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ABSTRACT
In the transition from fossil fuel to electrified heating, several areas of the US are seeing a concerning pattern. After adding heat pumps (HPs),
commercial building owners leave their gas-based units in place, creating hybrid (dual-fuel) systems that are difficult to integrate and control. Causes
include a lack of trust in HPs, capacity constraints in certain climate zones, additional uses for gas, and progressive but partial equipment replacement
based on end-of-life considerations. Current control products available on the market are unable to address the diversity and complexity of these systems.
For example, infrared (IR) remote-controlled mini-splits are common in small-medium commercial buildings (SMCBs) but are especially difficult to
integrate with each other or with existing equipment due to limited interoperability among other devices and poor control access. The poor control
integration of the original gas-based systems and HP units, and the complexity of optimizing these systems, cause high greenhouse gas emissions and
energy costs. This paper describes an open-source control application utilizing model predictive control (MPC) to coordinate and optimize operations of
heat-pump and gas-fired (GF) heating dual-fuel systems while maintaining optimal comfort for the occupants in small commercial buildings. Model
predictive control is designed and implemented to minimize greenhouse gas emissions by shifting peak load via pre-heating while considering the trade-off
between the degradation of HP performance during cold weather and the high emission of the gas-fired boiler. The control application we have designed
has been deployed in a small commercial building in New York to manage five IR remote-controlled ductless heat pump mini-splits and a thermostatically
controlled furnace. This deployment fully utilizes low-cost IoT devices for both metering and control. The developed MPC and Baseline controls were
implemented for 2 months of the winter heating season by alternating each control day by day, and the test results showed MPC reduced 27% of cost and
14% of electricity peak demand while completely eliminating GF usage via shifting 23.4% of the thermal load from occupied-peak time to
non-occupied-non-peak time.

INTRODUCTION

To address the climate crisis, our national leadership is developing an accelerated roadmap to decarbonization. In
the building sector, it has become clear that the only pathway to achieve such a goal is the massive electrification of
space and water heating, and the replacement of natural gas systems (Jadun et al. 2017). However, the states that are
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leading this transformation are also witnessing that many customers that install heat pumps (HP) are retaining
gas-based systems (Clark, T. et al. 2021). The resulting hybrid systems have diverse and complex configurations and
given the long lifespan of packaged gas-based systems, may remain in place for more than a decade. The challenge of
integrating gas-fired furnaces (GF) and HPs in hybrid heating systems has been recognized as a critical issue by the
New York State Energy Research and Development Authority (NYSERDA). To address this problem, NYSERDA
has proposed specifications for integrated controllers that utilize existing control products in the market (NYSERDA
2022). While these controllers are an improvement over controlling the two systems independently, they do not fully
optimize the hybrid system's performance, reduce greenhouse gas emissions, or minimize utility costs.

The lack of advanced controls for hybrid systems is especially acute in small and medium commercial buildings
(SMCBs). They may have less control-friendly systems, like infrared (IR)-remote control-based ductless mini-split heat
pumps that can’t easily be connected by standardized protocols. Additionally, small buildings often lack basic
automation control of building systems, and there are fewer available control options for buildings of this size. This
lack of availability combined with the cost and time required to upgrade controls reduces access to good control
options for small buildings. The complexity and diversity of hybrid systems in these buildings, along with their varied
operational requirements, make it challenging to develop an effective control solution.

Recently, the adoption of the Internet of Things (IoT) (e.g., WiFi-enabled thermostat) in SMCBs has become
increasingly popular (Ford et al., 2017) and provided the opportunity for advanced controls. IoT-enabled building
controls and monitoring offer significant advantages, particularly in SMCBs, where cost-effective and scalable
solutions are necessary. They can be installed with minimal disruption, and are modular, allowing for easy expansion
and customization as the building’s needs change. This is particularly useful for buildings with limited space and
budget constraints, as they can adopt only the necessary IoT devices and expand the system later when necessary.

Model predictive control (MPC) is one of the most widely adopted approaches for the dynamic operation of
heating, ventilation, and air-conditioning (HVAC) systems in research (Drgoňa et al., 2020) and field implementations
(Zhang et al., 2022). By utilizing mathematical models for buildings and disturbance forecasts (e.g., weather), MPC
optimizes the operation of an HVAC system with given constraints such as comfort boundaries. Additionally, MPC
can handle flexible grid services (Satchwell et al., 2021) such as load shifting according to various price signals from the
grid (e.g., Time-of-Use (TOU) rate, real-time price). Historically, MPC has been implemented in large commercial
buildings with complex HVAC systems where a central building automation system (BAS) system is available (Li et al.,
2015; De Coninck and Helsen, 2016; Blum et al., 2022). However, recent studies (Kim et al., 2016; Kim and Braun,
2018, 2022) have shown that MPC is suitable and scalable for SMCB where the detailed sensor and control
infrastructure is not available without major retrofit because of its ability to include physical thermal dynamics in its
model so that the model behaves in a physical manner. Yet, its applicability and performance have been demonstrated
for multiple ON/OFF rooftop units (RTUs) (Kim and Braun, 2018, 2022), it has not been applied to the hybrid
system except for a study (Cotrufo et al., 2020) using black-box model with decision domain reduction via heuristics.

In this study, we present MPC for the hybrid system by modifying the MPC developed in our previous study
(Kim and Braun, 2022). The MPC is designed to control the hybrid system while minimizing the use of GF and the
energy cost for a one-day prediction horizon considering the price signal (i.e., Time-of-US (ToU) tariff). The MPC has
been deployed in one zone in a commercial building served by 5 HPs and 1GF for 2 months of the winter season.

SITE DESCRIPTION

Building Description

This field demonstration was conducted at a small commercial building in New York State (Figure 1). In this
building, the MPC controlled a single zone, marked as the “Target zone” in Figure 1. This zone is approximately 3,780
square feet (351.2m2) of retail, office, and physical workspaces. In the past, one attic-mounted GF was used for the
main heating device, but five Mitsubishi split-system HPs were recently installed. Before this demonstration, the HPs



were operated by individual IR remotes, and the furnace was controlled by a manual (not programmable) thermostat.
The HPs provided most of the heating, but the GF was also used in the early morning or on cold days.

Figure 1. Demonstration site and HVAC system layout.

IoT Infrastructure for Data Collection and Control

The research team installed a suite of connected devices for these systems, as well as a 4G router to operate them
independently from the existing network at the site as shown in Figure 2. WiFi-connected IR transmitters (Sensibo
Sky) were installed to control the HPs. These devices have built-in temperature sensors and are able to set temperature
setpoints and operating modes for each HP. The GF is controlled by a standard Wi-Fi-enabled thermostat (Ecobee).
WiFi-enabled electricity meters (eGauge) were installed to measure HP powers for performance evaluation. All
mentioned devices were connected to the internet by a 4G cellular router, and controlled via vendor cloud APIs. An
Eclipse VOLTTRON-based software platform was used for data collection, monitoring, and control. VOLTTRON is
an open-source middleware built for distributed control and sensing in buildings (Katipamula et al. 2016). The
deployment costs are shown in Table 1, excluding the cost of researcher time developing and monitoring the MPC.
The devices and installation cost of the MPC control infrastructure was $975, much cheaper than the usual cost of
MPC infrastructure. The IoT devices used in this study are also simple enough for savvy site owners to self-install.

This approach had several advantages, including fast, easy, and low-cost integration, though it also had
drawbacks. For instance, the use of vendor cloud APIs could reduce the overall effectiveness of the MPC control
because of high communication latency or occasional site internet outages causing a lack of service. Additionally, the
use of non-conventional IR remote-controlled devices has the potential to introduce inconsistencies that may impact
the performance of the overall system. Unlike a standard thermostat, the IR transmitter is a one-way communicating
device, so therefore, it only sends information to the HP. The variables and the control logic of the HP are not
available. However, by considering the limitations of each device and implementing appropriate management
strategies, it’s possible to mitigate these issues and achieve good performance.

Table 1. MPC and M&V Infrastructure Costs
Category Task Cost

Labor

Scoping $2000
Estimated Metering Installation $2720

Estimated MPC Infrastructure Installation $320
Commissioning and hand-off $800

Equipment

Cellular Modem and Data Service $110/Month
Ecobee Thermostat $205
HP Controllers $450

Meters $1700
Miscellaneous $110

Totals
Capital and labor cost for MPC control infrastructure $975

Capital and labor cost for metering for M&V $7,220



Figure 2. Communication diagram of retrofitted IoT device and power sensor.

Baseline Control Scenario

After setting up all the IoT infrastructure, we defined the Baseline control scenario based on the
communication with the business owner because the HPs and GF were in operation all day long regardless of the
business and occupancy schedule. In the Baseline control scenario, the dual-fuel hybrid system is operated using a
schedule-based setpoint control. All systems were programmed to operate with an occupancy schedule of 7:00 AM -
8:00 PM. During occupied hours, the HPs had a heating setpoint of 70.0°F (21°C) and the GF had a heating setpoint
of 68°F (20°C). During unoccupied hours, systems operated with a heating setpoint of 60.8°F (16°C). Because this
test occurred during the winter, the HPs were put into heating mode. Table 2 contains a summary of the building,
HVAC, occupancy schedule, and tariff information.

Table 2. Summary of HVAC Device, Tariff, and Occupancy Schedule

Device
- Mitsubishi ductless heat pump (Rated cooling: 4.4kW, Rated heating: 5.2 kW)
- York/Luxaire gas furnace (Rated heating: 30.4kW)
- Sensibo sky IR transmitter / Ecobee thermostat / eGauge power meters

Baseline Control
- Occupied time: Weekday 7:00 AM - 08:00 PM (heating setpoint: 70°F (21.1°C))
- Unoccupied time: all except mentioned above/weekends (heating setpoint: 60°F

(15.6°C))
Electricity Tariff

(conEdison ToU small business1)
- 08:00-22:00: On-peak (18.62¢/kWh).
- Other time: Off-peak (1.38¢/kWh)

Natural Gas Tariff
(General firm sales service2)

- 0-3 therms - $34.8
- 3-87 therms –101.21 ¢/therm

MPC DESIGN

In this study, the MPC algorithm that was developed in our previous study (i.e., UMPC in (Kim and Braun,
2022)) is slightly modified for the hybrid system. The objective function of the MPC algorithm is written as Eq. 1.
This MPC provides optimal runtime fraction (RTF) for each HVAC device (i.e., HPs and GF) to minimize electricity
cost for the prediction time horizon. The prediction time horizon is set to 24 hours to achieve the optimal load
shifting (i.e., pre-heating) to the price signal (ER). While the amount of heating of HPs is internally controlled by the
current temperature and setpoints, the GF behaves like an ON/OFF unit based on the setpoint. To capture the
transition behavior between heating operation and idling in a short time, the heating operation signals (i.e., RTFs) are
smoothed by MPC’s sample time (i.e., MPC runs every 15 minutes). The RTF of the GF can be directly available from
the thermostat’s cloud API, but the RTFs of the HPs need to be inferred as IR transmitters are one-way
communicating devices. After investigating the relationship between the IR transmitters and the power meter, the HPs

2 https://lite.coned.com/_external/cerates/gas.asp
1 https://www.coned.com/en/accounts-billing/your-bill/time-of-use



were modeled as behaving like proportional control with a proportional band of 2°C (3.6°F) while too small values
were zeroed. This is an aggressive approximation, but we decided not to install additional sensors for HPs considering
the cost and scalability for this control solution.

(1)

where ER is electricity cost rate [$/kWh], is ith HVAC device rated power [kW], is prediction horizon, 𝑛

is the number of HVAC units, k is current time step, j is prediction time step, is heating runtime fraction

(RTF) of th HVAC, δ is an upper bound of instantaneous power (demand), ( ) are temperature violations, (𝑖

) are temperature violations from lower- and upper-temperature bounds for the ith zone, ( )are weights

on optimization variables for ( ), is weight on optimization variable for δ, ( ) are lower and upper

boundaries of comfort temperatures, is the optimal -step temperature prediction from the building𝑗
model given the data (Dk), and Dk is data till time step k.

The target zone has 6 HVAC devices (5 HPs and 1 GF). Among various objectives (e.g., energy cost or GHG
minimization), the objective is set to reduce the use of GF as much as possible unless necessary based on the project
and customer’s goals (i.e., electrification). So, we treat the GF as the HP with very low COP (i.e., high rated power) to
limit its usage. However, we add MPC constraints to force the heat pumps to stop operating when the outdoor air
temperature falls below -4°F (-20°C) based on catalog data, and the GF is used as the primary heating source. To do

this, we set the rated power of GF as the same as or . In other words, GF is used when there is more than a
temperature violation of 1°C only with HPs. However, for the demand term (δ), GF’s operation is not directly related

to the demand term, so we set the rated power of GF as 0 for the demand term calculation. and are set to
1000, 1000, and 10. δ is set to 70% of the summation of . Since there are 6 temperature measures, 12R-12C
(2R-2C for one thermostat) gray-box model was established and trained as described in our previous research (Kim et
al., 2016).

RESULTS

Field Demonstration
Baseline and MPC data were collected in alternating blocks of days during the testing period, January-March

2023. This helped us compare Baseline and MPC data with similar outdoor conditions, in comparison to a traditional
M&V approach of pre- and post-installation. Excluding weekends, holidays, and erroneous days (e.g., router outage),
we obtained 19 and 13 days of Baseline and MPC days, respectively.

Day-by-day Comparison

Figure 3 shows a day-by-day comparison of Baseline and MPC controls. Two days that are typical of cold winter
days are selected for comparison by day. In Baseline control (Figure 3 (a)), HPs started heating operations near 7 AM,
and the room temperatures reached setpoints near 9-10 AM. The power consumptions before 7AM were due to
defrost operations in cold weather. This happened during the non-heating time because some end-users left the office
while having the fan to the always-ON mode. Due to the simultaneous operations of HPs, the peak electricity demand
(HPs only) reached 6.52 kW near 8 AM while the GF was also being used for about 40 minutes though it is not shown



in this figure. On the other hand, MPC control (b) started heating operations in the early morning near 3 AM, and it
showed a more smooth building power profile compared to the Baseline. It both reduced the peak load to 5.6kW and
completely eliminated GF operation. Since the temperatures were measured from IR transmitters, there is a limitation
in comparison, but the room temperature profiles showed similar performance.

Figure 3. Day-by-Day comparison between Baseline and MPC

Load Shifting and Peak Demand Reduction

Figure 4 (a) shows the summary of the daily heating load profile of Baseline vs. MPC for all the experiment days.
Due to the GF, the thermal load profiles are compared by multiplying rated heating power to the GF heating signal
and HP powers instead of electricity profiles. In the top figure, each day’s thermal load profiles are visualized in
light-colored lines and the mean profiles of all days are shown in a thick line with the dotted line for the electricity cost
on the right-side y-axis. Since the building’s occupied schedule starts at 7 AM, the peak thermal profile avoided ToU
peak time, but it is clearly shown that there is a morning heating peak between 7-8 AM in Baseline control. However,
the MPC shifts the peak thermal load in the early morning time as it is designed, and it showed more smooth thermal
load profiles. As a result, 23.4% of thermal load during 7 AM-10 PM was reduced (i.e., shifted to early morning)
compared to the Baseline. Figure 4 (b) shows the daily electric peak load comparison of all days. In Eq. 1, the daily
peak load is also included in the objective function, but it only sees the peaks in the day’s prediction horizon, so the
absolute value of monthly peak demand is not strictly regulated in the MPC. Despite this limitation, MPC shows a
14% of electricity peak reduction by doing load shifting even without using GF for the heating at all. However, since
the peak demand is affected by the number of operating HPs, some MPC days showed higher peaks when there were
defrost cycles or small heating loads.



Figure 4. Summary of daily heating load profile and electric peak load.

Electricity, Cost, and Gas use Reduction

Figure 5 summarizes the electricity use, electricity cost, and GF usage hours during the demonstration periods.
To account for the differences in the distribution of outdoor air conditions, we used the change-point model (Kissock
et al. 2003) for evaluation. In the left-side figure, the electricity consumption of MPC and Baseline are similar,
resulting in overlapping change-point models. Since MPC did not use GF at all (right-side figure) and used preheating,
it was expected to use HPs more. However, due to the unmodeled power consumption of the HPs’ defrost cycles and
the small amount of GF usage time, the final consumption showed no significant differences. In the middle figure,
MPC showed lower energy costs by preheating in non-peak times, resulting in a $62.2/month (27%) reduction. This
was mainly achieved by the reduction in fixed natural gas cost (Table 2), but it could increase if the peak price time
(from 8 AM) overlaps with peak demand time (7-8 AM). When the heating load was small, the pre-heating time
decreased, resulting in a decrease in cost differences. Additionally, by not using GF at all MPC reduced GHG
emissions by approximately 0.052 metric tonnes (0.051 imperial tons) per month based on a GHG equivalency
calculation3. Finally, based on the cost information in Table 1, assuming the WiFi infrastructure is already established
on the site, the capital costs would be paid back in approximately 13 months based on the heating operation.

Figure 5. Summary of electricity, cost, and gas furnace usage over demonstration periods.

CONCLUSION AND DISCUSSIONS

3 https://www.epa.gov/energy/greenhouse-gas-equivalencies-calculator



This paper describes an MPC to coordinate and optimize operations of HPs and GF heating dual-fuel systems
for SMCBs. The MPC is developed with low-cost sensing and actuating devices and demonstrated for a real office
building with 5 HPs and 1 GF for 3 months. The test results showed MPC reduced 27% of cost while completely
eliminating GF usage by shifting 23.4% of the thermal load from occupied-peak time to non-occupied-non-peak time.
The elimination of GF usage also resulted in a 0.052 metric tonnes (0.051 imperial tons) per month reduction of
GHG emissions via simple calculation. Electricity marginal emissions signals were not used in this study, but they can
bring more aggressive GHG reductions for the HP-side as well.

Although the MPC has shown success in a real building, there are several limitations and approximations in this
research. The main limitation originated from the HPs communication interface. Since the IR transmitter is a
one-way-communicating device, we have limited information regarding HP operations. Therefore, it is modeled as a
simple proportional control unit. However, this can be improved by implementing a linear or piecewise linear COP
map as a function of outdoor air temperature in the MPC. To overcome the limitation and cost reduction, it is also
crucial to have interoperable communication services like typical smart thermostats for ductless HP products as they
have become more popular in the market due to the urgent call for the nation’s electrification.
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