higher place name

ambiguity than GeoVirus, and GeoVirus has higher ambiguity than LGL.

Kulkarni et al. [10] found that WikToR contains wrong coordinates for some places

because the sign of either their latitude or longitude is flipped, and in all three corpora

the same toponym will have slightly different coordinates because they were created

differently. To correct these inconsistencies, we follow their method to unify three corpora

by using the shared data patches7. Annotated toponyms without location information

in the data patches are not included in our study.

7https://github.com/google-research-datasets/mlg_evaldata
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Figure 3.2: The geographic distribution of annotated locations in LGL

Figure 3.3: The geographic distribution of annotated locations in GeoVirus

12
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Figure 3.4: The geographic distribution of annotated locations in WikToR

3.2 Evaluation Metrics

In our performance evaluation, we select Recall and MdnED as they are frequently used

to evaluate the performance of toponym recognition and toponym resolution, respec-

tively. We apply them to measuring geoparsing performance at each annotated location

individually, so that we can disclose how geoparsers perform across geographic space.

Toponym Recognition Evaluation Metric For toponym recognition, we use Recall

to measure the proportion of the number of times an annotated location being correctly

identified by a model among the number of times it is annotated (in a corpus). In

Equation 3.1, Recalli is the Recall of the ith annotated location in a corpus; tpi is the

number of times it is recognized; and fni is the number of times it fails to be recognized.

The range of Recall is [0, 1]. A higher Recalli indicates a better toponym recognition

performance with respect to the ith annotated location. We adopt exact matching [48],

13
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meaning that only toponyms that match exactly with their ground-truth annotations are

considered valid.

Recalli =
tpi

tpi + fni

(3.1)

Toponym Resolution Evaluation Metric For toponym resolution, MdnED is a

coordinate-based metric calculated as the median of error distances from the location

of an annotated toponym to its resolved location (in a corpus). Compared with the

commonly-used MED that calculates the mean, MdnED is better at dealing with outliers

that exist in computed error distances, and therefore,MdnED can minimize the distortion

of evaluation results. In Equation 3.2, MdnEDi is the MdnED of the ith annotated

location in a corpus; edij is its j
th error distance computed; x⃗i = (xi, yi) is its annotated

location; ni is the number of its resolved locations; x⃗ij = (xij, yij) is its jth resolved

location; and Dist(·, ·) is the error distance between a pair of geographic coordinates,

computed as the great circle distance in our experiment. A larger MdnED indicates

worse toponym resolution performance with respect to an annotated location. Only the

annotated locations that are recognized by a geoparser and can be found in the GeoNames

gazetteer8 are considered in the computation of MdnED. A shared version of GeoNames

by Gritta [54] is used to reproduce CamCoder, while the online version of GeoNames is

directly accessed by Edinburgh Geoparser during place name disambiguation.

MdnEDi = Median({edij|edij = Dist(x⃗i, x⃗ij), ∀j ∈ [1, ni]}) (3.2)

8https://www.geonames.org/

14
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3.3 Spatial Autocorrelation Detection

To evaluate spatial autocorrelation effects in geoparsing performance, we apply the Getis-

Ord Gi* statistic [55, 56] that can help visually reveal hot spots and cold spots in geopars-

ing performance. In Equation 3.3, G∗
i is the Getis-Ord Gi* statistic of the ith annotated

location (in a corpus); vi and vj denote the geoparsing performance indicators (i.e., Re-

call or MdnED) of the ith and the jth annotated locations, respectively; V̄ is the average

geoparsing performance indicator of all annotated toponyms, and N is the number of all

annotated locations; wij is the spatial weight between the ith and the jth locations. We

assign 1 to wij if the jth annotated location is in the neighborhood of the ith annotated

location, and 0 otherwise. The Getis-Ord Gi* statistic is a z-score. A larger positive (or

negative) z-score indicates a stronger clustering effect of high (or low) values, which rep-

resents hot (or cold) spots. We select the K-nearest neighbors of an annotated location

as its neighborhood when calculating the Getis-Ord Gi* statistics. K is defined as 8 in

the experiment.

G∗
i =

∑N
j=1wijvj − V̄

∑N
j=1 wij√∑N

j=1 v
2
j

N
− (V̄ )2

√
N

∑N
j=1 w

2
ij−(

∑N
j=1 wij)2

N−1

(3.3)

While focusing on how geoparsers perform across space in general, we are also inter-

ested in whether regional variability in toponym resolution performance exists for highly

ambiguous toponyms as toponym resolution is sensitive to ambiguity determined by the

frequency of places with the same name. Therefore, we calculate the standard deviations

of MdnED produced by both CamCoder and Edinburgh Geoparser for highly ambiguous

place names in WikToR, since it has the highest ambiguity among all three evaluation

corpora for toponym resolution in our experiment. The standard deviations are reported

in Chapter 4.3.
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Chapter 4

Evaluation Results

4.1 The Normalized Frequency Distributions of Geop-

arsing Performance Indicators

First, we provide an exploratory analysis showing that the performance indicator distri-

butions of both toponym recognition and toponym resolution are highly skewed. Figure

4.1 and Figure 4.2 describe the normalized frequency distributions of Recall for spaCy

and NeuroTPR, respectively. We can see there is a peak indicating that more than 50%

annotated locations have a Recall ranging from 0 to 0.1 for both toponym recognition

models. Figure 4.3, Figure 4.4, and Figure 4.5 show the normalized frequency distribu-

tions of MdnED for Edinburgh Geoparser with respect to LGL, GeoVirus, and WikToR,

respectively, while Figure 4.6, Figure 4.7, and Figure 4.8 show those distributions for

CamCoder. On the contrary to Recall, MdnED is expected to be as small as possible,

but in most cases it can reach up to 16,000 kilometers.

16
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Figure 4.1: The normalized frequency distributions of Recall with respect to all an-
notated locations in GeoCorpora for spaCy

Figure 4.2: The normalized frequency distributions of Recall with respect to all an-
notated locations in GeoCorpora for NeuroTPR
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Figure 4.3: The normalized frequency distributions of MdnED with respect to all
annotated locations in LGL for Edinburgh Geoparser

Figure 4.4: The normalized frequency distributions of MdnED with respect to all
annotated locations in GeoVirus for Edinburgh Geoparser
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Figure 4.5: The normalized frequency distributions of MdnED with respect to all
annotated locations in WikToR for Edinburgh Geoparser

Figure 4.6: The normalized frequency distributions of MdnED with respect to all
annotated locations in LGL for CamCoder
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Figure 4.7: The normalized frequency distributions of MdnED with respect to all
annotated locations in GeoVirus for CamCoder

Figure 4.8: The normalized frequency distributions of MdnED with respect to all
annotated locations in WikToR for CamCoder
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4.2 Spatial Autocorrelation in Toponym Recognition

Performance

Figure 4.9 shows that both hot spots and cold spots are detected in toponym recognition

performance of spaCy on GeoCorpora. For spaCy, most of all the hot spots are found

in the United States, the United Kingdom, and Malaysia on a global scale. Cold spots

can be seen not only in several South American countries near the equator, Middle East

countries (e.g., Bahrain and Qatar) , South Asia countries (e.g., India), and so forth, but

also in the United States and the United Kingdom, where hot spots have been found as

well. Figure 4.10 shows hot spots and cold spots in toponym recognition performance of

NeuroTPR on GeoCorpora, where there is a larger proportion of more cold spots with

95% confidence compared with Figure 4.9. Again, we can see coexistence of both hot

spots and cold spots in the United States and the United Kingdom.

In general, the observed regional variability in toponym recognition performance

shows that toponym recognition is geographically biased towards some regions and against

others, on both global and local scales.

4.3 Spatial Autocorrelation in Toponym Resolution

Performance

In terms of toponym resolution, however, only cold spots can be found in the perfor-

mance of both Edinburgh Geoparser and CamCoder on LGL, GeoVirus, and WikToR.

Figure 4.11, Figure 4.13, and Figure 4.15 show that the geographic distribution of cold

spots covers more regions on a global scale as the place name ambiguity of the corpus

increases from LGL, GeoVirus to WikToR. Cold spots are mostly observed in the United
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Figure 4.9: Hot spots and cold spots in toponym recognition performance of spaCy
on GeoCorpora

Figure 4.10: Hot spots and cold spots in toponym recognition performance of Neu-
roTPR on GeoCorpora
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States for LGL, in the United States, Mexico, the United Kingdom, Australia, and Fiji

for GeoVirus, and in the United States, Canada, the Philippines, Australia, and New

Zealand for WikToR. Similar observations can be found for CamCoder’s toponym res-

olution performance on LGL, GeoVirus, and WikToR, which are shown in Figure 4.12,

Figure 4.14, and Figure 4.16, respectively.

In addition, CamCoder produces more cold spots (with higher confidence), and these

cold spots are widely distributed across the world. By comparing the toponym resolution

performance between Edinburgh Geoparser and CamCoder, we can see while the overall

performance of CamCoder is higher than Edinburgh Geoparser as reported in previous

research [9, 12], there are more regions (e.g., South America and Africa) where it fails

to perform well. Note that the total of cold spots produced by CamCoder is greater

than that of Edinburgh Geoparser because these two geoparsers use different toponym

recognition models. Put aside this difference, the wider geographic distribution of cold

spots in toponym resolution performance of CamCoder indicates a stronger geographic

bias in this deep-learning-based model in comparison with the rule-based Edinburgh

Geoparser.

In general, the observed regional variability in toponym resolution performance shows

that toponym resolution is even worse than toponym recognition because there is no hot

spots found. Put differently, toponym resolution is simply biased against many regions,

both globally and locally.

The Standard Deviations of MdnED for Highly Ambiguous Toponyms in

WikToR Then, we examine the top ten most ambiguous place names in WikToR,

and analyze regional variability in their corresponding toponym resolution performance

according to the standard deviation of MdnED, as shown in Table 4.1. We find that

Edinburgh Geoparser fails to resolve half of the selected toponyms, which is because
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Figure 4.11: Cold spots in toponym resolution performance of Edinburgh Geoparser on LGL

Figure 4.12: Cold spots in toponym resolution performance of CamCoder on LGL
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Figure 4.13: Cold spots in toponym resolution performance of Edinburgh Geoparser
on GeoVirus

Figure 4.14: Cold spots in toponym resolution performance of CamCoder on GeoVirus
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Figure 4.15: Cold spots in toponym resolution performance of Edinburgh Geoparser
on WikToR

Figure 4.16: Cold spots in toponym resolution performance of CamCoder on WikToR
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of a failure either to identify them during toponym recognition or to retrieve their co-

ordinates from the gazetteer. For toponyms resolved only by CamCoder, we observe

very large standard deviations of MdnED for Springfield and Georgetown, which are

2,770.63 and 2,742.79 kilometers, respectively. For toponyms (including Washington

County, Greenville, Kingston, Hamilton, and Newport) resolved by both models, Ed-

inburgh Geoparser results in greater standard deviations of MdnED than CamCoder.

Particularly, this difference is extremely large for Hamilton and Newport. As all these

standard deviations (except the one for Newport resolved by CamCoder) are greater

than 161 kilometers, which is regarded as a threshold within which a resolved location

can be considered correct relative to its annotated location [43], both models exhibit very

strong regional variability in toponym resolution performance for place names with high

ambiguity.
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Table 4.1: The standard deviations (SD) of MdnED for highly ambiguous toponyms
in WikToR

Toponym Model MdnED SD (km)

Washington County
Edinburgh Geoparser
CamCoder

807.70
692.18

Clinton
Edinburgh Geoparser
CamCoder

/
539.43

Greenville
Edinburgh Geoparser
CamCoder

407.52
514.68

Springfield
Edinburgh Geoparser
CamCoder

/
2770.63

Georgetown
Edinburgh Geoparser
CamCoder

/
2742.79

Kingston
Edinburgh Geoparser
CamCoder

680.48
226.45

Franklin County
Edinburgh Geoparser
CamCoder

/
414.99

Hamilton
Edinburgh Geoparser
CamCoder

4105.57
622.24

Jefferson County
Edinburgh Geoparser
CamCoder

/
384.38

Newport
Edinburgh Geoparser
CamCoder

5705.19
145.05
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Chapter 5

Geographic Biases in Datasets,

Algorithms, and Performance

Evaluations

While we have shown that geoparsing is geographically biased instead of being solved, we

are also interested in the implications behind the observed autocorrelation effects in its

performance, which is likely to be attributed to geographic biases in datasets, algorithms,

and beyond that are involved in geoparsing. In this section, we analyze these biases, and

discuss their potential influence on geoparsing. While following bias categorization of the

machine learning community [57], we also hope to highlight their geospatial characteris-

tics and to point out that they have been (un)intentionally introduced in geoparsing.

5.1 Representation Bias

The first kind of geographic bias is the representation bias in training/evaluation cor-

pora. Here we provide quantitative measurements of how representation biases in datasets
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commonly used in recent geoparsing research are across geographic space. Two metrics,

Spatial Misalignment (SM) and Spatial Diversity Misalignment (SDM), are used to mea-

sure the difference in place coverage and the difference in the geographic diversity of place

coverage, respectively, between a corpus and the GeoNames Gazetteer. These metrics are

introduced in Quattrone et al. [58] to compare the content mapped by power users, i.e.,

users that represent only a small portion of the entire OpenStreetMap community but

produce most of the content, and the content mapped by the crowd. In our experiment,

each country/region is divided into 10km× 10km grids, and each grid cell is assigned to

the number of places within it (in a corpus or in the gazetteer). The country/region data

used is a 1:10m shapefile from Natural Earth 5.0.01.

Equation 5.1 describes the calculation of SM, in which the ith element in the vector

−→gc (or −→gd) is the number of places in the ith grid of a country/region mapped by a corpus

(or a gazetteer).

SM = 1−
−→gc · −→gd

||−→gc || · ||−→gd ||
(5.1)

Equation 5.2 describes the calculation of SDM, which is an extension of the Shannon’s

Diversity Index [59]. The variable gc,i (or gd,i) is the ith element in −→gc (or −→gd). As

many regions of the world are sparsely populated with annotated locations in LGL and

GeoVirus, we only provide measurements for global-scale evaluation corpora used in our

spatially-explicit performance evaluation, i.e., GeoCorpora and WikToR. We also provide

the measurements for a training corpus named GeoWiki shared by Gritta [54]. This is

a version of the English Wikipedia dump that contains 1.4M Wikipedia articles, and

was used in the training process of CamCoder without overapping with WikToR. The

English Wikipedia dump has commonly served as an easily-accessible and frequently-

1https://www.naturalearthdata.com/
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updated large corpus for the training purpose of many other toponym resolution models

and toponym recognition models as well.

SDM =
(−

∑
gc,i∈−→gc gc,i ln gc,i)− (−

∑
gd,i∈−→gd gd,i ln gd,i)

max(−
∑

gc,i∈−→gc gc,i ln gc,i,−
∑

gd,i∈−→gd gd,i ln gd,i)
(5.2)

Table 5.1 and Table 5.2 show SM and SDM for GeoWiki, GeoCorpora, and WikToR,

respectively. For all three corpora the median of SM is greater than or equal to 0.49,

meaning there is a strong misalignment between their place coverage and place coverage

of GeoNames. This spatial misalignment is more prominent for evaluation corpora as

both their first quantiles of SM are greater than 0.8. In addition, SDM for all three

corpora is generally negative. This points out a strong misaligned geographic diversity

in their place coverage, particularly for the social media corpus GeoCorpora with a SDM

median of -1.00.

Table 5.1: Spatial Misalignment between training/evaluation corpora and the GeoN-
ames gazetteer

Dataset Genre Min 1st Qu. Median 3rd Qu. Max
GeoWiki Wikipedia 0.00 0.31 0.49 0.63 0.87
GeoCorpora Social Media 0.35 0.90 0.96 0.99 1.00
WikToR Wikipedia 0.49 0.87 0.92 0.96 1.00

Table 5.2: Spatial Diversity Misalignment between training/evaluation corpora and
the GeoNames gazetteer

Dataset Genre Min 1st Qu. Median 3rd Qu. Max
GeoWiki Wikipedia -1.00 -0.30 -0.22 -0.14 0.43
GeoCorpora Social Media -1.00 -1.00 -1.00 -0.86 -0.43
WikToR Wikipedia -1.00 -1.00 -0.83 -0.70 -0.26
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However, it is worth noting that there are also representation biases involved in

gazetteer data that have often been used as references for geoparsers to search for can-

didate place information of a toponym. McDonough et al. [60] questioned the colonist

perspective from which databases such as GeoNames, the Alexandria Digital Library, and

Wikipedia are built. They also pointed out the lack of temporal metadata for historial

toponyms in gazetteers that have already been found to contain inadequate geographic

knowledge about many parts of the world. This raises concerns that biases might accu-

mulate as digital resources would replicate the content of their predecessors during their

creation process. Therefore, we consider the study of historical aspects of representation

biases involved in place name data as an intriguing future direction, which has now been

made possible by tremendous efforts in applying knowledge graphs to building historical

gazetteers such as Grossner and Mostern [61].

5.2 Aggregation Bias

The second kind of geographic bias is the aggregation bias involved in toponym resolu-

tion. In many recent studies, the Earth’s surface is divided into grid cells, and toponym

resolution is approached as a classification task where the model predicts the most likely

cell the current toponym should fall into based on loss function minimization. How-

ever, different discretization of the space will yield different prediction results. In the

evaluation of Kulkarni et al. [10], this Modifiable Areal Unit Problem (MAUP) [62] in

the prediction of toponym resolution is found to cause a trade-off between model gen-

eralization and prediction quality: finer granularity results in higher accuracy in denser

regions with more toponyms in training data, while coarser granularity leads to better

generalization over data on both global and local scales.

In addition to the prediction process, different patterns can also be learned by to-
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ponym resolution models when choosing different granularity during the training process.

Coupled with joint minimization of losses at each level, the multi-level neural network

architecture proposed by Kulkarni et al. [10] can be one of the many possible solutions

to dealing with the MAUP in the training of toponym resolution models.

5.3 Algorithmic Bias

Besides datasets, there is a common algorithmic bias intentionally introduced in toponym

resolution. For instance, toponym resolution tends to prefer places with the largest popu-

lation during place name disambiguation. While applying this simple population heuris-

tic reduces computational complexity, and even brings about better performance than

building more complex architecture in some circumstances, its limitations are evident.

First, population information needs to be retrieved from gazetteers, and therefore, to-

ponym resolution is made gazetteer-constrained. Second, population information serves

as a geographic bias that hinders the fairness towards places with a smaller population

in toponym resolution. Gazetteer-free toponym resolution has been studied as one of the

many possible solutions recently, and has shown promising results. Examples include

topic modeling for place name disambiguation [4], modeling geographic profiles of words

[46], spatial language representation learning at multiple levels [10], and toponym co-

occurrence representation learning [11]. It is worth noting that gazetteer-free toponym

resolution models can even output toponyms that are not inventoried in the gazetteer in

the first place.
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5.4 Evaluation Bias

Lastly, there is an evaluation bias [63] caused by how geoparsing performance was mea-

sured in previous research. How a geoparser performs across geographic space has not

been taken into account, since the evaluation metrics are merely used to provide the over-

all performance instead of the performance at each annotated location (in a corpus). Our

spatially-explicit performance evaluation has addressed this issue. However, the spatial

(diversity) misalignment analysis in Chapter 5.1 raises another concern that geopars-

ing performance evaluation is more than geographically biased for lack of a geospatial

perspective, because the evaluation bias in geoparsing can be exacerbated by the repre-

sentation bias in these benchmark evaluation datasets.
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Chapter 6

Conclusions and Future Work

6.1 Conclusions

In this work, we presented a spatially-explicit evaluation of geoparsing performance across

geographic space. We utilized Recall and MdnED to measure toponym recognition

and resolution performance, respectively, and compared how deep-learning-based models

that were claimed to achieve state-of-the-art results and their off-the-self counterparts

perform across geographic space. By visualizing the normalized frequency distributions of

the two geoparsing performance indicators, we discovered that all normalized frequency

distributions are highly skewed. Then, we analyzed the spatial autocorrelation underlying

regional variability in geoparsing performance by calculating the Getis-Ord Gi* statistic

of Recall and MdnED at all annotated locations. We detected hot spots and cold spots

in geoparsing performance, which reveals that geoparsing is geographically biased towards

some regions and against others. Particularly, in toponym resolution that is sensitive to

place name ambiguity, only cold spots were observed, and there was a stronger bias in

the deep-learning-based CamCoder compared with the rule-based Edinburgh Geoparser.

There was also strong regional variability in toponym resolution performance for highly
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ambiguous toponyms, as revealed by the standard deviations of MdnED for annotated

locations with the same name.

To probe the reason for the observed regional variability, we further evaluated geo-

graphic biases involved in geoparsing studies, ranging from spatial (diversity) misalign-

ment of place coverage between (training and evaluation) corpora and the GeoNames

gazetteer, the MAUP in toponym resolution, the preferences towards places with the

largest population in place name disambiguation, to a biased perspective and usage of

biased data in performance evaluation. Summing up, we rejected the claim that geopars-

ing is solved, and argued that it only appears so due to evaluation biases and that other

geographic biases in geoparsing also need immediate attention.

6.2 Future Work

While we have discussed how recent work, such as spatial representation learning and

spatially-explicit geoparsing performance evaluations, can help remove some of the geo-

graphic biases embedded in geoparsing, there is still a long way to go towards directions

such as developing geoparsers that can succeed in performing accurately in place name

disambiguation across geographic space. We hope to highlight aforementioned biases for

future geoparsing research, and we call for debiasing work on geoparsing by following

three potential paths.

First, more representative training and evaluation corpora is needed. When build-

ing such datasets, they should be evaluated by minimizing representation biases across

geographic space. Also, the representativeness of toponyms in the context of a target

toponym to be geoparsed should be assessed. An ablation study that masks either the

target toponym feature or contextual toponym features showed degradation in the overall

geoparsing performance [10], indicating a potential influence of the number, geographic
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distribution or semantic characteristics of contextual toponyms on geoparsing. In addi-

tion, another critical data issue is the covariate shift caused by the difference between

training and evaluation dataset distributions. This difference emerges because labeled

articles in these datasets can be created differently during data sampling, thus prevent-

ing the scalability of geoparsing classifiers when applying them on evaluation datasets

in the wild. To overcome this problem, a widely-adopted approach is to use pre-trained

word embeddings (e.g., GloVe [64]). While they help improve the overall performance of

geoparsing that can suffer from training data paucity, whether they correct the covariate

shift caused by representation biases across geographic space remains to be studied.

Second, there are rich opportunities for developing more spatially-explicit geoparsers.

Besides spatial representation learning on non-structured or semi-structured data, struc-

tured geographic information provided by knowledge graphs provide new possibilities in

geoparsing [65, 66]. Combining graph representation learning [67] and spatial represen-

tation learning can be one of the many promising techniques that can extract additional

geospatial semantics of places from interlinked data and embed them into geoparsing.

However, a relevant ethical question is how to ensure algorithmic fairness towards un-

derrepresented locations, such as those with no population information in gazetteers

or with toponyms rarely mentioned in any corpus. As we also want to obtain a high

geoparsing performance, we need to maintain a balance between geoparsing fairness and

performance. Such maintenance requires both debiasing algorithms and quantitative

measurements of geoparsing fairness.

Third, evaluation metrics used to evaluate geoparsing performance can incorporate

more relevant spatial knowledge. Our evaluation has revealed geographic biases in to-

ponym recognition, indicating that toponym recognition is also a geospatial task rather

than merely a sub-task of NERC. This leads to a question of how to assess toponym

recognition performance across geographic space by designing spatially-explicit evalua-
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tion metrics. On the other hand, as direction is a first-class citizen of equal significance

to distance [68], we may also need direction-based metrics in addition to distance-based

metrics, particularly for toponym resolution performance evaluations. Such metrics can

offer insights into anisotropy in geoparsing performance.

We also recommend further considerations about how much bias a task is able to bear

when applying geoparsing in (geospatial) downstream tasks, e.g., vague cognitive region

extraction [69] and geographic question answering [70]. Such considerations need to be

taken into account in terms of dataset construction, algorithm design, and performance

evaluations in geoparsing.
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