
UC Berkeley
UC Berkeley Electronic Theses and Dissertations

Title
Geometric Algorithms for Cleanability in Manufacturing

Permalink
https://escholarship.org/uc/item/03t6c02q

Author
Yasui, Yusuke

Publication Date
2011

Peer reviewed|Thesis/dissertation

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/03t6c02q
https://escholarship.org
http://www.cdlib.org/

Geometric Algorithms for Cleanability in Manufacturing

by

Yusuke Yasui

A dissertation submitted in partial satisfaction of the

requirements for the degree of

Doctor of Philosophy

in

Engineering – Mechanical Engineering

in the

Graduate Division

of the

University of California, Berkeley

Committee in charge:

Professor Sara McMains, Chair
Professor David Dornfeld

Professor Jonathan Shewchuk

Fall 2011

Geometric Algorithms for Cleanability in Manufacturing

Copyright 2011
by

Yusuke Yasui

1

Abstract

Geometric Algorithms for Cleanability in Manufacturing

by

Yusuke Yasui

Doctor of Philosophy in Engineering – Mechanical Engineering

University of California, Berkeley

Professor Sara McMains, Chair

This thesis describes geometric algorithms to check the cleanability of a design during the
manufacturing process. The automotive industry needs a computational tool to determine
how to clean their products due to the trend of miniaturization and increased geometric
complexity of mechanical parts. A newly emerging concept in a product design, Design-for-
Cleanability, necessitates algorithms to help designers to design parts that are easy to clean
during the manufacturing process. In this thesis, we consider cleaning using high-pressure
water jets to clean off the surfaces of workpieces. Specifically, we solve the following two
problems purely from a geometric perspective: predicting water trap regions of a workpiece
and finding a rotation axis to drain a workpiece.

Finding an orientation that minimizes the potential water trap regions and/or controls
their locations when the workpiece is fixtured for water jet cleaning is important to increase
the cleaning efficiency. Trapped water leads to stagnation areas, preventing efficient flow
cleaning. Minimizing the potential water trap also reduces the draining time and effort
after cleaning. We propose a new pool segmentation data structure and algorithm based on
topological changes of 2D slices with respect to the gravity direction. Then, we can quickly
predict potential water trap regions of a given geometry by analyzing our directed graph
based on the segmented pools.

Given a workpiece filled with water after cleaning, to minimize the subsequent drying
time, our industrial partner first mounts workpieces on a slowly rotating carrier so that
gravity can drain out as much water as possible. We propose an algorithm to find a rotation
axis that drains the workpiece when the rotation axis is set parallel to the ground and the
workpiece is rotated around the axis. Observing that all water traps contain a concave vertex,
we solve our problem by constructing and analyzing a directed “draining graph” whose nodes
correspond to concave vertices of the geometry and whose edges are set according to the
transition of trapped water when we rotate the workpiece around the given axis. We first
introduce an algorithm to test whether a given rotation axis can drain the workpiece. We
then extend these concepts to design an algorithm to find the set of all rotation axes that
drain the workpiece. If such a rotation axis does not exist, our algorithm will also detect

2

that. To the best of our knowledge, our work is the first to tackle the draining problem and
to give an algorithm for the problem.

i

To my family

ii

Contents

Contents ii

1 Introduction 1
1.1 Cleanability with high-pressure water jets 2

2 Related Work 6

3 Pool Segmentation for Predicting Water Trap Regions 9
3.1 Algorithm Overview . 9
3.2 Pool Segmentation . 12
3.3 Predicting Water Trap Regions . 23
3.4 Results . 25
3.5 Complexity Analysis . 25
3.6 Conclusion . 26

4 Testing a Rotation Axis to Drain a 3D Workpiece 28
4.1 Assumptions and a Key Observation . 28
4.2 Approach and Theory . 29
4.3 Graph Construction . 35
4.4 Checking Drainability . 43
4.5 Results . 46
4.6 Complexity Analysis . 53
4.7 Conclusion . 53

5 Finding a Rotation Axis to Drain a 3D Workpiece 55
5.1 Algorithm Overview . 56
5.2 Rotation axes for which a water particle is never trapped at concave vertex v 58
5.3 Constructing the extended draining graph 63
5.4 Rotation axes that drain a trapped water particle at concave vertex v 70
5.5 Finding rotation axes . 72
5.6 Results . 78
5.7 Complexity Analysis . 81

iii

5.8 Discussion . 83
5.9 Conclusion . 86

6 Conclusions and Future Work 87
6.1 Predicting water trap regions using pool segmentation 87
6.2 Finding a rotation axis to drain a 3D workpiece 89

A 92
A.1 Vertex classification implementation . 92
A.2 Boundary cycles implementation . 92
A.3 Finding boundary cycles generated, completed, and, updated 96

B 98
B.1 Boundary of Hi(xy) . 98
B.2 Finding a closest point on a flat region . 98

C 101
C.1 Constructing ∂Tv from edges ei incident to v 101
C.2 Converting a great arc on the Gaussian Sphere to a region in the dual space 102
C.3 The characteristic of the gravity direction d(ĝ) in the working plane 103
C.4 W+(Π(G)) and W−(Π(G)) in the dual space for great arc G 103
C.5 Determining the side of a Tv-arc where Tv lies in the working plane 106

Bibliography 111

iv

Acknowledgments

First and foremost, I must express appreciation to my research advisor, Professor Sara
McMains. Her careful support made my stay in Berkeley fruitful and comfortable. From
her, I learned not only engineering and academic research skills, but also the importance of
communicating ideas through writing.

I would like to thank Professor Jonathan Shuwchuk and Professor David Dornfeld for
serving on my dissertation committee. Professor Jonathan Shuwchuk gave me helpful advice
whenever I encountered a problem. His advice from his extensive knowledge of computational
geometry really helped me in solving problems. Professor David Dornfeld helped me begin
research in the field of manufacturing even though I had very limited knowledge of it in my
first year.

I also would like to thank Prof. Panayiotis Papadopoulos and Prof. Carlo Séquin for
being on the committee of my Qualifying examination. They also kindly helped me during
office hours when I faced difficulty in understanding course materials.

I thank the U.C. Discovery grant for sponsoring our project. I also thank Daimler AG
for sponsoring our project and giving us interesting industrial problems. From Daimler AG,
I wish to acknowledge Thomas Glau for the initial idea of tracking water by analyzing slice
contour overlaps. I enjoyed working with him during his stay in our lab. We also would
like thank Klaus A. Berger for kindly providing us real industrial models. They definitely
expedited my research.

Finally, I would like to express my appreciation towards my labmates, Youngung Shon,
Xiaorui Chen, Rahul Khardekar, Adarsh Krishnamurthy, Wei Li, Sushrut Pavanaskar, Peter
Cottle, and, Youngwook Kwon for enriching my life in Berkeley. Discussion with them helped
my research a lot and was an exciting experience as well.

1

Chapter 1

Introduction

Information technology has been meeting various needs in manufacturing such as shortening
development time, reducing cost, and saving energy and resources. One example is computer-
aided evaluation of design. It makes the conventional design-to-manufacturing cycle more
efficient by identifying undesirable features of a design in a virtual world, thus reducing the
required number of physical prototypes. Ultimately, we would like to establish an environ-
ment that does not require any physical prototypes at the design stages by fully utilizing
information technology to help meet the market’s demands faster and less expensively, in a
sustainable manner.

Broadly speaking, the computer-aided evaluation of design is divided into two categories
based on whether it is a functionality check or a manufacturability check. A functional-
ity check predicts the performance of a design in a real-world environment. For example,
estimation of stress and strain resulting from applied forces or determining thermal charac-
teristics of a design using physics-based simulation fall into this category. By replacing stress
testing such as a drop test performed in the real world with the corresponding simulation on
a computer, we can avoid manufacturing many physical prototypes used only for such tests.

Manufacturability checks determine whether a design is appropriate for actual manu-
facturing from the point of view of fabrication, assembly, cleaning, etc. Even though the
current design may satisfy the design requirements from an engineering and marketing per-
spective, if the design is too difficult or too costly to manufacture in practice, the design
is not ideal. For example, inspecting a die taking into account spring-back in the bending
of sheet metal, or inspecting the shape of a mold to determine whether the corresponding
part can be easily extracted in casting, fall into this category. Traditionally, these sorts of
manufacturability checks have been done based on skilled workers’ tacit knowledge (design
rules) and trial-and-error. The advent of sophisticated algorithms running on computers not
only makes this process easier and faster, even for non-experts, but also helps designers to
design products that are better from the viewpoint of manufacturing.

Of the various aspects of design evaluation, in this thesis, we discuss algorithms to check
the cleanability of a design. We aim to develop algorithms that help designers to design
parts that are easy to clean during the manufacturing process.

2

Design-for-cleanability, encouraging a design that is easy to clean, is a newly emerging
concept in product design. Reliably removing solid particle contaminants from the surfaces
of mechanical parts has become increasingly important in the automotive industry [Berger
2006]. As the complexity and precision of mechanical parts and assemblies have increased, the
possibility of in-service failures caused by manufacturing-related hard particle contamination
has increased considerably. Even tiny manufacturing byproducts such as detached burrs and
chips from machining and sand from casting may shorten product life or may cause a failure
[Arbelaez et al. 2008; Avila et al. 2006].

1.1 Cleanability with high-pressure water jets

In this thesis, we consider cleaning using high-pressure water jets to clean off the surfaces of
workpieces. Specifically, we solve the following two problems in this thesis: predicting water
trap regions of a workpiece and finding a rotation axis to drain a workpiece.

We solve these two problems purely from a geometric perspective. Although physics-
based methods such as the finite element method are popular in computer evaluation of de-
sign, a geometric approach can also play an important role. Generally speaking, a geometric
approach has an advantage over a physics-based approach with respect to performance; we
do not have to wait a long time to get simulation results. Our goal is to develop an algorithm
that does not rely on a computationally expensive method.

1.1.1 Predicting Water Trap Regions of a Workpiece

Although water jets are effective for removing contaminants from the surface of mechanical
parts, the water may become trapped inside the part if the geometry of voids is complex.
Since water traps decrease water jet cleaning efficiency, predicting such cleaning-incompatible
regions is important to reduce manufacturing time and cost. Trapped water not only creates
stagnation areas that prevent efficient flow cleaning, but eventually all the water must be
drained and the workpiece must be dried after cleaning is complete.

Taking into account these factors, finding an orientation that minimizes the potential
water trap regions or controls their locations when the workpiece is fixtured for water jet
cleaning is important to increase the cleaning efficiency and reduce the draining time and
effort after cleaning.

In chapter 3, we propose a new method to detect potential water trap regions in voids of
oriented polygonal models that approximate the geometry of mechanical parts. We construct
a directed graph that captures the flow of water in voids of a 3D input model, based on a
fast orientation-dependent volume segmentation approach. We can quickly find the water
trap regions by analyzing the directed graph. Since we take a purely geometric approach
to solve this problem without employing a physical simulation, even if the geometry of the
voids is complicated, we can find such regions quickly. We assume that the part geometry
is given as a 2-manifold triangulated polygonal mesh.

3

Figure 1.1: Device for draining and subsequent drying (http://www.mtm-gmbh.com/)

1.1.2 Finding a Rotation Axis to Drain a Workpiece

When manufacturing byproducts such as chips from machining and sand from casting are
cleaned off the surfaces of workpieces by high pressure water-jets, if the workpiece has com-
plicated concave regions, the cleaning water may not easily drain from the workpiece. To
minimize the subsequent drying time, our industrial partner first mounts workpieces on a
slowly rotating carrier so that gravity can drain out as much water as possible. Their cur-
rent setup rotates in one direction (either clockwise or counterclockwise) around a single axis
oriented parallel to the ground.

Figure 1.1 shows a typical device used for the draining and subsequent drying. After
we drain as much water as possible from the workpiece by rotating it around the rotation
axis, the cover is closed to form a vacuum chamber. The vacuum causes evaporation of
the residual cleaning water and dries the workpiece (heat may also be applied here). The
less water remains inside the workpiece, the faster we can dry the workpiece, and with less

4

Figure 1.2: The choice of a rotation axis determines whether or not trapped water will drain.
(a) A workpiece geometry and its cross-section. (b) A rotation axis relative to the workpiece
that cannot drain the trapped water. (c) A rotation axis relative to the workpiece that can
drain the trapped water.

energy.
The choice of a rotation axis determines whether trapped water will drain completely

under gravity. Figure 1.2 illustrates a simple example. Given a workpiece geometry we
would like to drain (Figure 1.2 (a)) and a rotation axis set parallel to the ground, if we
initially choose a rotation axis relative to the workpiece as shown in Figure 1.2 (b), we
cannot drain the trapped water. On the other hand, if we choose a rotation axis relative to
the workpiece as shown in Figure 1.2 (c), we can completely drain all the trapped water.

Our ultimate goal is to find a rotation axis for a given workpiece geometry such that
when the workpiece is first oriented with this axis parallel to the ground and then rotated
slowly around the axis, all water drains from all voids of the workpiece. If such a rotation
axis is not found, the system should notify a designer that the current design is not desirable
from a cleanability perspective.

In chapter 4, given a triangular mesh defining the geometry of a 3D workpiece filled with
water, we propose an algorithm to test whether, for a specified axis, the workpiece will be
completely drained under gravity when the rotation axis is set parallel to the ground and
the workpiece is rotated around the axis. Observing that all water traps contain a concave
vertex, we solve our problem by constructing and analyzing a directed draining graph whose
nodes correspond to concave vertices of the geometry and whose edges are set according
to the transition of trapped water when we rotate the workpiece around the given axis.
Our algorithm to test whether or not a given rotation axis drains the workpiece outputs a
result in about a second for models with more than 100,000 triangles, after a few seconds of
preprocessing.

In chapter 5, we introduce an algorithm to find the set of all rotation axes that would
drain a given workpiece geometry (again represented as a triangulated mesh). Suppose that
we are given a rotation axis that is found to drain the workpiece by the previous algorithm.
In practice, it is also essential to make sure that the rotation axis’s nearby rotation axes
also drain the workpiece because, although the size of a water particle is finite in the real

5

world, we have assumed that the size of a water particle is infinitesimal in the algorithm. If
one of the nearby rotation axes cannot drain the workpiece, the given rotation axis might
not drain the workpiece in the real world. Taking this into account, if we were to use the
previous testing algorithm to find a rotation axis that can drain the workpiece in practice,
we may need to test a great many rotation axes to find one that is feasible. This is generally
time-consuming and less accurate. Thus, we are motivated to move beyond a sample-based
approach (testing given axes) to a configuration space approach (finding all drainable axes).
We introduce a new algorithm to find rotation axes that would drain the workpiece by
introducing the extended draining graph that represents all the possible transitions of water
particles considering all the possible rotation axes and rotation directions. We introduce
a dual-space stabbing line approach to efficiently analyze the drainability of all possible
paths through this graph, for all possible rotation axes. Since we take a configuration space
approach, our algorithm can finds every possible rotation axis that drains the workpiece.

6

Chapter 2

Related Work

Analytical tools that predict cleaning effectiveness at the design and process planning stages
are needed to increase the efficiency of the cleaning processes. Initial research has focused
on understanding the effect of key cleaning process parameters [Arbelaez et al. 2008; Avila
et al. 2006; Avila et al. 2005; Berger 2006].

Generally speaking, manufacturing processes are complex phenomena, especially when
fluid is involved. The most straightforward approach to solve our problems might at first
appear to be a general-purpose physics based approach such as computational fluid dynamics
(CFD).

In the computer graphics community, several efforts have been made to accelerate algo-
rithms borrowed from computational sciences while maintaining plausibility [Müller et al.
2008]. The first real-time GPU (Graphics Processing Unit) implementation of fluid simu-
lation using a regular grid of cubical cells was reported in [Nguyen 2007]. Unfortunately,
because the algorithm accuracy is dependent on the 3D grid resolution, it is not appropriate
for our complex target geometries since we would be required to split space into a tremendous
number of grid cells to perform the simulation reliably. To avoid this issue, particle-based
approaches using smoothed particle hydrodynamics (SPH) are popular for real-time sim-
ulations since they do not require a grid throughout the whole domain [Müller-Fischer et
al. 2003; Müller-Fischer et al. 2007]. Harada et al. introduced the algorithm to implement
the entire SPH computation on the GPU and showed that we can perform real-time SPH
simulation with several tens of thousands of particles [Harada et al. 2007].

Although the computational power of CPUs and GPUs is increasing every year, the com-
putational cost of such a physics-based approach is still more expensive than necessary to be
suitable for our applications that require interactivity. Since we would like to provide inter-
active feedback to designers, we need an algorithm that does not rely on a computationally
expensive method. Considering that we do not care about the full details of the fluid flow,
only predicting the regions of the workpiece where water traps are potentially formed (chap-
ter 3) and whether or not the workpiece drains completely (chapter 4, 5), we are motivated
to devise an algorithm to solve our problem geometrically to reduce computational cost. On
top of that, a configuration space approach such as we introduce in chapter 5 (which is by

7

nature geometric) allows us to examine the entire solution space in an integrated manner,
rather than solving the problem heuristically using simulation for individual samples in the
solution space. Our algorithms combine analysis of (free) fluid flow and accessibility from a
geometric perspective.

In the case of fluid flows inside geometric models, Aloupis et al. introduced the problem
of rolling a single small ball (akin to a single water particle) out of a closed polygon by
rotating the shape in 2D space [Aloupis et al. 2008]. Given a closed polygon and a trapped
single particle inside of the polygon, they proposed an algorithm to find how many holes
must be punctured to “drain” the particle by rotation. Letting N be the number of vertices
of the polygon, they showed that bN/6c holes are sometimes necessary and dN/4e holes are
sufficient to drain any polygon. They proposed an O(N2 logN)-time algorithm to find the
minimum number of holes needed to drain.

Geometric problems often arise in manufacturing processes. Janardan and Woo gave a
survey and introduced open manufacturing problems that can be considered as geometric
problems [Janardan and Woo 2004]. For example, geometric analysis has been developed to
study the flow of liquid in a mold, a problem with some similarities to our first problem,
predicting water trap regions of workpiece (chapter 3). Bose and Toussaint proposed an
algorithm to find an orientation for a gravity casting mold that eliminates surface defects
and insures a complete fill without air traps [Bose and Toussaint 1995; Bose et al. 1993].
Letting N be the number of vertices of the polyhedron representing the geometry of the
mold, their algorithm determines whether the mold can be filled without forming air traps
in O(N) time. They also proposed an O(N2)-time algorithm to find the orientation that
minimizes the number of venting holes that need to be added to allow air to escape to insure
a complete fill.

A similar problem to our other problem, finding a rotation axis to drain a 3D workpiece
(chapters 4 and 5), arises in planning for NC machining. To manufacture a desired shape
using an NC machine, multiple setups are often required because, in general, the cutting tool
cannot access all the part of the workpiece in a single setup. For 3-axis machines, the tool can
only translate x, y, and, z for a given set up; for a 4-axis machine, one additional rotational
degree of freedom is provided. Since fixturing for each setup can be time-consuming and
multiple setups are a source of errors, the number of setups should be minimized. To consider
this problem, visibility plays a vital role. Chen et al. converted the accessibility problem to
geometric problems on the Gaussian sphere by introducing the concept of the visibility map
of the surface [Chen et al. 1993; Chen and Woo 1992; Woo 1994]. Given a portion of the
workpiece’s surface, the corresponding visibility map is the set of all directions along which
the cutting tool (which is treated as a point) can see every point on the surface portion. The
visibility map of a surface is represented as a spherical polygon on the Gaussian sphere.

Using the visibility map, finding a rotation axis that maximizes “visible” surfaces in a
single setup in 4-axis NC machining is solved as a geometric problem of finding a great circle
passing through spherical convex polygons [Chen et al. 1993]. Tang et al. solved this problem
by converting it to the problem of finding a line passing through convex polygons on a 2D
plane using the Gnomonic projection [Tang et al. 1992]. The algorithm runs in O(EN2 +

8

N3 logN) time, where N is the number of spherical polygons and E is the total number
of edges. Gupta et al. solved the problem using duality transformations and improved
the running time to O(E2) [Gupta et al. 1996]. Tang et al. further consider the problem of
finding arcs of great circles that span 180 degrees (called a semi-great circle), passing through
spherical convex polygons using the Gnomonic projection and duality transformations [Tang
et al. 1998]. We also take advantage of the Gnomonic projection and duality transformations
in our algorithm described in chapter 5.

9

Chapter 3

Pool Segmentation for Predicting
Water Trap Regions

In this chapter, we propose a new method to detect potential water trap regions in voids of
oriented polygonal models that approximate the geometry of mechanical parts. Water traps
decrease water jet cleaning efficiency because water traps create stagnation areas and prevent
efficient flow cleaning. Minimizing the potential water trap also reduces the draining time and
effort after cleaning. Therefore, predicting such cleaning-incompatible regions is important
to reduce manufacturing time and cost. We construct a directed graph that captures the
flow of water in voids of a 3D input model, based on a fast orientation-dependent volume
segmentation approach. We can quickly find the water trap regions by analyzing the directed
graph. Since we take a purely geometric approach to solve this problem without employing
any physical simulation, even if the geometry of the voids is complicated, we can find such
regions quickly.

3.1 Algorithm Overview

Our algorithm predicts regions in voids of the geometry where, for a given orientation, the
effectiveness of cleaning with water jets will be compromised by water traps. We assume
throughout this chapter that the part geometry has been rotated to the desired test orien-
tation, so that gravity always acts vertically (i.e. down the z-axis).

Figure 3.1 illustrates an overview of our algorithm. Letting M be the geometry of the
input model and B be a slightly enlarged bounding box that enclosesM, the spaceW where
water flows can be represented as W = B \ M. We split the space W horizontally into
multiple regions called pools based on topological changes of W with respect to the z-axis.
Then, we build a directed graph whose nodes correspond to the pools and whose edges
connect two nodes if water flowing out of the source node’s corresponding pool could enter
the destination node’s corresponding pool. We determine water trap regions by analyzing
the directed graph.

10

Figure 3.1: Algorithm overview: (a) From the input geometry M, (b) we define the space
W = B \ M where water can flow. (c) With a sweep plane psweep(z), (d) we track the
evolution of connected slice components si(z) ∈ W ∩ psweep(z). (e) At locations where slice
components split or merge, we segment W into pools, and (f) assign directed edges that
capture the water flow between pairs of pools. (g) From the graph, we locate potential water
trap regions. (h) We map the region(s) to the input M.

The Reeb graph [Reeb 1946] is a data structure for representing the topology of shapes
that captures topological changes with respect to a real function defined on the shapes. The
directed graph we construct is mathematically equivalent to a Reeb graph of a 3-manifold
with boundary with respect to the height function (z-value). Hence, we could construct the
directed graph from W using a Reeb graph construction algorithm such as that proposed
by Pascucci et al. [Pascucci et al. 2007] or Tierny et al. [Tierny et al. 2009] and segment
W into pools based on the Reeb graph constructed. However, since their approaches require
the extra burden of tetrahedralizing W , we propose an alternative efficient approach of
segmenting W into pools and constructing the corresponding directed graph simultaneously
in our work.

Our pool segmentation data structure equipped with the directed graph has more poten-
tial than just predicting water trap regions. For just predicting water trap regions, the pool
segmentation data structure is somewhat redundant since, whereas predicting water trap

11

regions is a local problem, the pool segmentation data structure provides global information.
Nevertheless, we chose our data structure because, once we find potential water trap regions,
we could also use it when performing the actual filling state simulation inside mechanical
parts, taking an inflow location as an input as a next step. We believe that our pool seg-
mentation data structure would help to accelerate the simulation. For further discussion on
this topic, please refer to chapter 6.

3.1.1 Preliminaries

First, we introduce some notation to explain how we splitW into pools and add the directed
edges between nodes corresponding to pools. We consider a sweep plane psweep(z = z)
perpendicular to the z-axis (i.e. the gravity direction) intersecting it at z. Given a sweep
plane psweep(z), we define the slice at z, S(z), as the intersection of W and psweep(z): S(z) =
W ∩ psweep(z). As shown in Figure 3.1 (d), slice S(z) may consist of multiple disconnected
slice components, which in 3D will be 2D polygons (possibly with holes). We call these slice
polygons. We denote the different slice polygons constituting S(z) as si(z) (1 ≤ i ≤ |S(z)|).

Then, we let proj(si(z)) be the projection of si(z) to the plane perpendicular to the z-
axis, and the z-value just below z be z− = z−ε and the z-value just above z be z+ = z+ε, ε a
positive infinitesimal number. Given a slice polygon si(z) ∈ S(z), we define overlapping slice
polygon(s) just below si(z), Sbelow(si(z)), as the set of slice polygons sj(z

−) ∈ S(z−) such
that proj(si(z)) ∩ proj(sj(z−)) 6= ∅. Similarly, we define overlapping slice polygon(s) just
above si(z), Sabove(si(z)), as the set of slice polygons sj(z

+) ∈ S(z+) such that proj(si(z))∩
proj(sj(z

+)) 6= ∅.
Based on the cardinality of Sbelow(si(z)) and Sabove(si(z)), the slice polygons just be-

low and above si(z), we classify each slice polygon si(z) as one of four types as follows.
Given a slice polygon si(z), if |Sbelow(si(z))| = 0, we call si(z) a beginning slice polygon
since a new slice polygon appears as the sweep plane moves from psweep(z−) to psweep(z+).
On the other hand, if |Sabove(si(z))| = 0, we call si(z) an ending slice polygon, since an
existing slice polygon disappears as the sweep plane moves from psweep(z−) to psweep(z+).
If |Sbelow(si(z))| ≥ 2 and |Sabove(si(z))| ≥ 1 or |Sbelow(si(z))| ≥ 1 and |Sabove(si(z))| ≥ 2,
we call si(z) a merge/split slice polygon since multiple slice polygons merge into one slice
polygon and/or one slice polygon splits into multiple slice polygons as the sweep plane moves
from psweep(z−) to psweep(z+). Finally, if |Sbelow(si(z))| = |Sabove(si(z))| = 1, we call si(z)
a no-change slice polygon since no topological change of slice polygon si(z) occurs as the
sweep plane moves from psweep(z−) to psweep(z+).

3.1.2 Pool Segmentation

We define a pool as the union of no-change slice polygons bounded by either a beginning or
a merge/split slice polygon from below and either an ending or a merge/split slice polygon
from above. Given a slice polygon si(z), we let pool(si(z)) be the pool si(z) defines.

12

We segment W into pools using a sweep plane algorithm, where we imagine moving
psweep(z) from z = −∞ to z = +∞. IfW∩psweep(z) yields a beginning slice polygon, we gen-
erate a new pool bounded from below by the beginning slice polygon. IfW∩ psweep(z) yields
a no-change slice polygon, the no-change slice polygon si(z) defines the pool pool(sj(z

−))
where sj(z

−) ∈ Sbelow(si(z)). IfW∩psweep(z) yields an ending slice polygon, we complete the
corresponding existing pool, bounding it from above with the ending slice polygon. Finally,
if W ∩ psweep(z) yields a merge/split slice polygon, we complete the corresponding existing
pool(s) by bounding from above with the merge/split slice polygon, and generate new pool(s)
by bounding from below with the same merge/split slice polygon. Then, for 1 ≤ i ≤ |S(z−)|
and for 1 ≤ j ≤ |S(z+)|, we compute proj(si(z

−)) ∩ proj(sj(z+)). If there are p and q such
that proj(sp(z

−)) ∩ proj(sq(z+)) 6= ∅, and pool(sp(z
−)) 6= pool(sq(z

+)), we add a directed
edge from the node corresponding to pool(sq(z

+)) to the node corresponding to pool(sp(z
−))

in the directed graph (Figure 3.1 (f)).

3.1.3 Predicting Water Trap Regions

After completing the sweep from z = −∞ to z = +∞, the space W is segmented into pools
that are connected to each other in the graph by edges oriented in the direction of gravity if
they are bounded by the same merge/split slice polygon. Each pool represents a region that
could potentially be a water trap region except the bottom-most pool, which represents the
exterior of M. Water flowing in W under gravity will flow between pools according to the
directed edges. Once such flowing water reaches the bottom-most pool, since by construction
it is outside the input geometry, we consider the water to be drained. Thus, as shown in
Figure 3.1 (g), given a pool, if there is no path such that we can reach the bottom-most
pool from the corresponding node, the pool is a potential water trap region (whether or not
this water trap is actually formed depends upon the inflow location). Since we can compute
the volume of water each pool can hold, we can also quantitatively evaluate a given part
orientation by summing the volumes of pools that are determined to be water trap regions.

3.2 Pool Segmentation

In this section, we describe the details of our pool segmentation algorithm summarized above,
given a 2-manifold triangulated input mesh M.

FromM, we can easily obtain the correspondingW by flipping the orientation of the tri-
angles inM and introducing six rectangles that represent the enlarged axis-aligned bounding
box B. Each rectangle should be split into two triangles such that all the faces of W are
represented by triangles as well.

To implement the pool segmentation algorithm, we have to know for which values of z
beginning, ending, and merge/split slice polygons occur. We determine all of these values
of z by tracking the evolution of the boundary of slice polygons. Even when a slice polygon
boundary appears, disappears, merges, or splits, the corresponding slice polygon does not

13

Figure 3.2: Figures (a)–(l) illustrate how the triangles in boundary cycles are updated as
the sweep plane moves from bottom to top over a portion of W . The top drawing in each
subfigure shows the set of triangles (colored) currently in boundary cycles just after the
sweep plane processes the indicated vertex; the bottom drawing in each subfigure shows the
corresponding slice polygon boundaries, with the sweep plane shown as a rectangle.

necessarily appear, disappear, merge, or split (e.g. because the boundary could correspond
to a hole in a polygon). However, when a slice polygon appears, disappears, merges, or
splits, the corresponding slice polygon boundary does also appear, disappear, merge, or split.
Therefore, checking all the values of z where a slice polygon boundary appears, disappears,
merges, or splits is sufficient to determine all the values of z where beginning, ending, and
merge/split slice polygons occur.

We track the evolution of slice polygon boundaries by modifying McMains’ sweep plane
slicing algorithm [McMains 2000; McMains and Séquin 1999]. Observing that slice polygon
boundaries appear, disappear, merge, or split only when the sweep plane passes through
one of the vertices of the input polygonal mesh, they showed that all such changes can
be identified as long as all vertices are checked in ascending order of z-coordinate (vertices
whose z-coordinates are the same can be processed in arbitrary order without affecting the
final result). In other words, when W ∩ psweep(z) yields any of beginning, ending, and/or
merge/split slice polygons, psweep(z) always intersects one of the vertices in W .

14

3.2.1 Boundary Cycles

Our modified sweep plane slicing algorithm tracks the evolution of slice polygon boundaries
and determines when a slice polygon boundary appears, disappears, merges, or splits. For
this purpose, we manage a status structure called the boundary cycle (Figure 3.2). Each
boundary cycle consists of a set of triangles. Every triangle in W is visited three times
during sweeping since each triangle has three vertices. Given a triangle, when it is visited for
the first time, the triangle is inserted into a boundary cycle. When it is visited for the third
time, the triangle is deleted from the boundary cycle. (When it is visited for the second
time, nothing happens.) Since we process each vertex in order of ascending z-coordinate,
triangles currently in a boundary cycle always intersect the current sweep plane.

Each slice polygon boundary at z is represented by a closed polygonal chain on psweep(z).
Each line segment constituting the closed polygonal chain is defined by the intersection
between psweep(z) and a triangle. Letting V (z) be the set of vertices inW whose z-coordinate
is z, a set of triangles in a boundary cycle defines a slice polygon boundary at z where
V (z) = ∅ (i.e. where psweep(z) does not intersect any vertices in W) as shown in Figure 3.2.
Therefore, the number of line segments constituting a slice polygon boundary is equal to
the number of triangles in the corresponding boundary cycle. For such z, there is exactly
one boundary cycle for each slice polygon boundary. For z where V (z) 6= ∅ (i.e. where
psweep(z) intersects at least one vertex in W), a set of triangles in a boundary cycle does not
necessarily define a slice polygon boundary since some triangles in the boundary cycle may
be parallel to the sweep plane; the intersection between such a triangle and psweep(z) is not
a line segment. However, this limitation does not become a problem because, to determine
the type of slice polygons at z where V (z) 6= ∅, it is sufficient to consider the slice polygons
just below and just above vertices in V (z) (i.e. at z− and z+) as explained previously in
section 3.1.1. During sweeping from z = −∞ to z = +∞, we track the evolution of slice
polygon boundaries by tracking the set of triangles in each boundary cycle.

3.2.1.1 Boundary Cycle Management

Boundary cycles are generated, completed, or updated when we process each vertex inW . As
McMains and Séquin showed in their work, we can classify each vertex into one of four types:
beginning vertex, ending vertex, no-change vertex, and merge/split vertex. A beginning vertex
is where a new boundary cycle is generated. An ending vertex is where an existing boundary
cycle is completed. A no-change vertex is where some triangles may be deleted from and
inserted into an existing boundary cycle. A merge/split vertex is where multiple boundary
cycles merge into one boundary cycle or one boundary cycle splits into multiple boundary
cycles. At a merge/split vertex, we complete existing boundary cycle(s) and generate new
boundary cycle(s) according to the merge or split. Appendix A.1 and A.2 describe, for a
given V (z), how to classify each vertex v ∈ V (z) into one of the four types, and generate,
complete, and update boundary cycles accordingly. When W ∩ psweep(z) yields a beginning,
an ending, or a merge/split slice polygon, psweep(z) always intersects with a beginning, an

15

Figure 3.3: Each of subfigures (b)–(e) shows the boundary cycles and the corresponding
slice polygon boundaries on the sweep plane just after processing vertices A, B, C, and, D
shown in (a), respectively. Boundary cycles 1 and 3 are outer boundary cycles; Boundary
cycles 2 and 4 are inner boundary cycles. For each slice polygon, the inner boundary cycles
that define the inner slice polygon boundaries are associated with the outer boundary cycle
that defines the outer slice polygon boundary. Boundary cycle 2 is associated with boundary
cycle 1; boundary cycle 4 is associated with boundary cycle 3.

ending, or a merge/split vertex, respectively (but not vice versa).
When a new boundary cycle is generated at a beginning vertex, a new slice polygon

boundary appears (Figure 3.2 (b)); when an existing boundary cycle is completed at an
ending vertex an existing slice polygon boundary disappears (Figure 3.2 (l)); and, when
multiple boundary cycles merge into one boundary cycle or one boundary cycle splits into
multiple boundary cycles at a merge/split vertex, multiple slice polygon boundaries merge
into one slice polygon boundary or one slice polygon boundary splits into multiple slice
polygon boundaries (Figure 3.2 (g)).

We update triangles in an existing boundary cycle at a no-change vertex (Figure 3.2 (c)–
(f) and (h)–(k)). We consider two boundary cycles at different values of z to be the same
boundary cycle if one is obtained from the other by processing only no-change vertices. Thus,
a new boundary cycle will be generated at a beginning vertex or a merge/split vertex and
an existing boundary cycle will be completed at an ending vertex or a merge/split vertex.

3.2.1.2 Boundary Cycle Classification

As shown in Figure 3.3, a slice polygon may be bounded by more than one slice polygon
boundary. More specifically, a slice polygon is always bounded by one outer slice polygon
boundary plus zero or more inner slice polygon boundaries. Given a slice polygon si(z), let
∂si(z) be the set of slice polygon boundaries that bound si(z). We also let (∂si(z))1 be the
outer slice polygon boundary and (∂si(z))j (j ≥ 2) be the inner slice polygon boundaries of

16

si(z). Then, ∂si(z) = {(∂si(z))1, · · · , (∂si(z))|∂si(z)|}.
A boundary cycle is classified as either an outer boundary cycle or an inner boundary cycle

depending on whether the intersection between triangles in the boundary cycle and psweep(z)
define an outer or an inner slice polygon boundary. An inner boundary cycle is always
associated with an outer boundary cycle that immediately encloses the inner boundary cycle
(Figure 3.3).

For a given z, a boundary cycle is classified as an outer boundary cycle or an inner
boundary cycle by shooting a ray perpendicular to the z-axis from an arbitrary point at z
on a triangle in the boundary cycle and counting the number of intersections between the
ray and triangles in W , excluding triangles in the boundary cycle that we are testing. If it
is even, the boundary cycle is an outer boundary cycle. If it is odd, it is an inner boundary
cycle. For each inner boundary cycle, we can find the outer boundary cycle immediately
enclosing the inner boundary cycle by counting the number of intersections with triangles
in each outer boundary cycle. If there is an outer boundary cycle where the number of the
intersections is odd, the outer boundary cycle encloses this inner boundary cycle. If multiple
such enclosing boundary cycles exist, the one with the closest intersection is the immediately
enclosing one.

3.2.2 Pool Segmentation

Here, we describe how to implement pool segmentation. In section 3.1.2, we defined that a
pool is the union of no-change slice polygons bounded by either a beginning or a merge/split
slice polygon from below and either an ending or a merge/split slice polygon from above.
We have observed that we can determine where these slice polygons occur during sweeping
by tracking the evolution of boundary cycles. Therefore, we construct a pool according to
generation, completion, and updating of boundary cycles. In practice, we construct a pool by
finding its boundary. Specifically, the side of a pool is defined by triangles from W , possibly
trimmed. The bottom and top face of a pool is defined by the slice polygons where the pool
is generated and completed.

Each pool is defined by one outer boundary cycle plus zero or more inner boundary
cycles. Triangles in such boundary cycles form the sides of the pools. Each of these triangles
is trimmed if a portion of the triangle is lower than the lower bound z-coordinate and/or
higher than the upper bound z-coordinate of the pool. The intersection between the triangles
and the sweep plane at the lower/upper bound z-coordinate define the bottom face and the
top face of the pool, respectively.

We generate a new pool p at a z-coordinate z where the slice topology changes by per-
forming the following operations that initialize the pool defined by the outer boundary cycle
bouter at z. Letting inner(bouter) be the set of enclosed inner boundary cycles associated with
bouter, we assign the triangles in bouter and each binner ∈ inner(bouter) to p. Then, for each
triangle assigned to p at its lowest z-value, if a portion of the triangle is lower than z+, we
trim that portion (which may be the entire triangle). Then, we define the bottom face of p
by connecting the line segments defined by intersections between the trimmed triangles and

17

Algorithm 1 InitializePool(bouter, z)

Input: bouter: an outer boundary cycle, z: z-coordinate
Output: p: pool generated at z
bouter-> pool← p
p-> T1 ← ∅
(∂s)1 ← ∅
for each triangle t ∈ bouter do

Compute tcut, the portion of t higher than z
p-> T1 ← (p-> T1) ∪ tcut
(∂s)1 ← (∂s)1 ∪ (t ∩ psweep(z+))

end for
j ← 2
for each binner ∈ inner(bouter) do
binner-> pool← p
p-> Tj ← ∅
(∂s)j ← ∅
for each triangle t ∈ binner do

Compute tcut, the portion of t higher than z
p-> Tj ← (p-> Tj) ∪ tcut
(∂s)j ← (∂s)j ∪ (t ∩ psweep(z+))

end for
j ← (j + 1)

end for
p->BottomFace ←

⋃j−1
k=1(∂s)k

return p

psweep(z+). Note that, if p is defined by n boundary cycles, the bottom face consists of n
closed polygonal chains. The bottom face corresponds to a slice polygon si(z

+) and each of
the closed polygonal chains corresponds to slice polygon boundary (∂si(z

+))j (1 ≤ j ≤ n),
where n = |∂si(z+)|. Algorithm 1 gives the corresponding pseudocode for initializing a pool.
In a similar manner, we complete an existing pool p at a z-coordinate z where the slice
topology changes again by performing analogous operations to finalize the pool defined by
the outer boundary cycle bouter at this z, the highest z-value for the pool. The difference is
that we trim the triangles and define the top face at z−, instead of the bottom face at z+

(Algorithm 2).
We describe how to construct each pool based on generation, completion, and updating

of boundary cycles in detail. For the sake of simplicity of explanation, we assume that any
slice polygon si(z) is bounded by only one outer slice polygon boundary for a moment (i.e.
|∂si(z)| = 1 for any z and inner(bouter) = ∅ for any outer boundary cycle bouter). Thus, any
boundary cycle we encounter during sweeping will always be an outer boundary cycle.

In this case, the appearance, disappearance, merging, and splitting of slice polygon

18

Algorithm 2 FinalizePool(bouter, z)

Input: bouter: outer boundary cycle, z: z-coordinate
Output: p: pool completed at z
p← bouter-> pool
bouter-> pool← nil
n← 1 + |inner(bouter)| // number of boundary cycles
for j = 1 to n do
Tcut ← ∅
(∂s)j ← ∅
for each triangle t ∈ (p-> Tj) do

Compute tcut, a portion of t lower than z
Tcut ← Tcut ∪ tcut
(∂s)j ← (∂s)j ∪ (t ∩ psweep(z−))

end for
p-> Tj ← Tcut

end for
p->TopFace ←

⋃n
j=1(∂s)j

return p

boundaries always leads to appearance, disappearance, merging, and splitting of the cor-
responding slice polygons. Thus, for a given z where V (z) 6= ∅, if a new boundary cycle is
generated, we initialize a new pool defined by the boundary cycle. If an existing boundary
cycle is completed, we finalize the existing pool defined by the boundary cycle.

For a given z where V (z) 6= ∅, let G, C, and U be the sets of new boundary cycles
generated, completed, and updated at v ∈ V (z), respectively. The specific algorithm to find
G, C, and U from V (z) is described in Appendix A.3. A pool is constructed by the following
rules.

For a given z where V (z) 6= ∅:

1. For each updated boundary cycle b ∈ U , we add new triangles inserted into b at z to
the pool defined by b.

2. For each completed boundary cycle b ∈ C, we finalize the pool defined by b.

3. For each newly-generated boundary cycle b ∈ G, we initialize the pool p defined by b.

4. Let Pinit be the set of pools initialized and Pfinal be the set of pools finalized at z. If
Pinit 6= ∅ and Pfinal 6= ∅, for pi ∈ Pinit and for pf ∈ Pfinal, we compare the bottom face
of pi and the top face of pf . If they overlap, we add a directed edge from the node
corresponding to pi to the node corresponding to pf in the directed graph.

Algorithm 3 shows the corresponding pseudocode. In Algorithm 3, InitializePool and
FinalizePool were shown in Algorithm 1 and 2, respectively. ProcessVertices takes V (z)

19

Figure 3.4: Figures (a)–(l) show how pools are constructed according to generation, comple-
tion, and updating of boundary cycles. The top drawing in each subfigure shows the set of
triangles in boundary cycles just after the sweep plane processes the indicated vertex as in
Figure 3.2; the bottom drawing shows the corresponding construction of pools.

as input and returns a set of boundary cycles generated, completed, and updated at z,
respectively (refer to Algorithm 15). ConstructConnectivity compares the bottom face(s)
of generated pool(s) and the top face(s) of completed pool(s) by performing a 2D polygon
intersection test.

A series of steps to construct pools based on these rules is illustrated in Figure 3.4.
When a new boundary cycle is generated, we initialize a new pool defined by the boundary
cycle (Figure 3.4 (b)). In this example, since the intersection between the triangles and the
corresponding sweep plane becomes a point, no triangles are trimmed and the bottom face
consists of a single point. When the triangles in the boundary cycles are updated, we assign
the inserted triangles to the pool defined by their boundary cycles (Figure 3.4 (c)–(f) and

20

Figure 3.5: Figures (a)–(e) show how pools are constructed according to generation, com-
pletion, and updating of boundary cycles in general pool segmentation. We segment W into
pools where the topology of slice polygon changes. The top drawing in each subfigure shows
the boundary cycles just before processing the indicated vertices; the bottom drawing shows
the pools already completed just after processing the indicated vertices. The line segments
shown in orange indicate the bottom face and top face of just completed pools. Notice that,
for each pool, the bottom face and top face is defined by the triangles in the same set of
boundary cycles.

(h)–(k)). When one boundary cycle splits into multiple boundary cycles (Figure 3.4) (g)),
we finalize the pool defined by the existing boundary cycle (the purple pool). The portions
of the triangles above the z-coordinate of the indicated vertex are trimmed and the set of
the corresponding intersection line segments defines the top face of the finalized pool. At the
same time, we initialize new pools defined by the new boundary cycles (the yellow and blue
pools). The triangles in the boundary cycles after processing the merge/split vertex indicated
in the top of subfigure (g) are assigned to the pools. The portions of the triangles below
the z-coordinate of the indicated vertex are trimmed; the sets of corresponding intersection
line segments define the bottom face of the newly generated pools. When a boundary cycle
is completed, we finalize the pool defined by the boundary cycle (Figure 3.4 (l)). In this
example, since the intersection between the triangles in the pool and the corresponding sweep
plane becomes a point, no triangles are trimmed and the top face consists of a single point.

3.2.2.1 Pool Segmentation, General Case

We now remove the simplifying assumption that each slice polygon is bounded by only one
outer slice polygon boundary. In the general case, a pool is defined by one outer bound-
ary cycle and zero or more inner boundary cycles. Unlike in the previous simplified case,
the appearance, disappearance, merging, or splitting of slice polygon boundaries does not
necessarily lead to the appearance, disappearance, merging, and splitting of the correspond-
ing slice polygons for the general case. For example, in Figure 3.3, the appearance of the

21

Algorithm 3 SimplifiedCasePoolSegmentation(V)

Input: V : set of vertices in W
where V = {V (z1), V (z2), · · · , V (zn)} (zi < zj if i < j)
// V (zi) is a set of vertices whose z-coordinate is zi
for i = 1 to n do
Pinit ← ∅
Pfinal ← ∅
(G, C, U) ← ProcessVertices(V (zi))
for each boundary cycle b ∈ U do
b-> pool-> T1 ← (b-> pool-> T1) ∪ (b-> Tnew(zi))

end for
for each boundary cycle b ∈ C do
Pfinal ← Pfinal∪ FinalizePool(b, zi)

end for
for each boundary cycle b ∈ G do
Pinit ← Pinit∪ InitializePool(b, zi)

end for
if Pinit 6= ∅ and Pfinal 6= ∅ then

ConstructConnectivity(Pinit, Pfinal)
end if

end for

inner slice polygon boundary does not lead to the appearance of a new slice polygon; the
appearance of the inner slice polygon boundary just changes the topology of the existing
slice polygon. However, to simplify our implementation (as well as the volume computation
described below in section 3.3.1), we segment W into pools whenever a boundary cycle is
generated or completed (which is equivalent to saying whenever the topology of a slice poly-
gon changes). As stated in section 3.2, when a slice polygon appears, disappears, merges, or
splits, the corresponding slice polygon boundary also appears, disappears, merges, or splits,
and thus at least one boundary cycle is generated or completed. Therefore, the modified
segmentation rule satisfies our original pool segmentation criteria.

Thus, a pool is initialized and finalized when an outer boundary cycle defining the pool is
generated and completed in the same manner as in the simplified case. In addition, given a
pool, every time one of the inner boundary cycles defining the pool is generated or completed,
we finalize the pool and initialize a new one. Using this segmentation rule, each pool is
entirely defined by the same set of boundary cycles, i.e. the set of boundary cycles when the
pool is initialized and finalized is the same (although their triangles will have changed if any
no-change vertices are on the boundary between the bottom and top face).

Subfigures 3.5 (a)–(e) show the boundary cycles just before processing the indicated
vertices and the pools already completed just after processing the indicated vertices. In
Figure 3.5 (a), boundary cycle 1, an inner boundary cycle, completes. We finalize the first

22

pool defined by outer boundary cycle 2 immediately enclosing boundary cycle 1. Since outer
boundary cycle 2 is not completed, we initialize a new pool defined by outer boundary cycle
2. In Figure 3.5 (b), boundary cycle 3, an inner boundary cycle, is generated. We associate
boundary cycle 3 with boundary cycle 2, its enclosing boundary cycle. Since boundary cycle
2 has already defined a pool not finalized yet, we finalize that pool, and initialize a new
pool defined by boundary cycle 2 and boundary cycle 3. In Figure 3.5 (c), boundary cycle
2 splits into boundary cycle 4 and boundary cycle 5. We finalize the existing pool defined
by boundary cycle 2. Since inner boundary cycle 3, immediately enclosed by boundary
cycle 2, is not completed, we reassociate boundary cycle 3 with boundary cycle 4, which
immediately encloses boundary cycle 3 just above the indicated vertices. We initialize a new
pool defined by boundary cycle 4 and boundary cycle 3 (immediately enclosed by it), and
boundary cycle 5, respectively. In Figure 3.5 (d), boundary cycle 6, an inner boundary cycle,
and boundary cycle 7, an outer boundary cycle, are generated. We associate boundary cycle
6 with boundary cycle 5, its enclosing boundary cycle. Since boundary cycle 5 has already
defined a pool not finalized yet, we finalize that pool, and initialize a new pool defined by
boundary cycle 5 and boundary cycle 6. We also initialize a new pool defined by boundary
cycle 7. In Figure 3.5 (e), boundary cycle 4 and boundary cycle 3 (immediately enclosed by
it), and boundary cycle 5 and boundary cycle 6 (immediately enclosed by it) are completed.
We finalize the pool defined by these boundary cycles.

Now, we give the algorithm to implement this segmentation rule. For a given z where
V (z) 6= ∅, let Gouter and Ginner be the sets of new outer and inner boundary cycles, respec-
tively, generated at v ∈ V (z), and Couter and Cinner be the sets of existing outer and inner
boundary cycles, respectively, completed at v ∈ V (z). Then, a pool is constructed by the
following rules.

For a given z where V (z) 6= ∅:

1. For each updated boundary cycle b ∈ U , we add new triangles inserted into b at z to
the pool defined by b.

2. For each completed outer boundary cycle bouter ∈ Couter, we finalize the pool defined
by bouter. We let inner(bouter) be the set of inner boundary cycles immediately enclosed
by bouter at z−. For each binner ∈ inner(bouter), if binner /∈ Cinner, we add binner to Ginner

(Figure 3.5 (c)(e)).

3. For each completed inner boundary cycle binner ∈ Cinner, we let bouter be the outer
boundary cycle immediately enclosing binner at z−. We dissociate binner from bouter. If
the pool defined by bouter is not finalized, before the dissociation, we finalize the pool
and add bouter to Gouter (Figure 3.5 (a)).

4. For each newly generated inner boundary cycle binner ∈ Ginner, we find the outer
boundary cycle bouter immediately enclosing binner at z+. We associate binner with
bouter. If the pool defined by bouter is not finalized, before the association, we finalize
the pool and add bouter to Gouter (Figure 3.5 (b)(d)).

23

5. For each newly generated outer boundary cycle bouter ∈ Gouter, we initialize a new pool
p defined by bouter and its inner boundary cycles immediately enclosed by bouter at z+.

6. Let Pinit and Pfinal be the sets of pools initialized and finalized at z, respectively. If
Pinit 6= ∅ and Pfinal 6= ∅, for pi ∈ Pinit and for pf ∈ Pfinal, we compare the bottom face
of pi and the top face of pf . If they overlap, we add a directed edge from the node
corresponding to pi to the node corresponding to pf in the directed graph.

Algorithm 4 shows the corresponding pseudocode. ClassifyBoundaryCycle classifies each
newly generated boundary cycle as either an outer boundary cycle or an inner boundary
cycle using the method described in 3.2.1.2.

3.3 Predicting Water Trap Regions

After completing the sweep from z = −∞ to z = +∞, the space W is segmented into pools
that are connected to each other if their bottom faces and top faces are overlapping. As we
described in section 3.1.3, given a pool, if there is no path from the corresponding node to
the node corresponding to the bottommost pool, the pool is a potential water trap region
(depending on inflow location). The bottommost pool corresponds to the first pool created
during sweeping.

Finding the pools that are potential water trap regions is straightforward. From the
node corresponding to the bottommost, we traverse the graph in the opposite direction
of the graph edges until we have visited all reachable nodes. The nodes we cannot reach
from the node corresponding to the bottommost pool represent potential water trap regions.
For the traversal from the bottommost node, we do not have to visit the same node twice;
therefore, the time complexity of the procedure is linear with respect to the number of pools.

3.3.1 Quantitative Evaluation of a Part Orientation

Since we can compute the volume of water each pool can hold, we can also quantitatively
evaluate a given part orientation by summing the volumes of pools that are determined to
be water trap regions.

The volume of an arbitrary polyhedron defined by a set of triangles T can be computed
using equation (3.1), where each triangle t ∈ T is defined by the points vt1, vt2, vt3 ordered
counterclockwise when viewed from the exterior of the polyhedron.

V =
1

6

∑
t∈T

((vt1 × vt2) · vt3) (3.1)

Our pools are bounded on the side by original and trimmed triangles fromW and on the
bottom and top by 2D polygons, possibly with holes. Given a pool defined by n boundary
cycles, we let the vertices constituting the i-th closed polygonal chain of the bottom face
be lij(1 ≤ j ≤ pi), and the vertices constituting the i-th closed polygonal chain of the top

24

Algorithm 4 GeneralCasePoolSegmentation(V)

Input: V : set of vertices in W
where V = {V (z1), V (z2), · · · , V (zn)} (zi < zj if i < j)
// V (zi) is a set of vertices whose z-coordinate is zi
for i = 1 to n do

(G, C, U) ← ProcessVertices(V (zi))
(Ginner, Gouter) ← ClassifyBoundaryCycle(G, z+)
Couter ← set of outer boundary cycles in C
Cinner ← set of inner boundary cycles in C
Pinit ← ∅
Pfinal ← ∅
for each b ∈ U do

// suppose b is the j-th boundary cycle of b-> pool
b-> pool-> Tj ← (b-> pool-> Tj) ∪ (b-> Tnew(zi))

end for
for each bouter ∈ Couter do

Pfinal ← Pfinal∪ FinalizePool(bouter, zi)
for each binner ∈ inner(bouter) do

if binner /∈ Cinner then
Ginner ← Ginner ∪ binner

end if
end for

end for
for each binner ∈ Cinner do

bouter ← outer boundary cycle immediately enclosing binner at z−

if bouter-> pool 6= nil then
Pfinal ← Pfinal∪ FinalizePool(bouter, zi)
Gouter ← Gouter ∪ bouter

end if
Dissociate binner from bouter

end for
for each binner ∈ Ginner do

bouter ← outer boundary cycle immediately enclosing binner at z+

if bouter-> pool 6= nil then
Pfinal ← Pfinal∪ FinalizePool(bouter, zi)
Gouter ← Gouter ∪ bouter

end if
Associate binner with bouter

end for
for each bouter ∈ Gouter do

Pinit ← Pinit∪ InitializePool(bouter, zi)
end for
if Pinit 6= ∅ and Pfinal 6= ∅ then

ConstructConnectivity(Pinit, Pfinal)
end if

end for

25

Table 3.1: Timing data for pool segmentation and directed graph construction on various
models.

part 1 cylinder head1 cylinder head1 cylinder head2 cylinder head2

(orientation 1) (orientation 2) (orientation 1) (orientation 2)

vertices 1,294 104,310 104,310 144,546 144,546

pools 77 824 706 876 1,552

time (sec.) 0.07 0.827 2.661 2.005 3.855

face be uij(1 ≤ j ≤ qi), with the vertices of the outer and inner slice polygon boundaries
enumerated in counterclockwise and clockwise order, respectively, when viewed from the
exterior of the pool.

Then the volume of this pool can be computed using equation (3.2):

Vpool =
1

6
{

∑
t∈pool

((vt1 × vt2) · vt3) +
n∑

i=1

pi−1∑
j=2

((li1 × lij) · lij+1)

+

n∑
i=1

qi−1∑
j=2

((ui1 × uij) · uij+1) } (3.2)

3.4 Results

Figure 3.6 shows the result of our segmentation and the identified water trap regions using
our method on an industrial cylinder head model.

Table 3.1 shows timing data for pool segmentation and directed graph construction on
the part shown in Figure 3.6 and other models. The timing was performed on a computer
with a 2.66 GHz Intel Core i7 CPU with 4 GB of memory. Running times increase with the
number of vertices but not necessarily with the number of generated pools. In our experience,
the complexity of the geometry of each pool matters highly. For both cylinder head models,
timing is shown for the same part in different orientations. Note that the same part in a
different orientation can have twice as many pools, and also three times the running time
for pool segmentation and graph construction. Once we obtain segmented pools and the
corresponding directed graph, our algorithm to identify water trap regions for a given inflow
location takes less than a millisecond, fast enough for even the most complex models.

3.5 Complexity Analysis

Letting N be the number of vertices in W , we analyze the scalability of our algorithm.

26

Before starting the segmentation, we first sort the vertices in order of ascending z-
coordinate. This takes O(N logN) time.

Next, we analyze the complexity of our pool segmentation algorithm based on Algorithm
4. For each iteration in the main loop, we process vertices whose z-coordinate is zi. We
let ki be the number of edges in W intersecting psweep(zi). The running time of performing
ProcessVertices, InitializePool, and FinalizePool is O(ki), respectively. The running
time of performing ClassifyBoundaryCycle is also O(ki) because the number of triangles
intersecting psweep(zi) is equal to ki. In ConstructConnectivity, we perform a 2D polygon
intersection test. We can perform an intersection test of two polygons defined by m points
by performing the equivalent Boolean operation running in O((m + r) logm) time where r
is the number of points defining the intersection of two polygons [de Berg et al. 2008]. In
practice, we approximately perform a 2D polygon intersection test using graphics hardware.
Given two polygons, we render them and, if there is a pixel covered by both the polygons,
we determine that the two polygons are intersecting. In this approach, the performance is
dominated by the number of vertices defining the polygons. In our case, the vertices of the
polygons are defined by the edges intersecting psweep(zi); therefore, the running time of the
intersection test can be stated as O(ki). Since the number of iterations in the main loop is n,
the complexity of our pool segmentation algorithm is O(

∑n
i=1 ki). Letting k̄ = (

∑n
i=1 ki)/n

i.e. the average of ki (1 ≤ i ≤ n), the complexity can be represented as O(k̄n). Since the
number of iterations n is bounded by N , we can now state that the complexity of our pool
segmentation is O(k̄N). Since k̄ is O(N), the overall complexity can be O(N2) in the worst
case; however, k̄ is usually much smaller than N .

Once we segment W into pools, we can find potential water trap regions in linear time
with respect to the number of pools as discussed in section 3.3.

3.6 Conclusion

In this chapter, we proposed a new pool segmentation data structure and algorithm based
on topological changes of 2D slices with respect to gravity direction. We showed that we
can predict potential water trap regions of a given geometry by analyzing the directed graph
based on the segmented pools.

We would like to suggest utilizing this data structure to accelerate physics-based simula-
tion of fluid flow inside mechanical parts with complex geometry. Although recent advances
in CPUs and GPUs make real-time fluid flow simulation possible in a simple computational
domain, performing such simulation in a complex domain in real-time is still challenging.
We believe that our pool segmentation data structure may also prove useful for other appli-
cations analyzing fluid flow inside complex geometry. For further discussion on this topic,
please refer to chapter 6.

The directed graph our algorithm constructs has by nature more information than the
corresponding Reeb graph of a 3-manifold with boundary with respect to the height function.
While our segmentation rule takes into account all the topology changes of 2D slices, the

27

Figure 3.6: We applied our algorithm to a mechanical workpiece shown in (a). (b) Pool
segmentation of the workpiece. Pools are assigned random colors. (c) Water trap regions of
the workpiece. Note that we do not show the pools bounded by triangles which come from
the corresponding bounding box for visualization purpose in this figure.

Reeb graph does not capture them; the Reeb graph only captures the merging and splitting
of connected components. Given a geometry and our directed graph, we can easily obtain
the corresponding Reeb graph by deleting nodes that have only one node connected above
and one node connected below, respectively.

28

Chapter 4

Testing a Rotation Axis to Drain a
3D Workpiece

In this chapter, given a triangular mesh defining the geometry of a 3D workpiece filled with
water, we propose an algorithm to test whether, for an arbitrary given axis, the workpiece
will be completely drained under gravity when the rotation axis is set parallel to the ground
and the workpiece is rotated around the axis. Observing that all water traps contain a
concave vertex, we solve our problem by constructing and analyzing a directed “draining
graph” whose nodes correspond to concave vertices of the geometry and whose edges are
set according to the transition of trapped water when we rotate the workpiece around the
given axis. Our algorithm to test whether or not a given rotation axis drains the workpiece
outputs a result in about a second for models with more than 100,000 triangles after a few
seconds of preprocessing.

The proposed algorithm in this chapter is a first step toward our ultimate goal: finding
a rotation axis for a given workpiece geometry.

4.1 Assumptions and a Key Observation

We assume that we can approximate a volume of water by a set of water particles whose
viscosity is negligibly small. We also assume that the rotation is slow enough that the
water particles reach equilibrium for each orientation through which we rotate, and that the
particles move only under the effect of gravity (assuming that any other phenomena such as
friction or centrifugal force are negligible).

We define a water trap in a particular orientation as a connected volume of undrained
water, which we approximate by a set of water particles directly or indirectly touching each
other (Figure 4.1).

The key observation for our problem is that, for each water trap, there is always at least
one concave vertex of the input mesh such that some of its incident edges and faces are
touching water particles constituting the water trap. Based on this observation, our goal

29

Figure 4.1: We assume that we can approximate a volume of water (shown in (a) for a 2D
example) by a set of water particles (shown in (b)). A water trap is a set of water particles
directly or indirectly touching each other and some of which are touching the input geometry.
In this example, two water traps are formed.

is to drain all the concave vertices of an input mesh since this is equivalent to draining all
water traps from all voids of the workpiece.

In the next section, we describe an overview of our approach, going through a 2D example
to introduce our directed draining graph method. Then, in the following sections, we describe
how we actually construct and analyze the draining graph for a 3D geometry and arbitrary
3D rotation axis.

4.2 Approach and Theory

To begin, we discuss a simplified case using a 2D example.

4.2.1 Simplified case: each water trap is represented by a single
water particle

First, we consider the case that each water trap consists of only one water particle. Recall
that a water trap can only be formed at a concave vertex.

For each concave vertex v, we consider gravity directions such that, if a water particle is
at v, it will be trapped. In the 2D case, any gravity direction can be described as a point on
the Gaussian circle (a circle whose radius is one and center is at the origin). When we rotate
a workpiece, the gravity direction moves relative to the workpiece along the Gaussian circle.
For each concave vertex v, we define a space Tv on the Gaussian circle consisting of gravity
directions such that, if a water particle is at v, it will be trapped. Figure 4.2 shows a specific
example. In the 2D case, each of the two gravity directions gv(CCW) and gv(CW) bounding Tv
are orthogonal to the two edges incident to v. We define g∗v(CCW) as a point on the Gaussian
circle that is not in Tv and is closest to gv(CCW). In a similar manner, we define g∗v(CW) as

30

Figure 4.2: (a): Concave vertex v (b): The diagram showing Tv of v.

a point on the Gaussian circle that is not in Tv and is closest to gv(CW). For a workpiece
orientation with corresponding gravity direction relative to the workpiece currently in Tv,
when the workpiece rotates far enough that the gravity direction relative to the workpiece
coincides with g∗v(CCW) (respectively, g∗v(CW)), the trapped water particle leaves v and moves

along the edge towards A (respectively, B).
We construct a directed draining graph whose nodes correspond to the concave vertices.

Each node has two kinds of outgoing edges, corresponding to clockwise and counterclockwise
rotation, that point to the nodes representing the concave vertices where the trapped water
will ultimately settle when the workpiece is rotated clockwise and gravity coincides with
g∗v(CW) or counterclockwise and gravity coincides with g∗v(CCW). If the water particle trapped
at a vertex exits the workpiece once it is rotated so that gravity coincides with g∗v(CW) or
g∗v(CCW), the corresponding edge is set to point to a node labeled “out” representing the
workpiece exterior. An example of a draining graph for a 2D geometry is shown in Figure
4.3.

The draining graph is constructed as follows. For each concave vertex, we initialize a
corresponding node in the draining graph. Then, we compute the two gravity directions when
a water particle trapped at the concave vertex leaves it under clockwise and counterclockwise
rotation. These gravity directions (the bounds of Tv) are shown in a diagram next to each
node in Figure 4.3 (a). Finally, we trace the path of a trapped water particle under both
of these gravity direction to determine in what concave vertex it settles for each, adding
a graph edge labeled as CW or CCW that points to the corresponding node. Figure 4.3
(b)–(g) show the paths a water particle takes under gravity from each concave vertex for the
geometry shown in Figure 4.3 (a).

The destination is not necessarily unique since there may be multiple possible paths a
water particle takes under gravity. Figure 4.3 (e) shows one such example. A water particle
leaving concave vertex D with g∗D(CW) may settle at concave vertex E or exit the workpiece.
In this case, we assume that a particle splits into two particles.

For each concave vertex, if there is some path consisting of edges with the same direction

31

Figure 4.3: (a) A sample geometry in 2D and the corresponding draining graph. The diagram
next to each graph node shows the two gravity directions g∗v(CW) and g∗v(CCW) that let a water
particle trapped at the corresponding concave vertex leave for the other concave vertices. For
each node, when a current gravity direction is in Tv, if a water particle is at the corresponding
concave vertex, it will be trapped. (b)–(g) Paths a water particle takes from each concave
vertex under g∗v(CW) (blue) and g∗v(CCW) (orange).

label from the corresponding node to the node labeled as “out,” then we can eventually drain
the water particle trapped at that concave vertex through concave vertices corresponding to
the nodes along the path by rotating in the given direction. For example, suppose a water
particle is trapped at concave vertex A, there is a path “A→ B → C → D → out” in Figure
4.3 corresponding to the draining sequence shown in the top row of Figure 4.4. Since there

32

Figure 4.4: (a) The transition and draining of a water particle trapped at concave vertex
A by clockwise rotation. As we continue to rotate the geometry, the volume of the trapped
particle gradually decreases and becomes negligibly small.

Figure 4.5: We cannot drain a water particle trapped at concave vertex A by counterclockwise
rotation.

is an edge from D not only to “out” but also to E, the water particle splits into two smaller
particles and only one of them will be drained through the sequence. But as we can see in
Figure 4.3, there is a path from E to “out” as well (“E → F → B → C → D → out”);
therefore, the other smaller particle going to E will come back to D, split into two further
smaller particles, and one of them will be drained. For each 360-degree rotation, the volume
of the remaining trapped water particle decreases (Figure 4.4). When the volume of the
remaining particle becomes negligibly small, we deem that the trapped water particle is
drained. As we have seen through the example, as long as there is a path from each node to

33

the “out” node in the draining graph, the volume of the remaining water particles gradually
decreases and will be drained eventually after rotating enough times.

On the other hand, if there are nodes that do not have a consistently labeled path to
“out,” we can never drain their trapped water particles. For example, for a water particle
trapped at A in the geometry shown in Figure 4.3, we cannot drain the water particle by
counterclockwise rotation, because it just returns to A after each rotation, as shown in Figure
4.5. This also holds for counterclockwise rotation when a water particle is trapped at B, C,
or D. In the draining graph, there is no CCW path from the nodes corresponding to any of
these vertices to “out.”

There is also a path “A → D → out.” But we cannot drain using this path because it
corresponds to counterclockwise rotation from A to D and clockwise rotation from D to out.
This violates our restriction that we can rotate around an axis in one direction only.

4.2.2 General case: each water trap is represented by a set of
water particles

In the previous subsection, we took as our premise the case that each water trap consists
of only one water particle, and provided the approach to solve the corresponding draining
problem. We now show that if a solution exists for this case, it is also a solution for the
general draining problem; that is, the case that each water trap consists of a set of water
particles.

Suppose a water trap is currently formed at concave vertex v. For the general draining
problem, after v is drained, not all the water particles constituting the original water trap
will necessarily form a new water trap at the same concave vertex (see Figure 4.6); however,
the key observation is that the last water particle to leave the concave vertex (we call this
last particle the core particle of the water trap) moves in the same manner as a water particle
approximating the water trap by only one particle. For example, suppose that a water trap is
currently formed at a given concave vertex v as shown in Figure 4.6(a). Figure 4.6(b) shows
draining when we approximate a water trap by only one particle and (c) shows draining when
we approximate a water trap by a set of particles (general case). In the general case, when we
start to rotate an input geometry, water particles constituting the water trap start to leave v
and form another water trap at a different concave vertex (or may exit the geometry). As we
continue to rotate, when one of the edges incident to v becomes perpendicular to the gravity
direction (i.e. parallel to the ground), the core particle of the water trap leaves v. As shown
in Figure 4.6 (c), at the point when v is completely drained, water particles constituting the
original water trap may constitute different water traps after a rotation; however, the core
particle moves in the same manner as a water particle approximating a water trap by only
one particle.

Now we show that the approach using the draining graph for the single-particle case
works for general draining problems, too, assuming we rotate enough times. To see this, let
us consider a simple example of a draining graph with only 4 nodes, A, B, C, and out, with

34

Figure 4.6: (a) A water trap is formed at concave vertex v. (b) The movement of a water
particle when we approximate the water trap by only one particle. After v is drained, a
new water trap is formed at concave vertex Q. (c) The movement of water particles when
we approximate the water trap by a set of particles. After v is drained, new water traps
are formed at P and Q. The core particle shown in red settles at a water trap at the same
concave vertex where the particle in case (b) settles.

three CW directed edges “C → B → A→ out” such that a single water particle trapped at
C is drained through B and A with one 360-degree rotation. Now we consider the general
case for this example. For each 360-degree clockwise rotation, at least a core particle at A is
drained (note that there is no guarantee that all the water particles at A exit the geometry).
If there are remaining water particles (water traps), each of them exists at B or C because
a water trap is always formed at a concave vertex. There is a path from C to B; therefore,
a core particle at C goes to B if a water trap is formed at C. There is a path from B to A;
therefore, a core particle at B goes to A if a water trap is formed at B. This implies that as
long as there are remaining water particles, one of them must become a core particle at A
and be drained in each 360-degree rotation. The number of trapped water particles never
increases; therefore, as long as there are CW or CCW paths from all nodes to out, eventually
all the particles will be drained. This holds no matter how complicated the draining graph
becomes.

35

4.3 Graph Construction

In the previous section, we have shown that we can solve the general draining problem by
considering the case that each water trap consists of a single water particle and considering
the corresponding transitions using a draining graph. In this section, given a 3D geometric
model and arbitrary 3D rotation axis as input, we explain how we construct the corresponding
draining graph.

4.3.1 Graph Nodes

The first step in constructing a draining graph is to determine its nodes, that is, to find
the concave vertices. Although water traps in 3D (unlike in 2D) may also contain concave
edges, for the concave edge to hold water, one of its endpoints must also be a concave vertex.
Therefore, it is still sufficient to consider only the draining of concave vertices, since draining
all concave vertices will drain all water traps.

We define a concave vertex for a 3D geometry as follows. Given a vertex v, letting
valence(v) be its valence, we check if there is a unit vector d such that, for all the adjacent
vertices wi of v (i = 1, 2, · · · , valence(v)), (wi− v) · d < 0 (i.e. v is a locally extreme vertex).
If there is such a d and a point p = v + εd (ε is a positive infinitesimal number) is inside of
the given geometry, v is a concave vertex. Otherwise, v is not a concave vertex.

4.3.2 Graph Edges

Edges of a draining graph are set according to the transitions of water particles when the
geometry is rotated around a given rotation axis. Let Vc be the set of concave vertices. First,
for each concave vertex v ∈ Vc, we describe all gravity directions such that a water particle
could be trapped at v. Then, we explain how to find the two gravity directions (g∗v(CW)

and g∗v(CCW)) at which a trapped water particle at v flows out when rotating clockwise or
counterclockwise around the given axis. After finding these two gravity directions, for each
of them, we find the concave vertices into which water particles flowing out will settle by
tracing the particle’s path along geometric features (vertices, edges, and triangles).

4.3.2.1 Gravity directions causing a water trap at a concave vertex

In this subsection, we describe all gravity directions such that a water particle may be
trapped at v, representing the gravity directions as points on the Gaussian sphere (a sphere
whose radius is one and center is at the origin).

For each concave vertex v ∈ Vc, let wi be a member of the set of vertices adjacent to v
and let ei be the vector from v to wi (i.e. ei = wi − v) (see Figure 4.7(a)). For each ei, we
define a half-space Hi of directions on the Gaussian sphere Hi = {p | ei · p ≤ 0, ‖p‖ = 1}.
Figure 4.7(b) shows a specific example. A gravity direction not in Hi does not cause a water
trap at v. On the other hand, a gravity direction in Hi drags a water particle in the direction

36

Figure 4.7: (a) Concave vertex v. (b) ei and the corresponding Hi. Gravity direction ga
never causes a water trap at v, but gb may cause a water trap at v. (c) The cross section of
(b) including ga and gb.

Figure 4.8: (a) Concave vertex v. (b) The corresponding Hi and Tv.

from wi to v and may cause a water trap at v. For example, in Figure 4.7(b) and (c), the
gravity direction ga never causes a water trap at v, but gb may cause a water trap at v.

We define the space Tv in 3D as Tv =
⋂

iHi (see Figure 5.2). Then, a gravity direction g
in Tv potentially causes a water trap at v. On the other hand, since for the complement of
Tv, Tv, we have Tv =

⋂
iHi =

⋃
iHi, therefore g in at least one of Hi does not cause a water

trap at v.
To construct the draining graph, we need to determine, for each concave vertex v ∈ Vc,

in which gravity directions the currently trapped water particle at v flows out when rotating
clockwise and counterclockwise around the given axis. These gravity directions correspond
to points in Tv adjacent to the boundary of Tv.

To find these gravity directions, given a rotation axis, we always choose the coordinate

37

Figure 4.9: We describe any rotation axis relative to workpiece geometry r = (rx, ry, rz) by
two variables θ (0◦ ≤ θ < 360◦) and φ (0◦ ≤ φ ≤ 90◦) where θ is the azimuthal angle in the
xz-plane from the z-axis and φ is the polar angle from the xz-plane.

system such that the rotation axis coincides with the z-axis. Then, possible gravity directions
are confined in the xy-plane because a gravity direction and the rotation axis are always
orthogonal. In this configuration, any gravity direction g can be expressed as a point on a
unit circle in the xy-plane with center (0, 0) (i.e. x2 + y2 = 1). This xy-plane Gaussian circle
is the intersection between the Gaussian sphere and the xy-plane.

We can describe any rotation axis relative to workpiece geometry r = (rx, ry, rz) by two
variables θ (0◦ ≤ θ < 360◦) and φ (0◦ ≤ φ ≤ 90◦) where θ is the azimuthal angle in the
xz-plane from the z-axis and φ is the polar angle from the xz-plane as shown in Figure 5.11.
Using these parameters, the components of r can be expressed as rx = cosφ sin θ, ry = sinφ,
and rz = cosφ cos θ. Then, by multiplying each vertex by the matrix R where

R =

 cos θ 0 − sin θ
− sin θ sinφ cosφ − cos θ sinφ
sin θ cosφ sinφ cos θ cosφ

 ,

we can set the coordinate system such that a given rotation axis coincides with the z-axis.
Rotating the input geometry around the rotation axis is equivalent to fixing the geometry

and moving the gravity direction on the xy-plane Gaussian circle. Given v ∈ Vc, suppose
that a gravity direction g is currently in Tv and a water particle is trapped at v. As we
move g on the Gaussian circle, when g passes through the boundary of Tv, the trapped water
particle at v flows out. If Tv does not intersect with the xy-plane, water is never trapped at
v with the given rotation axis.

As shown in Figure 5.2(b), Tv is bounded by a set of great circular arcs on the Gaussian
sphere. If Tv is intersected by the xy-plane, it intersects its boundary at two points because
Tv is convex. Since Tv =

⋂
iHi, each of the arcs is defined by the boundary of an Hi.

For the actual calculation to find the gravity directions where trapped water flows out,
we do not have to construct Tv in its entirety since the gravity directions are confined in the
xy-plane; constructing the portion of Tv intersecting with the xy-plane is sufficient. Call this

38

Figure 4.10: (a) The relationship between the Gaussian sphere and the xy-plane Gaussian
circle. (b) The relationship between Hi and Hi(xy). (c) The relationship between Tv and
Tv(xy).

portion of Tv defined on the xy-plane Gaussian circle Tv(xy) (see Figure 4.10). Each of the
boundary points of Tv(xy) is defined by the intersection between the xy-plane Gaussian circle
and the boundary of one of the Hi because Tv(xy) =

⋂
iHi(xy), where Hi(xy) is the intersection

between Hi and the xy-plane1. Appendix B.1 describes how to compute the boundary of
Hi(xy).

As shown in Figure 4.10(c) and Figure 4.11(a), we let gv(CW) be the point on the Gaussian
circle bounding Tv(xy) rotating clockwise (when seen from +∞ on the z-axis – the rotation
axis) and gv(CCW) the point on the Gaussian circle bounding Tv(xy) rotating counterclockwise.
We compute the boundary points of Tv(xy), that is, gv(CW) and gv(CCW), incrementally as
follows.

Initially, gv(CW) and gv(CCW) are set to the two corresponding boundary points of H1(xy).
Then, for each i (i = 2, 3, · · · , valence(v)), if necessary we update gv(CW) and gv(CCW),
that is, the boundaries of Tv(xy) as follows. For each i, if neither of the gv(CW) or gv(CCW)

calculated thus far are in Hi(xy), Tv(xy) is empty (Figure 4.11 (b)). On the other hand, if
both gv(CW) and gv(CCW) are in Hi(xy), we do not have to update Tv(xy)(Figure 4.11 (c)).
When one of gv(CW) and gv(CCW) is not in Hi(xy), one of the boundary points of Hi(xy) is
in Tv(xy) (let this be r). If gv(CW) is not in Hi(xy), we set gv(CW) to r (Figure 4.11 (d)). If
gv(CCW) is not in Hi(xy), we set gv(CCW) to r (Figure 4.11 (e)). After performing this update
for each ei (i = 2, 3, · · · , valence(v)), gv(CW) and gv(CCW) will be the points bounding Tv(xy).
If Tv(xy) = ∅, we exclude v from Vc since water is never trapped at v with the given rotation

1 Tv(xy) = Tv

⋂
xy = (

⋂
i Hi)

⋂
xy =

⋂
i(Hi

⋂
xy) =

⋂
i Hi(xy)

where xy is the xy-plane.

39

Figure 4.11: (a) gv(CW), gv(CCW), and Tv(xy) on the Gaussian circle. Four cases of updating
gv(CW), gv(CCW), and Tv(xy) when a new Hi(xy) is introduced are shown in (b)–(e).

axis.
We define g∗v(CW) as the point on the xy-plane Gaussian circle that is not in Tv(xy) and

is closest to gv(CW). In a similar manner, we define g∗v(CCW) as the point on the xy-plane
Gaussian circle that is not in Tv(xy) and is closest to gv(CCW). Thus g∗v(CW) and g∗v(CCW) are
gravity directions at which a trapped water particle at v flows out when rotating clockwise
or counterclockwise around a given rotation axis.

Letting gv(CW) = ((gv(CW))x, (gv(CW))y, 0) and gv(CCW) = ((gv(CCW))x, (gv(CCW))y, 0), we
can describe g∗v(CW) and g∗v(CCW) as

g∗v(CW) =

(gv(CW))x cos ε− (gv(CW))y sin ε
(gv(CW))x sin ε+ (gv(CW))y cos ε

0


g∗v(CCW) =

 (gv(CCW))x cos ε+ (gv(CCW))y sin ε
−(gv(CCW))x sin ε+ (gv(CCW))y cos ε

0


where ε is a positive infinitesimal number representing the infinitesimal rotation.

4.3.2.2 Concave vertex where trapped water flowing out settles

In the previous subsection, for each concave vertex v ∈ Vc, we showed how we compute
the two gravity directions when the trapped water particle at v flows out under rotation
around the rotation axis. Now, we describe how to determine which concave vertex the
water particle flowing out from v settles in (or if it exits the geometry).

40

(a) (b)

Figure 4.12: (a) Edge ei is a locally-steepest edge if ei · g > 0 and ei is steeper with respect
to gravity g than any vectors on ei’s adjacent triangles, e.g. e∗i1 and e∗i2. (b) Triangle ti is a
locally-steepest triangle with respect to gravity g if nti · g < 0 and projg(t) lies on triangle ti.

We will use the following notation. Given a vertex v, let wi be a member of the set of
adjacent vertices of v and ei be the normalized vector from v to wi, that is, ei = (wi−v)/‖wi−
v‖ (i = 1, 2, · · · , valence(v)). We call edge ei the locally-steepest edge from v with respect to
unit gravity vector g if ei ·g > 0 and ei is “steeper” with respect to gravity g than any vectors
from v on ei’s adjacent triangles. An edge is steeper if ei · g > e∗i1 · g and ei · g > e∗i2 · g, where
e∗i1 = (εei−1 + (1− ε)ei)/‖εei−1 + (1− ε)ei‖ and e∗i2 = (εei+1 + (1− ε)ei)/‖εei+1 + (1− ε)ei‖
(ε is a positive infinitesimal number) (Figure 4.12a). Let ti be the triangle incident to v
defined by vertices v, wi, and wi+1. We define projg(ti) as the projection of gravity vector
g onto the plane of triangle ti; thus, for triangle ti’s normal vector nti , we can calculate
projg(ti) = (I − ntinti

T)g. We call triangle ti the locally-steepest triangle with respect to
gravity g if nti · g < 0 and projg(t) lies on triangle ti. That is, there exist scalar values α
and β that satisfy v + projg(ti)α = wi(1 − β) + wi+1β, α > 0, and 0 < β < 1. (Note that
there may be more than one locally-steepest edge or triangle for a given vertex.)

We only describe the case when we rotate the geometry clockwise because the same
procedure works for the counterclockwise case. Let the set of concave vertices where the
water particle leaving v settles when we trace the particle with g∗v(CW) be Sv(CW) and when
we trace the particle with g∗v(CCW) be Sv(CCW). For the sake of simplicity of notation, we

let Sv
def
= Sv(CW) and g

def
= g∗v(CW) for this explanation. The three cases of a particle leaving

a vertex vcur and falling through space, traveling along an edge, or traveling along the face
of a triangle are handled by Procedure 1: TraceFromVertex (Figure 4.13 (a)(b)(c)).
The three cases for a particle leaving a location pcur in the middle of an edge ecur and falling
through space, traveling along the face of a triangle, or traveling along an edge are handled by
Procedure 2: TraceFromEdge (Figure 4.13 (e)(f)(g)(h)). Procedure 3: ParticleDrop,

41

Figure 4.13: Transition cases of a water particle under gravity on various geometric shapes.
(a)(b)(c) Possible movements from a vertex. (d) Movement when a particle drops vertically.
(e)(f)(g)(h) Possible movements from an edge.

Procedure 4: FindNextEdge, and Procedure 5: TraceOnFlatRegion handle the
transitions between these states. We outline the logic below; the corresponding detailed
pseudocode for each subroutine is shown in Algorithms 5, 6, 7, 8, and 9.

We find Sv for v under gravity force g by tracking the particle location starting with
Procedure 1: TraceFromVertex, initially setting vcur to v.

1. TraceFromVertex:

• If a point vcur +εg (ε is a positive infinitesimal number) is outside of the geometry,
the water particle falls down parallel to g from vcur (Figure 4.13 (a)). To simulate
this, we shoot a half-ray vcur + γg (where γ is a positive scalar). Go to 3.

• Otherwise, we define m = arg maxi(ei · g) (i.e. ∀i, em · g ≥ ei · g).

– if em · g < 0 , the water particle flowing out from v settles at vcur. We add
vcur to Sv.

– if em · g > 0 , we let the set of locally-steepest edges of vcur be Es and
the set of locally-steepest triangles of vcur be Ts. For each edge ej in Es

42

(j = 1, · · · , |Es|), we set vcur to wj (the endpoint of ej that is not v) and
Go to 1 for each ej. For each triangle tj in Ts (j = 1, · · · , |Ts|), we solve
vcur + projg(tj)α = wj(1 − β) + wj+1β. We set ecur to the edge wjwj+1 and
pcur to point wj(1− β) + wj+1β. Go to 2 for each tj. (Figure 4.13 (b).)

– otherwise (em · g = 0); we cannot decide whether the water particle settles
at vcur or moves to another point by looking only at local information at vcur
(Figure 4.13 (c)). We set pcur to vcur. Go to 5.

2. TraceFromEdge: Let the two triangles adjacent to ecur be t1 and t2 with normals
n1 and n2 respectively.

• If ecur is a ridge edge and n1 · g ≥ 0 or n2 · g ≥ 0, the water particle falls down;
we shoot a half-ray pcur + γg (where γ is a positive scalar). Go to 3. (Figure
4.13 (e).)

• Otherwise, if t1 is not perpendicular to g, we set tcur to t1 and Go to 4; then, if
t2 is not perpendicular to g, we set tcur to t2 and Go to 4. (Figure 4.13 (f)(g).)

If the particle does not move along either t1 or t2, the particle goes along ecur
(Figure 4.13 (h)). Letting the two endpoints of ecur be va and vb,

– if va · g > vb · g, we set vcur to va. Go to 1.

– if va · g < vb · g, we set vcur to vb. Go to 1.

– otherwise (va · g = vb · g), Go to 5.

3. ParticleDrop:

• If the ray does not hit any part of the input geometry, the water particle exits
the geometry; we add “out” to Sv.

• Otherwise,

– if the ray hits a vertex, we set vcur to the vertex. Go to 1.

– else if the ray hits an edge, we set ecur to the edge and pcur to the point the
ray hits. Go to 2.

– else if the ray hits a triangle, we set tcur to the triangle and pcur to the point
the ray hits. If tcur is not perpendicular to g, Go to 4 (Figure 4.13 (d)).
Otherwise, Go to 5.

4. FindNextEdge: We find the edge of tcur such that, letting the two endpoints of the
edge be va and vb, there exist scalar values α and β that satisfy pcur + projg(tcur)α =
va(1− β) + vbβ, α > 0, and 0 ≤ β ≤ 1.

• If we find such an edge, then

– when β = 0, set vcur to va. Go to 1.

– when β = 1, set vcur to vb. Go to 1.

43

– when 0 < β < 1, set ecur to this intersecting edge and set pcur to va(1−β)+vbβ.
Go to 2.

• Otherwise, the particle does not move along tcur with g.

5. TraceOnFlatRegion: On a horizontal region (perpendicular to g), a particle does
not move via gravity; therefore, we assume that particles diffuse concentrically and flow
out through the closest point from pcur that can be reached along edges and triangles
perpendicular to g. We call such a closest point pf .

We define Eperp as the set of edges that are perpendicular to g and can be reached
from pcur only traversing edges and triangles perpendicular to g. We also define Tperp
as the set of triangles perpendicular to g and incident to edges in Eperp. We define
Vcand and Ecand as the vertices and edges where a water particle leaving pcur may flow
out through: Vcand consists of vertices each of which is an endpoint of Eperp and has
an incident edge ei such that ei · g > 0; Ecand consists of ridge edges in Eperp.

• If Vcand and Ecand are empty, the particle is trapped at this flat region. We add
all the concave vertices incident to the edges in Eperp to Sv.

• Otherwise, we find the closest point pf (section B.2 describes how to find pf , given
pcur and Eperp, Tperp, Vcand, and Ecand).

– If pf is on a vertex in Vcand, set vcur to pf . Go to 1.

– If pf is on an edge in Ecand, set pcur to pf and tcur to the triangle incident to
the edge and not in Tperp. Go to 3.

We repeat this procedure for each v until we find all the possible concave vertices (possibly
plus “out”) that should be added to each Sv. For each concave vertex v ∈ Vc, we connect
the corresponding node to the nodes corresponding to the elements in Sv(CW) by an edge
labeled CW and to the nodes corresponding to the elements in Sv(CCW) by an edge labeled
CCW .

Note that the ray tracing performance in Procedure 3 will be very expensive for large
inputs unless we use a bounding volume hierarchy (BVH) [Samet 2005] to limit the number
of triangles tested. We used a kd-tree [Bentley 1975] for the BVH in our implementation.

4.4 Checking Drainability

Now, using the draining graph constructed, we test whether or not a rotation around a given
rotation axis can completely drain trapped water. For each concave vertex v ∈ Vc, if there
is a path from the corresponding node to the out node in the draining graph, we can drain
water trapped at v by rotating the input geometry around this rotation axis. Note that
when we rotate the geometry clockwise, we can use only edges labeled CW , and when we
rotate counterclockwise, we can use only edges labeled CCW .

44

Algorithm 5 TraceFromVertex

Input: vertex vcur
if vcur + εg is outside of the geometry then

ParticleDrop(vcur + γg)
else
m← arg maxi(ei · g)
if em · g < 0 then

// water particle settles at vcur
Sv ← Sv ∪ vcur

else if em · g > 0 then
for j = 1 to |Es| do

TraceFromVertex(wj)
end for
for j = 1 to |Ts| do

Solve for α and β s.t. vcur + projg(tj)α = wj(1− β) + wj+1β
TraceFromEdge(wjwj+1, wj(1− β) + wj+1β)

end for
else

// em · g = 0
TraceOnFlatRegion(vcur)

end if
end if

4.4.1 Checking Procedure

Letting n = |Vc|, if we take a naive approach, we may have to trace n nodes from each
concave vertex v ∈ Vc in the worst case. Therefore, the total running time becomes O(n2).
However, we observe that if there is a path from one node to the out node, it means that
there is also a path from the intermediate nodes on this path to the out node (because
draining is transitive). For example, in Figure 4.3, if we find a path from A through B, C,
and D to out, we know that there is also a path from B, through C and D to out, and so on.

Based on this observation, we can improve the running time through the following pro-
cedure. Suppose we rotate the geometry in a clockwise direction. Then, trapped water
particles at the concave vertices whose corresponding nodes are directly connected to the
out node by the edges labeled as CW can be drained. Let the set of these nodes be Nd.
Next, consider trapped water particles at concave vertices whose corresponding nodes are
directly connected to the nodes in Nd by edges labeled as CW ; these can be drained as well.
We add these nodes to Nd, and continue recursively. This recursion stops when all the nodes
connecting to at least one of the nodes in Nd by the edges labeled as CW are in Nd. Then,
after the recursion stops, if |Nd| = n, we can guarantee that trapped water particles at all
of the concave vertices are completely drained by rotation around the given rotation axis.

45

Algorithm 6 TraceFromEdge

Input: current edge ecur, current point pcur
if ecur is a ridge edge, and n1 · g ≥ 0 or n2 · g ≥ 0 then

ParticleDrop(pcur + γg)
else
found1 ← FindNextEdge(t1, pcur)
found2 ← FindNextEdge(t2, pcur)
if found1 = false and found2 = false then

if va · g > vb · g then
TraceFromVertex(va)

else if va · g < vb · g then
TraceFromVertex(vb)

else
// va · g = vb · g
TraceOnFlatRegion(pcur)

end if
end if

end if

Algorithm 7 ParticleDrop

Input: half-ray h Ray
if h Ray does not hit any part of the input geometry then
Sv ← Sv ∪ out

else if half-ray h Ray hits a vertex vhit then
TraceFromVertex(vhit)

else if half-ray h Ray hits an edge ehit then
phit ← point where h Ray hits ehit
TraceFromEdge(ehit, phit)

else if half-ray h Ray hits a triangle thit then
phit ← point where h Ray intersects thit
if thit is not perpendicular to g then

FindNextEdge(thit, phit)
else

TraceOnFlatRegion(thit)
end if

end if

Through this approach, we do not have to check the same node more than once. Therefore,
the time complexity becomes O(n).

46

Algorithm 8 FindNextEdge

Input: triangle tcur, current point pcur
for all three edges ei of tcur (i = 1, 2, 3) do
va ← one endpoint of ei
vb ← other endpoint of ei
Solve for α and β s.t. pcur + projg(tcur)α = va(1− β) + vbβ
if α > 0 and 0 ≤ β ≤ 1 then

if β = 0 then
TraceFromVertex(va)

else if β = 1 then
TraceFromVertex(vb)

else if 0 < β < 1 then
TraceFromEdge(ei, va(1− β) + vbβ)

end if
return true

end if
end for
// particle does not move along tcur
return false

Algorithm 9 TraceOnFlatRegion

Input: current point pcur
if Vcand and Ecand are empty then

// flat region is a water trap
Sv ← Sv ∪ (all the concave vertices incident to edges in Eperp)

else
Find pf from pcur, Eperp, Tperp, Vcand, and Ecand // (see B.2)
if pf is on a vertex in Vcand then

TraceFromVertex(pf)
else

// pf is on an edge in Ecand

tcur ← triangle incident to the edge and not in Tperp
FindNextEdge(tcur, pf)

end if
end if

4.5 Results

We first visualize the analysis output for two sample parts, one simple and one complex, and
then discuss the performance.

47

(a) (b) (c)

Figure 4.14: We applied our theory to a simple mechanical workpiece shown in (a). The
three sections indicated in (b) are shown in (c).

4.5.1 Output

We first show our output graphically for the simple mechanical part shown in Figure 4.14a.
Figure 4.14b indicates the locations of the three cross-sections shown in Figure 4.14c, re-
vealing an inside void of the workpiece where water can be trapped. Figure 4.15 (a) and (b)
plot whether or not a rotation around a given axis (θ, φ) completely drains the workpiece
under CW and CCW rotation respectively. To verify these results, we show some represen-
tative configurations in Figure 4.15c for the CW case. All these configurations are when
φ = 0 and viewed from +∞ on the y-axis. If we fix φ = 0, when 170◦ ≤ θ ≤ 240◦ and
350◦ ≤ θ ≤ 420◦(= 60◦), we cannot drain the workpiece as shown in Figure 4.15a. The
four configurations shown in Figure 4.15c are set at these four limits. Notice that the angle
between the x-axis and the outlet closer to the x-axis is the same for all four cases; this angle
is a threshold for whether or not a given rotation axis works for draining. This shows that
our algorithm can capture this threshold.

Figure 4.16 shows representative results of two additional CW cases ((a) θ = 0◦, φ = 0◦,
(b) θ = 230◦, φ = 30◦). For the center and right figures, the vertices shown in blue are
concave vertices where a water trap is potentially formed when we rotate the workpiece
around the corresponding rotation axis; we cannot drain the workpiece. Figure 4.17 shows
a result when θ = 30◦ and φ = 60◦. This is an example where CW rotation works but CCW
rotation does not work (see Figure 4.15 (a) and (b)). Figure 4.18 shows the corresponding
transition of a water particle when we rotate (a) clockwise and (b) counterclockwise around
this rotation axis.

To get a sense of how sensitive our algorithm is to the coarseness of the triangulation,
we compared these results to those on a fine tessellation of the same model. We found only
slight shifts in the boundary between the drainable and non-drainable regions (see Figure
4.19).

We also applied our algorithm to a complex automotive model shown in Figure 4.20a. Our

48

(a) CW (b) CCW

(c)

Figure 4.15: Whether or not a rotation around a given axis (θ, φ) completely drains the
workpiece (a) under CW and (b) CCW rotation. (c) The configurations of the workpiece
when φ = 0 and θ = 170◦, 240◦, 350◦, and 60◦ that are the limits in the φ = 0 plane of
whether the rotation axis drains the workpiece or not. We can see that the angle between
the x-axis and the outlet closer to the x-axis is the same for all four cases.

algorithm can quickly compute whether or not a given rotation axis will drain the workpiece
even when internal passages (Figure 4.20(b)(c)) are very complex, as in this example. Figure
4.20(d) and (e) plot whether or not the indicated rotation axis drains this model. Figure 4.20
(f) shows concave vertices (colored blue) where a water trap is potentially formed when the
rotation axis is set to θ = 270◦, φ = 0◦. Figure 4.20 (g) shows the corresponding axis-aligned
magnified view.

49

(a)

(b)

Figure 4.16: Some representative results. (a) θ = 0◦, φ = 0◦. (b) θ = 230◦, φ = 30◦. For
both (a) and (b), the rotation axis is set perpendicular to the paper for the left and center
figures. The right figure is a view from a different angle. For the center and right figures,
the indicated vertices are concave vertices such that once a water particle is trapped there,
it will never exit the workpiece when we rotate it around the corresponding rotation axis.

50

Figure 4.17: θ = 30◦, φ = 60◦. With this rotation axis, CW rotation drains the workpiece
but CCW rotation does not. The rotation axis is set perpendicular to the paper for the left
and center figures. The right figure is a view from a different angle.

(a) (b)

Figure 4.18: The transition of a water particle when we rotate (a) clockwise and (b) coun-
terclockwise around a rotation axis θ = 30◦, φ = 60◦. CW rotation drains the workpiece but
CCW rotation does not.

4.5.2 Performance

Table 5.1 shows the performance of our implementation on a 2.66GHz CPU with 4GB of
RAM. The initialization mainly consists of identifying the concave vertices of the input

51

Figure 4.19: Comparison of the results shown in Figure 4.15 (a) and (b) with results for
a finer tessellation of the same model with almost five times the number of vertices. The
results that differ are circled.

mesh and constructing a BVH for speeding up the ray tracing phase of the geometry. This
information can be reused no matter what rotation axis is being considered, and typically
more than one possible rotation axis will need to be tested. Then, after the initialization, we
tested 36× 9 = 324 (sampled at every 10 degrees in both θ and φ directions) rotation axes
for each model and report the average and maximum time in Table 5.1. We can see that we

52

Table 4.1: Time for initialization and to test each additional rotation axis (average and
maximum).

triangles vertices concave
vertices

initialization
time (sec)

average time
(sec)

maximum
time (sec)

(a) 3,572 1,796 428 0.575 0.006 0.035

(b) 12,0004 59,920 18,203 5.841 0.195 0.278

(c) 160,312 79,982 31,829 9.319 0.360 0.760

(d) 289,956 144,546 57,412 20.742 0.933 5.730

Table 4.2: Detailed timing data, showing the individual timing (average and maximum) for
each of three phases to test each additional rotation axis.

Find g∗
v(CW)

and g∗
v(CCW)

Find Sv(CW) and Sv(CCW)Checking Drainability Total

average(sec) max(sec) average(sec) max(sec) average(sec) max(sec) average(sec)max(sec)

(a) 0.001 0.011 0.002 0.015 0.004 0.009 0.006 0.035

(b) 0.045 0.064 0.138 0.227 0.013 0.017 0.195 0.278

(c) 0.067 0.106 0.279 0.654 0.014 0.025 0.360 0.760

(d) 0.131 0.169 0.774 5.575 0.028 0.040 0.933 5.730

can test a given rotation axis very quickly and give near-interactive feedback to designers for
testing each additional axis. Table 4.2 shows the detailed timing data, showing the individual
timing for each of three phases to test a rotation axis, i.e. finding g∗v(CW) and g∗v(CCW)

(section 4.3.2.1), finding Sv(CW) and Sv(CCW) (section 4.3.2.2), and testing drainability by
analyzing the draining graph constructed through the preceding two phases (section 4.4).
The performance bottleneck of our current implementation is finding Sv(CW) and Sv(CCW)

(i.e. the particle tracing operation in the graph construction phase), so we will investigate
offloading some of this work to the GPU in future work. We also measured the number of
function calls made to Algorithm 1-5 in determining Sv(CW) and Sv(CCW) for each concave
vertex v ∈ Vc (shown in Table 4.3). Although the maximum number of calls is higher for
the more complex models, the average was low for all models tested.

53

Table 4.3: The number of function calls (average and maximum) to determine Sv(CW) and
Sv(CCW) for each concave vertex v ∈ Vc.

TraceFromVertex TraceFromEdge ParticleDrop FindNextEdge TraceOnFlatRegion Total

average max average max average max average max average max average max

(a) 3.02 31 5.42 329 0.26 11 5.72 333 0.01 2 14.43 694

(b) 4.42 1108 6.50 1661 0.44 152 7.37 1772 0.001 2 18.74 4046

(c) 3.35 538 4.97 1338 0.40 235 5.53 1558 0.005 5 14.25 3440

(d) 3.87 14260 8.25121779 0.59 7392 9.16134672 0.020 16 21.89278103

4.6 Complexity Analysis

We now analyze the scalability of our algorithm. In the graph construction phase, for each
concave vertex v ∈ Vc, first we compute the gravity directions when the trapped water at
v starts to flow out. For each concave vertex v, this takes a constant number of operations
equal to the number of edges incident to v, so it is in O(n). For each concave vertex v ∈ Vc,
we find the concave vertex into which the trapped water particle flowing out from v settles.
In theory, for each v, we have to check all triangles and vertices of the geometry to find
the final location in the worst case. Therefore, as Table 4.3 shows, the maximum number
of function calls possibly becomes very high. We are still investigating the performance of
particle tracing to construct this graph. However, from the fact that a water particle is
driven by only a fixed gravity force and the assumption that the input triangles and vertices
are uniformly distributed in space, in practice the number of vertices and triangles checked
are only a very small fraction of n, reducing worst case O(n2) growth to close to linear on
average in practice; experimental results shown in Table 4.3 support this. Once the graph is
constructed, the checking phase runs in O(n) time as described in section 4.

4.7 Conclusion

In this chapter, we presented a new geometric algorithm to test whether a rotation around
a given rotation axis can drain an input geometry. Our proof-of-concept implementation
can test input meshes of complex industrial parts containing over 100,000 vertices in about
a second, a huge improvement compared to using commercial general-purpose simulation
packages that can take hours to converge.

54

(a) (b) (c)

(d) (e)

(f) (g)

Figure 4.20: (a) Cylinder head model (b)(c) Cross sections revealing the internal passages
of the model shown in (a). (d) Plot of whether or not rotation around a given rotation axis
completely drains the workpiece under CW rotation and (e) CCW rotation. (f) The concave
vertices such that once a water particle is trapped there, it will never exit the workpiece
when we rotate it around rotation axis θ = 270◦, φ = 0◦, which is set horizontally in the
plane of the paper. (g) Magnified view of the region indicated in (f).

55

Chapter 5

Finding a Rotation Axis to Drain a
3D Workpiece

In this chapter, we introduce an algorithm to find the set of all rotation axes that would
drain a given workpiece geometry (again represented as a triangulated mesh). In chapter 4,
we introduced an algorithm to test whether a given rotation axis can drain a given workpiece
geometry, showing that the problem can be solved geometrically by constructing and ana-
lyzing a directed graph. Suppose that we are given a rotation axis that is found to drain the
workpiece using the testing algorithm. In practice, it is also essential to make sure that the
rotation axis’s nearby rotation axes also drain the workpiece because, although the size of a
water particle is finite in the real world, we have assumed that the size of a water particle is
infinitesimal in the algorithm. If one of the nearby rotation axes cannot drain the workpiece,
the chosen rotation axis might not drain the workpiece in the real world. Taking this into
account, if we were to use the previous testing algorithm to find a rotation axis that can
drain the workpiece in practice, we may need to test a great many rotation axes to find one
that is feasible. This is generally time-consuming and less accurate. Thus, we are motivated
to move beyond sampling (testing specified axes) to a configuration space approach (finding
all drainable axes).

We introduce a new algorithm to find all rotation axes that drain the workpiece, not just
testing a specified rotation axis, by introducing the extended draining graph that represents
all the possible transitions of water particles considering all the possible rotation axes and
rotation directions. We introduce a dual-space stabbing line approach to efficiently analyze
the drainability of all possible paths through this graph, for all possible rotation axes. Since
we analyze the configuration space, our algorithm can find any possible rotation axis that
drains the workpiece.

56

5.1 Algorithm Overview

5.1.1 Testing a Rotation Axis

Since we develop our algorithm by extending the algorithm to test a given rotation axis
proposed in chapter 4, we first briefly describe the algorithm. The key observation to solve
the problem geometrically is that a water trap is always formed at a concave vertex, assuming
that the geometry of an input workpiece is represented as a triangulated mesh. The definition
of a concave vertex for a 3D geometry is as follows:

Concave vertex Given a vertex v, we let wi be a member of the set of adjacent vertices
of v and ei be the vector from v to wi (i.e. ei = wi − v). Then, letting valence(v) be its
valence, we check if there is a unit vector d such that, for all the adjacent vertices wi of
v (i = 1, 2, · · · , valence(v)), ei · d < 0. If there is such a d and a point p = v + εd (ε a
positive infinitesimal number) is inside of the given geometry, we call v a “concave” vertex.
Otherwise, v is not a concave vertex.

Based on the observation that a water trap is always formed at a concave vertex, we can
represent the transition of water particles in voids of the workpiece using a directed graph
called the draining graph. In a draining graph, each node corresponds to a concave vertex of
the geometry except the one that represents the exterior of the geometry called “out” node,
and each edge represents the transition of water particles between concave vertices. Figure
5.1 shows an example of a draining graph.

Since water particles’ movement between concave vertices changes if either the rotation
axis or the rotation direction (either clockwise or counterclockwise) changes, a draining graph
is constructed for a particular rotation axis and a rotation direction. Given a rotation axis r
and a concave vertex v, if a water trap could potentially be formed at v when the workpiece
is rotated around r, we add the node N(v) corresponding to v to the draining graph. A
directed edge is set from N(v) to the node corresponding to the concave vertex that a water
particle from v first moves to when we rotate the workpiece around r in the given rotation
direction. If a water particle moves from v to the exterior of the geometry, we add a directed
edge from N(v) to the out node. In Figure 5.1, we show two different draining graphs for the
geometry shown in Figure 5.1 (a). The draining graph shown in Figure 5.1 (b) is constructed
for the rotation axis parallel to the x-axis. The draining graph shown in Figure 5.1 (c) is
constructed for the rotation axis parallel to the y-axis. The rotation direction is clockwise
when viewed from +∞ on the x-axis and the y-axis, respectively.

To test the drainability of a given workpiece, given a rotation axis and direction, we first
construct the corresponding draining graph. Then, we check whether there is a path from
each node to the out node in the draining graph. If there is a node that does not have a
path to the out node, we cannot drain the workpiece (Figure 5.1 (b)). If there is a path from
any node to the out node, we can drain the workpiece with the rotation axis and rotation
direction (Figure 5.1 (c)).

57

Figure 5.1: (a) Geometry with four concave vertices. (b) The draining graph constructed
for clockwise rotation around the x-axis (viewed from +∞ on the axis). Since there is at
least one node that does not have a path to the out node, we cannot drain the workpiece.
(c) The draining graph constructed for clockwise rotation around the y-axis (viewed from
+∞ on the axis). Since there is a path from every node to the out node, we can drain this
geometry with this rotation axis. (d) The extended draining graph. This represents all the
possible transitions of water particles considering all the possible rotation axes and rotation
directions. Therefore, the edges of each draining graph in (b) and (c) are a subset of those
of the extended draining graph.

5.1.2 Finding a Rotation Axis

To find (not just test) a rotation axis to drain an input workpiece, we introduce the extended
draining graph that represents all the possible transitions of water particles considering all
the possible rotation axes and rotation directions. Thus, the original draining graph for
any given rotation axis and rotation direction is a subgraph of the extended draining graph.
Figure 5.1 (d) shows an example of an extended draining graph.

In the extended draining graph, each directed edge E records a set of rotation axes RE,
each of which causes the transition indicated by E. This means, given a rotation axis r and
a directed edge E of the extended draining graph, if r ∈ RE, r causes the transition indicated
by E.

Then, the condition to drain a concave vertex v with rotation axis r is either one of the
following:

1. A water particle is never trapped at v when the workpiece is rotated around r.

2. N(v) has a path to the out node such that, for every directed edge E in the path,
r ∈ RE.

If r satisfies one of these conditions for every concave vertex of the workpiece, r can drain
the workpiece. Therefore, our goal is to find a set of rotation axes that satisfy at least one
of the two conditions for all the concave vertices of the workpiece.

In section 5.2, we explain how to find a set of rotation axes that satisfy the first condition
for a concave vertex v. In section 5.3, we explain how to construct the extended draining
graph. Then, in section 5.4, we explain how to find a set of rotation axes that satisfy the

58

Figure 5.2: (a) Concave vertex v. (b) The corresponding Hi and Tv.

second condition for a concave vertex v using the extended draining graph. Finally, in section
5.5, we describe how to find a rotation axis r that drains the entire workpiece based on the
discussion of the two conditions in section 5.2 and 5.4.

5.2 Rotation axes for which a water particle is never

trapped at concave vertex v

In this section, we explain how to find a set of rotation axes that satisfy the first condition
for a concave vertex v: the set consists of a rotation axis r where a water particle is never
trapped at a concave vertex v when the workpiece is rotated around r.

5.2.1 Tv: Gravity directions where a water particle is trapped at
concave vertex v

The gravity direction determines whether a water particle is trapped at a concave vertex.
Letting Vc be the set of concave vertices of a given workpiece, for each concave vertex v ∈ Vc,
we first compute all the gravity directions for which a water particle at v will be trapped.
We represent gravity directions as points on the Gaussian sphere (a sphere with radius one
and center at the origin). Then, we use the notation Tv to describe such water trap gravity
directions; when a water particle is trapped at v, the current gravity direction g must be in
Tv on the Gaussian sphere.

Tv is calculated as follows. Given a concave vertex v, let wi be a member of vertices
adjacent to v in the input geometry’s triangulated mesh and ei be the vector from v to wi

(i.e. ei = wi− v). For each ei, we define a half-space Hi of directions on the Gaussian sphere
Hi = {p | ei · p ≤ 0, ‖p‖ = 1}; Tv =

⋂
iHi (see Figure 5.2).

Since the boundary of Hi is a great circle and Tv =
⋂

iHi, the boundary of Tv, ∂Tv,
consists of arcs of great circles, called great arcs (Figure 5.3). We call such a great arc a Tv-

59

Figure 5.3: The boundary ∂Tv of Tv consists of Tv-arcs ATvj, each of which is a portion of a
great circle. Tv-nodes NTvj and NTvj+1 bound Tv-arc ATvj.

arc and a point that bounds a Tv-arc a Tv-node. Tv-arc ATvj (j = 1, 2, · · · , |∂Tv|) is bounded
by two Tv-nodes NTvj and NTvj+1 where |∂Tv| is the number of Tv-arcs constituting ∂Tv and
NTv |∂Tv |+1 ≡ NTv1. Note that |∂Tv| is not necessarily equal to valence(v) because there may
be a half-space Hi whose boundary does not contribute to∂Tv. Appendix C.1 describes how
to construct ∂Tv from the set of incident edges ei.

Next, we consider the set of rotation axes where a water particle is never trapped at a
given concave vertex.

5.2.2 Rotation axes for which a water particle is never trapped
at a given concave vertex

As we did for gravity directions, we express any rotation axis r as a point (rx, ry, rz) on the
Gaussian sphere (point (rx, ry, rz) expresses the rotation axis passing through the origin and
the point (rx, ry, rz)). Since point (rx, ry, rz) and point (−rx,−ry,−rz) represent the same
rotation axis, we restrict the y-component of r to be non-negative throughout the paper (i.e.
ry ≥ 0). Further, we assume that ry > 0 in the following discussion unless otherwise stated
(refer to section 5.8.1 for how to handle the rotation axes where ry = 0).

60

Figure 5.4: The space gr where the gravity direction g possibly attains becomes a great circle
on the Gaussian sphere. This space can be described as gr = {p | r · p = 0, ‖p‖ = 1} where r
is the vector representing a rotation axis. If gr does not intersect Tv, a water particle is never
trapped at v when we rotate the geometry around r. On the other hand, if gr intersects
Tv, a water particle is potentially trapped at v. When a water particle is trapped at v, the
current gravity direction g must be in Tv. As the workpiece rotates around r, g moves along
gr (the arrow on gr indicates the direction of g). Then, when g passes through a gravity
direction that is on ∂Tv (shown in blue), a water particle trapped at concave vertex v drains
from this vertex.

The important observation is, given a rotation axis r, r and a gravity direction g are
always orthogonal; therefore, the possible gravity directions passed through while rotating
around r, gr, is a great circle on the Gaussian sphere. These possible configurations can be
described as gr = {p | r · p = 0, ‖p‖ = 1} (Figure 5.4).

For a given rotation axis r and a given concave vertex v, if gr intersects Tv, a water
particle is potentially trapped at v. When a water particle is trapped at v, the current
gravity direction g must be in Tv. In this case, as the workpiece rotates around rotation
axis r, the gravity direction g moves along gr on the Gaussian sphere, and, when g passes
through a point on ∂Tv, the water particle at v moves to another concave vertex (or exits
the workpiece).

On the other hand, for a given rotation axis r and a given concave vertex v, if gr does
not intersect Tv, a water particle is never trapped at v when we rotate the workpiece around
r. Equivalently, if gr does not intersect the boundary of Tv, ∂Tv, a water particle is never

61

Figure 5.5: A great arc, which is a part of a great circle on the Gaussian sphere, is mapped
to a line segment or two half-lines lying on the line obtained by projecting the great circle
in the working plane. (The line can be interpreted as the intersection between the working
plane and the plane passing through the great circle.) The great arc pq does not pass through
any point on the z = 0 “equator”; thus, the arc is mapped to the line segment bounded by
p̂ and q̂. On the other hand, the great arc rs passes through a point at z = 0; thus, the arc
is mapped to two half-lines, each of which is bounded by r̂ and ŝ respectively.

trapped at v. We describe how to find the set of rotation axes each of whose corresponding
gr does not intersect ∂Tv in the following subsections.

5.2.2.1 Projecting points from the Gaussian sphere to the 2D plane

We consider the problem of finding the set of all gr that do not intersect ∂Tv by first projecting
from the Gaussian sphere to the 2D “working plane” z = 1 using the Gnomonic projection
(Figure 5.5). The Gnomonic projection maps the point p = (px, py, pz) on the Gaussian
sphere to the point p̂ = (px/pz, py/pz), which is the intersection point between the working
plane and the line passing through the origin and p. Given a set of points P on the Gaussian

62

sphere, we denote the projection of the set of points as Π(P) = {p̂ | p ∈ P}.
The Gnomonic projection maps a great circle to a straight line. Following the projection

rule, the great circle c defined by the intersection between the Gaussian sphere and the plane
perpendicular to vector e = (ex, ey, ez) is projected to the line Π(c) : exx + eyy + ez = 0.
(If ex = 0 and ey = 0, Π(c) is mapped to infinity.) Therefore, given a rotation axis r =
(rx, ry, rz), gr is projected to the line Π(gr) : rxx+ ryy + rz = 0.

A great arc a on the Gaussian sphere (e.g. a Tv-arc) is mapped to Π(a) in a similar
manner. Suppose that a given great arc is a part of the great circle c. As a consequence,
the great arc is projected to a line segment or two half-lines lying on the line Π(c). Letting
p = (px, py, pz) and q = (qx, qy, qz) be the great arc’s endpoints on the Gaussian sphere, the
portion of the line Π(c) bounded by p̂ and q̂ corresponds to the projection of the great arc
in the working plane. Figure 5.5 gives an example. Suppose that ey 6= 0 and p̂x < q̂x, if the
great arc pq does not pass through any point at z = 0, the line segment is projected to the
portion of Π(c) where p̂x ≤ x ≤ q̂x. If the great arc pq passes through a point at z = 0, the
line segment is projected to the portion of Π(c) where x ≤ p̂x or x ≥ q̂x.

A convex spherical polygon bounded by the set of great arcs on the Gaussian spheres is
projected to the (possibly unbounded) convex region bounded by the projection of the great
arcs. For example, Tv bounded by the set of Tv-arcs ATvj (j = 1, 2, · · · , |∂Tv|) is mapped to
the convex region bounded by Π(ATvj) (Figure 5.6 (b)).

5.2.2.2 Duality

To find the set of rotation axes for which a water particle is never trapped at a given concave
vertex is to find the set of rotation axes each of whose corresponding gr does not intersect
∂Tv. Recall that ∂Tv consists of Tv-arcs ATvj. Then, using the Gnomonic projection, the
problem is now to find a set of lines in the working plane (each of which corresponds to Π(gr))
that do not intersect the line segments (that correspond to Tv-arcs Π(ATvj)). To solve this
problem, we use a method employing a 2D duality transform1 proposed by Edelsbrunner et
al. [Edelsbrunner et al. 1982].

Using this duality transform, a point p̂ in the working place (the primal space) is mapped
to a line p̂′ in the dual space and a line l̂ in the primal space is mapped to a point l̂′ in the
dual space with the following transformation rules:

p̂ : (a, b) → p̂′ : y = ax+ b

l̂ : y = kx+ d → l̂′ : (−k, d)
(5.1)

If we apply this rule to a line segment ŝ, it is transformed to a (generally wedge-shaped)
region W (ŝ) consisting of the set of lines W (ŝ) = {p̂′ | p̂ ∈ ŝ} (Figure 5.6 (c)).

When a line l̂ intersects a line segment ŝ in the primal space, the point l̂′ is contained in
the region W (ŝ) in the dual space, and vice versa. Recall that we would like to find a set of
lines (i.e. Π(gr)) that do not intersect a line segment (i.e. Π(ATvj)). We can express such

1The concept of duality transform was first introduced by Brown [Brown 1979].

63

Figure 5.6: Relationships between ∂Tv and great circles (a) on the Gaussian sphere (b)
in the working plane (primal space) (c) in dual space (the shaded region corresponds to⋃|∂Tv |

j W (Π(ATvj))). The subfigures in (c) show each of the Tv-arc’s corresponding region
W (Π(ATvj)) in the dual space.

a set of lines in the dual space as the region [W (Π(ATvj))]
c. Appendix C.2 describes, given

an arc a on the Gaussian sphere, how to construct W (Π(a)). See Figure C.1 for examples
of W (Π(a)).

5.2.2.3 Set of rotation axes where a water particle is never trapped at a
concave vertex

Given the great circle representing the gravity directions gr associated with a rotation axis
r, and a concave vertex v, if gr does not intersect ∂Tv, a water particle will never be
trapped at v when we rotate the geometry around r. Since ∂Tv consists of Tv-arcs ATvj

(j = 1, 2, · · · , |∂Tv|), we can now express the set of rotation axes where a water particle

is never trapped at a given concave vertex v as points in the region
⋂|∂Tv |

j [W (Π(ATvj))]
c,

or equivalently [
⋃|∂Tv |

j W (Π(ATvj))]c. We call this region RTv
. Since there is a one-to-one

correspondence between gr and r for ry > 0, there is no loss of information.
Figure 5.6 shows an example illustrating the relationship among ∂Tv and great circles on

the Gaussian sphere, in the working plane, and in the dual space.

5.3 Constructing the extended draining graph

Now, we explain how to find a set of rotation axes that satisfy the second condition for a
concave vertex v: the set consists of a rotation axis r for which the corresponding node N(v)
in the extended draining graph has a path to the out node such that, for all edges E in the
path, r ∈ RE (recall that RE is the set of rotation axes which causes the transition indicated
by E).

64

We describe how to construct the extended draining graph in this section, and how to
use it to find such rotation axes in section 5.4.

5.3.1 Directed edges in the extended draining graph

To set directed edges in the extended draining graph, for each concave vertex v ∈ Vc, we
first find all the possible destination concave vertices dest(v) where a water particle flowing
out from v may settle. Once we find the set dest(v), for each concave vertex in dest(v), we
set a directed edge from N(v) to the concave vertex’s corresponding node.

5.3.1.1 Finding dest(v)

We find dest(v) by tracing the paths a water particle takes from v with a gravity direction
that lets the trapped water particle at v move to other concave vertices (or exit the workpiece)
using the algorithm described in section 4.3.2.2. In chapter 4, we showed that, even when we
approximate a water trap at a concave vertex by multiple water particles, it is sufficient to
trace the path of the last particle that leaves the concave vertex (called the core particle) to
determine whether the part will eventually drain under rotation. Therefore, we constructed
the draining graph only by tracing the path of the core particle. We do the same for the
extended draining graph.

Since the core particle leaves v when the gravity direction g currently in Tv moves along
gr and passes through a point on ∂Tv, the relevant gravity directions used for tracing the
paths are the points along ∂Tv on the Gaussian sphere, which we sample. Then, we perform
particle tracing with the gravity direction set to each of the sample points.

We process each Tv-arc individually. Given a Tv-arc ATvj, we can obtain arbitrary sample
gravity directions along ATvj by circularly interpolating between NTvj and NTvj+1 on the
Gaussian sphere. We parameterize ATvj with variable t (0 ≤ t ≤ 1) and define the sample
gravity direction gj(t) on ATvj such that gj(0) = NTvj and gj(1) = NTvj+1. Specifically,
letting α be the angle between the vector NTvj and the vector NTvj+1, we define gj(t) as a
vector obtained by rotating the vector NTvj by tα around the vector defined by NTvj×NTvj+1.

Given gj(t), since the core particle leaves v just after the current gravity direction g passes
through a point on ∂Tv (not at a point on ∂Tv), we actually trace a water particle with g∗j (t)
defined as the point not in Tv and closest to gj(t) on the Gaussian sphere. Specifically, we
obtain g∗j (t) by rotating gj(t) by an infinitesimal angle around the axis defined by the cross
product (gj(t) × ei) where ei is the incident edge of v that defines ATvj (recall that each
Tv-arc constituting ∂Tv comes from the boundary of a halfspace Hi defined by incident edge
ei). We let Sv(gj) be the concave vertex (or the set of concave vertices if the particle splits)
where the core water particle settles when we trace the particle with g∗j from v.

To find dest(v) efficiently, we first make the following observation. Given two different
sample points on ATvj, gj(t1) and gj(t2) (t1 < t2), when we trace a water particle under
corresponding gravity directions g∗j (t1) and g∗j (t2), if both settle at the same set of concave
vertices by passing over the same sequence of triangle edges without falling through the

65

Figure 5.7: (a) Given two different sample points on ATvj, gj(t1) and gj(t2) (t1 < t2), when
we trace a water particle under corresponding gravity directions g∗j (t1) and g∗j (t2), if in both
cases it passes over the same sequence of triangle edges without leaving the surface (the
corresponding paths are shown in orange), any particles traced under intermediate gravity
directions g∗j (t) (t1 ≤ t ≤ t2) also pass over the same sequence of triangle edges. (b)
However, this is not necessarily true if the water particle falls through the air. (Note that
water particles that leave the surface along the same edge of the top triangle pictured, after
they fall through the air, will not have colinear intersection points with the plane containing
the bottom triangle pictured, because each falls subject to a different gravity direction.)

air (refer to Figure 5.7), any particles traced under gravity directions g∗j (t) (t1 ≤ t ≤ t2)
will settle at identical locations, i.e. Sv(gj(t)) contains the same set of concave vertices for
t1 ≤ t ≤ t2. In this case, we say that gj(t1) and gj(t2) “set a boundary” on ATvj.

Based on this observation, we find dest(v) by the following procedure (refer to Figure
5.8). For each Tv-arc, ATvj, we initially set tlow = 0 and thigh = 1. Then, we trace a water
particle under gravity directions g∗j (tlow) and g∗j (thigh), respectively. If they set a boundary,
all the possible destinations when we trace a water particle with g∗j (t) for tlow ≤ t ≤ thigh
are found. Otherwise, we trace a water particle under gravity directions g∗j (tmid) where
tmid = (tlow + thigh)/2. If g∗j (tlow) (respectively, g∗j (thigh)) and g∗j (tmid) set a boundary, we
stop. If they do not set a boundary, we take a sample point at (tlow + tmid)/2 (respectively,
(thigh + tmid)/2) and perform the same procedure recursively. Our current implementation
stops at a minimum user-specified sample distance 2 on ATvj. After the above recursion
stops, we have multiple sample points on ATvj, gj(t1), · · · , gj(tm) where m is the number of
sample points. Once we perform this for each Tv-arc, we can now express that dest(v) =⋃|Tv |

j=1

⋃
k Sv(gj(tk)).

2We used 0.05 degrees as the minimum to obtain the results shown in section 5.6.

66

5.3.1.2 Setting directed edges extending from from N(v)

According to the obtained sample points, we divide Tv-arc ATvj into regions Gjk such that,
when we trace a water particle under gravity directions g∗ corresponding to any g ∈ Gjk, the
location(s) where the water particle settles are the same within the user-specified subdivision
limit. Therefore, if there are n different sets of Sv(gj(t)) for 0 ≤ t ≤ 1, we divide Tv-arc ATvj

into n regions, Gj1, · · · , Gjn. For a portion of ATvj bounded by two sample points gj(tp) and
gj(tp+1) where Sv(gj(tp)) 6= Sv(gj(tp+1)), Sv(gj(t)) where tp < t < tp+1 is ambiguous. Since
both Sv(gj(t)) = Sv(gj(tp)) and Sv(gj(t)) = Sv(gj(tp+1)) are possible for any tp < t < tp+1,
we assume that the portion belongs to both the regions to which gj(tp) belongs and to which
gj(tp+1) belongs.

Assuming that the sample points gj(t1), · · · , gj(tm) are sorted such that, for any k < l,
tk < tl, we can achieve the divide by scanning gj(t1), · · · , gj(tm) and, every time we find
gj(tp) such that Sv(gj(tp)) 6= Sv(gj(tp+1)), setting the upper bound of Gjq where gj(tp) ∈ Gjq

at gj(tp+1) and the lower bound of Gjq+1 where gj(tp+1) ∈ Gjq+1 at gj(tp). The lower bound
of Gj1 is set at gj(0) and the upper bound of Gjn is set at gj(1). Figure 5.8 shows an example
of this division. Since Sv(g) is constant for any g ∈ Gjk, we define Sv(Gjk) ≡ Sv(g) where

g ∈ Gjk. Then, we can rewrite dest(v) =
⋃|Tv |

j=1

⋃
k Sv(Gjk).

Finally, directed edges extending from N(v) are set as follows. For each ṽ ∈ Sv(Gjk), we
set a directed edge E from N(v) to N(ṽ) (or to the “out” node representing the exterior of
the part if applicable) in the extended draining graph. At the same time, we assign to E the
set of rotation axes RE that causes the transition of a water particle from N(v) to N(ṽ). We
explain how to find RE for Gjk in section 5.3.2.

5.3.1.3 Implementation details

Algorithm 10 gives pseudocode for the procedures described above in 5.3.1.1 and 5.3.1.2. In
Algorithm 10, subroutine GetSettleVertices traces a water particle under a given gravity
direction from a given concave vertex and returns the concave vertex (or concave vertices)
in which the particle settles (if the particle moves to the exterior of the geometry, the
information is also returned) and the path the water particle takes. IsSamePath compares
given two paths and, if they are different or either involves “falling through the air,” the
function returns false. CollectSamplePoints shown in Algorithm 11 collect sample points
recursively. The subroutine finds the concave vertices where a water particle under the
gravity direction corresponding to each sample point settles. Finally, AddGraphEdge sets
a directed edge in the extended draining graph and assign the set of rotation axes that causes
the corresponding transition to the directed edge. The set of rotation axes is determined by
the great arc G. In the next subsection, we describe how to find such a set of rotation axes.

67

Figure 5.8: Tv-arc ATvj, bounded by two Tv-nodes NTvj and NTvj+1, is divided into multiple
regions Gjk such that, when we trace a water particle under gravity directions g∗ correspond-
ing to any g ∈ Gjk, the set of concave vertices where the water particle settles is the same.
We take sample points gj(t) along ATvj recursively, initially setting as gj(0) = NTvj and
gj(1) = NTvj+1. In the figure, each circle indicates a sample point. Circles with the same
color indicate that they have the same set of concave vertices where a water particle settles
when we trace a water particle under gravity directions corresponding to each of the sample
points. Based on the sample points, ATvj is divided into three regions Gj1, Gj2, and Gj3 in
this example.

5.3.2 Set of rotation axes causing water particle transition
indicated by directed edge

Letting E be a directed edge in the extended graph, we describe how to find the set of
rotation axes RE that cause the water particle transition indicated by E. Suppose that v is a
concave vertex with corresponding node N(v) from which E extends in the extended draining
graph. As described in the previous section, directed edge E is set for a particular set of
gravity directions G (recall that G is a great arc and portion of ∂Tv on the Gaussian sphere).
Geometrically, a rotation axis r ∈ RE must have the property that the gravity direction g
moving along the corresponding gr passes through G from the inside to the outside of Tv
(refer to Figure 5.4). More specifically, we would like to find a set of great circles (i.e. gr)
each of which intersects a great arc (i.e. G) such that the point (i.e. g) moving along the
great circle passes through the great arc from the inside to the outside of a convex spherical
polygon (i.e. Tv) lying one side of the great arc.

To consider this problem, we again project geometric features on the Gaussian sphere
to the working plane using the Gnomonic projection. In addition, we now have to consider

68

Algorithm 10 ConstructingExtendedDrainingGraph

for each concave vertex v ∈ Vc do
for each Tv-arc, ATvj do
gj(0)← NTvj

gj(1)← NTvj+1

[Sv(gj(0)), path(gj(0))]← GetSettleVertices(v, gj(0))
[Sv(gj(1)), path(gj(1))]← GetSettleVertices(v, gj(1))
Psample ← gj(0)

⋃
gj(1)

if IsSamePath(path(gj(0)), path(gj(1))) = false then
Psample ← Psample

⋃
CollectSamplePoints(v, 0, 1)

end if
m← |Psample|
Sort the sample points gj(t1), · · · , gj(tm) ∈ Psample such that, for any k < l, tk < tl
l← gj(0)
for k = 1 to m do

if Sv(gj(tk)) 6= Sv(gj(tk+1)) then
u← gj(tk+1)
G← great arc on ATvj bounded by l and u
for each concave vertex ṽ in Sv(gj(tk)) do

AddGraphEdge(v, ṽ, G)
end for
l← gj(tk)

end if
end for
u← gj(1)
G← great arc on ATvj bounded by l and u
for each concave vertex ṽ in Sv(gj(tm)) do

AddGraphEdge(v, ṽ, G)
end for

end for
end for

the direction vector d(ĝ) in the working plane describing the motion of the projection of
the gravity direction ĝ along Π(gr) (Figure 5.9). Recalling that we are assuming ry > 0, if
the gravity direction g moves clockwise around r along gr when seen from (rx, ry, rz), the
x-component of d(ĝ) becomes negative. If the gravity direction g moves counterclockwise
around r along gr, the x-component of d(ĝ) becomes positive. See Appendix C.3 for the
proof of this statement.

In the working plane, our problem is now to find a set of lines, each of which corresponds
to Π(gr), that intersect a line segment Π(G) such that a point ĝ moving along Π(gr) passes
through Π(G) from the inside to the outside of the convex spherical polygon Π(Tv) lying to

69

Algorithm 11 CollectSamplePoints

Input: concave vertex v, the parameters of the lower/upper bounds tlow and thigh.
Output: set of sample points
if The angle between gj(tlow) and gj(tmid) is smaller than the user-specified threshold
then

return ∅
end if
tmid ← (tlow + thigh)/2
gj(tmid)← (gj(tlow) + gj(thigh))/2
gj(tmid)← gj(tmid)/‖gj(tmid)‖
[Sv(gj(tmid)), path(gj(tmid))]← GetSettleVertices(v, gj(tmid))
if IsSamePath(path(gj(tlow)), path(gj(tmid))) = false then
P1 ← CollectSamplePoints(v, tlow, tmid)

else
P1 ← ∅

end if
if IsSamePath(path(gj(thigh)), path(gj(tmid))) = false then
P2 ← CollectSamplePoints(v, tmid, thigh)

else
P2 ← ∅

end if
return gj(tmid)

⋃
P1

⋃
P2

one side of the line segment Π(G). To solve this problem, we use the same duality transforms
as before.

As described in the discussion in 5.2.2.2, the set of lines (i.e. Π(gr)) that intersect a
line segment (i.e. Π(G)) in primal space can be expressed as the region W (Π(G)) in dual
space. We define the region W+(Π(G)) as the set of lines intersecting Π(G) such that the
gravity direction ĝ moving along Π(G) passes through Π(G) from the inside to the outside
of the corresponding Π(Tv) when the x-component of d(ĝ) is positive. We define the region
W−(Π(G)) for the analogous case when the x-component of d(ĝ) is negative. Note that
W+(Π(G)) ∪ W−(Π(G)) = W (Π(G)) and W+(Π(G)) ∩ W−(Π(G)) = ∅. Appendix C.4
describes, given a great arc G on the Gaussian sphere, how to construct W+(Π(G)) and
W−(Π(G)).

5.3.2.1 Set of rotation axes that cause the water particle transition indicated
by directed edge

Given a directed edge E and the set of gravity directions G, we can now express that
RE = W+(Π(G)) for the case that we rotate the workpiece clockwise around a rotation axis
and RE = W−(Π(G)) for the case that we rotate the workpiece counterclockwise around

70

Figure 5.9: The direction vector d(ĝ) in the working plane describes the motion of the
projection of the gravity direction ĝ along Π(gr). As g moves along gr from g1 to g2, ĝ
moves along Π(gr) from ĝ1 to ĝ2. (a) If the gravity direction g moves clockwise around r
along gr when seen from r = (rx, ry, rz), the x-component of d(ĝ) becomes negative. (b) If
the gravity direction g moves counterclockwise around r along gr, the x-component of d(ĝ)
becomes positive.

a rotation axis. Note that when we rotate the workpiece clockwise around r, the gravity
direction g rotates around r counterclockwise, and vice versa. Note also that we define RE

as a region in the dual space.
We solve the case of rotating the workpiece clockwise and counterclockwise separately.

When we consider the case where we rotate the workpiece clockwise, we set RE = W+(Π(G));
for the other case where we rotate the workpiece counterclockwise, we set RE = W−(Π(G)).

5.4 Rotation axes that drain a trapped water particle

at concave vertex v

Given a rotation axis r, even if a water particle is momentarily trapped at concave vertex
v, we might be able to drain the water particle by rotating the workpiece around r. This
happens when there is a path in the extended draining graph from the corresponding node
N(v) to the out node such that, for any directed edge E in the path, r ∈ RE; we can drain
the trapped water particle at v via the sequence of concave vertices corresponding to nodes
in this path. We denote the set of such rotation axes as RN(v).

To find RN(v), we find all the paths without cycles from N(v) to the out node where
each such path i consists of directed edges Eij such that

⋂
j REij

6= ∅. Then, we can express
RN(v) =

⋃
i(
⋂

j REij
). Since we expressed RE in the dual space, we also express RN(v) in the

71

dual space (as we did for RTv
).

The cost of finding all the paths without cycles from each node N(v) to the out node is
equivalent to the cost of finding all the spanning trees whose root is the out node. The cost
is linear in the number of spanning trees of a given graph [Kapoor and Ramesh 2000] and the
number of spanning trees can be nn−2 for a complete graph where n is the number of nodes
in the graph; this is too big to compute in practice. Therefore, we compute RN(v) for each
concave vertex v in a greedy manner by traversing the extended draining graph backward
from the out node as explained below.

Since computing RN(v) is costly, when we compute it, we only take into account the
rotation axes we are interested in 3. We define a bounding box B in the dual space, which
represents such a subset of rotation axes. Then, we describe how to compute B ∩ RN(v) in
the following subsection.

5.4.1 Computing RN(v)

We compute B∩RN(v) in a greedy manner as detailed in Algorithm 12. The algorithm takes
as its input the bounding box B in the dual space, which limits the set of rotation axes we
would like to test. When the algorithm terminates, each RN(v) stores the set of rotation axes
in B that can drain concave vertex v. Given a rotation axis r, if the corresponding point lies
outside of B in the dual space, r will not be stored in RN(v) even if r can drain a trapped
water particle at v.

In the algorithm, we use a priority queue Q each of whose entry stores a node and a set
of rotation axes to be propagated through directed edges incoming to the node. Q is first
initialized with an entry consisting of the out node and B.

The sets of rotation axes that drain concave vertices are propagated as follows. Given an
entry at the front of Q, we let N be the node and R be the set of rotation axes, respectively.
Then, we perform the following procedures. For each edge Ej incoming to N and Ej’s
source node Nj, we define the set of rotation axes propagated backwards via Ej, Rj, as the
intersection of R and the set of rotation axes assigned to Ej i.e. Rj = R ∩ REj

. If the
intersection is not empty and Rj is not already a subset of the rotation axes that have been
assigned to Nj (that is, RNj

), Rj is added to RNj
and (Nj, Rj) is inserted as an entry of Q.

We repeat this procedure for each entry while Q is not empty.
In the priority queue Q, the entries are stored in descending order of the area of the

polygon (in the dual space) that represents the set of rotation axes. Experimentally, we
observed that reducing the number of entries inserted into Q in each iteration is the key to
terminate the algorithm as early as possible. Given a set of rotation axes Rj to be propagated
to node Nj, if Rj had already been a subset of the rotation axes RNj

, we do not have to
propagate Rj further; therefore, we do not have to insert a new entry (Nj, Rj) to Q. Based
on this observation, our algorithm tries to propagate a large set of rotation axes as early

3We might not be able to use some rotation axes in practice because of physical constraints of the device.

72

as possible using the priority queue so that we can reduce the number of entries inserted in
subsequent iterations.

Note that RN(v) is different depending on whether we rotate a workpiece clockwise or
counterclockwise. We have to perform Algorithm 12 for each case separately. Since the only
difference is the definition of RE discussed in section 5.3.2.1, which does not affect the other
parts of the discussion in this paper, when we say RN(v), we do not specify whether it is for
the clockwise or counterclockwise case.

5.4.1.1 Implementation note

Suppose that we are given a bounding box B defined as a simple polygon in the dual
space. Our strategy to compute B ∩ RN(v) in practice is to first perform a decomposition,
i.e. decompose simple polygon B into a set of convex polygons Bi such that

⋃
iBi = B

and Bi

⋂
Bj = ∅ for any i 6= j. Then, setting each of the convex polygon as a bounding

box, we compute Bi ∩ RN(v) individually. Finally, we obtain B ∩ RN(v) by taking the union⋃
i(Bi ∩RN(v)).

This approach has several advantages. Firstly, this guarantees that any bounding box is
convex; this is important to accelerate the computation of B∩RN(v) because the intersection
of two convex polygons always yields a convex polygon. This makes any intersection com-
putation in Algorithm 12 a convex/convex intersection, which is much simpler and faster
than performing a general polygon/polygon intersection computation. In addition, given two
different bounding boxes Bi and Bj, since the computation of Bi ∩RN(v) and Bj ∩RN(v) can
be done independently, we can parallelize the computation of Bi∩RN(v) and Bj ∩RN(v); this
is faster than computing (Bi ∪Bj) ∩RN(v) serially. Finally, recalling B ∩RN(v) is defined as
a union of convex polygons, we incrementally store each convex polygon defining B ∩ RN(v)

in main memory. If the size of the bounding box B is large (i.e. we take into account many
rotation axes at once), the memory size might not be enough to store all the convex polygons.
We can avoid this problem by decomposing B into several smaller sub-convex polygons Bi

until we can store all the convex polygon defining Bi ∩ RN(v) for each node N(v) in main
memory. We did some experiments to find a better decomposition with respect to the the
performance and the memory issue (refer to 5.6.2).

5.5 Finding rotation axes

We perform the following procedure completely independently for clockwise and counter-
clockwise rotation. Note that whereas RTv

is common for both the cases, RN(v) is different
for the two cases since RE is defined differently as discussed in section 5.3.2.1.

5.5.1 Condition to Drain Concave Vertex v

In section 5.1.2, we considered the two conditions under which a concave vertex v will drain
with rotation axis r. To drain v, r must satisfy one of these conditions. Based on the

73

Algorithm 12 Compute B ∩RN(v)

Input: Region B in the dual space corresponding to the set of rotation axes we would like
to test.
Each entry stored in Q consists of a node and a set of rotation axes. The entries in Q
are sorted in descending order of the area of the region defining the corresponding set of
rotation axes in the dual space.
for each node N in the extended draining graph do
RN ← ∅

end for
Insert the entry (Nout, B) into Q // Nout is the out node
while Q is not empty do

(N,R)← the entry at the front of Q
Delete the entry from Q
for each edge Ej incoming to node N do
Nj ← source node of Ej

Rj ← R ∩REj

if Rj 6⊆ RNj
then

RNj
← RNj

∪Rj

Insert the entry (Nj, Rj) into Q
end if

end for
end while

discussion in section 5.2 and section 5.4, we can rewrite the conditions as follows.

1. The dual transformation of Π(gr) is in RTv
.

2. The dual transformation of Π(gr) is in RN(v).

Recall that RTv
is the set of rotation axes where a water particle is never trapped at a given

concave vertex v and RN(v) is the the set of rotation axes that can drain the trapped water
particle at v via other concave vertices.

By combining these two conditions, we can express the set of rotation axes to drain
concave vertex v as RTv

⋃
RN(v).

5.5.2 A rotation axis to drain the entire workpiece

Given a rotation axis r, if Π(gr) is in RTv

⋃
RN(v) for each concave vertex v ∈ Vc, we can

drain the workpiece by rotating it around the rotation axis r. Then, we can express the set
of rotation axes to drain the workpiece as

⋂
v∈Vc

(RTv

⋃
RN(v)). If this becomes empty, there

is no rotation axis to drain the workpiece. If the result is not empty, any point inside the
region corresponds to a rotation axis that will drain the workpiece.

74

Figure 5.10: We imagine that the dual space is lying such that its origin is at (0, 1, 0) (i.e.
the pole of the Gaussian hemisphere), the x-axis of the dual space is parallel to the x-axis of
the global coordinate system and pointing in the same direction, and the y-axis of the dual
space is parallel to the z-axis of the global coordinate system but pointing in the opposite
direction. In this configuration, for any ray emanating from the origin, the corresponding
intersection point with the Gaussian sphere and the corresponding intersection point with
the dual space represent the same rotation axis. From this relationship, we can observe
that the set of rotation axes represented by a continuous region on the Gaussian sphere (the
orange region) is also represented by a continuous region in the dual space (the blue region).

Once we compute
⋂

v∈Vc
(RTv

⋃
RN(v)), we can check whether the given rotation axis

r = (rx, ry, rz) drains the workpiece as follows. Suppose that we are given a point (c, d) in
the dual space. The line in the working plane transformed into (c, d) is y = −cx + d, that
is, cx + y − d = 0. For rotation axis r = (rx, ry, rz), gr on the Gaussian sphere is projected
to the line Π(gr): rxx+ ryy+ rz = 0 in the working plane. By comparing each term of these
two equations, we find that the point (c, d) in the dual space corresponds to the rotation axis
r = (c, 1,−d)/‖(c, 1,−d)‖ on the Gaussian sphere (recall that we restrict the y-component
of the rotation axis to be positive). Based on this relationship, we can decide whether
r = (rx, ry, rz) can drain the workpiece by checking whether the point (rx/ry,−rz/ry) is
contained in

⋂
v∈Vc

(RTv

⋃
RN(v)) in the dual space.

Interestingly, we can interpret the relationship geometrically as follows (Figure 5.10).
Let us call the coordinate system where the Gaussian sphere is lying the global coordinate
system. We can imagine that the dual space is lying in the global coordinate such that
its origin is at (0, 1, 0), the x-axis of the dual space is parallel to the x-axis of the global
coordinate system and pointing in the same direction, and the y-axis of the dual space is
parallel to the z-axis of the global coordinate system but pointing in the opposite direction.

In this layout, the coordinate (c, d) in the dual space corresponds to the coordinate
(c, 1,−d) in the global coordinate system. As a result, for any ray emanating from the origin,
its intersection point with the Gaussian sphere and its intersection point with the dual space

75

Figure 5.11: We describe any rotation axis relative to workpiece geometry r = (rx, ry, rz) by
two variables θ (0◦ ≤ θ < 360◦) and φ (0◦ ≤ φ ≤ 90◦) where θ is the azimuthal angle in the
xz-plane from the z-axis and φ is the polar angle from the xz-plane.

represent the same rotation axis. To see this, imagine that the ray emanating from the
origin and passing through the point (c, d) in the dual space, that is, (c, 1,−d) in the global
coordinate system. Then, the global coordinate of the intersection point between the ray
and the Gaussian sphere is (c, 1,−d)/‖(c, 1,−d)‖; this is the coordinate of the corresponding
rotation axis expressed on the Gaussian sphere.

From this result, we can observe that there is a one-to-one correspondence between a
rotation axis represented as a point on the positive Gaussian hemisphere and a rotation axis
represented as a point in the dual space. In addition, the set of rotation axes represented by
a continuous region on the positive Gaussian hemisphere is also represented by a continuous
region in the dual space (Figure 5.10).

We can also express rotation axes on the positive Gaussian hemisphere by two vari-
ables θ (0◦ ≤ θ < 360◦) and φ (0◦ ≤ φ ≤ 90◦) where θ is the azimuthal angle in the
xz-plane from the z-axis and φ is the polar angle from the xz-plane as shown in Fig-
ure 5.11, the components of r can be expressed as rx = cosφ sin θ, ry = sinφ, and
rz = cosφ cos θ. In this notation, we can decide whether r[θ, φ] can drain the workpiece
by checking whether the point (sin θ/ tanφ,− cos θ/ tanφ) is inside of

⋂
v∈Vc

(RTv

⋃
RN(v)) in

the dual space. Conversely, a point (c, d) in the dual space corresponds to the rotation axis
r[θ, φ] = r[tan−1(− c

d
), tan−1(1√

c2+d2
)].

5.5.3 Visualization of Results

Defining the drainable region as the set of points in the dual space corresponding to the rota-
tion axes that can drain the workpiece, we visualize the result of our algorithm by rendering
the non-drainable region. Since the drainable region is expressed as

⋂
v∈Vc

(RTv

⋃
RN(v)), the

non-drainable region can be expressed as its complement, rewritten as follows:

76

[
⋂
v∈Vc

(RTv

⋃
RN(v))]

c =
⋃
v∈Vc

[(RTv

⋃
RN(v))]

c =
⋃
v∈Vc

([RTv
]c
⋂

[RN(v)]
c). (5.2)

Defining RTv = [RTv
]c and using the relationship S

⋂
T c = S \ T ,

(5.2) =
⋃
v∈Vc

(RTv

⋂
[RN(v)]

c) =
⋃
v∈Vc

(RTv \RN(v)). (5.3)

Suppose we choose a convex polygon as the bounding box B. Then, we can express the non-
drainable region bounded by B using the relationship [

⋂
v∈Vc

(RTv

⋃
RN(v))]

c =
⋃

v∈Vc
(RTv \

RN(v)) derived from (5.2) and (5.3), the distributive law, and the relationship S
⋂

(T \ V) =
(S

⋂
T) \ (S

⋂
V) 4 as follows:

B
⋂

[
⋂
v∈Vc

(RTv

⋃
RN(v))]

c = B
⋂

[
⋃
v∈Vc

(RTv \RN(v))] =
⋃
v∈Vc

[B
⋂

(RTv \RN(v))]

=
⋃
v∈Vc

[(B
⋂

RTv) \ (B
⋂

RN(v))]. (5.4)

Based on (5.4), we can render the non-drainable region bounded by B as follows. We first
define the viewport covering B as the frame buffer and initially set the color of each pixel
in the color buffer to the color of the drainable region (e.g. green). Then, for each concave
vertex v, we clear stencil buffer S and then render B

⋂
RN(v) to S. Next, we render B

⋂
RTv

to the portion of the color buffer where not masked by S with the color of the non-drainable
region (e.g. red); hence, the pixels not covered by B

⋂
RN(v) but covered by B

⋂
RTv become

red. After performing this series of operation for all the concave vertices, the set of green
pixels represent the drainable region and the set of red pixels represent the non-drainable
region. We take this approach because both B

⋂
RN(v) and B

⋂
RTv can be rendered easily

and cheaply since they are expressed as the union of convex polygons.
For B

⋂
RN(v), we have discussed in section 5.4.1.1 that, when B is a convex polygon,

the intersection computation step in Algorithm 12 (Rj ← R ∩ REj
), because it intersects

convex polygons, always yields a convex polygon. The final result B
⋂
RN(v) is the union

of such convex polygons (corresponding to RN ← RN ∪ R). Since each convex polygon
that constitutes B

⋂
RN(v) is rendered to set a mask and setting a mask to a pixel that

is already masked does not cause a problem, it does not matter even if multiple polygons
overlap each other. As a result, we do not have to explicitly compute the union of multiple
convex polygons.

For B
⋂
RTv , we have (B

⋂
RTv) = B

⋂
[
⋃|∂Tv |

j=1 W (Π(ATvj))] =
⋃|∂Tv |

j=1 [B
⋂
W (Π(ATvj))].

We always choose a convex polygon as B and W (Π(ATvj)) is an area bounded by two lines
possibly crossing each other; therefore, the number of vertices defining B

⋂
W (Π(ATvj)) be-

comes at most the number of vertices of B plus five. Hence, we can compute B
⋂
W (Π(ATvj))

4 S
⋂

(T \ V) = [S
⋂

(T \ V)]
⋃

(S
⋂
Sc

⋂
T) = (S

⋂
T
⋂
V c)

⋃
(S

⋂
T
⋂
Sc) = (S

⋂
T)

⋂
(V c

⋃
Sc) =

(S
⋂
T)

⋂
(S

⋂
V)c = (S

⋂
T) \ (S

⋂
V).

77

Algorithm 13 VisualizeResult

Input: Convex bounding box B
Define the viewport covering B
Clear the color buffer with the color of the drainable region (e.g. green)
for each concave vertex v ∈ Vc do

Clear stencil buffer S
Render each convex polygon constituting B

⋂
RN(v) to S

for j = 1→ |∂Tv| do
Compute B

⋂
W (Π(ATvj)) (consisting of at most two convex polygons) and render

them to the portion of the color buffer where not masked by S with the color of the
non-drainable region (e.g. red)

end for
end for

Algorithm 14 FindingRotationAxes

Input: Bounding Box B
for each concave vertex v ∈ Vc do

Construct ∂Tv
end for
ConstructingExtendedDrainingGraph()
Decompose B into convex polygons Bi

for each i do
ComputeB ∩RN(v)(Bi) (* computing Bi ∩RN(v) *)
VisualizeResult(Bi) (* rendering

⋃
v∈Vc

[(Bi

⋂
RTv) \ (Bi

⋂
RN(v))] *)

Store the rendering result Ci in graphics memory.
end for
VisualizeFinalResultOnGaussianSphere(

⋃
iCi)

in constant time and the result consists of at most two convex polygons. Since each convex
polygon(s) B

⋂
W (Π(ATvj)) is rendered with the same color, it does not matter if multi-

ple polygons overlap each other; again, we do not have to explicitly compute the union of
multiple convex polygons.

Algorithm 13 shows the pseudocode for the visualization of results discussed in this
subsection.

5.5.4 Implementation

Algorithm 14 shows the overall procedure of our algorithm. We first compute ∂Tv
for each v ∈ Vc (Appendix C.1). Then, we construct the extended draining graph
(ConstructingExtendedDrainingGraph shown in Algorithm 10). Next, as discussed
in section 5.4.1.1, we decompose the input bounding box B into several convex polygons

78

Figure 5.12: (a) Simple test geometry (b) The interior of the geometry. (c) Plot of whether
or not rotation around a given rotation axis completely drains the workpiece.

Bi, and compute Bi ∩ RN(v) (Compute B ∩ RN(v) shown in Algorithm 12) and visualize⋃
v∈Vc

[(Bi

⋂
RTv) \ (Bi

⋂
RN(v))] (VisualizeResult shown in Algorithm 13) individually for

each Bi. As also suggested in section 5.4.1.1, we can parallelize this loop since Bi ∩ RN(v)

and Bj ∩ RN(v) (i 6= j) can be computed independently of each other. The rendering result
is stored in graphics memory (remember that the rendering result is the one in the dual
space). Once we perform this for each convex polygon Bi, we can visualize the result, for
example, on the hemisphere corresponding to the portion y > 0 of the Gaussian sphere
(VisualizeFinalResultOnGaussianSphere). As discussed in section 5.5.2, a continuous
region on the Gaussian sphere corresponds to a continuous region in the dual space. There-
fore, we can easily map each of the rendering results in the dual space to the corresponding
portion of the Gaussian sphere.

5.6 Results

We first visualize the analysis output for two sample parts, one simple and one complex, and
then discuss the performance. For the following results, we set the minimum user-specified
distance between two samples on an Tv-arc to 0.05 degrees when we constructed the extended
draining graph.

5.6.1 Output

Figure 5.12 shows the result of our algorithm applied to a simple geometry (Figure 5.12
(a) shows the the exterior and (b) shows the interior). For this simple geometry, the set
of rotation axes that can drain the geometry is the same whether we rotate the geometry

79

Figure 5.13: (a) Cylinder head model (b)(c) Cross sections revealing the internal passages
of the model shown in (a). (d) Plot of whether or not rotation around a given rotation axis
completely drains the workpiece under CW rotation and (e) CCW rotation.

clockwise or counterclockwise; therefore, we only show the result of the clockwise case in
Figure 5.12 (c).

To examine the result, we plot it on the plane where the y > 0 portion of the Gaussian
sphere is projected. Each point on the projection corresponds to a unique rotation axis.
Given a point on the projection, to determine the drainability of the corresponding rotation
axis, we look up the corresponding point in the dual space. If the point has the color of
a drainable region (or a non-drainable region), we assigned it to the original point on the
projection. In this example, as expected, the results show that rotation axes with relatively
large |rx| cannot drain this geometry.

We also applied our algorithm to the high level-of-detail cylinder head model shown in
Figure 5.13 where internal passages (Figure 5.13 (b), (c)) are very complex. Figure 5.13(d)
and (e) plot whether or not the indicated rotation axis drains this model.

80

Table 5.1: Time for computing

Input characteristics Time in seconds

triangles vertices concave
vertices

Constructing
∂Tv

Constructing
graph

Computing RN(v) and VisualizeResult:

total time (average per Bi)

CW CCW

3,572 1,796 428 < 0.1(sec) 0.3(sec) 24.1 (< 0.1)(sec) 25.5 (< 0.1)(sec)

12,0004 59,920 18,203 0.9(sec) 36.0(sec) 1694.0 (0.9)(sec) 1638.9 (0.9)(sec)

160,312 79,982 31,829 2.1(sec) 74.5(sec) 1618.7 (0.9)(sec) 1503.6 (0.8)(sec)

289,956 144,546 57,412 5.5(sec) 176.8(sec) 5064.7 (2.8)(sec) 5592.3 (3.1)(sec)

5.6.2 Performance

Table 5.1 shows the performance of our implementation running on a quad core 2.66 GHz
CPU with 4 GB of RAM. For each geometry, we broke down the timing data between the
three steps: constructing ∂Tv for all v ∈ Vc, constructing the extended draining graph, and
computing B ∩RN(v) and rendering

⋃
v∈Vc

[(B
⋂
RTv) \ (B

⋂
RN(v))] (refer to Algorithm 14).

Implementation notes for the three steps follow.

5.6.2.1 Implementation note

Constructing ∂Tv: For each concave vertex v ∈ Vc, we construct the corresponding ∂Tv.
Since each vertex can be processed independently, we parallelized this operation.

Constructing the extended draining graph: We constructed the extended draining
graph by following the procedure described in section 5.3. For each concave vertex v ∈ Vc,
we find all the possible concave vertices dest(v) where a water particle flowing out from v
may settle. Once we find dest(v), we set a directed edge from node N(v) to each node N(ṽ)
in ṽ ∈ dest(v). Since each vertex can be processed independently, we also parallelized this
operation. We set the minimum user-specified distance between two samples on a Tv-arc to
0.05 degrees in our implementation.

Computing B∩RN(v) and rendering
⋃

v∈Vc
[(B

⋂
RTv)\(B

⋂
RN(v))]: The data shown in

Table 5.1 is the time required to test any rotation axes where 0◦ ≤ θ < 360◦ and 1◦ ≤ φ < 90◦

(i.e. this set of rotation axes corresponds to B) and visualize the result.

81

We obtained the timing data by first splitting the portion y > 0 of the Gaussian sphere
into 36 sections every 10 degrees in the θ direction. Specifically, section i (1 ≤ i ≤ 36) is
defined by the three great arcs bounded by (0, 1, 0), (cos 1◦ sin (10i)◦, sin 1◦, cos 1◦ cos (10i)◦),
and (cos 1◦ sin (10(i+ 1))◦, sin 1◦, cos 1◦ cos (10(i+ 1))◦). We further partition each section
into 50 patches in the φ direction such that the area of each patch is equal on the Gaussian
sphere 5. Therefore, portion y > 0 of the Gaussian sphere is ultimately split into 36 ∗ 50 =
1800 patches, each of which is defined by four vertices on the Gaussian sphere. (For a
patch touching the pole (0, 1, 0), the patch is degenerate; it is defined by three vertices since
two vertices coincide at the pole.) Notice that each patch is mapped to a convex polygon
in the dual space. Then, we process each patch individually, by setting the convex polygon
corresponding to the patch in the dual space as a bounding box Bi i.e. we compute Bi∩RN(v)

and render
⋃

v∈Vc
[(Bi

⋂
RTv) \ (Bi

⋂
RN(v))].

Table 5.1 shows the time to compute Bi∩RN(v) and render
⋃

v∈Vc
[(Bi

⋂
RTv)\(Bi

⋂
RN(v))]

for all the 1800 patches (i.e. time to compute
⋃

v∈Vc
[(B

⋂
RTv) \ (B

⋂
RN(v))]). The average

time to process one patch is also shown in parentheses next to the corresponding total time
in Table 5.1. Since the CPU has four cores, we processed four patches in parallel. We chose
to split into 50 patches in the φ direction after experimenting with splitting each section into
25 pieces and 100 pieces, for which the computation time was approximately 8% and 14%
longer, respectively.

5.7 Complexity Analysis

Letting n be the number of concave vertices, we analyze the complexity of our algorithm.

5.7.1 Constructing ∂Tv

We first consider the complexity of constructing ∂Tv for all the concave vertices v ∈ Vc.
For each concave vertex v, if we construct ∂Tv by following the procedure described in
Appendix C.1, the complexity is determined by constructing the spherical convex hull of
points, corresponding to the incident edge orientations. The complexity to construct the
spherical convex hull of m points is O(m logm) [Chen and Woo 1992]. Since m = valence(v)
and the maximum valence(v) of any vertex can be taken as constant in practice, and other
operations needed to construct ∂Tv are linear in valence(v), the complexity to construct the
corresponding spherical convex hull is also constant. That is, the complexity to construct
∂Tv is constant. Then, the overall complexity to construct ∂Tv for all vertices v ∈ Vc becomes
O(n) in practice.

5The proportion of the area of the section’s portion bounded by (0, 1, 0),
(cosφ sin (10i)◦, sinφ, cosφ cos (10i)◦), and (cosφ sin (10(i+ 1))◦, sinφ, cosφ cos (10(i+ 1))◦) to the area of
the original section is (π/2 − φ)2 to (π/2)2. Using this, we can split the section into several patches such
that the area of each patch is equal on the Gaussian sphere.

82

5.7.2 Constructing the extended draining graph

We next consider the complexity of constructing the extended draining graph.
For each concave vertex v, we set directed edges extending from N(v) by taking mul-

tiple samples on the Tv-arcs and tracing the path a water particle takes from v with the
gravity direction corresponding to each of the samples. For each trace, since we have to
potentially check all the vertices and faces, the complexity of the trace becomes linear in
n (assuming that the number of vertices and triangles are proportional to the number of
concave vertices). However, we have experimentally shown in chapter 4, that in practice
the complexity of tracing is not proportional to n (that is, we can regard the complexity as
constant), taking into account the fact that a water particle is driven by only a fixed gravity
force and the assumption that the input triangles and vertices are uniformly distributed in
space. Therefore, the complexity to find all the edges extending from the corresponding node
N(v) is determined by the number of samples we take for that concave vertex. Letting τ be
the angle in radians representing the minimum user-specified distance between two samples
on a Tv-arc, the number of samples we have to take is at most 2π/τ , because the sum of
the Tv-arcs’ length is at most 2π. The average and maximum number of samples we take in
practice is shown in the first column of Table 5.2 and 5.3.

Since for each concave vertex v the complexity to find the directed edges extending from
N(v) is O(2π/τ), the overall complexity to construct the extended draining graph is bounded
by O((2π/τ)n).

5.7.3 Computing Bi ∩RN(v)

Finally, we analyze the complexity of computing Bi ∩RN(v) by Algorithm 12.
We first initialize RN(v) to the empty set for each concave vertex v ∈ Vc. This takes O(n).
Then, for each iteration in the while loop, we process entries in Q one by one. Retrieving

the entry with the highest priority and deleting the entry from Q takes O(log |Q|) time where
|Q| is the number of entries in Q. Given an entry retrieved from Q, for each directed edge Ej

incoming to the node in the entry, we must compute the intersection of two convex polygons
in the dual space (i.e. R ∩ REj

). Since R is always a convex polygon and REj
is a region

defined by at most two lines, this is bounded by O(m) where m is the number of vertices
of the convex polygon representing R. Once we compute the intersection, we perform the
containment test Rj 6⊆ RNj

by testing, for each convex polygon constituting RNj
, whether

Rj is contained in the convex polygon. We test whether one convex polygon is completely
contained inside of the other convex polygon using a sweep line algorithm in time linear in
the sum of the number of vertices constituting each convex polygon [de Berg et al. 2008].
Therefore, letting the number of vertices of each convex polygon constituting RNj

be mi,
the complexity is O(m + mi). We can now state that the overall complexity to process one
directed edge extending from the node in the pair becomes O(

∑
i(m+mi)).

Letting D be the number of directed edges incoming to the node in an entry, we can now
state that the complexity to process one entry is O(D

∑
i(m+mi)).

83

Table 5.2: Detailed complexity data (average)

concave
vertices

#samples |Q| m
∑

i(m+mi) D I

CW CCW CW CCW CW CCW CW CCW CW CCW

428 106.1 99.3 109.4 4.1 4.1 192.0 177.5 7.8 7.8 1,236.2 1,178.4

18,203 188.9 5,830.8 5,833.9 4.1 4.1 458.8 479.4 8.3 8.3 95,860.9 99,747.2

31,829 214.0 7,820.3 7,302.0 4.1 4.1 151.8 134.3 8.2 8.2 104,826 96,253.8

57,412 198.9 21,250.8 22,142.4 4.2 4.2 443.3 534.3 8.8 8.8 323,282 346,544

We do not explicitly compute the union RN ∪ R in our implementation; we just store
the convex polygon R in main memory. This process is bounded by the number of vertices
defining R, that is, O(m). Since this is contained in O(D

∑
i(m+mi)), this does not affect

the overall complexity.
Letting I be the number of iterations, we can now state that the overall complexity to

compute Bi ∩ RN(v) is O(n + I[log |Q| + D
∑

i(m + mi)]). The experimental average and
maximum number for each of the variables discussed in this subsection are shown in Tables
5.2 and 5.3.

5.8 Discussion

5.8.1 For rotation axes where ry = 0

We have presented/described our algorithm assuming that ry > 0. In this subsection, we
briefly consider how to evaluate the rotation axes where ry = 0. When ry = 0, since
point (rx, 0, rz) and point (−rx, 0,−rz) represent the same rotation axis, we restrict the
x-component of r to be non-negative.

As you might have noticed, any rotation axes where ry = 0 are mapped to points at infin-
ity in the dual space; therefore, we cannot directly evaluate these axes using our algorithm.
Although we can approximately evaluate such a rotation axis by setting ry = ε, a simple
and more exact method is to rotate the input geometry, for example, 90 degrees around the
z-axis. Then, the rotation axes where ry = 0 in the original configuration are expressed as
the rotation axes where rx = 0 in the new configuration. Hence, we can apply our algorithm
to determined the drainability of these rotation axes. We compute the drainability of the

84

Table 5.3: Detailed complexity data (maximum)

concave
vertices

#samples |Q| m
∑

i(m+mi) D I

CW CCW CW CCW CW CCW CW CCW CW CCW

428 4,172 367 1,086 12 11 2,345 2,828 36 36 7,658 10,148

18,203 6,153 30,593 31,632 13 11 14,463 11,675 141 141 289,636 264,143

31,829 4,634 41,192 36,250 12 11 7,660 8,597 116 116 340,787 304,655

57,412 5,129 136,769 165,904 13 13 22,826 23,884 392 392 1,907,760 2,632,350

rotation axes by defining a bounding box that is large enough to cover the rotation axes
where rx = 0. Once we obtain the result, we can visualize the result on the portion y = 0 of
the Gaussian sphere.

We can also evaluate the rotation axis (0, 0,±1) in an analogous manner, for example,
by first rotating the input geometry such that (0, 0,±1) coincides with point (0, 1, 0).

5.8.2 Reuse of results

Although we explained how to visualize the results on a computer screen, we might want
to use the results as an input to other applications. These other applications might need
the boundaries of drainable regions (or non-drainable regions) to be represented by a set of
spherical polygons, not just a set of pixels.

We could compute such boundaries by directly evaluating equation (5.4). The running
time of constructing the subdivision induced by a set of m lines, called the arrangement, is
O(m2) [de Berg et al. 2008]. Since the arrangement representing the portion

⋃
v∈Vc

(B
⋂
RTv)

in equation (5.4) is induced by
⋃

v∈Vc
(valence(v)) lines, m could be Ω(n) where n is the

number of concave vertices. Therefore, the running time of directly evaluating equation
(5.4) could be Ω(n2); this might be costly to compute in practice.

An alternative approach might be to take advantage of our visualization results. Since
our result is represented by a set of pixels, we could extract such boundaries from the pixels
using the Marching cubes algorithm [Lorensen and Cline 1987] in the dual space. Since the
cost of performing the Marching cubes algorithm is merely determined by the number of
processed pixels, the cost is independent from the complexity of input geometry and the
algorithm runs very fast in practice.

85

Once we extract polygons representing drainable (respectively, non-drainable) regions in
the dual space, we can also convert each of them to the corresponding spherical polygon
on the Gaussian sphere by finding, for each vertex and edge defining the polygons, the
corresponding point and great arc on the Gaussian sphere.

5.8.3 Performance improvement

We showed that we can find all the possible rotation axes that can drain the workpiece in a
reasonable amount of time for manufacturing planning purposes even when the the geometry
of the workpiece is complicated; however, since we would like to give interactive feedback to
designers in the future, the performance should be much better ideally. Both theoretically
and experimentally, we have seen that although we can construct ∂Tv and the extended
draining graph relatively quickly, the computation of B ∩ RN(v) is a big bottle neck in the
computation.

In terms of the performance of computing B ∩ RN(v), one encouraging fact is that we
do not always have to take into account all the possible rotation axes; because of physical
constraints of the device, we might not be able to use some rotation axes in practice. We can
compute any local set of rotation axes by setting the bounding box in the dual space that
exactly covers the corresponding set, and skip the computation of other sets of rotation axes.
If the corresponding region is much smaller than the entire portion y > 0 of the Gaussian
sphere, we can obtain the result much faster. For example, the time required to process only
one patch (corresponding to 1/1800 of all the possible rotation axes) for the most complex
geometry is about 3 seconds on average as shown in Table 5.1. Another encouraging fact is
that our algorithm to compute B ∩ RN(v) is easily parallelized. If we can utilize more cores
at the same time, we can solve the problem faster.

Although we pointed out some encouraging facts, let us still think about accelerating the
computation of B∩RN(v) itself. We have shown that the complexity of computing B∩RN(v)

is O(N + I[log |Q| + D
∑

i(m + mi)]). As Table 5.2 and 5.3 shows, it is largely determined
by the number of iterations I. Therefore, reducing the number of iterations is the key to
accelerate the computation.

One way to reduce the number of iterations might be reducing the size of the bounding
box. Given a bounding box B, suppose that we split B into four smaller bounding boxes
Bi (1 ≤ i ≤ 4) and computed Bi ∩ RN(v) in parallel on a quad-core CPU. Then, consider
further splitting each Bi into four pieces Bij (1 ≤ j ≤ 4) and compute Bij ∩RN(v) in parallel.
Although the required number of iterations to compute Bij∩RN(v) is almost always less than
the number of iterations to compute Bi ∩RN(v), unless the former is less than one fourth of
the latter, the total number of iterations to compute B∩RN(v) actually increases. Therefore,
although this approach might help, it is not guaranteed to.

We can also take another approach. Recall that we discussed that we can terminate the
algorithm early by reducing the number of entries inserted into Q in each iteration in section
5.4.1. One possible approach could be, in Algorithm 12, when we insert the entry (Nj, Rj)
into Q, to require not only that the intersection is not empty and that Rj has not already

86

assigned to Nj via other edges outgoing from Nj, but also require that the area of Rj be larger
than some user-defined parameter α. If we set α = 0, we can compute B∩RN(v) precisely. If
we set α to some non-zero value, small sets of rotation axes will not be propagated further.
As a result, although the region B∩RN(v) could become smaller than its actual size and some
drainable regions might be classified as non-drainable, this approach should definitely reduce
the number of iterations. The set of “drainable” rotation axes found for some non-zero α
value could even be the same as the set found for α = 0. If we only need to find a single
rotation axis that can drain the workpiece, this approach could be quite useful.

5.9 Conclusion

In this chapter, we introduced a new approach to find the set of all rotation axes that drains
a given workpiece geometry. If it does not exist, our algorithm can also detect that. To the
best of our knowledge, this is the first work to tackle the draining problem and to give a
reasonable algorithm to solve the problem.

To the best of our knowledge, our work is also the first to establish the theoretical
foundation to find great circles intersecting a given great arc when we take into account the
direction of points moving along the great circle. We have shown that we can involve this
concept while using Gnomonic projection and duality transformation.

Although our algorithm can output results in a reasonable amount of time for manufac-
turing planning purposes even if the input geometry is complex, we are still looking for an
algorithm to solve the problem running, ideally, in real-time. We hope that we can establish
such an algorithm based on the findings proposed in this chapter.

87

Chapter 6

Conclusions and Future Work

In this thesis, we discussed geometric algorithms for cleanability in manufacturing. We
believe that our algorithms will not only help manufacturers to investigate an optimal way
of cleaning and draining a workpiece with complex geometry, but also help designers to
design products whose geometry is compatible with cleaning using high-pressure water jets
and draining by rotation. Both from the aspect of design and manufacturing, we expect that
our algorithms will improve the efficiency of product design in industry.

Specifically, we proposed the following two problems:

• An efficient algorithm to predict water trap regions of a workpiece in a given orientation.

• A new algorithm to find a rotation axis to fully drain a 3D workpiece.

We wrap up our thesis by briefly summarizing and discussing the future research directions
of each of the algorithms.

6.1 Predicting water trap regions using pool

segmentation

In chapter 3, we proposed a new pool segmentation data structure based on topological
changes of 2D slices with respect to a gravity direction and introduced an algorithm to
generate the corresponding segmentation directly from a polygonal mesh. We showed that
we can efficiently predict potential water trap regions of a given geometry by analyzing the
directed graph representing the gravity-driven water flow movement among the segmented
pools. We believe that our algorithm provides an intuitive way for manufacturers to inves-
tigate an orientation of the workpiece that minimizes the potential water traps during the
cleaning of a workpiece using high-pressure water jets.

88

6.1.1 Future research directions

We believe that our pool segmentation data structure may also prove useful for other appli-
cations analyzing fluid flow inside complex geometries. As future research, let us suggest the
possibility of utilizing this data structure to accelerate physics-based simulation, given an
inflow location, to track the filling state inside mechanical parts with complex geometries.

Suppose that we consider the fluid flow simulation using smoothed particle hydrodynam-
ics (SPH). To perform highly accurate simulation, we need a lot of particles; however, if we
use more particles, it slows the performance of SPH. Although real-time fluid flow simula-
tion employing several tens of thousands of particles on GPUs is now possible in a simple
computational domain, performing such simulation in a complex domain in real time is still
challenging. Noting that we only need to know the filling-state of water, not the behavior
of each water particle, if we use our pool segmentation as an underlying data structure, we
believe that we can reduce the size of the computational domain and, as a result, the number
of particles we need for the filling state simulation.

Recall that our directed graph represents the direction of water flow driven by gravity.
Given a water particle and pool p where the particle is currently located, the destination of
the particle driven by gravity must be one of the pools whose corresponding nodes can be
reached by following the directed graph from the node corresponding to p. This means that
if we cannot reach any of the nodes corresponding to potential water trap regions from the
node corresponding to p, we can exclude pool p from the computational domain, since the
particle in p will not settle in any pools corresponding to potential water trap regions.

Thus, the computational domain should only consist of pools that have corresponding
nodes from which we can reach a node that is a potential water trap region. We can find
such pools by traversing the graph in the opposite direction of the graph edges from the node
corresponding to each pool found to be a potential water trap region. Since we can exclude
other pools from the computational domain, this approach should dramatically reduce the
size of the computational domain, especially when the internal passage of the workpiece is
complex.

We can further reduce the size of the computational domain based on the current filling
state. Recall that we can compute the volume of each pool. Given a particle, once we find
the pool where the particle ultimately settles, we store the volume of the particle to the pool.
Given a pool that is a potential water trap region, based on the total volume of particles
in the pool, we can decide whether it is full or not. Once the pool is full, we delete the
corresponding node from the directed graph. As a result, we might be able to further narrow
down the computational domain since a pool corresponding to a potential water trap region
is removed; the pools categorized as a part of the computational domain because a particle in
the pools might settle in the deleted pool could be excluded from the computational domain.

In addition, we can also model air traps formed at concave regions of the voids of complex
geometry using our pool segmentation data structure. Determining in which portion of the
workpiece air traps are likely to form is important to estimate the cleaning efficiency. The
procedure might be as follows. Given a pool p, when p becomes full, we can check whether

89

air is likely trapped in pools above p by traversing the directed graph from each of those
pool’s corresponding nodes regardless of the direction of each directed edge (because air
particles are not gravity-driven). If we cannot reach the bottommost pool (which represents
the exterior) without passing through any node whose corresponding pool is full, there is no
path by which the air in the pool could escape. This means air is likely trapped at the pool
above p. We could remove such pools from the computational domain of SPH simulation
and also delete such pools’ corresponding nodes from the directed graph. Since such pools
are removed from the computational domain of SPH simulation, water particles never enter
the pools. In this way, we can model the air traps formed inside of mechanical parts; we do
not have to explicitly model air, for example, with air particles in addition to water particles
while performing SPH simulation.

Additionally, we might be able to incorporate solid particles into the model in addition
to the water and the air, and provide information about what can and cannot be cleaned
based on the flow patterns. Material properties of the substrate and chips, and adhesion
strength between the chips and the substrate, could also be incorporated.

6.2 Finding a rotation axis to drain a 3D workpiece

To the best of our knowledge, our work is the first work to tackle the rotational draining
problem.

In chapter 4, we presented a new geometric algorithm to test whether rotation around a
given rotation axis can drain an input geometry. Observing that all water traps contain a
concave vertex, we introduced a draining graph whose nodes correspond to concave vertices
of the geometry and whose edges are set according to the transition of trapped water when
we rotate the workpiece around the given axis. We showed that we can test a given rotation
axis by constructing and analyzing a draining graph in about one second for complex objects.

Based on this algorithm, in chapter 5, we proposed a new approach to find a rotation
axis to drain an input geometry. If such a rotation axis does not exist, our algorithm can
also detect that. Since we take a configuration space approach, our algorithm can exactly
classify all the possible rotation axes. We extended the draining graph such that it takes
into account all the possible transition of trapped water. We also introduced a dual-space
stabbing line approach to analyze the drainability of all possible rotation axes.

From a theoretical point of view, to the best of our knowledge, our work is the first to
establish the theoretical foundation to find great circles intersecting a given set of great arcs
while taking into account from which side of a great arc a point moving along the great
circle intersects with the great arc. We showed that the approach employing the Gnomonic
projection and duality transformations can not only just find a great circle intersecting a
given set of great arcs but also distinguish the side from which a point moving along the
great circle intersect with the great arcs.

90

6.2.1 Future research directions

To solve our problem geometrically, we have made a number of simplifying assumptions to
make the problem more tractable. The impact of some of our assumptions, such as ignoring
the effect of viscosity and friction, must be tested experimentally. These assumptions should
be tested and/or relaxed when more sophisticated variations of our algorithm are built on
this work.

We have shown theoretically that a rotation axis that drains all the concave vertices must
eventually drain the entire workpiece by introducing the concept of a core particle; however,
our existing algorithm cannot decide how many rotations are required to drain the workpiece.
Given two rotation axes found to drain the workpiece, the number of rotation needed to drain
the workpiece might be different. Considering that this information is also useful to minimize
the time and energy to drain the workpiece, we would need some modifications to calculate
the number of rotations to drain the workpiece.

In terms of the performance of our algorithm, although we have shown that our algorithm
can output results in a reasonable amount of time for manufacturing planning purposes even
if the input geometry is complex, we are still looking for an algorithm running much faster.
We briefly discussed some approaches to improve the performance in 5.8.3. Let us further
consider other possibilities to improve the performance here.

We are motivated to improve the performance since, ultimately, we would like to provide
real-time monitoring of the design in a CAD system, not just checking the design after it is
completed. Responding to the dramatic improvement of CPUs and GPUs, we expect that
such functionality will be an essential part of CAD system in the near future. In such a
system, undesirable features of a design should be identified and the designer notified of the
issue in realtime during design. Therefore, it is important to develop an algorithm that is
not only reliable, but also runs fast.

Recall that the performance of our algorithm is largely determined by the number of
concave vertices of the workpiece (refer to section 5.6.2). The above-mentioned algorithm,
predicting potential water trap regions, might be helpful to reduce the number of concave
vertices we have to take into account. If we consider the inflow location and actual filling
state, we expect that we would be able to narrow down the computational domain (i.e. the
number of concave vertices we take into account) in a similar manner to that discussed in
the previous subsection.

In addition, we believe that the most promising approach may be the following. Suppose
we are given a concave vertex v all of whose adjacent vertices (in the mesh) are concave
vertices and we consider draining a core particle trapped at v by rotating the workpiece.
When the workpiece is rotated, a core particle leaving v always momentarily settles at one
of its adjacent vertices. This implies that the drainability of v is totally determined by the
drainability of v’s adjacent vertices.

This observation suggests that we do not have to explicitly consider the drainability of
v because the drainability of v is indirectly determined by the drainability of v’s adjacent
vertices. Therefore, we believe that, in the extended draining graph, we can merge the node

91

corresponding to v into one of the nodes corresponding to v’s adjacent vertices. Since this
observation is applicable to any concave vertex all of whose adjacent vertices are concave
vertices, the number of nodes in the extended draining graph can be much smaller. (For the
models shown in section 5.6, from 32% to 37% of the concave vertices have only concave
vertices adjacent to them.) We expect that this approach can improve the performance
dramatically while not sacrificing the accuracy of the computation of drainability.

92

Appendix A

We manage boundary cycles by modifying the data structure introduced by McMains’ sweep
plane slicing algorithm [McMains and Séquin 1999].

A.1 Vertex classification implementation

We implemented the algorithm using a half-edge data structure [Muller and Preparata 1978].
We represent each edge in W by two halfedges that are mated. For each vertex v, we define
a set of halfedges extending from v, called the disk cycle disk(v), in which the halfedges
are ordered clockwise when viewed from the exterior of W and connected in the form of a
circular double-linked list, as shown in Figure A.1.

Each halfedge has a status that is either beginning or ending. Initially, all halfedges
in W are set as beginning. The status of a halfedge changes to ending halfedge when the
destination vertex of the halfedge is processed during sweeping.

When we process a vertex v during sweeping, the type of the vertex is determined by the
status of the halfedges in disk(v) (Figure A.2). If all the halfedges are beginning halfedges,
the vertex is a beginning vertex ; if all halfedges are ending halfedges, the vertex is an ending
vertex. When a vertex has both beginning halfedges and ending halfedges, if all beginning
halfedges appear consecutively in its disk cycle (and thus is, all ending halfedges also appear
consecutively), the vertex is a no-change vertex ; otherwise, the vertex is a merge/split vertex.

A.2 Boundary cycles implementation

As explained in 3.2.1, a boundary cycle consists of a set of triangles. In our implementation,
halfedges are also included in boundary cycles. Given a halfedge, when its origin vertex
is processed, if the halfedge’s mate is not in any boundary cycles, the halfedge is inserted
into a boundary cycle. If the halfedge’s mate is in a boundary cycle already, the mate of
the halfedge is deleted from that boundary cycle. From the viewpoint of vertex v, we are
inserting beginning halfedges in disk(v) into boundary cycles and deleting the mate of each
ending halfedge in disk(v) from the corresponding boundary cycle.

93

Figure A.1: Given a vertex v, the disk cycle disk(v) is a set of halfedges extending from
v. The halfedges in disk(v) are ordered clockwise when viewed from the exterior of W and
connected in the form of circular double-linked list.

Figure A.2: (a) Beginning Vertex (b) ending vertex (c) no-change vertex (d) merge/split
vertex. The bottom row shows the configuration of halfedges in the corresponding disk
cycle. We call the first and last ending halfedge of consecutive ending halfedges in the disk
cycle FirstEnd and LastEnd.

94

Since we process each vertex in ascending order of z-coordinate, halfedges currently in
boundary cycles are always intersecting with the sweep plane just as triangles currently in
boundary cycles do. Halfedges in each boundary cycle are ordered and connected in the form
of a circular double-linked list such that, if we compute the intersection points between these
halfedges and psweep(z) and connect them in that order, we can obtain a closed polygonal
chain representing the same slice polygon boundary that the triangles in the same boundary
cycle represent at z where V (z) = ∅.

When we process each vertex inW , we first replace halfedges in the corresponding bound-
ary cycles. Then, according to the replacement, we replace the triangles in those boundary
cycles. We generate, complete, and update boundary cycles depending on the vertex type
we encounter during sweeping as follows.

A.2.1 Beginning Vertex

At a beginning vertex v, we generate a new boundary cycle. The halfedges in disk(v) are
directly treated as the halfedges in the new boundary cycle (recall that both halfedges in a
disk cycle and halfedges in a boundary cycle are connected in the form of circular double-
linked lists). Then, triangles adjacent to each halfedge in disk(v) are inserted into the new
boundary cycle.

A.2.2 Ending Vertex

At an ending vertex v, we complete the existing boundary cycle to which the mates of
halfedges in disk(v) belong.

A.2.3 No-change Vertex

At a no-change vertex v, we update halfedges and triangles in the existing boundary cycle.
First, we identify FirstEnd and LastEnd, which are the first and last ending halfedge of
the consecutive ending halfedges in disk(v) (Figure A.2 (c)). Then, we update pointers as
follows.

FirstEnd->cyclePrev->cycleNext ← FirstEnd->Mate->cycleNext

LastEnd->Mate->cyclePrev->cycleNext ← LastEnd->cycleNext

FirstEnd->Mate->cycleNext->cyclePrev ← FirstEnd->cyclePrev

LastEnd->cycleNext->cyclePrev ← LastEnd->Mate->cyclePrev

After this pointer update, we pick up one of the beginning halfedges in disk(v) and traverse
the circular linked-list from this beginning halfedge until we revisit it. The halfedges we have
visited during the traversal are the set of appropriately ordered halfedges in the boundary
cycle after processing v.

95

Figure A.3: (a) Model with merge/split vertex v (indicated vertex). Blue edges indicate
beginning halfedges and orange edges indicate ending halfedges in disk(v). (b) The halfedges
in disk(v) (connected with magenta lines) and the halfedges in the existing boundary cycle
(connected with green lines). (c) The change of the pointers after processing the first pair
of FirstEnd and LastEnd. (d) The change of the pointers after processing the second pair of
FirstEnd and LastEnd (note that FirstEnd and LastEnd are the same halfedge here in this
example). After both sets of pointer changes, there are two new boundary cycles: one whose
halfedges we can traverse from beginning halfedge J or K belong and one whose halfedges
we can traverse from beginning halfedge L or M belong. The mates of halfedges A, E, and,
F are no longer in any boundary cycle.

Finally, we check each triangle incident to v. If the triangle is visited for the first time,
the triangle is inserted into the boundary cycle. If the triangle is visited for the third time,
the triangle is deleted from the boundary cycle.

A.2.4 Merge/split Vertex

At a merge/split vertex v, we first complete all the existing boundary cycle(s) to which the
mates of ending halfedges in disk(v) belong. A disk cycle of a merge/split vertex has multiple
sets of consecutive ending halfedges (Figure A.2 (d)). First, we identify the FirstEnd and
LastEnd of each set. Then, we update pointers in the same manner as for a no-change vertex
for each FirstEnd/LastEnd pair (Figure A.3).

After the pointer updates, we pick up one of the beginning halfedges in disk(v) and
traverse the circular linked-list from the beginning halfedge until we revisit it. The halfedges
we have visited during the traversal are an ordered set of halfedges that belong to a new
boundary cycle after processing v. If there is a beginning halfedge in disk(v) that we did
not visit during this traversal, then we traverse the circular linked-list from this beginning
halfedge until we revisit it. The halfedges we visited during the subsequent traversal are
an ordered set of halfedges that belong to another new boundary cycle after processing v.
We repeat this procedure until we determine the boundary cycles to which all the beginning

96

halfedges in disk(v) belong.
Finally, for each new boundary cycle, triangles adjacent to each halfedge in the boundary

cycle are inserted into the corresponding boundary cycle.

A.3 Finding boundary cycles generated, completed,

and, updated

Finally, we show the pseudocode ProcessVertices(V (z)) that takes V (z) as an input and
returns a set of boundary cycles generated, completed, and updated at z in Algorithm 15.
In the pseudocode, ProcessBeginningVertex(v) generates the new boundary cycle b and
returns it. ProcessEndingVertex(v) returns the existing boundary cycle b completed at v.
ProcessMergeSplitVertex(v) changes the pointers of the halfedges in disk(v) (as detailed
in A.2.4). According to the result, we assign new triangles to each of the generated boundary
cycles, and the set of completed boundary cycles BC and the set of generated boundary cycles
BG at v are returned. ProcessNoChangeVertex(v) changes the pointers of the halfedges
in disk(v) and updates the triangles in the existing boundary cycle b accordingly. After the
updates, b and triangles inserted into b at v are returned.

Note that there might be boundary cycles generated at one vertex in V (z) and completed
at another vertex also in V (z). We call this type of boundary cycle a “degenerate” boundary
cycle. Since a degenerate boundary does not define a pool, we remove degenerate boundary
cycles from the set of boundary cycles returned by the function. Similarly, there might be
boundary cycles generated at one vertex in V (z) and updated at another vertex in V (z). We
treat such boundary cycles as generated boundary cycles, not as updated boundary cycles.
In a similar manner, we treat boundary cycles updated at a vertex in V (z) and completed
at another vertex in V (z) as completed boundary cycles, not as updated boundary cycles.
Therefore, U , the set of boundary cycles updated at z, are the ones neither generated nor
completed at z.

Notice that no triangle parallel to psweep(z) is in any boundary cycles returned by the
function since a triangle is deleted from the boundary cycle once the triangle is visited three
times; all vertices of such a triangle are processed in V (z). Therefore, triangles parallel
to psweep(z) whose corresponding boundary cycles are generated or completed at z do not
constitute the boundary of the pool, since such triangles will overlap the bottom face or the
top face of the pool. Whereas such triangles are redundant to define the pool boundary,
on the other hand, triangles (introduced at no-change vertices) that are parallel to psweep(z)
whose corresponding boundary cycles are not generated nor completed at z do constitute
the pool boundary.

97

Algorithm 15 ProcessVertices(V (z))

Input: V (z) set of vertices whose z-coordinate is z
Output: G set of boundary cycles generated at z, U set of boundary cycles updated at z,
C set of boundary cycles completed at z
G← ∅
C ← ∅
U ← ∅
for each v ∈ V (z) do

if v is a beginning vertex then
b ← ProcessBeginningVertex(v)
G← G ∪ b.

else if v is an ending vertex then
b ← ProcessEndingVertex(v)
C ← C ∪ b.

else if v is a merge/split vertex then
(BC , BG) ← ProcessMergeSplitVertex(v)
C ← C ∪BC .
G← G ∪BG.

else if v is a no-change vertex then
(b, Tinserted)← ProcessNoChangeVertex(v)
// assuming initially (b-> Tnew(z)) = ∅
b-> Tnew(z)← (b-> Tnew(z)) ∪ Tinserted
U ← U ∪ b.

end if
end for
D ← G ∩ C // D: set of degenerate boundary cycles

G← G \D
C ← C \D
U ← U \ (G ∪ C ∪D)
return (G, C, U)

98

Appendix B

B.1 Boundary of Hi(xy)

The boundary of Hi(xy) is defined by the intersection points between the boundary of Hi and
the xy-plane Gaussian circle. Let the intersection point be I = (Ix, Iy, 0). Since it is confined
on the Gaussian circle, Ix

2 + Iy
2 = 1. From the definition, the boundary of Hi is defined

by the plane perpendicular to ei. Letting ei = ((ei)x, (ei)y, (ei)z), this plane is expressed as
(ei)xx+ (ei)yy + (ei)zz = 0. Then, assuming (ei)x 6= 0, we can solve for Ix,

(ei)x(Ix) + (ei)y(Iy) + (ei)z(0) = 0

Ix = − (ei)y
(ei)x

Iy ((ei)x 6= 0)

Substituting into Ix
2 + Iy

2 = 1,

((ei)y
(ei)x

)2Iy
2 + Iy

2 = 1

((ei)y
(ei)x

)2 + 1)Iy
2 = 1

Iy = ±
√

1

(
(ei)y
(ei)x

)2+1
((ei)x 6= 0)

Note that the boundary ofHi and the Gaussian circle intersect at two points. When (ei)x = 0,
if (ei)y 6= 0, Ix = ±1 and Iy = 0, and if (ei)y = 0 as well, the entire xy-plane Gaussian circle
defines the boundary of Hi.

B.2 Finding a closest point on a flat region

Among vertices in Vcand and points on edges in Ecand (Vcand and Ecand are the candidate
vertices and edges where a water particle leaving pcur may flow out through), we find the
point pf that is closest to pcur along edges in Eperp and triangles in Tperp. Since this problem
can be NP-hard [Hershberger and Snoeyink 1994], we solve the problem using a modification
of the approximation method proposed by Kallmann [Kallmann 2005]. First, we define a

99

Figure B.1: (a) pcur, edges in Eperp, and triangles in Tperp. Suppose Ecand = { u′v′, u′′v′′ }.
(b) Edges in Epath (yellow) and edges in Eflat (green) are highlighted. (c) Shortest path tree
from nstart (corresponding to pcur) on the graph whose nodes consist of pcur, vertices incident
to Epath, and midpoints of edges in Eflat and Ecand. Edges of the graph are those in Epath

plus edges between any pair of nodes on the same triangle in Tperp. (d) Channel of u′. (e)
Shortest path from nstart to each vertex along the channels. (f) The shortest path from nstart

on edge u′v′ (respectively, u′′v′′) is the shortest path from the apex of the corresponding
funnel a′ (respectively, a′′). The shortest path from nstart to each edge lies on the dashed
lines.

set Epath, the set of edges in Eperp both of whose incident triangles are not in Tperp. We
also define a set Eflat, the set of edges in Eperp both of whose incident triangles are in Tperp
(Figure B.1 (b)). Then, we consider a graph whose nodes consist of pcur, vertices incident
to Epath, and midpoints of edges in Eflat and Ecand. The graph’s edges are those in Epath

plus edges between any pair of nodes on the same triangle in Tperp. Letting nstart be a node
corresponding to pcur in the graph, we construct a shortest path tree from nstart on the
graph using, for example, Dijkstra’s algorithm (Figure B.1 (c)). At this point, the minimum
distance to each vertex incident to edges in Epath is determined; therefore, if Tperp is empty
(note that Ecand is also empty in this case), a vertex in Vcand corresponding to a graph node

100

with a minimum distance on the shortest path tree is pf . Otherwise, we find the minimum
distances to other vertices using the funnel algorithm [Lee and Preparata 1984; Chazelle
1982]. The funnel algorithm finds the shortest path to each vertex inside a channel, a chain
of triangles along the shortest path tree (Figure B.1 (d)(e))). For an explanation of how the
funnel algorithm works, refer to [Hershberger and Snoeyink 1994].

We have to find the shortest path from nstart to each edge in Ecand, since pf may be
located on some edge in Ecand. As shown in Figure B.1 (f), the shortest path from nstart to
the edge’s two endpoints u and v on the corresponding channel travel together and diverge
at a vertex a (called the apex). The region bounded by edge uv and concave chains from
u and v to a is called the funnel [Hershberger and Snoeyink 1994]. The shortest path from
nstart to edge uv passes through a; therefore, we can find the shortest path from nstart by
finding the shortest path from a. If uv and a half-line extending from a and perpendicular
to uv intersect, the line segment between a and the intersection point is the shortest path
from a to uv (as for a′′ and u′′v′′ in Figure B.1 (f)). Otherwise, the line segment between a
and an intersection point between uv and a tangent line of the funnel extending from a is
the shortest path. There are two candidates, so we pick the shorter one (an example is the
line from a′ to u′ in Figure B.1 (f)). Finally, the minimum distance from nstart to uv along
edges in Eperp and triangles in Tperp is the minimum distance from nstart to a plus the length
of the line segment from the apex.

Now, we find the minimum distance from nstart to each vertex in Vcand and point in Ecand

along edges in Eperp and triangles in Tperp. The candidate vertex or point on a candidate
edge that has the minimum distance from nstart is pf .

101

Appendix C

C.1 Constructing ∂Tv from edges ei incident to v

Given a concave vertex v, let wi be a member of the set of adjacent vertices of v in the
input geometry’s triangulated mesh and ei = wi − v (i = 1, 2, · · · , valence(v)). Then, we
define e∗i = ei/‖ei‖. The points e∗i are on the Gaussian sphere; the spherical convex hull of
these points SCH(e∗1, e

∗
2, · · · , e∗valence(v)) is the boundary of the smallest convex set on the

Gaussian sphere containing e∗1, e
∗
2, · · · , e∗valence(v) [Preparata and Shamos 1985]. We call each

vertex of the spherical convex hull sj. Chen and Woo showed that each boundary arc of the
intersection of the halfspaces H1, H2, · · · , Hvalence(v) on the Gaussian sphere (that is, each
Tv-arc) is a portion of a great circle gj = {p | sj · p = 0, ‖p‖ = 1} and, if boundary arc A is
induced by sj, each of A’s adjacent boundary arcs is induced by sj−1 and sj+1, respectively
[Chen and Woo 1992]. That is, if Tv-arc TvAj is induced by sj, TvAj−1 is induced by sj−1
and TvAj+1 is induced by sj+1. This implies that the number of vertices of the spherical
convex hull is equal to |∂Tv|.

Based on this, we can find Tv-nodes defining ∂Tv by the following procedures. Given a
concave vertex v, for each ei, we first compute e∗i . Then, we compute the spherical convex
hull of the points e∗1, e

∗
2, · · · , e∗valence(v) (with the procedure described by Chen and Woo.

[Chen and Woo 1992]). Then, we compute the centroid of the the spherical convex polygon’s
vertices and find the intersection point c between the vector passing through the centroid
and the Gaussian sphere. We can guarantee that the intersection point c is in the interior
of the spherical convex polygon.

Now, each Tv-node TvNj is computed as follows. Suppose that Tv-arc TvAj corresponds
to a vertex of the spherical convex polygon sj. Then, TvAj consists of points p such that
p · sj = 0; Since Tv-node TvNj is an intersection point between TvAj and TvAj−1, TvNj must
hold TvNj · sj−1 = 0 and TvNj · sj = 0. That means, TvNj must be a point expressed as
either n1 = (sj−1 × sj)/‖sj−1 × sj‖ or n2 = −(sj−1 × sj)/‖sj−1 × sj‖; the one that has a
negative dot product with the interior point c corresponds to TvNj. That is, TvNj = n1 if
n1 · c < 0. Otherwise, TvNj = n2.

102

C.2 Converting a great arc on the Gaussian Sphere

to a region in the dual space

In this section, we explain how to convert a great arc on the Gaussian sphere into the
corresponding region in the dual space.

A point p = (px, py, pz) on the Gaussian sphere is transformed into the line p̂′ in the dual
space (unless p = (0, 1, 0) or p = (0,−1, 0)) as follows:

p : (px, py, pz) → p̂′ : pxx− pzy + py = 0 (C.1)

This is because the point p on the Gaussian sphere is first projected to the point p̂ =
(px/pz, py/pz) in the working plane, and then, by the duality transform, p̂ is transformed
into the line p̂′: y = (px/pz)x + (py/pz), that is, pxx− pzy + py = 0. For the points (0, 1, 0)
and (0,−1, 0) on the Gaussian sphere, we define that they are transformed into infinity in
the dual space.

Given a great arc a on the Gaussian sphere, since a great arc is a set of points and each
of these points is transformed into a line in the dual space, W (Π(a)) is a region consisting
of a set of lines. Call a’s bounding points on the Gaussian sphere p = (px, py, pz) and
q = (qx, qy, qz). Following the relationship in (C.1), these points are transformed into the
lines p̂′: pxx− pzy + py = 0 and q̂′: qxx− qzy + qy = 0. Then, W (Π(a)) becomes the region
bounded by p̂′ and q̂′ as shown in Figure C.1, assuming that the arc length of a is always
shorter than π (since we do not have to consider a great arc longer than π in our algorithm,
we assume this in the following discussion).

Any point on a is perpendicular to the vector e defined by e = p × q. When the y-
component of e, ey = pzqx − pxqz, is zero, a possibly passes through the point (0, 1, 0)
or (0,−1, 0) on the Gaussian sphere that is transformed into infinity in the dual space.
Therefore, we consider the case when ey 6= 0 and ey = 0 separately.

C.2.1 Case: ey 6= 0

When ey 6= 0, since pzqx 6= pxqz, p̂
′ and q̂′ are not parallel. Therefore, the dual space is

divided into four wedges by p̂′ and q̂′. W (Π(a)) consists of two opposed wedges (called a
double wedge [Edelsbrunner et al. 1982]). Notice that a point whose z-coordinate is zero on
the Gaussian sphere is transformed into a vertical line in the dual space (see the relationship
(C.1)). When pz and qz have the same sign, a does not pass through any point where z = 0
(recall that a is a part of the great circle and is always shorter than π). Therefore, W (Π(a))
is a double wedge whose union does not contain a vertical line in its interior (Figure C.1
(a)). On the other hand, if pz and qz have different signs, a passes through a point where
z = 0; therefore, W (Π(a)) is a double wedge whose union contains a vertical line in its
interior (Figure C.1 (b)) in this case. When pz = 0 or qz = 0, we transform an arbitrary
point between p and q on a into the line in the dual space; the double wedge containing the
line corresponds to W (Π(a)).

103

C.2.2 Case: ey = 0

When ey = 0, since pzqx = pxqz, p̂
′ and q̂′ are parallel. W (Π(a)) consists of a region or regions

bounded by the parallel lines p̂′ and q̂′. When pz and qz have the same sign, a passes through
neither the point (0, 1, 0) nor (0,−1, 0). Therefore, W (Π(a)) should not contain points at
infinity; W (Π(a)) is a region bounded by p̂′ and q̂′ (Figure C.1 (c)). When pz and qz have
different signs, a passes through either the point (0, 1, 0) or (0,−1, 0). W (Π(a)) contains a
point transformed into infinity in the dual space; W (Π(a)) consists of two disjoint regions
each of which is bounded by p̂′ and q̂′, respectively (Figure C.1 (d)). When pz = 0 (or
qz = 0), we transform an arbitrary point between p and q on a into the corresponding line in
the dual space; the side of q̂′ (p̂′, respectively) containing the line corresponds to W (Π(a)).

When pz = qz = 0 (i.e. ex = ey = 0), we compare the sign of px and qx instead of pz and
qz since, when the sign of px and qx are different, a passes through either the point (0, 1, 0)
or (0,−1, 0). Then, an analogous argument holds for this case (Figure C.1 (e)(f)).

C.3 The characteristic of the gravity direction d(ĝ) in

the working plane

We prove that, for ry > 0, if the gravity direction g moves clockwise around r along gr
when seen from (rx, ry, rz), the x-component of d(ĝ) is always negative. To prove this, let
us consider a point p = (px, py, pz) on gr such that the point q = (qx, qy, qz) that can be
obtained by rotating p by an infinitesimal angle clockwise around r has a z-coordinate with
the same sign i.e. pzqz > 0 (note that q is also on gr). Then, the vector defined by the cross
product (p× q) will be (−rx,−ry,−rz). Since we have assumed that ry > 0, this means that
the y-component of (p × q) must be negative, i.e. pzqx − pxqz < 0. By dividing the each
term in the inequality by pzqz (recall that pzqz > 0), we obtain (qx/qz) − (px/pz) < 0, or
q̂x − p̂x < 0 where p̂x and q̂x are the x-component of p̂ and q̂, respectively.

Since the vector d(ĝ) can be expressed as d(ĝ) = (q̂− p̂)k for some k > 0, the sign of the
x-component of d(ĝ) is the same as the sign of q̂x− p̂x. Since we know that q̂x− p̂x < 0, the
x-component of d(ĝ) is negative.

In a similar manner, we can show that, when the gravity direction moves counterclockwise
around r along gr, the x-component of d(ĝ) is positive.

C.4 W+(Π(G)) and W−(Π(G)) in the dual space for

great arc G

In this section, given a great arc G on the Gaussian sphere, we explain how to compute
the regions W+(Π(G)) and W−(Π(G)) in the dual space. Recall that the region W+(Π(G))
represents the set of lines intersecting Π(G) such that the gravity direction ĝ moving along
Π(G) passes through Π(G) from the inside to the outside of the corresponding Π(Tv) when the

104

x-component of d(ĝ) is positive. The region W−(Π(G)) is for the case when the x-component
of d(ĝ) is negative. Note that W+(Π(G)) ∪ W−(Π(G)) = W (Π(G)) and W+(Π(G)) ∩
W−(Π(G)) = ∅.

Given great arc G, call its bounding points p = (px, py, pz) and q = (qx, qy, qz). Figure
C.2 shows the possible relationships between Π(G) in the working plane and the regions
W+(Π(G)) and W−(Π(G)) in the dual space. In addition, we let ei = (ex, ey, ez) be the
vector in the direction of the incident edge that defines the half-space Hi inducing Tv-arc
ATvj, part of which is G.

C.4.1 Case A: ey 6= 0

First, we consider the case when ey 6= 0. When pzey < 0 and qzey < 0 (Figure C.2 (a)), Π(Tv)
lies above Π(G) in the working plane (refer to Appendix C.5 for the proof). We let k(s)
be the slope of the line containing line segment s in the working plane. If the x-component
of d(ĝ) is negative, only when the slope of Π(gr) is larger than k(Π(G)), ĝ passes through
Π(G) moving from the inside to the outside of Π(Tv) (Figure C.3 (a)). On the other hand, if
the x-component of d(ĝ) is positive, only when the slope of Π(gr) is smaller than k(Π(G)),
ĝ passes through Π(G) moving from the inside to the outside of Π(Tv) (Figure C.3 (b)).

Points in the dual space whose x-coordinate is smaller than −k(Π(G)) correspond to lines
in the working plane whose slope is larger than k(Π(G)); points in the dual space whose x-
coordinate is larger than −k(Π(G)) corresponds to lines in the working plane whose slope is
smaller than k(Π(G)). Therefore, the portion of the double wedge W (Π(G)) lying to the left
of −k(Π(G)) corresponds to W−(Π(G)) and the portion of W (Π(G)) lying to the right of
−k(Π(G)) corresponds to W+(Π(G)). Since the x-coordinate of the intersection point of the
double wedge W (Π(G)) is −k(Π(G)), the disjoint portions of the double wedge correspond
to W−(Π(G)) and W+(Π(G)).

In a similar manner, when pzey > 0 and qzey > 0 (Figure C.2 (b)), Π(Tv) lies below
Π(G) in the working plane. Then, the portion of W (Π(G)) lying to the left of −k(Π(G))
corresponds to W+(Π(G)) and the portion of W (Π(G)) lying to the right of −k(Π(G))
corresponds to W−(Π(G)).

The former two cases hold only when the signs of pz and qz are the same (i.e. G does
not pass through a point where z = 0). Now, we consider the case when the sign of pz and
qz are different (i.e. G passes through a point where z = 0) (Figure C.2 (c)(d)). Letting the
point on G whose z-coordinate is zero be m = (mx,my, 0), we define G1 as the portion of G
bounded by p and m and G2 as the portion of G bounded by q and m (note G1 ∪ G2 = G
and G1 ∩G2 = ∅).

The set of great circles intersecting with G1 on the Gaussian sphere can be expressed, in
the dual space, as a region bounded by pxx−pzy+py = 0 and the vertical line mxx+my = 0.
When pzey < 0, then Π(Tv) lies above Π(G1). Therefore, the portion of W (Π(G1)) lying to
the left of −k(Π(G1)) corresponds to W−(Π(G1)) and the portion of W (Π(G1)) lying to the
right of −k(Π(G1)) corresponds to W+(Π(G1)).

105

In a similar manner, the set of great circles intersecting G2 on the Gaussian sphere can
be expressed, in the dual space, as a region bounded by qxx− qzy + qy = 0 and the vertical
line mxx+mry = 0. Since the signs of pz and qz are different, qzey > 0 and therefore Π(Tv)
lies below Π(G2). Thus, the portion of W (Π(G2)) lying to the left of −k(Π(G2)) corresponds
to W+(Π(G2)) and the portion of W (Π(G2)) lying to the right of −k(Π(G)) corresponds to
W−(Π(G2)).

Since W+(Π(G)) = W+(Π(G1))
⋃
W+(Π(G2)) and W−(Π(G)) =

W−(Π(G1))
⋃
W−(Π(G2)), and k(Π(G)) = k(Π(G1)) = k(Π(G2)), ultimately, each

disjoint portion of the double wedge W (Π(G)) corresponds to W+(Π(G)) and W−(Π(G)),
respectively (Figure C.2 (c)).

For the case when pzey > 0 and qzey < 0, an analogous argument holds (Figure C.2 (d)).

C.4.2 Case B: ey = 0

Now, we consider the other case, ey = 0, which we further divide into subcases ex 6= 0 and
ex = 0.

C.4.2.1 Sub-Case 1: ey = 0 and ex 6= 0

When ey = 0 and ex 6= 0, if pzex < 0 and qzex < 0, then Π(Tv) lies to the right of Π(G)
in the working plane (refer to Appendix C.5). Then, only when the x-component of d(ĝ)
is negative, ĝ passes through Π(G) from the inside to the outside of Π(Tv). Therefore,
W−(Π(G)) = W (Π(G)) and W+(Π(G)) = ∅ (Figure C.2 (e)). On the other hand, when
pzex > 0 and qzex > 0, Π(Tv) lies to the left of Π(G) in the working plane. Thus, only when
the x-component of d(ĝ) is positive, ĝ passes through Π(G) from the inside to the outside
of Π(Tv). Therefore, W+(Π(G)) = W (Π(G)) and W−(Π(G)) = ∅ (Figure C.2 (f)).

The former two cases discussed in the previous paragraph hold only when the signs of pz
and qz are the same. Now, we consider the case when the signs of pz and qz are different.
Letting the point on G whose z-coordinate is zero be m, we define G1 as the part of G
bounded by p and m and G2 as the part of G bounded by q and m. (Notice that when
ey = 0, m = (0, 1, 0) or (0,−1, 0).)

When pzex < 0, Π(Tv) lies to the right of Π(G1) in the working plane. Therefore,
W−(Π(G1)) = W (Π(G1)) and W+(Π(G1)) = ∅. Since the signs of pz and qz are different,
qzex > 0 and therefore Π(Tv) lies to the left of Π(G2) in the working plane. Therefore,
W+(Π(G2)) = W (Π(G2)) and W−(Π(G2)) = ∅.

Since W+(Π(G)) = W+(Π(G1))
⋃
W+(Π(G2)), W+(Π(G)) = W (Π(G2)). Since

W−(Π(G)) = W−(Π(G1))
⋃
W−(Π(G2)), W

−(Π(G)) = W (Π(G1)) (Figure C.2 (g)). For
the case when pzex > 0 and qzex < 0, an analogous argument holds (Figure C.2 (h)).

106

C.4.2.2 Sub-Case 2: ey = 0 and ex = 0

When ey = 0 and ex = 0, pz = qz = 0. To take advantage of the observation in the
previous subsection, we consider the problem by rotating p = (px, py, 0), q = (qx, qy, 0), and,
e = (0, 0, ez) by an infinitesimal angle ε counterclockwise around the y-axis, obtaining p∗, q∗,
and e∗, respectively (where p∗z = −px sin(ε), q∗z = −qx sin(ε), and e∗x = ez sin(ε)). Then, by
checking the signs of p∗ze

∗
x and q∗ze

∗
x, we can decide which portion of W (Π(G)) corresponds

to W+(Π(G)) and which to W−(Π(G)).
Checking the sign of p∗ze

∗
x (respectively, q∗ze

∗
x) is equivalent to checking the sign of −pxez

(respectively, −qxex). If pxez > 0 and qxez > 0, W−(Π(G)) = W (Π(G)) and W+(Π(G)) = ∅.
On the other hand, when pxez < 0 and qxez < 0, W+(Π(G)) = W (Π(G)) and W−(Π(G)) =
∅.

The former two cases discussed in the previous paragraph hold only when the signs of
px and qx are the same. For the case when the signs of px and qx are different, letting the
point on G whose x-coordinate is zero be m, we define G1 as the portion of G bounded by
p and m and G2 as the portion of G bounded by q and m. (Notice again that when ey = 0,
m = (0, 1, 0) or (0,−1, 0).) Then, when pxez > 0 and qxez < 0, W−(Π(G1)) = W (Π(G1))
and W+(Π(G1)) = ∅ and W+(Π(G2)) = W (Π(G2)) and W−(Π(G2)) = ∅. Finally, we can
write W+(Π(G)) = W (Π(G2)) and W−(Π(G)) = W (Π(G1)). For the case when pxez > 0
and qzex < 0, an analogous argument holds as well.

C.5 Determining the side of a Tv-arc where Tv lies in

the working plane

In this section, we explain, for each Tv-arc ATvj, how to determine on which side of Π(ATvj)
the corresponding Π(Tv) lies in the working plane. We let ei = (ex, ey, ez) be the vector in the
direction of the incident edge that defines the half-space Hi inducing ATvj on the Gaussian
sphere. Given a Tv-arc, the side of Π(ATvj) the corresponding Π(Tv) lies changes when Tv
straddles a point where z = 0. Thus, we consider the portion of the Tv where z > 0 and the
portion of the Tv where z < 0, separately. Suppose we are given a (portion of) Tv completely
lying on one hemisphere (z > 0 or z < 0) of the Gaussian sphere. we let t = (tx, ty, tz)
be an arbitrary point inside of the portion of Tv (not on the boundary of Tv) i.e. tz > 0
or tz < 0 (from the definition of a concave vertex, Tv always has a non-zero area and thus
an interior point t where tz 6= 0 always exists). Since Hi = {p | ei · p ≤ 0, ‖p‖ = 1} and
Tv =

⋂
iHi, it follows that t · ei < 0. Using the Gnomonic projection, t is projected to the

point t̂ = (tx/tz, ty/tz) in the working plane.
We first consider the case where ey 6= 0. Using the Gnomonic projection, Π(ATvj) is a

portion of the line exx+eyy+ez = 0 in the working plane. Since t̂ ∈ Π(Tv), Π(Tv) lies on the
same side of the line as t̂ does in the working plane. A 2D vector perpendicular to the line in
the working plane can be represented as n̂ = (ex/ey, 1). Since ey 6= 0, the line always passes
through the point â = (0,−ez/ey). Now, we consider the following 2D dot product in the

107

working plane (denoted by the symbol ◦): n̂◦(t̂−â) = (ex/ey)(tx/tz−0)+(1)(ty/tz+ez/ey) =
(txex + tyey + tzez)/(eytz) = (t · ei)/(eytz). Since t · ei < 0, n̂ ◦ (t̂ − â) > 0 if eytz < 0 and
n̂ ◦ (t̂− â) < 0 if eytz > 0. Recalling that n̂y = 1, Π(Tv) lies above Π(ATvj) for the portion of
Π(Tv) where eytz < 0 and, Π(Tv) lies below Π(ATvj) for the portion of Π(Tv) where eytz > 0.
Note that the sign of tz indicates on which hemisphere (z > 0 or z < 0) of the Gaussian
sphere the corresponding Tv lies.

For the case where ey = 0, Π(ATvj) is a portion of the line exx + ez = 0 in the working
plane. A 2D vector perpendicular to this line can be represented as n̂ = (1, 0). From the
line equation, it always passes through the point b̂ = (−ez/ex, 0). Then, we consider the 2D
dot product in the working plane: n̂ ◦ (t̂ − b̂) = tx/tz − (−ez/ex) = (txex + tzez)/(extz) =
(t · ei)/(extz) (recall that ey = 0). Since t · ei < 0, n̂◦ (t̂− b̂) > 0 if extz < 0 and n̂◦ (t̂− b̂) < 0
if extz > 0. Since n̂x = 1, Π(Tv) lies to the right of Π(ATvj) for the portion of Π(Tv) where
extz < 0 and Π(Tv) lies to the left of Π(ATvj) for the portion of Π(ATvj) where extz > 0.

108

Figure C.1: Given a great arc a, letting its bounding points on the Gaussian sphere be p =
(px, py, pz) and q = (qx, qy, qz), each point is transformed into the line p̂′: pxx− pzy + py = 0
and q̂′: qxx− qzy + qy = 0 in the dual space. Then, the set of great arcs intersecting with a,
W (Π(a)), is expressed as the region bounded by p̂′ and q̂′ in the dual space. When ey 6= 0,
W (Π(a)) consists of two opposed wedges (called a double wedge [Edelsbrunner et al. 1982]).
For such double wedges, when pz and qz have the same sign, W (Π(a)) is a double wedge
whose union does not contain a vertical line in its interior (shown in (a)). On the other
hand, when pz and qz have different signs, W (Π(a)) is a double wedge whose union contains
a vertical line in its interior (shown in (b)). When ey = 0, W (Π(a)) consists of a region or
regions bounded by the parallel lines p̂′ and q̂′. When pz and qz have the same sign, W (Π(a))
is a region bounded by p̂′ and q̂′ (shown in (c)). When pz and qz have different signs, W (Π(a))
consists of two disjoint regions each of which is bounded by p̂′ and q̂′, respectively (shown
in (d)). When pz = qz = 0 (i.e. ex = ey = 0), p̂′ and q̂′ become vertical lines. In this case,
we compare the sign of px and qx instead of pz and qz. If the signs match, we have one
connected region (shown in (e)); if not, we have two disjoint regions (shown in (f)).

109

Figure C.2: Possible relationships between Π(G) and Π(Tv) in the working plane and
W+(Π(G)) and W−(Π(G)) in the dual space. Letting p = (px, py, pz) and q = (qx, qy, qz)
be the points bounding G on the Gaussian sphere, and e = (ex, ey, ez) be the vector in the
direction of the incident edge that defines the half-space Hi inducing Tv-arc ATvj, portion
of which is G, then figures (a)-(d) show the cases when ey 6= 0 and either (a) pzey < 0 and
qzey < 0, (b) pzey > 0 and qzey > 0, (c) pzey < 0 and qzey > 0, or (d) pzey > 0 and qzey < 0.
Figures (e)-(f) shows the cases when ey = 0, ex 6= 0 and either (e) pzex < 0 and qzex < 0,
(f) pzex > 0 and qzex > 0, (g) pzex < 0 and qzex > 0, or (h) pzex > 0 and qzex < 0. Recall
that p̂ = (px/pz, py/pz) and q̂ = (qx/qz, qy/qz).

110

Figure C.3: When Π(Tv) lies above Π(G) in the working plane, (a) if the x-component of
d(ĝ) is negative, only when the slope of Π(gr) is larger than k(Π(G)), ĝ passes through Π(G)
moving from the inside to the outside of Π(Tv). (b) If the x-component of d(ĝ) is positive,
only when the slope of Π(gr) is smaller than k(Π(G)), ĝ passes through Π(G) moving from
the inside to the outside of Π(Tv).

111

Bibliography

Aloupis, Greg, Jean Cardinal, Sebastien Collette, Ferran Hurtado, Stefan Langerman, and
Joseph O’Rourke (2008). “Draining a Polygon – or – Rolling a Ball out of a Polygon.”
In: CCCG. url: http://dblp.uni-trier.de/db/conf/cccg/cccg2008.html.

Arbelaez, D., M. Avila, A. Krishnamurthy, W. Li, Y. Yasui, D. Dornfeld, and S. McMains
(2008). “Cleanability of mechanical components.” In: Proceedings of 2008 NSF Engineer-
ing Research and Innovation Conference. Knoxville, Tennessee.

Avila, M., C. Reich-Weiser, D. Dornfeld, and S. McMains (2006). “Design and manufacturing
for cleanability in high performance cutting.” In: Proceeding of 2nd International High
Performance Cutting Conference. CIRP, Vancouver, BC.

Avila, Miguel C., Joel D. Gardner, Corinne Reich-Weiser, Athulan Vijayaraghavan, and
David Dornfeld (2005). “Strategies for Burr Minimization and Cleanability in Aerospace
and Automotive Manufacturing.” In: SAE J. Aerospace 114 (1), pp. 1073–1082.

Bentley, Jon Louis (1975). “Multidimensional binary search trees used for associative
searching.” In: Commun. ACM 18 (9), pp. 509–517. issn: 0001-0782. doi: http :

//doi.acm.org/10.1145/361002.361007.
Berger, K. (2006). “Burrs, chips and cleanness of parts – activities and aims in the German

automotive industry.” In: Presentation at CIRP Working Group on Burr Formation.
Paris.

Bose, Prosenjit and Godfried Toussaint (1995). “Geometric and computational aspects of
gravity casting.” In: Computer-Aided Design 27 (6), pp. 455–464.

Bose, Prosenjit, Marc J. van Kreveld, and Godfried T. Toussaint (1993). “Filling Polyhedral
Molds.” In: Workshop on Algorithms and Data Structures, pp. 210–221.

Brown, Kevin Quentin (1979). “Geometric transforms for fast geometric algorithms.”
AAI8012772. PhD thesis. Pittsburgh, PA, USA.

Chazelle, Bernard (1982). “A theorem on polygon cutting with applications.” In: SFCS
’82: Proceedings of the 23rd Annual Symposium on Foundations of Computer Science.
Washington, DC, USA: IEEE Computer Society, pp. 339–349. doi: http://dx.doi.org/
10.1109/SFCS.1982.58.

Chen, Lin-Lin and T. C. Woo (1992). “Computational Geometry on the Sphere With Appli-
cation to Automated Machining.” In: Journal of Mechanical Design 114 (2), pp. 288–295.
doi: 10.1115/1.2916945. url: http://link.aip.org/link/?JMD/114/288/1.

112

Chen, Lin-Lin, Shuo-Yan Chou, and Tony C. Woo (1993). “Separating and intersecting
spherical polygons: computing machinability on three-, four-, and five-axis numerically
controlled machines.” In: ACM Trans. Graph. 12 (4), pp. 305–326. issn: 0730-0301. doi:
http://doi.acm.org/10.1145/159730.159732. url: http://doi.acm.org/10.1145/
159730.159732.

de Berg, Mark, Otfried Cheong, Marc van Kreveld, and Mark Overmars (2008). Computa-
tional Geometry: Algorithms and Applications. 3rd ed. Santa Clara, CA, USA: Springer-
Verlag TELOS. isbn: 3540779736, 9783540779735.

Edelsbrunner, H., H. A. Maurer, F. P. Preparata, A. L. Rosenberg, E. Welzl, and D. Wood
(1982). “Stabbing line segments.” In: BIT Numerical Mathematics 22 (3), pp. 274 –281.

Gupta, Prosenjit, Ravi Janardan, Jayanth Majhi, and Tony Woo (1996). “Efficient geometric
algorithms for workpiece orientation in 4- and 5-axis NC machining.” In: Computer-Aided
Design 28 (8), pp. 577–587. issn: 0010-4485. doi: 10.1016/0010-4485(95)00071-2.
url: http://www.sciencedirect.com/science/article/pii/0010448595000712.

Harada, Takahiro, Seiichi Koshizuka, and Yoichiro Kawaguchi (2007). “Smoothed Particle
Hydrodynamics on GPUs.” In: Proc. of Computer Graphics International, pp. 63–70.

Hershberger, John and Jack Snoeyink (1994). “Computing minimum length paths of a given
homotopy class.” In: Comput. Geom. Theory Appl. 4 (2), pp. 63–97. issn: 0925-7721.
doi: http://dx.doi.org/10.1016/0925-7721(94)90010-8.

Janardan, Ravi and Tony C. Woo (2004). “MANUFACTURING PROCESSES.” In: Hand-
book of Discrete and Computational Geometry. Ed. by Jacob E. Goodman and Joseph
O’Rourke. Boca Raton, FL: CRC Press LLC. Chap. 55, pp. 1241–1256.

Kallmann, Marcelo (2005). “Path Planning in Triangulations.” In: Proceedings of the IJCAI
Workshop on Reasoning, Representation, and Learning in Computer Games. Edinburgh,
Scotland.

Kapoor, Sanjiv and H. Ramesh (2000). “An Algorithm for Enumerating All Spanning Trees
of a Directed Graph.” In: Algorithmica 27, pp. 120–130.

Lee, D. -T. and F. P. Preparata (1984). “Euclidean Shortest Paths in the Presence of Rec-
tilinear Barriers.” In: Networks 14 (3), pp. 393–410.

Lorensen, William E. and Harvey E. Cline (1987). “Marching cubes: A high resolution 3D
surface construction algorithm.” In: SIGGRAPH Comput. Graph. 21 (4), pp. 163–169.
issn: 0097-8930. doi: http://doi.acm.org/10.1145/37402.37422. url: http:

//doi.acm.org/10.1145/37402.37422.
McMains, Sara (2000). “Slicing.” In: Geometric Algorithms and Data Representation for

Solid Freeform Fabrication. PhD thesis. Chap. 7, pp. 102–114.
McMains, Sara and Carlo Séquin (1999). “A Coherent Sweep Plane Slicer for Layered Manu-

facturing.” In: Proc. 5th ACM Symposium on Solid Modeling and Applications, pp. 285–
295.

Muller, D. E. and F. P. Preparata (1978). “Finding the intersection of two convex polyhedra.”
In: Theoretical Computer Science 7 (2), pp. 217–236. issn: 0304-3975. doi: DOI:10.1016/
0304-3975(78)90051-8. url: http://www.sciencedirect.com/science/article/B
6V1G-45FKD0W-3M/2/2da173f9db0158f23a6b2ab209dd55fc.

113

Müller, Matthias, Jos Stam, Doug James, and Nils Thürey (2008). “Real time physics: class
notes.” In: ACM SIGGRAPH 2008 classes. Los Angeles, California: ACM, pp. 1–90. doi:
http://doi.acm.org/10.1145/1401132.1401245.

Müller-Fischer, Matthias, David Charypar, and Markus Gross (2003). “Particle-based fluid
simulation for interactive applications.” In: Proceedings of the 2003
ACM SIGGRAPH/Eurographics Symposium on Computer Animation. San Diego, Cali-
fornia: Eurographics Association, pp. 154–159.

Müller-Fischer, Matthias, Pauly Mark, Gross Markus, Keiser Richard, and Wicke Martin
(2007). “Physics-Based Animation.” In: Point-Based Graphics. Ed. by Markus Gross
and Hanspeter Pfister. Burlington: Morgan Kaufmann, pp. 340–387.

Nguyen, Hubert (2007). GPU Gems 3. Addison-Wesley Professional. isbn: 9780321545428.
Pascucci, Valerio, Giorgio Scorzelli, Peer-Timo Bremer, and Ajith Mascarenhas (2007). “Ro-

bust on-line computation of Reeb graphs: simplicity and speed.” In: ACM Trans. Graph.
26 (3), p. 58.

Preparata, Franco P. and Michael I. Shamos (1985). Computational geometry: an introduc-
tion. New York, NY, USA: Springer-Verlag New York, Inc. isbn: 0-387-96131-3.

Reeb, G. (1946). “Sur les points singuliers d’une forme de Pfaff complètement intégrable ou
d’une fonction numérique [On the singular points of a complete integral pfaff form or of
a numerical function].” In: Comptes Rendus Acad. Science Paris 222, pp. 847–849.

Samet, Hanan (2005). Foundations of Multidimensional and Metric Data Structures (The
Morgan Kaufmann Series in Computer Graphics and Geometric Modeling). San Fran-
cisco, CA, USA: Morgan Kaufmann Publishers Inc. isbn: 0123694469.

Tang, K., T. Woo, and J. Gan (1992). “Maximum Intersection of Spherical Polygons and
Workpiece Orientation for 4- and 5-Axis Machining.” In: Journal of Mechanical Design
114 (3), pp. 477–485. doi: 10.1115/1.2926576. url: http://link.aip.org/link/
?JMD/114/477/1.

Tang, Kai, Lin-Lin Chen, and Shuo-Yan Chou (1998). “Optimal workpiece setups for 4-axis
numerical control machining based on machinability.” In: Computers in Industry 37 (1),
pp. 27 –41.

Tierny, Julien, Attila Gyulassy, Eddie Simon, and Valerio Pascucci (2009). “Loop surgery
for volumetric meshes: Reeb graphs reduced to contour trees.” In: IEEE Transactions
on Visualization and Computer Graphics 15 (6), pp. 1177–1184. issn: 1077-2626. doi:
http://dx.doi.org/10.1109/TVCG.2009.163. url: http://dx.doi.org/10.110
9/TVCG.2009.163.

Woo, T. C. (1994). “Visibility maps and spherical algorithms.” In: Computer-Aided Design
26 (1), pp. 6–16.

