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Abstract 

The understanding that agents have goals, and the ability to 
infer them, is fundamental in social cognition. However, 
much of our social understanding goes beyond goal 
attribution. Drawing on both behavioral studies throughout 
development, and on the limitations of past models, we 
propose that humans have a naïve utility calculus to reason 
about the costs and rewards underlying agents’ goals. We 
show that the naïve utility calculus model, embedded in a 
Bayesian framework, can jointly infer the costs and rewards 
of agents navigating in complex scenarios. Using this model 
we test humans’ ability to make quantitative cost-reward 
inferences in scenarios with various sources of costs and 
rewards. Our results suggest the naïve utility calculus model 
fits human inferences better than simple goal inference 
models. 

Keywords: Bayesian modeling; Inverse planning; Naïve 
Utility Calculus; Social Cognition; Theory of Mind 

Introduction 
Understanding that agents move to complete goals is at the 
heart of our social abilities and already at work in infancy 
(Woodward, Sommerville, & Guajardo, 2001). In addition 
to knowing that agents have goals, we also have 
expectations about how agents complete them. 
Developmental evidence suggests that humans expect 
agents to act efficiently (Scott & Baillargeon, 2013; Gergely 
& Csibra, 2003). This assumption, known as the principle of 
efficiency, enables humans to infer unobservable goals from 
observable behavior. The logic of this inference can be 
described and formalized using Bayesian inference, where 
the probability that an agent has goal G given that they took 
actions A is given by 

 
 p(G | A)∝ L(A |G)p(G).  (1)  
 
Here, L(A |G)  is the likelihood that the agent would take 
actions A if she had goal G, and p(G)  is the prior belief 
that the agent goal G. The principle of efficiency determines 
the likelihood function: The more efficiently the actions A 
complete the goal G, the higher their likelihood (And 
therefore the higher the posterior probability that the agent 
has that goal).  
   This kind of inference, called inverse planning, was 
formally modeled by Baker, Saxe, & Tenenbaum (2009), 
using Markov Decision Processes (MDPs). In the MDP 
framework, the environment is modeled as a set of states, 
each with an associated utility (that can be positive or 
negative), which the agent can navigate by taking different 

actions (e.g., walk left, right, etc). With this formulation, it 
is possible to determine the sequence of actions that 
maximize an agent’s utility as efficiently as possible. Using 
MDPs as a model for how agents act, goal inference can be 
formalized as inferring the unobservable utility function that 
is guiding the agent’s actions. These models predict with 
high quantitative accuracy how adults infer goals in simple 
scenarios (Baker, et. al., 2009; 2011; Jara-Ettinger et al., 
2012). 

Social reasoning beyond goal attribution 
Despite the success of these models, the power of these 

inferences is limited. 
   Explanatory limitations To illustrate why, consider a 
simple example. A man is walking and reaches a fork on the 
road. The left path leads to a lake where he can swim, and 
the right path leads to his house. The man stops for a second 
and then takes the right path. The man’s goal is immediately 
revealed after his first step, as he’s taking an efficient path 
towards his house and an inefficient path towards the lake. 
However, this inference only tells us what the man is trying 
to achieve, but not why. The man may be going home 
because he doesn’t like swimming, because he cannot swim, 
because he’s too tired, or too hungry. 

Models that infer the utility function will treat all the 
above explanations as being roughly equivalent, as they all 
reduce to a utility function with a higher value for being 
home than for going swimming. Intuitively, however, each 
statement tells us more about the man’s psychological state 
and provides some insight into why swimming had a low 
utility. That is, rather than only reasoning about high 
utilities and associating them with goals, we are also 
sensitive to the costs and rewards underlying these utilities. 

 
Predictive limitations Following on the past example, 

after the man arrives to his house, the predictive power of 
goal inference vanishes. We don’t know what the man will 
do next, or even if he will have the same goal in the future. 
However, each explanation above boosts our predictive 
power. Knowing the costs and rewards underlying the 
man’s goal allows us to reason about how his utilities may 
change over time. A tired man might choose to go 
swimming after taking a nap; an incompetent swimmer will 
not. 

 
Inferential limitations Desires might be in direct conflict 

with each other (e.g., wanting to a cookie and wanting to 
lose weight), they might be too costly to obtain (e.g., buying 
a new car), or we may not know how to complete them 
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(e.g., wanting world peace) (Moses, 2003). As such, agents 
have to compromise and tradeoff their true desires to choose 
a goal. Therefore, goals aren’t always aligned with agents’ 
true preferences. This makes it critical to distinguish 
between high utility states (what an agent wants to do at the 
moment) and high reward states (what an agent intrinsically 
likes). If your friend buys coffee next door you won’t infer 
that she likes it better than the coffee sold across town, but 
if she goes all the way across town, you’ll be confident she 
likes it better than the coffee from the local shop. 
 
   Practical limitations Standard goal attribution accounts 
assume that costs are identical for all agents. However, this 
is not the case. Consider this common scenario: Anne and 
Bob arrive to check-in at the airport and find that the entry 
is an empty zigzag pathway. Anne, who is six-years-old, 
takes her most efficient path towards the counter: ducking 
under the divisions. At the same time, Bob, who is 6’ tall, 
takes his most efficient path towards the counter, by 
zigzagging through the path. If we assumed that both agents 
were acting efficiently with respect to the same objective 
costs we might infer that Bob is changing his goal at every 
bend in the zigzag path. Thus, to infer goals we need to 
understand that costs vary across agents, and we need to be 
able to infer them. 

The naïve utility calculus 
In light of these limitations, our intuitive theory must also 

include some understanding of how costs and rewards 
jointly influence people’s behavior. Recent developmental 
evidence suggest that we assume that agents estimate the 
costs and rewards associated with a goal, and chose what to 
do based on the difference of these two values: the utility.1 

Preschoolers understand that costs and rewards vary 
across agents, and that these two determine the agent’s 
utility, and thus their goals. Using this understanding, five- 
and six-year-olds can use knowledge about an agent’s costs 
to infer their rewards, and, conversely, knowledge about an 
agent’s rewards to infer their costs (Jara-Ettinger, Gweon, 
Tenenbaum, & Schulz, 2015). At an even earlier age, two 
year-olds can estimate an agent’s motivation to help using 
information about their costs (Jara-Ettinger, Tenenbaum, & 
Schulz,2015): When a competent and an incompetent agent 
refuse to help, toddlers infer that the competent agent was 
more likely to be unmotivated. 

Intuitively, cost-reward tradeoffs happen in our everyday 
lives. We want to call our relatives but postpone it for weeks 
because we don’t have time; we want to go to that nice 
restaurant downtown but end up going to the less desirable 
one near our house because it’s closer, and we skip the best 
rides at theme parks because were not up for waiting in line. 
Formally, the utility for taking a sequence of actions A to 
reach state S is given by 

 

                                                             
1 These types of models have been extensively studied as a 

theory for how humans produce behavior (Gilboa, 2010), but less 

 U(S,A) = R(S)−C(A)  (2)  
 
The higher a goal’s utility, the more likely the agent will 
pursue it. Despite the simplicity, decomposing utilities into 
costs and rewards has powerful implications. Plans with 
high rewards and medium costs (e.g., doing something 
because you truly want it) are now different from plans with 
low rewards but even lower costs (e.g., doing something 
simply because it is convenient). Conversely, plans with low 
rewards and medium costs (e.g., foregoing something 
because you don’t want it) are now different from plans 
with high rewards and even higher costs (e.g., foregoing 
something because it’s too costly). However, the exact costs 
for different actions and the rewards for reaching different 
states vary across agents and are partially unobservable. 
Thus, for an observer to have the advantage of representing 
an agent’s costs and rewards, they need to be able to infer 
them. 
   Despite the qualitative evidence for a naïve utility calculus 
early in development (Jara-Ettinger et al., 2014; 2015), the 
exact nature of these inferences, and the precision to which 
humans can make them, are open questions. 

Computational framework 

To test people’s ability to jointly infer an agent’s costs and 
rewards, we implemented the naïve utility calculus model 
and a main alternative basic goal inference model (based on 
Baker, et. al., 2009). In addition, to get better insight into 
how each difference between the two models affects the 
cost-reward inferences, we implemented three additional 
intermediate models. 

Naïve Utility Calculus model sketch 
This model is a direct extension of past goal-inference 
models (Baker, et al., 2009). However, rather than inferring 
the agent’s utility function, we take the inference further and 
decompose the utility function into the underlying costs and 
rewards. This joint cost-reward inference can be seamlessly 
adapted into the inverse planning framework, where the 
probability that an agent who took actions A has cost 
function C and reward function R is given by Bayes’ rule: 
 
 p(C,R | A)∝ L(A |C,R)p(C,R) . (3)  

 
Here, the likelihood that the agent takes actions A given 
their costs and rewards C and R is determined by the 
resulting utility function (Equation 2). That is, this model 
performs Bayesian inference over a generative planning 
model (formalized as a Markov Decision Process; See 
Baker, et al., 2009 for a detailed explanation of inverse 
planning through MDPs) by combining the cost and reward 
function to generate the utility function. Critically, the 
model understands that costs depend on the type of action 
(some actions are more costly than others) and on the agent 
(different agents incur different costs), and, similarly, that 
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the rewards depend on the outcome (some outcomes are 
more rewarding than others) and on the agent (different 
agents place different rewards on the outcomes). 
 
   Simple goal inference alternative model As the main 
alternative we implemented a simple goal-inference model 
based on Baker, et al., (2009). Like the naïve utility calculus 
model, this model infers the unobservable utility function. 
However, rather than inferring an agent’s costs, it assumes 
that all agents incur the same costs, independent of the 
action they take. Thus, this model is unable to infer agents’ 
costs functions or to use them to infer the magnitude of the 
rewards. 

Intermediate accounts 
   Competence inference model This model extends the 
simple goal inference alternative model by allowing the 
costs to vary across agents. That is, this model assumes that 
agents incur a fixed cost for taking any action. However, it 
allows different agents to have different cost constants (their 
competence). As such, it understands that some agents may 
forego a high reward if the costs they would have to incur 
are too high. The difference between this model and the 
simple goal inference model quantifies the advantage an 
observer obtains by understanding that some agents are 
broadly more competent than others. 
 
   Motivation inference model This model is the 
complement of the competence inference model. As in the 
naïve utility calculus model, this model assumes that the 
cost for travelling depends on both the specific agent and 
the specific terrain. However, rather than inferring a 
separate reward value for each object, this model assumes 
that all objects have a constant reward value. Nevertheless, 
the model allows this value to vary across agents. 
Intuitively, the model attempts to explain agents’ behavior 
by inferring their full cost function, and an overall level of 
motivation to complete goals. This model allows us to test if 
people’s inferences can be explained by simply considering 
an agent’s overall motivation to navigate the world and the 
cost they incur for navigating different types of terrains. 
 
   Competence-motivation inference model This last 
model assumes that agents’ behavior is determined by two 
parameters: their overall competence and motivation. That 
is, the model assumes that each agent incurs a cost c 
whenever it takes an action (regardless of the terrain) and 
obtains a reward r whenever it collects an object (regardless 
of which object it collects). Although these two values are 
fixed for each agent, the model infers their specific value for 
different agents. This model, compared with the naïve utility 
calculus model enables us to quantify the inferential gain 
from giving the cost and reward functions more flexibility 
by allowing them to vary as a function of the objects and the 
terrains. 
 

 To illustrate how the 
naïve utility calculus 
model and the simple 
goal-inference model 
differ, consider the 
sample path shown in 
Figure 1a. An agent is 
travelling from south 
to north, where he can 
pick up either, or 
both, of the fruits. 
The terrain consists of 
dense jungle (in 
green), water (in 
blue), and mountains 
(in brown). Figure 1b 
shows the two 

model’s inferences for two potential paths. In the straight 
path (orange line) the agent travelled up north in a straight 
line, crossing the water. In the curved path (black line), the 
agent travelled up north circumventing the water. As the top 
row shows (Figure 1b), for the naïve utility calculus model, 
the straight path implies that the agent doesn’t mind 
crossing water, and the curved path implies that he dislikes 
water. In contrast, the simple goal-inference model is unable 
to consider these differences. The second row shows each 
model’s inferred reward functions. When the agent takes a 
straight path, both models infer that he probably likes both 
fruits. However, when the agent takes the curved path, the 
naïve utility calculus model now infers that the agent prefers 
grapes, while the simple goal inference model does not. 
This is consistent with the predictions about the agent’s 
future actions (last row). Once again, the simple goal-
inference model makes similar predictions for both paths. In 
contrast, the naïve utility calculus model infers that the 
agent is more likely to pick up the grapes when it observes 
the curved path, but not when it observes the straight path. 
Although simple, this example highlights how joint cost-
reward inferences help overcome the limitations raised in 
the past section. The naïve utility calculus can infer why the 
agent circumvented the water, and it can use this knowledge 
to predict what the agent will do next. In contrast, the pure 
goal-inference model interprets all actions as attempts to 
reach the fruits through the shortest possible path. 

Experiment 
To test people’s ability to perform precise cost-reward 

inferences, we designed a simple experiment where 
participants were asked to infer the abilities and preferences 
of different agents navigating a grid world (as a static 
image) with three types of terrains and two types of objects. 

Design 
The stimuli consisted of an 8x6 grid world with jungle, 
water, and mud (See Figure 2 for examples). Each stimulus 
contained the agent’s starting point (which could be any of 
the four red squares shown in the examples in Figure 2), the 

a) b)

Cost inference Cost inference

0
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4
5

0.00
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0.50
0.75
1.00

Straight Curved Straight Curved
Reward inference Reward inference

0

5
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15

0

5

10

Straight Curved Straight Curved

Naïve Utility
Calculus

Pure goal
inference

Goal prediction Goal prediction

0.00
0.25
0.50
0.75
1.00

0.00
0.25
0.50
0.75
1.00

Straight Curved Straight Curved  
Figure 1. a) An agent moves from south to 
north towards two fruits. In the orange 
path, the agent moved in a straight line, 
while in the black path the agent 
circumvented the water. b) naïve utility 
calculus and simple goal inferences. Bars 
are color coded in accordance with the 
map. 
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end point (always located in the top left spot), two targets 
(located in any of the three possible locations shown in 
Figure 2; the apple and grape images were randomized 
across trials), and the agent’s path. To generate the test 
stimulus we first ran 12,000 simulations (1,000 in each of 
the 12 possible worlds) of agents with random costs and 
rewards navigating the world (Cost and reward values were 
sampled from exponential distributions with parameters 0.1 
and 10, respectively; these parameters were set qualitatively 
to ensure the simulations produced a wide range of paths). 
These simulations generated 189 unique paths. To reduce 
the stimuli size we first calculated each path’s recoverability 
score, defined as the residual sum of squares (RSS) between 
the true parameters and the parameters inferred through 
Bayesian inference over the generative model (taking the 
posterior’s expected value). Thus, paths with low 
recoverability indices had enough information for a rational 
observer to infer the underlying costs and rewards. Next, we 
calculated a discrepancy score for each alternative model, 
defined as the RSS between the naïve utility calculus 
predictions and the alternative model’s predictions. Stimuli 
were reduced by removing all paths with a recoverability 
index greater than one, and then by selecting the 30 paths 
with the highest discrepancy score for each alternative 
model. The resulting 120 paths (30 for each of the four 
alternative models) reduced to 42 paths after removing 
duplicates. These 42 paths were thus ensured to contain 
enough information for observers to be able to make cost 
reward inferences (because they had a low recoverability 
index), and a high likelihood of helping us disambiguate 
between models (because they had a high discrepancy 
score). For each of the 42 paths we created an object 
version, where the map contained two fruits the protagonist 
could collect (See Figure 2), and a social version, where the 
map contained two agents the protagonist could help (The 
stimuli was otherwise identical). This allows us to test if 
humans make different cost-reward inferences when 
reasoning about social (helping someone) and non-social 
goals (collecting food). For instance, humans may infer a 
separate reward for each outcome in non-social goals (as the 
naïve utility calculus model does), but only an overall level 
of prosociality when reasoning about social goals (as the 
motivation inference model does). 

Participants 
80 U.S. residents (as determined by their IP address) were 
recruited and tested through Amazon’s Mechanical Turk 
platform (Mean age = 38.59 years. Min=19 years, max=68 
years). 

Procedure 
Participants were randomly assigned to the object (N=40 
participants) or the social (N=40 participants) condition. In 
order to keep the experiment short, each participant only 
completed half (21) of the trials. These trials were selected 
by performing random splits, guaranteeing that each path 
was rated exactly 20 times in the social condition and 20 

times in the object condition. Participants first completed a 
tutorial and a brief questionnaire to ensure they understood 
the task. Participants who responded one or more question 
incorrectly were automatically redirected to the beginning of 
the tutorial. Participants who responded all questions 
correctly were given access to the test stage. In each trial, 
participants saw a test path on the left side of the screen 
(See Figure 2 for examples; all images were static) and five 
slidebars on the right side of the screen. The first three 
slidebars asked about the agent’s ability to navigate through 
each type of terrain (ranging from “Extremely exhausting” 
to “Extremely easy”, with “average” in the middle) and the 
last two slidebars asked about the agent’s strength of 
preference for each fruit, or about their motivation to help 
each stranded agent, depending on the condition (ranging 
from “Not at all” to “A lot” with no text in the middle). 

Results 
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Average
human judgments

Model prediction

Starting
points

Target
locations

 
Figure 2. Example stimuli showing different starting points, object 
arrangements, and paths. Grey bars show average human judgments (z-
scored per participant) with 95% confidence intervals. Teal bars show 
naïve utility calculus predictions. 
 
As predicted, participants’ average judgments were highly 
similar in the social and the object conditions (r=0.95; 95% 
CI: 0.93-0.97)2, suggesting that people use the same type of 
reasoning when inferring an agent’s social or non-social 

                                                             
2 All reported confidence intervals were obtained through a 

basic non-parametric bootstrap. 
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rewards. In light of this, all further analyses were performed 
using the merged judgments from both conditions. 
 Figure 2 shows example paths with the naïve utility 
calculus inferences and the average human judgments. 
Although the model qualitatively matched human 
judgments, there were also high discrepancies. For example, 
in the path on the bottom left of Figure 2, humans inferred 
that the agent had a high reward for picking up both objects 
(or helping both agents). In contrast, the model inferred a 
high reward for the first target the agent reached and a 
substantially lower reward for the second object, as it was 
conveniently located on the agent’s path towards the exit 
state (the top left of the map). This same path illustrates how 
the naïve utility calculus model showed more sensitivity to 
costs than humans did. At the beginning of the path the 
agent travelled north and moved two squares across the 
jungle before diving into the water. The model took this as 
strong evidence that the agent prefers navigating through the 
jungle relative to the other terrains, but humans did not. 

Cost Reward

●

●

●

●●

●

●

●

●

●

●

●

●
●

●
● ●

●

●

●

● ●

●

●●
●

●●

●

●

●

●

●

●

●

● ●

● ●

●

●
●

●

●

●
●

●

●

●

● ●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●
●

●

●

● ●

●

●

●

●

●

●
●
●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

● ●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●●
●
●●

●

●

●

●●

●

●●
●

●●
●

●

●

●

●

●

●

●●

●●

●

●
●

●

●

●●

●

●

●

●●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●●

●

●

●●

●

●

●

●

●

●
●
●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●
●

●

●

●

●●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●
●

●
●●

●

●

●

●●

●

● ●
●

●●

●

●

●

●

●

●

●

●●

●●

●

●
●

●

●

●
●

●

●

●

●●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●●

●

●

●●

●

●

●

●

●

●
●
●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

● ●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●
●

●
●●

●

●

●

●●

●

● ●
●

●●

●

●

●

●

●

●

●

●●

●●

●

●
●

●

●

●
●

●

●

●

●●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●
●

●

●

●●

●

●

●

●

●

●

●
●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●
●

●
●●

●

●

●

●●

●

●●
●

●●

●

●

●

●

●

●

●

● ●

●●

●

●
●

●

●

●
●

●

●

●

● ●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●
●

●

●

● ●

●

●

●

●

●

●
●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

● ●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●●

●
●

●
●

●

●

●

●

●●
●

● ●

●

●

● ●
●

● ●

●

●

●

●

●

● ●

●

●

●

●
●

●

●

●

●
●● ●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●●

●

●
●
●

●

●

●● ●

●●

●

●●
●

●

●

●

●

●

●●

●

●

●

●

●

●●

●
●

●●

●

●

●

●

●●
●

● ●

●

●

●●●

● ●

●

●

●

●

●

● ●

●

●

●

●
●

●

●

●

● ●● ●

●

●
●

●●

●

●

●
●

●

●

●

●

●

●●

●

●
●
●

●

●

●● ●

●●

●

●●
●

●

●

●

●

●

●●

●

●

●

●

●

●●

●
●

●
●

●

●

●

●

●●
●

● ●

●

●

●●
●

● ●

●

●

●

●

●

●●

●

●

●

●
●

●

●

●

●
●● ●

●

●
●

●●

●

●

●
●

●

●

●

●

●

●●

●

●
●
●

●

●

●● ●

●●

●

● ●
●

●

●

●

●

●

●●

●

●

●

●

●

●●

●
●

●
●

●

●

●

●

●●
●

● ●

●

●

●●
●

●●

●

●

●

●

●

●●

●

●

●

●
●

●

●

●

●
●●●

●

●

●
●
●

●

●

●
●

●

●

●

●

●

●●

●

●
●

●

●

●

● ●●

●●

●

●●
●

●

●

●

●

●

●●

●

●

●

●

●

●●

●
●

●
●

●

●

●

●

●●
●

● ●

●

●

●●
●

●●

●

●

●

●

●

●●

●

●

●

●
●

●

●

●

●
●●●

●

●
●

●●

●

●

●
●

●

●

●

●

●

●●

●

●
●

●

●

●

●●●

●●

●

●●
●

−1

0

1

−1

0

1

2

−1

0

1

−1

0

1

−1

0

1

N
a
ïv

e
 u

tility

c
a
lc

u
lu

s
G

o
a
l in

fe
re

n
c
e

C
o
m

p
e
te

n
c
e

in
fe

re
n
c
e

C
o
m

p
e
te

n
c
e
-m

o
tiv

a
tio

n

in
fe

re
n
c
e

M
o
tiv

a
tio

n

in
fe

re
n
c
e

0 2 4 0 2 4

Model prediction

H
u

m
a

n
 j
u

d
g

m
e

n
ts

Cost−Reward scatterplots

 
Figure 3. Scatterplot of model predictions (z-scored) compared to average 
human judgments. The x-axis shows the model predictions and y-axis 
shows the human (z-scored per participant) average judgments. The left 
column shows the cost inferences (three points per path) and the right 
column shows the reward inferences (two points per path). Each row shows 
a different model. 
 
  We next performed a quantitative model comparison by 
calculating each model’s correlation with human cost and 
reward inferences (See Figure 3). To do this, each 
participant’s data was standardized (z-scored) and then 
averaged. Similarly, each model’s predictions were 
standardized (z-scored). On the cost dimension, the naïve 
utility calculus correlated the highest with human judgments 
(r=0.72; 95% CI: 0.65-0.79), followed by the motivation 
inference model (r=0.50; 95% CI: 0.40-0.61). The naïve 
utility calculus inferred the full reward function while the 
motivation inference model only inferred a single 

motivation parameter. Thus, this correlation difference 
(0.22; 95% CI: 0.09-0.34) suggests that inferring the reward 
function also helps recover the costs with more precision. 
The competence inference and the competence-motivation 
inference models both had correlations close to zero (r=-
0.04 and -0.01, respectively. The 95% CI for both models 
was between -0.20 and 0.16), suggesting that humans do not 
treat costs as being uniform for each agent. Last, the simple 
goal inference alternative model makes no cost predictions 
and is thus incomparable on the cost dimension. 
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Figure 4. Individual model correlations with each participant. 93.75% of 
participants correlated best with the naïve utility calculus model. The x-axis 
shows all 80 participants. The y-axis shows each participant’s correlation 
with each model. Participants are sorted by their correlation with the naïve 
utility calculus model. All model predictions were obtained prior to data 
collection and no individual parameters were fit. 
  
  On the reward dimension, the naïve utility calculus model 
showed the highest correlation (r=0.88; 05% CI: 0.83-0.93), 
but it was not reliably higher than the competence inference 
model (r=0.87; 95% CI: 0.82-0.93) or the simple goal 
inference model (r=0.82; 0.74-0.90) (95% CI difference 
between naïve utility calculus and competence inference and 
simple goal inference: -0.07-0.09 and -0.03-0.16, 
respectively). The motivation inference and motivation-
competence inferences performed considerably worse 
(r=0.34 and 0.42, respectively; 95% CI: 0.44-0.68 and 0.32-
0.57, respectively). Thus, our paradigm did not reveal any 
significant improvement in the ability to infer rewards by 
simultaneously inferring costs. 
  Last, we examined participants’ individual performance by 
calculating their correlation with each model (See Figure 4). 
Because both cost and reward inferences were z-scored for 
participants and each model, we were able to calculate a 
joint cost-reward correlation score. All participants were 
correlated with the predictions generated from the model 
prior to data collection and no parameters were fit to 
individual participants. On average, participants had a 
correlation of 0.624 (95% CI: 0.60-0.66) with the naïve 
utility calculus model. Furthermore, 93.75% of participants 

978



(N=75) showed the highest correlation with this model. 
Three out of the remaining five participants (6.25%) 
correlated better with the goal inference model and the other 
two participants correlated better with the motivation 
inference model (See Figure 4). This suggests that, although 
the naïve utility calculus model did not fit human inferences 
perfectly, it nevertheless clearly outperformed all other 
models at a global and individual level. 

Discussion 
Here we proposed that the ability to reason about the costs 
and rewards underlying rational action is crucial for social 
reasoning. Inspired by developmental studies (Jara-Ettinger 
et al., 2015; Jara-Ettinger, Nate, Muentener, & Schulz, 
2014) we implemented a formal model of the naïve utility 
calculus and tested its performance against human 
inferences. 

Overall, the naïve utility calculus model outperformed the 
simple pure goal inference model as well as intermediate 
models both at a global level (averaging the responses of all 
participants) and at an individual level (correlating model 
predictions with individual participants). Importantly, the 
naïve utility calculus was able to infer the cost function in a 
quantitatively similar way to human’s inferences (See 
Figure 3), which no other model was able to do. However, 
we also found unexpected results. 

First, although the naïve utility calculus made better cost 
inferences compared to the other models, its reward 
inferences were matched by the simple goal-inference and 
the competence inference models. Thus, we failed to find 
evidence that the ability to infer an agent’s costs helps to 
infer rewards with more precision. However, a closer look at 
the data (See Figure 3) suggests that, although the models 
showed a high numerical reward correlation, none of the 
models was able to predict human judgments with high 
accuracy. Critically, humans’ reward inferences were 
bimodal, with participants mostly inferring that the agents’ 
rewards took the highest possible value, or no value at all. 
In contrast, the naïve utility calculus model made graded 
predictions. One possibility is that humans were judging 
whether the agent placed a reward on the outcome or not, 
rather than inferring its exact magnitude. Further work is 
needed to determine if this effect is task specific or if it 
fundamentally reflects how humans make reward 
inferences. 

In addition, our experiment only used complete paths. 
However, as Figure 1 shows, a significant advantage of 
jointly inferring the costs and rewards comes into play 
before the agent has completed their goal. Models that don’t 
take into account an agent’s costs assume the agent is 
always taking the shortest path towards their goal (which 
may not necessarily be the most efficient; see Figure 1) and 
thus can make incorrect inferences. As such, it is possible 
that the naïve utility calculus model would outperform the 
other models when making reward inferences in incomplete 
paths. 

Importantly, participants performed identically in the 
object and the social conditions. This suggests that humans 
use the same kinds of inferences to reason about social 
goals. Having found overall support for human’s naïve 
utility calculus, in future work we can bring this quantitative 
paradigm to study how humans make social and moral 
evaluations. Behavioral work suggests that the same kinds 
of inferences influence our social evaluations (Jara-Ettinger, 
Kim, Muentener, & Schulz, 2014; Jara-Ettinger, 
Tenenbaum, & Schulz, 2015). As such, models of people’s 
quantitative cost-reward inferences may help us understand 
the precise computations underlying our social evaluations 
and moral judgments. 
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