
UC Berkeley
UC Berkeley Previously Published Works

Title
Mutations in Escherichia coli aceE and ribB Genes Allow Survival of Strains Defective in 
the First Step of the Isoprenoid Biosynthesis Pathway

Permalink
https://escholarship.org/uc/item/03v5x8kv

Journal
PLOS ONE, 7(8)

ISSN
1932-6203

Authors
Perez-Gil, Jordi
Uros, Eva Maria
Sauret-Güeto, Susanna
et al.

Publication Date
2012

DOI
10.1371/journal.pone.0043775

Copyright Information
This work is made available under the terms of a Creative Commons Attribution License, 
available at https://creativecommons.org/licenses/by/4.0/
 
Peer reviewed

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/03v5x8kv
https://escholarship.org/uc/item/03v5x8kv#author
https://creativecommons.org/licenses/by/4.0/
https://escholarship.org
http://www.cdlib.org/


Mutations in Escherichia coli aceE and ribB Genes Allow
Survival of Strains Defective in the First Step of the
Isoprenoid Biosynthesis Pathway
Jordi Perez-Gil1, Eva Maria Uros1, Susanna Sauret-Güeto1¤, L. Maria Lois1, James Kirby2,

Minobu Nishimoto2, Edward E. K. Baidoo2, Jay D. Keasling2, Albert Boronat1,3, Manuel Rodriguez-

Concepcion1*

1Centre for Research in Agricultural Genomics (CRAG) CSIC-IRTA-UAB-UB, Campus UAB Bellaterra, Barcelona, Spain, 2 Joint BioEnergy Institute, Emeryville, California,

United States of America, 3Department de Bioquı́mica i Biologia Molecular, Universitat de Barcelona, Barcelona, Spain

Abstract

A functional 2-C-methyl-D-erythritol 4-phosphate (MEP) pathway is required for isoprenoid biosynthesis and hence survival
in Escherichia coli and most other bacteria. In the first two steps of the pathway, MEP is produced from the central metabolic
intermediates pyruvate and glyceraldehyde 3-phosphate via 1-deoxy-D-xylulose 5-phosphate (DXP) by the activity of the
enzymes DXP synthase (DXS) and DXP reductoisomerase (DXR). Because the MEP pathway is absent from humans, it was
proposed as a promising new target to develop new antibiotics. However, the lethal phenotype caused by the deletion of
DXS or DXR was found to be suppressed with a relatively high efficiency by unidentified mutations. Here we report that
several mutations in the unrelated genes aceE and ribB rescue growth of DXS-defective mutants because the encoded
enzymes allowed the production of sufficient DXP in vivo. Together, this work unveils the diversity of mechanisms that can
evolve in bacteria to circumvent a blockage of the first step of the MEP pathway.
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Introduction

Isoprenoids (also called terpenoids) are a ubiquitous and highly

diverse family of compounds produced from the five-carbon

precursor isopentenyl diphosphate (IPP) and its double-bond

isomer dimethylallyl diphosphate (DMAPP) in all living organisms

[1–3]. These precursors are synthesized from acetyl-CoA by the

mevalonic acid (MVA) pathway in archaea (archaebacteria), fungi,

and animals. By contrast, the unrelated 2-C-methyl-D-erythritol 4-

phosphate (MEP) pathway produces IPP and DMAPP from

pyruvate and glyceraldehyde 3-phosphate in most bacteria

(eubacteria) and apicomplexan protozoa, including important

human pathogens such as those causing tuberculosis and malaria

[3–5]. Because the MEP pathway is essential in such pathogens

but is not present in animals, it has been proposed as a promising

target for the design of new antibacterial and antimalarial agents

that would be potentially innocuous for humans [6–8]. However,

we still know little about possible mechanisms of resistance to

current and potential drugs targeting the MEP pathway in

bacterial pathogens.

The genes and enzymes of the MEP pathway are best

characterized in Escherichia coli. The initial reaction of the pathway

(Fig. 1) is catalyzed by 1-deoxy-D-xylulose 5-phosphate (DXP)

synthase (DXS, encoded by the dxs gene) and involves the

condensation of (hydroxyethyl)thiamine, derived from pyruvate,

with the C1 aldehyde group of D-glyceraldehyde 3-phosphate to

produce DXP [9–11]. In the second step, an intramolecular

rearrangement and reduction of DXP by the enzyme DXP

reductoisomerase (DXR, encoded by the ispC/yaeE/dxr gene)

yields MEP [12,13]. An alternative oxidoreductase enzyme with

a DXR-like (DRL) activity was recently found in a reduced

number of bacteria [14]. MEP produced by DXR or DRL is

eventually converted to both IPP and DMAPP by sequential

activities of the enzymes encoded by the genes ispD/ygbP, ispE/

ychB, ispF/ygbP, ispG/gcpE, and ispH/lytB [5,15].

The best studied inhibitor of the MEP pathway is fosmidomycin

(FSM), a specific inhibitor of the enzyme DXR which also inhibits

DRL [14,16–19]. The uptake of FSM by bacterial cells is an active

process involving a cAMP-dependent glycerol 3-phosphate trans-

porter (GlpT) protein [20]. Loss of GlpT activity in E. coli mutants

or the absence of a GlpT homologue in other bacteria such as

Mycobacterium tuberculosis or Brucella abortus leads to FSM resistance

[14,20,21]. Enhanced export of the inhibitor by overexpression of

the E. coli fsr gene also results in FSM resistance [22]. Antibiotic

resistance can result not only from interfering with drug transport

or mode of action but also from the use of an alternative pathway
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not affected by the inhibitor. To investigate the relevance of the

latter type of mechanisms for resistance to MEP pathway

inhibitors, we aimed to identify spontaneous mutations that could

suppress an otherwise lethal obstruction of the pathway in living

bacteria.

Loss of function of the MEP pathway in E. coli can be rescued in

strains containing a synthetic MVA operon that allows the

production of IPP and DMAPP from exogenously supplied

MVA (Fig. 1) [23,24]. However, in cells harboring a deletion of

the dxs gene (strain EcAB4-2), MVA auxotrophy was suppressed

with a relatively high frequency (6.4 per 109 cells) by mutations in

other genes [25]. As a result, colonies of DXS-defective suppressor

mutants could grow overnight on plates lacking MVA. Suppressor

mutants were also found in the DXR-deficient strain EcAB4-10,

although with a slightly lower frequency (2.4 per 109 cells) and

poor growth. No suppressor mutants were found in strains with

disruptions to the other MEP pathway genes [25]. These results

suggested that bacteria can respond to a block of DXS or DXR

activities by using other proteins that deliver DXP or MEP when

mutated [25]. In this work we identify genes and mutations that

allow survival of DXS-deficient strains and demonstrate that the

mutant proteins are indeed able to synthesize DXP (or a precursor

molecule) in vivo.

Materials and Methods

Bacterial strains and screening for suppressor mutants
Disruption of individual MEP pathway genes in E. coli strains

EcAB4-2 (dxs::CAT) and EcAB4-10 (dxr::CAT), each containing

a chromosomal copy of a synthetic MVA operon, was carried out

as described [25] by deleting most of their coding region and

introducing chloramphenicol resistance (CAT) genes. Similarly,

strain EcAB1-6 (dxs::CAT dxr::TET) was constructed by disrupting

both dxs and dxr genes with chloramphenicol and tetracycline

resistance genes, respectively, in MC4100 cells harboring the

MVA operon in plasmid pAB-M3 [23,26]. For isolation of

suppressor mutants, EcAB4-2 cells were cultured at 37uC in Luria

broth (LB) medium supplemented with 1 mM MVA, 25 mg/ml

kanamycin (to select for the MVA operon) and 17 mg/ml

chloramphenicol (to select for the disruption of the dxs gene) until

exponential phase. After cells were pelleted and rinsed twice with

LB, several batches of ca.108 cells (estimated by measuring optical

density at 600 nm, OD600) were plated on LB agar containing

only kanamycin and chloramphenicol. In some plates, a paper disk

soaked in 30 ml ethylmethane sulphonate (EMS) was placed on the

surface of the medium to induce mutations. Spontaneous and

EMS-induced mutants that formed a colony in the absence of

MVA were analyzed to confirm the deletion of the dxs genes by

PCR.

Identification of the genes mutated in the suppressor
lines

Genomic DNA from suppressor mutants was isolated as

described [25,27] and partially digested with Sau3A. Fragments

of 2–4 kb were gel-purified using the Qiaquick (Qiagen) system

and ligated into the BamHI site of pUC19. After amplification of

the genomic library in TOP10 cells, EcAB4-2 competent cells

were transformed with aliquots of the library, and transformants

resistant to kanamycin, chloramphenicol, and 100 mg/ml ampi-

cillin that were able to grow without MVA were selected. Plasmid

DNA isolated from these transformants was used to transform new

EcAB4-2 cells to confirm that it conferred the ability to grow in the

absence of MVA. Positive clones were sequenced to identify the

gene (and the mutation) responsible for the suppression phenotype.

Screenings for mutations specifically in aceE and ribB were carried

out by amplification of their coding regions by colony PCR with

high-fidelity AccuPrime DNA polymerase (Invitrogen), followed

by sequencing.

Plasmid constructs
The wild-type and mutant aceE and ribB genes (including the

promoter region) were amplified from EcAB4-2 and suppressor

mutant cells by PCR using AccuPrime DNA polymerase and

primers aceE-1F (59- C C A G A A G A T G T T G T A A A T C

A A G C -39) and aceE-4R (59- T T T A C C T C T T A C G C C

A G A C G -39) for aceE and ribB-pNF (59- A G C A T A T G A G

T G C C A T T G T A G T G-39) and ribB-XR (59- A G T C A C

T C G A G G C T G G C T T T A C G C T C A T G T G C-39)

for ribB. The PCR products were gel-purified and cloned into

pCRII-TOPO (Invitrogen). Inserts were sequenced using vector

and gene-specific primers to confirm the presence of the identified

mutations.

Figure 1. Biosynthesis of isoprenoid precursors in E. coli. The
indicated genes (in italics) encode enzymes that produce the first
intermediates of the MEP pathway either originally (dxs, dxr) or by
mutation as indicated by asterisks (aceE, ribB). The E. coli strains used in
this work are engineered to synthesize isopentenyl diphosphate (IPP)
and dimethylallyl diphosphate (DMAPP) from exogenously supplied
mevalonic acid (MVA). GAP, D-glyceraldehyde 3-phosphate; DXP, 1-
deoxy-D-xylulose 5-phosphate; MEP, 2-C-methyl-D-erythritol 4-phos-
phate.
doi:10.1371/journal.pone.0043775.g001

Rescue of Isoprenoid Synthesis in E. coli Mutants
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Detection of DXP in cell extracts
EcAB1-6 cells were transformed with plasmids harboring wild

type and mutant versions of aceE or ribB (or an empty pCRII-

TOPO plasmid as a control) and positive transformants were

selected on LB plates supplemented with 1 mM MVA, 50 mg/ml

kanamycin (to select for the pCRII-TOPO constructs), 100 mg/ml

ampicillin (to select for the pAB-M3 plasmid with the MVA

operon), 17 mg/ml chloramphenicol (to select for the disruption of

the dxs gene), and 5 mg/ml tetracyclin (to select for the disruption

of the dxr gene). Individual colonies were then grown at 37uC
overnight in liquid media with the same supplements. The

overnight cultures were used to confirm the identity of the strain

and plasmids by PCR and restriction analysis and to inoculate

fresh 10 ml cultures to an OD600 of 0.05. Inoculated cultures

were grown at 37uC for 5 hours and aliquots corresponding to an

OD600 of 10 were then collected. Cells were pelleted and

immediately resuspended in 200 ml of 1:1 (v/v) methanol: water.

Cell suspensions were loaded in Amicon Ultra-0.5 centrifugal filter

devices and spun at 14,000 rpm and 4uC for 90 min in

a refrigerated microfuge. DXP was detected and quantified in

the flow-through by liquid chromatography and mass spectrom-

etry (LC-MS).

LC was conducted on an ZIC-pHILIC column of 150-mm

length, 2.1-mm internal diameter, and 5-mm particle size (Merck

SeQuant), using an Agilent 1200 Series HPLC system. A sample

injection volume of 2 mL was used throughout. The temperature

of the sample tray was maintained at 4uC by an Agilent FC/ALS

Thermostat. The column compartment was set to 50uC. The

mobile phases used were composed of A) 80 mM ammonium

carbonate and B) acetonitrile. Isocratic elution was achieved at

68% B via a flow rate of 0.23 mL/min for 12 min. From there the

flow rate was gradually increased to 0.3 mL/min until 12.5 min.

The flow rate was then held at 0.3 mL/min for a further 2.5 min.

The HPLC system was coupled to an Agilent 6210 time-of-flight

mass spectrometer (LC-TOF MS), by a 1/3 post-column split.

Contact between both instrument set-ups was established by

a LAN card in order to trigger the MS into operation upon the

initiation of a run cycle from the MassHunter workstation

(Agilent). Nitrogen gas was used as both the nebulizing and

drying gases to facilitate the production of gas-phase ions. The

drying and nebulizing gases were set to 10 L/min and 25 psi,

respectively, and a drying gas temperature of 300uC was used

throughout. Electrospray ionization (ESI) was conducted in the

negative ion mode and a capillary voltage of –3500 V was utilized.

MS experiments were carried out in the full scan mode, at

0.86 spectra/ sec and a cycle time of 1.1162.8 sec, for the

detection of [M–H]- ions. The instrument was tuned for a range of

50–1700 m/z. Prior to LC-ESI-TOF MS analysis, the TOF MS

was calibrated via an ESI-L-low concentration tuning mix

(Agilent). Data acquisition and processing were performed by

the MassHunter software package. DXP was quantified via a five-

point calibration curve. The R2 coefficient for the calibration

curve was .0.99. The chemical standard for DXP (Echelon) was

made up to 500 mM, as the stock solution, in methanol-water

(50:50, v/v).

Results

Most DXS-defective suppressor mutants harbour
mutations in the aceE gene

To investigate the mechanisms by which bacteria could survive

in the absence of a DXS enzyme, we aimed to identify the genes

responsible in a collection of DXS-defective suppressor mutants

(SX lines). Previous screening for suppressors of MVA auxotrophy

in DXS-defective EcAB4-2 cells (i.e. the lethality caused by dxs

deletion) resulted in the isolation of 6 spontaneous mutants (SX1 to

SX6) [25]. A second screening led to the isolation of 14 more

spontaneous mutants (SX7 to SX20) and 14 EMS-induced

mutants (SX1E to SX14E). However, 6 spontaneous mutants

and 2 EMS-induced mutants lost the ability to grow without MVA

after storage as glycerol stocks and re-streaking on fresh LB plates

supplemented only with kanamycin and ampicillin. Of the

remaining 26 mutants, one (SX5) was previously reported to

harbor a missense mutation in the aceE gene (encoding the

catalytic E1 subunit of the pyruvate dehydrogenase complex,

PDH), resulting in an E636Q change in the protein sequence [25].

Sequencing of the aceE gene in the remaining mutants identified

a total of 4 different mutations (Table 1). In particular, the E636Q

mutation was found in 2 other strains besides SX5, whereas 1

clone had a different mutation in the same residue (E636G). Two

more aceE mutations were found: Q408R in 1 strain and L633R in

17 clones. In total, 22 out of 26 suppressor SX mutants contained

mutations in the aceE gene, suggesting that the alteration of PDH

activity might be the most common mechanism of resistance to the

inhibition of DXS activity.

A mutant ribB gene was found in the remainder of the
DXS-deficient suppressors

To identify the genetic change responsible for the bypass of

DXS activity in the 4 remaining strains with no mutations in aceE

(SX6, SX7, SX18, and SX12E), we followed a strategy similar to

that previously described for SX5 [25]. We selected strain SX18 to

construct a genomic library in pUC19. After amplification, DXS-

defective EcAB4-2 cells were transformed with the library, and

colonies able to grow without MVA were selected to isolate the

incorporated plasmid and sequence the corresponding inserts. All

the isolated plasmids were found to contain a mutation in the ribB

gene, encoding 3,4-dihydroxy-2-butanone 4-phosphate synthase

(DHBPS). This enzyme catalyzes the conversion of D-ribulose 5-

phosphate to formate and 3,4-dihydroxy-2-butanone 4-phosphate,

the latter serving as the biosynthetic precursor for the xylene ring

of riboflavin [28]. Complete sequencing of the ribB gene in strains

SX6, SX7 and SX12E also found mutations in this gene. In

particular, a missense mutation resulting in a G108S change in

DHBPS was found in SX18 and SX12E, whereas clones SX6 and

SX7 harbored a D113G change (Table 1).

The identified mutations are sufficient to rescue the loss
of DXS activity in EcAB4-2 cells

To confirm whether the new mutations identified in aceE and

ribB were actually responsible for the suppression phenotype, wild

type and mutant versions of these genes (including their promoters)

Table 1. Ocurrence of identified mutations in EcAB4-2 cells.

Mutation Ocurrence

Gene DNA Protein (# strains)

aceE cag . cgg Q408R 1

ctg . cgg L633R 17

gaa . caa E636Q 3

gaa . gga E636G 1

ribB ggt . agt G108S 2

gac . ggc D113G 2

doi:10.1371/journal.pone.0043775.t001

Rescue of Isoprenoid Synthesis in E. coli Mutants

PLOS ONE | www.plosone.org 3 August 2012 | Volume 7 | Issue 8 | e43775



were amplified from the parental EcAB4-2 strain and the

corresponding suppressor mutants, respectively, and used to

complement EcAB4-2 cells. As shown previously [25], the plasmid

carrying the E636Q mutation in aceE rescued growth on plates

without MVA, whereas the wild type gene did not complement the

loss of DXS activity in EcAB4-2 (Fig. 2). The other aceE mutations

(Q408R, L633R, and E636G) were also able to rescue MVA

auxotrophy of the strain. Similarly, the two identified mutant

forms of ribB (G108S and D113G), but not the wild type version,

rescued growth of DXS-defective EcAB4-2 cells in medium

without MVA (Fig. 2). These results suggest that the presence of

any of the identified mutations in aceE or ribB results in altered

enzymes (PDH or DHBPS, respectively) that each produce

a metabolite that can ultimately be converted to isoprenoids in

the absence of a functional DXS activity.

Mutant aceE and ribB genes allow the production of DXP
in vivo

The bypass of DXS by mutant forms of PDH and DHBPS

enzymes might result either from the production of DXP or an

alternative substrate for DXR, or from the supply of MEP or

a downstream metabolite of the pathway (Fig. 1). The latter

possibility can be addressed by using a genetic strategy based on

the complementation of the DXR-deficient strain EcAB4-10.

Thus, the putative production of MEP or a downstream MEP

pathway intermediate by the mutant enzymes would allow not

only DXS-defective but also DXR-defective cells to grow in the

absence of MVA (Fig. 1). However, when EcAB4-10 cells were

transformed with the constructs containing mutant aceE and ribB

genes, transformants could only be recovered on MVA-containing

plates because none of them were able to rescue MVA auxotrophy

(Fig. 2). These results confirm that the mutant PDH and DHBPS

enzymes synthesize a product that enters the MEP pathway

upstream of the reaction catalyzed by DXR.

To discriminate between the remaining possibilities (i.e. the

mutant enzymes allow the production of either DXP or another

metabolite that can be used as an alternative substrate for DXR),

we investigated whether the presence of mutant versions of PDH

or DHBPS resulted in the production of DXP in cells lacking both

DXS and DXR activities (strain EcAB1-6). After transformation of

the EcAB1-6 strain with plasmids containing wild type and mutant

versions of both aceE and ribB, cells were grown in MVA-

supplemented liquid medium and harvested in the exponential

growth phase. HPLC-MS/MS analysis of cell extracts from

controls transformed with an empty plasmid showed the presence

of low but detectable levels of DXP (Fig. 3), indicating that E. coli

cells devoid of DXS activity can still produce trace amounts of this

metabolite. Levels of DXP in transformants carrying plasmids with

wild type versions of aceE or ribB genes were similar to those in the

negative control. By contrast, strains expressing the mutant genes

showed ca. 20-fold higher DXP levels (Fig. 3), confirming that the

corresponding mutant enzymes are able to synthesize DXP (or

a metabolite that can be transformed into DXP by the cells) in vivo.

Discussion

In bacteria, isoprenoids play essential roles in a variety of

processes that are vital for growth and survival, including cell wall

and membrane biosynthesis, electron transport, and conversion of

light into chemical energy [29]. Also, many microorganisms

produce isoprenoid secondary metabolites of economic relevance

[30]. Since the discovery of the MEP pathway in the mid 1990 s, it

became more and more evident that bacteria display a wide

metabolic plasticity regarding the route to produce isoprenoids.

Most bacteria only use the MEP pathway for IPP and DMAPP

biosynthesis, but there are exceptions to this trend. Some bacteria

synthesize their isoprenoid precursors using the MVA pathway

instead of the MEP pathway, whereas there are parasitic bacteria

Figure 2. Complementation of E.coli strains defective in DXS or
DXR. Cells were transformed with pCRII-TOPO constructs and plated on
LB medium containing chloramphenicol (for the disruption of
chromosomal dxs or dxr genes), kanamycin (for the MVA operon) and
ampicillin (for the introduced plasmid). The medium was supplemented
(+) or not (2) with MVA as indicated. Plates were incubated at 37uC for
20 h. (A) Position of transformants harboring plasmids with the
indicated wild type or mutant (asterisks) genes or an empty vector
control (Ø). (B) EcAB4-2 (dxs::CAT) transformants. (C) EcAB4-10 (dxr::CAT)
transformants.
doi:10.1371/journal.pone.0043775.g002

Rescue of Isoprenoid Synthesis in E. coli Mutants
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that lack both pathways (likely because they obtain their

isoprenoids from host cells) and also organisms that possess the

two full pathways [3,31–34]. Most strikingly, related bacteria may

use different pathways for isoprenoid biosynthesis while unrelated

bacteria may use the same pathway. In addition to the MEP and

MVA pathways, alternative pathways and metabolic intermediates

have been proposed for isoprenoid biosynthesis in the cyanobac-

terium Synechocystis PCC 6803, which lacks the MVA pathway and

does not appear to use the canonical MEP pathway under

photosynthetic conditions [35,36]. Diversity can be found also at

the level of individual pathway steps, with several examples of

reactions catalyzed by different classes of enzymes with no

sequence, structural, or catalytic similarity [14,17,33,37]. In at

least some cases, it is clear that the alternative routes to MEP

pathway intermediates resulted from the recruitment of available

enzymes that were not related to isoprenoid synthesis. But we still

know very little about the genes and enzymes that could

potentially contribute to isoprenoid biosynthesis, despite the

relevance of this knowledge to both development of efficient

antibiotics and metabolic engineering of isoprenoid biosynthesis.

Here we show that the MEP pathway intermediate DXP can be

produced (although at very low levels) in the absence of

a functional DXS-encoding gene, suggesting that other enzymes

might produce this metabolite, perhaps as a by-product. However,

such trace levels are not sufficient to support bacterial growth and

survival. We also provide biochemical and genetic evidence of

novel routes for efficient DXP synthesis arising from specific

mutations in two E. coli genes, aceE and ribB (encoding PDH and

DHBPS, respectively).

The E636Q mutation in PDH was previously shown to rescue

the deficiency of DXS but not DXR activity in vivo [25]. In this

work, we have identified three more mutations (Q408R, L633R,

and E636G) that allow PDH to catalyze an unknown reaction that

eventually results in the production of DXP in the absence of

endogenous DXS activity. Like DXS, PDH is a thiamine di-

phosphate (TPP) dependent carboligase that catalyzes the de-

carboxylation of pyruvate with the formation of hydroxyethyl-TPP

as an intermediate. In fact, purified PDH has been shown to

catalyze the formation of 1-deoxy-D-xylulose (DX) from pyruvate

and D-glyceraldehyde [38,39]. DX can be phosphorylated to

DXP by the kinase encoded by the xylB gene in E. coli [40].

However, our results suggest that in vivo the wild type PDH

enzyme does not produce enough DX (or DXP, using D-

glyceraldehyde 3-phosphate) to rescue the loss of DXS activity

since only the mutant enzyme is able to complement the dxs

knockout (Fig. 2) and to cause an accumulation of DXP beyond

background levels (Fig. 3).

In the case of DHBPS, the proposed mechanism for the

conversion of D-ribulose 5-phosphate to formate and 3,4-

dihydroxy-2-butanone 4-phosphate involves a complex series of

steps including dehydration, intramolecular rearrangement and

rehydration [41]. Interestingly, the alternative route into the MEP

pathway proposed in Synechocystis PCC 6803 appears to be

stimulated by D-xylulose 5-phosphate and also by dihydroxyac-

etone phosphate [35,36]. We therefore speculate that either D-

ribulose 5-phosphate or its isomer D-xylulose 5-phospate might be

converted to DXP by mutant G108S or D113G enzymes. We

intend to further investigate the metabolic route to the DXP

pathway enabled by mutant DHBPS enzymes using these and

alternative substrates and considering the option that a metabolite

may be generated that serves as an intermediate for DXP

synthesis.

In summary, our work demonstrates that bacteria can

circumvent a blockage of the MEP pathway at the level of DXS

by mutation of either of two genes (aceE and ribB). Based on these

results, DXS is not a good target for the development of new

antibiotics, since resistance is likely to be developed very easily. On

the other hand, DXP production appears to be one of the main

flux-determining steps of the MEP pathway because overexpres-

sion of DXS-encoding genes has been shown to result in an

enhanced production of MEP-derived isoprenoids in bacteria and

plants [30,42]. We are currently investigating whether the use of

mutant PDH and DHBPS enzymes could be a good strategy to

overproduce DXP in metabolic engineering approaches.
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25. Sauret-Güeto S, Uros EM, Ibanez E, Boronat A, Rodriguez-Concepcion M

(2006) A mutant pyruvate dehydrogenase E1 subunit allows survival of

Escherichia coli strains defective in 1-deoxy-D-xylulose 5-phosphate synthase.

FEBS Lett 580: 736–740.

26. Rodrı́guez-Concepción M, Campos N, Maria Lois L, Maldonado C, Hoeffler JF

et al. (2000) Genetic evidence of branching in the isoprenoid pathway for the

production of isopentenyl diphosphate and dimethylallyl diphosphate in

Escherichia coli. FEBS Lett 473: 328–332.

27. Pitcher DG, Saunders NA, Owen RJ (1989) Rapid extraction of bacterial

genomic DNA with guanidium thiocyanate. Lett Appl Microbiol 8: 151–156.

28. Richter G, Krieger C, Volk R, Kis K, Ritz H et al. (1997) Biosynthesis of

riboflavin: 3,4-dihydroxy-2-butanone-4-phosphate synthase. Methods Enzymol

280: 374–382.

29. Rodrı́guez-Concepción M, Boronat A (2012) Isoprenoid biosynthesis in

prokaryotic organisms. In: Bach T, Rohmer M, Gershenzon J, editors.

Isoprenoid Synthesis in Plants and Microorganisms. New York: Springer.

30. Kirby J, Keasling JD (2008) Metabolic engineering of microorganisms for

isoprenoid production. Nat Prod Rep 25: 656–661.

31. Lange BM, Rujan T, Martin W, Croteau R (2000) Isoprenoid biosynthesis: the

evolution of two ancient and distinct pathways across genomes. Proc Natl Acad

Sci U S A 97: 13172–13177.

32. Boucher Y, Doolittle WF (2000) The role of lateral gene transfer in the evolution

of isoprenoid biosynthesis pathways. Mol Microbiol 37: 703–716.

33. Laupitz R, Hecht S, Amslinger S, Zepeck F, Kaiser J et al. (2004) Biochemical

characterization of Bacillus subtilis type II isopentenyl diphosphate isomerase, and

phylogenetic distribution of isoprenoid biosynthesis pathways. Eur J Biochem

271: 2658–2669.

34. Kuzuyama T, Seto H (2003) Diversity of the biosynthesis of the isoprene units.

Nat Prod Rep 20: 171–183.

35. Poliquin K, Ershov YV, Cunningham FX Jr., Woreta TT, Gantt RR et al.

(2004) Inactivation of sll1556 in Synechocystis strain PCC 6803 impairs isoprenoid

biosynthesis from pentose phosphate cycle substrates in vitro. J Bacteriol 186:

4685–4693.

36. Ershov YV, Gantt RR, Cunningham Jr FX Jr., Gantt E (2002) Isoprenoid

biosynthesis in Synechocystis sp. strain PCC6803 is stimulated by compounds of the

pentose phosphate cycle but not by pyruvate or deoxyxylulose-5-phosphate.

J Bacteriol 184: 5045–5051.

37. Kaneda K, Kuzuyama T, Takagi M, Hayakawa Y, Seto H (2001) An unusual

isopentenyl diphosphate isomerase found in the mevalonate pathway gene

cluster from Streptomyces sp. strain CL190. Proc Natl Acad Sci U S A 98: 932–

937.

38. Schoerken U, Sprenger G.A. (1998) Thiamin-dependent enzymes as catalysts in

chemoenzymatic syntheses. Biochim Biophys Acta 1385(2): 229–243.

39. Yokota A, Sasajima KI (1986) Formation of 1-deoxyketoses by pyruvate

dehydrogenase and acetoin dehydrogenase. Agric Biol Chem 50: 2517–2524.

40. Wungsintaweekul J, Herz S, Hecht S, Eisenreich W, Feicht R et al. (2001)

Phosphorylation of 1-deoxy-D-xylulose by D-xylulokinase of Escherichia coli.

Eur J Biochem 268: 310–316.

41. Bacher A, Eberhardt S, Fisher M, Kis K, Richter G (2000) Biosynthesis of

vitamin B2 (riboflavin). Annu Rev Nutr 20: 153–167.

42. Rodrı́guez-Concepción M (2006) Early steps in isoprenoid biosynthesis:

Multilevel regulation of the supply of common precursors in plant cells.

Phytochem Rev 5: 1–15.

Rescue of Isoprenoid Synthesis in E. coli Mutants

PLOS ONE | www.plosone.org 6 August 2012 | Volume 7 | Issue 8 | e43775




