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Abstract 

 

Without a doubt, nuclear magnetic resonance (NMR) has been an indispensable tool for 

structural determination in chemistry, molecular biology, and more. The power of NMR to 

elucidate positions and distances of atoms within molecules has allowed generations of chemists, 

chemical biologists, and molecular biologists to develop strategies for synthesizing new 

medicines, advanced materials, and to verify their syntheses. To this day, the core strategy from 

which this tool draws its power remains a drive to higher and higher magnetic field. For the 

purposes described above, it has been a necessary drive. A higher field allows for better signal to 

noise ratio (S/N) and narrows relative spectral linewidths, resulting in faster data acquisitions and 

for acquired data to be more granulated. There are, however, side effects that accompany the 

drive to higher field. Extremely strong magnetic fields are physically dangerous if any 

magnetizable materials come close enough to magnets. Equipment, tools, and some people 

themselves must therefore be kept a safe distance away, and instances where failures in this 

regard have led to deaths are not unheard of. The superconducting magnets that generate these 

intense fields are also quite large, are limited to tiny sample volumes, and require special 

maintenance, which can be expensive. Specifically, they require a constant supply of liquid 

helium in order to keep the coils at temperatures low enough to maintain their superconducting 

characteristics. This helium is not a renewable or ubiquitous resource and it gets more expensive 

by the year, as challenges to exploration, capture, and even political upheaval destabilize the 

global market for liquid helium. Meanwhile, advances in amplifier and NMR spectrometer 

technology have resulted in better control and sensitivity in low-field experiments. For these 
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reasons, and more, low-field NMR has become an ever-more attractive area of research for the 

advancement of NMR and magnetic resonance in general. 

This work describes a body of research focused on design and data analysis for low-field 

NMR, which is loosely defined for the purposes of this manuscript as NMR performed in a static 

magnetic field, B0, less than 0.1 T, or a Larmor frequency lower than about 4.4 MHz. Because 

NMR at low-field does not generally produce chemical shift-resolved spectra, data acquisition 

and analysis instead tends to focus on bulk magnetic relaxation rates and imaging. Furthermore, 

these parameters are often difficult to understand using direct mathematical models because 

samples investigated at low-field are often inhomogeneous and possess geometries that are not 

always amenable to symmetry-based mathematical simplifications. It is often better to instead 

use statistical correlation and categorization to understand experimental results from a higher, 

less granular level. This fact motivates an initial exploration into the use of partial least squares 

as a method to determine the electrical permittivity of aqueous electrolyte samples at extremely 

high pressures. While this is not a study of magnetic resonance, it serves as an example for the 

application of this technique to similar problems that might present themselves in NMR. The 

next chapter describes Matlab codes that have been written for simulating magnetic fields for 

arbitrary coil and magnet shapes. The final two chapters are an exploration into novel rf coil 

designs for use in single-sided NMR, and specifically in the presence of shielding due to 

conductive magnet material. Multiple coil designs are described and their performances 

characterized. Ultimately an unexpected “fringe coil” geometry is shown to be far superior in 

theoretical models and practical testing with a variety of sample types and geometries. 
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Figure 1.1. Two non-interacting magnetic moments, µa and µb, are depicted in a magnetic field, 
B. The moment µa is oriented parallel to the field and therefore has low energy, whereas 
µb is oriented anti-parallel to the field and has relatively higher energy. 3 

Figure 1.2. A diagram depicting the splitting of the energy levels between spin-½ nuclei of up 
and down states. The energy of each state is given by negative one times the product of 
the spin, the gyromagnetic ratio, and the strength of the external field. The difference in 
the energy for the up and down states increases linearly with increasing magnetic field 
strength, B. 5 

Figure 1.3. The basic elements of the Stern-Gerlach Experiment are the source (left), the beam 
of neutral silver atoms (dotted line), a linearly heterogeneous external magnetic field 
(dB0/dz) generated by magnets above and below the beam (indicated with “N” and “S” 
labels), and a detecting screen (right). As the silver atoms pass through the magnetic 
field, the magnetic moments from their nuclear spins interact with the external field, B0, 
which imparts a deflecting force on the individual atoms, depending on their spin states. 
Up spins are deflected toward the stronger positive magnetic field and vice versa for the 
down spins. The result is two discrete points of impact at the screen. 7 

Figure 1.4. The three ways that states are transitioned by photons in a two-level spin system are 
a) absorption of a resonant photon to transition to a higher energy state, b) spontaneous 
emission of a photon by the spin, enabling a transition to a lower energy state, or c) 
stimulated emission, in which a passing resonant photon elicits an emission of a coherent 
photon from a spin transitioning from a high energy state to a low energy state. 8 

Figure 1.5. The Rabi experiment directed a beam of spin-possessing particles (dashed line) 
between two inhomogeneous magnetic fields generated by sequential magnets, labeled 
“Magnet A” and “Magnet B” here. With only these magnets, the beam could be aimed so 
the path would be equally curved back and forth in the two regions at the same rate, 
landing at the detector on the right. The introduction of a third homogeneous magnetic 
region, generated by “Mag. C,” along with perpendicular oscillating field, B1, allowed the 
experimenter to flip the spins in the region of Mag. C. This flip changed the direction of 
the particle, causing the path in region B to veer from the detector, the path represented 
here by the dotted line. The probability of a spin state change is highest when B1 is 
resonant with the spin states in a static B0 field. Thus, by knowing the strength of B0 and 
frequency of B1, the gyromagnetic ratio of the nuclei under observation could be 
determined with precision. 10 

Figure 1.6. Today, the typical NMR setup consists of a sample placed inside an RF coil, 
depicted here as the solid swirling line around the sample. This generates the perturbing 
field (B1), which is perpendicular to the powerful, homogeneous, static magnetic field 
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(B0) generated by superconducting coils, which are depicted here as cutaway coils in the 
background. 12 

Figure 1.7. In the FID experiment, a sample starts out magnetized by B0 along the z-axis as 
shown on the left. A pulse from the rf coil of the correct power, frequency, and time will 
turn the bulk magnetization to lie in the xy-plane, after which it will precess. This 
precession of a magnetic field inside a coil induces a current in the coil, which is then 
detected by the spectrometer. 13 

Figure 1.8. An oscillatory B1 field can be decomposed (and is equivalent) to a pair of counter-
rotating vectors, each with half the magnitude of the original B1 (a). In panel (b), it is 
shown that the pairs of counter-rotating vectors can be summed up to an equivalent B1 
field described by Equation 1.14. If the phase in Equation 14 is set to f = p/3, all vectors 
are rotated by 60 degrees (c), and the resulting summed B1 is also rotated by 60 degrees 
(d). 20 

Figure 1.9. The free induction decay consists of an rf pulse, shown here as the black rectangle 
resting atop the horizontal time axis. The pulse power, and thus the pulse nutation 
frequency, is depicted by the height of the pulse, while the pulse length is depicted by the 
length of the pulse. Above the pulse, the angle swept out by the nutation is indicated in 
parentheses, with a subscript for the axis about which the nutation rotates, which itself 
indicates the phase. To the right of the pulse, the resulting signal is depicted by a 
decaying sine wave. 21 

Figure 1.10. The principle of relaxation is demonstrated through the example of a FID 
experiment, shown here in the rotating frame. The plot above shows a pulse sequence on 
a time axis, which is aligned to depictions, below, of the sample magnetic moment vector 
(black arrow), along with its longitudinal and transverse components (grey arrows). The 
sample starts out at equilibrium (eqbm), magnetized along the external B0 field, in the z-
direction. A (p/2)x pulse rotates the magnetization into the xy-plane, to lie in the negative 
y-direction (t = 0). As the bulk magnetic moment precesses, the transverse components 
shorten and the longitudinal components grow (t = 1, 2, 3, & 4 T1). After 5 T1 periods, the 
sample moment has nearly fully recovered its equilibrium state (t = 5 T1). 24 

Figure 1.11. The theoretical NMR signal of methanol, without relaxation or J-coupling, is a 
sinewave with an amplitude that expands and contracts. The “beats” of the signal arise 
from the periodic constructive and destructive interference of the component frequencies 
that make up the signal. This plot was constructed using Matlab™. 32 

Figure 1.12. The Fourier transform of the signal obtained from a single spin after a (p/2)x pulse, 
while accounting for transverse relaxation. This theoretical plot was calculated using a 
T2* of 100 ms and the center of the abscissa represents the on-resonance Larmor 
frequency. The plot reveals a peak width (sometimes called linewidth) that, at half height 
is equal to 2/T2*. This plot was constructed using Matlab ™. 34 

Figure 1.13. Single-sided NMR generally takes one of two geometries, depicted here. The first 
type, in (a) generate a B0 field parallel to the magnet surface and transverse in the sample 
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volume. In this case, the rf coil may be a surface loop, which generates a B1 
perpendicular to the surface as depicted, or a double-D coil, which would produce a B1 
field parallel to the surface, but perpendicular to B0. The second common geometry is 
depicted on the right, in (b), in which the B0 is generated perpendicular to the surface of 
the magnet, penetrating the sample volume directly, in which case the B1 field must be 
produced parallel to the surface, usually with a double-D coil. 42 

Figure 1.14. Two examples of single-sided magnets with a split main magnet and a central 
shimming magnet are shown. Dashed lines indicate flux lines of the B0 field and the grey 
ellipse indicates roughly the location of the homogeneous “sweet spot” region. Whether 
the static field is perpendicular (a) or transverse (b) to the surface, the effect is the same 
with respect to field strength and gradient, although the direction of field is different. 
These diagrams are provided for conceptual purposes and elements are not drawn to 
scale. 43 

Figure 1.15. The pulse sequence for an inversion recovery (a) consists of an inverting pulse, 
followed by a delay time that allows the longitudinal magnetization to recover, then a 
second pulse that rotates the magnetic moment into the transverse plane for observation. 
The pulse sequence is repeated n times, with a full recovery time between each repetition. 
The plot of the inversion recovery (b) is the series of amplitudes plotted against the 
recovery times, tn, for which they were acquired. The plot in (b) was constructed in 
Matlab™. 46 

Figure 1.16. The pulse sequence for a saturation recovery (a) consists of a series of i saturating 
pulses, typically p/2-pulses, followed by a delay time that allows the longitudinal 
magnetization to recover. A second pulse rotates the magnetic moment into the transverse 
plane for observation. The pulse sequence is repeated n times, with no need for a full 
recovery time between each repetition. The plot of the saturation recovery (b), which was 
constructed in Matlab™, is the series of observed amplitudes plotted against the recovery 
times, tn, for which they were acquired. 48 

Figure 1.17. A Carr-Purcell-Meiboom-Gill (CPMG) pulse sequence (a) consists of a p/2-pulse, 
followed by a delay time, tdel, during which the isochromats of a sample de-phase. A p-
pulse flips the isochromats so that the heterogeneous precession now serves to re-focus 
the isochromats. After another tdel, the spin echo is observed as the isochromats complete 
their re-focusing. The rephasing part of the pulse sequence is repeated n times, with an 
echo being acquired between each refocusing p-pulse. The plot of the CPMG (b) is the 
series of observed echo amplitudes plotted against the experiment time at which they 
were acquired. 50 

Figure 2.1: The BeCu pressure cell is shown in a blown up diagram.  The pressure capsule holds 
approximately 0.5 mL. 62 

Figure 2.2. The reflectivity spectra of sample at either elevated pressure, or elevated ionic 
concentration. 65 
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Figure 2.3. A comparison of dielectric constants predicted by PLS regression (circles) versus 
theoretically calculated values (squares). The y-axis reflects the values calculated by the 
PLS algorithm, whereas the x-axis is the known value of dielectric constants from 
calculating from the sample pressure and NaCl concentration. The blue line is a least-
squares fit to the predicted data and shows that despite poor precision of the individual 
predictions, the overall trend of dielectric constant change is quite accurate. 65 

Figure 3.1. Designing coils by trial and error is a time-consuming and laborious process. This 
shows a sample of the numerous iterations that were built and tested on the path of 
designing a coil for one system. 70 

Figure 3.2. The output of MagModel displays the user-defined coil loops (upper-left); the slice 
in space at which the magnetic field will be calculated, as well as the line on which 
further magnetic field calculations will be made, overlayed onto the coil (upper-right); a 
depiction of both the static and rf magnetic fields plotted over the loop and magnet blocks 
(lower-left); and a plot of the user-defined component of the magnetic field strengths, 
along the user-defined line (lower-right). All plots can be turned and magnified by the 
user. 72 

Figure 3.3. The LoopData.xlsx spreadsheet is used to define the loops of the rf coil being 
modeled. Shown here, LoopData.xlsx contains the entries that were used to obtain the 
results in Figure 3.2. 74 

Figure 3.4. The BlockData.xlsx spreadsheet is used to define the magnetic block elements of the 
permanent magnet, which produces B0. Shown here, BlockData.xlsx contains the entries 
that were used to obtain the results in Figure 3.2. These elements are based on a three-
magnet array as used in the Balcom Group at University of New Brunswick. 76 

Figure 3.5. The SliceData.xlsx spreadsheet is used to define the slice upon which magnetic field 
data will be displayed. Shown here, SliceData.xlsx contains the entries that were used to 
obtain the results in Figure 3.2. 78 

Figure 3.6. The LineData.xlsx spreadsheet is used to define the line upon which magnetic field 
data will be displayed. Shown here, LineData.xlsx contains the entries that were used to 
obtain the results in Figure 3.2. 80 

Figure 3.7. The calculations to be performed in MagModel, as well as the path to saved data, are 
set in MagModel, lines 8, 10 and 12. The settings shown here were the settings used for 
the calculation of Figure 3.2. 83 

Figure 4.1. Th mechanism of eddy-currents is depicted. A coil containing an rf current, Icoil, 
positioned above a conducting plane generates a magnetic field, B1. In the plane of the 
conducting surface below, according to Faraday’s Law of Induction, the incident B1 
induces a counter-rotating eddy-current, Ireact, which then produces a reactive magnetic 
field, Breact. The overall magnetic field experienced by a parcel of sample is the sum of 
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current in the bucking coils is oriented such that the field produced by the bucking coils 
(Bbuck) supports the field of the primary coil (Bpri) above the assembly. Below the coil 
array, Bbuck opposes Bpri so that the total field at the magnet surface is ideally zero. 91 

Figure 4.3. A  simulation of coils is presented, both in free space and when placed atop a 
conducting surface. The left column qualitatively displays the coil in free space and the 
middle column shows the coil and field in the presence of a conducting surface. The right 
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42 % reduction for the simple surface loop in (a). 94 

Figure 5.1. A simplified sketch showing the relative placement of the linear unilateral magnet 
array, NMR detection coil and homogeneous static magnetic field sample volume. The 
homogenous static magnetic field volume is indicated by the axis system intersecting the 
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Figure 5.2. A graphical model for the generation of the eddy-current-reduced rf field is shown in 
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plot in (b) describes the rf field strength of a loop in free space, calculated at a distance h2 
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from the center of the loop, r, shown as the solid line. The dashed line in (b) shows what 
happens when the conducting surface is moved closer to h1 = 2 mm. The plots in (c) 
show the standoff distance dependence of the rf field developed by the same circular loop 
coil at the center r = 0 as a function of h2. Again the free space rf field with h1 = 4 cm is 
shown as the solid line while moving the conductor closer to h1 = 2 mm produces the 
dashed line. These plots were generated from the analytical results of Moser [5]. 105 

Figure 5.3. A sketch describing how the rf field from a solenoid coil placed sideways on a 
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above the coil. The solid black flux line describes the primary field of the solenoid coil 
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in the sample region. Again, the static magnetic field is in the z-direction. 109 

Figure 5.4. Summary of ANSYS developed numerical rf field calculations for a fringe and split 
fringe coil in (a) and (b) respectively. The left and center column show the rf fields 
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perpendicular to the z-direction without and with a conducting surface placed h1 = 6 mm 
below the top of the rf coil complex. The top and bottom rows in (a) and (b) respectively 
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the rf coil. The solid and dashed lines show the rf field value without and with the 
conducting surface as a function of distance h2 from the coil surface. The vertical gray 
line shows the position of the homogenous static magnetic field volume where the 
shielding performance is evaluated. 111 

Figure 5.5. Magnetic resonance two-dimensional slices, extracted from 3D magnetic resonance 
images obtained at a 4 MHz 1H Larmor frequency for a large beaker of mineral oil placed 
on the surface of a similarly sized square loop coil, a fringe coil and a split fringe coil in 
(a) – (c) respectively. The images in the right column include an aluminum plate placed 
h1 = 6 mm below the top of the rf coil while the images in the left column have the 
aluminum plate removed. The number inset on the lower right corner of the images in the 
right column is the ratio of the maximum signals obtained with and without the 
conducting plate. 113 

Figure 5.6. Summary of T2obs values obtained for light mineral oil with the standard fringe (a) 
and split fringe (b) coils as a function of beaker-to-magnet displacement, h2. The T2obs 
values were obtained from a Matlab™ fit of the decay of the raw CPMG echoes to a 
single exponential function. In both plots, the circle captures the average value of T2obs 
obtained at h2, while the bars capture the error in this average. As the value of h2 
increases, the S/N drops for a constant number of signal averages, and the error in T2obs 
increases. Note that at h2 = 2.1 cm, the S/N for the standard fringe coil transient was too 
low to obtain a T2obs estimate. 116 

Figure 5.7. Spin echo intensity as a function of rf pulse length. Here, the ordinate corresponds to 
the length of the first rf pulse in the spin echo experiment. This ordinate value is half the 
length of the second rf pulse in the spin echo experiment. The abscissa captures the total 
spin echo signal intensity. This value was obtained by integrating the raw spin echo 
signal in the time domain. Five spin echoes were obtained at each rf pulse length 
observed. The thick solid lines correspond to the average signal intensity, while the 
shaded regions communicate the 95% confidence in this measured spin echo intensity. 
The progressively darker shading corresponds to the real, imaginary, and absolute value 
of the signal intensity. Results are shown for the standard fringe and split fringe coil in 
(a) and (b), respectively. 118 

Figure 5.8. Two real examples of the split fringe coil in action. The split fringe coil inserts into 
the existing groove of WA-1 unilateral magnet and the split fringe coil/unilateral magnet 
complex is placed into a water tight Pelican™ box lined with copper as shown in the 
picture on the left in (a). The enclosed NMR sensor was submerged in a bucket of 
laundry detergent, as shown in the upper right in (a), and application of the CPMG pulse 
sequence produced the decay shown on the left in (b), with a T2obs = 16 ms time constant 
obtained from the ILT on the far right. The lower right in (a) shows the placement of a 
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sequence yielded the transient decay shown in the left of (c). In this case, the ILT reports 
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Chapter One – Relevant Principles 

 
A brief review of some of the key aspects of NMR 

 

“Chance favors the prepared mind.”  

– Louis Pasteur 
 

1.1 Introduction 

The explorations laid out in the following chapters center on the use of nuclear magnetic 

resonance (NMR). After a brief foray into large dataset regression in Chapter 2, the arc turns 

toward computer-model-aided design of coils and magnets. In particular, the use of NMR in a 

single-sided geometry and with a weak static magnetic field is the focus. As such, it is prudent to 

briefly review some of the key concepts of NMR for context. 

 

1.2 Spin 

The principle of magnetic resonance is based on the quantum mechanical concept of 

“spin.” Spin is a fundamental property of matter, possessed by all elementary particles such as 

electrons, quarks, and so on. Because everything else is made up of these elementary particles, 

spin is therefore also possessed by everything composed of those elementary particles, including 

composite particles and atomic nuclei. As a fundamental property, spin exists in the same way 

that mass or charge exist. It just does. 

Spin is also the most unfortunately named of the fundamental properties. From its name, 

one might imagine that all particles are turning on their own axes as they go about their business, 

like tiny little planets. That is not the case. The term, “spin,” comes from the fact that this 
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property behaves like angular momentum, having magnitude and direction, except that a particle 

with spin is not orbiting anything else. It just appears to have this angular momentum within 

itself alone as if it were spinning [1].* This angular momentum is evident from the fact that a 

particle with non-zero spin and non-zero charge has an observable magnetic moment [2]. Finally, 

spin is also a quantized property. The value of a particle’s total spin may be one half, one, zero, 

or any multiple of these. A proton, for instance, has a total spin of one half. 

Although many particles possess the property of spin, this manuscript focuses specifically 

on nuclear magnetic resonance, and so from this point, only nuclear spins will be referenced. 

Moreover, the hydrogen nucleus will be the most common nucleus referenced, and the term 

“proton” will often be used in place of hydrogen because this is common parlance in the world of 

NMR and because the nucleus of a typical hydrogen atom is just a proton. Now speaking more 

generally again, while nuclei only have one value for total spin, their observed values may be 

any sum of positive or negative halves, whose positive-only total would sum to the positive total 

spin value. For instance, a spin-½ proton, having a total spin angular momentum of ½, may be 

observed as -½ or ½. A spin-1 lithium nucleus may be observed to be (-½ + -½), (-½ + ½),  

(½ + -½), or (½ + ½), which each sum to the possible observed values of -1, 0, or 1. Thus, it can 

be seen that the observed values of spin always differ from each other in integer increments. 

These observed values are referred to as states, and specifically for spin-½ nuclei in NMR such 

as hydrogen nuclei, the states +½ and -½ are referred to as up and down, or |+⟩ and |−⟩, 

respectively. 

 

 
* At the time of its discovery, scientists may have actually thought that particles were spinning, and therefore given 
it this unfortunate moniker. However it came about, though, the name stuck and today, like Sisyphus, we must toil 
against the continuous task of explaining to poor young budding scientists that a “spin” is not actually spinning. 
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1.3 Observing spin: Zeeman splitting and the Stern-Gerlach Experiment 

Of course, theory is fine, but if a theory cannot be verified by observation, it is useless. 

And indeed, the existence of spin can be observed in a very straightforward manner. As stated 

above, a non-zero spin-possessing nucleus has charge and will therefore have a magnetic 

moment. Furthermore, a nucleus with a magnetic moment will gain or lose potential energy 

when placed in a magnetic field according to the following equation, and as depicted in Figure 

1.1. 

 

𝐸 = 	−𝝁 ∙ 𝑩																																																																					(1.1) 

 

Here, E refers to the energy, µ refers to the magnetic moment vector, and B refers to the 

magnetic field at the location of the magnetic moment. Note that minus sign means that the 

energy is lower when the magnetic moment and the magnetic field are parallel, and higher when 

the two are antiparallel. 

 

 

Figure 1.1. Two non-interacting magnetic moments, µa and µb, are depicted in a 
magnetic field, B. The moment µa is oriented parallel to the field and therefore 

has low energy, whereas µb is oriented anti-parallel to the field and has relatively 
higher energy.  

 



 4 

 The magnetic moment of a nucleus is related to the spin via the gyromagnetic ratio, given 

by the symbol gamma, g. 

 

𝝁 = 𝛾𝑰																																																																									(1.2) 

 

where I refers to the spin angular momentum of the nucleus. The values of each nucleus’ 

gyromagnetic ratio can be found in existing tables. For a hydrogen nucleus, of spin-½, the values 

of I may be !
"
ℏ or − !

"
ℏ for spin up and down, respectively, where ℏ refers to the reduced Planck 

constant, approximately 1.055 x10-34 J s [3]. As a note, this text and NMR in general will prefer 

the use of ℏ over h, the standard Planck constant of approximately 6.626 x10-34 J/Hz [4]. 

 By combining Equations 1.1 and 1.2, it is possible to derive an equation for the energy 

difference between spins of different states in a magnetic field, and then to create a diagram 

showing the energy splitting trend depending on the strength of the magnetic field in which the 

nucleus is placed. This energy splitting, dependent on the strength of the external field, is called 

the Zeeman effect, after Dutch physicist Pieter Zeeman and is shown mathematically in Equation 

1.3. 

  

Δ𝐸 = 	𝐸# − 𝐸$ =	4
𝛾ℏ𝐵
2 6 −

𝛾ℏ𝐵
2 = 	𝛾ℏ𝐵																																									(1.3) 

 

Figure 1.2 shows the simplest manifestation of such an energy splitting diagram, which 

depicts a spin-½ system, as is the case for the hydrogen nucleus. 
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Figure 1.2. A diagram depicting the splitting of the energy levels between spin-
½ nuclei of up and down states. The energy of each state is given by negative 

one times the product of the spin, the gyromagnetic ratio, and the strength of the 
external field. The difference in the energy for the up and down states increases 

linearly with increasing magnetic field strength, B. 

 

 Now, if one could pass a beam of spin-bearing nuclei through a magnetic field, which 

had a linear gradient oriented transverse to the direction of travel, the magnetic moments of the 

nuclei would feel a deflecting force according to the spatial derivative of the magnetic interaction 

energy. Energy can be defined as the spatial derivative of the energy of an object and combining 

this with Equations 1.1 and 1.2 one arrives at the following: 

 

𝑭 = 	−
𝑑𝐸
𝑑𝑧 = 	

𝑑
𝑑𝑧 𝛾𝐼%𝐵&																																																										(1.4) 

 

where the magnitude of the magnetic field, B0, has been used, rather than the vector, B. By 

convention, the applied magnetic field, B0, sets the z-coordinate of the system under investigation 

and this text will follow the same tradition [1]. Since the direction of the applied magnetic field 

determines the orientation of the spin being observed, Equation 1.4 has also been simplified to 

use only the z-component of the spin, Iz, rather than the full vector spin. If the heterogeneity of 

the applied magnetic field is linear in the z-direction, then B0 can described simply as a scalar 
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gradient value, Gz, times the position, z, and Equation 1.4 then becomes constant within the 

region of the magnetic field: 

 

𝐹% = 	𝛾𝐼%𝐺%																																																																					(1.5) 

 

It is this premise upon which the famous Stern-Gerlach experiments were performed in 

1922 by Walther Gerlach, after their conception in the imagination of Otto Stern [5] [6] [7]. This 

experiment used a beam of silver atoms, which have neutral overall charge, but a nuclear spin of 

½. This ensured that any deflection of the beam would be due to magnetic dipole interaction 

only, and not the Lorentz force of charge moving in a magnetic field. As shown in Figure 1.3, the 

atomic beam was passed through a linearly heterogeneous magnetic field, after which the atoms 

of the beam struck a screen for observation. The result was that, rather than a distribution of 

impacts spread out in the z-direction, two discreet impact points were observed, having been 

deflected either up or down, depending on the z-component of each atom’s spin. The results of 

this experiment showed that spin is a quantized and intrinsic property. 
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Figure 1.3. The basic elements of the Stern-Gerlach Experiment are the source 
(left), the beam of neutral silver atoms (dotted line), a linearly heterogeneous 
external magnetic field (dB0/dz) generated by magnets above and below the 

beam (indicated with “N” and “S” labels), and a detecting screen (right). As the 
silver atoms pass through the magnetic field, the magnetic moments from their 

nuclear spins interact with the external field, B0, which imparts a deflecting 
force on the individual atoms, depending on their spin states. Up spins are 
deflected toward the stronger positive magnetic field and vice versa for the 

down spins. The result is two discrete points of impact at the screen. 

 
1.4 Beyond the Stern-Gerlach Experiment: From Rabi to modern NMR 

Unfortunately, it was not immediately realized that the results of the Stern Gerlach 

experiment were due to spin, even by Stern and Gerlach themselves. Instead, they slightly 

missed the mark and attributed the splitting to something called “space quantization in a 

magnetic field.” Nonetheless, the experiment proved to be pivotal in lending experimental 

evidence to a number of firsts, including the quantization of the nuclear angular momentum, the 

strength of a nuclear magnetic moment, and the splitting of a beam based on the total angular 

momentum of its nuclei, to name a few [8]. It was not until Isidor Rabi’s experiments with 

particle beams in 1939 that true nuclear magnetic resonance was actually performed. For these 

efforts, Rabi was awarded the Nobel Prize in 1944. 

To understand Rabi’s advance over the Stern-Gerlach experiment, it is helpful to look 

back at the Zeeman splitting diagram (Figure 1.2), where another important insight can be 
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grasped. If there is an energy difference between the states of a spin system in a static magnetic 

field, then by the principles of quantum mechanics, the spin state may undergo a photon-

mediated transition. This may happen if the interacting photon is of the same energy as the 

energy splitting of the spin system, also called being resonant. From the famous Planck-Einstein 

relation, given here as Equation 1.6, this can be equated to a frequency. The energy of a photon, 

Ep, with frequency n, or angular frequency w, is 

 

𝐸' = ℎ𝜈 = 	ℏ𝜔																																																																	(1.6) 

 

The specific frequency of this splitting for a particular nucleus is called the Larmor 

frequency (w0) and it will be referenced often in this text. 

 

 

Figure 1.4. The three ways that states are transitioned by photons in a two-level 
spin system are a) absorption of a resonant photon to transition to a higher 
energy state, b) spontaneous emission of a photon by the spin, enabling a 

transition to a lower energy state, or c) stimulated emission, in which a passing 
resonant photon elicits an emission of a coherent photon from a spin 

transitioning from a high energy state to a low energy state. 
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The three main processes by which this may happen are depicted in Figure 1.4, which 

shows a simple two-state system, as is typically the case in NMR. These three processes are: 

 

1. Absorption, in which a spin in a low energy state is transitioned to a high energy state 

by absorbing a resonant photon. 

2. Spontaneous emission, in which a spin in a high energy state transitions to its low 

energy state, releasing a photon of the energy described by the splitting. 

3. Stimulated emission, in which a resonant photon passes a spin in its high energy state, 

causing it to release its own photon of the same energy, phase, and polarity (called 

coherent), while simultaneously transitioning to its low energy state. 

 

From these principles, one can imagine that a spin could be placed in a static field, 

generating an energy level splitting, and then a second oscillating field could be introduced to 

provide radiofrequency (rf) energy that would be able to induce transitions in the spin energy 

state. 

 Rabi’s experiment was a modification of the Stern-Gerlach experiment that used 

precisely this concept. As in the Stern-Gerlach experiment, it used a particle beam, but instead of 

a single inhomogeneous magnetic field, Rabi used two successive inhomogeneous fields, whose 

directions were aligned, but with opposed gradients [9]. With this configuration, a beam of 

particles with known spin could be passed through the contraption at an offset angle and, if there 

were no other modifications, the beam would be initially deflected back toward center. The beam 

would then overshoot in the opposite offset direction, then be deflected again back toward center 

in the second field gradient, to strike a detector. However, as shown in Figure 1.5, Rabi also 
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added a component between the two field gradients. Here, a homogeneous magnetic field, B0, 

was inserted, oriented in the same direction as the gradients, as well as an oscillating magnetic 

field, B1, which was oriented perpendicular to B0. If the frequency of B1 oscillations matched the 

Larmor precession frequency of the nuclei in the beam, the nuclei and B1 would be in resonance 

and the spin state of the nuclei could undergo a transition. The function of this section of the 

apparatus was to disturb the magnetic moment orientation of the spin beam so that, upon entering 

the second field gradient, the overall returning force presented by the second gradient was no 

longer equal and opposite that of the first gradient. Spins which had their orientation deflected by 

the central resonating component would not strike the detector and the intensity of the beam at 

the detector would be diminished. The frequency of H1 oscillation was able to be finely 

controlled and in this way, the Larmor frequency – and thus the magnetic moment – of the atoms 

in the beam could be probed with exquisite detail. 

 

 
Figure 1.5. The Rabi experiment directed a beam of spin-possessing particles 

(dashed line) between two inhomogeneous magnetic fields generated by 
sequential magnets, labeled “Magnet A” and “Magnet B” here. With only these 

magnets, the beam could be aimed so the path would be equally curved back and 
forth in the two regions at the same rate, landing at the detector on the right. The 
introduction of a third homogeneous magnetic region, generated by “Mag. C,” 
along with perpendicular oscillating field, B1, allowed the experimenter to flip 

the spins in the region of Mag. C. This flip changed the direction of the particle, 
causing the path in region B to veer from the detector, the path represented here 
by the dotted line. The probability of a spin state change is highest when B1 is 
resonant with the spin states in a static B0 field. Thus, by knowing the strength 

of B0 and frequency of B1, the gyromagnetic ratio of the nuclei under 
observation could be determined with precision. 



 11 

Today, magnetic resonance is detected using Faraday induction and without the need for 

a molecular beam, as depicted in Figure 1.6. This method was pioneered simultaneously by Felix 

Bloch’s group at Stanford and Edward Purcell’s group at Massachusetts Institute of Technology 

between 1945 and 1947 [10] [11] [12]. Bloch’s papers lay out the classical math that is still used 

today as the simplest way of understanding nuclear magnetic resonance induction, namely the 

Bloch sphere. Purcell’s papers described both a resonant cavity method, as well as a solenoid 

method. It is the second that is most commonly used today. In this method, a sample – typically 

liquid – is placed inside a solenoid that generates the oscillating B1 field – the rf coil. This 

assembly is then placed inside a larger magnet that generates the permanent B0 field. This B0 

field is most commonly generated by super-cooled coils and, at the time of this writing, are 

capable of generating fields in excess of 25 tesla, corresponding to a proton Larmor frequency of 

over a GHz. Signals may be generated and detected by a continuous wave (CW) method, in 

which the rf coil is used only to transmit and another receiver coil is placed, with its axis 

orthogonal to both B0 and B1, so that the experimenter may “listen” while the rf coil is 

transmitting. Today, however, the most common method by far is to use “pulsed” NMR. In this 

method, the rf coil is used for both transmitting pulses as well as for receiving. 
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Figure 1.6. Today, the typical NMR setup consists of a sample placed inside an 
RF coil, depicted here as the solid swirling line around the sample. This 

generates the perturbing field (B1), which is perpendicular to the powerful, 
homogeneous, static magnetic field (B0) generated by superconducting coils, 

which are depicted here as cutaway coils in the background. 

  

 In the simplest pulsed NMR experiment, the free induction decay (FID), a single rf pulse 

is used to deflect the bulk magnetization vector away from its equilibrium along the B0 axis, so 

that it lays down into the plane perpendicular to the B0 axis. By NMR convention, the B0 axis 

assigns the z-direction, so that the perpendicular plane is then the xy-plane. At this point, left to 

itself in a static field, the bulk sample magnetization vector will precess in the xy-plane at the 

Larmor frequency. Using a bar magnet to represent the bulk sample magnetization, this process 

is shown in Figure 1.7. 
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Figure 1.7. In the FID experiment, a sample starts out magnetized by B0 along 
the z-axis as shown on the left. A pulse from the rf coil of the correct power, 

frequency, and time will turn the bulk magnetization to lie in the xy-plane, after 
which it will precess. This precession of a magnetic field inside a coil induces a 

current in the coil, which is then detected by the spectrometer. 

 

As can be seen, this precession is in the same plane that contains the axis of the rf coil 

and therefore the changing flux produced by the rotating magnetization induces a current in the 

coil. This induction obeys the Faraday law of induction, which says that an electromotive force, 

e, is generated by a changing magnetic flux through the area defined by a coil, FB. 

 

𝜀 = 	−𝑁
𝑑Φ(

𝑑𝑡 																																																																			(1.7) 

 

where N refers to the number of loops that make up the coil [13]. This current is detected and 

recorded as the precessing bulk magnetization shrinks in the xy-plane and regenerates along the 

z-axis, returning to its equilibrium state, a process called relaxation. The resulting signal that is 

induced in the rf coil from the freely precessing and relaxing magnetization is recorded as a 
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decaying oscillation – a free induction decay signal. This FID can then be Fourier transformed to 

reveal a spectrum of the frequency components that make up the oscillations in the initial signal. 

 

1.5 A brief summary of Bloch spin mechanics 

1.5.1 Magnetization, equilibrium, and the Bloch Equation without relaxation 

The math described by Bloch deserves a summary here, as it will be useful in 

understanding the chapters that follow. In this description, the simplification will be used that the 

sample is a collection of non-interacting spins that can be approximated as a single bulk 

magnetization, M. Consider the basic, modern NMR experiment. As described previously, the 

setup for the modern NMR experiment involves placing a sample into a large static magnetic 

field, B0, which by convention we take to be oriented in the z-direction. Upon doing so the 

sample (or, more accurately, the nuclei in the sample) will be magnetized proportionally to the 

strength of the external magnetic field in which it is placed, according to Equation 1.8: 

 

𝑴 = 	𝜒𝑯																																																																								(1.8) 

 

where c represents the magnetic susceptibility of the sample – the constant of proportionality 

that describes how much an object is magnetized when placed in the external magnetic field, H. 

This manuscript has been using B and not H when describing magnetic fields, so it is helpful to 

translate this into something more recognizable using the definition of the H field in Equation 

1.9. 

 

𝑯 =	
𝑩
𝜇&
−𝑴																																																																				(1.9) 
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where µ0 is the vacuum permeability and all other variables are as previously defined. This 

equation applies generally to fields in regions of all ranges of magnetizability, but for this 

example, the external field in which a sample is placed is what is of interest. This allows M in 

Equation 1.9 to be ignored since the vacuum is not magnetized. Further, the external magnetic 

field has already been defined to have only one component, B0 in the z-direction. Therefore, 

combining these assumptions with Equations 1.8 and 1.9, a new and more useful equation can be 

derived. 

 

𝑀& = 	𝜒
𝐵&
𝜇&
																																																																		(1.10) 

 

Here, the initial equilibrium magnetization of the sample, M0, has been defined, and is 

typically assumed, to be in the same direction as the external magnetizing field, B0.* 

 Having defined B0 and M0, the initial conditions of the modern, basic NMR experiment 

have been set. That is to say, there is a sample that has been magnetized to the initial equilibrium 

bulk magnetization, M0, by an external field, B0. At this point, the famous Bloch Equations may 

be introduced. Without the effects of magnetic relaxation to equilibrium (which will be discussed 

in more detail later), the change in magnetization of a sample in a magnetic field is described 

(without relaxation) by this equation. 

 

 
* Here again is one of those times where we suffer from the poor foresight of our scientific forebearers. Strictly 
speaking, B is “magnetic flux density” and H is “magnetic field.” However, it is common practice that both B and H 
are referred to as “the magnetic field,” even though, by their defined relationship, they are clearly not the same 
thing. One would think that someone with some authority on the matter could have settled the issue by giving the 
fields some nice descriptive and different names. I’m looking at you, Maxwell.  
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𝑑𝑴(𝑡)
𝑑𝑡 = 	𝛾Q𝑴(𝑡) × 𝑩(𝑡)S																																																					(1.11) 

 

where, as before, g is the gyromagnetic ratio. 

 From the initial conditions described above, this is not a very interesting case. Initially, 

M0 and B0 are parallel and the cross product of two parallel vectors is zero, so there would be no 

change. If the initial conditions are changed, however, some important features are revealed. 

First, consider if the bulk magnetization is not set initially to be parallel to B0, but instead let 

M(t=0) be tilted away from B0. A full derivation of this is presented in appendix A.1, but to 

summarize, Equation 1.11 predicts that 1) there will be no change to the z-component of M, 2) 

the effect of B on M will be to cause M to precess about B, and 3) the frequency of that 

precession will be the characteristic Larmor frequency, w0. However, the more interesting 

dynamics occur when a perturbing field is introduced. The perturbing field referred to here, is a 

pulse of rf energy as described above in the description of the free induction decay experiment 

and in figures 1.6 and 1.7. A more detailed description will now be presented here. 

 Thus far, descriptions of the magnetic moment have been from the universal reference 

frame, or the “lab frame.” In order to more easily comprehend the effects of an rf pulse, it is 

beneficial to temporarily change reference frames to one that rotates at the frequency of the 

pulse. This is typically on resonance with, or very near resonance with the Larmor frequency, 

since this is the frequency required for a spin to absorb rf energy. Unlike the simple Bloch 

Equations above, there are many examples that can be found for how to transfer to the rotating 

frame and therefore an appendix has not been included in this manuscript. The important 

assumptions in this approximation are that 1) the frame rotates at very nearly the same rate as the 



 17 

rf pulse and observe frequency, and that 2) the pulse of rf magnetic field is decomposed into a 

positively rotating vector (the one that is being observed) and a counter-rotating vector that is so 

far off resonance that it can be ignored without losing much predictive accuracy. The important 

results from this reference frame change are that 1) the effective static field is equal to 

 

𝐵)** =	𝐵& −	
𝜔+,-
𝛾 																																																											(1.12) 

 

so that if the rotation of observation is on resonance, wobs = w0, and Beff = 0, and 2) the rf field 

appears static in the new reference frame so that now the Bloch Equation may be used as before 

in the rotating frame. The Bloch Equation in the rotating frame becomes 

 

𝑑𝑴
𝑑𝑡
T

=	−𝛾Q𝑴U 	×	𝑩U.+.S																																																									(1.13) 

 

where the tilde over the vectors indicates that this is “as seen from the rotating frame.” The total 

magnetic field is the vector sum of the static field and the rf pulse field. Since the effective static 

field is aligned along the axis of rotation, it does not change in the transfer to the rotating frame. 

The rf portion of the field in its decomposed lab frame form would appear as two counter-

rotating field vectors, which rotate at the Larmor frequency: 

 

𝑩! =	
𝐵!
2 (cos

(𝜔&𝑡 + 	𝜙)𝑥[ + 	sin	(𝜔&𝑡 + 	𝜙)𝑦[) 	+	
𝐵!
2 (cos

(𝜔&𝑡 + 	𝜙)𝑥[ − 	sin	(𝜔&𝑡 + 	𝜙)𝑦[)	 

 (1.14) 
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where f is an arbitrary phase correction. For now, f will be left as zero. As noted before, only 

the on-resonance half of the rf field will be used. Furthermore, since the rotating frame is rotating 

at the Larmor frequency, this on-resonance vector appears static. The total magnetic field is then 

 

𝑩U.+. =
𝐵!
2 𝑥[

/ + 4𝐵& −	
𝜔+,-
𝛾 6 𝑧̂																																																		(1.15) 

 

where the prime after the unit vector for the x-direction denotes that this is a rotating axis that is 

static in the rotating frame. The z-direction unit vector does not need a prime, since it is 

unchanged upon transfer into the rotating frame. 

 What is important to note here is that when the pulse/observe frequency matches the 

Larmor frequency, Beff becomes zero and the Bloch Equation becomes 

 

𝑑𝑴
𝑑𝑡
T

=	−𝛾Q𝑴U 	×	𝑩U!S																																																										(1.16) 

 

where again, the tilde over B1 indicates that it is as viewed from the perspective of the rotating 

frame, that is to say, it is static. At this point, for clarity, the tildes can be dropped so long as it is 

clear that all descriptions and variables are in the rotating frame. Here, the denominator of 2 has 

also been neglected for simplicity. It is understood from here forward that B1 is actually only half 

of the applied rf field magnitude.  

 Solving for the dynamics of this form of the Bloch Equation gives essentially the same 

results as before in the lab frame, but now the rotation is about B1 and the frequency of rotation is 
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𝜔! = 	𝛾𝐵!																																																																			(1.17) 

 

where B1 is being used simply as a scalar, with the understanding that the magnetization rotates 

around B1. This is new frequency, w1, is sometimes called the nutation frequency. It can be used 

to predict the result of a pulse on a magnetized sample. 

 

1.5.2 Pulses and rotations using the Bloch Equation in a rotating frame 

 Earlier, the “arbitrary” phase correction, f, was ignored for the simplicity of the 

derivation. It turns out, however, that this phase correction sets the angle about which the 

nutation rotates. From the decomposed vector picture in Figure 1.8, one can see that as f is 

changed, the angle around the transverse plane at which the decomposed, rotating vectors start 

from and coincide at will increase at the same rate. Thus, a choice of f = p/3 will cause B1 to 

effectively oscillate at 60 degree angle from zero. According to the equations above, then, 

subjecting a sample magnetization to a pulse with such a phase offset would cause it to rotate 

about B1, which itself is tilted by 60 degrees. By convention, f = 0 refers to B1 oscillating along 

the x-axis. Accordingly a pulse with a phase of zero (at the Larmor frequency) is taken to be an 

x-pulse with any sample magnetization subjected to that pulse rotating about the x-axis as a 

result. By the same logic, a pulse with a phase offset of f = p/2 is called a y-pulse and it causes a 

sample’s bulk nuclear magnetization to rotate about the y-axis. 
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Figure 1.8. An oscillatory B1 field can be decomposed (and is equivalent) to a 
pair of counter-rotating vectors, each with half the magnitude of the original B1 

(a). In panel (b), it is shown that the pairs of counter-rotating vectors can be 
summed up to an equivalent B1 field described by Equation 1.14. If the phase in 
Equation 14 is set to f = p/3, all vectors are rotated by 60 degrees (c), and the 

resulting summed B1 is also rotated by 60 degrees (d). 

 

 In general these principles can be used to develop a set of rules-of-thumb for the two 

most important pulses, x- and y-pulses, for determining their effect on a bulk nuclear 

magnetization. This is easiest to do in a matrix format where a bulk magnetization vector is 

described by a 3-by-1 column vector. In this form, and in the rotating frame, the rotation 

matrices for x- and y- pulses, are the normal rotation matrices from linear algebra: 

 

ℝ0(𝜃) 	= 	 b
1 0 0
0 cos 𝜃 −sin	 𝜃
0 sin	 𝜃 cos 𝜃

c																																											(1.18. 𝑎) 

 

ℝ1(𝜃) 	= 	 b
cos 𝜃 0 sin	 𝜃
0 1 0

−sin	 𝜃 0 cos 𝜃
c																																											(1.18. 𝑏) 
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where the double-stack notation has been used to indicate a matrix. These matrices are typically 

unnecessary, however. For the purpose of understanding pulse sequences, it is usually sufficient 

to simply speak of the degree and direction of rotation. For example, one might speak of a p/2 x-

pulse to indicate an x-pulse that rotates the magnetization by 90 degrees about the x-axis. 

Common notation for this is to indicate the angle of rotation in parentheses, followed by a 

subscript of the axis about which the magnetization vector is being rotated. A p/2 x-pulse, for 

example, would be denoted as (p/2)x. 

 This pulse notation is commonly incorporated into depictions of pulse sequences for the 

purpose of conveying the parameters of an experiment. It is thus prudent to describe this notation 

here. Pulse sequences are typically depicted as time plots, with pulses themselves as boxes 

overlayed onto a time axis. Their length corresponds to pulse length in time and their height 

corresponds to pulse power. Since pulse power determines the strength of B1 generated, and 

Equation 1.17 shows that nutation frequency is directly proportional to B1, this means that the 

area of the pulse depicted in a pulse sequence diagram – nutation frequency times time – relates 

directly to the angle swept out by the magnetization vector as a result of the pulse. Figure 9 

shows the simplest pulse sequence, the free induction decay. 

 

 
Figure 1.9. The free induction decay consists of an rf pulse, shown here as the 
black rectangle resting atop the horizontal time axis. The pulse power, and thus 
the pulse nutation frequency, is depicted by the height of the pulse, while the 
pulse length is depicted by the length of the pulse. Above the pulse, the angle 
swept out by the nutation is indicated in parentheses, with a subscript for the 
axis about which the nutation rotates, which itself indicates the phase. To the 

right of the pulse, the resulting signal is depicted by a decaying sine wave. 
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 It is important to note here that, were it not for dephasing and relaxation, the result of the 

FID experiment would be an infinite sine wave. In reality, samples contain spins in slightly 

different local fields, both because different electronic environments within molecules shield the 

different nuclei in a non-uniform manner and because all NMR magnets generate B0 fields that 

are a little bit inhomogeneous. These effects cause the spins in a population to precess at slightly 

different frequency, causing them to eventually fall out of sync. This is dephasing. Additionally, 

all spins exchange energy with each other and their environment, eventually causing the 

magnetization of the population to relax back to equilibrium. The result of these two effects is 

that the overall amplitude of the signal decays away with time, hence the name “free induction 

decay.” 

 

1.5.3 NMR with relaxation 

 The relaxation of a perturbed magnetization back to equilibrium is characterized by two 

flavors of relaxation, referred to by their time constants: 1) relaxation of the magnetization 

component parallel to the static field, B0, as this component returns to its full equilibrium 

amplitude has the time constant T1, and 2) the relaxation of components perpendicular to the 

static field as they revert back to zero is characterized by the time constant T2. Respectively, T1 

and T2 are also often called longitudinal and transverse, or spin-lattice and spin-spin relaxation. 

 These are incorporated into the Bloch Equations in the following way. 
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																																				(1.19) 

 

where Mx, My, and Mz are simply the instantaneous magnitudes of the sample magnetization in 

the x-, y-, and z-directions, respectively, and M0 is the equilibrium magnetization along the 

direction of the external static field, B0. Equation 1.19 predicts that the components will relax 

exponentially and this comports with observation quite well, although the truth is that this is a 

phenomenological description and is not derived from first principles. This is not to say that the 

origins of relaxation are completely unknown. Some of the origins are known, especially at the 

macroscopic level, and they will be discussed briefly later in this introduction. 

In reality, relaxation of a sample typically has multiple components, due to changing 

proximities of spins to each other, molecular tumbling, and other effects. The overall observed 

relaxation time constant is the weighted average of all of these components within a sample. For 

a single-component sample, the result of Equation 1.19 is that the magnetization decays 

according to a single exponential component. The general solution to Equation 1.19 is not one 

that can usually be found analytically. There are, however, known solutions for particular cases, 

such as the FID, inversion recovery and saturation recovery. The accepted solution for an FID as 

described above, and in the rotating frame, is 
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𝑀0T = 	0	𝑥[m																																																															(1.20. 𝑎) 

𝑀1T =	−𝑀&𝑒
# .
2! 	𝑦[m																																																									(1.20. 𝑏) 

𝑀% =	𝑀& 41 − 𝑒
# .
2!6 𝑧̂																																																				(1.20. 𝑏) 

 

where the tilde has been dropped from the z-component because the rotating z-component and 

the lab-frame z-component are identical. In this set of equations, Mx is zero because it is assumed 

that a (p/2)x pulse was used to rotate the initial magnetization along the y-axis. The same logic 

can be used to arrive at a similar set of equations for an FID with a (p/2)y pulse where My is zero. 

 

 

Figure 1.10. The principle of relaxation is demonstrated through the example of 
a FID experiment, shown here in the rotating frame. The plot above shows a 
pulse sequence on a time axis, which is aligned to depictions, below, of the 

sample magnetic moment vector (black arrow), along with its longitudinal and 
transverse components (grey arrows). The sample starts out at equilibrium 

(eqbm), magnetized along the external B0 field, in the z-direction. A (p/2)x pulse 
rotates the magnetization into the xy-plane, to lie in the negative y-direction (t = 
0). As the bulk magnetic moment precesses, the transverse components shorten 
and the longitudinal components grow (t = 1, 2, 3, & 4 T1). After 5 T1 periods, 
the sample moment has nearly fully recovered its equilibrium state (t = 5 T1). 
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 A visual depiction of relaxation in this experiment is shown in Figure 1.10. As can be 

seen, the (p/2)x pulse rotates the bulk magnetization around the x-axis to lie in the negative y-

direction, after which, the magnetization relaxes back to its equilibrium value in both the 

longitudinal and transverse directions. According to Equation 1.20.b, after five T1 periods, the 

longitudinal magnetization has recovered to 99.4 % of its equilibrium value and can be 

considered essentially recovered. The transverse magnetization is always faster than the 

longitudinal relaxation, and so can essentially be considered zero after five T1 periods. 

 

1.6 Sources of relaxation 

 It is critical, especially in the context of this manuscript, to consider the origins of 

relaxation, as this knowledge is what makes relaxometry useful. In a somewhat perverse irony, it 

turns out that longitudinal relaxation occurs because of fluctuations in the transverse magnetic 

fields of spins’ local environments, whereas transverse relaxation arises from fluctuations in the 

longitudinal field of the spins’ local environments. This can be understood by analogy to the 

requirement in the Rabi experiment that the oscillatory field be perpendicular to the static field in 

order to perturb the spin out of its state. In a similar way, longitudinal magnetization is perturbed 

by fluctuating fields that are perpendicular to itself (transverse), and vice versa for transverse 

magnetization perturbed by longitudinal fluctuations. 

 The next few sections will briefly detail some important contributions to relaxation rates, 

particularly in liquids, which is the focus of research in this manuscript. The contributions of 

these mechanisms add together to create the overall observed relaxation rate 1/Tobs as in Equation 

1.21 below. 
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																																																																	(1.21) 

 

where the subscript, i, denotes the ith contribution to relaxation. 

 

1.6.1 Molecular motions 

 The first source of relaxation that will be discussed here is that of the interaction between 

molecular motions and the local magnetic field itself. In any sample in which the constituent 

spins are mobile, they will experience small fluctuations in their local magnetic fields as they 

pass and rotate in the vicinity of other molecules or microscopic magnetic environments. This 

motion is captured by a parameter called the correlation time, denoted tc, and is associated with a 

sample liquid’s viscosity, h, effective volume of the molecules, V, temperature, T, and the 

Boltzmann constant, k. The equation that describes this is the Stokes-Einstein-Debye Equation, 

given here [14]. 

 

𝜏4 =	
𝜂𝑉
𝑘𝑇																																																																				(1.22) 

 

 The correlation time is often defined as the time that it takes for a molecule to tumble one 

radian, but as stated earlier, the motions are much more complicated than simply rotating, so this 

definition should be taken more notionally than as a strict definition. What is more important 

than this strict definition is the implication that a shorter correlation time is, well, correlated with 

greater molecular motion. As Equation 1.22 shows, a liquid with greater viscosity is one in 

which the molecules take longer to tumble. In such a case, one can imagine that the individual 
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molecules would also be perturbing each other’s magnetic environments less frequently. In fact, 

there is an equation that describes the evolution of these field fluctuations in time called the 

autocorrelation function or sometimes, the rotational correlation function. 

 

𝐺(𝜏) = 	
〈𝐵(𝑡)𝐵(𝑡 + 	𝜏)〉

|𝐵"| = 	 𝑒#
|6|
6" 																																												(1.23) 

 

This equation states that the average product of the field experienced by a given molecule 

at time, t, and its field experienced a time, t, after t decays at a rate defined by the correlation 

time – the rate at which the molecule tumbles. Essentially, the faster a molecule tumbles, the less 

likely it is to be oriented with where it was at some time, t, earlier. The decaying exponential 

nature of this probability makes sense intrinsically, although strictly speaking it is only assumed. 

The correlation function may be Fourier transformed to reveal its probability of tumbling at a 

given angular frequency, wc. This is called the spectral density function, J(wc), and is typically 

normalized by the mean square field [15]. 

 

𝒥(w4) = 	
2𝜏4

1 +	w4"𝜏4"
																																																								(1.24) 

 

From Equation 1.24, it can be seen that the probability of a molecule tumbling at a certain 

frequency diminishes as that frequency increases, as well as with longer correlation times. This 

simply means that samples in which molecules tumble more slowly on average are less likely to 

contain higher frequencies of rotation, which should make sense. Recall that longitudinal 

relaxation occurs as a result of transverse fluctuations in the magnetic field. Thus, the 
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longitudinal relaxation rate due to motion, as a function of correlation time, can be found by 

setting the rate, 1/T1, proportional to both the mean squared field and the probability of 

fluctuations occurring at a given frequency needed for transitions (the Larmor frequency). 

Multiplying the transverse magnetization’s mean squared value and the spectral density at the 

Larmor frequency, this gives an expression for T1 (or, rather, its inverse) [16]. 

 

1
𝑇!
∝ 	𝛾"〈𝐵0" + 𝐵1"〉

𝜏4
1 +	w&"𝜏4"

																																														(1.25) 

 

The mean squared field is used rather than simply using the field itself because the 

average of a fluctuating field is, by definition, zero. Similar logic to that above leads to a relation 

for the transverse motional relaxation rate, although it will not be explored in detail here [16]. 

 

1
𝑇"
∝ 	𝛾"〈𝐵%"〉𝜏4 	+ 		

1
2 𝛾

"〈𝐵0" + 𝐵1"〉
𝜏4

1 +	w&"𝜏4"
																															(1.26) 

 

 Since motional relaxation depends primarily on the correlation time, anything that affects 

the rate at which molecules move and tumble – temperature, molecular size, and viscosity – will 

in turn affect the longitudinal and transverse relaxation rates. Nuclear magnetic resonance 

relaxometry can thus be used to elucidate changes in these macroscopic parameters in a sample. 

 

1.6.2 Dipolar coupling 

 Magnetic nuclei that are in close proximity are affected by each other’s fields and this 

kind of direct interaction between nuclei is called dipolar coupling. The source of this type of 
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relaxation is from the interaction between two nuclei. The field that a nucleus produces at some 

point a distance, r, away from itself and at some angle, y, to its orientation can be written in 

terms of the field in polar coordinates, Br and By. 

 

𝐵7 =	
𝜇&
4𝜋

2𝜇
𝑟8 cos

(𝜓)																																																										(1.27) 

 

𝐵9 =	
𝜇&
4𝜋

2𝜇
𝑟8 cos

(𝜓)																																																										(1.28) 

 

where µ0 refers to the vacuum permeability and µ is the magnetic moment of the field-producing 

nucleus [14]. From these equations, it can be seen that the field decays in a cubic nature as the 

distance between nuclei increases, so nuclei must be very close in order to affect each other in 

this way. Because of this fact, this mechanism is considered to be important mostly for 

neighboring nuclei within the same molecule. 

Since the spins within a molecule are not bound to change orientation with the molecule, 

the correlation time of the molecule again comes into play here. The dipolar relaxation rate is 

proportional to the product of the fields of the two nuclei. Since the field strengths decay as the 

third power of the distance between the two nuclei, this means that the relaxation rate due to this 

interaction falls off as the sixth power of the internuclear distance. The longitudinal dipolar 

relaxation rate is given by the equation 

 

1
𝑇!
=	
{𝜇&4𝜋|

"
𝛾:"𝛾;"ℏ𝜏4
𝑟< 																																																							(1.29) 
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 This equation has a fortunate feature in that all variables are constants, with the exception 

of the correlation time. Thus the relaxation due to dipole coupling is directly proportional to 

correlation time. Moreover, the contribution to relaxation rate from this mechanism is greater 

with longer correlation times and vice versa. For liquids with fast tumbling molecules, this may 

not be much of a factor at all. 

 

1.6.3 Paramagnetic interaction 

When a solution contains unpaired electrons, those electrons’ spins interact with non-zero 

spin containing nuclei and, similar to the dipolar effect, this interaction forms another route for 

relaxation. Unlike nuclear dipole coupling, however, the gyromagnetic ratios are no longer on 

the same order of magnitude. Instead, the gyromagnetic ratio of an electron is 28,025 MHz/T 

[16], compared to the gyromagnetic ratio of a proton – 42.6 MHz/T [17]. Thus the presence of 

paramagnetic species in a sample can have a dramatic effect on the relaxation rate. This 

manuscript does not explore paramagnetic interactions in particular, however, the properties 

described here make paramagnetic species extremely useful when increasing the relaxation rate 

of a sample allows for a more expedient experiment, as in the doping of water with copper 

sulfate. 

 

1.7 NMR spectra 

One of the most important applications of NMR is the determination of molecular 

structure by producing NMR spectra from the raw FID signal. While this manuscript does not 

focus on structural determination per se, the theoretical underpinnings of spectral features are 
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useful for understanding strengths and limitations of low-field NMR. Consider, then, a simple 

FID experiment. Upon perturbation with a (90º)x pulse (or other similar pulses that put the 

sample magnetization into the transverse plane), a sample with a collection of spins at various 

local fields will produce a complex signal as it rings down. This signal contains a collection of 

different frequencies for each local magnetic environment. If relaxation were not present, the real 

signal would simply be proportional to the sum of all of these frequencies, weighted by the 

population of spins at those frequencies. 

 

𝑆(𝑡) ∝ 	o𝐴= cos𝜔=𝑡
=

																																																								(1.30) 

 

where An and wn refer to the population and the Larmor frequency of spins in each particular 

local magnetic environment, respectively.  

Consider, for example, the signal from methanol. Methanol contains hydrogens in two 

magnetic environments: 1) the three hydrogens attached to the carbon, and 2) the single 

hydrogen attached to the oxygen. The proton signal from a sample of methanol would thus 

contain two frequencies: one for each local magnetic environment. The oxygen, having much 

greater electronegativity, tends to pull electron density away from the electronegatively weak 

hydrogen bonded to it. This “de-shields” the hydrogen from the static field, causing it to “feel” 

the static magnetic field, B0, more. Consequently, its Larmor frequency will be higher. This 

frequency shift is called chemical shift and is critical in the power of NMR to reveal molecular 

structure. Additionally, the amplitude associated with the three hydrogens attached to the carbon 

would be three times greater than that of the single hydrogen on the oxygen. At a B0 field 



 32 

corresponding to a proton Larmor frequency of 300 MHz, this signal would appear as a sine 

wave with the amplitude expanding and contracting every 10 milliseconds or so as the 

frequencies alternately interfere with each other constructively and destructively. 

 

 

Figure 1.11. The theoretical NMR signal of methanol, without relaxation or J-
coupling, is a sinewave with an amplitude that expands and contracts. The 
“beats” of the signal arise from the periodic constructive and destructive 

interference of the component frequencies that make up the signal. This plot was 
constructed using Matlab™. 

 

To see the spectrum of frequencies that make up this signal, a Fourier transform is 

applied to the recorded signal. This is done computationally, using a fast Fourier transform (FFT) 

of the acquired signal, and is not attempted analytically. For the 300 MHz methanol example 

above, and using Equation 1.30 for the signal, this results in two infinitely narrow peaks 

separated by approximately 6 Hz, and with the lower frequency peak three times taller than the 

higher. 

In reality, however, relaxation is always present and this greatly affects the signal. Instead 

of a sinewave that carries on forever, relaxation causes the received signal to damp with time. 

This makes the Fourier transform much more difficult to perform analytically, so it will not be 
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derived here. Instead the solution is presented and the reader is encouraged to follow the citations 

to the derivation if they are so inclined. For a spin with relaxation, the signal is 

 

𝑆(𝑡) ∝ 	𝐴𝑒
# .
2!∗ cos𝜔&𝑡 																																																							(1.31) 

 

where the asterisk is used for relaxation, T2*, to indicate that this is the observed relaxation of the 

signal due to dephasing as well as the true T2 [1]. Otherwise, all variables are as described 

previously. For a population of spins in n magnetic environments, 

 

𝑆(𝑡) ∝ 	o𝐴=𝑒
# .
2!∗ cos𝜔=𝑡

=

																																																			(1.32) 

 

where again all variables are as described previously. As before, a Fourier transform is 

performed in order to reveal the spectrum. Looking again at the single spin example from 

Equation 1.31, the Fourier transform of this spin component can be found in tables of Fourier 

transforms and the real part is found to be [1] 
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" 																												(1.33) 

 

Figure 1.12 shows a plot of this, and it can be seen that the peaks are no longer infinitely 

narrow, as was the case with no relaxation. The effect of relaxation on the spectrum obtained 

from a spin in a sample is that the infinitely narrow line describing a spin frequency in a 
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theoretical spectrum without relaxation becomes a peak with a width defined by T2*. An 

important takeaway from this plot is that the width of the peak is not relative to the Larmor 

frequency as was the case for chemical shift. To resolve most spectra, spectral resolution must be 

finer than 1 ppm, which per the definition of low-field at the beginning of this chapter, is less 

than 4.4 Hz. At the same low fields, the peak width for a sample with 100 ms T2 (a common 

value of T2) would be 20 Hz at the very best, which equates to a little more than 4.5 ppm. This 

illustrates why low-field NMR is not used for structural spectroscopy.  

 

 
Figure 1.12. The Fourier transform of the signal obtained from a single spin 

after a (p/2)x pulse, while accounting for transverse relaxation. This theoretical 
plot was calculated using a T2* of 100 ms and the center of the abscissa 

represents the on-resonance Larmor frequency. The plot reveals a peak width 
(sometimes called linewidth) that, at half height is equal to 2/T2*. This plot was 

constructed using Matlab ™. 

 

Longitudinal relaxation also affects the spectrum in that it determines the time required to 

repeat experiments thereby increasing the signal to noise ratio (S/N) of the resultant spectrum. 

This can be seen in the peak height above the noise floor that can be obtained for a given 

experiment time. If a sample has a fast T1, its magnetization will fully recover more quickly, and 

the experiment may be repeated and averaged more times within the overall experiment time, 
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thus suppressing noise and increasing the effective peak height. This becomes very important in 

relaxometry, in which S/N is the more important goal, and spectral resolution is not. 

 

1.8 Components of signal 

A major focus of this manuscript is the acquisition of signal in challenging and noisy 

environments. Since single-sided NMR is typically in the low-field regime, any hope of attaining 

spectra with peak separation is lost. This was explained previously when describing the effects of 

relaxation on NMR spectra. Because of this, low-field NMR is concerned primarily with the 

ability to acquire signal amplitude – achieving a high S/N. 

 

1.8.1 Signal in an ideal NMR setup 

 Consider the typical NMR setup – a liquid sample placed such that it fills the volume of a 

cylindrical solenoid rf coil, and all of this is then placed inside a large, homogeneous, static 

magnetic field, with the axes of the permanent and rf fields perpendicular to each other, as was 

described back in Figure 1.6. Of course, this setup is far from the reality of low-field, single-

sided NMR, but the scenario provides a simple starting point for understanding the factors that 

go into producing NMR signal. In such a case, it can be assumed that the sample resides in a 

uniform field and is therefore magnetized uniformly. Because the sample resides entirely inside 

the rf coil, it can also be assumed that the pulse sequence power is applied evenly across the 

sample. 

 The signal acquired in NMR is a result of the precession of the sample’s bulk magnetic 

moment after a pulse sequence has disturbed the moment from its equilibrium. As the magnetic 

moment rotates, it alternately passes between parallel and perpendicular to the long axis of the rf 
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solenoid. This creates a sinusoidal pattern of the sample’s magnetic flux with respect to the 

solenoid, which in turn generates a current in the solenoid according to Faraday’s Law of 

Induction from Equation 1.7. The current generated in the solenoid is then detected by the 

spectrometer for recording. The signal is therefore a combination of these factors: 

 

• The strength of the sample’s magnetic moment as determined by the strength of the 

magnetizing static field and the magnetic susceptibility of the sample 

• The rf solenoid volume, and therefore the volume of the sample 

• The sensitivity of the spectrometer 

  

The strength of the sample’s nuclear magnetic moment is a result of the number of active 

nuclear spins in the sample volume, as well as the Boltzmann distribution of spin states for the 

temperature at which the experiment is being performed. A stronger distribution leads to a 

greater difference between spin-up and spin-down nuclei, which in turn results in greater 

magnetization. Moreover, the flux due to the whole sample is, roughly speaking, the sum of the 

flux generated by each spin for which there is not another counter-oriented spin to cancel it out. 

Thus if the spin density is higher within the volume, there will be more un-canceled spins for a 

given Boltzmann distribution of spin states. 

The Boltzmann distribution of states is determined by examining the ratio of the 

populations of two states whose energy difference, DE, is known.  
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where Pa and Pb are the populations of spins in the up and down state, respectively. Ea and Eb 

refer to the energies of the a and b states, respectively. The terms k and T refer to the Boltzmann 

constant and temperature, respectively. The energy difference, DE, is calculated from Equation 

1.3 (in the case of a spin-½ nucleus). 

 From this, the spin difference can be calculated as a fraction of the whole. 
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 Conveniently, each of these terms in the exponentials are very small, so the denominator 

turns out to be very close to 2. Using similar assumptions, the terms in the numerator can be 

simplified by series approximations. Namely the well-known exponential expansion 

 

𝑒0 = 1 + 𝑥 +	
𝑥"

2! +	
𝑥8

3! + ⋯ =	o
𝑥=

𝑛!

D

=E&

																																								(1.36) 

 

 Only the first two terms are needed since the terms in the exponents are so small. For 

spins-½, Equation 1.3 gives that Ea and Eb are equal to Fℏ(&
"

 and − Fℏ(&
"

, respectively, 

So with the above series expansion, Equation 1.35 can be written in a much more palatable form 

[1]. 
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 As this shows, the spin difference (as a fraction of the whole number of spins in the 

sample) depends linearly on the strength of the static field. If the spin density, r, is known in 

terms of spins per cubic centimeter, then the excess number of spins in a sample can be known: 

 

𝑁- = 	𝜌𝑉
𝛾ℏ𝐵&
2𝑘𝑇 																																																														(1.38) 

 

where Ns refers to the number of excess spins – those for which there is not another spin of 

opposite state to cancel its magnetic moment. The term V refers to the volume of the sample, as 

usual. 

 Finally, the bulk magnetic moment is the sum of all excess magnetic moments in the 

sample. Using Equation 1.2, and understanding that the excess spins are those in the “up” state, 

this means that the bulk sample magnetization is given, to a very good approximation, by 

 

𝑀& = 𝜇𝑁- = 	𝜌𝑉
𝛾"ℏ"𝐵&
4𝑘𝑇 																																																					(1.39) 

 

where, as before, the assumption has been made that the magnetization vector is parallel to the 

coordinate defined by B0, and so the term M0 has been used to indicate that this is a magnitude, 

rather than using the more general bold vector notation. Note also that this shows that the 

magnetization of a sample depends on the square of the gyromagnetic ratio of the spins being 

investigated. The choice of a spin with a large gyromagnetic ratio is therefore very useful in 

pursuing more signal. 
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 It must be remembered that signal is not just magnetization. It is what is detected by the 

spectrometer and can be recorded. In the typical method of pulse NMR used today, this 

magnetization is used to induce a current in the rf coil surrounding it by rotating the bulk 

magnetization into the transverse plane and allowing it to precess freely as was shown in Figure 

1.7. This free precession produces an alternating flux through the turns of the rf coil, which then 

generates a current by Faraday’s Law, as described by Equation 1.7. Assuming the best possible 

case in which the sample volume exactly matches the rf coil, then the entire magnetic field 

generated by the magnetized sample is captured by the cross-sectional area of the coils and the 

flux generated is equal to the bulk magnetization times this area, A. 

 

�Φ7*� = 	𝑀&𝐴																																																															(1.40) 

 

 As has been described previously from the Bloch equations, once the bulk magnetization 

has been rotated perpendicular to the static field, B0, it will begin to precess at the Larmor 

frequency for that gyromagnetic ratio and field strength. The flux is therefore also time 

dependent: 

 

Φ7*(𝑡) = 𝐴𝑀& cos(𝜔&𝑡)																																																					(1.41) 

 

 The electromotive force (voltage) induced in the rf coil can then be calculated from the 

Faraday Law of Induction (Equation 1.7) as the negative derivative of the flux across all turns of 

the rf coil. 

 



 40 

𝜀(𝑡) = 	𝑁𝐴𝑀&𝜔& sin(𝜔&𝑡)																																																	(1.42) 

 

 The induced current in the coil circuit, calculated simply by Ohm’s Law, is then simply 

 

𝐼(𝑡) = 	
𝜀
𝑍4
=	
𝑁𝐴𝑀&𝜔& sin(𝜔&𝑡)

𝑍4
																																												(1.43) 

 

where Zc is the impedance of the rf coil circuit, which is typically 50 Ohms and must be matched 

to the rest of the system as such. Substituting M0 as in Equation 1.39, along with w0 = gB0, 

reveals the following formula [10]: 

 

𝐼(𝑡) = 	
𝜀
𝑍4
=	
𝑁𝐴𝜌𝑉
𝑍4

𝛾8ℏ"𝐵&"

4𝑘𝑇 sin(𝜔&𝑡)																																					(1.44) 

 

 At this point it is prudent to examine the factors, which can be controlled by the design of 

the experiment, that might be harnessed to increase signal. If one desires to look at a particular 

sample, then the nucleus is generally not an option for change. Besides, experiments are typically 

conducted on protons, which already have the highest nuclear gyromagnetic ratios, so that 

possibility is already tapped out. The other factor that immediately comes to mind is to increase 

the static field strength, as the signal magnitude depends on its square. Besides this, the most 

effective ways to increase signal in the ideal NMR experiment are to increase the sample and rf 

coil volume (and thus the loop cross-sectional area), or increase the number of rf coil turns. 
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1.8.2 Signal considerations for single-sided NMR 

 Single-sided NMR is of course decidedly not ideal and the above theoretical arguments 

about signal must be modified in order for the single-sided regime to be better understood. In 

single sided NMR, some variation of two common geometries is typically used, depicted in 

Figure 13. In one configuration, a permanent magnetic field, B0, is generated parallel to the 

surface of the magnet and the rf coil may either generate a rf field perpendicular to the surface, 

as in a simple surface loop, or parallel, as in a “double-D” coil, but then perpendicular to B0. This 

configuration is used by Bernard Blümich et. al. in the NMR Mouse and by Bruce Balcom, and 

his group at the University of New Brunswick in their three-magnet array [19] [20]. The other 

common geometry is to generate the B0 field such that it is perpendicular to the magnet surface, 

in which case, the rf field must be generated parallel to the surface, usually with some kind of 

double-D coil. This geometry is used by Fukushima et. al. at ABQMR in their barrel magnet 

[21].  
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Figure 1.13. Single-sided NMR generally takes one of two geometries, depicted 
here. The first type, in (a) generate a B0 field parallel to the magnet surface and 
transverse in the sample volume. In this case, the rf coil may be a surface loop, 

which generates a B1 perpendicular to the surface as depicted, or a double-D 
coil, which would produce a B1 field parallel to the surface, but perpendicular to 
B0. The second common geometry is depicted on the right, in (b), in which the 

B0 is generated perpendicular to the surface of the magnet, penetrating the 
sample volume directly, in which case the B1 field must be produced parallel to 

the surface, usually with a double-D coil. 

 

 Unlike traditional NMR in a superconducting magnet, single-sided NMR B0 fields tend to 

be very weak and inhomogeneous, so the trick employed by traditional NMR of reaching for 

higher and higher fields is generally not realistic. Therefore, the first challenge that is typically 

addressed when attempting single-sided NMR is to maximize the region of homogeneous, static 

field, B0, produced by the permanent magnet. This increases the effective sample volume 

available, and as discussed above, this increases signal. Some single-sided magnets do generate 

gradients instead, as in some variations of the NMR-MOUSE and three-magnet arrays, but in the 

lateral dimensions, they still strive for maximum field homogeneity. To affect this goal, nearly 

all single-sided magnets incorporate some variation on the theme shown in Figure 1.14. This 

motif involves a split main exterior static field-generating magnet with a central, recessed 

magnet that serves to shim the sensitive region. 
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Figure 1.14. Two examples of single-sided magnets with a split main magnet 
and a central shimming magnet are shown. Dashed lines indicate flux lines of 

the B0 field and the grey ellipse indicates roughly the location of the 
homogeneous “sweet spot” region. Whether the static field is perpendicular (a) 

or transverse (b) to the surface, the effect is the same with respect to field 
strength and gradient, although the direction of field is different. These diagrams 

are provided for conceptual purposes and elements are not drawn to scale. 

 

 In addition to concerns about the homogeneity of the static field, the shape and strength 

of the rf field must also be considered. As described above with Equation 1.16, the dynamics of 

the sample bulk magnetization depend on the cross product of the B1 field and the sample 

magnetization. Thus, because the sample is also magnetized by – and parallel to – the B0 field, 

the ideal, the rf field will be engineered such that it is perpendicular to the B0 field and 

homogeneous in strength across the entire B0 homogeneous region sweet spot. If the 

homogeneous region is small and close to the surface of the magnet, this is easier, but then signal 

is sacrificed from the loss in volume and usefulness is lost because of the reduced penetration 

depth. If the B1 field produced by the probe coil is not homogeneous or is not perpendicular to B0 

across the B0 region, each pulse will have the effect of dephasing the magnetization of the 

disparate regions of the active volume from each other and they can quickly begin to 

destructively interfere, again resulting in lost signal. Importantly, the overall magnitude of the B1 

strength is not nearly as important as the homogeneity of the B1 field. 
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 In the ideal case described above, the sample resided entirely within the rf coil, allowing 

the assumption to be made that all of the field generated by the sample’s bulk magnetic moment 

would be captured in the flux of the receiving coil. In single-sided NMR, however, the sample 

cannot reside inside the rf coil if it is to be truly single-sided NMR. Moreover, the sample that 

can be observed is limited to the volume of the sensitive region of the static field, which is 

typically displaced from the magnet and coil assembly. The sample instead only “feels” a 

fraction of the flux generated by the rf coil and, by reciprocity, the coil is only sensitive to a 

fraction of the total magnetic moment of the sample. This fraction of the coil flux incident upon 

the sample, and conversely the fraction of the sample flux sensed by the cross-sectional area of 

the coil, is called filling factor. In a traditional NMR setup, maximizing the filling factor boils 

down to simply filling the rf coil with sample as much as possible. In single-sided NMR, the 

filling factor is dependent on B1 field strength, shape, and distance to the sample. 

 The distance of the sample and sensitive region from the magnet and probe assembly also 

has a significant effect on signal for more reasons than just filling factor. The strength of the 

magnetic field due to a magnetic dipole moment falls off as the cube of distance. In polar 

coordinates, where r indicates the distance from the dipole to the observed point, and q is the 

angle between the dipole vector and the vector from the dipole to the point of observation, the 

magnetic field is given by 

 

𝑩(𝒓, 𝜽) = 	
𝑀&

4𝜋𝜇&𝑟8
Q2 cos(𝜃) 𝒓[ + sin	(𝜃)𝜽�S																																				(1.45) 

 

where µ0 is the vacuum permeability and M0 is the strength of the dipole moment. This has 

compounding effects for receiving signal in single-sided NMR. In addition to the problem of 
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reduced filling factor, which already diminishes flux received by the probe coil, the flux sensed 

by the receive coil is further weakened because the strength of the field generated by the sample 

dipole moment diminishes severely with distance. 

 

1.9 Relaxometry 

Because low-field, single-sided NMR cannot resolve chemical shift spectra, its focus 

instead shifts primarily to relaxometry – the study of a sample’s relaxation back to magnetic 

equilibrium after being disturbed. Earlier sections have already mentioned some of the theory 

that explains the causes of relaxation. This section will specifically describe two experiments 

used to elucidate the two main forms of relaxation, T1 and T2. 

  

1.9.1 Measuring T1 – the inversion and saturation recovery experiments 

 The definition of T1 is the time constant that defines the rate at which a sample regains its 

longitudinal magnetization after being place in non-equilibrium state. Specifically, it is the time 

that it takes for magnetization to recover an e-1 fraction of the equilibrium magnetization. As has 

been described in the Bloch Equations section above, a sample magnetization in a static 

magnetic field can be arbitrarily rotated using rf pulses. Thus, the simplest way to take a sample 

out of longitudinal equilibrium (without concern for transverse) is to invert the magnetization 

using a p-pulse. The inversion recovery experiment observes the recovery of a sample’s z-axis, 

or longitudinal, recovery by doing just this and is shown in Figure 1.15 [1].  
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Figure 1.15. The pulse sequence for an inversion recovery (a) consists of an 

inverting pulse, followed by a delay time that allows the longitudinal 
magnetization to recover, then a second pulse that rotates the magnetic moment 

into the transverse plane for observation. The pulse sequence is repeated n times, 
with a full recovery time between each repetition. The plot of the inversion 

recovery (b) is the series of amplitudes plotted against the recovery times, tn, for 
which they were acquired. The plot in (b) was constructed in Matlab™. 

 

Because z-magnetization cannot be directly observed, however, the sample magnetization 

must be flipped into the transverse plane in order for the magnitude of the z-magnetization to be 

observed at that point in time. The sample is then given time to fully recover (over five times the 

T1 time) and the experiment is repeated for a new observation time. The delay between the p-

pulse and the p/2-pulse is called the tau time, t. The inversion recovery experiment starts with a 

recovery delay time t = 0, and is repeated with t increasing in discrete increments until the 

longitudinal magnetization has fully recovered within the t time. 
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 The resulting observed transverse magnitudes are then plotted against delay times as 

shown in Figure 1.16, and the points are fitted to a curve of the form 

 

𝑆(𝜏) = 	𝑆& 41 − 2	𝑒
# 62'6																																																						(1.46) 

 

where S0 is the initial amplitude and its units are arbitrary (based on the sensitivity of the 

instrument, number of signal averages, etc.), and the variable of interest is T1. 

 A major weakness of the inversion recovery experiment is that the sample magnetization 

must be given full recovery time between each iteration of the experiment, so the experiment is 

very time-consuming. To address this, another way to measure T1 is to use a saturation recovery 

[22]. This experiment is similar to the inversion recovery, but where the inversion recovery uses 

a delay time to allow magnetization to fully recover between repetitions, the saturation recovery 

applies a series of fast “crushing pulses” that serve to saturate the magnetization to zero between 

each repetition. The pulse sequence and resulting plot of amplitudes with respect to delay time, 

tn, is shown in Figure 1.16. The magnetization can be saturated in a few milliseconds, much 

more quickly than the time it takes to allow the magnetization to fully recover. In this way the 

need to wait is all but eliminated and the experiment is made to be much, much quicker. 
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Figure 1.16. The pulse sequence for a saturation recovery (a) consists of a series 
of i saturating pulses, typically p/2-pulses, followed by a delay time that allows 
the longitudinal magnetization to recover. A second pulse rotates the magnetic 

moment into the transverse plane for observation. The pulse sequence is 
repeated n times, with no need for a full recovery time between each repetition. 
The plot of the saturation recovery (b), which was constructed in Matlab™, is 

the series of observed amplitudes plotted against the recovery times, tn, for 
which they were acquired. 

 

 In the case of the saturation recovery, the magnetization starts out at zero, so there is no 

need for an inverting pulse. Only a delay time, followed by a p/2-pulse is needed. The equation 

to which the resulting plot in Figure 1.16 must be fit is accordingly adjusted to  

 

𝑆(𝜏) = 𝐴 41 − 𝑒#
6
2'6																																																								(1.47) 
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where the variables are defined in the same way as Equation 1.46. Because of the immense time 

savings offered by the saturation recovery over the inversion recovery, the saturation recovery is 

almost always preferred for T1 measurements. 

 

1.9.2 Measuring T2 – the Carr-Purcell-Meiboom-Gill (CPMG) Experiment 

 The time constant that defines the relaxation rate of the transverse magnetization back to 

its equilibrium (which is zero) is T2. Since transverse magnetization can be directly observed, it 

might seem like one could just apply a p/2-pulse to the sample and start acquiring, as in an FID 

experiment. As the signal fades, that rate could be fit for a direct observation of T2. It turns out 

that this decay is not T2, but rather T2*, the “apparent T2”. Static magnetic fields generated for 

NMR are never perfectly homogeneous and different micro regions can and do experience 

slightly different static magnetic fields. This means that, after a p/2-pulse, the magnetic moments 

at different regions of a sample will precess at slightly different frequencies. After a short time, 

the moments of the different regions will begin to slip out of phase. The signal that is acquired, 

however, is the sum of all the magnetic moment vectors in the active sample region, also called 

isochromats. If the isochromats in the sample are precessing out of phase, they will destructively 

interfere and the signal will die out. This dying out is NOT true T2 relaxation. As described in the 

Sources of relaxation section above, T2 relaxation is a shrinking of magnetic moments back to 

thermal equilibrium due to energy exchange interactions between nearby spins. 

 In order to observe T2 and not T2*, a pulse sequence capable of refocusing these 

diverging isochromats must be used. Similar to the discrete scheme of the inversion and 

saturation recoveries, spin echoes can be used to accomplish this [18]. In a spin echo, a p/2-pulse 

is used to rotate the sample magnetization into the transverse plane. After some time allowed for 
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isochromats to de-phase, tdel, a second pulse – this time a p-pulse – is applied, which has the 

effect of flipping the order of the precessing isochromats. Slow isochromats are sent to the front 

of the line, while fast isochromats are tossed to the back. Now, the fast isochromats at the back 

start to catch up and the slow isochromats at the front lag back to the middle. After another tdel 

time, the isochromats all re-phase and a “spin echo” is observed as shown in Figure 1.17(a). 

 

 

Figure 1.17. A Carr-Purcell-Meiboom-Gill (CPMG) pulse sequence (a) consists 
of a p/2-pulse, followed by a delay time, tdel, during which the isochromats of a 

sample de-phase. A p-pulse flips the isochromats so that the heterogeneous 
precession now serves to re-focus the isochromats. After another tdel, the spin 
echo is observed as the isochromats complete their re-focusing. The rephasing 

part of the pulse sequence is repeated n times, with an echo being acquired 
between each refocusing p-pulse. The plot of the CPMG (b) is the series of 
observed echo amplitudes plotted against the experiment time at which they 

were acquired. 
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 If the spin echo experiment is repeated for longer and longer tdel times, the amplitudes of 

each spin echo can be recorded. Since the all of the moments with various precession rates 

within the sample are refocused, the effect of de-phasing is removed from the observed decay in 

spin echo amplitude and any remaining decay is due to the effects of true T2. As with the case of 

the inversion recovery, this strategy is quite time-consuming. Instead of repeating the experiment 

for longer and longer tdel times, the Carr-Purcell-Meiboom-Gill (CPMG) experiment simply 

repeats the refocusing pulse and acquisition portion of the spin echo [19]. Shown in Figure 

1.17(a), this is the part within the square brackets. With each refocusing and echo, the total time 

accumulated for the sample magnetization to decay is added to all the previous repetitions. The 

experiment is thus continually refocusing the field inhomogeneities and acquiring just the decay 

due to spin-spin relaxation. The amplitude of each point is then plotted against total experiment 

time and the series is fit to the equation for transverse relaxation: 

 

𝑆(𝑡) = 𝐴𝑒#
.
2! 																																																																	(1.48) 

 

where, as before, A is the arbitrary amplitude (at the beginning of the experiment) and T2 is the 

variable of interest that is being fitted. 
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Chapter Two – Determination of Dielectric Constants of 

Solutions at High Pressures by Partial Least Squares 

Regression 

 
An application of partial least squares analysis to elucidate a non-ideal system 

 

“In the midst of chaos, there is also opportunity.”  

– Sun Tzu 
 

2.1 Forward 

 The following is an exploration in the use of multivariate regression to analyze a highly 

imperfect spectroscopic problem. This is not actually an application of NMR, but it serves as a 

good example of how multivariate, and specifically partial least squares (PLS) regression, can be 

used in messy environments such as those encountered in low-field and single-sided NMR. It also 

contains some arguments supporting the use of PLS over other multivariate regression models. A 

full explanation of PLS is not provided in this section, however, a brief primer is provided in 

Appendix 2 for a better understanding. The purpose of this section in this manuscript is to provide 

a discussion of one more tool in the toolbox of the spectroscopist who finds themselves in the 

unfortunate position of having to tease out conclusions from noisy and otherwise indecipherable 

environments. 
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2.2 Abstract 

The determination of dielectric changes in liquids at high pressures is of interest to 

geophysicists endeavoring to understand the nature of electromagnetic (EM) waves deep within 

the Earth, as well as changes to chemical processes at high pressures. In this environment, the 

concentration of salts must also be considered. Previously, studies have experimentally described 

the behavior of the dielectric constant in pure water at pressures up to 2.0 GPa, as well as in ionic 

solutions at ambient pressures. However, the literature currently does not include an experimental 

investigation of the case of an ionic solution at high pressure. This study proposes a new method 

for the experimental determination of aqueous, ionic solutions up to 2.0 M and at pressures up to 

2.0 GPa. 

 

2.3 Introduction and background 

To study the chemistry of electrolyte solutions at high pressures, an accurate depiction of 

the Gibbs free energy for the solvation of the constituent ions is necessary. This can be 

theoretically estimated using the Max Born equation for the energy of solvation of an ion: 

 

∆𝐺H+IJ =	
𝑧3"𝑒"𝑁:
8𝜋𝜀&𝑟3

41 −
1
𝜀7
6																																																					(2.1) 

 

where zi is the charge number of the ion, e is the elementary charge, NA is Avogadro’s number, e0 

is the permittivity of free space, ri is the ion’s effective radius, and er is the relative permittivity 

of the solution that is solvating the ion. 



 56 

This equation unfortunately does not account for changes in temperature or pressure. To 

address this limitation, Helgeson, Kirkham and Flowers introduced a modification (known as the 

HKF model) in which empirically derived parameters are added and the effective ionic radius, ri, 

is redefined as an adjustable parameter that is a function of temperature and pressure [1]. 

However, the static relative permittivity of the solvent remains important for describing these 

states. 

The permittivity of a material describes how it will be polarized in an electric field 

according to the equation 

 

𝑷 =	 𝜀& 4
𝜀
𝜀&
− 16𝑬																																																														(2.2) 

 

where P is the polarization, e is the permittivity of the material, and E is the electric field 

imposed on the material. The term, “dielectric constant,” by convention refers specifically to the 

relative permittivity, er (or sometimes k) of a material 

 

𝜀7 = 𝜅 = 	
𝜀
𝜀&
																																																																			(2.3) 

 

which is unitless. Equation 2.2, shows that a higher dielectric constant will lead to a greater 

polarization of a material in a given electric field.  Permittivity also has implications for 

changing electric fields, as can be inferred from Maxwell’s equation for an induced magnetic 

field 
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𝛁 × 𝑯 = 𝑱* + 	𝜀
𝜕
𝜕𝑡 𝑬																																																												(2.4) 

 

where H is the magnetic field, and Jf is the current flux. 

According to Equation 2.4, the strength of an induced magnetic field, due to a changing 

electric field, increases in proportion to the permittivity of the medium, as well as the strength of 

the current flux. Therefore, in addition to its effect on chemical equilibria, an understanding of 

dielectric changes in ionic solutions with respect to concentration and pressure is also critical to 

predicting that material’s response to EM radiation. 

Several methods currently exist to measure the dielectric constant of materials at 

atmospheric pressures.  For instance, one may pass an alternating current between parallel plates, 

and by comparing the capacitance with a dielectric versus without, calculate the dielectric 

constant, according to the equation 

 

𝜀7 =	
𝐶K3)I
𝐶&

																																																																					(2.5) 

 

where Cdiel is the capacitance measured with the dielectric and C0 is without. In another typical 

experiment, the reflected power of a band of frequencies is measured, after placing a flat end of a 

coaxial transmission line into a sample. The reflection coefficient, G, at the junction of two 

materials of different impedances is 
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Γ = 	
𝑍! − 𝑍"
𝑍! + 𝑍"

																																																																			(2.6) 

 

where Z1 is the impedance of the first medium, and Z2 the impedance of the second medium. The 

impedance of a medium is itself related to permittivity, thus, in principle, allowing its 

calculation. Both approaches require assumptions. In the first approach, the parallel plates must 

be effectively infinite compared to the gap between them. In the second, the sample depth must 

be effectively infinite compared to the wavelength being used. For both, the sample cannot be 

not surrounded by a conductor. 

Pressurizing samples at GPa pressures, requires materials able to withstand such 

pressures. Also, to prevent extrusion, the pressure cell must enclose the sample. The pressure cell 

being used here is composed of Berylco© 25 (BeCu), which is conductive, thus invalidating the 

assumption that nothing conductive surrounds the sample.  Further, the sample size must be 

small for a hydraulic press to push the samples to such high pressures. This means that the depth 

of the material is not effectively infinite. Also, to analytically determine (even computationally) 

the reflection coefficient as a function of the dielectric constant, one must know the exact 

dimensions within the pressure cell. At the small scale of the sample capsule, this is extremely 

difficult, if not impossible. Even a half-millimeter error would drastically change the calculation 

results. 

Because of these challenges, the reflection spectra are instead correlated to known 

dielectric constants using a multivariate statistical method called PLS regression, which seeks to 

correlate two sets of data by analyzing variances in one set of data (predictors or independent 

data) and calibrating those with the variances of a resulting data set (responses or dependent 
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data). A successful correlation will allow a determination of the dielectric constant for a material 

based on the reflection spectrum alone.  Additionally, this same regression could also be used to 

predict other parameters, so long as they relate to the reflection coefficients. 

Because statistical correlation by nature disregards a strict analytical link between the 

system and the predictions, a strong argument must be made that the system is one that indeed 

lends itself well to the use of a particular regression model. In this case the argument that must 

be made is that the changes in reflection spectra will be in response to, and consistent with, 

underlying changes in permittivity. Fortunately, such a link exists. Reflection spectra a samples 

in this experiment are recorded by connecting a 50 W coaxial cable to a pressure cell, which is 

acts as a capacitor in which the sample itself is the dielectric material. Applying Equation 2.6 to 

this system, the first impedance, Z1, is assigned the value of the coaxial cable, while the second 

impedance, Z2, is assigned the value of the capacitive pressure cell and dielectric sample. In an 

ideal capacitor, the impedance is dependent on both the frequency and the dielectric constant, 

and is given by 

 

𝑍4 =	
1

𝑖𝜔𝜀7𝐶&
																																																																			(2.7) 

 

where w is frequency and C0 is the value of the capacitor without dielectric. While the pressure 

cell is certainly not an ideal capacitor, one can still be certain that the impedance – and therefore 

the reflection spectrum – will change with different dielectric constants. Thus, if one can 

correlate different reflection spectra with different known dielectric constants, these data can be 

used as a map for predicting the dielectric constant of new samples outside the initial dataset. 
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 It is also important to understand how the concepts of how PLS works and why this 

statistical method would be better than other multivariate modelling (MM) schemes. Two other 

MM strategies are very popular at the time of this writing and they are both worth briefly 

considering. Principle component analysis (PCA) is a way of mathematically rearranging the 

dimensions of a dataset (e.g. points of spectra) and finding components with the most variance. 

Those components can then be used as a simplified characterization of the data. If those 

components are then correlated with the components of greatest variance in the dependent 

dataset (outcomes), a link may be made for predictions. While it may be tempting to apply such a 

scheme to this problem, it is not clear that the largest variance in the reflection spectra will 

necessarily be due to changes in the dielectric constant of the sample material. Multiple linear 

regression (MLR) is a way of directly using an independent dataset and its associated dependent 

dataset to find a key, b, which can be applied to a new independent observation, such that a 

prediction (or estimate) vector is reached. The elements of b are called the sensitivities 

coefficients. This relationship between the sensitivities, predictors, and predictions can be 

mathematically represented as 

 

𝒃𝒙 = 𝒚́																																																																								(2.8) 

 

where x is some set of predictors, such as the points of a spectrum, and 𝒚́ is a set of predictions. 

The key, b, may be a vector if only one prediction is sought, or it may be a matrix if it is to be 

used to make multiple predictions. This also may seem quite inviting, however the math behind 

MLR turns out to treat all component variances as equally important, regardless of how well they 

actually correlate to changes in the dependent dataset. 
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 PLS is very similar to MLR, but instead of a rigid pseudoinverse scheme for finding b, it 

uses a system of weighting and scoring guesses based on data in both the independent and 

dependent dataset, and then using the outcome of that procedure to form a new guess, until a 

stable value is reached. In perfect data and with all components being used, this actually 

becomes the same as MLR. However, in noisy and imperfect data, PLS has the advantage that it 

rejects correlations between components in the independent and dependent data that do not vary 

together. Thus it is less likely to be “fooled” by variance due to noise or other conditions that are 

not connected to the predictions being sought. It is for this reason that PLS was chosen for this 

experiment. 

 In practice, PLS is not easily solved for all principle components. Instead, the 

components (and sensitivities) are calculated iteratively, starting with the components of greatest 

weight, in a algorithm called Non-linear Iterative Partial Least Squares, or NIPALS. A more in-

depth explanation of this method is described in Appendix 2. 

 

2.4 Methods 

Before attempting high-pressure measurements, the concept was first tested with various 

concentration of NaCl(aq) in an open beaker.  A section of stiff coaxial transmission line, 

arranged to maintain constant depth, was placed into the solution and was connected by a coaxial 

cable to a network analyzer that displayed the spectrum of reflection coefficients. The reflectivity 

spectra were then correlated to the calculated static dielectric constants of each sample. Known 

theoretical values for dielectric constants of solutions with known NaCl concentrations were 

calculated using methods described by Hasted, Ritson, and Collie [2]. A full cross-validation was 

performed, in which one spectrum was sequentially removed from the independent data set 
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before performing a regression on the remainder. This then provided a predicted value for the 

dielectric constant of the removed spectrum, which was compared to the actual value in the 

dependent data.  

The same analysis was then repeated in a pressure cell, shown in Figure 2.1. The probe 

construction and the pressurization procedure are discussed in literature [3]. An enameled wire 

carrying the signal from the network analyzer was inserted through the feedthrough into the 

sample chamber in the pressure capsule and an application of Stycast ™ was used to seal and 

secure the wire in place. Additionally, a small ruby bead was secured inside the pressure 

chamber, which was epoxied to a tail of optical fiber that was also inserted through the 

feedthrough and secured with the same Stycast™. This ruby and optical fiber allowed the 

experimenter to read the pressure inside the cell using fluorescence spectroscopy [4]. The sample 

in the sample chamber was then placed inside the main body, which served as the electrical 

ground. In this way, the enameled wire, the electrolyte sample, and the surrounding pressure cell 

body formed the plate-dielectric-plate components that one would think of in a traditional 

capacitor, but with radial, rather than the traditional flat geometry. 

 

 

Figure 2.1: The BeCu pressure cell is shown in a blown up diagram.  The 
pressure capsule holds approximately 0.5 mL. 
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This second iteration was still without elevated pressure.  As before, the samples were 

prepared with increasing molarity of NaCl. PLS regression and cross-validation was performed. 

A spectrum of a sample with a concentration different from any in the calibration set was also 

recorded and its dielectric constant was predicted for comparison. 

In the final test, a set of measurements was obtained with pure water, at pressures from 

ambient up to 1.0 GPa, using the same probe and pressure cell as before. Then, using the same 

setup, spectra were recorded at ambient pressure, with concentrations up to 1.0 M. Once spectra 

were taken at both standard conditions (zero concentration and ambient pressure), PLS 

regression was performed on this calibration set. Known theoretical values for the dielectric 

concentration of pure water at elevated pressures were calculated using methods described by 

Floriano and Nascimento [5]. To ensure the validity of the PLS predictions, three steps were 

performed: 

 

1) Cross-validation of the calibration set. 

2) Predictions from outside spectra taken either at varying concentrations, or at high 

pressures (not both) were compared. 

3) Prediction from outside measurements with both elevated pressure and concentration, 

were compared to expected analytical predictions. 

 

The first two steps can be considered a “calibration phase,” while the third step is the 

“exploratory phase.” While it is imperative that the calibration tests be consistent, the third test is 

in fact an exploration of the desired response. 
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2.5 Results 

The initial tests of the PLS methods were conducted in an open 50 mL beaker of varying 

concentrations of NaCl, and yielded promising results. Initial inspection of the spectra showed a 

clear trend correlated with changing dielectric constant. The results of cross-validation showed 

that the PLS regression predicted the dielectric constant within +/- 1.9 (p = 0.05), out of an 

expected theoretical range of approximately 27. For the outside sample (not included in cross-

validation) a solution of 0.375 M, corresponding to a theoretical permittivity of 74.18, was 

prepared. This sample was predicted to have a dielectric constant of 73.81, only 0.37 below the 

actual value, and a percent error of 0.49%. 

In the next test, spectra were taken at varying concentration again, still at ambient 

pressure, but now inside the pressure cell. In this trial, cross-validation yielded predictions within 

+/- 2.4 (p = 0.05) of the dielectric constant. Using the calibration set to predict the dielectric 

constant of the outside 0.375 M sample yielded a result of 72.61, 1.57 below the theoretical 

value, which is a 2.1% error. 

Finally, spectra of pure water in the pressure cell were collected at pressures up to 0.62 

GPa (estimated), as well as of NaCl solutions at ambient pressures (Figure 2.2). In this set, it was 

not feasible to repeat measurements at each condition as before, because the pressure cell must 

be sequentially ramped up for each measurement, without releasing pressure. Cross-validation 

from this calibration set showed that the model would predict within only +/- 10 (p = 0.05), yet 

modeled the overall trend of the dielectric constants well (Figure 2.3). The high variability is 

likely due to the inability to incorporate repeat measurements into the calibration set as before. 
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Figure 2.2. The reflectivity spectra of sample at either elevated pressure, or 
elevated ionic concentration. 

 

 

Figure 2.3. A comparison of dielectric constants predicted by PLS regression 
(circles) versus theoretically calculated values (squares). The y-axis reflects the 
values calculated by the PLS algorithm, whereas the x-axis is the known value 

of dielectric constants from calculating from the sample pressure and NaCl 
concentration. The blue line is a least-squares fit to the predicted data and shows 

that despite poor precision of the individual predictions, the overall trend of 
dielectric constant change is quite accurate. 

 

2.6 Discussion 

The goal of this work has been to devise an experimental method for measuring the 

dielectric constant of highly pressurized electrolyte solutions and the results show that using PLS 

regression on reflectivity measurements of a sample is a feasible method. The results of the first 

and second iterations (open beaker and no-pressure, respectively) show that, in a well-controlled 
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environment, the predictive power of this method is remarkable. In the third iteration, the 

samples were pressurized or had increased concentrations of NaCl, and it was showed that even 

in this difficult to control environment, where the spectra are seemingly more disparate, PLS is 

still able to model the trends quite well. This is impressive, although the ideal result would be 

precise as well as accurate. 

In their work, Hasted, Ritson, and Collie measured dielectric constants of ionic solutions 

at ambient pressure within +/- 1.8 of expected (calculated) values [2]. This method would ideally 

replicate that level of precision. 

 

2.7 Conclusion and potential future work 

The method of PLS regression of reflectivity measurements shows promise as an 

experimental test of dielectric constant behavior in pressurized ionic solutions. With refinement, 

the accuracy, precision, and therefore the validity of this method will allow for testing the 

behavior of the dielectric constant at simultaneously high pressures, as well as elevated ionic 

concentration. In turn, these measurements and their trends will provide a way to test, not just the 

theories that currently govern the behaviors of the dielectric constant at high pressures, but also 

the ionic solvation energy as it is affected by high pressures. 

The remaining work in the calibration phase will focus on improving control of the 

electrical and geometric environment of the sample, as well as expanding the calibration set size. 

The spectrum of the sample is greatly stabilized by providing electrical shielding, and the 

geometry of the sample test environment must be controlled with respect to Stycast™ volume 

protruding into the sample space, and probe wire length. Additionally, improvements to sample 
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preparation, and strengthening the sample set-up, will enable expanded calibration set sizes, as 

fewer experiments are terminated early due to failed sample containers. 

The conclusions from subsequent exploratory phase tests will be applicable in extreme 

environments that are of increasing interest to both geophysicists and astro-chemists who 

encounter chemical processes at extreme pressures. In the future, similar methods may also be 

used for exploring the interplay of other factors such as thermal or optical properties at high 

pressure. 
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Chapter Three – Simple Magnetic Field Models 

 
A description of codes used for designing coils and magnets 

 

"Ten percent of nothin' is ... let me do the math here ... 
nothin' into nothin' ... carry the nothin' ... " 

-Jayne, Firefly 

 

3.1 Introduction 

 In the process of designing coils for low-field and unilateral magnetic resonance (UMR), 

it became clear that a quick method for modelling coil designs would be critical. Coil design had 

previously involved a guess-and-check approach that was labor intensive and time consuming. 

This led to literal piles of test coils (Figure 3.1). While computer models (especially simple ones) 

are rarely able to predict reality with 100% accuracy, even a rough prediction can save 

significant research time if the researcher remains cognizant of the strengths and limitations of 

the code. There are of course commercially available software suites that are very capable in 

performing these exact kinds of calculations, but they are very expensive and require significant 

training to use. What is needed is an inexpensive, easy to use, and quick way to test ideas. This is 

precisely where the MagModel fits into the work flow of UMR and coil design. MagModel is a 

Matlab™ based code that was written by myself during my time in the Augustine Group at UC 

Davis between the years 2016 and 2021. The code is not included here due to length, but may be 

acquired by contacting myself or the Augustine Group. The following is a brief description of the 

MagModel code and instructions on how to use it. 
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Figure 3.1. Designing coils by trial and error is a time-consuming and laborious 
process. This shows a sample of the numerous iterations that were built and 

tested on the path of designing a coil for one system. 

 

3.2 MagModel general description 

 MagModel is a Matlab™ code that takes a user’s instructions for an array of coils or 

permanent magnet blocks and calculates the field due to that array, then plots the results for the 

user’s viewing [1]. At its core, MagModel is a Biot-Savart law and magnetic dipole field solver. 

The Biot-Savart Law gives the magnetic field, B, at a point, r, due to an electrical current, I, 

through a line element, dl [2]. 

 

𝑩(𝒓) = 	
𝜇&
4𝜋�

𝐼 ⋅ (𝑑𝒍 × 𝒓/)
|𝒓′|8I

																																																				(3.1) 

 

where µ0 is the permeability of free space, r’ is the vector from the line element dl to r, and the 

integral is taken over all current-containing line elements. The code further assumes that the 
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current through a coil is simply a sinusoidal application of I, and thus the B1 field calculated is a 

time-independent amplitude for an assigned given direction. 

 The magnetic field, B, at some point, r, from a magnetic dipole, m, that is considered to 

be at the origin is given by 

 

𝑩(𝒓) = 	
𝜇&
4𝜋 �

3𝒓(𝒎 ⋅ 𝒓)
𝑟L −

𝒎
𝑟8 																																																			(3.2) 

 

where the non-boldface r refers simply to the distance between the point of observation and the 

dipole [1]. This equation is the cartesian equivalent of Equation 1.45. In theory, the user could 

calculate the exact dipole moment per point in the magnetic block and use this to calculate the 

actual magnetic field of the permanent magnet in a simulation, but the usefulness of the code is 

really in characterizing the shape of the B1 field, respective to the B0 field. 

Numerical outputs are also able to be acquired from the results of the code. The 

numerical outputs of MagModel are in SI units, but again, the utility of the code lies more in the 

qualitative field geometry than in the numerical predictions of field strength and direction. User 

inputs are provided by altering Excel™ files. In this way, a user may save sets of useful Excel™ 

files for future use, should certain designs be needed again. An example of the output for a 

simple loop above a magnetic block is provided in Figure 3.2. 
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Figure 3.2. The output of MagModel displays the user-defined coil loops 
(upper-left); the slice in space at which the magnetic field will be calculated, as 

well as the line on which further magnetic field calculations will be made, 
overlayed onto the coil (upper-right); a depiction of both the static and rf 

magnetic fields plotted over the loop and magnet blocks (lower-left); and a plot 
of the user-defined component of the magnetic field strengths, along the user-
defined line (lower-right). All plots can be turned and magnified by the user. 

 

3.3 Using MagModel 

3.3.1 Entering data 

In order to perform a calculation, the user must first define the initial parameters: 

1. The coil loops 

2. The permanent magnet blocks 

3. The slice of space upon which the resulting magnetic field will be calculated 

4. The line across space upon which the resulting magnetic field will be 

calculated, as well as the direction component of the field that will be 

displayed. 
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All initial parameters are defined using Excel™ spreadsheets that are saved in the same 

folder as the main code and have specific names. To define parameters in a particular 

spreadsheet, the desired spreadsheet is opened using Excel™ and the required data is entered. 

Data is entered in lines for each entity (e.g. coil loops) and there should be no empty lines 

between entities. 

Define the coil by entering data in LoopData.xlsx. An example is shown in Figure 3.3, 

with the entries used to make the results in Figure 3.2. Each line contains the data for one loop of 

the coil. Loop elements are defined by assigning a shape length and width that is assumed to 

initially lie in the xy-plane, and centered at the origin. Loops are drawn by defining a number of 

sequential points in the shape called for by the user. The position of the loop element can then be 

offset in the x-, y-, or z-directions. Finally, the loop element can be rotated about the y- or z-axes. 

Rotations are applied assuming the right hand rule, for example, a positive rotation assigned to 

the y-axis will rotate the loop consistent with a torque vector aligned along the positive y-axis. 

Operations (drawing, moving, and rotating the loop) are applied to each loop element in the 

order that they have been described here. These conventions hold data entered into all 

spreadsheets. In the order of the columns, the data is entered as follows in Table 3.1. 
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Figure 3.3. The LoopData.xlsx spreadsheet is used to define the loops of the rf 
coil being modeled. Shown here, LoopData.xlsx contains the entries that were 

used to obtain the results in Figure 3.2. 
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Table 3.1. Data required for LoopData.xlsx 

Column(s) Description of data Data requirements / meanings 
A Determines whether the loop 

element will be an ellipse or 
rectangle. 
 

Use a “1” for an ellipse, or a “2” for 
a rectangle. 

B and C Assigns the diameters of the ellipse 
or the side lengths of the rectangle in 
the x and y directions, respectively. 
 

Enter a float. Entries are understood 
to be in meters. 

D Assigns the number of points that 
will be used to draw the loop. 
 

Enter an integer. 

E, F, G Used to apply a translational offset 
in the x-, y-, and z-directions, 
respectively. 
 

Enter a float. Entries are understood 
to be in meters. 

H and I Used to apply a rotation about the y- 
and z-axes, respectively. 

Enter a float. Entries are understood 
to be in radians. Operations are 
applied about the y-axis first, then 
the z-axis. Rotations are applied 
about the loops own center (not the 
universal origin). 
 

J Assigns a current to the loop. Enter a float. Entries are understood 
to be in amperes. The direction of 
current is clockwise, as viewed from 
above, when the loop is initially 
drawn in columns A-C. 
 

 

Define the blocks of permanent magnet material using BlockData.xlsx. An example is 

shown in Figure 3.4, with the entries used to make the results in Figure 3.2. Each line contains 

the data for one block element of the overall magnet. Block elements are defined by assigning a 

block side length in the x-, y-, and z- direction. A density of points must then be assigned in 

terms of points per meter, and the position of the block element can then be rotated about the y- 

or z-axes assuming the right hand rule. Next, the loop element can be offset in the x-, y- or z-
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directions. Finally, the dipole moment direction of the magnet block is assigned. In the order of 

the columns, the data is entered as follows in Table 3.2. 

 

 

Figure 3.4. The BlockData.xlsx spreadsheet is used to define the magnetic block 
elements of the permanent magnet, which produces B0. Shown here, 

BlockData.xlsx contains the entries that were used to obtain the results in Figure 
3.2. These elements are based on a three-magnet array as used in the Balcom 

Group at University of New Brunswick. 
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Table 3.2. Data required for BlockData.xlsx. 

Column(s) Description of data Data requirements / meanings 
A, B, C Assigns the side lengths of the block 

in the x-, y-, and z-directions, 
respectively. 
 

Enter a float. Entries are understood 
to be in meters. 

D Assigns the point density used to 
model the block. 

Enter an integer. Entries are 
understood to be in points per meter 
and are applied in all cardinal 
directions in a uniform, cubic lattice. 
 

E, F Used to apply a rotation about the y- 
and z-axes, respectively. 

Enter a float. Entries are understood 
to be in radians. Operations are 
applied about the y-axis first, then 
the z-axis. 
 

G, H, I Used to apply a translational offset 
in the x-, y-, and z-directions, 
respectively. 
 

Enter a float. Entries are understood 
to be in meters. 

J, K, L Assigns the x-, y-, and z-components 
of the magnetic dipole for the block 
element. 

Enter floats. The code treats the 
dipole components as the 
components for each individual 
point making up the larger block 
element (x-, y-, and z-directions for 
Columns J, K, and L, respectively). 
An accurate simulation will 
therefore scale these values to their 
density as determined by Column D. 
 

 

Magnetic field vectors are calculated at an array of points defined on a square slice of 

space that is defined by the user. The slice is defined using SliceData.xlsx. An example is shown 

in Figure 3.5, with the entries used to make the results in Figure 3.2. Only one line is used for 

this spreadsheet, as only one slice is displayed for observation of simulation results. The slice is 

defined by assigning a side length and a number of points per side. This sets the density of points 

for the observation slice. The slice can then be rotated about the y- or z-axes assuming the right 
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hand rule. Next, the slice is assigned offsets in the x-, y- or z-directions. In the order of the 

columns, the data is entered as follows in Table 3.3. 

 

 

Figure 3.5. The SliceData.xlsx spreadsheet is used to define the slice upon 
which magnetic field data will be displayed. Shown here, SliceData.xlsx 

contains the entries that were used to obtain the results in Figure 3.2. 

 

Table 3.3. Data required for SliceData.xlsx. 

Column(s) Description of data Data requirements / meanings 
A Assigns the side length of the slice. Enter a float. Entries are understood 

to be in meters. 
 

B Assigns number of points per side of 
the slice. 

Enter an integer. The combination of 
this entry and the entry in Column A 
will define the point density for the 
observation slice. 
 

C, D Used to apply a rotation about the y- 
and z-axes, respectively. 

Enter a float. Entries are understood 
to be in radians. Operations are 
applied about the y-axis first, then 
the z-axis. 
 

E, F, G Used to apply a translational offset 
in the x-, y-, and z-directions, 
respectively. 
 

Enter a float. Entries are understood 
to be in meters. 
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Finally, MagModel will calculate the strength of the B1 and B0 magnetic fields along a 

line in space, defined by the user. The user also defines what direction of the magnetic field is to 

be plotted. The observation line is defined using LineData.xlsx. An example is shown in Figure 

3.6, with the entries used to make the results in Figure 3.2. As it is for the slice, only one line is 

used for this spreadsheet, as only one line is displayed for observation of simulation results. The 

user assigns cartesian start and end points, the number of points to be calculated, and the vector 

component of the magnetic field to be calculated. The direction of the B1 field is determined by 

assigning values in the x-, y-, and z-directions, and the magnitude of the final observation vector 

is normalized to a magnitude of one. In this way, if a user wishes to observe along a vector 

halfway between the y- and z- axis, assigning observation components of [0 1 1] will not produce 

an observation vector that is 1.414 in length. The results of the B0 calculation are normalized to 

the maximum of the B1 plot values. This is so that both fields can be viewed on the same plot, 

even with very different field strengths. It does, of course, mean that the actual B0 field strength 

is not displayed for the user, but the purpose of this code is more to reveal the qualitative shape 

of the fields as they relate to each other. The abscissa in the line plot displays the distance from 

the line start point. In the order of the columns, the data is entered as follows in Table 3.4. 
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Figure 3.6. The LineData.xlsx spreadsheet is used to define the line upon which 
magnetic field data will be displayed. Shown here, LineData.xlsx contains the 

entries that were used to obtain the results in Figure 3.2. 
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Table 3.4. Data required for LineData.xlsx. 

Column(s) Description of data Data requirements / meanings 
A, B, C Assigns the start point of the line 

along the x-, y-, and z-axes, 
respectively. 

Enter floats. Entries are understood 
to be in meters, relative to the 
simulation space origin [0 0 0]. 
 

D, E, F Assigns the end point of the line 
along the x-, y-, and z-axes, 
respectively. 

Enter an integer. The combination of 
this entry and the entry in Column A 
will define the point density for the 
observation slice. 
 

G Assigns the number of points along 
the line. 

Enter an integer. More points mean 
that more calculations will be 
performed and the resulting plot will 
be higher resolution. 
 

H, I, J Assigns the direction of the B1 field 
that will be displayed, in terms of x-, 
y-, and z-directions, respectively. 

Enter floats. Typically, it is 
sufficient to enter “1” into the 
cartesian direction of interest and to 
leave the rest as “0.” If a direction 
other than the normal x-, y-, and z-
directions is desired, the user may 
enter some combination of values, 
which will be added vectorially and 
normalized to 1 to determine the 
direction of observation. 
 

K, L, M Assigns the direction of the B0 field 
that will be displayed, in terms of x-, 
y-, and z-directions, respectively. 

Enter floats. Typically, it is 
sufficient to enter “1” into the 
cartesian direction of interest and to 
leave the rest as “0.” If a direction 
other than the normal x-, y-, and z-
directions is desired, the user may 
enter some combination of values, 
which will be added vectorially. 
Since the values for B0 are scaled to 
the magnitude of B1 for display, this 
vector is effectively normalized as 
well. 
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3.3.2 Executing the calculation 

 Once the coil, slice, block, and line data has been entered, the user must indicate if the 

permanent B0 magnetic field is to be calculated and, if so, whether the field is to be calculated 

from the information in BlockData.xlsx, or if the data should be acquired from a saved file. 

Often, only the magnetic field of the coil is desired to be modeled. In these cases, the B0 field 

calculations will only serve to clutter and confuse the resulting plots. This determination is set by 

altering the code at line 8 in MagModel. Simply set B0_on = true; if the permanent field is 

to be used or B0_on = false; if not. 

The B0 field plot requires calculating the magnetic field from every point in all of the 

block magnets, at each point on the slice. The calculation time, Tc, for the B0 field on the slice 

thus scales roughly as 

 

𝑇4 ∝ 𝑑,
8𝑙,

8𝑃-"																																																																	(3.1) 

 

where db, lb, and Ps are the point density (per meter) of the block, the length of the block side 

(assuming a cube), and the number of points per side of the slice, respectively. As can be seen, 

the calculation burden can become enormous quite quickly with only moderately increasing 

dimensions of the block. Even an increase in the slice dimension increases computations by a 

square. 

 For this reason, every time the code executes, a .mat file that contains the calculated B0 

values on the observation slice is saved in the folder ./SavedFiguresAndData, located in the same 

folder as the main .m file, MagModel. Thus, once a particular magnet block configuration has 

been used and the calculations for it have been performed on a slice, the user can use these 
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previous data for future simulations using the same magnet block and observation slice, instead 

of recalculating the B0 field every time. If B0_on is set to true, indicate if a saved file is to be 

used on line 10 by setting UseSavedB0Field = true; if a saved file is to be used and  

UseSavedB0Field = false; if not. If a saved file is to be used, change the file path on 

line 12 to the appropriate path where the previous data can be found. An example is shown in 

Figure 3.7. Remember that the saved data are valid for a particular slice, so the parameters in 

SliceData.xlsx must match the saved slice data. If this is not validated to be the case, the code 

will give the user the option to calculate B0 from BlockData.xlsx instead, or abort the simulation. 

 

 

Figure 3.7. The calculations to be performed in MagModel, as well as the path 
to saved data, are set in MagModel, lines 8, 10 and 12. The settings shown here 

were the settings used for the calculation of Figure 3.2. 

 

 Once these settings are defined, no other preparations are needed. The user may execute 

the simulation by running the code in MatLab. 
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 MagModel may also be used to model the magnetic field of a magnet block alone. To do 

this, simply leave the CoilData data lines blank and set B0_on = true. All other parameters 

are set as described above. 

 

3.3.2 Limitations 

 In order to properly interpret the results of any model, one must understand the limits 

within which the model is valid. In the case of MagModel, the biggest and most obvious 

limitation is that the simulation is static, so no time-dependent effects are modeled. Importantly, 

this means that MagModel cannot not model eddy-current (shielding) effects or any rf 

propagation. Since NMR is conducted in the near-field regime, rf propagation is of little concern. 

However, the effects of eddy-currents are critical to design in many environments where 

conductive material is near the rf coil. In the example shown above in Figure 3.2, this would 

significantly change the resulting field profile and a powerful software such as a finite difference 

(FD) code or ANSYS should be used. 

 Another limitation of the MagModel code is that everything is calculated from finite 

elements on a structured mesh. This results in long calculation times and in some cases may lead 

to inaccuracies when the loop and block elements are not chosen to be small compared to the 

distances to observation points. Inaccurate field calculations can be mitigated by increasing coil 

and magnet block point densities, or by increasing the observation slice distance from these 

elements. The user may also simply choose to ignore results at points in the observation slice (or 

line) that are very close to field-generating elements. Because of the long computation times that 

will result, users may wish to use a different software suite if large magnet blocks with high 

point densities are unable to be avoided.   
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Chapter Four – Bucking Coils 

 
A probe coil element for shaping B1 field and mitigating the effects of eddy-currents in unilateral 

magnetic resonance 
 

“The important thing in science is not so much to obtain 
new facts as to discover new ways of thinking about 

them.” 

-William Lawrence Bragg 
 

4.1 Abstract 

 A novel radio frequency (rf) coil design strategy for mitigation of eddy-current shielding 

in unilateral magnetic resonance (UMR) is described. The coil design exploits full the standoff 

distance of the unilateral magnet by allowing placement of the rf coil directly on the surface of 

the magnet, This strategy fails for normal UMR surface coils due to eddy-current shielding by 

the conductive magnet surface. The approach includes the addition of coils orthogonal to 

standard loop or double-D coils in order to reduce the rf field at the conducting magnet surface. 

 

4.2 Introduction 

 Nuclear magnetic resonance (NMR) has proven itself to be a powerful tool in chemical, 

biological, and physical analysis. However, NMR today typically requires incredibly strong 

homogeneous magnetic fields and can only be performed on very small samples. The technique 

is therefore not conducive to application in many field or processing environments, where 

portability is a necessity and where such strong fields would be dangerous. To address this, 

small, single-sided (or unilateral) magnets have been designed and constructed to allow for 
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homogeneous regions displaced outside the magnet for polarizing sample nuclei [1][2][3]. Coils 

for use in this type of NMR are typically some version of surface loops or double-D (Figure-8) 

coils and, depending on the magnet that these coils are applied to, these may be vulnerable to 

self-interference due to eddy-currents induced by the coils in the magnet body. 

 

4.2.1 Eddy-currents 

 Single-sided magnets are nearly universally constructed from rare earth magnets, which 

are conductive. When a surface coil produces an rf magnetic field incident upon this conductive 

surface, it introduces eddy-currents within the surface of the magnet. These eddy-currents 

produce a reactive magnetic field opposing the initial incident rf field. For a typical surface coil, 

this interferes destructively with the initial surface coil fields and drastically reduces the rf power 

delivered to the sample, as well as the sensitivity of the coil. 

 

 

Figure 4.1. Th mechanism of eddy-currents is depicted. A coil containing an rf 
current, Icoil, positioned above a conducting plane generates a magnetic field, B1. 

In the plane of the conducting surface below, according to Faraday’s Law of 
Induction, the incident B1 induces a counter-rotating eddy-current, Ireact, which 

then produces a reactive magnetic field, Breact. The overall magnetic field 
experienced by a parcel of sample is the sum of these two fields and is usually 

greatly reduced. 
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Eddy-currents can be vexingly complex to calculate, but the task is made much simpler if 

the problem is constrained to simpler terms. In this spirit, the eddy-currents produced by some 

incident flux can be understood more easily if the incident field is normal to the conducting 

surface under examination and whole region of eddy-current is deconstructed into concentric 

loops of individual eddy-currents, as is shown in Figure 4.1 [4]. In this conceptualizing of the 

problem, the flux generated by a single loop of eddy-current in a magnet surface, Fgen, is equal to 

the product of the self-inductance of the loop, Lloop, and the reactive current generated in the 

loop, Ireact. 

 

ΦM)= = 𝐿I++'𝐼7)N4.																																																																						(4.1) 

 

where, by Ohm’s Law, the current is just the voltage of the loop, Vloop, divided by the resistance 

in the loop, Rloop, and the voltage is the negative time derivative of the total sum of flux, Ftot, 

within the area of the loop itself. 

 

𝐼7)N4. =	
𝑉I++'
𝑅I++'

																																																																		(4.2) 

𝑉I++' =	−
𝑑Φ.+.

𝑑𝑡 																																																																			(4.3) 

 

Recursively, the total flux is the sum of the generated flux and the imposed flux. As 

usual, the imposed flux is the imposed rf magnetic field, Bimp, over the area circumscribed by the 

loop of eddy-current, Aloop. 
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Φ.+. =	ΦM)= +	Φ3O' =	𝐿I++'𝐼7)N4. + 𝐵3O'𝐴I++'																																				(4.4) 

 

 Since probe coils are driven with sinusoidal currents of frequency w0, the time 

derivatives of Ireact and Bimp are simply -iw0I and -iw0Bimp, respectively. Therefore, combining the 

above equations, and differentiating the terms of the total flux, 

 

ΦM)= =	
𝑖𝜔&𝐿I++'
𝑅I++'

QΦM)= +	𝐵3O'𝐴I++'S																																														(4.5) 

 

Solving this for the flux generated, then, gives 

 

ΦM)= =	
𝑖𝜔&𝐿I++'

𝑅I++' − 	𝑖𝜔&𝐿I++'
𝐵3O'𝐴I++'																																																(4.6) 

 

For good conductors, Rloop is very small and, since BimpAloop is just the imposed flux, this 

says that the flux generated at the surface of a good conductor, due to eddy-currents, is equal in 

magnitude, and opposite in direction to the flux imposed on it. The same can be said of the 

magnetic field itself. Substituting B1Aloop for Φgen, 

 

𝐵M)= =	
𝑖𝜔&𝐿I++'

𝑅I++' − 	𝑖𝜔&𝐿I++'
𝐵3O'																																																					(4.7) 
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Since the strength of a coil’s magnetic field decreases exponentially with distance, this 

also means that the closer a source coil sits to a conducting surface, the closer the generated field 

comes to equaling the field of the source coil itself, and thus cancelling. 

If a simple, round surface coil is placed directly on a magnet’s surface, Bimp will be equal 

to the full strength of B1 and, from Equation 4.7, Bgen will be essentially equal to -B1. Thus, this 

configuration produces almost no rf field due to the interference of eddy-currents. Surface coils 

must therefore be lifted off the surface in order to overcome the deleterious effects of eddy-

currents. Integrating the Biot-Savart equation for points along the center axis of a single loop 

coil, the field strength, B, at a distance, r, from the center can be found as 

 

𝐵 = 	
𝜇&𝑅"𝐼

2	(𝑟" + 𝑅")8 "P
																																																													(4.8) 

 

where R is the radius of the coil loop and I is the current in the coil loop. From this equation, it 

can be seen that B will not start to drop significantly until the distance, r, becomes greater than 

the radius of the coil, R. To start effectively mitigating the effects of eddy-currents by displacing 

the coil from the surface therefore requires lifting the coil at least a coil radius. 

This introduces a new problem, however, in that signal penetration into the sample is 

sacrificed (in a unilateral configuration, the sample cannot get any closer to the magnet than the 

coil itself). In this traditional geometry, the lesson is that more signal comes at the expense of 

penetration depth. 
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4.2.2 Bucking coils 

Another way to mitigate the effects of eddy-currents is to shape the field such that the 

field imposed at the magnet surface, Bimp, is minimized. The idea is to add an array of coils to 

cancel or “buck” the field below the main coil loop to zero. This approach can also have the 

benefit of adding rf field in the sample region above the coil. 

Bucking coils are mounted orthogonal to the orientation of the main coils and on their 

outside perimeter, as shown in Figure 4.2. The field produced by the whole coil assembly is then 

the sum of the bucking coils and the main coil. By orienting the bucking coils in a transverse 

fashion, the field produced above the coil assembly interferes constructively, adding to the 

overall strength of the B1 rf field. Below the coil assembly, the fields interfere destructively, 

ideally to the point that the field below is canceled at the magnet surface. In the coil arrays 

described here, the bucking coils are wound in line with the primary coil so that they also serve 

as observe coils. 

 

 

Figure 4.2. Bucking coils are positioned at the sides and orthogonal to the 
primary coil. The current in the bucking coils is oriented such that the field 

produced by the bucking coils (Bbuck) supports the field of the primary coil (Bpri) 
above the assembly. Below the coil array, Bbuck opposes Bpri so that the total field 

at the magnet surface is ideally zero. 



 92 

 Because the bucking coil field strength is stronger toward the outside of the coil array 

(where the bucking coils are located) and the primary field is strongest in the center, it is not 

possible to perfectly cancel the field at the magnet surface within the entire area of the coil array. 

A close approximation to this goal can be achieved by using computational software, such as 

ANSYS to design the array such that the sum of the flux within the area of the coil array is zero. 

 

4.3 Materials and methods 

 For comparison, a traditional surface loop was compared to a bucked version of the same 

coil using ANSYS simulation software. Profiles for the rf magnetic fields of a simple, square 

surface coil and another square surface loop with bucking coils were calculated and plotted as a 

function of distance from the magnet surface. The simulation of the first coil was based on a 6 

turn, 3.5 cm side length square coil. The inductance and resistance of this simple surface coil 

were L = 2.98 µH and R = 0.2 W, respectively. The second coil assembly simulated also included 

two 3.5 cm by 0.63 cm rectangular bucking coils positioned on the opposing sides of the primary 

square coil. The square surface coil in this case had 3 turns, while each rectangular bucking coil 

had 9 turns, yielding combined L = 5.25 µH and R = 0.4 W values. 

 

4.4 Calculations and images 

 The bucking coil strategy attempts to mitigate the rf field profile changes introduced by 

the conducting plane, shown in Figure 4.1 for a circular loop, is to include additional coils that 

minimize the rf field impinging on the conducting surface. This concept is best investigated in 

practice by considering a square instead of a circular surface loop. If the system is oriented such 

that the permanent magnetic field of a three-magnet array defines the z-direction and the height 
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from the surface of the magnet defines the y-direction, then the surface of the magnet occupies 

an xz-plane. The field in the center of this square loop in the xz-plane, then, is oriented along the 

y-direction. The addition of two rectangular, counter-wound secondary loops on either side of, 

below, and orthogonal to the primary square loop in the xy-plane yields rectangular loop centered 

fields pointing in the positive and negative z-direction. It is the dipole nature of these loop fields 

that add to the field above the square loop and subtract from the field below the square loop. The 

reduced field below the two rectangular coil, bucked square coil complex concomitantly reduces 

eddy-current formation on the conducting surface. This geometry is shown above in Figure 4.2. 

The two square, counter-wound surface loops produce the primary field, Bpri, while the added 

orthogonal bucking coil yields Bbuck. It should be clear from Figure 4.2 that the field amplitude 

above the bucked coil assembly is B1 = Bpri + Bbuck while below it is B1 = Bpri – Bbuck. The size, 

number of turns, placement, and number of bucking coils are adjusted to minimize Bpri – Bbuck, 

and thus eddy-current formation, at the conducting surface. 

 This simple idea was tested for a simple square loop and bucked square loop using the 

ANSYS modeling software and the results are provided in Figure 4.3. The two-dimensional rf 

field plots show the coil lying in the xz-plane as black lines and the magnitude of the magnetic 

field produced by the coils perpendicular to the z-direction in the xy-plane at z = 0, or the coil 

center. The rf field plots in the left and center columns respectively correspond to the coil 

residing in free space and having the top of the coil 6 mm above a flat conducting surface. The 

plot in the right column shows how the rf field behaves with standoff distance from the coil 

surface in the y-direction, with x = z = 0. 
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Figure 4.3. A  simulation of coils is presented, both in free space and when 

placed atop a conducting surface. The left column qualitatively displays the coil 
in free space and the middle column shows the coil and field in the presence of a 

conducting surface. The right hand column shows the total effective field 
strength as a function of distance from the mounting surface (6 mm below the 

surface of the coil). The solid line represents the free space field strength and the 
dashed line shows the field strength when placed above of a conducting surface. 
The simple square loop (a) suffers significant degradation in effective field at all 

standoff distances. The bucked loop (b) suffers much less in the presence of a 
conducting surface – a 25 % reduction at a standoff distance of 2 cm, as 

compared to the 42 % reduction for the simple surface loop in (a). 

 

 As shown in Figure 4.3, introduction of the conducting surface clearly reduces the 

predicted field intensity provided by the coil as evidenced by the darkening of color in the plot in 

the center of Figure 4.3(a) in comparison to the picture in the left column. Again this purely 

numerical result is consistent with the conceptual prediction described above in the Introduction. 

The same consistent comparison is revealed in the reduced standoff performance as well. This is 

demonstrated by comparing the free space and shielded square coil results in the right column of 

Figure 4.3(a). The solid line corresponds to free space and the dashed line describes the 
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conductor-attenuated results. The vertical gray lines shown in the standoff distance plots in 

Figure 4.3 are a conservative estimate of the position of the homogeneous static magnetic field 

volume established by the unilateral three-magnet array. A comparison of the rf field gain or 

reduction at this position serves as one performance metric for conducting shield compensation 

as a function of coil geometry. In this first case of a square loop, the rf field 2 cm from the coil 

surface is reduced by 42% when the conducting plane is introduced. This rf field reduction is 

improved by almost a factor of two when two counter-wound bucking coils are introduced on 

opposing sides of the flat square coil as shown in Figure 4.3(b). The added bucking coils 

introduce two interesting features to the rf field profile. First, comparison of the first two 

columns in Figure 4.3(b) to (a) suggests that the rf field volume is higher in the sweet spot of the 

static magnetic field. Second, comparison of the standoff distance plots in the right column of 

Figures 4.3(a) and (b) suggest that the added bucking coils accomplish their goal, as the 2 cm 

standoff attenuation factor drops to 25 %, as compared to the 42 % reduction observed for the 

standard square surface coil. 

 The comparison of the performance of the standard square loop to the bucked version in 

Figure 4.3 strongly suggests that the core idea of reducing the rf field at the conducting surface 

by adding orthogonal, counter-wound coils improves the rf standoff distance by about a factor of 

two. Further improvements require either making the orthogonal bucking coils larger, adding 

more bucking coils or reducing the size of the primary square loop or DD coil to more 

effectively match the bucking and primary rf fields. Unfortunately, the addition of larger bucking 

coils underneath the primary square loop is not an option here, as that design change reduces the 

standoff distance because the coil complex will be thicker and further lifted from the unilateral 

magnet surface. Adding more bucking coils is also not an attractive option because the produced 
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fields become more complicated while not offering much improvement in metal-shielding 

compensation. Reducing the primary square loop coil size so that the existing bucking coils 

shown in Figure 4.3 more effectively match the primary loop field is also not desirable as the this 

results in reduced homogenous static magnetic field volume used, and thus smaller NMR signals 

and increased experiment time. 

 

4.5 Conclusion 

 The advent of UMR magnets has provided access to non-standard sample geometries and 

environments that were otherwise impractical or dangerous with traditional high-field NMR. 

However, as large, displaced homogeneous static field regions have been pursued for the purpose 

of greater active sample volume and stronger signal, this has resulted in the use of large blocks of 

conductive magnetic material, which in turn support eddy-currents that are themselves 

detrimental to UMR signal. This has been avoided by using less magnetic material in the 

construction of the permanent magnet, which reduces field strength and thus signal, or by 

displacing the rf surface coil away from the surface of the permanent magnet, which sacrifices 

penetration depth. 

 This work proposes, and verifies by simulation, a solution that requires a sacrifice of 

neither magnetic material nor standoff distance. This is achieved through the addition of bucking 

coils to the traditional surface loop rf coil. Numerical simulations of the rf field provided by the 

square loop and bucked square coil suggest that eddy-current shielding can be mitigated by 

adding orthogonal bucking coils to the primary coil. Another alternative not explored here would 

be to consider an array of small, bucked, primary coils. Although the rf field profile off the 
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surface of the coil is complicated, the approach should yield useful, measurable NMR signals 

with an experimentally practical standoff. 

 Simulations of the bucked square, as compared to the traditional surface square loop 

yielded encouraging results. The simulated loss in B1 strength for the simple surface loop was 

significant and calculated to be 42%, which comports well with experience and conceptual 

understanding of current loops above conducting planes. By comparison, the simulation of a 

bucked version of the same loop showed only a 25% reduction in field strength. These results 

may be reasonably expected to apply to double-D style loops, or any geometry that employs 

surface loops above a conducting magnet body. 
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Chapter Five – Fringe Coils 

 
A surface probe coil design that harnesses the effects of eddy-currents in unilateral magnetic 

resonance for enhanced signal and stable tuning 
 

“Living is worthwhile if one can contribute in some small 
way to this endless chain of progress.” 

-Paul A.M. Dirac 
 

5.1 Forward 

 The following is a reproduction of a manuscript submitted to the Journal of Magnetic 

Resonance in 2021. The work here represents my own efforts with help from Sophia Fricke and 

Vanessa Lee, in collaboration with Professor Bruce Balcom at University of New Brunswick, 

and under the advisement of Professor Matthew Augustine. It was, in fact, during a seminar by 

Dr. Balcom when he visited UC Davis that I found the inspiration for bucking coils. At the time, 

we were trying to figure out a way to get around the deleterious effects of eddy-currents formed 

by surface loop probe coils in single-sided NMR. At some point, Dr. Balcom mentioned Halbach 

magnets in his talk and it occurred to me that we could use similar interplay of magnetic fields to 

reduce the field of a rf probe coil interacting with a conductive magnet body, while enhancing 

the field produced by the same coil in the sample volume. The result was initially bucking coils, 

as described in the previous chapter. Ultimately, experimentation with variations of bucking coil 

designs led to the flat fringe coils described in this chapter.. 
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5.2 Abstract 

 Two types of radio frequency (rf) coils for linear array, unilateral magnets are described. 

These coils are designed to fully exploit the standoff distance of the unilateral magnet by 

placement directly on the magnet surface. This approach fails for normal surface coils used for 

magnetic resonance due to eddy-current induced shielding by the conductive magnet surface. 

The coil design strategy includes a rectangular cross section solenoid coil, either continuous or 

split in the center, mounted with the center axis of the coil parallel to the magnet surface. These 

geometries, when placed on a conducting surface, enhance the rf field produced in the sample 

region, outside of the solenoid coil. The spatial homogeneity of both rf coils is characterized 

using the ANSYS finite element modelling software. ANSYS modelled coil geometries led to 

homogeneous, surface displaced rf fields. These coils were then constructed and characterized 

with magnetic resonance imaging. Finally, two experiments that use these coils to perform large 

standoff relaxation measurements are described. 

 

5.3 Introduction 

 While nuclear magnetic resonance (NMR) has proven to be a powerful technique in 

chemical analysis, traditional hardware typically uses high radio frequency (rf) power and 

presents inflexible sample geometries that are not conducive to the analysis commonly 

encountered in manufacturing, processing, or field work environments. Magnets have been 

previously designed and constructed to conduct NMR outside the body of the magnet itself [1] 

and some have further extended this unilateral design to produce regions of relatively 

homogeneous magnetic field, well-displaced from the magnet surface that can be used for single-

sided NMR [2]. These permanent magnets are much smaller than traditional superconducting or 
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electro-magnets allowing the NMR instrument to be portable. However, as the magnetic field is 

weak and the sensors are typically deployed in dynamic, often electrically noisy environments, 

measurements typically have low signal-to-noise (S/N). A major impediment to unilateral 

magnetic resonance in connection with experiments requiring large standoff, or distance between 

the magnet and sample, is that the magnet interferes with the applied oscillatory rf magnetic 

field, B1, by supporting eddy-currents. A surface coil may be lifted off of the magnet in order to 

mitigate eddy-currents, however this comes at the expense of sample standoff distance from the 

magnet and probe assembly surface. 

 In the design of a unilateral magnet-based NMR sensor, the sources of the static magnetic 

field, B0, and the rf field, B1, must be considered. Several magnets have been designed to address 

the challenge of producing a homogeneous B0 field displaced from a surface. One of the most 

well-known and commercially available single-sided sensors is the NMR-MOUSE [1]. This 

configuration consists of two opposed-polarity magnets that have been separated by just enough 

space to allow for a probe coil. The B0 field produced by the NMR-MOUSE is transverse to the 

surface, while the B1produced by the probe coil is perpendicular. This design suffers very little 

from eddy-currents in the magnet body and achieves a 1H Larmor frequency of about 17 MHz, 

however the useful penetration depth is only a couple of millimeters.  

 Another attractive magnet design is the cylindrical magnet array [2]. This “barrel” 

magnet involves several stacked ring magnets and a cylindrical bar magnet placed in the center 

of the ring stack. The position of the cylindrical magnet is adjustable and used to establish the 

homogeneous region of the B0 field. The static field in this configuration is perpendicular to the 

surface, while a figure-eight or “double D” (DD) style probe coil placed on top of the magnet 

provides a B1 field transverse to the surface. This design has resulted in a homogeneous sensitive 
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region ca. 1.5 cm above the surface, with a 1H Larmor frequency of ca. 5 MHz. Again, this 

geometry does not suffer from eddy-current formation as the majority of the DD coil is above the 

solid cylinder bar magnet that is depressed in the magnet rings. 

 A linear magnet array was created based on the idea of a solid, sideways bar magnet [3]. 

Here, a bar magnet is placed on its side, so that the static magnetic field is transverse to the 

surface. That bar magnet is then split into left and right halves and separated, leaving an inverted 

saddle region in the B0 field above the surface. Then, a smaller bar magnet, aligned in the same 

direction as the first two pieces, is inserted between the halves, and its position may be adjusted 

for fine tuning the distance of the homogeneous saddle region from the surface, similar to the 

cylindrical magnet array described above. Unlike the magnets previously described, in which the 

magnetic material is separated and pushed away from the sample region, this design allows for 

all of the magnetic material to be collocated as one solid volume next to the sample region. This 

results in a stronger and larger homogenous static magnetic field volume while using less 

material. A further advantage of this design is offered by the fact that it is safer because the 

individual magnet pieces are aligned in a low-energy arrangement and are not being forced 

together by a frame, which would explode, should it fail. The linear magnet array has produced 

magnetic fields with similar characteristics as the cylindrical magnet array, however with a much 

simpler design that uses approximately 20% less magnetic material, making this design 

significantly lighter and less costly. Additionally, the solid nature of the construction of these 

magnets makes them less susceptible to temperature-induced field drift [4]. 

 The linear magnet arrays are extremely attractive for industrial applications where 

portable sensors are needed to study materials well separated from the magnet surface by 

packaging, pipes and other sealed containers. However, the same feature that gives these 
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magnets their desirable qualities, namely that they are essentially solid blocks of magnetic 

material, creates a significant problem for probe coil design when applications requiring the large 

standoff that these magnets offer are encountered. 

 

 

Figure 5.1. A simplified sketch showing the relative placement of the linear 
unilateral magnet array, NMR detection coil and homogeneous static magnetic 

field sample volume. The homogenous static magnetic field volume is indicated 
by the axis system intersecting the single B0 flux line that defines the z-direction. 

The h-direction corresponds to displacement normal to the unilateral magnet 
surface while the w-direction assigns the remaining axis along the width of the 

magnet. The sample standoff distance from the magnet is h1 + h2 while the 
standoff distance from the sample to the NMR detection coil is h2. The direction 

of the rf fields provided by a loop or DD coil are also included. This work 
endeavors to develop NMR detection coils that have the distance h1 minimized 

to maximize the distance h2 and thus improve sample standoff distance. 

 

 Consider the usual linear unilateral magnet geometry with either a single circular loop or 

DD coil as shown in Figure 5.1. In this figure, and throughout the remainder of this manuscript, 

the ,  and  unit vectors respectively describe the direction of the static magnetic field in the 

homogeneous volume, the displacement off of the magnet surface and the final orthogonal 

direction across the width of the magnet. With this convention, the coil is displaced from the 

magnet surface by the distance h1 and the coil is separated from the homogeneous sample 

ẑ ĥ ŵ



 104 

volume by the distance h2. A single magnetic flux line for the unilateral magnet is shown and the 

direction of the rf field offered by the loop or DD coil is indicated at the position of the 

homogeneous sample volume. It should be clear from Figure 5.1 that h1 must be minimized in 

order to fully utilize the standoff and large homogeneous sample volume produced by the 

unilateral magnet. It is this requirement that introduces complications to the performance of the 

loop and DD coils typically used for physically localized imaging and single-sided NMR. Figure 

5.2(a) describes what happens when a loop in the z-w plane producing an rf magnetic field is 

placed close to a conducting surface also in the z-w plane. Here an applied rf current, I, in the 

loop produces a primary rf magnetic field B1 that induces eddy-currents in the conductor Ieddy. 

These eddy-currents produce a secondary magnetic field Beddy that reduces the applied B1 

primary field. This effect diminishes both the size and homogeneity of the applied primary field. 

An appreciation for the severity of this effect at 5 MHz can be obtained from the magnetic field 

plots in Figures 5.2(b) and (c) for a simple current loop of radius R = 2 cm held above a flat 

copper surface [5]. The solid lines in both plots confirm expectations in the absence of a 

conducting surface where h1 > 4 cm. The plots in Figure 5.2(b) as a function of distance from the 

center of the coil, r, calculated at h2 = 1 cm or at half the loop radius above the loop recovers the 

expected field homogeneity. Both the amplitude and the radial homogeneity are spoiled when the 

conducting surface is moved closer to a practically useful h1 = 2 mm displacement as shown by 

the dashed line in Figure 5.2(b). A similar performance reduction is also observed for the on axis 

field at r = 0 as a function of displacement h2 from the surface of the coil. Again, the reduced 

field profile for the h1 = 2 mm offset is shown as the dashed line. Although just the magnetic 

field component normal to the loop and conducting surface in the  direction is shown Figure ĥ
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5.2, it should be clear that the radial component of the field suffers from the same eddy-current 

induced reduction and that these effects are just as severe for the DD coil. 

 

 

Figure 5.2. A graphical model for the generation of the eddy-current-reduced rf 
field is shown in (a). Here the primary B1 field from a circular loop induces 

eddy-currents Ieddy on the conductor surface that concomitantly produce a field 
Beddy that subtracts from B1. The plot in (b) describes the rf field strength of a 
loop in free space, calculated at a distance h2 = 1 cm from the R = 2 cm circular 
loop coil surface, as a function of the radial distance from the center of the loop, 
r, shown as the solid line. The dashed line in (b) shows what happens when the 

conducting surface is moved closer to h1 = 2 mm. The plots in (c) show the 
standoff distance dependence of the rf field developed by the same circular loop 
coil at the center r = 0 as a function of h2. Again the free space rf field with h1 = 
4 cm is shown as the solid line while moving the conductor closer to h1 = 2 mm 
produces the dashed line. These plots were generated from the analytical results 

of Moser [5]. 
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 A seemingly obvious solution to this problem that does not work simply involves placing 

a layer of ferrite magnet metal between the magnet array and the coil. The resistivity of ferrite is 

much greater than that of the neodymium alloys  comprising the magnet. This should mitigate 

eddy-currents without significantly reducing the B0 field strength. This idea, however, neglects 

the fact that resistivity is magnetic field dependent [14, 15]. Indeed, the beneficial conductive 

properties of ferrite experienced at zero field vanish at NMR-useful magnetic field strengths and 

frequencies. Under these conditions, the resistivity of ferrite more closely resembles that of 

copper and aluminum. These effects were briefly tested and confirmed, and the use of ferrite as a 

mitigation strategy was therefore abandoned.  

 Two other ways of circumventing the negative effects introduced by the conducting 

magnet surface on the primary field of a surface coil are also immediately apparent. One 

approach, which was mentioned above, is to sacrifice unilateral magnet penetration depth by 

using simple loop or DD coils displaced by h1 > R from the magnet surface. In this 

configuration, eddy-currents are minimized and changes to the applied primary field amplitude 

and homogeneity are reduced. This work instead considers rethinking the geometry of the coil 

itself. The approach allows h1 to be minimized, with the goal of placing the rf coil directly on the 

magnet surface. In this way, the sample standoff distance of the unilateral magnet is fully 

exploited. The loops of these coils are arranged orthogonally to the surface to the magnet, 

producing primary magnetic flux lines that do not impinge the magnet surface. The term 

“primary” is used here to refer to field lines produced directly by the coil and which intersect the 

sample region. This work describes and mathematically, as well as experimentally, characterizes 

these “fringe” coils in detail with the goal of identifying the best coil geometry for 

accomplishing large standoff NMR with linear unilateral magnets.  
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5.4 Materials and methods 

 The rf magnetic field profiles shown in Figures 5.2(b) and (c) were calculated with 

Matlab™ using the analytical results presented in Moser [5]. The asymmetry of the fringe coils 

and conducting plane encountered in this study, and the complexity that they introduce into the 

Maxwell equations required that the ANSYS AIM (Cannonsburg, PA) finite element, three 

dimensional differential equation solver be used for theoretical coil performance comparisons. 

 Three coils were constructed to experimentally test the numerical model predictions by 

magnetic resonance imaging the rf excitation field above the coils with and without a conducting 

plane. The first coil is a 6 turn, 3.5 cm side length square coil. The inductance and resistance of 

this simple surface coil are L = 2.98 µH and R = 0.2 W. The L = 9.38 µH, R = 0.4 W standard 

“fringe” coil used here involved wrapping 33 turns onto a 2 cm long, 3.5 cm wide, 0.63 cm thick 

support. To be clear, the coil is wrapped around the “long” or “longitudinal” axis and the width 

of the coil is typically greater than the length. The coil wraps were continuous along the 2 cm 

long axis so that the final coil resembles a smashed solenoid coil. Finally, a “split fringe” coil, 

involving two counter-wound 13 turn, 1.8 cm long, 3.5 cm wide, 0.63 cm thick fringe coils 

separated on the long axis by 1.5 cm was constructed with L = 4.10 µH and R = 0.4 W.  

 Mineral oil and laundry detergent samples were obtained from Safeway and used as 

received. All NMR data were obtained with a Tecmag (Houston, TX) Redstone spectrometer and 

two separate magnets were used in this study. Magnetic resonance images of the rf fields 

produced by the four model surface coils were obtained at a 4 MHz 1H Larmor frequency with a 

0.09 T SMIS imaging electromagnet. All of the images were created using a two rf pulse spin 

echo, pulse sequence, with frequency encoding along the z direction and phase encoding along 

the x and y directions. In all cases the pulsed field gradients were adjusted to provide 128 x 48 x 
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48 points in the z, x and y directions ( ,  and ) and an associated 12.8 cm x 12.8 cm x 12.8 

cm field of view. The pole face gap in the SMIS magnet is large enough to allow a 4 inch 

diameter, 800 mL beaker of mineral oil to be placed directly on top of the fringe coils in the 

homogeneous region of the static magnetic field. In this way, simply sliding an aluminum plate, 

cut to the surface size and shape of a 3-magnet linear array, under the coil and beaker complex 

emulates the surface of a unilateral magnet. The portable unilateral magnet used in this study 

labeled as WA-1 was built by Balcom, et. al. at the University of New Brunswick [6]. It is a 18 

cm x 11 cm x 7 cm, 0.05 T unilateral three permanent magnet array with a homogeneous sweet 

spot approximately 2.5 cm off the magnet surface that provides a 2.27 MHz 1H Larmor 

frequency. This magnet along with the coil was sealed into a copper shielded, waterproof 

Pelican™ case so that the sensor can be used on a benchtop or submerged into a liquid sample. 

All observed transverse relaxation time constants, T2
obs, were obtained the Carr-Purcell-

Meiboom-Gill (CPMG) pulse sequence [7, 8]. Typical p/2 rf pulse and echo delay times were 18 

µs and 1.046 ms respectively in the CPMG pulse sequence.  

 

5.5 Results and discussion 

5.5.1 Calculations and images 

 The coil design strategy described here considers inductors on metal surfaces that yield 

primary flux lines that do not intersect the conducting surface. The solenoid coil shown in Figure 

5.3 satisfies this requirement. The two flux lines shown in black and labelled as B1 describe the 

primary field of the solenoid coil. The flux lines above the center axis of the solenoid in the  

direction should be immune to the conductor shielding as these flux lines do not intersect the 

unilateral magnet surface. The flux lines below the center axis of the solenoid do intersect the 

ẑ ĥ ŵ
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conducting surface, however, because of the coil-to-conducting surface geometry, these flux 

lines generate eddy-currents Ieddy that have the surprisingly advantageous effect of generating a 

field Beddy that adds to the field B1 above the solenoid coil in the measurement region. The 

standard solenoid coil with circular cross section is not desirable for this application as the 

standoff distance is not maximized. To take advantage of the rf amplification offered by the 

conducting surface suggested by Figure 5.3 while maximizing standoff distance h2, the solenoid 

coil is flattened to create an ellipsoidal or rectangular cross section solenoid coil. This smashed 

solenoid coil is referred to as a “fringe coil” to distinguish it from a standard circular cross 

section solenoid coil. The nomenclature was also chosen because the active volume is outside of 

the coil in the fringe case while for a standard solenoid coil in NMR the active volume is inside 

of the coil. 

 

 
Figure 5.3. A sketch describing how the rf field from a solenoid coil placed 
sideways on a conducting surface increases the rf field in the homogeneous 

static magnetic field volume above the coil. The solid black flux line describes 
the primary field of the solenoid coil while the flux line for the eddy-current Ieddy 

generated rf field Beddy enhances the rf field in the sample region. Again, the 
static magnetic field is in the z-direction. 
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 The plots shown in Figure 5.4(a) describe the performance of a 1 cm long, 3.5 cm wide, 

0.5 cm thick fringe coil with its center axis in the  direction in free space in the left column 

and above the conductor in the center column. The top row in Figure 5.4(a) shows the rf field 

profile in the h-w plane at z = 0 while the bottom row displays the rf field profile in the h-z plane 

at w = 0. These plots suggest that the rf field above the fringe coil is not attenuated by the 

conducting surface. Rather, as predicted by the standoff distance summary in the right column of 

Figure 5.4(a) and by Figure 5.3, the rf field in the measured sample volume at h2 = 2 cm from the 

unilateral magnet surface increases by 43 %. 

 

 

ŵ
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Figure 5.4. Summary of ANSYS developed numerical rf field calculations for a 
fringe and split fringe coil in (a) and (b) respectively. The left and center column 
show the rf fields perpendicular to the z-direction without and with a conducting 

surface placed h1 = 6 mm below the top of the rf coil complex. The top and 
bottom rows in (a) and (b) respectively correspond to the rf field calculated in 

the h-w and h-z planes. The right column shows the standoff performance of the 
coils obtained in the h-direction at the z = w = 0 center of the rf coil. The solid 

and dashed lines show the rf field value without and with the conducting surface 
as a function of distance h2 from the coil surface. The vertical gray line shows 

the position of the homogenous static magnetic field volume where the shielding 
performance is evaluated. 

 

 The standard fringe coil is designed to obtain signals directly above and outside of the 

coil. However, both common knowledge and the calculations shown in the top row of Figure 

5.4(a) suggest that the rf field at either end of the fringe coil near the rectangular openings is 



 112 

more intense than the rf field outside and above the fringe coil. It is for this reason that the 

opposed, counter-wound fringe coil was created. The performance of this “split fringe” coil is 

shown in Figure 5.4(b). The two 1.8 cm long, 3.5 cm wide, 0.63 cm thick counter-wound coils 

are separated by 1.5 cm. The top plots in Figure 5.4(b) show the rf field profile in the h-w plane 

at the z = 0 center of the split fringe coil while the lower plots display the rf field profile in the h-

z plane at the w = 0 center of the split fringe coil. Finally, the plot in the far right column shows 

the rf standoff performance of the fringe coil. Once again, the signal at h2 = 2 cm is increased, 

this time by about 44 %. 

 The theoretical predictions made in Figure 5.4 suggest that the response of the fringe and 

split fringe coils to the unilateral magnet conducting surface is amplification of the field and 

signal, rather than attenuation, as in the case for standard surface loops and double-D coils. An 

experimental comparison of the performance of these two fringe coils to a standard square loop 

is shown in Figure 5.5. Here, the images in the left column are without a conductor while an 

aluminum plate is placed 6 mm below the top of the coil in the right hand column. The number 

included in the lower right corner of the right column image is the ratio of the maximum signal 

obtained with the conductor in place to that same maximum signal in free space. The crescent 

shape in all images comes from the fact that the B1 field is stronger near the coil center and 

weaker at the edge, consistent with Figure 5.2. The square loop performs as expected, providing 

a reduction of about a factor of two upon placement on the conducting shield. More important is 

the gain in rf field amplitude for the fringe and split fringe coils predicted in Figure 5.4 and 

experimentally observed in Figure 5. Moreover, these results indicate that the standoff distance 

of the fringe and split fringe coils improves slightly upon adding the conducting surface 

underneath the coil. Again, this is anticipated by the predictions made in Figures 5.3 and 5.4.  
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Figure 5.5. Magnetic resonance two-dimensional slices, extracted from 3D 
magnetic resonance images obtained at a 4 MHz 1H Larmor frequency for a 

large beaker of mineral oil placed on the surface of a similarly sized square loop 
coil, a fringe coil and a split fringe coil in (a) – (c) respectively. The images in 
the right column include an aluminum plate placed h1 = 6 mm below the top of 

the rf coil while the images in the left column have the aluminum plate removed. 
The number inset on the lower right corner of the images in the right column is 

the ratio of the maximum signals obtained with and without the conducting 
plate. 

 

 Another interesting, unexpected feature of these metal surface mounted fringe coils is 

that they perform as well or in some cases better than a simpler loop coil in free space. For 

example, the images shown in Figure 5.5 can be used to define a S/N. The image for the free 

space coil in the left column in Figure 5.5(a) yields S/N = 70. A S/N = 56 and 97 are obtained 

from the images for the metal mounted fringe and split fringe coils in the right column of Figure 

5.5(b) and (c), respectively. It may be unexpected that the split fringe could surpass the “ideal” 

case of a loop in free space. This can be explained by recalling that in all of these experiments, 

the sample is placed outside of the coil, and thus the geometry of the setup is not the ideal case of 
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a sample inside a coil. In unilateral magnetic resonance, the sample is by nature outside of the 

coil, where the simple loop is not as attractive as fringe coils, that harness the conducting 

properties of the magnet body. 

 

5.5.2 Unilateral magnet-based characterization 

 The standard fringe and the split fringe coils were further explored by conducting two 

additional experiments. Both experiments use the 0.05 T (WA-1, 2.27 MHz 1H Larmor 

Frequency) unilateral magnet and the same fringe coils that were used to obtain the rf excitation 

images in Figure 5.5(c). The 3.5 cm width of these fringe coils was chosen so that they could be 

inserted easily into the 3.6 cm rectangular groove created by the depressed central bar magnet in 

the WA-1 three-magnet linear array. 

 In the first set of characterization experiments, a large beaker of mineral oil was placed 

on top of the magnet and coil, and the CPMG pulse sequence was used to measure the observed 

transverse relaxation time, T2
obs, as a function of beaker-to-coil distance (0.6 cm > h2 > 2.1 cm). 

This experiment was repeated for both coils on the same WA-1 magnet. The average and 

standard deviation of the T2
obs values obtained for beaker displacements are shown in Figure 5.6. 

When S/N is low in the CPMG experiment, echo signals quickly drop below the noise floor, 

resulting in the appearance of a shortened decay time constant. This, along with the observed fact 

that S/N significantly decreases with greater displacement from the magnet and coil, means that 

the T2
obs values appeared shorter, with larger displacement for a constant number of scans. As 

expected, however, T2
obs increased and stabilized once a sufficiently high S/N was achieved with 

additional signal averaging. Figure 5.6(a) demonstrates the flat fringe coil performs well at short 

standoff distances, but as the sample starts to approach the edge of the magnet sweet spot, the 
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T2
obs uncertainty increases until noise completely washes out the decay signal. Figure 5.6(b) 

displays the T2
obs values obtained in exactly the same way, but with the split fringe coil. A 

comparison of Figure 5.6(a) to (b) suggests that the split fringe coil performs better than the 

standard fringe coil as roughly the same average T2
obs value is obtained at each displacement, the 

error bars in the split fringe case are smaller, thus the T2
obs value is more certain and, finally, the 

constant can be measured at the h2 = 2.1 cm displacement. 
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Figure 5.6. Summary of T2obs values obtained for light mineral oil with the 

standard fringe (a) and split fringe (b) coils as a function of beaker-to-magnet 
displacement, h2. The T2obs values were obtained from a Matlab™ fit of the 

decay of the raw CPMG echoes to a single exponential function. In both plots, 
the circle captures the average value of T2obs obtained at h2, while the bars 

capture the error in this average. As the value of h2 increases, the S/N drops for a 
constant number of signal averages, and the error in T2obs increases. Note that at 
h2 = 2.1 cm, the S/N for the standard fringe coil transient was too low to obtain a 

T2obs estimate. 

 

 The second set of characterization experiments considered the strength of the B1 rf field 

produced by the two fringe coils as determined from a nutation experiment. Using light mineral 
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oil as the sample, the spin echo intensity is tracked as a function of rf pulse length, at a fixed 

applied rf amplitude. The solid lines shown in Figures 5.7(a) and (b), respectively, for the fringe 

and split fringe coils report the average imaginary, real, and magnitude spin echo intensity, from 

light to dark respectively, over five experiments for separate rf pulse lengths. The shaded regions 

communicate the 95% confidence level uncertainty in the average spin echo intensity at each rf 

pulse length. 

 In a standard nutation experiment, the amplitude of the free induction signal is recorded 

as a function of pulse length. The maximum signal occurs when the magnetization, as nutated by 

p/2, rotates completely into the transverse plane. Here, in the single-sided case where the 

collection of free induction decay signals are impractical, two pulses are instead applied, 

producing the anticipated spin echo. The nutation of the intensity of this spin echo behaves just 

like the signal following just one pulse, specifically the maximum spin echo occurs for a p/2 

initial pulse. This effect is demonstrated in Figure 5.7 where the maximum signal is at 

approximately 35 microseconds, giving a Rabi frequency of 7.1 kHz. The fact that the Rabi 

cycling does not continue after the first cycle is indicative of the inhomogeneous nature of both 

the B1 and B0 fields. The spins are actively dephasing during the pulse itself. There is also a 

phase shift introduced by the metal surface, manifested as a non-zero imaginary component 

when the echoes are integrated. This is due to phase shifts in the reactive B1 rf field at the 

reflection plane of the magnet surface, which then sum with the primary B1 rf field at the sample. 

The same effect occurs during signal detection, and is consistent with NMR observations in the 

presence of metal shielding [9]. 
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Figure 5.7. Spin echo intensity as a function of rf pulse length. Here, the 
ordinate corresponds to the length of the first rf pulse in the spin echo 

experiment. This ordinate value is half the length of the second rf pulse in the 
spin echo experiment. The abscissa captures the total spin echo signal intensity. 

This value was obtained by integrating the raw spin echo signal in the time 
domain. Five spin echoes were obtained at each rf pulse length observed. The 
thick solid lines correspond to the average signal intensity, while the shaded 

regions communicate the 95% confidence in this measured spin echo intensity. 
The progressively darker shading corresponds to the real, imaginary, and 

absolute value of the signal intensity. Results are shown for the standard fringe 
and split fringe coil in (a) and (b), respectively.  

 

5.5.3 Unilateral magnet applications 

 The superb performance of the split fringe coil in all characterization efforts prompted 

two challenging real-world applications. In the first application, the coil and magnet assembly in 

a copper lined, sealed Pelican™ case were submerged in a 5-gallon bucket of Gain™ detergent. 

This setup was chosen to emulate observation in a large format vat mixer or other industrial 
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setting. The photographs in Figure 5.8(a) show the unilateral magnet and coil in the open case 

(left), as well as submerged in Gain™ (upper-right). Application of the CPMG pulse sequence in 

this setup produced the transient decay signal on the left in (b), with a T2
obs = 16 ms decay 

constant determined from the inverse Laplace transform (ILT) shown on the right. The reported 

signal represents the sum of 256 transients, in 2.8 minutes of data acquisition, at a S/N = 148. 
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Figure 5.8. Two real examples of the split fringe coil in action. The split fringe 
coil inserts into the existing groove of WA-1 unilateral magnet and the split 

fringe coil/unilateral magnet complex is placed into a water tight Pelican™ box 
lined with copper as shown in the picture on the left in (a). The enclosed NMR 
sensor was submerged in a bucket of laundry detergent, as shown in the upper 
right in (a), and application of the CPMG pulse sequence produced the decay 
shown on the left in (b), with a T2obs = 16 ms time constant obtained from the 
ILT on the far right. The lower right in (a) shows the placement of a branch 
segment on the top of the sealed magnet. Application of the CPMG pulse 

sequence yielded the transient decay shown in the left of (c). In this case, the 
ILT reports two T2obs values, 3.5 ms and 20 ms that correspond to water in the 

cells and lumen of the bulk wood, respectively. 
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 The second application considers the in-situ exploration of natural products or crops. 

Unilateral magnetic resonance has previously been used to measure the moisture content of 

wood, using a similar magnet [10, 11]. A small piece of tree branch, approximately 1 inch in 

diameter, was obtained and sealed in a plastic bag between experiments to prevent drying. This 

wood was then placed over the sweet spot of the Pelican™ case-sealed WA-1 magnet and split 

fringe coil, as shown in the lower-right of Figure 5.8(a). Application of the CPMG pulse 

sequence in this case led to the transient decay signal shown on the left of (c). In this example, 

1,735 were averages accumulated in 10 minutes of data acquisition, yielding a S/N of 1,047. The 

ILT reports two time constants, T2
obs = 3.5 ms and 20 ms, shown in the plot on the right of (c). 

These two constants correspond to the water in the wood cells and lumen, respectively, and are 

in agreement with previous observations carried out with various wood types [12, 13]. Such a 

result illustrates the potential for this coil and magnet to be used in similar investigations, and is 

remarkable for such a small sample, that does not fully exploit the magnet’s sweet spot volume, 

as compared to the logs that were used in the cited studies, or when completely immersing the 

magnet and coil in sample. 

 

5.6 Conclusion 

 The availability of unilateral magnets has broadened the types of problems that can be 

studied with NMR spectroscopy and relaxometry. However, the primary challenge of single-

sided NMR has been designing magnets that provide large homogeneous static magnetic field 

volumes significantly displaced h1 + h2 > 2 cm from the magnet surface while ensuring that the 

field strength is large enough to provide signals with minimal signal averaging. The linear 

unilateral magnet arrays mentioned above meet this challenge, as the magnet material is located 
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as close to the sample as possible. The consequence of this magnet choice is that the full standoff 

distance offered by the linear array is not able to be fully exploited as the use of standard surface 

rf coils themselves require an offset from the magnet surface due to eddy-current formation. 

 This work specifically addresses the eddy-current shielding problem by proposing the use 

of fringe coil geometries, essentially flattened solenoids, in which the signal is obtained from 

outside of the rf coil, in the “fringe” region. The interesting feature of this family of coils is that 

the conducting surface enhances the rf field at the homogenous sample volume. Two geometries 

of fringe coils, a standard “fringe” coil and an opposed “split fringe” coil, were constructed and 

two characterization experiments were performed to compare them. These characterizations 

involved sequential experiments with the sample successively spaced farther from the magnet 

surface, as well as a nutation experiment, which indirectly measured the rf power in the sample. 

In this way, the maximum sample standoff, T2
obs values and Rabi cycling times were obtained at 

an h2 = 2 cm standoff distance for a beaker of light mineral oil. The fringe coil geometries were 

predicted and observed to perform better than the traditional surface coil geometries. Moreover, 

in all characterization experiments, the split fringe coil outperformed the flat fringe coil. Further 

experiments with real-world applications were also conducted using the better performing split 

fringe coil. These experiments involved the immersion of the magnet and coil assemblies into 

laundry detergent, as well as the investigation of a small diameter wooden branch placed on top 

of the assembly. The split fringe coil was able to easily perform experiments in both 

environments, even discerning multiple relaxation components in the branch segment.  

 All experiments yielded positive results, typically with just over two minutes of signal 

averaging, which is more than adequate for field use. The split fringe coil is the simplest coil 

array that largely matches the spatial profiles of B1 to B0 within the sensitive region of the 
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magnet. Adding more fringe coils to make a cross or star pattern involving fringe coil building 

blocks of varying size will likely match the B1 and B0 fields better, and lead to greater standoff 

distance and larger signals. However, for the magnets used in this study, this would preclude the 

advantage of utilizing the depressed notch in the center of the magnet array, leading to slightly 

reduced useable standoff distance. Still, it is these larger signals that reduce experiment time, an 

important parameter when the rapid throughput measurements commonly encountered in 

industrial problems are required. Future work will involve exploring the multiple split fringe coil 

geometries Another future pursuit could involve engineering the surface geometry of the magnet 

to better exploit the eddy-current-induced field magnification effects – essentially making near-

field rf reflective “lenses” that the rf field intensity and tailor its shape to produce even better 

NMR signal generation and reception. 
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Appendix 

 

“Please, sir, I want some more.” 

-Oliver Twist 
 

A.1 A solution to the Bloch equation without relaxation 

 

It is strangely difficult to find a plain solution to the Bloch equation without relaxation, so 

I am including this one here. Others may have done it differently, but this is how I did it. The 

three big epiphanies from this derivation are that: 

1) a B field imposes no change to the z-component of the magnetic moment. 

2) the x- and y-components oscillate sinusoidally, constituting a precession about the z-

axis set by the B field. 

3) the rotation of µ about B occurs at the angular frequency w0 = gB0. 

 

Consider a spin with magnetic moment µ in a static external field, B with only one 

component along the z-direction, B0. 
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Figure A.1.1. A magnetic moment, µ, is depicted in a static, external magnetic 
field, B, which consists only of a z-component, B0. The magnetic moment may 

be decomposed into µz, a z-component that is parallel with B and µxy, a 
component that lies in the xy-plane. 

 

The Bloch equation without relaxation tells how the magnetic moment will move in 

response to being placed in this field, and it is given by 

 

𝑑
𝑑𝑡 𝝁 = 	𝛾(𝝁 × 𝑩)																																																										(𝐴. 1.1) 

 

where g is the gyromagnetic ratio, an experimentally derived constant. 

Applying the above condition that B = (0, 0, B0) and expanding the cross product into its 

unit vector components in the usual way results in 

 

𝑑
𝑑𝑡 𝝁 = 	 ¤

𝑥[ 𝑦[ 𝑧̂
𝜇0 𝜇1 𝜇%
0 0 𝐵&

¤ = 	𝛾Q𝜇1𝐵&𝑥[ 	−	𝜇1𝐵&𝑦[ + 	0𝑧̂S = 𝛾𝐵&(𝜇1𝑥[ 	−	𝜇1𝑦[ + 	0𝑧̂) 

(𝐴. 1.2) 
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where, in the last term, B0 has simply been undistributed. To know the state of the magnetic 

moment and not the change, the equation is integrated with respect to time. 

 

𝝁	 = 	𝛾𝐵& 4�𝜇1𝑥[	𝑑𝑡 +	�𝜇0𝑦[	𝑑𝑡 +	� 0𝑧̂	𝑑𝑡6																															(𝐴. 1.3) 

 

At this point, all that is known about µx and µy is that they are unknown functions of time, 

and therefore, their integrals cannot be computed yet. The z-component of the magnetic moment, 

however, can easily be solved. Separating the last term from the equation, it can be seen that µz is 

a constant, so whatever µz was at t = 0, so it will remain until it is otherwise disturbed. Now, the 

x- and y-components may be solved for. The equation without the z-component is 

 

𝝁01 	= 	𝛾𝐵& 4�𝜇1𝑑𝑡	𝑥[ +	�𝜇0𝑑𝑡	𝑦[6																																								(𝐴. 1.4) 

 

where µxy is a vector that refers only to the x- and y-components of the magnetic moment. Recall 

now that the total magnetic moment of a spin is constant, and also that the z-component has 

already been shown to be constant. Therefore the magnitude in the x-y plane must also be 

constant. The magnitude squared, in the x-y plane, can be calculated by taking the dot product of 

µxy with itself. It is also convenient to divide the through by other two constants, g and B0, so that 

all constants are on the same side. 

 

�𝜇01�
"

𝛾"𝐵&"
=	4�𝜇0𝑑𝑡6

"
+ 4�𝜇1𝑑𝑡6

"
																																										(𝐴. 1.5) 
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 This equation, a constant being equal to the sum of two squares, is of a familiar form. 

Recall the trigonometric identity 

 

𝐴 = 𝐴 cos" 𝜃 + 𝐴 sin" 𝜃																																																				(𝐴. 1.6) 

 

 And recall also that an angle is equivalent to the product of an angular velocity and a 

time. In this case, the notation w0 will be used to indicate that the natural angular velocity of this 

system is being referenced. 

 

𝜃 = 	𝜔&𝑡 + 	𝜙																																																														(𝐴. 1.7) 

 

where t is time, as usual, and f is an arbitrary phase. 

 Letting equations A.1.5 and A.1.6 be equivalent, while using the substitution in A.1.7, 

this implies that 

 

𝐴 = 	
�𝜇01�

"

𝛾"𝐵&"
																																																																(𝐴. 1.8) 

 

and further, that 
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⎩
⎪
⎨

⎪
⎧

		

4� 𝜇0𝑑𝑡6
"
	= 	

�𝜇01�
"

𝛾"𝐵&"
cos"(𝜔&𝑡 + 	𝜙)	

4� 𝜇1𝑑𝑡6
"
	= 	

�𝜇01�
"

𝛾"𝐵&"
sin"(𝜔&𝑡 + 	𝜙)

																																			(𝐴. 1.9) 

 

Taking the square roots of both sides, this gives 

 

⎩
⎪
⎨

⎪
⎧

		

�𝜇0𝑑𝑡 	= 	
�𝜇01�
𝛾𝐵&

cos(𝜔&𝑡 + 	𝜙)	

�𝜇1𝑑𝑡 	= 	
�𝜇01�
𝛾𝐵&

sin(𝜔&𝑡 + 	𝜙)

																																						(𝐴. 1.10) 

 

These can now be differentiated with respect to time, giving us our answers for µx and µy 

as functions of time. 

 

⎩
⎪
⎨

⎪
⎧

		

𝜇0 	= 	−
�𝜇01�
𝛾𝐵&

𝜔& sin(𝜔&𝑡 + 	𝜙)	

𝜇1 	= 	
�𝜇01�
𝛾𝐵&

𝜔&	cos(𝜔&𝑡 + 	𝜙)

																																						(𝐴. 1.11) 

 

These equations represent a circular rotation about the z-axis, which by convention is set 

by the direction of B0. Thus it is shown that a magnetic moment, µ, in a static external field, B, 

will precess about B, without any change to the z-component of the magnetic moment. Now the 

frequency of the precession will be derived by using the Pythagorean Theorem in conjunction 



 131 

with the identity in equation A.1.6. From Pythagoras, it is known that the sum of the squares of 

two orthogonal elements is equal to the squared magnitude of the elements’ vector sum. 

 

𝜇0" +	𝜇1" =	 �𝜇01�
"																																																						(𝐴. 1.12) 

 

Equation A.1.6 also says that the sum of the squares in this case are equal to a known 

constant. 

 

𝜇0" +	𝜇1" =	
�𝜇01�

"

𝛾"𝐵&"
𝜔&" sin"(𝜔&𝑡 + 	𝜙) +	

�𝜇01�
"

𝛾"𝐵&"
𝜔&"	cos"(𝜔&𝑡 + 	𝜙) = 	

�𝜇01�
"

𝛾"𝐵&"
𝜔&" 

(𝐴. 1.13) 

 

Then combining the results of these two equations, this must mean that 

 

�𝜇01�
" 	= 	

�𝜇01�
"

𝛾"𝐵&"
𝜔&"																																																					(𝐴. 1.14) 

 

With a little cancelling, square rooting, and rearranging, this becomes 

 

𝜔& = 	𝛾𝐵&																																																														(𝐴. 1.15) 

 

proving that the frequency of precession, w0 (the Larmor frequency), is proportional to the 

strength of the external static magnetic field, B0, and that the constant of proportionality is the 

gyromagnetic ratio, g. As a last comment, it is important to note that, this solution does not 
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depend on the strength of the magnetic moment. Therefore, whether speaking about the moment 

of a spin µxy, or the bulk magnetic moment Mxy, the solution remains valid in predicting the 

precession and Larmor frequency. 
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A.2 A primer on Non-linear Iterative Partial Least Squares 

 

 To concisely and clearly explain the theory of Partial Least Squares can be confusing in 

itself: The idea is to decompose a set of dependent (prediction) data into a descending weighted 

sum of components, each of which are functions of similarly weighted components of the 

independent (input) data, and to do this based on the common variances of both sets of data. If 

done right, the outcome is simply a matrix that can be multiplied against any new set of input 

data, whose product is the set of desired predictions. Since the components used to build this 

matrix are ordered from most to least weight, this may be done with just a few components, 

while still maintaining a high level of predictiveness. Simple enough, right? But when it comes 

to the practicalities of determining these components and their sensitivities, however, the task 

can get downright daunting. Fortunately, there is an algorithm that determines, in a stepwise 

fashion, the most important (principal?) components and their sensitivities. This algorithm is 

called Non-linear Iterative Partial Least Squares, or NIPALS. No kidding. I will attempt to 

present it in a clear manner below. 

 First recall that a solution is desired in which a prediction of 𝒚́ values may be made from 

some independent observation, x, and that this prediction is found by mining calibration sets of X 

and their resulting sets of parameters, Y. The solution would thus look like  

 

𝒚́ = 𝑩𝒙																																																																				(𝐴. 2.1) 

 

where B is a matrix of sensitivities of dimensions such that Bx yields the predicted parameters in 

the order that they were presented in the calibration sets. 
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 NIPALS works by comparing a component in the independent (predictor) dataset to a 

component in the dependent (prediction) dataset, and looking for high overlap in both datasets. 

When a component is found with high overlap in both datasets, it is stored as the first principle 

component. The iterative part comes in the way that the component is initialized, compared and 

altered until it is found. The process is as follows, and is summarized in Figure A.2.1. 

 

1) Initialize. Pick an initial component. This is typically done by selecting a random 

component of the independent dataset. For a comparison of frequency spectra, this 

would be selecting a particular frequency and making a component vector of the 

amplitudes of all calibration spectra at that frequency. This vector is referred to as u. 

2) Weight u in X. This means to take the overlap of u and each column of X, but what it 

does is to create a new vector, w, the elements of which are the dot products of each 

column of X with u. Thus columns in X that overlap more with u will generate larger 

values for elements of w. Furthermore, the resulting overlap vector is normalized by 

the magnitude of u and then again it is normalized to a magnitude of one. Using the 

spectrum example, this would be taking looking at the overlap of amplitudes between 

the particular frequency component vector and each frequency component set in the 

calibration set. Mathematically, this is 

 

𝒘 =
𝑿′𝒖
𝒖′𝒖																																																																		(𝐴. 2.2) 

 

𝒘 =	
𝒘

√𝒘′𝒘
																																																																(𝐴. 2.3) 
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3) Score w in X. Just like above in step 2, this just means overlapping w and X, but this 

time, the vector w is overlapped onto each row of X, instead of columns. The result is 

a vector, t, that has the same number of elements as the rows of both X and Y, and the 

elements of which represent the rows that overlap the most with the overlap of the 

previous component vector u on each column of X. In the example of frequency 

spectra, this is taking the overlap of the weight vector onto each spectrum in the 

calibration set. The result here is also normalized to the self-overlap of w. This is 

mathematically represented as 

 

𝒕 = 	
𝑿𝒘
𝒘′𝒘																																																																		(𝐴. 2.4) 

 

4) Weight t in Y. Now the result of the previous steps in X are overlapped with the 

components of Y. If at this point, the results of the previous two steps were instead 

overlapped (regressed) back into X and the steps repeated, this would converge to the 

component of greatest variance in X. That is the procedure for PCA in which the goal 

is to find the components of greatest variance in X and Y, regardless of their 

connection to each other. In PLS, the algorithm instead switches between regressing 

through both datasets and thus component of greatest mutual variance are 

constructed. The mathematical expression for this step, similar to step 2 above, is 

 

𝒄 = 	
𝒀′𝒕
𝒕′𝒕 																																																																			(𝐴. 2.5) 
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5) Score c in Y. Again, the result of the weighting step is regressed back through Y to 

arrive at a new initial component, u. Mathematically, this will look familiar: 

 

𝒖 =
𝒀𝒄
𝒄′𝒄																																																																			(𝐴. 2.6) 

 

From this point, steps 2 through 5 are repeated and a comparison is made in each 

repetition between steps 3 and 4.  

 

If the score of the previous repetition, told, and the new repetition, tnew, are close, within a set 

threshold (e.g. 99%), all of the vectors (u, w, t, c) are stored collectively as the ith PLS 

component – i representing whatever number iteration is being performed. The algorithm at this 

point breaks out to calculate the sensitivities (which will be used to make predictions later) and 

remove the variance described by this component, or “deflate,” before returning to the cycle 

using a new, deflated, dataset. The steps for this procedure are described below. 

 

6) Calculate the sensitivities, B. If t has converged, the first element of b, bi, is found by 

taking the product of ti with ui: 

 

𝒃3 =
𝑿3/𝒕3
𝒕3/𝒕3

																																																																		(𝐴. 2.7) 

 

This is the sensitivities matrix. 
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7) Calculate the residuals of X and Y, E and F. The residuals of Y are calculated 

directly: 

 

𝑭 = 𝒀 − 𝒃3𝒕3𝒄3/																																																												(𝐴. 2.8) 

 

The residuals of X, are calculated using the weights recorded from the last iteration.  

 

𝑬 = 𝑿 − 𝒕3𝒘3
/																																																													(𝐴. 2.9) 

 

8) Reenter the iterative cycle using the residuals, E and F, as the new datasets, X and Y. 

The cycle of steps 2 through 5 is reentered using E and F as the new X and Y, 

respectively. A new t is required here, and it is found (typically) using a scaled told: 

 

𝒕=)Q =	 𝒕+IK|𝒘+IK|																																																						(𝐴. 2.10) 

 

Once a sufficient number of components have been found to explain the variance in X and make 

predictions, 𝒚́, on future data, x, can be made. 

 

𝒚́ = 𝑩/𝒙																																																																(𝐴. 2.11) 
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Figure A.2.1. The NIPALS algorithm described in steps 1 through 8 is 
summarized here in a flow chart. 
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A.3 A solved equation for predicting the field of a split fringe coil, perpendicular to a 

conducting surface 

 

 In the course of designing and characterizing the properties of fringe coils for UMR, it 

became clear that it would be useful to have an equation that would analytically describe the 

magnetic field produced by an opposed fringe coil. Presented here is such an equation. 

Furthermore, since the goal is to produce a homogeneous B1 field at a prescribed distance above 

the probe coil, one would benefit from an equation that describes the second derivative of the 

field strength at the standoff distance, as a function of lateral offset from center. This was 

calculated using Mathematica™ by using the Biot-Savart Law for a 2D surface and integrating 

across the surface. Only the surface of the opposing coils that is displaced from the magnet body 

is needed, since the lower surface lied directly on the conducting magnet and is therefore 

completely negated by the effects of eddy-currents (see Chapter 4 for the derivation that shows 

this).  

 This is entirely based on solving the Biot-Savart Law equation for a surface current. In 

this formulation, the magnetic field at a point r is: 

 

𝑩(𝒓) = 	
𝜇&
4𝜋�

𝑲(𝒓/) × ∆𝒓±
Δ𝑟" 𝑑𝑎/																																																	(𝐴. 3.1) 

 

in which µ0 is the permeability of free space, K(r’) is the surface current at the location r’, Dr is 

the vector from r’ to r. 

 The steps for solving this were, generally: 
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1. Solve by hand the cross-product of the surface current and the displacement unit vector, 

in vector form. 

2. Using Mathematica, integrate generally the Bx and By components separately, each with 

respect to da’ by integrating with respect to dx’ first, then dy’. 

3. Use the resulting integral to define a definite integral based on additional new variables, d 

(one-half the separation distance between the opposing coils), l, (the length of each 

opposing coil in the x-direction), and w (the width of the coils in the y-direction). 

 

This solves for the z-component of the magnetic field at an arbitrary point, r, but to find 

the optimal height, the curvature (at least in the x-direction) must be determined as a 

function of height, z. This adds an extra step of taking the second derivative of the 

magnetic field, with respect to x-direction. 

 

4. Use Mathematica to calculate the second derivative with respect to x, d2/dx2 Bz, and plot 

as a function of height, z. 

 

The resulting calculations nearly broke my computer, but in the actual calculation of 

them, as well as in the attempt to include the resulting equations in this manuscript. This is the 

reason for including the curvature equation as an image, rather than as true math-type equations. 

 The field strength was found to be: 
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while the x-direction curvature was found to be: 
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(𝐴. 3.3) 

 

The curvature equation can be vastly simplified by setting the surface current, Ky, as well 

as the permeability of free space, µ0, to 1. If components x and y are set static at zero, so that the 
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2
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2 �(d + l)2 - 2 (d + l) x + x2 + z2�3 1 +
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2

(d+l)2-2 (d+l) x+x2+z2
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1

(d + l)2 - 2 (d + l) x + x2 + z2
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(-2 (d + l) + 2 x)2 �- w

2
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-
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+
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-
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2
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equation only describes the curvature as a function of height, z, then the equation becomes 

almost manageable: 

 

𝑑"

𝑑𝑥" 𝐵𝑧 = 	
1
2𝜋 (

1
𝑤8 4(

3𝑑"𝑤"

(𝑑" + 𝑧")" −
4𝑑" +𝑤"

𝑑" + 𝑧" −
3(𝑑 + 𝑙)"𝑤"

((𝑑 + 𝑙)" + 𝑧")" +
4(𝑑 + 𝑙)" +𝑤"

(𝑑 + 𝑙)" + 𝑧"

−
32𝑑"𝑤"

(4𝑑" +𝑤" + 4𝑧")" +
4(4𝑑" +𝑤")

4𝑑" +𝑤" + 4𝑧" +
32(𝑑 + 𝑙)"𝑤"

(4(𝑑 + 𝑙)" +𝑤" + 4𝑧")"

+
−16(𝑑 + 𝑙)" − 4𝑤"

4(𝑑 + 𝑙)" +𝑤" + 4𝑧") −
2(−2𝑑" + 𝑧")ArcTan[ 𝑤

2√𝑑" + 𝑧"
]

(𝑑" + 𝑧")L "⁄

+
2(−2(𝑑 + 𝑙)" + 𝑧")ArcTan[ 𝑤

2¼(𝑑 + 𝑙)" + 𝑧"
]

((𝑑 + 𝑙)" + 𝑧")L "⁄ ) 

(𝐴. 3.4) 

 

From all of this, a useful equation would be one that describes the optimal height at 

which the curvature of Bz with respect to x would be zero. This can be done by varying values of 

w, l, and d, and fitting a function to the behavior of the changes in optimal height. For this 

equation, this was done by asserting that the resulting function would be separable into functions 

of w, l, and d, then multiplying them all together. The function found from this procedure is as 

follows. 

 

𝑧+'. = 	2.1 × (0.36(1 − 𝑒#!."I) + 0.47) × (1.11𝑑 + 0.14) × Ä0.15𝑒#
Q!

8.! + 0.62Å 

(𝐴. 3.5) 
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where again, w, l, and d are the width, length, and ½-separation distance of the opposing coils, 

and z is height from the top surface of the coils. 

 A strong caution must be advised when using this equation, in that it only describes the z-

component of B1. Strong deviances from zero in the x- and y-directions will severely 

compromise the validity and usefulness of this equation when designing opposed fringe coils. 




