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Energy-preserving coupling of explicit particle-in-cell with Monte Carlo collisions

Jean-Luc Vay ,1,* Justin Ray Angus ,2 Olga Shapoval ,1 Rémi Lehe ,1 David Grote ,2 and Axel Huebl 1

1Lawrence Berkeley National Laboratory, Berkeley, California 94720, USA
2Lawrence Livermore National Laboratory, Livermore, California 94551, USA

(Received 18 October 2024; accepted 31 January 2025; published 19 February 2025)

The particle-in-cell (PIC) and Monte Carlo collisions (MCC) methods are workhorses of many numerical
simulations of physical systems. Recently, it was pointed out that, while the two methods can be exactly—or
nearly—energy-conserving independently, combining the two leads to anomalous numerical heating. This paper
reviews the standard explicit PIC-MCC algorithm, elucidates the origins of the anomalous numerical heating,
and explains how to couple the two methods such that the anomalous numerical heating is avoided.

DOI: 10.1103/PhysRevE.111.025306

I. INTRODUCTION

The particle-in-cell and Monte Carlo methods are
workhorses of many numerical simulations of physical sys-
tems. The two are combined within the particle-in-cell Monte
Carlo collision (or PIC-MCC) method, formalized by Birdsall
in a 1991 review paper [1], and adopted or studied by many
([1] cited by over 1,000 papers). Recently, it was pointed
out that, while the two methods can be energy conserving
independently, combining the two is leading to anomalous
numerical heating [2,3]. Mitigations were proposed, including
using low-pass filtering [2], while it was shown that energy
is exactly conserved when coupling MCC with an energy-
conserving implicit PIC method [3].

In this paper, we review the standard explicit PIC-MCC
algorithm, show that the cause of numerical heating is due
to the breaking of time-centering of the standard leapfrog
loop that is at the heart of the PIC method, and that restoring
time-centering ensures better energy conservation and there-
fore removes the anomalous heating reported earlier [2,3]. We
also show that this method applies to both electrostatic and
electromagnetic PIC, suppressing anomalous heating in both
cases.

The paper is organized as follows. The standard PIC-
MCC algorithm is reviewed in Sec. II, together with the
consequences on energy conservation. Section III introduces
a time-centered PIC-MCC algorithm and explores its effect
in test simulations. In Sec. IV, we use numerical analysis
to explain the properties of the proposed algorithm. We first
elucidate its fundamental properties with a simplified subset
that explores the motion of a single particle experiencing
harmonic oscillations with random rotations as a proxy for
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collisions, and then generalize this analysis to the full PIC-
MCC cycle. Section V discusses the practical implementation
of this algorithm in a PIC code.

II. STANDARD PIC-MCC AND CONSEQUENCES

In the standard PIC-MCC loop, depicted in Fig. 1(a), the
collisions occur either before (“pre v-push”) or after (“post
v-push”) the particles’ velocity update. In any of these two
cases, collisions occur when positions and velocities are
shifted in time, due to the leapfrogging of positions and ve-
locities updates, which, as will be shown, is the source of
the anomalous heating reported earlier [2,3] and explained
here.

Similarly to previous work [2,3], this paper analyzes the
evolution of a 2-D slab with a relativistic PIC code (using
either an electromagnetic or electrostatic field solver) of a uni-
form electron-proton plasma initialized with the parameters
listed below and summarized in Table I. The plasma of density
n0 = ne = ni = 1030 m−3 is initialized at thermal equilib-
rium T0 = Te = Ti = 100 eV, filling the periodic simulation
box of size 10δe × 10δe. Here, δe = cω−1

pe is the skin depth

and ωpe =
√

n0e2/meε0 is the electron plasma frequency.
The temporal and spatial resolutions are set to ωpe�t = 0.1
and �x = �z = 0.25δe, respectively. The simulation is ini-
tialized with Nppc = 100 macroparticles per cell (for each
species).

As reported in earlier work [2,3], even when the PIC
loop uses the so-called energy-conserving (also known as
Galerkin) algorithm to gather the electric (and magnetic)
fields onto macroparticles [4] (which conserves energy ex-
actly at the limit of infinitesimal time steps) and even though
the MCC module conserves energy exactly, increased numer-
ical heating occurs when combining PIC and MCC together
in such a loop. While this was observed and analyzed only
in the context of electromagnetic (EM) PIC-MCC [2,3], it is
also occurring with electrostatic (ES) PIC-MCC, as shown in
Fig. 2, where the evolution of energy from the fields, elec-
trons, protons, and total is plotted (normalized to the initial
total energy) using either an electrostatic solver (top) or an
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FIG. 1. Particle-in-cell loop with Monte Carlo collisions (MCC).
The operations occur sequentially clockwise around the loop, and
from top to bottom in the “push particles” inset. In the standard
configuration (top), the MCC step usually occurs either before or
after pushing the particles’ velocities. In the proposed configuration
(bottom), the MCC step occurs either in the middle of the velocities
push or in the middle of the positions push.

electromagnetic (Yee) solver (bottom), without (left) and with
(right) Monte Carlo collisions. In either case, electrostatic and
electromagnetic PIC, the standard coupling of PIC and MCC
(placing MCC before the velocity push for the tests reported
here) leads to anomalous numerical heating. The observation
with the electromagnetic PIC solver is in agreement with pre-
vious results [2,3] while the result using the electrostatic PIC
solver suggests that the explanations given previously [2] that
the numerical heating is due to an interplay of electromagnetic
radiations and particle motion is either incomplete or inaccu-
rate. In the remainder of the paper, we propose and analyze
a new algorithm that does not lead to anomalous heating and
also elucidate the underlying causes.

III. NOVEL PIC-MCC ALGORITHM

A. The algorithm

With the proposed algorithm, the collision now occurs in
the middle of the velocity push (“mid v-push”) or the position
push (“mid x-push”), as depicted in Fig. 1. More specifically,
the PIC-MCC loop that is proposed includes either a velocity

TABLE I. Parameters of the 2-D energy conservation test
simulations.

Plasma density n0 = 1030 m−3

Simulation box Lx = Lz = 10δe

Number of grid points Nx = Nz = 40
Spatial resolution �x = �z = 0.25δe

Time step �t = 0.1ω−1
pe

Number or macroparticles per cell 100
Order of the shape factor 2

push that is split in the following series of steps:

un
p = un−1/2

p + qp

mp

(
En + vn

p × Bn
)
�t/2

push velocities by half a time step, (1)

un
p → ũn

p perform collisions, (2)

un+1/2
p = ũn

p + qp

mp
(En + ṽn

p × Bn)�t/2

push velocities by half a time step, (3)

or a position push that is split in the following series of steps:

xn+1/2
p = xn

p + un+1/2
p /γp�t/2

push positions by half a time step, (4)

un+1/2
p → ũn+1/2

p perform collisions, (5)

xn+1
p = xn+1/2

p + ũn+1/2
p /γ̃p�t/2

push positions by half a time step, (6)

where γp = up/vp =
√

1 + u2
p/c2 and c is the speed of light

in a vacuum.
In each case, the rest of the PIC loop is left unchanged,

except for the current deposition in the latter (mid x-push)
case that must take into account the velocity change occurring
in the middle of the position push. It is important to note that
the definition of the velocity used for the v × B term depends
on the algorithm of the particle pusher [5,6] and is gener-
ally not simply given by u = γ v. This is discussed further
when discussing practical implementation in a PIC code in
Sec. V.

B. Numerical examples

Two examples are considered in this section, starting with
the 2-D uniform plasma test reported in Sec. II and a 1-D
magnetic-driven piston collisional shock.

1. 2-D uniform plasma simulations

Simulations were performed using the same 2-D uni-
form plasma setup as in Sec. II, using the mid v-push
and the mid x-push PIC-MCC algorithms with both the
electrostatic and the electromagnetic PIC methods. Results
are visualized in Fig. 3. In all cases, the use of the
proposed algorithms led to excellent energy conservation
without exhibiting the spurious energy growth that is ob-
served otherwise in the literature [2,3] and in Fig. 2. This
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FIG. 2. The relative change �W/W0 of energy as a function of time ωpet from 2-D simulations of the numerical energy conservation test
case using standard (a) electrostatic and (b) electromagnetic PIC (left) without MCC and (right) with MCC before the velocity push (pre
v-push). Without collisions (left), the total energy (blue) is conserved to a high level of precision. With collisions (right), the total energy
exhibits a secular growth.

observation is further explained with numerical analysis in
Sec. IV.

2. 1-D magnetic-driven piston collisional shock simulations

In this section, the mid v-push and mid x-push PIC-MCC
algorithms are tested and compared to the standard pre v-
push one on the 1-D magnetic-piston driven collisional shock
case that was reported in Ref. [7]. In these simulations, a
fully ionized deuterium plasma slab of length Lx = 1.54 cm
is initialized with uniform initial temperature T0 = Te = Ti =
1 eV and density n0 = ne = ni = 1023 m−3. The temporal and
spatial resolutions are set to �t = 20 f s (ωpe�t = 0.36) and
Nx = 216. A lower boundary is treated as a symmetry plane,
while at the upper boundary, an external magnetic field is
applied, rising linearly from 0 to a peak value of B0 = 2.667 T
over 8.154 ns and remaining constant for later times. The
magnetic field acts as a piston, creating a shock propagating

from the upper toward the lower boundary. The simulations
are initialized with different numbers of macroparticles Nppc

per cells (for each species), varying between 100 and 4000.
Snapshots of the electron temperature at t = 66 ns are shown
in Fig. 4.

Consistent with the results reported in [7], using the stan-
dard PIC-MCC algorithm with pre v-push MCC leads to
significant noise and an anomalous temperature increase in
the entire slab. While the anomalous temperature increase
is reduced by increasing the number of macroparticles per
cell, the convergence rate is very slow, rendering converged
simulations prohibitively expensive computationally.

By contrast, using the proposed PIC-MCC algorithm with
either the mid v-push or the mid x-push placement of MCC
leads to much reduced anomalous numerical heating with a
much faster convergence rate when increasing the number
of macroparticles. It was observed in [7] that a remaining
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FIG. 3. The relative change �W/W0 of energy as a function of time ωpet from 2-D simulations of the numerical energy conservation test
case using novel (a) ES and (b) EM PIC with MCC model in the middle of (top) the velocity push and (bottom) the position push. While the
total energy (blue) is not conserved to machine precision with full explicit PIC, it is well conserved with the new placement of MCC in the
middle of the velocity or position push (compared with the secular numerical heating observed in Fig. 2).

FIG. 4. The electron temperature at t = 66 ns from 1-D magnetic-piston simulations, obtained using the WarpX electromagnetic PIC solver
with different MCC placements: (left) pre v-push MCC, (middle) mid v-push MCC and (right) mid x-push MCC. Several simulations were
run, raising the number of macroparticles per cell from nppc = 100 (blue), 400 (orange), 1000 (green), 2000 (black), and 4000 (magenta).
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numerical heating is observed with implicit PIC-MCC and
is reduced when using larger time steps. Tests that will be
reported in a future paper show that the level of remaining
numerical heating is at the same level whether using implicit
PIC-MCC or explicit PIC-MCC with mid v-push or mid x-
push centering, suggesting the same origin. Further studies
are needed to fully elucidate the origins of this remaining
numerical heating, which goes beyond the scope of this paper.

IV. ANALYSIS OF THE PROPERTIES THE PROPOSED
PIC-MCC ALGORITHM

Analyses of the properties of the proposed PIC-MCC algo-
rithm are reported in this section, starting with the analysis
of a single-particle harmonic oscillator model, followed by
an analysis of the full PIC-MCC loop with an ensemble of
macroparticles.

A. Elucidation of fundamental properties with a single-particle
harmonic oscillator model

In this subsection, a simplified subset of the full PIC-MCC
algorithm is considered, so as to elucidate the fundamental
properties and the logic behind the proposed algorithm. In
particular, we show that the same effect (i.e., conservation of
energy only when the MCC module is placed in the middle of
the x-push or v-push) also occurs for a single-particle model,
and is thus not due to collective interactions.

Noting that the modifications of the algorithm occur in the
particle pusher portion of the PIC loop, the simplified analysis
will focus on the particle pusher only using the harmonic
oscillator model, widely used in the community for such anal-
yses [4,8]. To further simplify, a single particle is considered
and collisions are replaced by a rotation of the velocity vector
of the particle by a random angle, the simplest of operations
that still retains the property of energy conservation of MCC.
We refer to this operation as a transverse velocity kick in the
rest of this section. A complete analysis of the full PIC loop,
which includes charge and current deposition, field solving
and gathering of the electromagnetic fields from the grids onto
the macroparticles and Coulomb collisions on an ensemble of
macroparticles, is presented in the next section.

Assuming the nonrelativistic limit for simplicity, the
leapfrog integration of a single particle experiencing harmonic
oscillations is

vn+1/2 − vn−1/2 = q

m
En�t, (7)

xn+1 − xn = vn+1/2�t, (8)

En+1 = −κxn+1, (9)

where κ is a constant.
To simplify the description of the placement of collisions

(here, transverse velocity kicks) in the leapfrog loop, the sys-
tem (7)–(9) is rewritten using the velocity Verlet split, as an
integrator that updates each component x and v from time step
n to n + 1:

vn+1/2 = vn − κq

2m
xn�t, (step 1) (10)

xn+1/2 = xn + vn+1/2�t/2, (step 2) (11)

xn+1 = xn+1/2 + vn+1/2�t/2, (step 3) (12)

vn+1 = vn+1/2 − κq

2m
xn+1�t . (step 4) (13)

Using the standard PIC-MCC method, the transverse velocity
kick is typically inserted between steps 1 and 2 or between
steps 3 and 4 (i.e., respectively after or before the velocity
push), while with the new method, it is inserted either in the
middle of the velocity push (i.e., before step 1 or, equivalently,
after step 4) or in the middle of the position push (i.e., between
steps 2 and 3).

Without “collisions,” four simple expressions of the dis-
crete energy can be identified that lead to exact energy
conservation over time:

W n+1/2
(1) = 1

2
m(vn+1/2)2 + κq

2
xnxn+1, (14)

W n
(2) = 1

2
mvn−1/2vn+1/2 + κq

2
(xn)2, (15)

W n+1/2
(3) = 1

2
mvnvn+1 + κq

2
(xn+1/2)2, (16)

W n
(4) = 1

2
m(vn)2 + κq

2
xn−1/2xn+1/2, (17)

where xn+1/2 ≡ (xn + xn+1)/2 and vn ≡ (vn−1/2 + vn+1/2)/2,
as demonstrated in Appendix A 1. Any of these four ex-
pressions of discrete energy can be used to monitor the
energy and verify conservation to machine precision without
collisions.

With “collisions,” one finds that, provided that the trans-
verse velocity kicks conserve energy, only W n+1/2

(1) [Eq. (14)]
conserves the energy exactly when transverse velocity kicks
are inserted before step 1, while only W n

(4) [Eq. (17)] conserves
the energy exactly when transverse velocity kicks are inserted
between steps 2 and 3, as demonstrated in Appendixes A 2
and A 3. The fact that at least one of the four expressions is
exactly conserved when transverse velocity kicks are placed
before step 1 or between steps 2 and 3 proves energy con-
servation in these cases. Note that the energy given by the
expressions that do not conserve energy with kicks will simply
exhibit bumps or dips when a random transverse velocity
kick occurs and will still conserve energy exactly between
the kicks.

On the contrary, it was found analytically (not reported for
brevity) that none of the four expressions given by Eqs. (10)–
(13) conserve energy exactly when the transverse velocity
kicks are inserted between steps 1 and 2, or between steps
3 and 4. While this does not prove that the energy will
necessarily diverge with time, as observed with the full PIC
simulations in Sec. II and elsewhere [2,3], it is consistent
with the observations and with the additional tests reported
below.

Numerical tests

The theory that was exposed above was tested with one
particle in a 3-D harmonic oscillator following Eqs. (10)–
(13) with MCC (transverse velocity kicks) placed before
(pre v-push), after (post v-push) or in the middle of the ve-
locity push (mid v-push), or in the middle of the position
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FIG. 5. (top) Relative total (solid), kinetic (dotted) and potential
(dashed) energies for one particle in a 3-D harmonic oscillator expe-
riencing two transverse velocity kicks at steps 35 and 65, using the
PIC-MCC algorithm with either the MCC placed before the velocity
push (blue), after (red) or the new option of placing the MCC in the
middle of the velocity push (green) or position push (orange). (mid-
dle) Relative total energy deviation for the four options. (bottom)
Relative total energy deviation for the new mid v-push (green) and
mid x-push (orange) options. Eq. (14):W n+1/2

(1) was used to compute
the energy for the pre, post and mid v-push algorithms. Eq. (17):W n

(4)

was used to compute the energy for the mid x-push algorithm.

push (mid x-push). Normalized quantities were chosen for
simplicity: κ = q = m = 1. Results are shown in Fig. 5 for
a particle initialized at x = {0., 0., 0.} and a finite velocity
v = {0.1, 0., 0.}. Two transverse velocity kicks occur, at time
steps 35 and 65, respectively. Equation (14):W n+1/2

(1) was used
to compute the energy for the pre, post, and mid v-push algo-
rithms. Equation (17):W n

(4) was used to compute the energy for
the mid x-push algorithm. With placement of the MCC before
or after the velocity push, the total energy either increases or
decreases, while it remains constant to machine precision with
the new placement in the middle of the velocity or the position
push. It is important to note that before or after each transverse
velocity kick, the energy is conserved to machine precision
using all four of Eqs. (10)–(13), meaning that the deviations
from the initial energy observed with the pre v-push and post
v-push placements of the random transverse velocity kicks do
correspond to actual jumps of the total energy of the system
and not to diagnostic approximations.

The numerical experiment was then extended to an en-
semble of 1000 non-interacting particles evolving in a 3-D
harmonic oscillator while experiencing random transverse
velocity kicks at every time steps. The evolution of the rel-
ative energy deviation as a function of time is plotted in
Fig. 6 for MCC at pre v-push (blue), post v-push (red), mid
v-push (green) or mid x-push (orange) location. It shows that
when placing the random transverse velocity kicks before
the velocity push (pre v-push), the ensemble of particles is

FIG. 6. (top) Average relative total energy deviation for an en-
semble of 1000 non-interacting particles in a 3-D harmonic oscillator
experiencing transverse velocity kicks at every time step, with MCC
at pre v-push (blue), post v-push (red), mid v-push (green) or mid x-
push (orange) location. The four bottom plots overlay the average of
the 1000 relative energy deviation history to a sample of 100 histories
for each case. Equation (14) W n+1/2

(1) was used to compute the energy
for the pre, post, and mid v-push algorithms. Equation (17) W n

(4) was
used to compute the energy for the mid x-push algorithm.

experiencing numerical heating, on average. Eq. (14) W n+1/2
(1)

was used to compute the energy for the pre, post and mid
v-push algorithms. Eq. (17) W n

(4) was used to compute the en-
ergy for the mid x-push algorithm. When placing the random
transverse velocity kicks after the velocity push (post v-push),
the ensemble of particles is experiencing on average an initial
period of numerical cooling that is followed by steady numer-
ical heating at the same rate as with the pre v-push option.
The new options of placing the random transverse velocity
kicks in the middle of the velocity or the position push lead
to exact energy conservation to machine precision. While the
plots are not shown for brevity, it was verified that the overall
conclusions, that there is secular growth of the total energy
with the pre v-push and post v-push options while there is
not with the mid v-push and mid x-push options, holds for
every one of the four expressions of discrete energy from
Eqs. (14)–(17).

The exploration of the simple model with one particle
with random transverse velocity kicks while experiencing har-
monic oscillations shows that the numerical heating observed
in full PIC simulations can be recovered without invoking
collective, interpolation, or radiative effects. It also confirms
that the proposed algorithm, with proper centering of the

025306-6



ENERGY-PRESERVING COUPLING OF EXPLICIT … PHYSICAL REVIEW E 111, 025306 (2025)

MCC module in the middle of the velocity or position push,
mitigates the issue, with no numerical heating, and with exact
energy conservation for this simple model. The confirmation
that the main conclusions of the exploration of this simple
model extend to the full PIC algorithm is given in the next
section using a more detailed analysis of the full PIC loop.

B. Analysis of energy conservation for the full PIC-MCC cycle

In Sec. IV A, we showed that the proposed mid v-push and
mid x-push algorithm conserve energy exactly for a simpli-
fied, single-particle model where:

(1) The electromagnetic PIC interaction between particles
is replaced by a fixed, single-particle harmonic oscillator po-
tential;

(2) MCC collisions are replaced by random transverse
velocity kicks.

This section generalizes this result for the full PIC cycle
with MCC binary collisions, confirming that the properties
observed and analyzed with a single particle are preserved
when including interpolations between macroparticles and
gridded quantities, as well as collective and radiative effects.
A reminder of the energy-conserving properties of the explicit
PIC algorithm without collisions (Sec. 1) is given first. Unlike
the harmonic oscillator model, the explicit PIC cycle is only
exactly energy conserving in the asymptotic limit of vanishing
time steps. It is then shown (Sec. 2) that incorporating MCC
collisions with the post/pre v-push algorithm results in an
additional term in the energy balance equation, which leads
to spurious heating, as discussed also in [2]. By contrast, the
mid v-push algorithm does not result in such a term, and thus
leaves the energy conservation properties unchanged (Sec. 3).
The case of the mid-x push algorithm happens to be more
complex and does not leave the energy balance equation un-
changed. For this reason, the analysis of energy conservation
for the mid x-push algorithm is discussed in Appendix C.

1. Energy conservation without collisions

The standard explicit leapfrog electromagnetic PIC method
can be written as

Stage 1:
Bn+1/2

g − Bn−1/2
g

�t
= −∇ × En

g, (18)

Stage 2: mp

vn+1/2
p − vn−1/2

p

�t

= qp

(
En

p + vn+1/2
p + vn−1/2

p

2
× Bn

p

)
, (19)

Stage 3:
xn+1

p − xn
p

�t
= vn+1/2

p , (20)

Stage 4:
En+1

g − En
g

c2�t
= ∇ × Bn+1/2

g

− μ0

∑
p

qp

�V
Sn+1/2

gp vn+1/2
p , (21)

where �V is the volume of a cell, and where En
p = ∑

g Sn
gpEn

g

and Bn
p = ∑

g Sn
gp(Bn+1/2

g + Bn−1/2
g )/2 are the fields gathered

from the grid points g to the particle p using the shape

factor Sn
gp ≡ Sg(xn

p). When using direct deposition [9], the
shape factor used to deposit the particle current to the grid
in Eq. (21) is at time tn+1/2 and can be expressed as Sn+1/2

gp ≡
Sn+1/2

g (xn+1/2
p ). Relativistic effects are ignored for simplicity.

The particle energy law is obtained by taking the dot prod-
uct of Eq. (19) with (vn+1/2

p + vn−1/2
p )/2 and summing over all

particles:

∑
p

En+1/2
p − En−1/2

p

�t
=

∑
p

qp

vn+1/2
p + vn−1/2

p

2
· En

p, (22)

where En+1/2
p ≡ mp|vn+1/2

p |2/2 is the kinetic energy of particle
p at time tn+1/2. [Note that this expression is identical to the
kinetic energy term in W n+1/2

(1) , in Eq. (14).] The energy law
for the fields is obtained by taking the dot product of Eq. (18)
with �V (Bn+1/2

g + Bn−1/2
g )/(2μ0), Eq. (21) with ε0�V En

g/2,
and Eq. (21) shifted in time backward by one time step also
with ε0�V En

g/2, summing these three expressions, and then
summing over all grid points. This gives

∑
g

En+1/2
g − En−1/2

g

�t

+ 1

μ0

∑
g

(
Bn

g · ∇ × En
g − En

g · ∇ × Bn
g

)
�V

= −
∑

g

En
g ·

∑
p

qp

Sn+1/2
gp vn+1/2

p + Sn−1/2
gp vn−1/2

p

2
, (23)

where the energy on the grid is a sum of energy in the
electric and magnetic fields: En+1/2

g ≡ ε0�V En
g · En+1

g /2 +
�V |Bn+1/2|2/(2μ0). The second term on the left-hand side of
Eq. (23) corresponds the Poynting flux term at the boundaries
of the simulation domain and thus can be dropped for this
analysis, which does not include energy variations from loss
or injection of fields or particles at the boundaries.

We define W n+1/2
tot ≡ ∑

g En+1/2
g + ∑

p En+1/2
p to be the to-

tal energy in the fields and particles at time tn±1/2. The total
energy law for the full PIC system of equations given in
Eqs. (18)–(21) is obtained by adding Eqs. (22) and (23) to-
gether, giving

W n+1/2
tot − W n−1/2

tot

�t

= −
∑

g

∑
p

qpEn
g

·
(
Sn+1/2

gp − Sn
gp

)
vn+1/2

p + (
Sn−1/2

gp − Sn
gp

)
vn−1/2

p

2
. (24)

In Appendix B, it is shown that the right-hand side (RHS) of
Eq. (24) tends to zero in the limit of vanishing time steps. The
next section examines how the RHS of Eq. (24) is modified
when incorporating MCC collisions in the PIC cycle.

2. Pre v-push and post v-push collisions

With the pre v-push method, stage 2 in Eq. (19) is replaced
with the following two steps:

Stage 2a: vn−1/2
p → ṽn−1/2

p , (25)
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Stage 2b: mp

vn+1/2
p − ṽn−1/2

p

�t

= qp

(
En

p + vn+1/2
p + ṽn−1/2

p

2
× Bn

p

)
, (26)

where ṽp represents particle velocities post-collision. The col-
lision operator is assumed to be energy conserving such that∑

p Ẽp = ∑
p Ep, and the energy law for the particles becomes

pre v-push collision :
∑

p

En+1/2
p − En−1/2

p

�t

=
∑

p

qp

vn+1/2
p + ṽn−1/2

p

2
· En

p. (27)

The only difference between the particle energy law here
and that without collision given in Eq. (22) is that vn−1/2

p is
replaced by the post-collision velocity ṽn−1/2

p in the RHS. This
is a critical difference because the energy law for the fields
given in Eq. (23) is not altered by collisions for the pre v-push
method. The total energy law for full PIC with pre v-push
collision is

W n+1/2
tot − W n−1/2

tot

�t

= −
∑

g

∑
p

qpEn
g

·
(
Sn+1/2

gp − Sn
gp

)
vn+1/2

p + (
Sn−1/2

gp − Sn
gp

)
vn−1/2

p

2

+
∑

g

∑
p

qpEn
g · δvn−1/2

p

Sn
gp

2
, (28)

where δvn−1/2
p ≡ ṽn−1/2

p − vn−1/2
p is the change of velocity due

to collisions.
The first term in the RHS is identical to that in Eq. (23), but

the second term (involving δvn−1/2
p ) is a new term. In Ref. [2],

it is shown that the amplitude of this second term scales as
ν(ωp�t )2, where ν is the characteristic frequency of Coulomb
collisions, and that it is precisely this term that results in the
net energy gain of the system over time. This is consistent
with the growth of total energy seen in the bottom left panel
of Fig. 2, which uses the pre v-push algorithm.

If the collision is applied post v-push rather than pre v-
push, then Stage 2 in Eq. (19) is replaced with the following
two steps:

Stage 2a: mp

vn+1/2
p − ṽn−1/2

p

�t

= qp

(
En

p + vn+1/2
p + ṽn−1/2

p

2
× Bn

p

)
, (29)

Stage 2b: vn+1/2
p → ṽn+1/2

p , (30)

where ṽn−1/2
p is the post-collision velocity of the previous time

step.
This results in the following total energy law:

W n+1/2
tot − W n−1/2

tot

�t
= −

∑
g

∑
p

qpEn
g

·
(
Sn+1/2

gp − Sn
gp

)
vn+1/2

p + (
Sn−1/2

gp − Sn
gp

)
vn−1/2

p

2

−
∑

g

∑
p

qpEn
g · δvn+1/2

p

Sn
gp

2
. (31)

Again, there is an additional term compared to Eq. (23).
Separate numerical simulations (not shown here) revealed
that the long time behavior of this method produces heating
at a similar rate to the pre v-push method, in line with the
analogous harmonic oscillator models discussed previously.

3. Mid v-push collisions

In the case of the mid v-push, the particle velocity advance
(stage 2) is done in five substages as follows, where the Boris
pusher is used to advance particles:

Stage 2a: mp
(
v′

p − vn−1/2
p

) = qpEn
p

�t

2
, (32)

Stage 2b: mp(v∗
p − v′

p) = qp

(v∗
p + v′

p)

2
× Bn

p

�t

2
, (33)

Stage 2c: v∗
p → ṽ∗

p, (34)

Stage 2d: mp(v′′
p − ṽ∗

p) = qp

(v′′
p + ṽ∗

p)

2
× Bn

p

�t

2
, (35)

Stage 2e: mp
(
vn+1/2

p − v′′
p

) = qpEn
p

�t

2
. (36)

This is the standard Boris push with the magnetic field rota-
tion split into two half �t rotations with a full �t collision
operation done in between.

By dotting Eqs. (36) and (32) with (vn+1/2
p + v′′

p)/2 and
(v′

p + vn−1/2
p )/2, respectively, and by using the fact that mag-

netic rotations in stages 2b and 2d conserve the kinetic energy
of each particle (i.e., E∗

p = E ′
p, E ′′

p = Ẽ∗
p ), and that the col-

lisions in stage 2c conserve the total kinetic energy (i.e.,∑
p Ẽ∗

p = ∑
p E∗

p ), the energy law for the particles after all five
of these substages is

∑
p

En+1/2
p − En−1/2

p

�t
=

∑
p

qp

(vn+1/2
p + v′′

p) + (
v′

p + vn−1/2
p

)
4

· En
p,

=
∑

p

qp

(
vn+1/2

p + vn+1/2
p + qpEn

p�t

2mp

) + (
vn−1/2

p − qpEn
p�t

2mp
+ vn−1/2

p

)
4

· En
p,=

∑
p

qp

vn+1/2
p + vn−1/2

p

2
· En

p,

(37)
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where we used Eqs. (36) and (32) again in the second line.
The above energy law for particles Eq. (37) is identical to

that in the absence of collisions given previously in Eq. (22).
Furthermore, since the rest of the PIC loop is unchanged for
the mid v-push method, the field energy law Eq. (23) is also
unchanged, and thus the total energy law for this method is
identical to that in the absence of collision given in Eq. (24).

Thus, the mid v-push algorithm retains the energy conser-
vation property of the collision-free algorithm mentioned in
Sec. 1, and in particular there is no additional growth of energy
due to collisions. This is again consistent with the upper right
panel of Fig. 3.

V. DISCUSSION OF PRACTICAL IMPLEMENTATION
IN A PIC CODE

This section explores practical considerations that guide
the actual implementation of the mid v-push and mid x-push
options.

A. Mid v-push PIC-MCC

Placing the MCC module in the middle of the velocity push
implies to:

(1) split the velocity push in two halves,
(2) either gather the electromagnetic field components

from the grid to the macroparticles twice or store the values
in auxiliary arrays. This is because the MCC module must
loop on all the particle species that participate in the collisions,
hence the fields that are gathered to push the velocity over the
first half step before MCC cannot be stored in local memory
for reuse during the second half velocity push.

Ideally, the combination of the two half-velocity pushes
should lead to the same result as one push with the unsplit
algorithm to machine precision if no collision occurs. This is
trivial for the Boris pusher, where the magnetic rotation can
be split in an arbitrary number of substeps without changing
the algorithm by scaling the time step used for the magnetic
rotation accordingly, or it is known for other pushers, e.g., by
using Eqs. (11)–(13) from [5] for the two half-velocity push
for the “Vay” pusher [5]. However, it may not be straight-
forward for other pushers such as, e.g., the Higuera-Cary
pusher [6] for which a separation into two half steps is not
straightforward. Gathering the fields twice or creating auxil-
iary arrays to store them can incur additional computational
costs that may not be negligible and must be taken into
consideration.

B. Mid x-push PIC-MCC

Placing the MCC module in the middle of the position push
implies to:

(1) split the position push in two halves,
(2) either deposit the current onto the grid twice using the

velocities before and after collision, or deposit it once using
the average of the two velocities (see Fig. 7).

The splitting of the position push into two halves is trivial
since the position push is a simple linear operation. As illus-
trated in Fig. 7, the current deposition can be performed using
either (a) the two half position push from xn to xn+1/2 and
xn+1/2 to xn, using vn+1/2 and ṽn+1/2, respectively, or (b) the

FIG. 7. Diagram of the “x-push” MCC option, where the colli-
sion occurs in the middle of the position push, changing the velocity
from vn+1/2 to ṽn+1/2. The current deposition can be performed using
either (a) the two half-position push from xn to xn+1/2 and xn+1/2 to
xn, using vn+1/2 and ṽn+1/2, respectively, or (b) the average velocity
(vn+1/2 + ṽn+1/2 )/2 over the full time step.

average velocity (vn+1/2 + ṽn+1/2)/2 over the full time step.
In either case, auxiliary arrays are needed to store either the
velocity before the collision or the averaged velocity.

On von Neumann computer architectures used today, mov-
ing data between memory and the processing units accounts
for a significant portion of the total computational time. Algo-
rithms that do not perform a minimum number of operations
per byte transferred are bound in their performance by mem-
ory bandwidth. On contemporary CPU and GPU hardware im-
plementations, the central routines of the particle-in-cell cycle
(gather, push, scatter, field update), are all memory bandwidth
bound. Hence depositing the current for the two half-velocity
push should not lead to a significant performance hit in com-
parison to depositing only once with the average velocity, pro-
vided that the two depositions happen in the same inner loop.

Both methods have performed equally with regard to en-
ergy conservation on the 2-D uniform plasma and the 1-D
magnetic piston tests reported here. The trade-offs between
the two-velocity deposition method being better for accuracy
(as could be assumed because it follows the physics more
closely) and the one-average-velocity deposition being better
for efficiency (as can be assumed because it involves less com-
putational operations) will need more testing and analysis,
taking also into account the extra memory cost for storing
extra components for particles (electromagnetic fields or ve-
locities), which are left for future work.

VI. CONCLUSION

This paper elucidated the origin of anomalous numerical
heating that was observed when coupling the PIC and MCC
techniques in the explicit PIC-MCC algorithm for both elec-
trostatic and electromagnetic PIC-MCC. It was observed that
the standard implementations of PIC-MCC were generally not
time-centered and two placements of MCC in the PIC loop
were proposed and studied: in the middle of the velocity push
or in the middle of the position push. It was shown on 2-D
periodic plasma simulations that centering the MCC events
properly in the PIC loop, as proposed, prevents the anoma-
lous numerical heating that occurs otherwise. Furthermore, an
example of application to the modeling of magnetic-driven
piston collisional shock simulations showed a dramatic re-
duction of numerical heating when using the new proposed
placement of MCC in the PIC loop. Next, a simple analysis of
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a single particle experiencing harmonic oscillations showed
that the numerical heating and its prevention can be obtained
and analyzed without invoking any collective, interpolation or
radiative effects that can occur in electromagnetic PIC-MCC
simulations. It was then shown that these properties do persist
in the analysis of the full electromagnetic PIC-MCC loop.
Future work includes the study of the practical advantages and
disadvantages of the various implementation options that were
proposed in the paper, as well as the exploration of the benefits
of the proposed scheme to a wider range of applications.
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APPENDIX A: ENERGY CONSERVATION
WITH THE HARMONIC OSCILLATOR MODEL

This Appendix describes the derivations of the expressions
of discrete energy that conserve energy to machine precision
for one particle experiencing harmonic oscillations.

1. Energy conservation without transverse velocity kicks

Equation (14) is obtained by multiplying (7) by (vn+1/2 +
vn−1/2), plugging (9) and replacing vn+1/2 and vn−1/2 using
(8), then rearranging to identify the same expression for the
energy at two consecutive time steps. Equation (15) is ob-
tained very similarly by multiplying (8) by (xn+1 + xn), then
following the same steps, replacing xn+1 and xn on the right-
hand side using (7) and (9) and rearranging. Equations (16)
and (17) are obtained in a very similar manner using

vn+1 − vn = −qκ

m
xn+1/2�t, (A1)

xn+1/2 − xn−1/2 = vn�t, (A2)

which follow from Eqs. (7)–(9).

2. Energy conservation with mid v-push MCC

Denoting δv the transverse velocity kicks, the update on
the velocity becomes

vn+1/2 − vn−1/2 = −qκ

m
xn�t + δv, (A3)

while the equation on the position update is unchanged. This
can be rewritten

vn = vn−1/2 − qκ

2m
xn�t, (A4)

ṽn = vn + δv, (A5)

vn+1/2 = ṽn − qκ

2m
xn�t . (A6)

The conservation of energy before and after the trans-
verse velocity kick implies that (vn)2 = (vn + δv)2 = (ṽn)2 =
(ṽn − δv)2. This implies, when combined with Eqs. (A4)–
(A6), that δv(vn−1/2 + vn+1/2) = 0, which, when multiplying
Eq. (A3) by (vn+1/2 + vn−1/2) leads to the same relation for
conservation of energy as without the transverse velocity kick,
hence to Eq. (14) W n+1/2

(1) .

3. Energy conservation with mid x-push MCC

In this case, the leapfrog loop becomes

vn+1/2 = vn − κq

2m
xn�t, (A7)

xn+1/2 = xn + vn+1/2�t/2, (A8)

vn+1/2 → ṽn+1/2, (A9)

xn+1 = xn+1/2 + ṽn+1/2�t/2, (A10)

vn+1 = ṽn+1/2 − κq

2m
xn+1�t, (A11)

where Eq. (A9) represents the transverse velocity kick.
The change in kinetic energy between times n and n + 1 is

given by
m

2
(vn+1)2 − m

2
(vn)2

= m

2

(
ṽn+1/2 − κq�t

2m
xn+1

)2

− m

2

(
vn+1/2 + κq�t

2m
xn

)2

,

(A12)
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= m

2

((
1 − κq�t2

4m

)
ṽn+1/2 − κq�t

2m
xn+1/2

)2

− m

2

((
1 − κq�t2

4m

)
vn+1/2 + κq�t

2m
xn+1/2

)2

, (A13)

=
(

1 − κq�t2

4m

)2[m

2
(ṽn+1/2)2 − m

2
(vn+1/2)2

]

− κq�t

2

(
1 − κq�t2

4m

)
xn+1/2 · (vn+1/2 + ṽn+1/2),

(A14)

where Eqs. (A11) and (A7) were used to replace vn+1 and
vn in the first line, while Eqs. (A10) and (A8) were used to
replace xn+1 and xn in the second line. In the third line, the
squared parentheses were expanded and similar terms were
regrouped.

The conservation of energy of the transverse velocity
kick implies that m(ṽn+1/2)2/2 = m(vn+1/2)2/2, and thus the
square bracket in Eq. (A14) cancels out. In order to rewrite the
second term in Eq. (A14), we note that

xn+3/2 − xn−1/2 = vn+3/2�t/2 + xn+1 − xn + ṽn−1/2�t/2,

(A15)

=
(
ṽn+1/2 − κq

m
xn+1�t

)�t

2
+ xn+1 − xn

+
(
vn+1/2 + κq

m
xn�t

)�t

2
, (A16)

= (ṽn+1/2 + vn+1/2)
�t

2
+

(
1 − κq�t2

2m

)

· (xn+1 − xn), (A17)

= (ṽn+1/2 + vn+1/2)
�t

2
+

(
1 − κq�t2

2m

)

· (ṽn+1/2 + vn+1/2)
�t

2
, (A18)

=
(

1 − κq�t2

4m

)
(ṽn+1/2 + vn+1/2)�t,

(A19)

where Eqs. (A10) and (A8) were used to replace xn+3/2

and xn−1/2 in the first line, and Eqs. (A11) and (A7) were
used to replace vn+3/2 and ṽn−1/2 in the second line. Similar
terms were regrouped in the third line, while Eqs. (A10)
and (A8) were used again in the fourth line to replace xn+1

and xn.
Inserting the above equality in Eq. (A14) gives
m

2
(vn+1)2 − m

2
(vn)2 = −κq

2
xn+1/2 · (xn+3/2 − xn−1/2),

(A20)
m

2
(vn+1)2 + κq

2
xn+1/2 · xn+3/2 = m

2
(vn)2 + κq

2
xn+1/2

· xn−1/2, (A21)

i.e., the same expression as Eq. (17) W n
(4) for the conservation

of energy.

APPENDIX B: CONSERVATION OF ENERGY
FOR THE FULL PIC ALGORITHM IN THE LIMIT OF

VANISHING TIME STEP

As discussed in Sec. IV B, the energy balance for the full
PIC algorithm with periodic boundaries and in the nonrela-
tivistic approximation reads

W n+1/2
tot − W n−1/2

tot

�t

= −
∑

g

∑
p

qpEn
g

·
(
Sn+1/2

gp − Sn
gp

)
vn+1/2

p + (
Sn−1/2

gp − Sn
gp

)
vn−1/2

p

2
. (B1)

In the limit of vanishing time step, this can be simplified
using a first-order Taylor expansion in �t for the shape factor
terms

Sn±1/2
gp − Sn

gp = Sg
(
xn±1/2

p

) − Sg
(
xn

p

)
, (B2)

= Sg
(
xn

p ± vn±1/2
p �t/2

) − Sg
(
xn

p

)
, (B3)

= ±(
vn±1/2

p · ∇)
Sg

(
xn

p

)
�t/2. (B4)

Note that a key element for this to hold is that we assumed
that the shape factor for field gathering (Sn

gp) and current
deposition (Sn+1/2

gp ) have the same expression as a function of
the particle position (Sg(x)).

Replacing these expressions in the energy balance equa-
tion, we have

W n+1/2
tot − W n−1/2

tot

�t
= −�t

2

∑
g

∑
p

qpEn
g ·

(
vn+1/2

p · ∇)
Sg

(
xn

p

)
vn+1/2

p − (
vn−1/2

p · ∇)
Sg

(
xn

p

)
vn−1/2

p

2
. (B5)

Moreover, from the equation for the velocity update Eq. (19), one has vn+1/2
p = vn−1/2

p + O(�t ). Replacing vn+1/2 accordingly
in Eq. (B5), it can be seen that the first-order term in �t in the RHS cancels out, and thus

W n+1/2
tot − W n−1/2

tot

�t
= O(�t2), (B6)

i.e., the error in energy conservation tends to zero (quadratically) in the limit of the vanishing time step.
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APPENDIX C: FULL PIC-MCC WITH MID X-PUSH METHOD FOR COLLISION

Finally, we consider the mid x-push method where the collision is done in the middle of the x-push stages. For simplicity,
we neglect the change of position in the particle’s shape over one time step, i.e., Sn

gp ≈ Sn+1/2
gp ≈ Sn−1/2

gp . Lifting this assumption
results in additional terms of the form Eq. (B4) that already appear in the absence of collisions, and are therefore not specific to
the mid x-push algorithm. In this case, the PIC-MCC loop can be expressed as

Stage 2: mp

vn+1/2
p − ṽn−1/2

p

�t
= qp

(
En

p + vn+1/2
p + ṽn−1/2

p

2
× Bn

p

)
, (C1)

Stage 3a:
xn+1/2 − xn

�t
= vn+1/2

2
, (C2)

Stage 3b: vn+1/2
p → ṽn+1/2

p , (C3)

Stage 3c:
xn+1 − xn+1/2

�t
= ṽn+1/2

2
, (C4)

Stage 4:
En+1

g − En
g

c2�t
= ∇ × Bn+1/2

g − μ0

∑
p

qp

�V
Sn

gp

vn+1/2
p + ṽn+1/2

p

2
. (C5)

The particle energy law for this method is the same as for the post v-push and pre v-push methods given in Eq. (27). The field
energy law, however, now takes the following form:

∑
g

En+1/2
g − En−1/2

g

�t
= −

∑
g

∑
p

qpSn
gpEn

g ·
(

vn−1/2
p + ṽn−1/2

p + vn+1/2
p + ṽn+1/2

p

4

)
,

= −
∑

g

∑
p

qpSn
gpEn

g ·
(

ṽn−1/2
p + vn+1/2

p

2

)

−
∑

g

∑
p

qpSn
gp

[
En

g ·
(
ṽn+1/2

p − vn+1/2
p

) − (
ṽn−1/2

p − vn−1/2
p

)
4

]
. (C6)

The first term on the RHS in the final expression in Eq. (C6) is equal and opposite to the source term for the particle energy law.
However, the last term on the RHS is not identically zero and thus, in contrast to the v-push method, energy is not identically
conserved in the asymptotic limit where the difference of particle shape factors over a time step tends to zero. This is also in
contrast to the analogous mid x-push harmonic oscillator method, where energy is identically preserved for finite time steps. The
difference between these two analogous models can be understood by first rewriting the term in square brackets in the last term
on the RHS of Eq. (C6) as follows:
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p
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)
4

= En
g ·
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)
4
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p

)
4
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�V
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2

⎞
⎠ ·

(
ṽn−1/2

p − vn−1/2
p

)
4
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(C7)

The first two terms on the RHS of this expression are of the form En
g · f (tn+1/2) − En−1

g · f (tn−1/2), and thus it is possible to

absorb these terms into a redefinition of the electric field energy as Ên+1/2
Eg ≡ ε0�V Ê

n+1
g · En

g/2 where Ê
n+1
g is a modified electric

field defined as

Ê
n+1
g = En+1

g + �t

ε0

∑
p

qp

�V
Sgp

ṽn+1/2
p − vn+1/2

p

2
. (C8)

Adopting this modified field energy definition, the total energy law for the x-push method can be written as
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The expression on the RHS of this equation is still not identically zero, and thus energy is not identically conserved for the x-push
method, but the error term has a different nature than that for the pre v-push and post v-push methods and the connection with
the analogous harmonic oscillator model, where energy is identically conserved, can now be made. First, there is no magnetic
field in the Harmonic oscillator and so the ∇ × Bn−1/2

g term can be ignored. The main difference now between full PIC-MCC
and the harmonic oscillator model is that the latter (a) only considers a single particle and (b) the collision operator is just a
simple rotation of the velocity vector. For a velocity rotation of a single particle, the average of the post-scatter and pre-scatter
velocities is orthogonal to the difference. That is, (ṽn−1/2

p + vn−1/2
p ) · (ṽn−1/2

p − vn−1/2
p ) = 0. For a single particle, and for a

collision operator that is just a rotation of the velocity vector, the last term on the RHS of Eq. (C9) is identically zero, consistent
with the harmonic oscillator model.

While the RHS of Eq. (C9) is identically zero for a single particle in an unmagnetized system with a simplified collision
operator, it is not identically zero for an arbitrary number of particles undergoing energy- and momentum-preserving collision
of binary pairs of particles. This is in contrast with the v-push model for full PIC-MCC, where exact energy conservation is
obtained analytically in the asymptotic limit where the difference in particle shape factors over a time step tends to zero. The
proof of energy conservation for the x-push model lies in the fact that the RHS of Eq. (C9) does not grow in time. A formal proof
of this is beyond the scope of this paper. Instead, numerical simulation results using this algorithm for full PIC-MCC simulations
of various cases are used to illustrate that numerical heating does not occur.
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