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Twin studies have established that the influence of genetics on human traits related to brain 

and behavior are pervasive. For a large majority of complex human traits uncovering which 

genetic variants are associated with phenotypic variations, by performing Genome Wide 

Association (GWA) studies, has been difficult due these traits being highly polygenic – many 

genetic variants with small effects that have a larger effect in aggregate. Conversely, some 
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traits have been shown to have a Mendelian genetic architecture – a single genetic variant 

imparting a large effect. In this thesis I explore the genetic contribution to variability of traits 

relating to brain and behavior in large GWA datasets for phenotypes of increasing complexity: 

a) Mendelian traits, b) polygenic traits and c) polygenic and multi-dimensional traits. First, I 

present analysis of the neurological impact of hereditary hemochromatosis, a Mendelian 

disorder that results in an excess of iron being absorbed by the body. Next, I present two 

projects investigating the genetic propensity/liability of i) cognitive performance and ii) 

psychopathology in a large sample of typically developing children aged 9-10 years old. Finally, 

I present a method for analyzing polygenic and multi-dimensional traits and apply it to the 

phenotype of human cortical morphology (cortical area, thickness and sulcal depth). In the age 

of large genomic databases this work may prove to be important for early detection of at risk 

groups as well as understanding the genetic determinants that give rise to complex human 

traits.
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Chapter 1:  Overview 

Human genetics offers great promise from precision medicine to understanding the 

mechanisms of complex traits[1]. Since before the advent of genotyping technologies of the 

21th century, it was understood that the genetic influence on human traits (e.g. height, 

intelligence, psychiatric disorders) was pervasive across phenotypes[2]. The degree to which 

the variability in a phenotype is attributable to genetics is defined as a phenotype’s heritability 

and twin studies of the late 20th century enabled estimates of this quantity – termed twin 

heritability[3]. This type of heritability tells one the degree of contribution of genetics to a given 

trait, however it does not describe which genetic variants are contributing. Knowing which 

genetic variants contribute to a phenotype is important for understanding the mechanisms for 

that trait, and in the case that the trait is a disease or disorder this will help guide future 

therapies[4,5]. In order to locate which genetic variants are responsible for phenotypic variation 

the human genome needed to be sequenced and whole genome genotyping techniques need 

to be developed. The sequencing of the human genome in 2003[6], along with advances in 

whole genome genotyping (e.g. microarray[7]), enabled a type of study in the early 21th century 

known as Genome-Wide Association (GWA) studies. These studies enabled researchers to 

locate and quantify the association strength of genetic variants that contribute to variability in 

human phenotypes. Given the moderate to high heritability across many human traits[3] it was 

believed that GWA studies would enable us to quickly find which genetic variants were giving 

rise to variability in phenotypes[8]. However, aside from some notable early discoveries[9,10], a 

picture quickly began emerging that estimates of heritability from GWA studies were far lower 

than what was expected from twin studies. This divergence between i) heritabilities estimated 
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from GWA studies and ii) the expected heritability from twin studies was termed the ‘missing 

heritability problem’[11]. Many explanations were given to explain this divergence such as 

epigenetics[12], epistatsis[13], and flaws in twin study design[14]. However, an overarching 

consensus that has been reached from the ‘missing heritability problem’ is that the vast 

majority of complex human traits are highly polygenic  - they are determined by many small 

contributions dispersed across the genome that in aggregate explain some proportion of the 

overall heritability. As well as developing methods that can accurately model this 

polygenicity[15,16], the field of GWA studies has concluded that datasets of very large sample 

sizes will be needed to provide the statistical power to accurately estimate effects of single 

genetic variants. This has led to the construction of large biobanks with genotype and 

phenotype data on hundreds of thousands of individuals[17,18], as well as large consortia that 

aggregate subjects across studies[19,20]. The analysis of traits related to brain and behavior in 

these large datasets form the contents of this thesis. The chapters are structured in order of 

increasing genetic and phenotypic complexity and dimensionality. Chapter 2 deals with a 

phenotype determined by a single genetic variant – a Mendelian trait. Chapter 3 and 4 involve 

analysis of polygenic traits: i) measures of intelligence and ii) psychiatric disorders and mental 

health. Finally, Chapter 5 describes a methodological development for analyzing polygenic and 

multivariate traits – specifically applied to the genetics of human cortical morphology.  

1.1 Mendelian Traits 

Mendelian traits refer to traits that are determined by a single location in the genome, 

with eye color being the canonical example taught in school. GWA studies are best powered to 

detect discover variants for traits of this sort. Indeed one of the earliest landmark GWA studies 

was for age related macular degeneration[9], which although not strictly a Mendelian trait has a 

very low polygenicity (very few variants with large effects). Discovery of variants associated 
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with this trait was achieved in less than 200 people – a miniscule sample size by current GWA 

study standards. Mendelian traits also provide clear routes for therapeutic targets as the 

mechanism usually involves the disruption of a single gene. Examples of successful 

therapeutics for Mendelian disorders include elexacaftor/tezacaftor/ivacaftor for cystic fibrosis 

patients[4], Nusinersen for individuals with spinal muscular atrophy[5] and promising clinical 

trials of RNA therapies for Huntington’s disease[21]. 

The specific Mendelian trait which I analyze in Chapter 2 is hereditary hemochromatosis 

(HH), an autosomal recessive genetic disorder that leads to iron overload in the body. It is 

understood the most common secondary disorders resulting from this condition are 

pathologies of the liver[22] caused by oxidative stress induced by iron overload. The 

neurological effects of this disorder have been studied in relatively small sample sizes or are 

case studies and have shown conflicting results[23–28]. In this portion of my thesis I conduct 

analysis of the genetic variant responsible for most cases of HH and neuroimaging measures 

that are sensitive to iron deposition, as well as enrichment for neurological disease associated 

with the neuroimaging findings. I conducted this analysis in a sample of 502,536 individuals 

from the UK Biobank – substantially larger than most other previous studies investigating HH 

and neurological deficits. The clinical benefit of studying this disorder is that there already 

exists treatment for HH that has been shown to be effective at reducing adverse secondary 

conditions if started early[22]. Furthermore, as a single gene is implicated in this disorder there 

is a good understanding of the biology and mechanisms resulting from the mutation. 
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1.2 Polygenic Traits  

 A major conclusion from the study of complex traits in human genetics is that the vast 

majority of phenotypes are polygenic in architecture[29]. This has motivated the wide adoption 

of a class of methods, known as Polygenic Risk Scores (PRS) or Polygenic Scores (PS), to 

predict liability/propensity of individual for a given polygenic trait. PS are usually generated in 

two stages: 1) training of the PS in a large cohort to learn the effects between genetic variants 

and the trait of interest – i.e. conducing a GWA study, 2) generating the PS in a (usually smaller) 

testing cohort by multiplying each genetic effect with the genotype of each individual and 

summing these across genetic variants. This process creates a single continuous score (PS) for 

each individual in the test set that describes the genetic liability/propensity for the trait of 

interest.  

In Chapters 3 and 4 I generate PS’s (i.e. step 2 above) in a sample of over 10,000 

typically developing children aged 9-10 years old from the Adolescent Brain Cognitive 

Development (ABCD) Study – where step 1 was already performed in pervious published larger 

GWAS studies. The ABCD study contains a large battery of both cognitive and mental health 

assessments for each individual. In Chapter 3 I generate a PS for cognitive performance – 

termed Intelligence Polygenic Score (IPS) – and show how this is differentially associated with 

domains of cognitive performance measured for each child. Furthermore, I present analysis 

that some of the association between IPS and cognitive performance is mediated by the 

amount each child reads, possibly representing a mailable target for improving cognitive 

outcomes.  

In Chapter 4 I present analysis after generating PRS for five major psychiatric traits in 

ABCD. We used these five PRS, as well as reported family history of ten traits, to capture 

liability for psychopathology. We sought to test how these 15 measures of liability related to 
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variability in a large battery of mental health assessments collected for each child. The 

importance of this work is in developing early detection for at risk individuals that may later go 

on to develop psychiatric disorders. This analysis was performed on the first time point of 

ABCD, when the children were aged 9-10 years old. With ABCD being a longitudinal study, 

Chapter 4 provides a baseline understanding of the relationship between psychopathology risk 

and mental health at this early age, from which we can understand evolving trajectories at later 

time points as the children develop. 

1.3 Polygenic Multi-dimensional traits 

 Many of the techniques utilized and developed in the field of GWA studies are for single 

dimensional traits such as height[30], intelligence[31] or psychiatric diagnoses[20]. Cortical 

morphology (e.g. cortical area, depth and sulcal depth) represents a class of multi-dimensional 

traits that have importance for our understanding of the mind, as well as pathologies of the 

brain, and are known to be strongly determined by genetics[32,33]. Although, GWA studies 

have been conducted to investigate the genetics of cortical morphology[34], the techniques 

deployed are extensions to GWA methods for single dimensional traits that are not statistically 

well powered to detect effects of genetic variants that have effects that distributed across 

many regions of the cortex. This has motivated work in our research group to develop a GWA 

statistical test, known as the MOSTest (Multivariate Omnibus Statistical Test), that has greater 

power to detect associations distributed across many dimensions of a phenotypes (in this case 

cortical morphology)[35–37]. This preceding work is important for the discovery of genetic 

variants that are associated with variability of cortical morphology across many regions of the 

brain. In Chapter 5 I present a method and analysis for quantifying the replication performance 

of discovered genetic associations using MOSTest in an independent dataset – this method is 

referred to as a PolyVertex Score (PVS).  This PVS has conceptual overlap with the method of 
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PRS, where PRS are aggregating the effects across multiple locations in the genome, PVS 

aggregates the effects across multiple locations (vertices) across the brain. The work in this 

chapter is important for validating the MOSTest method of discovery, as well as generating a 

framework for replicating GWA study findings of multivariate phenotypes of individuals from 

independent datasets. In the age of precision medicine these developments may prove to be 

important for individual level disease prediction[38]. 

1.4 Kavli Project   

During the course of studies I was also fortunate enough to be the recipient of a Kavli 

Innovative Research Grant as a principal investigator to study “Imputing Molecular 

Endophenotypes from Genome Wide Association Data to Understand Biological Pathways 

Leading to Psychiatric Disorders”. For this work I spent time under the supervision of Trey 

Ideker to develop network genetics models for GWA datasets. The majority GWA studies focus 

on modelling linear and independent effects of genetic variants on phenotypes. For this project 

I worked on developing a computational model capturing how the interaction between genes 

can give rise to complex human phenotypes. This work build upon previous work in yeast[39] 

and in human cancer lines[40] in which neural network model was used with an architecture 

constrained by known network structures between genes from databases like Gene 

Ontology[41]. Constraining the neural network with known biology enables activations within a 

trained network to be interpreted as groups of genes that are working to form a higher order 

function. As a proof of principle I trained and applied this model to predict diabetes diagnoses 

and blood lipid levels from individual genetic data in a large biobank sample[17]. I learnt a great 

deal during this project about network biology, deep learning and effective computational 

practices, however I will not be presenting further details of this work in this thesis.  
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Chapter 2:  Genetic Risk for 

Hemochromatosis is Associated with 

Movement Disorders 

2.1 Abstract 

Hereditary hemochromatosis (HH) is an autosomal recessive genetic disorder that can 

lead to iron overload, causing oxidative damage to affected organs. HH type 1 is 

predominantly associated with homozygosity for the mutation p.C282Y. Previous case studies 

have reported tentative links between HH and movement disorders, e.g. Parkinson's disease, 

and basal ganglia abnormalities on magnetic resonance imaging. We investigated the impact 

of p.C282Y homozygosity: on whole brain T2 intensity differences, a measure of iron 

deposition, and; on measures of movement abnormalities and disorders within UK Biobank. 

The neuroimaging analysis (154 p.C282Y homozygotes, 595 matched controls) showed that 

p.C282Y homozygosity was associated with decreased T2 signal intensity in motor circuits 

(basal ganglia, thalamus, red nucleus, and cerebellum; Cohen's d > 1) consistent with 

substantial iron deposition. Across the whole UK Biobank (2,889 p.C282Y homozygotes, 

496,968 controls), we found a significant enrichment for movement abnormalities in male 

homozygotes (OR (95% CI) = 1.82 (1.27-2.61), p=0.001), but not females (OR (95% CI) = 1.10 

(0.69-1.78), p=0.71). Among the 31 p.C282Y homozygote males with a movement disorder 

only 7 had a concurrent HH diagnosis. These findings indicate susceptibility to iron overload in 

subcortical structures in p.C282Y homozygotes, and confirmed an increased risk of movement 
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abnormalities and disorders in males. Given the effectiveness of early treatment in HH, 

screening for p.C282Y homozygosity in high risk individuals may offer a potential avenue to 

reduce iron accumulation in the brain and limit additional risk for the development of 

movement disorders among males. 

2.2 Introduction 

Hereditary hemochromatosis (HH) is a disorder that leads to iron overload in the body. 

HH type 1 is predominantly related to a HFE gene mutation, with 95% of cases being 

homozygote for p.C282Y (p.Cyst282Tyr) mutation1. The excess iron absorbed by the body 

leads to an accumulation of iron in organs, particularly in the liver leading to increased risk for 

liver disease and diabetes2. With a homozygosity rate of approximately 0.6% in northern 

European populations, it has been deemed the most prevalent genetic disorder in Europe3,4. 

The penetrance of HH and other associated diseases in p.C282Y homozygote individuals 

appears to be larger for males than females5, leading researchers to believe that expelling 

excess iron through menstruation and pregnancy lowers disease burden and penetrance in 

females. The primary treatment for HH is phlebotomy which appears to be effective at reducing 

adverse clinical outcomes3 if started early. As a result, some researchers have advocated for 

re-evaluating screening and early case ascertainment2. 

Although the impact of HH and p.C282Y homozygosity on the liver and heart is largely 

accepted2,3, its effect on the central nervous system is still disputed. While some studies have 

reported a higher risk for Alzheimer’s and Parkinson’s disease in p.C282Y homozygote 

individuals5,6, other studies have reported no risk7,8 or a protective effect9. These conflicting 

results may be explained by modest sample sizes and pooled analysis across sexes. Case 

studies of HH individuals experiencing neurological deficits have confirmed neuroimaging 

abnormalities in the basal ganglia, substantia nigra, and cerebellum10,11,12, all regions known to 
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have a substantial role in the control of movement13. However, these previous studies included 

only individuals diagnosed with HH, and therefore do not describe neurological deficits and 

abnormalities of p.C282Y homozygote individuals independent of HH diagnosis. A recent study 

performed an analysis of brain MRI data from 206 p.C282Y homozygote individuals taken from 

the UK Biobank14. Using analyses of T2* signal in predefined anatomical regions (Region Of 

Interest-based) they found indications of increased iron deposition in subcortical structures 

and cerebellum for p.C282Y homozygote individuals, and increased risk of dementia in 

p.C282Y homozygote males.  

 Since the implicated brain regions with p.C282Y homozygosity are known to have a 

strong involvement in motor functions15 and reports of movement deficits in HH 

individuals5,6,10,11, we investigated the relationship between p.C282Y homozygosity and 

movement disorders in 502,536 individuals from the UK Biobank, with improved imaging 

technology enabling greater granularity of associations across the brain. Specifically, we 

investigated: i) the impact of p.C282Y homozygosity on whole brain voxel-wise measures of 

iron deposits; ii) the sex stratified association of p.C282Y homozygosity with movement 

disorders and tested for overlap with HH diagnosis.  

2.3 Methods 

2.3.1 UK Biobank Sample 

Genotypes, MRI scans, demographic and clinical data were obtained from the UK 

Biobank under accession number 27412, excluding participants who withdrew their consent. 

This resulted in a total sample of 502,536 individuals with a mean age of 57.0 years (standard 

deviation 8.1 years), 229,134 male. We used UK Biobank v3 imputed genotype data30. From 
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this sample, 2,889 individuals were identified as homozygote for p.C282Y (A/A at rs1800562), 

1,293 male. As previous research does not indicate intermediate disease burden for p.C282Y 

heterozygotes2, we coded control individuals as homozygote for no risk allele (G/G at 

rs1800562) or heterozygote (A/G at rs1800562) i.e., with a recessive model of inheritance. This 

resulted in 499,647 controls, 227,841 male.  

2.3.2 Neuroimaging Analysis 

2.3.2.1 Image acquisition 

T1 weighted and diffusion weighted scans were collected from three scanning sites 

throughout the United Kingdom, all on identically configured Siemens Skyra 3T scanners, with 

32-channel receiver head coils. For diffusion scans, multiple scans with no diffusion gradient 

were collected (b=0 s/mm2 ) to fit diffusion models. The average of these b=0 scans was used 

as voxel-wise measures of T2 intensities. Diffusion weighted scans were collected using an 

SE-EPI sequence at 2mm isotropic resolution. T1 scans were collected using a 3D MPRAGE 

sequence at 1mm isotropic resolution. 

2.3.2.2 Image Preprocessing  

Scans were corrected for nonlinear transformations provided by MRI scanner 

manufacturers31,32, and T2 images were registered to T1 weighted images using mutual 

information33. Intensity inhomogeneity correction was performed by applying smoothly varying, 

estimated B1-bias field34. Images were rigidly registered and resampled into alignment with a 

pre-existing, in-house, averaged, reference brain with 1.0 mm isotropic resolution34. 
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2.3.2.3 Atlas Registration 

To allow for voxel-wise analysis, subjects’ imaging data were aligned using a 

multimodal nonlinear elastic registration algorithm. At the end of the preprocessing steps 

outlined in Image Processing and described in detail in Hagler et al. 34, subjects’ 

structural images and diffusion parameter maps were aligned to an UK Biobank-specific atlas, 

using a custom diffeomorphic registration method.  

2.3.2.4 Labelling regions of interest (ROI)  

Subcortical structures were labeled using Freesurfer 5.335.  Subjects’ native 

space Freesurfer parcellations were warped to the atlas space and averaged across subjects. 

Additional subcortical nuclei, not available in the FreeSurfer segmentation, were labeled by 

registering readily available, downloadable, high spatial resolution atlases to our 

atlas space. The Pauli atlas was generated using T1 and T2 scans from 168 typical adults from 

the Human Connectome Project (HCP)36.  The Najdenovska thalamic nuclei atlas was 

generated using a k-means algorithm taking as inputs mean fibre orientation density spherical 

harmonic coefficients from within a Freesurfer parcellation of the thalamus, using adult HCP 

data from 70 subjects37. All subcortical ROIs and abbreviations are listed in Supplementary 

Table 2.  

2.3.2.5 Covariate Matched Controls 

From the full 2,889 p.C282Y homozygotes, only 154 had qualified imaging. As we did 

not want to have a large imbalance between the number of controls and p.C282Y 

homozygotes, we selected covariate matched controls at a ratio of 4:1 (controls:cases). We 

matched controls on age, sex, scanner, mean cortical area, and top ten components of 

genetics ancestry. These matched controls were generated through using the sample of 154 
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individuals with qualified imaging, fitting a logistic model to predict p.C282Y homozygosity 

from the listed covariates, and then generating propensity scores38 for each individual. Controls 

were selected on having propensity scores with a threshold of |𝑠! − 𝑠"| ≤ 𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑, where 𝑠! 

and 𝑠" were the respective propensity scores of a p.C282Y homozygote and their matched 

control. The threshold was set to 1.5x10-4. We performed this procedure by using the pymatch 

library (version 0.3.1) in python39. This resulted in 154 p.C282Y homozygotes (64 male) and 595 

controls (248 male). 

2.3.2.6 Statistical analysis 

General linear effect models were applied univariately to test the association between 

p.C282Y homozygosity and T2 intensities. Each voxel-wise T2 intensity was pre-residualized 

for age, sex, scanner, and top ten principal components of genetic ancestry. We then 

calculated Cohen’s d effect sizes as the residualized voxel-wise differences between p.C282Y 

homozygotes and controls. As previous research has indicated a higher disease burden for 

p.C282Y homozygote males vs females, in supplementary results we additionally performed a 

sex-stratified analysis in 312 males (64 p.C282Y homozygote) and 437 females (90 p.C282Y 

homozygote). 

2.3.3 Neurological Disease Burden Analysis 

Given our neuroimaging findings of substantially lower T2 intensities of p.C282Y 

homozygotes in motor and gait circuits of the brain – indicative of iron deposition – we wanted 

to test if p.C282Y homozygosity imparted any risk for i) movement disorders, ii) gait disorders 

and iii) a broad category of neurological disorders. As completing imaging was not an inclusion 

criterion for this portion of the analysis, we included the entire sample listed above. We did not 

perform any covariate-matching of controls. Sex stratified logistic models fit 229,134 males 
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(1,293 p.C282Y homozygote) and 273,402 females (p.C282Y 1,596 homozygote) to predict 

diagnosis from p.C282Y homozygosity status controlling for age, sex, and top ten principal 

components of genetic ancestry. We fit three models for each sex to test the domains 

described above, predicting: movement disorders [ICD10: G20-G26], abnormalities of gait and 

mobility [ICD10: R26], and other disorders of the nervous system [ICD10: G90-99]. We fit an 

additional three models, two for the largest diagnoses of movement disorders; Parkinson’s 

disease [ICD10: G20] and essential tremor [ICD10: G25], as well as a super-category of 

significantly associated diagnoses combining a diagnosis of either a) movement disorders or b) 

other disorders of the nervous system into a single outcome. 

 

2.4 Results 

  
Table 2.1 Sample size for each analysis. 

 Neuroimaging Analysis Neurological Disease Analysis 

Sample Size 749  (312 males) 502,563 (229,134 males) 

p.C282Y Homozygotes 154  (64 males) 2,889 (1,293 males) 

 

2.4.1 Neuroimaging Analysis  

We performed a voxel-wise analysis of T2 intensities (lower T2 intensity consistent with 

higher iron deposition17) of using p.C282Y homozygosity status as our predictor of interest – 

see Table 2.1 for sample sizes. We found evidence for iron deposition reflected in substantially 

lower T2 intensities localized to the basal ganglia, thalamus and cerebellum in p.C282Y 

homozygote individuals. p.C282Y homozygosity was associated with lower T2 intensities in 

bilateral  caudate nucleus, putamen, thalamus (specifically the ventral anterior, ventral lateral 
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dorsal, ventral-lateral ventral and pulvinar nuclei), red nucleus, sub-thalamic nucleus, and both 

white and grey matter of the cerebellum (Figure 2.1). Additionally, we observed higher T2 

intensities in the white matter of the superior cerebellar peduncle, possibly indicating gliosis in 

this region18 which comprises the primary output pathway from the cerebellum to the thalamus 

and red nucleus. Supplementary sex-stratified analysis revealed similar effects in males and 

females, with p.C282Y homozygote females having on average approximately 30% smaller 

effects than males (Supplementary Figures 2.1 & 2.2). 

 

Figure 2.1 Voxelwise associations (cohen’s d) of T2 intensities between matched controls vs p.C282Y 
homozygote individuals. Blue regions represent lower T2 intensities (indicating higher iron deposition) for 
p.C282Y homozygotes. Lower T2 intensities are observed for p.C282Y homozygotes in the A. caudate 
nucleus, B. putamen, ventral anterior and ventral lateral dorsal nuclei of the thalamus, C. ventral-lateral 
ventral and pulvinar nuclei of the thalamus, D. red nucleus, sub thalamic nucleus, E. and F. grey and 
white matter of the cerebellum. Higher T2 intensities are observed in E. in the superior cerebellar 
peduncle (primary output pathway connecting the cerebellum to the thalamus and red nucleus). 
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2.4.2 Neurological Disease Burden Analysis 

The brain regions identified in our analysis have previously been implicated to have a 

strong involvement in motor control15,19. We aimed to determine if p.C282Y homozygote 

individuals had an enrichment for movement abnormalities, including movement diseases and 

gait/mobility, or other disorders of the nervous system. Table 2.1 displays the sample size for 

this analysis. As males appear to have a greater penetrance for HH and other associated 

diseases2, we performed a sex-stratified analysis. We found that p.C282Y homozygote males 

had a higher chance of being diagnosed with a movement disorder (OR (95% CI) = 1.82 (1.27-

2.61), p=0.001) and other disorders of the nervous system (OR (95% CI) = 1.51 (1.06-2.14), 

p=0.02). The International Classifications for Diseases (ICD) chapter of movement disorders 

includes Parkinson’s disease and essential tremor, which were both associated with p.C282Y 

homozygosity in males (Parkinson’s disease: OR (95% CI) = 1.78 (1.14-2.79), p=0.01 and 

essential tremor: OR (95% CI) = 1.92 (1.03-3.60), p=0.04). p.C282Y homozygote males did not 

have a higher chance of being diagnosed with gait or mobility disorders (OR (95% CI) = 0.96 

(0.65-1.42), p=0.85). No significant associations were found for p.C282Y homozygote females 

for any diagnosis tested – see Figure 2.2 panel A and Supplementary Table 2.2.   

Given the convergence of our neuroimaging and genetic associations on movement 

related circuits of the brain and movement disorders, p.C282Y homozygosity may lead to brain 

pathology that is undetected in sub-clinical HH cases. As the treatment for disorders like 

Parkinson’s differs from that of hemochromatosis3,20, we looked at the overlap of individuals 

with neurological diagnoses and a clinical diagnosis of hemochromatosis for p.C282Y 

homozygote males. We found that for p.C282Y homozygote males with a movement disorder 

diagnosis (31 individuals), most (24 individuals) did not have a concurrent HH diagnosis. We 
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also found a similar pattern for other nervous system disorders where 10 out of 33 men had a 

concurrent hemochromatosis diagnosis – see Figure 2.2 panel B.  

 

Figure 2.2 A. sex-stratified effect of C282Y homozygosity for neurological disorders (y axis), values in 
square brackets indicate ICD10 codes. Dotted vertical line indicates an odds ratio of 1 i.e., null effect. B.  
Venn diagrams indicating diagnosis overlap for C282Y homozygote males of hemochromatosis and  i) 
movement disorders or ii) other disorders of the nervous system. 

2.5 Discussion 

We found the most prominent genetic risk factor for HH, p.C282Y homozygosity, was 

associated with substantially lower T2 intensities in brain regions related to motor control - 

consistent with iron deposition in these regions. Furthermore, p.C282Y homozygosity in males 

was associated with increased risk for movement-related disorders and other disorders of the 

nervous system, but not gait disorders. These results are consistent with both previous case 

reports of movement disorders in HH individuals10,11, as well as a higher disease burden for 

Concurrent Diagnoses for C282Y Homozygote MalesB

A
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p.C282Y homozygote males vs. females2,3. Moreover, we found that most p.C282Y 

homozygote males did not have a concurrent hemochromatosis diagnosis when diagnosed 

with either i) a movement disorder or ii) other disorders of the nervous system. This is of 

importance given the difference in treatment for HH and movement disorders. 

 These results are consistent with a class of disorders termed ‘Neurodegeneration with 

Brain Iron Accumulation’ (NBIA) in which rare genetic mutations lead to iron deposition in the 

basal ganglia21. This iron deposition is believed to lead to oxidative damage of these brain 

regions impairing their function and resulting in movement deficits. Previous conflicting results 

regarding neurological manifestations of p.C282Y homozygosity5,6,7,8,9 have meant that 

hemochromatosis has traditionally not been included as a cause of NBIA. These conflicting 

results are probably due to small sample sizes, no stratification based on sex, and biased 

subject ascertainment. We believe that our study addresses these issues by conducting 

disease associations in a sample 500 times larger than the previously listed studies, performing 

sex-stratified analysis, and selecting individuals on genotype, not disease status. Furthermore, 

our neuroimaging results provides strong support that p.C282Y homozygosity imparts a large, 

selective effect on the brain's motor circuits. The results presented here suggest revisiting 

p.C282Y homozygosity as a form of NBIA, albeit with reduced penetrance. 

 The globus pallidus is a region that appears to show large amounts of iron deposition in 

other NBIA disorders21,22, with lower T2 intensities except in juvenile forms (‘eye of the tiger’). 

Additionally, the previous study investigating the p.C282Y homozygosity effect on T2* 

intensities in the same sample as our study found a small to moderate effect in the pallidum14. 

However, our analysis did not reveal differences in T2 intensities in the globus pallidus (Figure 

2.1). The lack of association in our analysis could be due to i) a genuine lack of iron deposition 

in the pallidum when compared other NBIA disorders or ii) a result of biological processes 

having opposing effects on T2 intensity (e.g. iron deposition decreasing intensities and gliosis 
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increasing intensities) averaging out. Differing sensitivities of T2-weighted vs T2*-weighted 

scans to minerals23 likely explain the divergence in results of the pallidum between the previous 

study14 and ours. Further research should be conducted to understand processes occurring in 

the pallidum of p.C282Y homozygotes and to determine if these truly do differ from other NBIA 

disorders. 

Post mortem samples and in-vivo imaging of individuals diagnosed with Parkinson’s 

display iron deposition in the brain regions we identified24. The most recent genome-wide 

association study (GWAS) of Parkinson’s disease in males did not identify the variant at 

position p.C282Y as a risk factor (p=0.16)25. We hypothesize this is likely due to the study 

employing a GWAS standard additive model of inheritance, in which an additional copy of a 

risk allele imparts a dose-dependent risk. Consistent with findings from previous literature of 

HH2, here we tested a recessive model of inheritance and observed a relatively sizeable 

increased risk for movement-related disorders in general (OR=1.82) and Parkinson’s disease in 

particular (OR=1.78) – this is in the 5x10-6 percentile of effect sizes from the most significant 

previous GWAS of Parkinson’s disease in males26. Further work needs to be done to verify the 

size and confidence of this effect in other ancestry groups and populations, particularly given 

the non-uniform distribution of p.C282Y across the globe (see Supplementary Figure 2.3).  

Additionally, although we observe largest T2 intensity reductions (compatible with iron 

accumulation) in male p.C282Y homozygotes, we still observe a reduction in females and a 

non-significant increase risk for movement disorders. If, as others have argued3, menstruation 

expels iron from the body, we may be observing the post-menopausal accumulation of iron 

that has not had enough time to impart the toxic effects compared to males. Indeed, the 

average age of the women in our neuroimaging study was 64 years old. Furthermore, estrogen 

may be playing an antioxidant role that is moderating the damaging effects of iron overload27.  
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Although our neuroimaging results are consistent with iron accumulation in associated 

regions of the brain, lower T2 intensities may also indicate calcification. Indeed a recent case 

study reported an HH individual who displayed both iron and calcium accumulation for the 

same brain regions discovered in our analysis28. One possible explanation for this observed 

calcium deposition is that calcium and iron homeostasis are reciprocally connected within 

these regions. This hypothesis is supported by work demonstrating that iron, as Fe2+ ions, can 

lead to build of inorganic pyrophosphate with calcium29. Additional brain imaging of HH and 

p.C282Y homozygote individuals, using different imaging modalities, may further elucidate the 

mineral composition of the abnormalities we have observed.   

 The convergent evidence we have shown consistent with iron deposition in motor 

circuits of the brain and enrichment for movement and neurological disorders, in those who are 

homozygous for p.C282Y suggests considering p.C282Y homozygosity as a risk factor for 

movement disorders in males. Furthermore, given that early treatment of HH has been shown 

to be effective in preventing the negative health manifestations of the disease outside of the 

nervous system3, our findings provide additional support for revisiting the public health 

implications of early screening of populations in which this variant is particularly prevalent. 
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Appendix 

 
Supplementary Figure 2.1 Sex stratified associations of p.C282Y homozygosity and T2 voxel intensities 
(Cohen’s d), as scatter plot – each point represents a single voxel. Black line indicates y=x (i.e. equal 
effect sizes). Red line indicates best fitting line (for points of at least moderate effects x! + y! > 0.2), β =
0.72 indicating approximately a 28% reduction in T2 intensity brain associations for females compared 
to males. 
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Supplementary Figure 2.2 Maps of sex stratified associations of p.C282Y homozygosity and T2 voxel 
intensities (Cohen’s d). Overall effects are larger in males vs females, with largest effects in males 
observed in the VA, VLD and pulvinar nuclei of the thalamus (B) as well as in the C-WM and C-GM (E). 
Abbreviations: VA – ventral anterior, VLD – ventral anterior dorsal, VLV – ventral anterior ventral, C-WM – 
cerebellum white matter, C-GM – cerebellum GM. 
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Supplementary Figure 2.3 Global distribution of p.C282Y (rs1800562). Allele frequencies are highest in 
Europe (particularly northern Europe) and parts of north America. Map generated from the Geography of 
Genetic Variants Browser1. 
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Supplementary Table 2.1 Regions of interest (ROIs) labelled using 3 different methods. Column 1) 
automatic segmentation using FreeSurfer 5.3 applied to each subject’s T1 image in atlas 
space2; Column 2) registration of the Pauli atlas of subcortical nuclei to the multispectral 
atlas3; Column 3) registration of the the Najdenovska thalamic nuclei atlas to our data4.  
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Supplementary Table 2.2 Regression tables results for associating C282Y homozygote (+/+) cases  with 
diagnoses of  different  neurological disorders. Models were fit separately for males and females. 
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Chapter 3:  Gene-experience correlation 

during cognitive development: Evidence 

from the Adolescent Brain Cognitive 

Development (ABCD) StudySM 

3.1 Abstract 

Findings in adults have shown more culturally sensitive “crystallized” measures of 

intelligence have greater heritability, these results were not able to be shown in children. In the 

current study we aimed to test if the genetic propensity for high cognitive performance in 

children had a larger association with more culturally sensitive “crystallized” measures of 

intelligence. Furthermore, if such a relationship was found we sought to test if this could be 

partially explained by a larger statistical mediating effect of reading. With data from 8,518 

participants, aged 9 to 11, from the Adolescent Brain Cognitive Development (ABCD) Study®, 

we used polygenic predictors of intelligence test performance (based on genome-wide 

association meta-analyses of data from 269,867 individuals) and of educational attainment 

(based on data from 1.1 million individuals), associating these predictors with neurocognitive 

performance. We then assessed the extent of mediation of these associations by a measure of 

recreational reading. More culturally sensitive ‘crystallized’ measures were more strongly 

associated with the polygenic predictors than were less culturally sensitive ‘fluid’ measures. 

This mirrored heritability differences reported previously in adults and suggests similar 
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associations in children. Recreational reading more strongly statistically mediated the genetic 

associations with crystallized than those with fluid measures of cognition. This is consistent 

with a prominent role of gene-environment correlation in cognitive development measured by 

“crystallized” intelligence tests. Such experiential mediators may represent malleable targets 

for improving cognitive outcomes.  

3.2 Introduction 

Scores on cognitive tests in both children and adults have been linked to long term 

outcomes and to genetic variation(1–4). Some cognitive tests, e.g., those requiring literacy and 

mathematical skills, depend upon and are more sensitive to variability in cultural and socio-

economic factors. These measures are often referred to as ‘crystallized’ intelligence measures.  

In contrast, other tests that tap the capacity to solve novel problems, or process novel 

information, often referred to as ‘fluid’ measures, are less culturally sensitive and are less 

strongly related to socio-economic variables(5,6). A recent review reported systematic 

differences in heritability (an estimate of trait variability attributable to genetic variation) of the 

traits measured by these different kinds of cognitive measures(7).  Surprisingly, in studies of 

adult twins, more culturally sensitive tests exhibited higher, rather than lower, heritability; which 

runs counter to predictions from conventional models of intelligence.  The authors described 

similar trends in the twin studies of children, but increased heritability of crystallized relative to 

fluid measures have not yet been established for children, in whom intellectual functions are 

continuing to mature.  

The finding that the measures most strongly influenced by cultural factors exhibit higher 

heritability is perhaps counterintuitive; however previous authors have noted that genetic 

variation can be associated with environmental, cultural, or experiential (ECE) factors that 

themselves amplify effects of a genotype on the phenotype, a phenomenon often referred to as 
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rGE (gene-environment correlation).  These associations between genotypes and ECE factors 

could influence the development of cognitive and intellectual abilities in several ways.  As an 

example, if others in the social environments of children recognize traits, e.g., precocious 

behavior, in those with a genetic propensity for a given cognitive ability, they may begin to treat 

such individuals differently, rewarding them disproportionately for intellectual pursuits, 

investing more in their instruction, and/or placing them in environments that drive learning 

more effectively. Alternatively, the associations can be driven by the motivation of the children 

themselves if for example they develop greater enthusiasm for intellectual activities for which 

they have been more frequently rewarded, and which they then pursue more assiduously, thus 

enjoying beneficial effects of the increased practice associated with these activities.  In either 

case, the genetically advantaged abilities are disproportionately enhanced by these mediating 

ECE factors. Of course, individuals with less advantageous genotypes may experience the 

converse of these social and motivational effects, resulting in languishing, or in the worst case 

suppressed, intellectual development, even within similar environments. Such rGE effects can 

increase variance in intellectual phenotypes and increase estimates of heritability using both 

epidemiological and genomic methods(8).  The important implication is that a component of 

this increased heritability requires the mediating ECE effects for its expression.  In essence, 

more direct biological effects of the genotype and associated differences in the environments 

or experiences of the child are both contributing causal factors influencing the mature 

phenotype, but they act through dissociable mechanisms. 

Heritability is a population statistic frequently measured using a twin design. For this 

study, we used polygenic scores to examine variation in genetic and experiential factors and 

their relationship to trait measures of cognitive function. Polygenic scores have the advantage 

that they can be used to index relevant genetic factors in samples of unrelated individuals by 

leveraging the statistical power of meta-analysis results from large Genome Wide Association 
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Studies (GWAS).  Using neurocognitive test scores, genomic data, and a measure of parent-

reported recreational reading assessed in a large sample of 8,618 children, aged 9 to11, from 

the ABCD Study®, we used polygenic scores of intelligence test performance (based on 

GWAS of 269,867 individuals(9)) and educational attainment, sometimes considered a proxy 

for intellectual ability (based on 1.1 million individuals(10)), to ask 3 questions:  First, do these 

genomic predictors account for more of the variability in estimates of culturally sensitive 

crystallized traits than fluid traits in children, as might be expected from reports of higher 

heritability in adult twins? Second, does a parent-reported estimate of the time their children 

spend reading for pleasure mediate the relationship between a genomic predictor and 

measures of cognitive performance, consistent with a role of this experiential enhancer of 

performance in increasing heritability?  Third, if mediation is observed, is this mediating effect 

larger for the culturally sensitive crystallized than the fluid measures of cognitive performance, 

consistent with a role for rGE in the higher heritability of these measures?  

In additional analyses, we examined the degree to which the findings in the ethnically 

diverse ABCD sample were similar between the subgroup of children with high genomic 

European ancestry (EurA) and a remaining subgroup of children who were from diverse 

ancestry groups (DivA). Finally, using simulations, we tested whether our observed findings 

may be due to previously reported differences in test-retest reliabilities (for crystallized vs fluid 

measures). 
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3.3 Materials and Methods 

3.3.1 Data available in the ABCD data release 2.0.1 

The ABCD study (http://abcdstudy.org) enrolled the families of 11,875 children aged 9 

or 10 years at baseline(11). This longitudinal study follows the development of these children at 

21 sites across the US for ten years. The cohort exhibits a large degree of sociodemographic 

diversity. Exclusion criteria were limited to: 1) lack of English proficiency; 2) the presence of 

severe sensory, neurological, medical or intellectual limitations that would inhibit the child’s 

ability to comply with the protocol; 3) an inability to complete an MRI scan at baseline. The 

study protocols are approved by the University of California San Diego Institutional Review 

Board(12). Parent/caregiver permission and child assent from each participant were obtained. 

Here, our data were drawn from the baseline assessments shared in ABCD release 2.0.1 

(NDAR DOI: 10.15154/1504041).  

3.3.2 Cognitive Measures 

Seven of the 10 cognitive tasks were subtests from The NIH Toolbox Cognition Battery® 

(NTCB) in the version recommended for ages 7+(http://www.nihtoolbox.org)(13).  The average 

time to complete this battery is approximately 35 minutes. The NTCB was administered in 

English(14), using an iPad, with support from a research assistant when needed.  The battery 

yields individual test scores measuring specific constructs and composite scores that have 

been shown to be highly correlated with ‘gold standard’ measures of intelligence in adults(15) 

and children(5). Here, all 7 individual test scores and 2 composite scores were examined: the 

Crystallized Cognition Composite Score (derived from scores on the Picture Vocabulary and 

Oral Reading Recognition measures) and the Fluid Cognition Composite Score (derived from 
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the remaining measures). Additionally, three neurocognitive tasks were used that were not 

components of the NTCB: Rey-Auditory Learning Task, Little Man Task and Matrix Reasoning. 

Please see supplementary materials for a description of each task. 

 

3.3.3 Latent Neurocognitive Factors  

Thompson et al. derived a three factor, varimax rotated, solution for the latent structure 

across the neurocognitive battery in ABCD using Bayesian Probabilistic PCA(16). The final 

latent factor solution included the measures described above, except for the Matrix Reasoning 

task which had very little effect on the solution. The factors will be referred to as Bayesian 

Factors (BF) 1-3. Language tasks loaded most heavily on BF1, which was highly correlated 

with the Crystallized Composite (r=0.93); executive functioning tasks loaded most heavily on 

BF2; and learning/memory tasks loaded heavily on BF3.  

 

3.3.4 Recreational Reading 

 Parents of ABCD participants were asked to complete a survey of their children’s 

activities. One question asked, “Does your child read for pleasure?”  The follow-up question 

was, “About how many hours per week does your child read for pleasure?”.  This estimate of 

number of hours of recreational reading was log transformed due to skewness. To confine the 

analyses of this variable to a homogenous group of children who read for pleasure, we 

included only children whose parents answered ‘yes’ to the first question.  

 

2.1.4 Genetic Data and Computing Polygenic Scores 
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 Using genotype data we derived genetic ancestry using fastStructure(17) with four 

ancestry groups. Genetic principal components were also calculated using PLINK. Variants 

were imputed using the Michigan Imputation Server(18). Polygenic scores were computed 

using PRSice(19). The Intelligence Polygenic Score (IPS) was trained on 269,867 individuals by 

Savage et al.(9), and focused on neurocognitive tests considered to gauge fluid intelligence. 

The Education Attainment Polygenic Score (EAPS) was generated from 1.1 million individuals, 

predicting the phenotype of number of years of schooling completed. Please see 

supplementary materials for further details on genetic data and analysis. 

 We were primarily focused on studying the IPS association with cognitive tests in 

ABCD, due to it being trained on a more directly relevant phenotype. However, we additionally 

examined EAPS as a secondary analysis for comparison as it has been previously used as a 

proxy for cognitive ability and has a discovery sample size four times the size of the IPS. 

3.3.5 Analytic Methods 

3.3.5.1 Ancestry Group Analyses 

 Training and testing polygenic scores in different ancestry groups has been shown to 

reduce predictive power(20–22). Given the ancestry differences between the polygenic score 

discovery samples (predominantly European) and the ABCD study (multiple ancestry groups), 

we wanted to confirm our main results in the full samples were not driven by population 

structure. As such we additionally performed analyses in two subsamples: 1) children with 

estimated proportion of European ancestry higher than 90% (EurA) and 2) a group of the 

remaining children with diverse ancestry, which included those from other or mixed ancestry 

(DivA).  
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3.3.5.2 Statistical Model for Genomic Prediction of Behavioral Measures 

 To assess the association between the polygenic scores and cognitive performance in 

ABCD, we fit Generalized Linear Mixed-Effects Models (GLMMs) using the gamm4 package(23) 

in R. Each model predicted performance on a different cognitive measure. Continuous 

variables were z-scored before model fitting to allow coefficients to be interpreted as 

standardized effect sizes. To test if regression coefficients differed between regressions we 

performed a z-test on the difference between coefficients, based on the propagated standard 

error for the two regression coefficients as the sum of the error of variances for each measure. 

This test assumes the standard errors are uncorrelated and so provides a conservative 

estimate of significance. Please see supplementary materials for details and covariates used. 

3.3.5.3 Differential Mediation Analysis 

 To assess whether recreational reading is a plausible ECE factor increasing heritability 

of crystallized cognition, through rGE effects, we performed a mediation analysis.  Specifically, 

we compared the statistical mediation effects of recreational reading experience on the 

associations between the IPS and both the Crystallized Composite and Fluid Composite, 

respectively. We achieved this by calculating the proportion of mediation of recreational 

reading on the i) IPS-crystallized and the ii) IPS-fluid associations using an average causal 

mediation effect model(24) across 10,000 bootstrap samples. With bootstrapped samples we 

tested if the mediation effect of recreational reading on the IPS-crystallized association was 

greater than that of IPS-fluid , by performing a Welch t-test on the samples. Mediation analysis 

was performed using general linear models in the mediation package in R(25), see 

supplementary materials for details. 
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3.4 Results  

3.4.1 Demographics 

 Figure 3.1 illustrates a flow-chart for sample selection. For the final analysis we have  

8,518 individuals in the full sample, 4,885 in the EurA sample and 3,633 in the DivA sample.  

 
Figure 3.1 Flow chart of sample selection and exclusion.  

Full ABCD Baseline 2.0.1 
Dataset

(n=11,875)

Retain individuals with 
complete demographic 

information
(n=9,814) 

1,018 missing household 
income response

1,043 missing other 
demographic information

Retain individuals 
Passing Genetic Quality 

Control
(n=8,518)

1,296 Failed Genetic 
Quality Control

Ancestry Stratify

EurA Sample
(n=4,885)

DivA Sample
(n=3,633)

Full Sample
(n=8,518)

2,687 removed due to 
no recreational reading

621 related individuals removed 
(other family member retained)

Mediation Analysis 
Sample

(n=5,210 (singletons))
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Table 3.1 Summary of demographics for individuals included in the full sample for the present genomic 
prediction analyses, and for the genomic European Ancestry and genomic Other Ancestry subgroups. 

  Full Sample European 
Ancestry 

Other Ancestry 

Total N 8518 4885 3633 
 Mean (SD) 
Age - months  119.05 (7.48) 119.21 (7.49) 118.85 (7.47)  

N (%) 
Sex Male 4438 (52.1) 2576 (52.7) 1862 (51.3) 
Parent Married = Yes 6024 (70.7) 4066 (83.2) 1958 (53.9) 
Parental Education 

 
  

   < HS Diploma 302 (3.5) 21 (0.4) 281 (7.7) 
   HS Diploma/GED 649 (7.6) 138 (2.8) 511 (14.1) 
   Some College 2149 (25.2) 899 (18.4) 1250 (34.4) 
   Bachelor 2318 (27.2) 1548 (31.7) 770 (21.2) 
   Post Graduate Degree 3100 (36.4) 2279 (46.7) 821 (22.6) 
Household Income 

 
  

   [<50K] 2353 (27.6) 596 (12.2) 1757 (48.4) 
   [>=50K & <100K] 2444 (28.7) 1471 (30.1) 973 (26.8) 
   [>=100K] 3721 (43.7) 2818 (57.7) 903 (24.9) 
Race  

 
  

   White 5715 (67.7) 4750 (97.4) 965 (27.1) 
   Black 1129 (13.4) 1 (0.0) 1128 (31.7) 
   Asian 199 (2.4) 0 (0.0) 199 (5.6) 
   Other 1397 (16.6) 128 (2.6) 1269 (35.6) 
Hispanic     

Hispanic 1628 (19.1) 131 (2.7) 1497 (41.2) 
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3.4.2 Behavioral Measures and Sociocultural Factors 

Table 3.2 Mean (SD) and median for each behavioral measure in the full sample, estimated % variance 
explained by sex, age, and the set of socio-cultural covariates (parental marital status, parental 
education, household income, genetic ancestry PCs and Hispanic/non-Hispanic). 
 

Mean (SD) Median Sex Age Sociocultural 
Crystallized Composite 86.87 (6.93) 87 0.01 9.51 21.57 
Fluid Composite 92.18 (10.43) 93 0.32 7.17 10.28 
Reading 91.23 (6.73) 91 0.01 5.97 13.18 
Picture Vocabulary 85.04 (8.02) 84 0.07 7.67 20.14 
Pattern 88.29 (14.47) 88 0.57 4.81 1.90 
List 97.43 (11.81) 97 0.13 2.04 9.47 
Picture 103.33 (12.01) 103 0.51 1.17 5.46 
Flanker 94.42 (8.83) 96 0.03 3.21 3.73 
Cardsort 92.97 (9.26) 94 0.48 3.76 5.22 
Rey Auditory Verbal 43.78 (9.96) 44 1.25 2.23 8.57 
Matrix Reasoning 18.13 (3.74) 18 0.34 2.74 9.15 
Little Man Task 0.60 (0.17) 0.56 0.48 5.13 6.25 
Bayesian Factor 1 0.05 (0.76) 0.06 0.28 9.63 20.85 
Bayesian Factor 2 0.02 (0.76) 0.06 0.22 5.49 2.65 
Bayesian Factor 3  0.04 (0.70) 0.04 0.89 1.59 7.83 
Recreational Reading (hours) 6.5 (10) 4 0.45 0.18 0.86 

 

Mean performance, standard deviation (SD), median and estimates of variance 

explained by age, sex, and the set of socio-cultural covariates (parental marital status, highest 

education level of parent/caregiver, household income, ethnicity, genetic principal 

components) are given for each behavioral measure examined in Table 3.2.  Consistent with 

previous reports, there are substantial differences in the degree to which socio-cultural factors 

account for variability in these measures.  The Crystallized Composite, its constituent Picture 

Vocabulary and Reading Recognition measures, and BF1, on which these measures of 

language and literacy load heavily, all exhibit higher levels of association with socio-cultural 

variables. This pattern persisted when controlling for IPS (Supplementary Table 3.2). Sex, age 

and socio-cultural factors explained little variability in recreational reading. Partial correlations 
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between the individual cognitive task measures controlling for covariates (Figure 3.2), suggest 

that performance on the different tasks is modestly correlated across children (rs=.08-.41) in 

this sample.  Correlations peak in the .3 range within Fluid Composite measures, and the 

highest correlation is observed between the two Crystallized Composite measures (Picture 

Vocabulary and Oral Reading r=.41).  

 
Figure 3.2 Partial correlation matrix showing intercorrelations among individual task performance 
measures (controlling for age, sex, parental marital status, parental education, household income, 
principal components of genetic ancestry and Hispanic status) in the full sample included in the present 
study of genomic predictors. 
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3.4.3 Genomic Prediction of Crystallized and Fluid Cognition Measures 

Table 3.3 summarizes the regression results for predicting the Crystallized and Fluid 

Composites with IPS or EAPS in the full sample, and separately in the EurA and DivA 

subsamples. The IPS was a significant predictor of both measures in all analyses. Importantly, 

the standardized regression coefficient was significantly higher for the Crystallized than the 

Fluid Composite regardless of ancestry group (full sample: z=4.8, p=1.8x10-6, EurA: z=4.6, 

p=5.1x10-6  and DivA: z=2.5, p=1.4x10-2).  

Table 3.3 Regression results for GLMMs associating IPS (top) and EAPS (bottom) with Crystallized 
Composite and Fluid Composite of the NIH Toolbox 

Sample Fluid Composite Crystallized Composite 
 Std. ß t P value % Var. 

Explained 
Std. ß t P value % Var 

Explained 
 IPS 
Full Sample 0.28 8.03 1.14E-15 0.75 0.50 15.82 1.31E-55 2.86 
EurA 0.11 7.53 6.10E-14 1.15 0.21 14.48 1.44E-46 4.13 
DivA 0.20 3.41 6.52E-04 0.32 0.40 7.34 2.68E-13 1.47 
 EAPS 
Full Sample 0.11 7.23 5.26E-13 0.61 0.19 14.21 2.56E-45 2.32 
EurA 0.09 6.60 4.66E-11 0.89 0.18 12.95 9.36E-38 3.34 
DivA 0.08 3.38 7.28E-04 0.32 0.15 6.66 3.24E-11 1.21 

 
In no case did the EAPS, despite a much larger training sample size, appear to account 

for more of the variance in the neurocognitive measures than did IPS.  However, across 

ancestry groups and for both composite scores, combining both genomic predictors explained 

significantly more variance in behavior than IPS alone (supplementary results). IPS + EAPS 

explained 5.8% variance (p=4.5x10-64) in the Crystallized Composite for EurA (a 40% increase 

compared to IPS alone). Supplementary Table 3.3-3.8 show regression results for each 

behavior using IPS, EAPS and IPS + EAPS within each ancestry group.  

Fitting separate regression models for each individual task in the neurocognitive 

battery, we found that the IPS was a significant predictor for each cognitive measure for the full 
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sample and the EurA subsample (all p values<10-3), surviving the Bonferroni-corrected 

significance threshold of 0.05/10=0.005. Within the DivA subsample only six of the ten tasks 

were individually significantly predicted by the IPS (Supplementary Table 3.8). Figure 3.3 shows 

the standardized regression coefficients of IPS predicting performance on each task, as well as 

the Crystallized and Fluid Composite measures from the NTCB and Bayesian Factors 1-3(16), 

in the full sample. Individual cognitive measures included in the Crystallized Composite have 

consistently higher IPS standardized regression weights than the measures included in the 

Fluid Composite. Other neurocognitive tasks from the ABCD battery (shaded in gray) showed 

similar associations to the Fluid Composite. The results for the Bayesian Factors mirrored 

these results: BF1, on which ‘Crystallized” measures had the highest factor loadings 

(Supplementary Figure 3.1)(16), displayed a stronger association with IPS than BF2 and BF3 on 

which ‘Fluid”, executive function and memory measures had higher loadings. The results in the 

subsamples (EurA and DivA) are provided in the appendix. 
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Figure 3.3 Standardized regression coefficients of IPS for fitting linear mixed models to performance on 
Fluid and Crystallized Composites, each individual task from the NTCB, additional measures from the 
ABCD neurocognitive battery, and Bayesian (latent) Factors 1-3, in the full sample. Prediction of the 
Crystallized Composite is significantly stronger than for the Fluid Composite. Tasks included in the Fluid 
Composite (shaded in blue) have consistently lower regression coefficients than those included in the 
Crystallized Composite (shaded in red). Additional measures from the neurocognitive battery exhibit 
associations with IPS more similar to the Fluid Composite than to the Crystallized Composite, however 
Bayesian Factor 1, on which the verbal tasks load heavily, exhibits an association similar to the 
Crystallized Composite. Error bars show estimates of 95% confidence intervals as 1.96 standard error. 

3.4.4 Differential Mediation Results 

 The mediation analysis showed that recreational reading partially mediated associations 

between IPS and both composite measures, proportions of mediation: fluid 0.084 (95% CI: 

0.047-0.14, p<10-16), crystallized 0.12 (95% CI: 0.088-0.16, p<10-16).  However, the differential 

mediation analyses revealed a highly significant difference between the large degree of 

attenuation of the association between IPS and the Crystallized Composite relative to that 

between IPS and the Fluid Composite (Welch t-test: t=125, df=19053, p<10-16), shown in Figure 

3.4. 
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Figure 3.4 Differential mediation analysis in singletons (N= 5,210): histograms shows 10,000 bootstrap 
estimates for proportion of mediation of recreational reading on: i) IPS and  Crystallized Composite (red) 
and ii) IPS and Fluid Composite (blue).  Recreational reading attenuates the relationship between the IPS 
and the Crystallized Composite to a significantly greater degree. 

3.4.5 Sensitivity Analyses to Address Test Reliability 

A previous study reported the test-retest reliability for the Fluid Composite from the 

NTCB (.76) was somewhat lower than for the Crystallized Composite (.85)(5), raising questions 

about whether differences in the strength of their associations with IPS could be attributed to 

more noise in the Fluid Composite measure.  In supplementary sensitivity analyses we 

demonstrate that our results are robust to the addition of simulated noise to the Crystallized 

Composite that mimics this difference in test reliability. At this level of simulated noise we 

estimated 1.0 power (alpha=0.05) to detect Crystnoise having a significantly greater IPS 

standardized regression coefficient than the Fluid Composite. Moreover, additional sensitivity 

analyses indicate that the observed differences in the mediation effects of recreational reading 

are similarly robust against potential measurement error modelled as random noise.  These 

analyses are described in detail in the appendix. 
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3.5 Discussion 

We have shown that polygenic predictors of intelligence test performance and of 

educational attainment are associated with neurocognitive performance in this large group of 

children from diverse backgrounds. These results are consistent with previous findings 

demonstrating that virtually all behavioral traits, including cognitive and intellectual phenotypes, 

are heritable(26).  Moderate estimates of heritability of many behavioral phenotypes also 

establish that a substantial portion of the variability is due to independent environmental 

influences. Given that behavioral phenotypes emerge through interactions between children 

and their physical, social, and cultural environments, much attention has been paid to how 

these environmental factors modify the phenotypes, since they are presumably the malleable 

factors.  However, recently, more attention has been focused on the possible roles of 

mediating nongenetic (ECE) factors that, through their statistical association with genetic 

variation (rGE), may amplify heritability(7,8). 

 We found that a culturally dependent estimate of crystallized cognitive functions, the 

Crystallized Composite measure from the NTCB, is more strongly associated with the best 

available polygenic predictor of intelligence test performance than is the Fluid Composite 

measure, consistent with earlier findings in adults of heritability differences(7) and polygenic 

score performance(27) across similar measures.  This is despite the IPS being based on a large 

meta-analysis of GWAS combining cognitive measures that were described by the authors as 

primarily “fluid intelligence” measures(9). Indeed, the relative size of the IPS association across 

the 15 measures examined here (Figure 3.3) closely mirrored the relative percent variance 

explained in these measures by socio-cultural variables (Table 3.2), a pattern that persists after 

accounting for IPS (Supplementary Table 3.2).  Moreover, for children who read for pleasure, 

the extent of recreational reading was found to partially mediate the associations between IPS 
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and both composite measures, but to a significantly greater degree for the crystallized than for 

the fluid measure, consistent with a more prominent role of rGE in the development of abilities 

tapped by measures that are both more heritable, and apparently more sensitive to socio-

cultural variables.  In other words, even when controlling for independent contributions of more 

global sociocultural variables, how often a child reads for pleasure more strongly mediates the 

association between IPS and crystallized rather than in fluid performance. 

It is perhaps unsurprising that recreational reading more strongly mediates the 

association between IPS and culturally sensitive measures of intelligence since such measures 

are generally sensitive to educational factors. Indeed, a measure of oral reading proficiency 

loads highly on both measures of crystallized functions examined here, Crystallized Composite 

and BF1. One can imagine that children with neurobehavioral phenotypes advantageous for 

learning to read might be more likely to develop the habit of reading for pleasure than those 

with other neurobehavioral phenotypes, for a variety of reasons. However, these results imply 

that choosing to read for pleasure at 10 years of age is associated with having a genotype 

linked to intellectual functions most dependent on reading, and that an estimate of the 

frequency of reading behavior mediates that link. This is consistent with previous descriptions 

of  rGE effects, and with analyses by Beam and Turkheimer(8), who showed that increasing 

rGE over time could explain observed increases in the heritability of measures of cognitive 

function through development. The ABCD study will provide an opportunity to measure 

changes in heritability at later time points of this longitudinal study. Importantly, despite the 

lower test-retest reliability of the fluid compared to the crystallized composite score from the 

NTCB(5), our supplementary analyses show that this difference in test reliability is unlikely to 

explain our findings. 

Though recreational reading would appear to be an enhancing mediator of intellectual 

development, it is important to note that genotype-correlated ECE factors can also suppress 
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intellectual development.  As an example, early struggles to read by children with less 

advantageous genotypes for reading may decrease the likelihood that these children will 

choose reading activities, leading to slower progression of these faculties.  Worse, if children’s 

early reading attempts are experienced very negatively, these children may develop avoidant 

responses to reading, which could result in active suppression of developing literacy.  

Importantly, when these kinds of differences originate with differences in children’s genotypes, 

they can increase heritability and exaggerate disparities.  Identifying ECE factors that 

contribute to heritability of cognitive and intellectual phenotypes is important because it can 

point to practices that better adapt to neurogenetic diversity among children.  Innovative 

pedagogical practices may lead to approaches that increase “enhancing” ECE effects in the 

subset of children disadvantaged by current practices and reduce ECE effects that suppress 

intellectual development and academic achievement, which may lead to more equitable 

educational outcomes.  

 

Limitations and Caveats 

The proportion of variance in the cognitive measures accounted for by the genomic 

predictors was larger in the EurA participants than in the DivA group( 
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Supplementary Table 3.5 & Supplementary Table 3.7), as would be expected given the 

discovery samples were in individuals of European ancestry.  However, the patterns were 

generally similar in the DivA group.  This suggests similar genetic architecture for these 

cognitive phenotypes across ancestry groups and supports the validity of the results from the 

full sample.  Analyses in all three groups included as covariates the top ten genetic principal 

components derived from the full sample.  Because of broad ancestral diversity in the ABCD 

cohort, there is limited power for comparing the effects in different ancestry groups.  As has 

been discussed in genetics generally(28,29), the lower predictive performance in the DivA 

group once again underscores the importance of collecting genetic data from ancestrally 

diverse populations and developing methods that can be used across ancestry groups. 

One may have predicted that EAPS would have been a more powerful predictor of 

cognitive measures in ABCD than IPS, due to it having over 4 times the discovery sample size. 

However, we found generally the IPS had stronger associations (Supplementary Table 3.3-3.8), 

perhaps because the phenotype is a better match between training and testing. This contrasts 

with results of a previous study of adults, where EAPS explained 7-10% of the variance in 

cognition(10), while IPS explained only 2-5%(9). This discrepancy may be due to 

methodological differences, alternatively the young age of the cohort may be the key 

difference. Educational attainment, while clearly related to scores on cognitive tests, may be 

influenced by other genetically influenced traits (e.g. personality) that may contribute to greater 

persistence in formal education; thus the EAPS is likely to reflect to a greater degree these 

traits. Such pleiotropic of EAPS effects has been observed in adults(30).  When we include 

both EAPS and IPS in a single model, together they explain 5.8% of the variability in the 

Crystallized Composite (EurA, Supplementary Table 3.6), substantially more than IPS alone 

explains (4.1%), indicating that these genomic predictors capture unique sources of the 

relevant variance, and are likely measuring different (relevant) constructs. 
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 These results are consistent with previous evidence for a role of genetic variation in 

developing cognitive functions, and they strengthen the evidence for rGE during cognitive 

development.  However, it should be emphasized that the genomic predictors (together) 

account for only 4.15% of cognitive performance variance in the full sample.  Furthermore, this 

was observed for the Crystallized Composite measure, the culturally sensitive measure 

hypothesized to exhibit increased genetic association because of rGE effects. The additive 

effects of potentially confounding sociocultural covariates, even controlling for IPS, accounted 

for 13.2% of the variability.  For the Fluid Composite the genomic predictors together 

accounted for only 1.1% of the variance, and sociocultural covariates accounted for almost 

5%. Of note, even with the narrow 2 year age range in the cohort, age alone accounts for 10% 

of the variability in the Crystallized Composite and 7% in the Fluid Composite. These effects 

may reveal clues about a highly dynamic process of cognitive and intellectual development in 

children. 

Finally, though the results of the mediation analysis focusing on recreational reading 

strengthen the plausibility that such ECE mediators associate with genotypes and increase 

genetic effects, these results do not prove a causal explanation, and none should be inferred.  

In the context of an observational study such as ABCD it is always possible that confounding 

variables not accounted for in the analysis are responsible for the mediation effect we 

observed.   
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Appendix 

Description of Each Cognitive Task used in ABCD 

 

NIH Toolbox Cognition Battery® Tasks 

The Toolbox Oral Reading Recognition Task® measured language decoding and 

reading.  Children were asked to read aloud single letters or words presented in the centre of 

an iPad screen.  The research assistant marked pronunciations as correct or incorrect.  

Extensive training was given prior to administering the test battery.  Item difficulty was 

modulated using computerized adaptive testing (CAT). 

The Toolbox Picture Vocabulary Task®, a variant of the Peabody Picture Vocabulary 

Test (PPTV), measured language and vocabulary comprehension.  Four pictures were 

presented on an iPad screen as a word was played through the iPad speaker.  The child was 
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instructed to point to the picture, which represented the concept, idea or object name heard.  

CAT was implemented to control for item difficulty and avoid floor or ceiling effects. 

The Toolbox Pattern Comparison Processing Speed Test® measured processing speed.  

Children were shown two images and asked to determine if they were identical or different by 

touching the appropriate response button on the screen.  This test score is the sum of the 

number of items completed correctly in the time given. 

The Toolbox List Sorting Working Memory Test® measured working memory.  Children 

heard a list of words alongside pictures of each word and were instructed to repeat the list 

back in order of their actual size from smallest to largest.  The list started with only two items 

and a single category (food or animals).  The number of items increased with each correct 

answer to a maximum of seven.  The child then progressed to the next stage in which the two 

different categories were interleaved.  At this stage children were required to report the items 

back in size order from the first category followed by the second category.  Children were 

always given two opportunities to repeat the list correctly before the experimenter scored the 

trial as incorrect. 

The Toolbox Picture Sequence Memory Test® measured episodic memory.  On each 

trial, children were shown a series of fifteen pictures in a particular sequence.  The pictures 

illustrated activities or events within a particular setting (e.g., going to the park), and as each 

appeared on the screen a pre-recorded narrative briefly described the content of the picture.  

Participants were instructed to arrange the pictures in the original sequence in which they were 

shown.  The Rey-Auditory Verbal Learning Task was also included in the ABCD neurocognition 

battery as a more comprehensive measure of episodic memory. 

The Toolbox Flanker Task® measured executive function, attentional and inhibitory 

control.  This adaptation of the Eriksen Flanker task(1) captures how readily a participant is 

influenced by the congruency of stimuli surrounding a target.  On each trial a target arrow was 
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presented in the center of the iPad screen facing to the left or right and was flanked by two 

additional arrows on both sides.  The surrounding arrows were either facing in the same 

(congruent) or different (incongruent) direction to the central target arrow.  The participant was 

instructed to push a response button to indicate the direction of the central target arrow.  

Accuracy and reaction time scores were combined to produce a total score of executive 

attention, such that higher scores indicate a greater ability to attend to relevant information and 

inhibit incorrect responses. 

The Toolbox Dimensional Change Card Sort Task® measured executive function and 

cognitive flexibility.  On each trial, the participant was presented with two objects at the bottom 

of the iPad screen and a third object in the middle.  The participant was asked to sort the third 

object by matching it to one of the bottom two objects based on either colour or shape.  In the 

first block participants matched based on one dimension and in the second block they 

switched to the other dimension.  In the final block, the sorting dimension alternated between 

trials pseudorandomly.  The total score was calculated based on speed and accuracy. 

Other Neurocognitive Tasks 

Rey-Auditory Verbal Learning Task. This task measures auditory learning, recall and 

recognition.  Participants listened to a list of 15 unrelated words and were asked to 

immediately recall these after each of five learning trials.  A second unrelated list was then 

presented and participants were asked to recall as many words as possible from the second 

list and then recall words again from the initial list.  Following a delay of 30 minutes (during 

which other non-verbal tasks from the cognitive battery are administered), longer-term 

retention was measured using recall and recognition.  This task was administered via an iPad 

using the Q-interactive platform of Pearson assessments(2).  In the current study, the total 
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number of items correctly recalled across the five learning trials was summed to produce a 

measure of auditory verbal learning. 

Little Man Task.  This task measures visuospatial processing involving mental rotation 

with varying degrees of difficulty(3).  A rudimentary male figure holding a briefcase in one hand 

was presented on an iPad screen.  The figure could appear in one of four positions: right side 

up vs upside down and either facing the participant or with his back to the participant.  The 

briefcase could be in either hand.  Participants indicated which hand the briefcase was in using 

one of two buttons.  Performance across the 32 trials was measured by the percentage of trials 

in which the child responded correctly.  This was divided by the average reaction time to 

complete the task (in seconds) to produce a measure of efficiency of visuospatial processing.  

This was the dependent variable analysed for this task. 

Matrix Reasoning. Nonverbal reasoning was measured using an automated version of 

the Matrix Reasoning subtest from the Weschler Intelligence Test for Children-V(4).  On each 

trial the participant was presented with a series of visuospatial stimuli, which was incomplete.  

The participant was instructed to select the next stimulus in the sequence from four 

alternatives.  There were 32 possible trials and testing ended when the participant failed three 

consecutive trials.  The total raw score, used in the current study, was the total number of trials 

completed correctly. 

Genetic Data and Computing Polygenic Scores 

Saliva and blood samples were collected and sent to Rutgers University Cell and DNA 

Repository for DNA isolation. Genotyping was performed using the Smokescreen array(5), 

calling 646,247 genetic variants. Pre-variant imputation, quality control (QC) on the genotyping 

was performed to ensure each genetic variant had been successfully called in more than 95% 
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of the sample, and that missingness for each individual was lower than 20%. After QC, 

517,724 SNPs and 10,659 individuals remained. Based on genotype data, we derived genetic 

ancestry using fastStructure(6) with four ancestry groups. Genetic principal components were 

also calculated using PLINK.  

We performed imputation using the Michigan Imputation Server(7) with the 

hrc.r1.1.2016 reference panel, Eagle v2.3 phasing and multiethnic imputation. PLINK(8) was 

used to convert dosage files to PLINK files using a best guess threshold of 0.9 for each locus. 

After PLINK conversion, we used post imputation variant QCs of minor allele frequency above 

5%, Hardy-Weinberg threshold of 10-6 and no greater than 10% missing SNPs for each 

individual. These QC processes resulted in 38,900,342 SNPs and 10,659 individuals remaining. 

We computed polygenic scores usine PRSice(9). After variant imputation we performed 

clumping and pruning of SNPs with a clumping window of 250 kb and r2 of 0.1. SNPs from the 

major histone compatibility complex were removed from the analysis. This resulted in 692,685 

SNPs remaining. The polygenic scores for each individual were then computed as a sum of 

their SNPs weighted by the variant effect size in the discovery samples(10,11), with no p-value 

thresholding of summary statistics. Since part of the EAPS discovery sample was 23andMe 

participants, only the top 10,000 SNPs were included in summary statistics for this polygenic 

score. 

Statistical Models for Genomic Prediction of Behavior Measures 

Associations between polygenic scores and behavior measures were assessed using 

Generalized Linear Mixed-Effects Models (GLMMs). In addition to the IPS or EAPS, all models 

included the fixed effects of age, sex at birth, parental marital status, education level of 

parent/caregiver, household income, ethnicity (Hispanic/non-Hispanic) and the top ten genetic 



 

 60 

principal components.  Data collection site and family were included as random effects. To 

assess variance explained by predictor(s) we computed either from t statistics and degrees of 

freedom (i.e. 𝑅" = 𝑡"/(𝑡" + 𝑑𝑓)) or as the computed change in R2 based on a log likelihood 

ratio test between a full and reduced model. 

Differential Mediation Analysis  

Due to the computational burden of fitting GLMMs for bootstrapped estimates we 

instead fit general linear models (GLMs) with the same fixed effects as above and adding study 

site. To control for family we restricted this analysis to randomly selected singletons (one 

member from each family). By randomly selecting singletons we believe we obtain a 

conservative estimate of associations as we lose power when compared to GLMMs (where all 

family members are retained) whilst controlling family relatedness in ABCD.  
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Factor 
1 

Factor 
2 

Factor 
3 

Reading 0.82 0.12 0.12 

Picture 
Vocabulary 0.75 0.07 0.19 

Pattern 0.02 0.81 0.09 

List 0.47 0.15 0.49 

Picture 0.01 0.14 0.86 

Flanker 0.21 0.71 0.07 

Card Sort 0.21 0.71 0.23 

Rey Auditory 
Verbal  0.31 0.13 0.71 

Little Man 
Task 0.50 0.30 0.07 

Supplementary Figure 3.1 Loadings of Bayesian factors from (12), mean of posterior distributions. 
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Supplementary Table 3.1 Variables used for associations, with NDA (National Institute of Mental Health 
Data Archive) data dictionary names. 

Assessment Variables Analyzed NDA Data Dictionary Name Informant 
NIH Toolbox® 
 
 

Crystallized Composite 
Fluid Composite 
Reading 
Picture Vocabulary 
Pattern 
List 
Picture 
Flanker 
Cardsort 

nihtbx_cryst_uncorrected 
nihtbx_fluidcomp_uncorrected 
nihtbx_reading_uncorrected 
nihtbx_picvocab_uncorrected 
nihtbx_pattern_uncorrected 
nihtbx_pattern_uncorrected 
nihtbx_list_uncorrected 
nihtbx_flanker_uncorrected 
nihtbx_cardsort_uncorrected 

Youth 

Little Man Task Percentage correct lmt_scr_perc_correct Youth 
Pearson Scores Rey Auditory Verbal total correct 

WISC-V Matrix Reasoning 
pea_ravlt_sd_trial_[i-v]_tc (sum i-v) 
pea_wiscv_trs 

Youth 

Bayesian Latent 
Factors 

Bayesian Factor 1 
Bayesian Factor 2 
Bayesian Factor 3 

neurocog_pc1.bl 
neurocog_pc2.bl 
neurocog_pc3.bl 

Youth (derived) 

Sports and 
Activity 
Involvement 
Questionaries 

Reading hours sports_activity_read_hours_p Caregiver 
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Supplementary Table 3.2 Mean (SD) and median for each behavioral measure in the full sample, 
estimated % variance explained by sex, age, and the set of socio-cultural covariates (parental marital 
status, parental education, household income, genetic ancestry PCs and Hispanic/non-Hispanic), after 
accounting for IPS. 
 

Mean (SD) Median Sex Age Sociocultural 
Crystallized Composite 86.87 (6.93) 87 0.01 9.96 13.06 
Fluid Composite 92.18 (10.43) 93 0.33 7.32 4.97 
Reading 91.23 (6.73) 91 0.01 6.27 9.24 
Picture Vocabulary 85.04 (8.02) 84 0.07 7.94 10.67 
Pattern 88.29 (14.47) 88 0.57 4.85 1.09 
List 97.43 (11.81) 97 0.13 2.11 4.82 
Picture 103.33 (12.01) 103 0.51 1.20 2.26 
Flanker 94.42 (8.83) 96 0.03 3.26 2.13 
Cardsort 92.97 (9.26) 94 0.48 3.80 2.54 
Rey Auditory Verbal 43.78 (9.96) 44 1.26 2.32 3.34 
Matrix Reasoning 18.13 (3.74) 18 0.34 2.83 4.54 
Little Man Task 0.60 (0.17) 0.56 0.48 5.23 3.80 
Bayesian Factor 1 0.05 (0.76) 0.06 0.30 10.05 12.73 
Bayesian Factor 2 0.02 (0.76) 0.06 0.22 5.53 1.50 
Bayesian Factor 3  0.04 (0.70) 0.04 0.90 1.64 2.94 
Recreational Reading (hours) 6.5 (10) 4 0.45 0.21 1.65 

Simulating Noise on Crystallized Composite Score 

A previous study noted that crystallized composite of NIH toolbox shows greater test-

retest reliability than fluid domains of intelligence(13). This is important to consider in the 

current study as it is possible that the observed findings, of IPS being stronger predictors of 

crystallized domains of intelligence, may be due to differences in noise between fluid and 

crystallized measures. To test the robustness of the results to different degrees of noise we 

simulated additive noise on the crystallized composite score as: 

 

𝐶𝑟𝑦𝑠𝑡#$%&' = 𝐶𝑟𝑦𝑠𝑡 + 𝑁(0, 𝜎) 
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In which we created samples of Crystnoise for different values of noise, 𝜎 and repeated the main 

behavioral analyses with IPS.  

IPS Predictive Performance on Crystnosie vs Fluid Composite 

We simulated 1,000 samples of Crystnoise at each of 9 different values of 𝜎 from 0 to 2 in 

increments of 0.25 resulting in 9x1000=9000 samples of Crystnoise. Next we performed the 

same z-test on performed in the main analysis, now between the standardized regression 

coefficients of Crystnoise and Fluid composite. We calculated the proportion of noise in signal for 

Crystnoise as 1-r2, where r = cor(Cryst, Crystnoise). Supplementary Figure 3.2 shows the negative 

log(p) value of the z-test as a function of noise, with the red dotted line indicating a significance 

threshold of 0.05. A previous validation study estimated the test-retest reliability of Fluid to be 

0.76 and Crystallized to be 0.85(13), this means Crystnoise would need to have an r ≈ 

0.76/0.85=0.89 with Cryst or 1-r2 ≈ 0.2. At this level of noise we have 1.0 power (alpha=0.05) to 

detect Crystnoise having a significantly greater IPS standardized regression coefficients than 

Fluid composite. This demonstrates that our findings are robust to the difference in noise 

between crystallized and fluid composite measures.  
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Supplementary Figure 3.2 Significance of difference in IPS standardized regression coefficient between 
predicting i) Crystnoise and ii) Fluid composite (y axis) as in main Figure 3.3, as a function of proportion of 
noise in Cryst vs Crystnoise  (x-axis). Red dotted line indicates alpha=0.05. 

Differential Mediation of Reading Between i) IPS and Crystnosie and ii) IPS 
and Fluid Composite 

To test the robustness of the mediation results in the main analysis, we repeated the 

same process with 100 samples of Crystnoise at each of 10 different values of 𝜎 (0, 0.5, 0.75, 1, 

1.25, 1.5, 2, 2.5, 3, 4) resulting in 1,000 different samples of  Crystnoise. Repeating a similar 

mediation analysis to the main text except instead using the more classical framework of Baron 

and Kenny(14), due to computational feasibility, which we have found to be convergent with 

the mediation model(15) presented in the main text. We again looked at 5,210 singletons from 

the full sample to test the differential mediation of reading between IPS and Crystnoise vs Fluid 

composite using 10,000 bootstrap samples for each Crystnoise, we found once again a similar 
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robustness to the level of noise simulated. Supplementary Figure 3.3 shows the negative log(p) 

for the same test performed for the difference in distributions shown in Figure 3.4 at the 1,000 

different simulated samples of Cyrstnoise as a function of noise (1-r2). We see that when Crystnoise 

has a value of noise making it comparable to the test retest reliability of fluid composite (1-r2 ≈ 

0.2), all the samples remain significant. Again these simulated noise analyses demonstrate that 

our main results are robust to a higher degree of noise than the observed difference in test-

retest reliability between Crystallized and Fluid composite measures in the toolbox. 

 

Supplementary Figure 3.3 Welch t-test for differential mediation between i) IPS – reading - Fluid and ii) 
IPS – reading Crystnoise  (y-axis), as a function of proportion of noise in Cryst vs Crystnoise  (x-axis). Red 
dotted line indicates alpha=0.05. 
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IPS, EAPS and EAPS + IPS Cognition Associations 

Supplementary Table 3.3 Full sample: behavioral associations between polygenic scores i) IPS and ii) 
EAPS in two separate regression for each behavior using GLMMs and controlling for variables of no 
interest. 

 IPS EAPS 

Behavior coeff Var. 
Explained 
(%) 

t pval coeff Var. 
Explained 
(%) 

t pval 

Crystallized Composite 0.50 2.86 15.82 1.31E-55 0.19 2.32 14.21 2.56E-45 

Fluid Composite 0.28 0.75 8.03 1.14E-15 0.11 0.61 7.23 5.26E-13 

Reading 0.49 2.34 14.27 1.12E-45 0.16 1.39 10.95 9.85E-28 

Picture Vocabulary 0.40 1.79 12.46 2.59E-35 0.17 1.87 12.74 7.75E-37 

Pattern 0.13 0.15 3.61 3.10E-04 0.05 0.15 3.51 4.44E-04 

List 0.31 0.85 8.55 1.50E-17 0.11 0.63 7.33 2.47E-13 

Picture 0.18 0.27 4.79 1.73E-06 0.09 0.41 5.88 4.30E-09 

Flanker 0.16 0.23 4.45 8.70E-06 0.03 0.04 1.91 5.63E-02 

Cardsort 0.14 0.17 3.77 1.67E-04 0.06 0.18 3.96 7.70E-05 

Rey Auditory Verbal 0.32 0.91 8.81 1.50E-18 0.11 0.66 7.52 6.23E-14 

Matrix Reasoning 0.30 0.84 8.49 2.34E-17 0.14 0.98 9.18 5.36E-20 

Little Man Task 0.25 0.57 7.00 2.69E-12 0.07 0.24 4.55 5.50E-06 

Bayesian Factor 1 0.49 2.88 15.88 5.82E-56 0.17 1.93 12.92 7.47E-38 

Bayesian Factor 2 0.11 0.12 3.15 1.62E-03 0.03 0.04 1.80 7.19E-02 

Bayesian Factor 3 0.23 0.52 6.64 3.37E-11 0.11 0.67 7.55 4.80E-14 
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Supplementary Table 3.4 Full sample: Combined (EAPS + IPS ) regression on behavior. Left 3 columns 
show effect of EAPS + IPS,  right 3 columns show EAPS effect after controlling for IPS. 

Behavior EAPS + IPS effect EAPS effect beyond IPS alone  
Var. 
Explained 
(%) 

𝝌𝟐 pval Var. 
Explained  
(%) 

𝝌𝟐 pval 

Crystallized Composite 4.15 360.91 4.26E-79 1.33 113.72 1.50E-26 

Fluid Composite 1.09 93.46 5.08E-21 0.34 29.09 6.90E-08 

Reading 3.01 260.70 2.46E-57 0.69 58.99 1.59E-14 

Picture Vocabulary 2.93 253.05 1.12E-55 1.16 99.06 2.44E-23 

Pattern 0.24 20.28 3.95E-05 0.08 7.25 7.09E-03 

List 1.19 101.62 8.56E-23 0.34 28.68 8.54E-08 

Picture 0.54 46.18 9.37E-11 0.27 23.25 1.42E-06 

Flanker 0.24 20.50 3.54E-05 0.01 0.66 4.17E-01 

Cardsort 0.28 23.91 6.44E-06 0.11 9.67 1.87E-03 

Rey Auditory Verbal 1.25 107.51 4.51E-24 0.35 30.02 4.27E-08 

Matrix Reasoning 1.46 124.94 7.40E-28 0.62 52.99 3.36E-13 

Little Man Task 0.67 57.33 3.56E-13 0.10 8.26 4.05E-03 

Bayesian Factor 1 3.88 337.50 5.16E-74 1.04 88.74 4.50E-21 

Bayesian Factor 2 0.13 11.07 3.94E-03 0.01 1.11 2.91E-01 

Bayesian Factor 3 0.95 81.48 2.03E-18 0.44 37.44 9.44E-10 
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Supplementary Table 3.5 European ancestry sample: behavioral associations between polygenic scores 
i) IPS and ii) EAPS in two separate regression for each behavior using GLMMs and controlling for 
variables of no interest. 

 IPS EAPS 

Behavior coeff 

Var. 
Explained 
(%) t pval coeff 

Var. 
Explained 
(%) t pval 

Crystallized Composite 0.21 4.13 14.48 1.44E-46 0.18 3.34 12.95 9.36E-38 

Fluid Composite 0.11 1.15 7.53 6.10E-14 0.09 0.89 6.60 4.66E-11 

Reading 0.20 3.49 13.25 2.05E-39 0.14 2.03 10.04 1.64E-23 

Picture Vocabulary 0.16 2.56 11.30 2.90E-29 0.16 2.71 11.64 6.71E-31 

Pattern 0.05 0.24 3.41 6.65E-04 0.04 0.18 2.94 3.27E-03 

List 0.12 1.21 7.72 1.41E-14 0.10 0.95 6.83 9.50E-12 

Picture 0.07 0.38 4.29 1.84E-05 0.07 0.50 4.96 7.42E-07 

Flanker 0.08 0.50 4.95 7.72E-07 0.04 0.12 2.37 1.80E-02 

Cardsort 0.06 0.27 3.64 2.74E-04 0.05 0.25 3.49 4.83E-04 

Rey Auditory Verbal 0.11 1.13 7.44 1.17E-13 0.10 1.03 7.11 1.32E-12 

Matrix Reasoning 0.11 1.10 7.35 2.24E-13 0.11 1.08 7.27 4.10E-13 

Little Man Task 0.09 0.74 6.03 1.75E-09 0.05 0.22 3.31 9.45E-04 

Bayesian Factor 1 0.20 4.12 14.46 1.88E-46 0.16 2.75 11.73 2.43E-31 

Bayesian Factor 2 0.05 0.22 3.27 1.09E-03 0.02 0.06 1.65 9.89E-02 

Bayesian Factor 3 0.08 0.64 5.61 2.10E-08 0.10 0.90 6.64 3.37E-11 
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Supplementary Table 3.6 European ancestry sample: Combined (EAPS + IPS ) regression on behavior. 
Left 3 columns show effect of EAPS + IPS,  right 3 columns show EAPS effect after controlling for IPS. 

Behavior EAPS + IPS effect EAPS effect beyond IPS alone  
Var. 
Explained 
(%) 

𝝌𝟐 pval Var. 
Explained  
(%) 

𝝌𝟐 pval 

Crystallized Composite 5.80 291.74 4.46E-64 1.74 85.82 1.97E-20 

Fluid Composite 1.58 78.02 1.15E-17 0.44 21.38 3.76E-06 

Reading 4.33 216.21 1.12E-47 0.88 43.24 4.85E-11 

Picture Vocabulary 4.08 203.45 6.62E-45 1.56 76.94 1.76E-18 

Pattern 0.32 15.78 3.74E-04 0.08 4.17 4.11E-02 

List 1.68 82.56 1.18E-18 0.47 23.08 1.55E-06 

Picture 0.68 33.48 5.37E-08 0.30 14.96 1.10E-04 

Flanker 0.52 25.47 2.94E-06 0.02 0.95 3.29E-01 

Cardsort 0.40 19.76 5.13E-05 0.13 6.46 1.10E-02 

Rey Auditory Verbal 1.66 82.04 1.53E-18 0.54 26.67 2.41E-07 

Matrix Reasoning 1.68 82.92 9.89E-19 0.59 28.93 7.51E-08 

Little Man Task 0.80 39.07 3.28E-09 0.05 2.64 1.04E-01 

Bayesian Factor 1 5.39 270.80 1.57E-59 1.33 65.36 6.25E-16 

Bayesian Factor 2 0.23 11.28 3.55E-03 0.01 0.56 4.53E-01 

Bayesian Factor 3 1.21 59.41 1.26E-13 0.57 27.83 1.32E-07 
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Supplementary Table 3.7 Diverse ancestry sample: behavioral associations between polygenic scores i) 
IPS and ii) EAPS in two separate regression for each behavior using GLMMs and controlling for variables 
of no interest. 

 IPS EAPS 

Behavior coeff 

Var. 
Explained 
(%) t pval coeff 

Var. 
Explained 
(%) t pval 

Crystallized Composite 0.40 1.47 7.34 2.68E-13 0.15 1.21 6.66 3.24E-11 

Fluid Composite 0.20 0.32 3.41 6.52E-04 0.08 0.32 3.38 7.28E-04 

Reading 0.39 1.21 6.64 3.61E-11 0.12 0.66 4.90 1.01E-06 

Picture Vocabulary 0.32 0.89 5.70 1.30E-08 0.14 1.02 6.11 1.13E-09 

Pattern 0.10 0.07 1.58 1.14E-01 0.05 0.10 1.88 6.08E-02 

List 0.26 0.47 4.13 3.64E-05 0.09 0.30 3.30 9.87E-04 

Picture 0.12 0.09 1.83 6.76E-02 0.08 0.25 2.98 2.92E-03 

Flanker 0.09 0.05 1.39 1.64E-01 0.01 0.01 0.44 6.58E-01 

Cardsort 0.10 0.07 1.59 1.13E-01 0.06 0.13 2.19 2.83E-02 

Rey Auditory Verbal 0.28 0.56 4.53 6.13E-06 0.08 0.23 2.90 3.70E-03 

Matrix Reasoning 0.26 0.50 4.28 1.93E-05 0.14 0.87 5.62 2.07E-08 

Little Man Task 0.21 0.31 3.37 7.64E-04 0.08 0.24 2.97 2.96E-03 

Bayesian Factor 1 0.40 1.57 7.59 4.10E-14 0.14 1.03 6.12 1.04E-09 

Bayesian Factor 2 0.06 0.03 0.96 3.39E-01 0.02 0.02 0.74 4.57E-01 

Bayesian Factor 3 0.19 0.27 3.14 1.73E-03 0.09 0.32 3.39 7.03E-04 
 
  



 

 72 

Supplementary Table 3.8 Diverse ancestry sample: Combined (EAPS + IPS ) regression on behavior. Left 
3 columns show effect of EAPS + IPS,  right 3 columns show EAPS effect after controlling for IPS. 

Behavior EAPS + IPS effect EAPS effect beyond IPS alone  
Var. 
Explained 
(%) 

𝝌𝟐 pval Var. 
Explained  
(%) 

𝝌𝟐 pval 

Crystallized Composite 2.27 83.46 7.54E-19 0.81 29.70 5.04E-08 

Fluid Composite 0.54 19.64 5.44E-05 0.22 7.94 4.84E-03 

Reading 1.60 58.42 2.06E-13 0.39 14.33 1.53E-04 

Picture Vocabulary 1.62 59.33 1.31E-13 0.73 26.79 2.27E-07 

Pattern 0.14 5.16 7.56E-02 0.07 2.65 1.03E-01 

List 0.65 23.75 6.95E-06 0.19 6.64 9.97E-03 

Picture 0.29 10.56 5.10E-03 0.20 7.24 7.12E-03 

Flanker 0.05 1.99 3.69E-01 0.00 0.04 8.43E-01 

Cardsort 0.17 6.35 4.17E-02 0.10 3.80 5.12E-02 

Rey Auditory Verbal 0.69 25.04 3.65E-06 0.12 4.51 3.36E-02 

Matrix Reasoning 1.17 42.75 5.22E-10 0.67 24.39 7.86E-07 

Little Man Task 0.47 17.19 1.85E-04 0.16 5.79 1.61E-02 

Bayesian Factor 1 2.21 81.27 2.25E-18 0.66 23.84 1.05E-06 

Bayesian Factor 2 0.03 1.27 5.30E-01 0.01 0.34 5.57E-01 

Bayesian Factor 3 0.50 18.16 1.14E-04 0.23 8.35 3.86E-03 
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Chapter 4:  Unique prediction of 

developmental psychopathology from 

genetic and familial risk 

4.1 Abstract 
Early detection is critical for easing the rising burden of psychiatric disorders. However, 

the specificity of psychopathological measurements and genetic predictors is unclear among 

youth.  We measured associations between genetic risk for psychopathology (polygenic risk 

scores (PRS) and family history (FH) measures) and a wide range of behavioral measures in a 

large sample (n=5204) of early adolescent participants (9-11 years) from the Adolescent Brain 

and Cognitive Development (ABCD) StudySM.  Associations were measured both with and 

without taking into consideration shared variance across measures of genetic risk. Polygenic 

risk for Attention Deficit Hyperactivity Disorder (ADHD) and depression (DEP) shared many 

significant associations with externalizing, internalizing and psychosis-related behaviors. 

However, when accounting for all measures of genetic and familial risk these two PRS also 

showed clear, unique patterns of association: the DEP PRS showed significantly stronger 

associations with somatic complaints and depression symptoms; whereas the ADHD PRS 

showed stronger associations with ADHD symptoms, impulsivity and prodromal 

psychosis.  The Schizophrenia PRS showed a unique negative association with performance 

on cognitive tasks measuring fluid abilities, such as working memory and executive function, 

that was not accounted for by other measures of genetic risk.  FH accounted for unique 
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variability in behavior above and beyond PRS and vice versa with FH measures explaining a 

greater proportion of unique variability compared to the PRS. Our results indicate that, among 

youth, many behaviors show shared genetic influences; however, there is also specificity in the 

profile of emerging psychopathologies for individuals with high genetic risk for particular 

disorders.  This may be useful for quantifying early, differential risk for psychopathology in 

development. 

4.2 Introduction 
Psychiatric disorders place a huge burden on those affected, their families and 

society.  Identifying risk for psychopathology in developmental samples may offer an 

opportunity for early detection and intervention.  Nearly all psychiatric disorders have a 

heritable component, with twin heritability estimates ranging from 33-84% across affective, 

psychotic and developmental disorders1.  Lifetime prevalence rates of several disorders are 

higher among first degree biological relatives of individuals with a diagnosis compared to 

families of individuals with no diagnosis2.  Therefore, estimating genetic liability for psychiatric 

disorders presents one avenue for identifying at risk individuals and probing differential and 

transdiagnostic risk factors.  Here we sought to determine: 1) if increased genetic risk within a 

large, typically developing and demographically diverse developmental sample would be 

associated with symptoms of psychopathology, related individual difference factors, and 

cognitive function; and, 2) whether there was any evidence for specificity in the behavioral 

measures predicted by different genetic markers. 

Large-sample analyses of results from genome-wide association studies (GWAS) have 

revealed the highly polygenic architecture of complex behavioral phenotypes, with many 

variants in the genome additively accounting for substantial heritability, but individually exerting 

only very small effects. Models using effect sizes at single nucleotide polymorphisms (SNPs) 
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estimated from large-scale independent GWAS, can be used to compute polygenic risk scores 

(PRS), which are aggregate scores of an individual’s genetic risk for a trait.  Notably recent 

powerful, cross-disorder meta-analyses 3,4 reveal high genetic correlation and widespread 

pleiotropy across psychiatric disorders, consistent with overlapping genetic architecture.  

Indeed, polygenic risk for depression has been shown to positively associate with childhood 

psychopathology across behavioral domains5. 

Family history (FH) is a clinically used factor for predicting psychiatric risk6, yet there 

has been a lack of direct comparisons of associations between PRS and FH of 

psychopathology in childhood and adolescence.  SNP heritabilities (h2
SNP) based on effects 

across the genome are lower than twin heritabilities, which suggests there are genetic factors 

driving psychiatric phenotypes that are not fully captured with common variants at current 

GWAS sample sizes.  Indeed, FH likely reflects a complex combination of genetic and 

environmental factors.  Due to the differential information that PRS and FH measures may 

provide, it is important to determine whether they explain independent or overlapping variance 

in developmental psychopathology and cognition.  For example, in large cohorts, both family 

history of schizophrenia 7 and polygenic risk for schizophrenia 8 have been shown to associate 

with developmental psychopathology; however, the unique contribution of polygenic risk above 

and beyond FH is unclear. 

For this study we used behavioral and genetic data from 9-11 year-old children from 

the Adolescent Brain and Cognitive Development (ABCD) StudySM.  We generated five PRS that 

were trained on large independent datasets. We used these PRS and measures of FH of 

psychopathology both independently and within the same models to predict a large array of 

both caregiver and youth-reported phenotypes thought to reflect behavioral risk for developing 

psychiatric disorders.  These measures included both dimensional and diagnostic assessments 

of psychopathology, individual difference measures of impulsivity and behavioral approach and 
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inhibition, prodromal psychosis and behaviors associated with mania and prosocial 

behavior.  We additionally measured associations with cognitive measures from the NIH 

Toolbox given documented associations and genetic overlap between cognitive impairment 

and schizophrenia and bipolar disorder9,10.  Using this approach, we aimed to uncover 

variability across early signs of psychopathology across domains that is uniquely associated 

with each genetic/familial predictor.  This research is an essential first step in this large 

longitudinal study to determine whether we can identify early signs of specificity in genetic-

behavior associations in development, which can then be tracked to determine their potential 

predictive power for future diagnoses.  

4.3 Methods and Materials 

4.3.1 Sample 

The ABCD study is a longitudinal study across 21 data acquisition sites in the United 

States following 11,880 children starting at 9-11 years.  This paper uses baseline data from the 

NIMH Data Archive ABCD Collection Release 2.0.1 (DOI: 10.15154/1504041). The ABCD 

cohort was recruited to ensure the sample was as close to nationally representative as 

possible, therefore the cohort includes individuals across different racial and ethnic 

backgrounds and socioeconomic groups 11.  There is an embedded twin cohort and many 

siblings.  As the chosen PRS were all trained on European individuals, the main associations in 

this study were conducted in a predominantly European ancestry sample 

(n=5204).  Supplementary analyses were conducted in those with non-European ancestry 

(n=3964) and the full sample (n=9168).  Table 4.1 outlines the demographics of the European 

sample used in the main analysis.  Prevalence rates of diagnoses based on the Kiddie 
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Schedule for Affective Disorders and Schizophrenia (KSADS) semi-structured interview for the 

caregiver and youth are in Supplementary Table 4.1& Supplementary Table 4.2.  

4.3.2 ABCD Baseline Mental Health Battery 

The Mental Health Battery in ABCD is an extensive battery of questionnaires and semi-

structured interviews assessing diagnostic and dimensional measures of psychopathology and 

individual difference factors.  Both youth and their caregivers provided responses at baseline 

using divergent and overlapping measures.  Motivation behind selecting these assessments is 

outlined here: 12.  Supplementary Table 4.3 lists variables used from the ABCD public release. 

4.3.2.1 DIAGNOSTIC ASSESSMENTS 

Kiddie Schedule for Affective Disorders and Schizophrenia (KSADS). Participants 

completed a semi-structured, self-administered, computerized version of the validated and 

reliable KSADS-513.  Research Assistants had extensive training to support youth completing 

this assessment.  Caregivers and youth completed modules on depression, bipolar disorder, 

generalized anxiety disorder, social anxiety disorder, suicidality and sleep.  Only caregivers 

completed psychosis, obsessive-compulsive disorder (OCD), ADHD, oppositional defiant 

disorder (ODD), conduct disorder (CD), panic disorder and eating disorders 

modules.  Symptom scores were the sum of lifetime symptoms endorsed in each module and 

were scored and analyzed separately for each respondent.  The total symptom score was a 

sum across modules. 
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4.3.2.2 DIMENSIONAL ASSESSMENTS 

Child Behavior Checklist (CBCL). Caregiver-reported CBCL14 has eight syndrome scales: 

anxious/depressed, withdrawn/depressed, somatic complaints, social problems, thought 

problems, attention problems, rule breaking behavior and aggressive behavior, and a total 

problems score. 

General behavior inventory. Caregiver-report ten-item Mania Scale15 derived from the 73-item 

General Behavior Inventory (PGBI) for Children and Adolescents16. 

Prosocial Behavior Survey. Caregivers and youth were asked three questions about how 

helpful and considerate the youth was in general, with summed scores for both caregiver and 

youth. 

Prodromal Questionnaire Brief (PQ-B). Youth-report measure, modified for use in children in 

our age range, consisting of a 21-item scale assessing subclinical manifestations of 

psychosis17–19.  The prodromal psychosis severity score is the sum of the number of symptoms 

endorsed weighted by how distressing the symptoms were. 

UPPS-P for children short scale. Youth-report impulsive behavior scale, which includes five 

sub-scales that measure four factors of impulsivity: positive and negative urgency, lack of 

perseverance, premeditation, and sensation seeking20. 

Behavioral inhibition and behavioral activation (BISBAS scale). Youth-report measure of 

approach and avoidance behaviors 21,22 that produces scores for drive, fun seeking, reward 

responsiveness, and behavioral inhibition. 

NIH Toolbox Cognition Battery®. Widely used battery of cognitive tests that measures a 

range of different cognitive domains23–25. We analyzed the uncorrected composite scores 

broadly measuring fluid and crystallized intelligence that are generated from the NIH Toolbox® 

and have been validated against gold-standard measures 26–28.  The fluid composite score 
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includes performance on the flanker task, picture sequence memory task, list sorting memory 

task, pattern comparison processing speed and dimensional change card sort task.  The 

crystallized composite score includes performance on the oral reading recognition task and 

picture vocabulary task. 

4.3.3 Genetic & Familial Measures 

4.3.3.1 Family History Assessment 

Caregivers were given a questionnaire asking about family history (FH) of 10 behaviors 

associated with psychopathology: alcohol use; drug use; depression; mania; psychosis; 

conduct problems; nerves; seen a therapist; hospitalized for a mental health problem; and, 

suicide.  For each question the caregivers were asked specifically if any blood relative had 

experienced any of the described behaviors (more detail in Supplementary Table 

4.4).  Importantly, these variables do not indicate clinical diagnoses associated with these 

behaviors. 

4.3.3.2 Polygenic Risk Scores (PRS) 

PRS were estimated from summary statistics for ADHD29, Autism Spectrum Disorder 

(ASD)30, Bipolar Disorder (BPD)31, Schizophrenia (SCZ)32 and Depression (DEP)33 from the 

Psychiatric Genetics Consortium (https://www.med.unc.edu/pgc/results-and-downloads). 

Additional details of preprocessing genetic data and PRS estimation are in supplementary 

materials. 
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4.3.4 Statistical Analysis 

Generalized Linear Models (GLMs) were fit to measure the association between i) each 

of the 41 behavioral phenotypes and ii) FH and PRS. Univariate models included one 

independent variable of interest (PRS or FH) in each model (i.e. behavior ~ PRSi + covariates or 

behavior ~ FHi + covariates). Multivariable models included all PRS and FH measures in the 

same model (i.e. behavior ~ PRS1 + PRS2 … + FH1 + FH2 … + covariates).  Each behavioral 

phenotype was modelled separately with the same set of predictors and covariates. Fixed 

nuisance covariates included age, sex, top 10 genetic principal components, household 

income, highest parental education and data collection site. ΔR2 was reported as change in R2  

from a reduced model (covariates only) to a full model (including the predictor of interest)34,35. 

Supplementary analyses were conducted without controlling for household income and 

parental education to understand the impact of socioeconomic status (SES).  Family 

relatedness was controlled for using a random subset of the sample that only included 

singletons. Significant associations were determined using a false discovery rate (FDR) and 

reported p-values are FDR adjusted (p-adj). See appendix for additional analysis details. 

Additional models were implemented to measure pairwise spearman correlations across all of 

the DVs and IVs in the European ancestry sample after residualizing for the covariates of no 

interest (Supplementary Figure 4.3 & Supplementary Figure 4.4).  Behavioral measures were 

categorized by behavioral domain (see Supplementary Table 4.3) in order to determine whether 

associations with each genetic predictor were enriched for measures within domains. 
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4.4 Results 

4.4.1 Unique behavioral associations with PRS across domains 

In the univariate models (measuring the association between each PRS and each 

behavioral variable in separate models), controlling for SES, the ADHD and DEP PRS showed 

the largest and greatest number of associations across internalizing, externalizing and 

psychosis-related measures (Figure 4.1, left panel).  The ADHD PRS significantly associated 

with CBCL rule-breaking (ΔR2=0.0071, p-adj=5.7x10-6), inattentive (ΔR2=0.0064, p-adj=4.6x10-8) 

and aggressive (ΔR2=0.0031, p-adj=5.2x10-4) behaviors, prodromal psychosis severity 

(ΔR2=0.0062, p-adj=2.4x10-5), and caregiver reported KSADS oppositional/conduct disorder 

(ΔR2=0.0042, p-adj=7.7x10-5) and ADHD (ΔR2=0.0030, p-adj=9.2x10-4) symptoms, followed 

multiple youth and caregiver reported measures of impulsivity, depression and suicidality 

symptoms, bipolar and psychosis related measures and developmental social problems. The 

DEP PRS showed largest significant associations with CBCL somatic complaints (ΔR2=0.0054, 

p-adj=1.9x10-6), KSADS symptoms of oppositional/conduct disorder (ΔR2=0.0039, p-

adj=1.6x10-4) and CBCL anxious/depressive (ΔR2=0.0031, p-adj=2.5x10-4), aggressive 

(ΔR2=0.0031, p-adj=5.1x10-4), and rule-breaking (ΔR2=0.0029, p-adj=4.8x10-6) 

behaviors.  These were followed by caregiver reported KSADS symptoms of suicidality 

(ΔR2=0.0027, p-adj=1.8x10-3), bipolar disorder (ΔR2=0.0027, p-adj=2.0x10-3) and anxiety 

(ΔR2=0.0020, p-adj=8.4x10-3) and youth reported KSADS depression symptoms (ΔR2=0.0027, 

p-adj=2.2x10-3), as well as other measures of negative urgency, developmental social 

problems, behavioral inhibition and bipolar and psychosis related behaviors.  Both the ADHD 

and DEP PRS were also associated with the CBCL Total Problems and KSADS Total 

Symptoms scores. 



 

 84 

The BPD and SCZ PRS were not significantly associated with any bipolar or psychosis-

related measures; however, they did significantly associate with CBCL rule-breaking with a 

smaller effect size compared to ADHD and DEP (BPD: ΔR2=0.0016, p-adj=4.3x10-2; SCZ: 

ΔR2=0.0022, p-adj=1.5x10-2).  In addition, the SCZ PRS negatively associated with the fluid 

composite score from the NIH Toolbox® (ΔR2=0.0027, p-adj=2.2x10-3).  The ASD PRS was 

associated with CBCL inattention (ΔR2=0.0022, p-adj=1.9x10-2), youth reported KSADS total 

symptoms scale (ΔR2=0.0028, p-adj=1.4x10-2) and the CBCL total symptoms scale 

(ΔR2=0.0014, p-adj=3.1x10-2). 

Multivariable models determined the specificity of these associations by covarying for 

all PRS and FH predictors simultaneously.  In these models, PRS associations were attenuated 

and showed greater specificity for the ADHD and DEP PRS (Figure 4.1, right panel).  The ADHD 

PRS predicted unique variance across externalizing and psychosis-related measures not 

predicted by other measures of genetic risk, whereas the DEP PRS predicted unique variance 

across a different set of internalizing and externalizing behaviors. Additionally, in the 

multivariable models, only the ADHD PRS was significantly associated with CBCL rule-

breaking.  The ASD PRS also no longer showed any significant associations.  The SCZ PRS 

association with the fluid composite score from the NIH Toolbox® remained significant when 

controlling for all other measures of genetic risk (ΔR2=0.0029, p-adj=7.7x10-3). 

When not controlling for SES, behavioral associations were slightly larger and the 

overall pattern of associations was similar (Supplementary Figure 4.5, Supplementary Figure 

4.6).  However, there were additional significant associations with cognitive measures for the 

ADHD and BPD PRS.  The SCZ association with the fluid composite score was the only 

association with cognitive performance that was robust to controlling for SES. 

We categorized each behavior into a domain based on the construct measured in order 

to highlight the different types of behavioral measures predicted by each PRS (Figure 4.2; 
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variables in each domain are highlighted in Supplementary Table 4.3).  Across both the 

univariate and multivariable models, the largest associations with the ADHD PRS were with 

externalizing and psychosis-related measures; whereas for the DEP PRS, associations 

encompassed a mix of internalizing and externalizing measures.  In the multivariable models, 

the specificity in the unique pattern of behaviors predicted by these PRS across domains was 

clarified due to the removal of any shared variance across the genetic predictors.   

4.4.2 Unique behavioral associations with FH across domains 

Behavioral associations with FH measures were larger than with PRS (Figure 4.3, left 

panel).  Given the large number of overlapping univariate associations, we will focus on the 

associations from the multivariable models.  When controlling for all other genetic predictors 

(PRS and FH) in the multivariable models, FH of conduct problems, depression and 

anxiety/stress showed the largest effects with some specificity across the behavioral measures 

(Figure 4.3, right panel).  FH of conduct problems significantly associated with the CBCL 

subscales particularly with rule-breaking (ΔR2=0.0081, p-adj=1.8x10-5), as well as KSADS 

symptoms related to both externalizing and internalizing disorders (ΔR2range=0.0023-0.0072), 

and mania (ΔR2=0.0057, p-adj=8.0x10-3).  FH of depression significantly associated with the 

total problems scales from the CBCL (R2=0.0046, p-adj=4.5x10-4) and KSADS (ΔR2=0.0043, p-

adj=5.8x10-4), as well as internalizing and externalizing measures across the KSADS and CBCL 

(ΔR2range=0.0018-0.0040).  This pattern was similar to DEP PRS, however, unlike the DEP 

PRS, FH of depression only associated with caregiver-reported measures in the multivariable 

models.  FH of anxiety/stress showed several associations across domains with the largest 

effects for caregiver-reported KSADS anxiety symptoms (ΔR2=0.0081, p-adj=5.8x10-7) and the 

CBCL anxious/depressive subscale (ΔR2=0.0071, p-adj=5.8x10-7). 
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FH of use of professional health services was most strongly associated with CBCL 

somatic complaints (ΔR2=0.0040, p-adj=5.6x10-4), thought problems (ΔR2=0.0028, p-

adj=7.0x10-3) and the total problem score (ΔR2=0.0036, p-adj=2.2x10-3), and also showed a 

positive association with the crystallized composite score (ΔR2=0.0027, p-adj=1.0x10-

2).  Interestingly, when controlling for all other measures of genetic risk, FH of drug and alcohol 

abuse associated with differential behaviors, with FH of drug abuse explaining unique variance 

in CBCL rule-breaking (ΔR2=0.0034, p-adj=1.2x10-2) and KSADS PTSD symptoms (ΔR2=0.0029, 

p-adj=7.6x10-3), and FH of alcohol abuse explaining unique variance in CBCL social problems 

(ΔR2=0.0020, p-adj=4.9x10-2) and anxious/depressive behaviors (ΔR2=0.0017, p-adj=3.4x10-2). 

FH of hospitalization showed several negative associations with caregiver-reported 

internalizing behaviors, which were positive in the univariate models.  This sign flip of effects 

may be due to collinearity across the genetic risk measures (Supplementary Figure 4.4) when 

used in a single model. 

Figure 4.4 displays the enrichment of FH associations by behavioral domain. For the 

univariate models, the FH measures associated with behaviors across several domains.  These 

patterns became more specific towards particular domains in the multivariable models.  For 

example, FH of depression or anxiety/stress were significantly associated with internalizing 

behaviors, whereas FH of conduct disorder was significantly associated with externalizing 

behaviors. 

Finally, we quantified the variance in each behavior predicted by the set of PRS and set 

of FH measures when controlling for the other set of genetic predictors.  Supplementary Table 

4.5 shows that, in all cases, each set independently predicted unique variance over and above 

the other set of genetic predictors.  The maximum variance explained by the FH and PRS 

measures combined was ΔR2=0.062 of CBCL Total Problems scale, of which ΔR2=0.053 was 

uniquely predicted by FH and ΔR2=0.0061 was uniquely predicted by PRS.  The maximum 
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unique variance explained collectively by PRS was ΔR2=0.0071 of the variability in 

oppositional/conduct disorder symptoms.  These results further demonstrate that PRS and FH 

predict unique, non-overlapping variance across different domains of behavior in youth with 

PRS predicting a smaller proportion of variability than FH. 

4.5 Discussion 

Polygenic risk and FH of psychopathology predict both overlapping and unique 

variability in behavior across domains in 9-11 year old youth.  Several externalizing and 

internalizing behaviors were associated with multiple measures of genetic risk highlighting 

shared genetic influences underlying variability in developmental psychopathology.  However, 

when controlling for shared variance across PRS and FH measures, polygenic risk for ADHD 

and depression predicted unique variance across differential externalizing, internalizing and 

psychosis-related behaviors with the strongest associations for ADHD and depression 

symptomatology.  Moreover, the SCZ PRS specifically and uniquely predicted variability in 

cognitive performance.  This highlights that these PRS are signaling differential behavior 

related to specific disorders.  FH of psychopathology explained additional unique variance in 

behavior, independent of the PRS, indicating additional genetic and environmental influences 

on behavior and recapitulating results in adults demonstrating the complementary information 

provided by PRS and FH36,37.  Using the combined information across these genetic and 

familial measures and the dense behavioral phenotyping in the ABCD study, we have identified 

several, specific patterns of behavior associated with genetic risk for psychopathology that 

may be useful for quantifying early risk across different disorders during development. 

Of the PRS analyzed, the ADHD and DEP PRS showed univariate associations across 

largely overlapping behavioral measures.  In particular, both PRS predicted variability in 

externalizing behaviors (e.g. rule-breaking, aggression and conduct problems), internalizing 
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behaviors (e.g. suicidality and youth reported depression), psychosis-related behaviors (e.g. 

prodromal psychosis, bipolar symptoms and thought problems), and inattentive and social 

problems.  Given the correlation between behavioral problems in youth, this supports evidence 

that these frequently comorbid behaviors across different domains have shared genetic 

influences5,38,39.  This indicates a common pathway that may contribute to the development of 

psychopathology.  Indeed, suicidality and depression are common across individuals with 

several different psychiatric disorders and there is evidence that externalizing behaviors in 

childhood may indicate risk for both externalizing and internalizing disorders in adulthood40,41. 

However, there was some specificity in the behaviors predicted by the ADHD and DEP 

PRS.  The ADHD PRS specifically associated with behavioral approach subscales, impulsivity, 

ADHD symptoms and mania; whereas the DEP PRS associated with somatic complaints, 

insomnia, anxiety symptoms, impulsivity specifically in response to negative affect and 

behavioral inhibition.  When controlling for other measures of genetic risk in the same model, 

the PRS-behavior associations became more specific.  These findings highlight potentially 

distinct pathways associated with the development of these unique profiles of behaviors. 

Our results replicated previous findings, with a similar magnitude of effects, showing 

that ADHD PRS significantly associated with hyperactive and inattentive traits in a 

developmental sample42–45.  Across the PRS, ADHD and ASD were moderately correlated, and 

when controlling for the other genetic predictors ASD no longer associated with behavioral 

problems on the CBCL highlighting the genetic overlap between these disorders in 

development46.  There may be additional factors that contributed to the lack of unique 

associations of ASD PRS to youth behaviors. Not attending mainstream school classes and an 

inability to carry out the ABCD protocol, which includes a two-hour MRI scan, was an 

exclusion criterion; therefore, many individuals with low functioning ASD would have been 

ineligible for the study.  This suggests that the prevalence of ASD symptoms in the ABCD 
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cohort is likely small and restricted to only part of the autism spectrum, which may have a 

larger overlap with ADHD.  Moreover, only 17% of the phenotypic variance in ASD is thought to 

be attributable to common genetic variants at current sample sizes47 and our PRS was not 

sensitive to important rare chromosome deletions in ASD48. 

Interestingly, in our sample, the ADHD PRS predicted many bipolar-related behaviors 

and psychotic-like symptoms.  Symptom profiles for pediatric BPD and ADHD are very similar 

and there is high comorbidity across these disorders49.  Other studies have shown that 

childhood ADHD is often a premorbidity for the later development of schizophrenia and 

relatives of individuals with schizophrenia have higher rates of ADHD than the general 

population50–52.  Given the low correlation between ADHD, SCZ and BPD PRS in this study, the 

ADHD PRS may highlight individuals at risk for developing psychosis-related disorders that 

may be etiologically distinct from those with high SCZ or BPD scores. 

Despite previous studies showing that the SCZ PRS associates with several markers of 

general psychopathology in adolescence8,43,53,54, we did not find any associations of SCZ or 

BPD PRS with psychopathology in our models.  This could be driven by differences in the 

statistical approach, the demographics of the samples or the phenotypes measured – which 

can impact the stability of results across adolescent samples55.  Nevertheless, as 

hypothesized, we did identify a significant negative association between the SCZ PRS and the 

fluid composite score from the NIH Toolbox®, which remained after controlling for 

sociodemographic factors and was unique to the SCZ PRS.  Cognitive impairment is a core 

feature of several psychiatric disorders, particularly those that include psychotic 

symptoms.  Neurodevelopmental studies have highlighted premorbid cognitive impairment 

across domains in patients with schizophrenia and bipolar disorder56,57.  Indeed, there is a large 

genetic overlap across schizophrenia, bipolar disorders and general intelligence9,10, which 

suggests there are shared etiological mechanisms that affect psychopathology and cognition. 
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Perturbations in the cognitive domain may indicate early risk for schizophrenia more readily 

than other behavioral manifestations. 

There were differences in associations across caregiver and youth reported behaviors, 

particularly with genetic risk for depression.  In the multivariable models, youth-reported 

depression symptom scores were more associated with the DEP PRS, whilst caregiver-

reported depression was associated with a FH of depression.  Informant discrepancies 

between caregiver and child-reported measures have been widely reported58 and we see 

relatively low correlations between youth and caregiver reported measures in the current 

study.  Negative biases from caregivers, particularly due to caregiver depression, can also 

impact behavioral reports16,59.  An awareness of a history of depression within the youth’s 

family may have biased the informant’s report about the youth’s depression, leading to a 

stronger relationship of FH of depression with caregiver compared to youth reported 

measures. Future time points are required to delineate which informant-reported measures are 

more accurate at predicting later diagnoses. 

FH of anxiety/stress and conduct problems showed the greatest number of 

associations across different behavioral domains, supporting a role for anxiety or sensitivity to 

stress and delinquent behavior as transdiagnostic traits.  However, in the multivariable models 

in particular, there were subtle differences in the pattern of FH-behavior associations across 

domains.   For example, FH of drug abuse explained unique variance in rule-breaking 

behaviors; whereas FH of alcohol abuse explained unique variance in social problems and 

anxious/depressive behaviors.  This highlights that the pattern of behaviors associated with a 

predictor when accounting for other measures of genetic risk is likely important for 

understanding predictive specificity across disorders.  Inherent to FH measures are implicit 

genetic and environmental influences that are difficult to separate.  It remains to be seen 

whether the additional variance in behavior explained by FH measures above and beyond PRS 
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reflects environmental or additional genetic influences.  Together FH and PRS measures 

predicted ~6% of the variability in the CBCL Total Problems score.  These analyses highlight 

the utility of measuring multiple markers of genetic risk. 

There are several limitations in the current study.  PRS association strength is limited by 

the phenotype’s heritability and the training sample used60,61.  DEP had the largest discovery 

sample (Supplementary Figure 4.2) and the lowest SNP heritability, yet displayed some of the 

largest associations in our sample.  This may be due to depression having relatively greater 

population prevalence compared to the other psychiatric disorders measured, therefore 

compared to other disorders, risk alleles may be well represented in our sample.  The 

correlations between the PRS generated in this study were much lower than the genetic 

correlations determined in the original GWAS, which may be because this cohort is not 

enriched for individuals with risk alleles.  Many psychiatric disorders have increased 

penetrance during adolescence, therefore the lack of variance in psychopathology symptoms 

at this age may explain the limited associations between behavior and the SCZ/BPD 

PRS.  Moreover, the GWAS used to produce the PRS in this study were all conducted on 

European samples.  The ABCD sample is demographically diverse, however PRS trained in 

different ancestry groups do not validly predict phenotypes in admixed or different ancestry 

samples.  This highlights the limited predictive capacity of European-only GWAS for admixed 

populations and emphasizes the need for conducting GWAS in different ancestry 

groups.  Finally, the magnitude of the genetic-behavior effects detected was very small; the 

development of psychopathology is extremely complex and genetic risk as estimated with 

polygenic predictors appears to only account for a small proportion of variability in behavior at 

this age. 

Here we have shown that different PRS and FH measures predicted unique patterns of 

symptoms of psychopathology, related individual difference factors and cognitive function in a 
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large sample of 9 to 11-year-old children.  The unique associations controlling for other genetic 

measures provides encouraging evidence that genetic data may be useful alongside FH in 

identifying specific risk for psychiatric disorders.  Longitudinal analyses will further elucidate 

the specificity of these associations and can track these coexisting patterns of behavior to 

determine the differential predictive utility for PRS and FH measures. 
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Table 4.1 Sociodemographic breakdown for the European ancestry sample analyzed in this 
study.  All main analyses were conducted with a European ancestry only sample. Compared to the full 
ABCD sample had higher proportions of individuals from households with higher income and a higher 
parental education level and self-identifying as White.   Age, sex, household income, parental education, 
data collection site and the top 10 genetic principal components were controlled for in the main 
analyses.  Supplementary analyses were conducted without controlling for SES and in the Full sample 
and Non-European ancestry sample. 

 
European Ancestry Sample  

Total N 5,204   
Age - months  119.18 (7.48) 

Sex 
 

   M 2744 (52.7) 
Parental Education 

 
   < HS Diploma 22 (0.4) 

   HS Diploma/GED 149 (2.9) 
   Some College 963 (18.5) 

   Bachelor 1650 (31.7) 
   Post Graduate Degree 2420 (46.5) 
Household Income 

 
   [<50K] 642 (12.3) 

   [>=50K & <100K] 1590 (30.6) 
   [>=100K] 2972 (57.1) 

Race Ethnicity 
 

   White 4934 (94.9) 
   Black 1 (0.0) 

   Hispanic 137 (2.6) 
   Asian 0 (0.0) 
   Other 126 (2.4) 
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Figure 4.1 Univariate (left) and multivariable (right) associations for each behavioral phenotype 
predicted by the PRS. Effect sizes for each association are displayed as the partial variance explained, 
R2, (as a percentage) multiplied by the sign of the beta estimate to indicate the magnitude and sign of 
the association (red=positive, blue=negative). Each row represents a model with the dependent variable 
along the y-axis and each PRS on the x-axis. In the univariate models (left) only a single genetic/familial 
predictor was included in each model (each cell = 1 model) – i.e.  behavior ~ PRS + covariates.  In the 
multivariable models (right) all genetic/familial predictors were included in each model including all PRS 
and FH measures (each row = 1 model) – i.e. behavior ~ PRS1 +PRS2 … +FH1 + FH2 … + covariates. 
Along the x-axis from left to right: the five PRS measured (Attention Deficit Hyperactivity Disorder 
(ADHD), Autism Spectrum Disorder (ASD), Bipolar Disorder (BPD), Depression (DEP), Schizophrenia 
(SCZ)).  All models controlled for covariates of age, sex, the top 10 Principal Components of the genetic 
data, household income, highest parental education and data collection site. Effects represent the 
median across 100 subsamples of singletons to control for family relatedness. Dots indicate FDR 
significant associations. 
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Figure 4.2 Enrichment of PRS associations across different behavioral domains. FDR adjusted p-
values (logged) for all of the associations shown in Figure 4.1 for both the univariate (A) and multivariable 
models (B).  Each association is colored based on the behavioral domain the dependent variable was 
categorized within (see Supplementary Table 4.3).  Associations are ordered with the most significant 
effect to the far left.  The horizontal line represents the FDR adjusted significance threshold (p=0.05). All 
models controlled for covariates of age, sex, the top 10 Principal Components of the genetic data, 
household income, highest parental education and data collection site. Effects represent the median 
across 100 subsamples of singletons to control for family relatedness.  
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Figure 4.3 Univariate (left) and multivariable (right) associations for each behavioral phenotype 
predicted by FH. Effect sizes for each association are displayed as the partial variance explained, R2, 
(as a percentage) multiplied by the sign of the beta estimate to indicate the magnitude and sign of the 
association (red=positive, blue=negative). Each row represents a model with the dependent variable 
along the y-axis and each FH measure on the x-axis. In the univariate models (left) only a single 
genetic/familial predictor was included in each model (each cell = 1 model) – i.e. behavior ~ FHi + 
covariates.  In the multivariable models (right) all genetic/familial predictors were included in each model 
including all PRS and FH measures (each row = 1 model) – i.e. behavior ~ PRS1 +PRS2 … +FH1 + FH2 … 
+ covariates. All models controlled for covariates of age, sex, the top 10 Principal Components of the 
genetic data, household income, highest parental education and data collection site. Effects represent 
the median across 100 subsamples of singletons to control for family relatedness. Dots indicate FDR 
significant associations. 
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Figure 4.4 Enrichment of FH associations across different behavioral domains. FDR adjusted p-
values (logged) for all of the associations shown in Figure 4.3 for both the univariate (A) and multivariable 
models (B).  Each association is colored based on the behavioral domain the dependent variable was 
categorized within (see Supplementary Table 4.3).  Associations are ordered with the most significant 
effect to the far left.  The horizontal line represents the FDR adjusted significance threshold (p=0.05). All 
models controlled for covariates of age, sex, the top 10 Principal Components of the genetic data, 
household income, highest parental education and data collection site. Effects represent the median 
across 100 subsamples of singletons to control for family relatedness.  
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Appendix 

Genetic Data Preprocessing 

At the baseline visit blood or saliva samples of participants were collected and sent to 

Rutgers University Cell and DNA Repository for DNA isolation and storage. Genotyping was 

performed on 646,247 genetic variants using the smokescreen array1. 1,221 individuals and 

128,523 markers were removed due to missing genetics or failing to meet QC of greater than 

5% minor allele frequency and less than 20% of the sample missing for each marker. We 

derived genetic ancestry factors (GAFs) using fastStructure with four ancestry factors2 and 

genetic relatedness was computed using PLINK3. Imputation was performed using the 

Michigan Imputation Server4 with hrc.r1.1.2016 reference panel, Eagle v2.3 phasing and 

multiethnic imputation process. Best guess conversion at a threshold of 0.9 was used to 

convert dosage files to plink files using PLINK3. Post imputation QC criteria was a Hardy-

Weinberg threshold of 10-6. This QC filtering was performed using PLINK3 and resulted in 

38,900,342 remaining markers and 10,659 individuals.  

PRS estimation (additional details) 

Due to linkage disequilibrium nearby SNPs are often correlated with one another, as 

such these are removed before polygenic scoring, this process is known as clumping and 

pruning. After genetic imputation and post imputation QC, we performed clumping of SNPs 

using PRSice5 with a clumping r2 of 0.1 , clumping window of 250 kb. We did not use a p-value 

threshold for calculating the polygenic scores, except for DEP which only included the top 10k 

SNPs due to legal stipulations of the 23andMe sample – this induced an effective threshold of 

~0.003. Additionally, variants part of the major histone compatibility (MHC) region 
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(chromosome 6 28MB-34MB) were removed from the analysis due to its highly variable LD 

structure6. However, we retained the C4 locus (situated in the MHC region) due to its strong 

association with schizophrenia7,8. Indels and multi-allelic SNPs were excluded. The PRS for 

each participant was calculated as the dot product of the allele value at each loci multiplied by 

its effect size. Due to some polygenic scores having skewed distributions we decided to rank 

normalize9 each score to ensure they followed a normality. 

Statistical Analysis (additional details) 

Due to convergence issues when using mixed effects models with a random effect of 

family, we controlled for family relatedness using a random subset of the sample that only 

included singletons.  To ensure the stability of our findings we ran all models in 100 random 

subsamples of singletons and took the median of effect sizes across all iterations.  We 

calculated effect sizes as 𝑅" type III sum of squares using Nagelkerke’s correction to Cox and 

Snell’s formulation10,11. P-values were calculated using a log likelihood ratio test and significant 

associations determined using a false discovery rate (FDR) significance threshold calculated 

using the Benjamini-Hochberg method12. This correction was made within each ancestry group 

and model type (univariate or multivariate) – i.e. correcting for 15 genetic/familial predictors and 

41 behavioral assessments = 615 multiple tests. GLMs were implemented using the R stats 

package.  Model output for all averaged models is downloadable as csv files (see Statistical 

Data Tables). 

The distribution of each of the DVs fell into three categories a) normal, b) right skewed, 

zero inflated or c) binary, and we appropriately modelled each of these distributions differently. 

A) For normal distributions we further ensured normality by rank normalizing9 (as was 

performed for PRS), and fit GLMs using the default gaussian family. B) For the right skewed, 
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zero inflated distributions we fit using a gamma distribution with a log link function, first 

ensuring that each distribution was non-negative to ensure correct bounds for the link function. 

C) For binary variables we performed logistic regression.  KSADS symptom scores (except for 

the youth and caregiver reported total symptom score) were binarized using a median split, as 

they exhibited convergence issues when treated as continuous. 

Associations across ancestry strata 

As PRS were trained on European individuals and ABCD has high ancestral admixture, 

the main analyses were performed in a European only sample (European Genetic Ancestry 

Factor (EUR-GAF)>0.9) and supplementary analyses were conducted in the full sample and a 

non-European sample (EUR-GAF<0.9) to check for consistency across ancestral groups.  Allele 

frequency differences across ancestral groups can lead to spurious results when PRS trained 

on a single ancestral group are applied to samples of different or mixed genetic ancestry. 

Supplementary Figure 4.1 shows the same univariate and multivariable PRS and FH 

associations in the full sample (n=9,168 with complete genetic data) and a non-European 

sample (n=3,964).  There was a similar pattern of associations for the full sample compared to 

the Europeans, but with far fewer significant associations for the non-European sample, 

despite very similar prevalence rates across KSADS diagnoses for the three samples 

(Supplementary Table 4.1 and 4.2). Supplementary Figure 4.7 shows broadly consistent 

analogous associations between European and non-European groups; however, there was 

moderate dispersion observed between estimated effect sizes between groups. These effects 

are difficult to interpret as the discovery sample only included European individuals. These 

inconsistencies once again demonstrate the issues of portability of GWAS between ancestry 

groups13–15. 
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Supplementary Table 4.1 Prevalence rates of diagnoses based on the KSADS diagnostic interview 
with the caregiver.  Diagnoses are reported based on the specified ICD codes.  An ‘X’ indicates that 
the ICD codes includes all subtypes.  Percentage of participants who reached clinical threshold for the 
described diagnoses are reported for both the full sample (n=9168), the European only sample (n=5204) 
and the non-European sample (n=3964).
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Supplementary Table 4.2 Prevalence rates of diagnoses based on the KSADS diagnostic interview 
with the youth.  Diagnoses are reported based on the specified ICD codes.  An ‘X’ indicates that the ICD 
codes includes all subtypes.  Percentage of participants who reached clinical threshold for the described 
diagnoses are reported for both the full sample (n=9168), the European only sample (n=5204) and the non-
European sample (n=3964) 
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Supplementary Table 4.3 . DEAP variable names for all behavioral variables analyzed in this study. The 
KSADS symptom scores were calculated by summing all of the symptom items in each KSADS module 
indicated in the table. Symptom items were all binary (1 or 0). Both past and present symptoms were 
included in the summary scores, therefore summary scores represent a lifetime assessment of 
symptoms associated with a particular disorder.  Symptom summary scores were calculated by 
summing the symptoms within each module (the exception was for ODD and CD which were summed 
together).  All KSADS symptom scores were then coded as binary using a median split for statistical 
modelling. Behavioral domain represents broad categories of construct similarity used for data 
visualization. R code to extract and process the variables used for this analysis will be published on the 
ABCD study GitHub: https://github.com/ABCD-STUDY/ 

Questionnaire Variables Analyzed DEAP Variable Names Informant Domain 

Child 
Behavior 
Checklist 
(CBCL) 
  
  

CBCL Aggressive 
CBCL 
Anxious/Depressive 
CBCL Rule-breaking 
CBCL Inattention 
CBCL Social Problems 
CBCL Thought 
Problems 
CBCL Somatic 
Complaints 
CBCL 
Withdrawn/Depressive 
CBCL Total Problems 

cbcl_scr_syn_aggressive_r 
cbcl_scr_syn_anxdep_r 
cbcl_scr_syn_rulebreak_r 
cbcl_scr_syn_attention_r 
cbcl_scr_syn_social_r 
cbcl_scr_syn_thought_r 
cbcl_scr_syn_somatic_r 
cbcl_scr_syn_withdep_r 
cbcl_scr_syn_totprob_r (sum of 
all sub-scales) 

Caregiver Externalizing 
Internalizing 
Externalizing 
Externalizing 
Developmental 
Psychosis-related 
Internalizing 
Internalizing 
NA 

General 
Behavior 
Inventory 

General Behavior 
Inventory - Mania 

pgbi_ss_score_p Caregiver Psychosis-related 

Prosocial 
Behavior 
Survey (youth) 

Prosociality prosocial_ss_mean Youth Prosociality 

Prodromal 
Questionnaire 
Brief Version 
(PQ-B) 

Prodromal Pyschosis 
Severity Score 

prodrom_psych_ss_severity_scor
e 

Youth Psychosis-related 

UPPS-P for 
Children 
Short Scale 

UPPS Lack of 
Perseverance 
UPPS Lack of 
Planning 
UPPS Positive 
Urgency 
UPPS Negative 
Urgency 
UPPS Sensation 
Seeking 

upps_ss_lack_of_perseverance 
upps_ss_lack_of_planning 
upps_ss_positive_urgency 
upps_ss_negative_urgency 
upps_ss_sensation_seeking 

Youth Externalizing 
Externalizing 
Externalizing 
Externalizing 
Externalizing 
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Behavioral 
inhibition and 
behavioral 
activation 
(BISBAS) 
scale 

BISBAS Drive 
BISBAS Fun Seeking 
BISBAS Reward 
Responsiveness 
BISBAS Inhibition 

bisbas_ss_bas_drive 
bisbas_ss_bas_fs 
bisbas_ss_bas_rr 
bisbas_ss_bis_sum 

Youth Externalizing 
Externalizing 
Externalizing 
Internalizing 

Kiddie 
Schedule for 
Affective 
Disorders and 
Schizophrenia 
(KSADS) 
categorical 
diagnostic 
assessments 

KSADS Symptoms 
Depression 
KSADS Symptoms 
Bipolar 
KSADS Symptoms 
Anxiety 
KSADS Symptoms 
OCD 
KSADS Symptoms 
Eating Disorder 
KSADS Symptoms 
ADHD 
KSADS Symptoms 
Oppositional/Conduct 
KSADS Symptoms 
Developmental 
Disorders 
KSADS Symptoms 
PTSD 
KSADS Symptoms 
Insomnia 
KSADS Symptoms 
Suicidality 
KSADS Total 
Symptoms 

Modules 1 (depressive disorder) 
& 3 (disruptive mood 
dysregulation) 
Module 2 (all bipolar subtypes) 
Module 8 (social anxiety) & 10 
(general anxiety) 
Module 11 (OCD) 
Module 13 (eating disorders) 
Module 14 (ADHD) 
Module 15 (oppositional defiant) 
& 16 (conduct disorder) 
Module 18 (other developmental 
disorder NOT autism) 
Module 21 (PTSD) 
Module 22 (sleep problems) 
Module 23 (suicidality) 
Summary score across all 
modules 

Caregiver & 
Youth 
Caregiver & 
Youth 
Caregiver & 
Youth 
Caregiver 
Caregiver 
Caregiver 
Caregiver 
Caregiver 
Caregiver 
Caregiver & 
Youth 
Caregiver & 
Youth 
Caregiver & 
Youth 

Internalizing 
Psychosis-related 
Internalizing 
Internalizing 
Internalizing 
Externalizing 
Externalizing 
Developmental 
Internalizing 
Sleep 
Internalizing 
NA 

NIH 
Toolbox® 

NIH Toolbox® Fluid 
Composite Score 
NIH Toolbox® 
Crystallized 
Composite Score 

nihtbx_cryst_uncorrected 
nihtbx_fluidcomp_uncorrected 

Youth 
Youth 

Cognition 
Cognition 
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Supplementary Table 4.4 Description of the family history variables used and the questions asked. If the 
participant had ANY blood relative who endorsed the described behavior the “DEAP variable name Lead 
Q” was endorsed with a 1 (if not = 0). 

Behavior DEAP 
Variable 
Name 
Lead Q 

Lead Question 

Alcohol 
use 

famhx_4_
p 
 
 

Has ANY blood relative of your child ever had any problems due to alcohol, 
such as: Marital separation or divorce; Laid off or fired from work; Arrests or 
DUIs; Alcohol harmed their health; In an alcohol treatment program; 
Suspended or expelled from school 2 or more times; Isolated self from 
family, caused arguments or were drunk a lot. 

Drug use fam_histo
ry_5_yes_
no 
 

Has ANY blood relative of your child ever had any problems due to drugs, 
such as: Marital separation or divorce; Laid off or fired from work; Arrests or 
DUIs; Drugs harmed their health; In a drug treatment program; Suspended 
or expelled from school 2 or more times; Isolated self from family, caused 
arguments or were high a lot. 

Depression fam_histo
ry_6_yes_
no 
 

Has ANY blood relative of your child ever suffered from depression, that is, 
have they felt so low for a period of at least two weeks that they hardly ate 
or slept or couldn't work or do whatever they usually do? 

Mania famhx_7_
yes_no 
 

Has ANY blood relative of your child ever had a period of time when others 
were concerned because they suddenly became more active day and night 
and seemed not to need any sleep and talked much more than usual for 
them? 

Psychosis 
(visions) 

famhx_8_
yes_no 
 

Has ANY blood relative of your child ever had a period lasting six months 
when they saw visions or heard voices or thought people were spying on 
them or plotting against them? 

Conduct 
problems 
(trouble) 

famhx_9_
yes_no 
 

Has ANY blood relative of your child been the kind of person who never 
holds a job for long, or gets into fights, or gets into trouble with the police 
from time to time, or had any trouble with the law as a child or an adult? 

Nerves famhx_10
_yes_no 
 

Has ANY blood relative of your child ever had any other problems with their 
nerves, or had a nervous breakdown? 

Seen a 
therapist 
(profession
al) 

famhx_11
_yes_no 

Has ANY blood relative of your child ever been to a doctor or a counselor 
about any emotional or mental problems, or problems with alcohol or 
drugs? 

Hospitalize
d 

famhx_12
_yes_no 

Has ANY blood relative of your child ever been hospitalized because of 
emotional or mental problems, or drug or alcohol problems? 

Suicide famhx_13
_yes_no 

Has ANY blood relative of your child ever attempted or committed suicide? 
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Supplementary Table 4.5 Unique and shared variance across behaviors predicted by PRS and FH.  
Change in R2% is calculated by comparing the R2 from a reduced model with covariates of no interest 
and genetic predictors of no interest, and a full model including the nested reduced model plus the 
genetic predictors of interest.  The 𝛘𝟐	statistic and p-value from the likelihood ratio test comparing these 
models is also displayed. The parenthesis in the DV column indicate youth (Y) or caregiver (C) report 

 PRS Effect (beyond FH + 
covariates) 

FH Effect (beyond PRS + 
covariates) 

PRS + FH Effect (beyond 
covariates) 

DV 𝚫𝑹𝟐 𝛘𝟐 𝐩(𝛘𝟐) 𝚫𝑹𝟐 𝛘𝟐 𝐩(𝛘𝟐) 𝚫𝑹𝟐 𝛘𝟐 𝐩(𝛘𝟐) 

BISBAS Drive (Y) 0.14% 4.92 1.08E-01 0.20% 7.21 2.11E-01 0.35% 12.37 9.07E-02 

BISBAS Fun 
Seeking (Y) 

0.16% 7.64 2.22E-01 0.26% 12.25 3.42E-01 0.43% 20.63 2.20E-01 

BISBAS Reward 
Responsiveness (Y)  

0.37% 33.05 6.39E-03 0.12% 10.33 8.88E-01 0.49% 43.81 1.24E-01 

BISBAS Inhibition 
(Y) 

0.25% 10.37 5.57E-02 0.41% 17.08 5.87E-02 0.66% 28.04 1.52E-02 

UPPS Lack of 
Perseverance (Y) 

0.17% 6.07 3.05E-02 0.34% 12.18 5.86E-03 0.54% 19.33 5.85E-04 

UPPS Lack of 
Planning (Y) 

0.35% 13.74 9.14E-03 0.30% 11.78 2.17E-01 0.68% 26.66 1.31E-02 

UPPS Positive 
Urgency (Y) 

0.10% 4.31 1.61E-01 0.33% 14.73 2.55E-03 0.46% 20.35 1.11E-03 

UPPS Negative 
Urgency (Y) 

0.30% 11.98 2.35E-02 0.27% 10.91 2.96E-01 0.60% 24.25 3.50E-02 

UPPS Sensation 
Seeking (Y) 

0.24% 10.92 6.17E-02 0.26% 11.79 3.30E-01 0.49% 22.31 1.22E-01 

CBCL Total 
Problems (C) 

0.61% 21.00 6.50E-05 5.27% 190.82 1.86E-46 6.17% 225.69 2.73E-52 

CBCL Aggressive 
(C) 

0.32% 22.45 1.12E-02 2.34% 169.31 2.51E-19 2.81% 204.09 2.72E-21 

CBCL 
Anxious/Depressiv

e (C) 
0.18% 11.42 9.41E-02 3.12% 197.88 8.37E-30 3.43% 218.15 2.96E-30 

CBCL Rule 
Breaking (C) 

0.69% 47.10 3.10E-04 2.66% 185.05 3.21E-15 3.73% 261.84 3.43E-20 

CBCL Inattention 
(C) 

0.65% 44.36 2.05E-06 2.03% 140.32 1.02E-18 2.85% 198.87 4.03E-25 

CBCL Social 
Problems (C) 

0.26% 18.12 9.82E-02 2.62% 189.85 1.90E-16 3.04% 220.84 3.97E-17 
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CBCL Thought 
Problems (C) 

0.26% 15.50 3.54E-02 3.06% 188.48 3.28E-26 3.43% 212.51 3.99E-27 

CBCL Somatic 
Complaints (C) 

0.42% 26.50 1.25E-03 2.65% 171.39 6.51E-23 3.17% 205.64 2.30E-25 

CBCL 
Withdrawn/Depres

sive (C) 
0.23% 16.31 1.84E-01 2.31% 168.37 1.43E-12 2.59% 189.32 3.09E-12 

Psychosis Severity 
Score (Y) 

0.59% 61.65 1.25E-03 1.00% 104.03 2.04E-04 1.72% 180.49 4.47E-07 

Mania (C) 0.23% 18.83 4.06E-01 2.99% 250.72 1.24E-10 3.41% 286.29 2.19E-10 

Prosociality (Y) 0.20% 6.24 1.33E-01 0.20% 6.42 5.60E-01 0.42% 13.10 2.75E-01 

KSADS Symptoms 
Depression (C) 

0.09% 4.11 5.33E-01 1.99% 88.73 9.55E-15 2.15% 95.81 8.07E-14 

KSADS Symptoms 
Bipolar (C) 

0.36% 16.14 6.47E-03 1.39% 61.88 1.60E-09 1.86% 82.91 2.05E-11 

KSADS Symptoms 
Anxiety (C) 

0.30% 13.43 1.97E-02 2.35% 105.28 4.76E-18 2.64% 118.11 4.39E-18 

KSADS Symptoms 
OCD (C) 

0.06% 2.43 7.87E-01 1.47% 65.43 3.35E-10 1.52% 67.70 1.14E-08 

KSADS Symptoms 
Eating Disorder (C) 

0.04% 1.87 8.66E-01 0.42% 18.51 4.69E-02 0.46% 20.33 1.60E-01 

KSADS Symptoms 
ADHD (C) 

0.28% 12.26 3.14E-02 1.92% 85.45 4.26E-14 2.29% 102.48 4.42E-15 

KSADS Symptoms 
Oppositional 
Conduct (C) 

0.71% 31.27 8.28E-06 1.92% 85.52 4.13E-14 2.80% 125.43 1.66E-19 

KSADS Symptoms 
Developmental 
Disorders (C) 

0.12% 5.30 3.81E-01 1.55% 68.84 7.43E-11 1.67% 74.51 6.93E-10 

KSADS Symptoms 
PTSD (C) 

0.09% 4.00 5.50E-01 2.09% 93.50 1.08E-15 2.27% 101.22 7.65E-15 

KSADS Symptoms 
Insomnia (C) 

0.15% 6.83 2.34E-01 0.69% 30.75 6.46E-04 0.87% 38.57 7.43E-04 

KSADSS 
Symptoms 

Suicidality (C) 
0.35% 15.39 8.82E-03 0.98% 43.54 3.98E-06 1.41% 62.75 8.45E-08 

KSADS Total 
Symptoms (C) 

0.41% 27.68 2.67E-03 5.22% 365.99 4.06E-46 5.80% 408.99 1.23E-48 
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KSADS Symptoms 
Depression (Y) 

0.40% 17.66 3.41E-03 0.30% 13.47 1.99E-01 0.77% 34.24 3.15E-03 

KSADS Symptoms 
Biploar (Y) 

0.27% 11.73 3.87E-02 0.48% 21.31 1.91E-02 0.79% 34.87 2.57E-03 

KSADS Symptoms 
Anxiety (Y) 

0.02% 0.71 9.82E-01 0.20% 8.70 5.61E-01 0.21% 9.18 8.68E-01 

KSADS Symptoms 
Insomnia (Y) 

0.12% 5.37 3.73E-01 0.14% 6.37 7.83E-01 0.27% 11.92 6.85E-01 

KSADS Symptoms 
Suicidality (Y) 

0.24% 10.48 6.27E-02 0.38% 16.83 7.83E-02 0.67% 29.71 1.30E-02 

KSADS Total 
Symptoms (Y) 

0.55% 59.87 9.73E-03 0.78% 84.84 1.80E-02 1.51% 166.08 2.22E-04 

NIHTBX Fluid 
Composite Score 

(Y) 
0.48% 18.47 7.79E-04 0.33% 12.64 1.54E-01 0.80% 30.71 2.40E-03 

NIHTBX Crystalized 
Composite Score 

(Y) 
0.43% 15.14 2.03E-03 0.66% 23.14 1.32E-03 1.11% 39.32 1.74E-05 
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Supplementary Figure 4.2 Plot of SNP heritability (h2snp) and log(sample size) for each discovery GWAS 
sample, as reported in discovery papers, used to calculate PRS. 
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Supplementary Figure 4.3 Pairwise spearman correlations between all of the behavioral phenotypes in 
the European sample pre-residualized for covariates of no interest including socioeconomic status 
(SES). Caregiver reported measures were more strongly associated with each other than youth reported 
measures. 
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Supplementary Figure 4.4 Pairwise spearman correlations between all of the genetic risk measures in the 
European sample pre-residualized for covariates of no interest including SES. FH measures were more 
strongly associated with each other than the PRS.  The FH measures were moderately correlated with 
one another.  There were limited associations between FH and PRS. 
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Supplementary Figure 4.5 Behavioral associations in the European sample without controlling for 
SES.  Univariate (left) and multivariable (right) associations between the genetic predictors (PRS and 
Family History) and the behavioral phenotypes, controlling for covariates of no interest, but not 
controlling for SES.  The main differences across the associations with and without controlling for SES 
were found with the cognitive performance measures.  Many associations between genetic risk for 
psychopathology and cognitive function only reached threshold for statistical significance when SES 
was not taken into account due to the shared variance between sociodemographic factors and 
cognition.  
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Supplementary Figure 4.6 . -log(P-values) for all multivariable associations after controlling for SES (Y-
axis) and before controlling for SES (X-axis) in the European sample. The pattern of associations was 
very similar with and without controlling for SES, however controlling for SES attenuated many of the 
associations 
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Supplementary Figure 4.7 Behavioral associations across ancestry strata.  Univariate and 
multivariable associations between the genetic predictors (PRS and Family History) and the behavioral 
phenotypes for the full ABCD sample and the non-European ancestry sample, controlling for covariates 
of no interest including SES.  Models that did not converge after 10,000 iterations were left blank. 
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Supplementary Figure 4.8 Signed Effect Sizes for all multivariable PRS associations for the European 
sample (X-axis) and non-European sample (Y-axis) , controlling for covariates of no interest and SES. 
The estimated associations were broadly consistent between European and non-European groups, 
however, there was moderate dispersion observed between estimated effect sizes, which highlights 
difficulties in using PRS generated in certain ancestry groups to other ancestry groups. 
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Statistical Data Tables 

For completeness and transparency of reporting, we have generated additional data tables 

as .csv files with the results from all statistical models. Each table includes the beta estimate, t 

statistic, signed percentage variance explained (R2) and p-value for each predictor in each 

model.  These results are the averaged statistics across 100 samples of singletons as outlined 

in the Supplementary Methods.  The following data tables are included: 

 

● EUR Ancestry Results 

● Non EUR Ancestry Results 

● Full Sample Results 

 

Each file contains a separate sheet for: 

1 Univariate SES covaried  

2 Multivariable SES covaried multivariable 

3 Univariate (not controlling for SES) 

4 Multivariable (not controlling for SES) 
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Chapter 5:  Generalization of Cortical 

MOSTest Genome-Wide Associations 

Within and Across Samples 

5.1 Abstract: 

Genome-Wide Association studies have typically been limited to single phenotypes, 

given that high dimensional phenotypes incur a large multiple comparisons burden: ~1 million 

tests across the genome times the number of phenotypes. Recent work demonstrates that a 

Multivariate Omnibus Statistic Test (MOSTest) is well powered to discover genomic effects 

distributed across multiple phenotypes. Applied to cortical brain MRI morphology measures, 

MOSTest has resulted in a drastic improvement in power to discover loci when compared to 

established approaches (min-P). One question that arises is how well these discovered loci 

replicate in independent data. Here we perform 10 times cross validation within 35,644 

individuals from UK Biobank for imaging measures of cortical area, thickness and sulcal depth 

(>1,000 dimensionality for each). By deploying a replication method that aggregates 

discovered effects distributed across multiple phenotypes, termed PolyVertex Score (PVS), we 

demonstrate a higher replication yield and comparable replication rate of discovered loci for 

MOSTest (# replicated loci: 348-845, replication rate: 94-95%) in independent data when 

compared with the established min-P approach (# replicated loci: 31-68, replication rate: 65-

80%). An out-of-sample replication of discovered loci was conducted with a sample of 8,336 

individuals from the Adolescent Brain Cognitive Developmentâ (ABCD) study, who are on 
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average 50 years younger than UK Biobank individuals. We observe a higher replication yield 

and comparable replication rate of MOSTest compared to min-P. This finding underscores the 

importance of using well-powered multivariate techniques for both discovery and replication of 

high dimensional phenotypes in Genome-Wide Association studies. 

5.2 Introduction 

 Performing Genome Wide Association Studies (GWAS) on high dimensional phenotypes 

incurs a large multiple comparisons burden (number of independent genetic tests by number of 

phenotypes) using traditional approaches, which can result in low power to detect 

associations. Vertex-wise measures of cortical morphology (area, thickness and sulcal depth) 

represent high dimensional phenotypes (>1000 dimensions) and, from twin studies, are known 

to have high heritabilities of up to 90% and 50% for total and regional area respectively, and 

80% and 60% for mean and regional thickness respectively1,2. Our group has previously 

developed a novel Multivariate Omnibus Test (MOSTest) 3–5, which aggregates the effect of a 

genomic variant across the cortex. This method significantly boosts discovery of genetic loci 

linked to cortical morphology, with an up to 10x increase in number of loci discovered – when 

compared to an established approach (min-P) deployed for the same phenotypes5.  

Additionally, discovered loci show strong enrichment with pathways involved in neurogenesis 

and cell differentiation. Two main benefits of MOSTest over established techniques, like min-P, 

are: 1) its ability to aggregate pleiotropic effects into a single statistical test and 2) it drastically 

reduces the multiple comparison burden across the dimensionality of phenotypes, while still 

accounting for genome-wide multiple comparisons correction. Given such a dramatic increase 

in discovery of genomic loci, it is of interest to understand how well these discoveries replicate 

in independent data. 
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 Here we perform 10-times cross validation with brain imaging data taken from the UK 

Biobank, and randomly split the sample into ⅔ training and ⅓ replication splits. For the training 

samples we perform discovery of vertex-wise measures of area, thickness and sulcal depth as 

in 4. Having discovered genomic loci in training folds, we perform replication of these loci in the 

test sets. To perform replication for each SNP we calculate a PolyVertex Score (PVS) (similar to 

6,7) from imaging data in the test set for each MOSTest discovered locus. This PVS aggregates 

the distributed effects across the cortex by taking a weighted sum across all vertices using 

mass univariate z statistics as weights from the training set. This approach is similar to the 

widely used method of Polygenic Risk Scores (PRS) in genetics8, where instead of predicting a 

phenotype we are predicting a single genomic variant and instead of using distributed effects 

across the genome as predictors we use the distributed effects across the cortex, estimated in 

the training set. For each discovered training set we generate a PVS for each individual, which 

represents a continuous prediction of the genotype in the test set. We then correlate each PVS 

with its corresponding measured genomic variant in the test set to test how well these 

discovered loci replicate (one tailed t test, p<0.05). We test this MOSTest discovery and PVS 

replication, against an established GWAS approach (min-P)9. Figure 5.1 displays a schematic 

of how replication of how min-P and MOSTest differs for a single discovered variant. We 

confirm a higher replication yield and comparable replication rate MOSTest versus min-P. 

Finally, we test the generalization of loci discovered in UK Biobank to a developmental cohort 

of 9-11 year old children from the Adolescent Brain Cognitive Developmentâ (ABCD; 

https://abcdstudy.org) Study, where we see a higher yield of replicated loci for MOSTest 

versus min-P. 
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5.3 Results 

 

Figure 5.1. Schematic of replication process for a single SNP. Variant rs8025239 is discovered in training 
fold and has mass univariate map of association statistics with cortical area. Min-P replication (indicated 
by orange box and arrow) takes most significant vertex and associates that vertex with variant 
rs8025239 in test data. MOSTest replication (indicated by blue box and arrow) computes a PolyVertex 
Score (PVS) in test data which aggregates all effects across the cortex by taking a weighted sum (using 
association statistics from training set) across all vertices – the PVS is then correlated with the variant 
rs8025239. This process is repeated for all discovered variants in training set with a separate PVS being 
generated for each MOSTest discovery.  Replication of a variant is defined as p<0.05 in one tailed t-test. 

Across training folds, the UK Biobank sample, we confirm that MOSTest confers up to a 

10-fold increase in discovered loci over min-P (area: min-Pyield=52, MOSTestyield=433, thickness: 

min-Pyield=42, MOSTestyield=367 and sulcal depth min-Pyield=85, MOSTestyield=890). When 

replication of loci is defined at the nominal level (p<0.05, see methods) we see a higher number 

of replicated loci, as well as comparable replication rate for MOSTest (area:94%, thickness: 

95%, sulcal depth: 95%) vs min-P (area:65%, thickness: 73%, sulcal depth: 80%) – see Figure 

5.2. Averaged across cross-validation folds, we found that the lead SNP of the top locus 
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accounted for more variance in the replication set with MOSTest (𝑅"= area:0.037 σ=3.8x10-3, 

thickness: 0.059 σ=1.4x10-2, sulcal depth: 0.052 σ=4.0x10-3) compared to min-P (𝑅"= area: 

0.011 σ=1.2x10-3, thickness: 0.011 σ=2.2x10-3, sulcal depth: 0.015 σ=1.6x10-3). If replication is 

defined more conservatively with significance corrected for the number of discovered loci 

(p<0.05/# of discovered loci), we again find that MOSTest confers a comparable replication 

rate (area: 69%, thickness: 70%, sulcal depth: 68%) to min-P (area: 41%, thickness: 55%, 

sulcal depth: 50%).  

 

Figure 5.2 Cross-validation discovery and replication yield within 10-times cross validation within UK 
Biobank for cortical morphometry measures. Solid bars represent the number of genome wide 
significant loci associated with each measure. Hashed bars represent the number of loci that replicate in 
test folds at a nominal significance level (p<0.05). Error bars are standard deviations across 10 cross-
validation repetitions. Numbers in parentheses represent replication rate (# of discovered loci / # 
replicated loci) for each method-phenotype pair. 

Next, we tested the generalization performance of loci discovered in each training fold 

of UK Biobank to a developmental cohort of adolescents from the Adolescent Brain Cognitive 

Development study. Here we once again see a higher absolute number of replicated loci 

(nominal p<0.05 level), as well as a comparable replication rate for MOSTest (area: 74%, 

thickness: 69%, sulcal depth: 72%) to min-P (area: 51%, thickness: 48%, sulcal depth: 57%) - 
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see Figure 5.3. Again, the variance explained by the lead SNP of the top locus (averaged 

across cross-validation folds) accounted for more variance for MOSTest (𝑅"= area: 1.6x10-2  

σ=9.0x10-4, thickness: 2.9x10-2  σ=8.4x10-3, sulcal depth: 2.1x10-2  σ=1.5x10-3) than for min-P 

(𝑅"= area: 7.1x10-3 𝜎=1.0x10-4, thickness: 4.8x10-3  σ=1.1x10-3, sulcal depth: 9.1x10-3  

σ=5.0x10-4). 

 

Figure 5.3 Replication yield within the ABCD dataset across 10 training folds of UK Biobank for cortical 
morphometry measures. Bars represent the number of loci that replicate in ABCD at a nominal 
significance level (p<0.05). Error bars are standard deviations across 10 training sets of UK Biobank. 
Numbers in parentheses represent replication rate (# of discovered loci / # replicated loci). ABCD: 
Adolescent Brain Cognitive Development Study. 

5.4 Discussion 

Here we have confirmed the increased power of using a MOSTest across training folds 

of UK Biobank. Further, through the deployment of PVS we show that loci discovered with 

MOSTest result in a higher replication yield and comparable replication rate to independent 

data than established approaches. The comparable replication rate for MOSTest loci (94-95% 

vs 65-80% for min-P) indicates that the difference in absolute number of replicated loci for 
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MOSTest vs min-P is not merely a result of MOSTest discovering a higher number of loci. 

Furthermore, we still see a comparable replication rate when we penalize the replication 

significance threshold by the number of loci discovered by each method (i.e. p<0.05/ # of 

discovered loci). This underscores the distributed effects of the genome across the cortex, 

which multivariate methods are better powered to capture and in turn, will display stronger 

generalization to independent data.  

Additionally, we have shown that genetic-cortical morphology associations learned 

within an adult population (mean age 64 years) of individuals from the UK generalize out of 

sample to adolescents aged 9-11 years old in the United States of America taken from the 

ABCD study. There are marked differences between the training sample of UK Biobank and 

validation sample of ABCD including: large age differences, a high degree of ancestry 

admixture in ABCD, different scanners used, imaging protocols and the number of individuals 

in validation sets. In spite of these differences we observe a high replication rate in ABCD of 

discoveries found within UK Biobank via MOSTest. We see higher replication for cortical area 

and sulcal depth in ABCD than for cortical thickness. Cortical thickness changes more 

dynamically over the lifespan10, therefore, given the large age disparity between the two 

samples, perhaps it is not a surprise to see that cortical thickness is the measure that exhibits 

the largest reduction in replication rates in ABCD when compared across cross-validation folds 

of UK Biobank for MOSTest (69% vs 95%). We may expect that the replication rate of 

discovered cortical thickness loci to increase as the children develop, a hypothesis that can be 

tested as more longitudinal ABCD data is collected. Despite differences across these datasets 

we observe greater replication of UK Biobank discovered loci in ABCD when taking into 

account the multivariate nature of associations across the cortex (i.e. MOSTest and PVS).  

Furthermore, we demonstrated that lead MOSTest discoveries explained a notable 

amount of variance out of sample, by GWAS standards: 3-6% in UK Biobank and 1-3% in 
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ABCD. Methods, such as MOSTest and PVS, that result in high replication yield and out of 

sample variance explained may support precision medicine efforts11. In particular if these 

methods are deployed on disorders of the brain they may provide complimentary predictive 

power to well established models such as Polygenic Risk Scores. 

The training data used here to detect loci and train PVS projections weights were taken 

from individuals of European ancestry from the UK Biobank. We may expect that the genetic 

architecture of cortical morphology to differ between ancestry groups12. We also acknowledge 

that our use of PVS to predict genotypes out of sample is just one possible projection 

weighting scheme, which may not provide optimal out of sample prediction. Here we have 

demonstrated the high generalization performance of cortical morphology discoveries using 

MOSTest to independent data. This was shown both within study (UK Biobank) and across 

studies (UK Biobank to ABCD) despite substantial age differences of participants. This work 

underscores the importance of deploying well powered multivariate methods when performing 

GWAS on high dimensional phenotypes, both for discovery and replication. 

5.5 Methods 

 The UK Biobank sample and methods used for min-P and MOSTest discovery overlap 

with previous work4,5. 

 

5.5.1 UK Biobank Sample  

Genotypes, MRI scans, demographic and clinical data were obtained from the UK 

Biobank under accession number 27412, excluding participants who withdrew their consent. For 

this study we selected white British individuals (as derived from both self-declared ethnicity and 

principal component analysis) who had undergone the neuroimaging protocol. The resulting 
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sample contained 35,644 individuals with a mean age of 64.4 years (standard deviation 7.5 

years), 18,433 female. T1-weighted MRI scans were collected from three scanning sites 

throughout the United Kingdom, all on identically configured Siemens Skyra 3T scanners, with 

32-channel receive head coils. We used UK Biobank v3 imputed genotype data13. 

5.5.2 Adolescent Brain Cognitive Developmentâ (ABCD) Sample  

The ABCD study is a longitudinal study across 21 data acquisition site following 11,878 

children starting at 9 and 10 years old. This paper analyzed the full baseline sample from data 

release 3.0 (NDA DOI:10.151.54/1519007). The ABCD study used school-based recruitment 

strategies to create a population-based, demographically diverse sample with heterogeneous 

ancestry. T1-weighted MRI scans were collected using Siemens Prisma, GE 750 and Phillips 3T 

scanners. Scanning protocols were harmonized across 21 acquisition sites. Genetic ancestry 

factors were estimated using fastStructure14 with four ancestry groups. Genotype data was 

imputed at the Michigan Imputation Server15, using the HRC reference panel as described in16,17. 

We selected individuals who had passed neuroimaging and genetic quality control checks, 

resulting in 8,336 individuals with a mean age of 9.9 years (standard deviation 0.62 years), 3,974 

female.  

5.5.3 Data processing 

T1-weighted structural MRI scans were processed with the FreeSurfer v5.3 standard 

“recon-all” processing pipeline18 to generate 1,284 non-smoothed vertex-wise measures (ico3 

downsampling with the medial wall removed) summarizing cortical surface area, thickness and 

sulcal depth. All measures were pre-residualized for age, sex, scanner site, the first ten genetic 

principal components. In contrast to previous MOSTest work3,5 we did not pre-residualize for 

global measures specific to each set of variables (total cortical surface area or mean cortical 
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thickness) as there is no clear corollary for sulcal depth, nor did we control for Euler number. 

Subsequently, a rank-based inverse normal transformation was applied to the residualized 

measures. For genomic data we carried out standard quality-checks as described previously3, 

setting a minor allele frequency threshold of 0.5% and finding the intersecting variants between 

UK Biobank and ABCD, leaving 8 million variants. Variants were tested for association with 

cortical surface area, cortical thickness and sulcal depth at each vertex using the standard 

univariate GWAS procedure. Resulting univariate p-values and effect sizes were further 

combined in the MOSTest and min-P analyses to identify area, thickness and sulcal depth 

associated loci. 

5.5.4 Cross validation  

We performed 10 times cross validation within UK Biobank with approximately ⅔ 

training, ⅓ testing splits, performed randomly except for related individuals were kept together. 

Due to relatedness in the sample we wanted to ensure that individuals who were highly 

genetically related were not split across training and testing folds. We estimated relatedness 

using ‘plink –genome’ and from this defined relatedness clusters with individuals who were 

related as 3rd degree relatives (threshold>1/8). This resulted in 34,813 clusters. Across the 10 

folds, the mean training sample size was 24,471 individuals (S.D. =9.5). 

5.5.5 MOSTest Discovery  

Consider N variants and M (pre-residualized) phenotypes. Let zi,j be a z-score from the 

univariate association test between ith variant and jth (residualized) phenotype and zj be the vector 

of z-scores of the ith variant across phenotypes. Let 𝒀 be a matrix of (pre-residualized) 

phenotypes with I (individuals) rows and M (phenotypes) columns, and 𝑹 be its correlation matrix. 

𝑹, being Hermitian, can be decomposed using singular valued decomposition as 𝑹 = 𝑼𝑺𝑼( (U 
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– unitary matrix, S – diagonal matrix with singular values on its diagonal). Consider the regularized 

version of the correlation matrix 𝑹𝒓 = 𝑼𝑺𝒓𝑼(, where 𝑺𝒓 is obtained from 𝑺 by keeping 𝑟	largest 

singular values and replacing the remaining with 𝑟*+ largest. The MOSTest statistics for ith variant 

(scalar) is then estimated as χ% = 𝒛%𝑹𝒓,𝟏𝒛%( = 𝒛%𝑼𝑺𝒓,𝟏𝑼𝑻𝒛%(, where regularization parameter is 

selected separately for cortical area, thickness and sulcal depth to maximize the yield of 

genome-wide significant loci. As established in previous work3–5 the largest yield for cortical 

surface area is obtained with 𝑟 =10; the optimal choice for cortical thickness and sulcal depth 

was 𝑟 =20. The distribution of the test statistics under null (𝐶𝐷𝐹/0112345) is approximated from the 

observed distribution of the test statistics with permuted genotypes, using the empirical 

distribution in the 99.99 percentile and Gamma distribution in the upper tail, where shape and 

scale parameters of Gamma distribution are fit to the observed data. The p-value of the MOSTest 

test statistic for the ith variant is then obtained as 𝑝6$&* = 𝐶𝐷𝐹/011
2345(χ%). 

5.5.6 min-P Discovery   

Similar to the MOSTest analysis, consider N variants M and  pre-residualized 

phenotypes. Let 𝑧%,8 be a z-score from the univariate association test between ith variant and jth 

(residualized) phenotype and 𝒛% be the vector of z-scores of the ith variant across  phenotypes. 

The min-P statistics for the ith variant is then estimated as 𝑦% = 2ΦH− max
89!...;

LM𝑧%,8MNO, where Φ is a 

cumulative distribution function of the standard normal distribution. The distribution of the min-

P test statistics under null (𝐶𝐷𝐹/0112</=)  is approximated from the observed distribution of the test 

statistics with permuted genotypes, using the empirical distribution in the 99.99th percentile and 

Beta distribution in the upper tail, where shape parameters of Beta distribution (α and β) are fit 

to the observed data. The p-value of the min-P test statistic for the ith variant is then obtained as 

𝑝6%#> = 𝐶𝐷𝐹#?@@6%#>(𝑦%). 
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5.5.7 Locus definition  

Independent significant SNPs and genomic loci were identified in accordance with the 

PGC locus definition, as also used in FUMA SNP2GENE19. First, we select a subset of SNPs that 

pass genome-wide significance threshold 5x10-8, and use PLINK to perform a clumping 

procedure at LD r2=0.6, to identify the list of independent significant SNPs. Second, we clump 

the list of independent significant SNPs at LD r2=0.1 threshold to identify lead SNPs.  Third, we 

query the reference panel for all candidate SNPs in LD r2 of 0.1 or higher with any lead SNPs. 

Further, for each lead SNP, it's corresponding genomic loci is defined as a contiguous region of 

the lead SNPs' chromosome, containing all candidate SNPs in r2=0.1 or higher LD with the lead 

SNP. Finally, adjacent genomic loci are merged if they are separated by less than 250 KB. Allele 

LD correlations are computed from EUR population of the 1000 genomes Phase 3 data.  

Obtained clumps of variants were considered as independent genome-wide significant genetic 

loci.  

 

5.5.8 Replication of Discovered Variants 

A schematic displaying the difference between min-P and MOSTest replication is 

displayed in Figure 5.1.  For genome-wide significant loci defined in the training folds, we 

performed replication in test folds of UK Biobank, as well as the whole sample of ABCD. Let 

𝑿𝒕𝒆𝒔𝒕 represent the genotype matrix of individuals in the test set of I individuals and N variants 

and 𝒀𝒕𝒆𝒔𝒕 represent the phenotype matrix of I individuals and M (pre-residualized) phenotypes. 

Replication was performed in one of two ways, depending on whether the genetic variant was 

discovered using min-P or MOSTest. Firstly, for a min-P discovery, implicated by the 

association statistic 𝑧%,8, the ith  variant, 𝒙%*'&*, is associated with the jth  (residualized) phenotype 
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𝒚8*'&*, in the test set. Secondly, for MOSTest validation the ith discovered loci corresponds to a 

vector of mass univariate association statistics across all vertices 𝒛𝒊   - these are used to 

generate projection weights to create a PolyVertex Score (PVS) 7, 𝒙>EF,%*'&*
. This approach largely 

mirrors the use of polygenic scores used in genetics, where here we are aggregating effects of 

vertices across the cortex. For polygenic scores, it is well known that the correlation structure 

(i.e. linkage disequilibium) across the genome can result in suboptimal out of sample 

performance. This has motivated techniques like LD-Pred20 and PRSice21 to first account for 

this genomic correlation before generating scores. Similarly, we decorrelate the association 

statistics, 𝒛%, as 𝒘% = 𝐑WG𝐳% using the regularized correlation matrix 𝐑WGthat was learned in the 

training fold. We then generate the polyvertex score for the ith genomic variant as the dot 

product of 𝒘% with the (pre-residualized) phenotype matrix, 𝒀*'&*, in the test set: 𝒙Y>EF,%*'&* 	=

	𝒘%𝒀*'&*.   

To perform the association in test set, both of min-P and MOSTest/PVS replications, we 

used linear mixed-effect models (LMMs) to control for genetic/family relatedness – this is 

particularly relevant for the ABCD dataset which has a high degree of family relatedness. We 

used a single fixed effect of the discovered variant, 	𝑥% , and a random effect intercept using a 

grouping, c, of either: i) genetic relatedness cluster (defined above) for UK Biobank replication 

or ii) family id (rel_family_id) for ABCD replication. The response variable was either a) the most 

significant vertex for min-P validation, 𝑦6%#>,% , or b) the computed PVS, 𝒙Y>EF,%*'&* , for MOSTest. For 

min-P replication: 

𝑦6%#>,% 	~	𝑥% + (1|𝑐) 

And for MOSTest replication: 

	𝑥>EF,%	~		𝑥% + (1|𝑐) 
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As the phenotype matrix, 𝒀*'&* , was pre-residualized for covariates before taking the 

most significant vertex (min-P) or computing the PVS (MOSTest) we did not need to control for 

other covariates. We fit an LMM for each discovered locus in training set. For both min-P and 

MOSTest validation, we one-tailed p values from t statistics of the fixed effect as we assume 

the effect to be in the same direction for training folds and test sets. To define replicated loci 

we use a nominal p value threshold of 0.05 for associations. Due to the higher number of 

discovered loci for MOSTest vs min-P, we additionally report the number of loci validated at a 

Bonferroni corrected threshold, where this number of independent tests is taken to be the 

number of discovered loci in the training set. This corrected threshold penalizes MOSTest to a 

greater extent than min-P for discovering a larger number of loci. We calculate the variance 

explained by the single lead ith variant in the replication sample from t statistics of 	𝑥% from fitted 

LMMs and degrees of freedom (df) as: 𝑅" = *"

(*"	J	KL)
. We report the average and standard 

deviation (σ) of this value across training folds. 
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