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ABSTRACT OF THE DISSERTATION

Interdisciplinary Research in Operations Management: Applications in Healthcare,
Retailing and On-demand Service Platforms

By

Jiaru Bai

Doctor of Philosophy in Management

University of California, Irvine, 2017

Professor L. Robin Keller, Co-Chair
Professor Shuya Yin, Co-Chair

This dissertation consists of three essays on applications of interdisciplinary research in

operations management. The first essay addresses issues in healthcare. Our goal is to

evaluate the cost-effectiveness of bevacizumab compared to the baseline treatment with

only chemotherapy in recurrent/persistent and metastatic cervical cancer using recently

reported updated survival and toxicology data. We developed a Markov model with 5

patient health states for both treatments. With data based on the Gynecologic Oncology

Group 240 randomized trials and the 2013 MediCare Services Drug Payment Table and

Physician Fee Schedule, we present monthly transition probabilities and cost data. Our

results show that chemotherapy plus bevacizumab can delay progression, but incur more

complications.

The second essay lies at the interface between operations management and marketing. We

aim to understand the tradeoffs in offering outlet stores. In particular, we study how much

differentiation should be kept between the main and outlet stores from three perspectives:

price, product and location. We find that an outlet store is more likely to be opened when

travel sensitivity is lower or costs associated with it are lower. Moreover, offering an outlet

store encourages the firm to improve the quality of the product sold in the main store as

ix



to reduce the cannibalization effect. We also observe that location differentiation has a

substitution effect on quality and price differentiation.

In the third essay, we study several operational challenges for the on-demand service

platforms. We consider a situation when an on-demand service platform uses earning

sensitive independent providers with heterogeneous reservation prices to serve its time and

price sensitive customers with heterogeneous valuation of the service. We present a

queueing model with endogenous supply and endogenous demand to model this on-demand

service platform. Based on our analysis, we find that it is optimal for the platform to

charge a higher price, pay a higher wage, and offer a higher payout ratio when the

potential customer demand increases. We use a set of actual data from a large on-demand

ride-hailing platform in numerical experiments to illustrate some of our main insights.
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Chapter 1

A Markov Model to Evaluate

Cost-Effectiveness of Bevacizumab in

Advanced Cervical Cancer

1.1. Introduction

Women with recurrent and metastatic cervical cancer have an extremely poor prognosis and

comprise a population for whom effective therapy has remained a high unmet clinical need.

In 2009, Gynecologic Oncology Group (GOG) 204 established cisplatin in combination with

paclitaxel as the chemotherapy standard [1]. Although responses rates (RR) of up to 36%

can be achieved in platinum-nave patients, for the most part they are not durable, with early

progression, rapid deterioration of quality of life (QoL), and death within 7 to 12 months

being the rule.2 Furthermore, due to acquired drug resistance associated with prior platinum

exposure during cisplatin-based chemoradiation for locally advanced disease, re-treatment

with platinum-based therapy at recurrence has been shown to be less effective [2].

1



In an effort to harness the therapeutic potential of targeting the vascular endothelial

growth factor (VEGF) pathway to inhibit tumor-associated angiogenesis, GOG protocol

240 was activated in 2009 throughout the United States and Spain [2]. The primary

endpoints were overall survival (OS) and toxicity. In early 2013 it was reported that the

arms administering the anti-VEGF humanized monoclonal antibody, bevacizumab were

associated with a statistically significant improvement in OS (17 vs 13.3 mos; hazard ratio

(HR) of death 0.71 (98% CI, 0.54-0.95;1-sided p=0.004), PFS (8.2 vs 5.9 mos; HR of

progression 0.67 (95 % CI, 0.54-0.82); 2-sided p=0.002), and RR (48 % vs 36 %; relative

probability of response 1.35; (95 % CI, 1.08-1.68; 2-sided p=0.008), without any significant

deterioration in QoL.2,3 The major treatment-related toxicities included fistula (8.6 %),

thromboembolism (8.2 %) and manageable hypertension (25 %) [2].

On August 18, 2014, the U.S. FDA approved to expand the label of bevacizmab to include

cervical cancer [4]. However, the potential for serious adverse events, including intestinal

perforation, fistula, delayed wound healing, hemorrhage, hypertension, proteinuria, and

thromboembolism, remain of considerable concern. We decided to study the

cost-effectiveness of bevacizumab in advanced cervical cancer.

1.2. Methods

A Markov decision tree using the TreeAge Pro program was created to perform a

cost-effectiveness analysis of chemotherapy versus chemotherapy plus bevacizumab for first

treatment of recurrent/persistent or metastatic cervical cancer using the data from the

GOG 240 study [3,8,9]. Costs were obtained from the Center for MediCare Services Drug

Payment Table and Physician Fee Schedule. Only 2013 direct costs were used; billed

charges and indirect costs were not featured (Table 1.1).
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The GOG 240 study was used to maintain homogeneity of the target population, (i.e.,

untreated patients with advanced cervical cancer). The model was designed from the

perspective of the patient and the health service payer. Our time horizon was 60 months

(i.e., 5 years).

Figure 1.1: Markov diagram for women with advanced cervical cancer treated on Gynecologic
Oncology Group protocol 240. Circular arrows indicate that patients can stay in that state
with some probability for more than one cycle. Our model has the feature that a patient
can stay in any of the 5 states for more than 1 cycle. Die (or death) is an absorbing state,
which means that once a patient enters that state she will never leave that state. As time
passes, most of the patients will go to the die state.

In the Markov model, five possible health states exist: respond, progress, limited

complications, severe complications, and die (Figure ??). A patient is modeled as being in

one state during a month, and the patient may transition to a different state with some

probability in the next month. Patients who respond to treatment may remain in response

or experience complications (limited or severe) or progress in the next cycle. Those who

progress are removed from clinical trial participation and may possibly receive

salvage/palliative therapy but ultimately die. Limited complications include hypertension

for which they receive pharmacologic management. Because in GOG 240 no patients were

taken off study for treatment-induced hypertension, those who develop limited

4



complications in our model recover and may continue to respond or progress. Severe

complications are represented by thromboembolism and fistula. Patients with severe

complications end their clinical trial participation and receive pharmacologic and/or

surgical management of their complication. Finally, we assume that the only way for a

patient to go to the die state is following progression and therefore we did not factor in

death from other causes. Importantly, the number of treatment-related deaths in the

chemotherapy and chemotherapy plus bevacizumab arms in GOG 240 were equal. The

Table 1.2: Assumptions made when developing the Markov model

1 Inclusion of all study subjects (n=452), including those who dropped out
2 Patients assessed for progression every month by physical examination and every 2 months by imaging (RECIST)
3 Length of a cycle in the Markov model is 1 month
4 Patients can only get one complication at a time
5 The only way to go to the complications states is from respond
6 Once a patient progresses there is no way for her to go back to respond
7 Existence of a severe complication excludes listing of a limited complication if one occurs simultaneously
8 If the patient develops limited complications she can go to respond in one month
9 Can only reach the die state from the progress state
10 All transition probabilities are stable and do not change month to month
11 Although imaging studies may be used in patients who develop fistula (eg., rectovaginal, vesicovaginal, etc), these

studies are not required to make the diagnosis and therefore the costs of imaging in this setting are not included in
the model

model was run over 5 years (60 months). A patient starts in the respond state, then each

month either stays in the same state or moves to a new one. Each month the cost of

treatment is incurred and a helath utility level is experienced. After 60 months, the total

cost is calcultated and the total months lived as well as the equivalent quality adjusted

months are added up. The results are the expected costs and months, averaged over all

patients.

To ensure validity of our Markov model, several assumptions were made (Table 1.2).

Patients who respond cannot directly go to the death state without first passing through

the progression state. Because the protocol-specified treatment occurred at 21-day intervals

in GOG 240, we rounded up and made the length of a cycle in the Markov model one

month. Based on the primary GOG 240 manuscript, the mean number of cycles for

patients receiving chemotherapy alone is 6, and for those receiving chemotherapy plus

5



bevacizumab the mean number of cycles is 7. Therefore, the costs associated with

managing complications included medication for blood pressure control (grade 2 or higher

hypertension occurred in 25% treated with bevacizumab versus 1.8% receiving

chemotherapy alone), imaging and anti-coagulation for thromboembolism (grade 3 or

higher thromboembolism occurred in 8.2% receiving bevacizumab versus 1.8% treated with

chemotherapy alone), and colostomy for some patients with fistula (grade 2 or higher

fistula occurred in 8.6% treated with bevacizumab versus 1% receiving chemotherapy alone

[6]). The incidence of febrile neutropenia and treatment-related deaths did not differ

between the chemotherapy alone and chemotherapy plus bevacizumab cohorts in GOG 240.

As stated above, in our model to match the cycle of cost/treatment (3 weeks plus several

days of potential delays (eg., neutropenia requiring repeat blood draws, etc), we set the

cycle to be roughly one month. Based on the 1-month/cycle of therapy methodology, using

the data reported in GOG protocol 240, the transition probabilities listed in Table 1.3 were

obtained.

1.2.1 Health Utilities

In the Markov model, the patient experiences a health ”reward or ”utility in each month,

representing the effectiveness of the treatment which depends on the health state during that

month. The patients overall effectiveness is the sum of these utilities over all months. The

monthly utilities can be seen as measures of the patients quality adjusted life month (QAL

month). Based on the judgment of treating physicians and the patients pain assessment

reports, the utilities were assumed for each state (Table 1.4). Without loss of generality,

the reward for the respond state was rescaled to be 1. Receiving a reward of 1 indicates

that the patient lived one month in the health state of responding to treatment for advanced

cervical cancer. When the patient moves to a worse health state, the life quality is adjusted
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downward for that month. The health utilities in Table 3 are similar to those used in the

Table 1.4: Health utilities assignments

HEALTH STATES Respond Progress Limited Complications Severe Complications Die
UTILITY per month in state 1 0.5 0.75 0.5 0

Markov analysis by Refaat et al [10] to examine the use of bevacizumab for breast cancer

treatment. One important difference is that Refaat et al assigned 0.25 for complications and

we divided complications into severe (0.5 utility) and limited (0.75 utility).

1.3. Results

1.3.1 Estimating Cost

Based on the cost of treatment and medications to treat complications, the data involving

cost/month were generated (Table 1.1). Once again this assumes, due to anticipated

treatment delays, that each cycle is set to last for 1 month.

1.3.2 Markov Modeling

The cost-effectiveness model was developed using response, progression, and survival data

from GOG 240 and the incidence of bevacizumab-specific complications as reported in the

primary publication [3] along with the updated data [5,6]. Assignment of health utilities and

probability estimation of time spent in one or another health state led to the construction

of the Markov Decision Tree (Panel A in appendix).
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1.3.3 Measuring Internal Validity of the Markov Model

As described in the preceding section, to be able to describe the gains in survival time in

expected life months, the Markov model was simplified by having each treatment cycle

(and health status state) occur at 28-day intervals. We checked the validity of our model

by comparing with the primary manuscript, which reported an OS difference of 3.7 months

favoring the arms that administered chemotherapy plus bevacizumab (17 versus 13.3

months), as well as the updated median of 3.9 months in the FDA approval [5]. In our

Markov model, the expected life months until death were calculated to be 15 months for

chemotherapy alone and 18.5 months for chemotherapy plus bevacizumab, a difference of a

mean of 3.5 months. Similarly, the difference in PFS also favors the patients receiving

bevacizumab with 7.7 months for the chemotherapy alone cohort and 10.4 months for those

who received chemotherapy plus bevacizumab, a difference of 2.7 months. In both analyses,

and consistent with the findings of the original paper, treatment with chemotherapy plus

bevacizumab yields higher expected life months.

1.3.4 Expected Cost and Cost Effectiveness

The estimated total cost of therapy with bevacizumab is approximately 13.2 times that for

chemotherapy alone. Specifically, for each patient, the estimated total cost of chemotherapy

alone is $6,053 and that of chemotherapy plus bevacizumab is $79,844. In terms of the OS

advantage described by the Markov model, an average gain of 3.5 life months will cost an

extra $73,791. Figure 1.2 depicts a tradeoff between life months gained and increased cost

of therapy incorporating bevacizumab. The ICER is $21,083/month ($252,996/year). If

the payer is able or willing to pay $21,083 for one more additional life month ($252,996 for

one more additional life year) before death, then chemotherapy plus bevacizumab should be

administered.

9



Figure 1.2: Cost effectiveness analysis of chemotherapy with and without bevacizumab in
life months until death

Because treatment with chemotherapy plus bevacizumab leads to an increase in

bevacizumab-specific complications, to better analyze cost-effectiveness, the impact of

decrease in QoL from complications was modeled by QALmonths. For example, as

specified in the model, the severe complication state yields a utility of 0.5 per cycle,

compared with a 1 for a person in the respond state. The expected QALmonth for the

chemotherapy plus bevacizumab cohort is higher than that for the chemotherapy alone

cohort. When the QALmonth measure is used, the difference goes down to 3.0QALmonth

(14.3-11.3 QALmonth or 0.25 QALY). The ICER increases to $24,597/QALmonth

($73,731/3 months or $73,731/(3/12) = $295,164/QALY) due to the smaller difference in

QALmonths (see dashed line in Figure 1.3). For these patients, an increase of an average of

3.5 months alive (living in the different possible states (respond, progress, limited

complications, or severe complications) is modeled as equivalent to 3.0 months in the

respond state. A sensitivity analysis of remaining in the severe complication state for an

additional month appears in Panel B in appendix.
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Figure 1.3: Cost-effectiveness analysis of chemotherapy with and without bevacizumab for
QALmonths and with projected reduction in cost of bevacizumab.

1.3.5 Projected Impact of Decreasing the Cost of Bevacizumab

If the cost of bevacizumab were to decrease substantially, both the total cost of the

chemotherapy plus bevacizumab treatment and the ICER will be reduced without change

in efficacy (Figure 1.3). With a 50% reduction in the cost of bevacizumab, the ICER is

$12,691/QALmonth ($152,292/QALY). This translates to $38,072 for the 3.5 month (or

0.29 year) gain in OS. With a reduction to only 25% of current cost, the ICER is

$6737/QALmonth ($80,844/QALY). This translates to $23,580 for the 3.5 month (or 0.29

year) gain in OS.

1.4. Discussion

One of the major challenges facing healthcare worldwide is the incremental cost-effectiveness

and the threshold for using or rejecting specific drugs. Bevacizumab is one of the most

expensive drugs currently available. In many countries, its use has been restricted based on

cost-effectiveness studies that suggest that the drug is not cost-effective.
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Cost-effectiveness studies on integrating bevacizumab in the management of US

FDA-approved indications have been performed previously and include metastatic and

recurrent colorectal cancer, primary untreated non-small cell lung cancer, and renal cell

carcinoma [13-20]. For example, Shiroiwa et al reported a maximum ICER of $145,000 per

life year for colorectal cancer [16], while Chien et al reported a maximum ICER of over

$300,000 for patients with non-small cell lung cancer for whom bevacizumab was added to

chemotherapy [18]. Although in their economic evaluation of new targeted therapies

Benedict et al did not report the ICER for bevacizumab in the treatment of metastatic

renal cell carcinoma, the investigators concluded that sunitinib is a cost-effective

alternative to befacizuamb with savings of $67,798 per patient treated in the United States

[20].

Although approved for recurrent glioblastoma, cost-effectiveness studies for this indication

are lacking [22-25]. Additionally, cost-effectiveness of bevacizumab in metastatic breast

cancer has been evaluated [10-12, 21], with marginal cost effectiveness of $232,720.72

reported by Refaat et al. [10]. Although not approved in age-related macular degeneration,

bevacizumab is considered an acceptable alternative to ranibizumab based on a randomized

trial [26].

In four phase III randomized studies in newly diagnosed, platinum sensitive, and platinum

resistant ovarian cancer, the arms administering chemotherapy and bevacizumab all met their

primary endpoints with significant improvements in PFS [27-30]. Bevacizumab has not been

approved in the U.S. for frontline ovarian cancer therapy, although the FDA has approved use

in patients with platinum-resistant recurrent disease. Cohn et al. evaluated GOG 218, which

studied bevacizumab in frontline therapy and concluded that the addition of bevacizumab to

standard chemotherapy was not cost-effective with an ICER of $401,088 per progression-free

life year saved for the bevacizumab throughout arm (primary plus maintenance therapy)

[31]. The ICER fell below $100,000 per progression-free life year saved when the cost of

12



bevacizumab was reduced to 25 % of baseline. In another cost-effectiveness analysis, Chan

et al. reported that for the high risk subset from the ICON 7 study that experienced an OS

benefit, the incremental cost of bevacizumab was $170,000 [31-32].

The dominant theme to emerge from cost-effectiveness studies is that with the exception of

the non-lethal condition of age-related macular degeneration for which very small dosages of

drug are required, bevacizumab will not be cost-effective in the management of solid tumor

malignancies due to the current high cost of the drug, relatively limited impact on duration

of survival, and healthcare expenditures required to manage anti-VEGF-specific toxicology

[10-12, 15, 16, 18, 20, 31-33].

The growing use of bevacizumab can be demonstrated by sales data. In 2013, with global

sales of $6.7 billion, bevacizumab ranked 9th in terms of revenue generated among the top 50

pharmaceutical agents [34]. Looking back, sales for bevacizumab grew by 9% between 2011

and 2012 to reach $6.3 billion in 2012 compared to $5.8 billion in 2011 [35]. The increase was

attributable to increased usage in established indications (colorectal and lung cancer), along

with E.U. approval to treat platinum-sensitive ovarian cancer which was granted in 2012. In

the U.S. market sales of bevacizumab increased from $2.6 billion in 2011 to $2.7 billion in

2012 while in Western Europe sales increased from $1.6 billion in 2011 and $1.7 billion in

2012 [35]. Sales in other international markets were boosted by the CEMAI region (Central

and Eastern Europe, Middle East, Africa, and the Indian Subcontinent), Latin America,

and the APAC regions (Australia, China, and Japan). Based on growing sales, health care

payers have implicitly indicated a relatively high willingness to pay per QALY gained.

For our analysis we chose a monthly Markov cycle because that time period corresponds

with the time span in which a patient could transition to a new health state. Furthermore,

because survival for patients with advanced cervical cancer is measured in months rather

than years, we feel that our choice of reporting results in QALmonth is appropriate, adjusted

from a baseline of living a month responding to treatment for advanced cervical cancer. We
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found that the cost of therapy resulting from the incorporation of bevacizumab was nearly

13.2 times that of chemotherapy alone and when taking into account complications, the

ICER is $24,597/QALmonth (or $295,164/QALY) or a mean of $73,791 extra for a single

patient over the course of the treatment, over the cost of chemotherapy alone.

Investigators bringing bevacizumab to cervical cancer are not in a position to determine

whether $73,791 cost per patient treated is cost-effective therapy. Similarly, those studying

cost of care are unable to assign a price to a gain in 3.9 months of a womans life. This is

for society to determine. But what must be emphasized is that, with the exception of

imatinib in chronic myelogenous leukemia, significant breakthroughs in oncology are

currently not expected to impact survival beyond several months [36]. As a result, the

ICERs associated with novel therapies may appear unacceptably high. The benefit

conferred by bevacizumab to women with advanced cervical cancer is noteworthy as these

cancers do not appear to be as chemosensitive as other solid tumors (eg., ovarian cancer,

etc). In addition, the population with recurrent/metastatic disease is unique as the

majority have been previously irradiated which leads to diminished bone marrow reserves

and an increased risk for fistula formation. The FDAs August 14, 2014 decision to approve

bevacizumab for advanced cervical cancer [4] constitutes a regulatory milestone allowing

the study of potentially more efficacious treatments for cervical cancer to move forward.

The current study was limited by creation of a cost-effectiveness model from a singular

data set, as GOG study 240 is the only randomized controlled clinical trial evaluating

bevacizumab with chemotherapy in advanced cervical cancer [3]. Subsequently, this model

does not incorporate all possible clinical outcomes. However, with recent FDA approval of

this agent in advanced cervical cancer, the authors hope to repeat an analysis based on real

world experience. Additionally, regarding potential costs of bevacizumab-related

complications such as hypertension, fistula, thromboembolism or hemorrhage, there is

limited information for which these costs were derived. These limitations may be addressed
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with further studies. Our model does not incorporate the societal impact of lost of

productivity. Nor is this study from a patient perspective therefore, cost beyond

therapeutic cost are not included. Finally, reimbursements and costs differ according to

country and time making this analysis most relevant to 2013 and the United States.

While awaiting reform of the U.S. healthcare system and cost reconciliation, it appears that

many cancer patients in need of oncologically effective but cost-ineffective therapies will be

treated using the old arsenal of cytotoxic agents, an armamentarium of oncologic dead ends.

When considering the relatively young median age at diagnosis of women with advanced

cervical cancer, the number of life-years lost to family and to society are unacceptable. The

societal and clinical dilemma can be reconciled from the vantage point of seeing things in

the long-term. Specifically, with significant reductions in drug cost, the ICERs become more

acceptable. This may be realized through the introduction of generics into the market.

Until reparations can be made to the broken U.S. healthcare system, it appears that many

cancer patients in need of oncologically effective but cost-ineffective therapies will be

treated using the old arsenal of cytotoxic agents, an armamentarium of oncologic dead

ends. When considering the relatively young median age at diagnosis of women with

advanced cervical cancer, the number of life-years lost to family and to society are

unacceptable. The societal and clinical dilemma can be reconciled from the vantage point

of seeing things in the long-term. Specifically, with significant reductions in drug cost, the

ICERs become more acceptable. This may be realized through the introduction of generics

into the market.

Biosimilars have been available on the European market since 2006 [37]. On June 27, 2013,

the EMAs Committee for Medicinal Products for Human Use recommended approval for two

biosimilar infliximab products to be marketed in the EU, making them the first biosimilar

antibodies made available to patients in a highly regulated market [38].
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As discussed above, our novel method of reporting in terms of QALmonths was intentional

and indicative of how survival in advanced cervical cancer is measured. Our results can

readily be translated to years to allow comparisons with other studies. For example, when

there is a reduced cost of bevacizumab to 25% of the current baseline cost, the ICER is

$80,844/QALyear.This suggests that perhaps through the availability of biosimilars, anti-

VEGF therapy can be cost-effective in advanced cervical cancer.
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1.6. Appendix

The overall structure of the Markov tree demonstrates primary branching at the point of

randomization between chemotherapy alone and chemotherapy plus bevacizumab. Note that

the termination condition was set to 60 cycles which corresponds to 5 years. At this point

in time, 99% of patients are expected to have died. (# sign indicates a probability = 1 the

sum of the other probabilities following a chance node circle).
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Figure 1.4: Panel A. Terminal branching of the chemotherapy alone cohort
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Figure 1.5: Panel B. Terminal branching of the chemotherapy plus bevacizumab cohort

23



We ran a sensitivity analysis on the transition probability of staying in the severe

complication state an additional month. In the base case analysis, we assumed the

probability was 0.1 for both treatments. The incremental cost effectiveness ratio (ICER),

which is the added cost per added QALmonth of survival with chemotherapy +

bevacizumab compared with chemotherapy alone, ranged from $25,176 to $22,155 as the

transition probability ranged from 0 to 0.9. If a patient stays in the severe complication

state for only one month, so the transition probability is 0, the ICER is $25,176 (it costs

$25,176 extra per month of added survival with chemotherapy + bevacizumab). If the

transition probability is 0.9, so it is very likely the patient stays in the severe complications

state another month, the ICER is $22,155.
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Chapter 2

Retail Distribution Strategy with

Outlet Stores

2.1. Introduction

Outlet stores are brick-and-mortar stores that are usually located far away from city

centers that provide older, less desirable, or lower quality products at deep discounted

prices. Today, there are hundreds of outlet malls nationwide. Managing outlet stores has

become an important channel for gaining high profits as they contribute to a large share of

the total revenue. For example, the total revenue generated from outlet stores is $45.6

billion in North America in 2015 (Humphers (2015)). Figure 1 indicates that the

percentage of stores that are outlets is increasing over the years for a number of major

retailing companies (Kapner (2014)). Recently, firms such as Macy’s have closed some

primary stores and opened more outlet stores instead, some of which are close to or at the

same location of their primary stores. The objective is to lower costs and cater to customer

demand for lower priced products (see, e.g. Kieler (2016), Zhang (2016)).
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Figure 2.1: Percentage of Outlet Stores

There has been several reasons behind the existence of outlet stores. Traditionally, the main

purpose of opening an outlet store is to dispose excess or out-of-date or damaged items

that cannot be sold in the regular store. In view of the increasing traffic to the outlet stores,

companies now even have planned overstocks to sell in the outlet stores, usually with discount

prices, to attract lower-value customers with higher willingness to travel. For example,

J.Crew, Gap and Saks Off 5th operate specific product lines that are dedicated to products

sold in outlet stores (Maheshwari (2014)). There is also academic literature discussing the

pros and cons of operating outlet stores (Coughlan and Soberman (2004), Ngwe (2014)).

First, one of the main benefits is to price discriminate consumers. For instance, T.J. Maxx

and Marshall use discounted prices to attract lower-valuation consumers (Rocha (2010)).

Another reason is quality differentiation (Lieber (2014)). For example, Coach sells products

with coach factory logo only in its outlet store (Brandculture (2010)). On the cost side, a

direct benefit is to avoid high fixed costs as outlet stores are usually located far away from

the city centers.

There are some concerns as well associated with operating outlet stores. Lower quality

products sold in outlet stores may dilute the brand, resulting in a low-end brand image to

the customers, even though the firm could actually improve its quality offering in the main

store. Another concern is that outlet store may cannibalize sales in the main store,
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resulting in a reduction in its profit generated from the main store. However, location

differentiation may alleviate the cannibalization effect. The prevalence of outlet stores and

the vast qualitative discussions and empirical studies on their existence motivate us to

examine this interesting problem from a theoretical perspective. We develop an analytical

model aiming to incorporate the most common benefits and concerns related to outlet

stores. More specifically, we would like to address the following main research questions

based on our model:

(1) Under what conditions would the firm operate an outlet store, in addition to the main

store?

(2) If an outlet store is offered, how would the firm differentiate the two stores in terms of

product quality, prices, and store location?

(3) Finally, how does the offering of an outlet store affect the main store in terms of its

sales, product price and quality?

To answer these questions, we consider a model with one firm who considers offering an outlet

store in addition to its existing main store. We consider two types of market structures. In

the first structure, the firm only operates the main store, whereas in the second structure,

both the main and outlet stores are operated. The firm distributes regular products in

the main store, but sells lower-quality products through the outlet channel. Both stores

compete for the same set of consumers who are located near the main store but are vertically

differentiated in terms of their valuation of the product. If an outlet store is available and

consumers decide to buy from there, they need to travel to the outlet store with a certain

disutility associated with travel. There are three kinds of differentiation which jointly drive

the equilibrium characterization – location differentiation based on the disutility of traveling

to the outlet store, product differentiation measured by the difference in product quality,

and price differentiation between products sold at the main and outlet stores. The sequence
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of events is as follows: In the first stage of the game, the firm chooses whether to operate

the outlet store. In the second stage, the firm decides the corresponding product quality and

price at the main store, and if the outlet store is used, the firm also sets price, quality and

location for the outlet store. In the third stage, consumers decide whether and where to buy.

Our base model is evaluated under a setting where consumers are heterogeneous in their

valuation of the product and are equally sensitive to travel to the outlet store (irrespective

of their valuation of the product). We characterize the equilibrium strategy on whether or

not to offer an outlet store and the corresponding operational decisions. The key findings are

as follows: i) The presence of the outlet store would actually encourage the firm to improve

the product quality in the main store. This is consistent with the empirical finding in Ngwe

(2014). ii) When the fixed cost or consumers’ travel sensitivity or base unit production

cost is lower, it is more profitable for the firm to operate an outlet store. iii) Product

quality, price and location differentiation are not necessarily monotone in travel sensitivity.

iv) Finally, higher location differentiation between the main and outlet stores leads to lower

differentiation in quality and prices. We also examine the effect of e-commerce on the firm’s

optimal strategy. As competition from e-commerce increases, we show that the relevance of

outlet stores becomes stronger – not only are they located closer to the main store, their

share of total sales is higher. Conversely, sales at the main stores declines which is consistent

with the anecdotal evidence.

Finally, we extend our analysis to a setting where consumers are heterogeneous in their travel

sensitivity: low-valuation customers are more willing to travel to the outlet store, relative to

the high-valuation customers. Our analysis indicates that the more different customers are in

terms of their willingness to travel, the more likely is it for the firm to adopt a segmentation

strategy in the sense that the main store will be operated to target high-valuation customers

only and the outlet store will be operated to target low-valuation customers only. Another

result is that an increase in the high-valuation customers’ travel sensitivity may increase the
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firm’s profit. This is in contrast with the previous case where profits are lower with high

travel sensitivity.

The rest of the paper is organized as follows. We review the related literature in §2. In

§3, we introduce the base model. In §4, we characterize the optimal store offering strategy,

price, quality and location decisions and also discuss their implications. In the end of this

section we explore the effect of e-commerce. In §5, we extend our model to the situation

when the consumers are heterogeneous in travel sensitivity, and finally we conclude in §6.

2.2. Literature Review

There is limited literature studying operational problems in outlet stores. The most relevant

literature to our paper is on vertical line extensions in multi-channel retailing, especially

when one of the channels is in the form of an outlet/factory store which, in general, is

geographically distanced from the city center (Coughlan and Soberman (2005)). There are

many justifications behind vertical line extension strategies in the literature. For example,

the introduction of a new channel, which could be differentiated and geographically distanced

from the existing channel(s), may reach more customer bases (Kekre et al. (1990)), provide

advertising effects (see, e.g., Qian et al. (2013)), and serve as a competing tool for the

supplier with its downstream and independent retailers (see, e.g., Bell et al. (2003) and

Chiang et al. (2003)). More often, such a new channel can be used to better segment the

existing customer groups (see, e.g., Coughlan and Soberman (2005), Ngwe (2014), and Cao

et al. (2016)). Our paper falls in this category. In particular, we consider whether or not

the firm should introduce an outlet store selling lower-quality products and where the store

should be located. See, e.g., Manez et al. (2001) for a detailed review on papers about

vertical line extensions.
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There are two recent empirical papers that focus on the outlet stores: Qian et al. (2013)

and Ngwe (2014). In the former, the focus is on the positive spillovers of the outlet store

on the main channels due to the advertising effect caused by the outlet store. We consider

a single period model here so no advertising effect is incorporated. The empirical study by

Ngwe (2014) shows a positive correlation between consumers’ valuation of the product and

their sensitivity to travel distance. Our extended model with heterogeneous travel sensitivity

provides an analytical prediction on how this positive correlation affects the firm’s decisions.

In addition, our analytical result supports Ngwe (2014)’s empirical observation that the

introduction of an outlet store would improve the product quality at the primary store.

There are an extensive list of analytical papers focusing on the optimal product line pricing

and design (Villas-Boas (1998)). See, e.g., Tsay et al. (2004) for a detailed review of this

literature. The main issue in this stream is about how to price discriminate the products sold

via different channels to mitigate the cannibalization effect of these channels. See, e.g., Mussa

and Rosen (1978), Moorthy (1988), Deneckere and McAfee (1996), Bernstein et al. (2004),

and Anderson and Dana (2009). The firm in our paper also faces the cannibalization issue

when considering a new outlet store. It can reduce this effect via not only pricing, but also

quality and location differentiation.

Finally, all the papers discussed above assume that products/lines are vertically

differentiated. There are papers that study horizontally differentiated products. The

relevant issues in this case could be decisions involved in product assortment (see, e.g.,

Ryzin et al. (1999) and Kok et al. (2007)). Our paper considers vertically differentiated

products and lines.

In addition, we extend our model to study the effect of e-commerce. We find the current

new phenomenon that companies are closing main stores and opening outlet stores with a

closer distance to city centers (see, e.g. Kieler (2016), Zhang (2016)) can be explained by

the growing popularity of online shopping.

30



2.3. Model Framework

Consider a firm that currently operates a store in the city center where the customer base

is located. We name it as the “main” store. The firm is now considering whether or not to

open an “outlet” store which could differ from the main store in several possible dimensions

– quality, price and location. As a result, customers may experience a different utility when

buying from these stores. Specifically, these utilities can be expressed as:

Um = δmv − pm and Uo = δov − at− po,

where:

m and o: index for the main and outlet stores, respectively; pm and po: selling prices in

the main and outlet stores, respectively; v: base valuation that a customer can obtain from

consuming the product; δm and δo: quality of products sold in the main and outlet stores,

respectively; t: distance of the outlet store away from the main store in the city center.

To capture customers’ heterogeneity in their valuation of the product, we assume that v

follows a uniform distribution on [0, 1]. We also assume that the product sold in the main

store has a higher quality level than that in the outlet store, that is, δm ≥ δo ≥ 0. Since

the outlet store is t distance away from the city center where the customers are, there is

a disutility, measured by at, if customers decide to travel to the outlet store. Given this

formulation, we observe three types of differentiation between the two stores: (1) price

differentiation measured by pm − po; (2) quality differentiation quantified by δm − δo; and

finally (3) location differentiation represented by t. Due to the support of v being on [0, 1],

we also normalize the range of a and t to be in [0, 1].

Note that the firm may decide to locate the outlet store at the same site of the main store, in

which case, we have t = 0. In this paper, all of the three types of differentiation between the
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main and outlet stores are formulated as decision variables. Given these decisions, consumers

would choose whether or not to buy and where to buy based on the comparison of the net

utilities from not buying, buying from the main store, and buying from the outlet store (if

available).

From the firm’s perspective, an outlet store may offer potentially lower quality products at

lower prices. This could encourage customers who originally did not buy from the main store

(due to their low valuations) to now buy from the outlet store. A broader market coverage

could help the firm to gain more revenue. This benefit then needs to be compared with the

costs associated with operating the outlet store. For the main store, we use cm and Fm to

denote the unit production cost and fixed cost, respectively. Since we assume that the firm

makes a decision on whether or not to open an outlet store in addition to the main store,

the fixed cost of the main store, Fm, is sunk and will be ignored in the subsequent profit

function. For the outlet store, we use co to represent the unit production cost. However,

its fixed cost depends on the location of the outlet store, denoted by (1 − t)2Fo, where Fo

can be interpreted as the fixed cost of operating the outlet store at the main store site.

The quadratic (convex) fixed cost in location implies a non linear effect on costs with travel

distance. Since the product in the main store has higher quality compared to the outlet

store, that is, δm ≥ δo, it is natural to also assume that cm ≥ co. To simplify, we further

assume that cm = δ2
mc and co = δ2

oc. The quadratic cost of quality implies that the higher

the quality is, the more costly it is to improve the quality further. Similar quality-dependent

cost functions are widely used in the economics, marketing and operations literature, see, e.g,

Banker et al. (1998), Matsubayashi (2007). Again, due to the assumption that v ∼ U [0, 1],

we restrict Fm, Fo and c to be in [0, 1] as well. Taking into account the consumers’ choice

model, the firm will first decide whether or not to introduce a new outlet store. If an outlet

store is introduced, the firm then sets the level of quality, price and location differentiation

between the main and outlet stores. In what follows, we will characterize the demand and

profit functions. For convenience, the notation is summarized in Table 1.
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Table 2.1: Summary of Notation

Symbol Definition

m main store

o outlet store

c base production cost, where c ∈ [0, 1]

a consumer sensitivity to travel cost

Fm fixed cost for the main store, which is sunk

Fo maximum fixed cost for the outlet store, where Fo ∈ [0, 1]

v product valuation, where v ∼ U [0, 1]

t travel distance to the outlet store, decision variable, where t ∈ [0, 1]

δm product quality in the main store, decision variable, where δm ∈ [0,∞)

δo product quality in the outlet store, decision variable, where δo ∈ [0, δm]

pm price in the main store, decision variable, where pm ∈ [0, δm]

po price in the outlet store, decision variable, where po ∈ [0, δo]

Qm demand in the main store

Qo demand in the outlet store

Πm profit with only the main store

Πmo profit with both the main and outlet stores
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We first consider the simple case without an outlet store. A customer would buy from the

main store if Um = δmv− pm ≥ 0. Hence, customers with valuation in [pm
δm
, 1] would buy the

product and the demand is Qm = 1 − pm
δm

, where 0 ≤ pm ≤ δm. The firm’s corresponding

profit function is:

Πm = (pm − cm)Qm = (pm − δ2
mc)(1−

pm
δm

), (2.1)

where δm and pm are the quality and pricing decisions.

In the case with both the main and outlet stores, we have location differentiation in addition

to quality and price differentiation. A customer would buy from the main store if Um =

δmv− pm ≥ Uo = δov− at− po and Um ≥ 0. The first inequality yields an indifference point

v3 = pm−po−at
δm−δo , and the second inequality yields another indifference point v1 = pm

δm
. Similarly,

a customer would buy from the outlet store if Um = δmv − pm ≤ Uo = δov − at − po and

Uo ≥ 0. The indifference point from the first inequality is again v3 and the second inequality

yields another indifference point v2 = po+at
δo

. To derive demand for each store, we need to

further compare the three indifference points, v1, v2 and v3, which leads to three possible

cases.

(1) If v1 ≤ v2, we always have v3 ≤ v1 ≤ v2. In this case, consumers with valuation in [v1, 1]

would buy from the main store, the rest would buy nothing. This case is equivalent to the

model without an outlet store. Hence, we call it as case (m).

(2) If v2 ≤ v1 and v3 ≤ 1, we always have v2 ≤ v1 ≤ v3. Hence, consumers in [v3, 1] would

buy from the main store, and those in [v2, v3] prefer the outlet store and the rest choose not

to buy. Since there is positive sales in both stores, we call this case as case (mo).

(3) If v2 ≤ v1 and v3 ≥ 1, consumers in [v2, 1] buy from the outlet store and the rest do not

buy. Since there is positive sales only in the outlet store, we call this case as case (o).
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The demand functions can be summarized as follows:

(Qm, Qo) =


(1− pm

δm
, 0) if in case (m)

(1− pm−po−at
δm−δo , pm−po−at

δm−δo −
po+at
δo

) if in case (mo)

(0, 1− po+at
δo

) if in case (o),

where case (m) implies that sales occurs in only the main store when po ≥ pmδo
δm
− at; case

(mo) implies that sales occurs in both stores when pm − at + δo − δm < po <
pmδo
δm
− at;

and case (o) implies that sales occurs in only the outlet store when po ≤ pm − at+ δo − δm.

Given the demand functions for the stores, we can express the firm’s total profit function as

follows:

Πmo = (pm − cm)Qm + (po − co)Qo − (1− t)2Fo, (2.2)

= (pm − δ2
mc)Qm + (po − δ2

oc)Qo − (1− t)2Fo,

where po, pm, δo, δm and t are the decisions for the firm. Note that the firm’s total profit is the

sum of its profits generated from both the main and the outlet stores; i.e., Πmo = Πm + Πo.

It is possible that the sales and hence the profit of one store is zero in which case the total

profit is simply the profit from the other store that has positive sales.

2.4. Model Analysis

Note from the demand functions that the model with an outlet store is more general than

the model without. Hence, in this section, we will analyze the model with an outlet store.

The analysis will provide insights into the conditions under which the firm would introduce

the outlet store and how model parameters impact this decision. We first solve for the
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constrained optimal decisions in each of the three cases (i.e., cases (m), (mo) and (o)) in

the demand function presented earlier, and then compare across these cases to identify the

global optimal store strategy and the corresponding decisions. We start with the analysis of

the constrained optimal decisions and profits in the three cases.

2.4.1 Equilibrium Analysis of Store Strategy

In order to derive the equilibrium, we first obtain the optimal decisions in each of the three

constrained cases. The proofs of all the analytical results of §§4.1 and 4.2 are presented in

Appendix A (Part I).

Lemma 1. The constrained optimal decisions and profit in cases (m), (mo) and (o) are as

follows:

– Case (m): Positive sales exits only in the main store, where (δm = 1
3c

, pm = 2
9c

).

Accordingly, the firm’s profit is Πmo = 1
27c

. For the outlet store, (t, δo, po) satisfies

po ≥ pmδo
δm
− at.

– Case (mo): Positive sales exists in both the main and outlet stores, where:

� If Fo ≤ min( a
10
, 2

675c
): (δm = 2

5c
, pm = 7

25c
), (t = 0, δo = 1

5c
, po = 3

25c
) and Πmo = 1

25c
−Fo.

� If a
10
≤ Fo ≤ F̄o, where F̄o = 1 if a ≤ 1

36c
and F̄o = 9(−3a2c+

√
15
√
−a4c2+36a5c3)

8(−2+45ac)
otherwise:

(δm = B
5c
, pm = −20A+7B

50c
),

(t =
−9a3c+2aFo+10F 2

o−3
√

9a6c2−4a4cFo+a2F 2
o−20a3cF 2

o

10F 2
o

, δo = B
10c
, po = 3(−10A+B)

50c
) and

Πmo = 200A2−10A+B
25Bc

− (1− t)2Fo, where A = 20act and B = 1 +
√

1− 20A.

� Otherwise: It is not feasible to achieve positive sales in both stores.

– Case (o): Positive sales exits only in the outlet store, where (δm, pm) satisfies po ≤ pm −

at+ δo − δm:
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� If Fo ≤ a
6
: (t = 0, δo = 1

3c
, po = 2

9c
) and Πmo = 1

27c
− Fo.

� Otherwise:

(t =
a3c−2aFo+6F 2

o +
√
a6c2−4a4cFo+a2F 2

o +12a3cF 2
o

6F 2
o

, δo = 1+
√

1+12act
6c

, po = 1−3act+
√

1+12act
9c

) and

Πmo = (1−12act+
√

1+12act)2

54c(1+
√

1+12act)
− (1− t)2Fo.

The comparison of the firm’s constrained optimal profits in the three cases presented in

Lemma 1 leads to Proposition 1 below, which illustrates the firm’s optimal store offering

strategy. The corresponding global optimal decisions will be presented subsequently in

Proposition 2.

Proposition 1. The firm’s optimal store offering strategy is characterized in Figure 2.2,

where the cutoff curves are expressed as follows:

La: a = 1
36c

if Fo ≥ 1
288c

, and Fo = 9(−3a2c+
√

15
√
−a4c2+36a5c3)

8(−2+45ac)
if 2

675c
≤ Fo ≤ 1

288c
;

Lb: Fo = 2
675c

if a ≥ 4
135c

;

Lc: Fo = a
10

if a ≤ 4
135c

.

This result indicates that the firm would introduce an outlet store only if model parameters

fall in either region R2 or R3, but not in region R1 when the travel sensitivity a and the

maximum fixed cost of the outlet store Fo is high. This seems intuitive since in region R1,

customers are not so willing to travel to the outlet store. In addition, offering such a store is

also expensive as the fixed cost is high. When it is optimal to introduce the outlet store, the

two stores would be operated in the same location in region R2 and in separate locations in

region R3. Note that in region R2, the fixed cost of operating such a store is low, even if it

is kept at the same site of the main store. Since customers are not willing to travel a long

distance to buy from the outlet store (as a is high), the firm would open the outlet store at

the main store site. In region R3, the fixed cost of operating the outlet store at the main
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Figure 2.2: Firm’s Optimal Store Offering Strategy

store site is high, the firm would move it away from the main store since travel sensitivity

for customers is low. Finally, note that, when the unit base production cost, c, increases,

size of region R1 is larger, which implies that it is more likely for the firm to just operate

the main store. This is because higher base unit production cost makes it more difficult for

the firm to differentiate the products sold at the two stores.

The corresponding optimal decisions are given in the proposition below.

Proposition 2. The firm’s optimal decisions are summarized in Table 2.2.
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Table 2.2: Firm’s Optimal Decision Variables

Region R1 R2 R3

Store offering strategy Main store only Both stores Both stores

Outlet store location t – 0 t̂ ∈ [0, 1]

Main store quality δm
1
3c

2
5c

B
5c

Outlet store quality δo – 1
5c

B
10c

Main store price pm
2
9c

7
25c

−20A+7B
50c

Outlet store price po – 3
25c

3(−10A+B)
50c

Main store demand Qm
1
3

1
5

40A+B
5B

Outlet store demand Qo – 1
5

−60A+B
5B

Main store profit 1
27c

3
125c

(5−B)(40A+B)
250c

Outlet store profit – 2
125c
− Fo (−60A+B)(−10A+B)

125Bc
− (1− t̂)2Fo

Note: t̂ =
−9a3c+2aFo+10F 2

o−3
√

9a6c2−4a4cFo+a2F 2
o−20a3cF 2

o

10F 2
o

, A = act̂ and B = 1 +
√

1− 20A.

An interesting issue to study is how the presence of an outlet store would affect the firm’s

operational decisions in the main store. Note that if the firm decides, upfront, not to

introduce the outlet store, the optimal decisions are the same as those in region R1 in

Table 2. Hence, the impact of the outlet store on the operational decisions can be obtained

by comparing the optimal decisions in Table 2 and the values presented in region R1 of the

same table.

Proposition 3. The existence of an outlet store would:

(a) encourage the firm to improve the product quality in the main store, and

(b) lead to a higher selling price and hence lower sales and profit in the main store.
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The rationale behind Proposition 3(a) is that cannibalization from the outlet store would

force the firm to differentiate the two stores more on the quality (and price) perspective so

as to maintain the competitiveness of the main store. This analytical result is supported

by the empirical evidence presented in Ngwe (2014). Proposition 3(b) directly follows from

Proposition 3(a) in that the profit generated at the main store is hurt by the outlet store

due to channel cannibalization. That is, some customers may switch from the main store

to the outlet store. Note that Qian et al. (2013) empirically shows a different result where

demand and profit of the main store may increase due to the introduction of an outlet store.

Their paper indicates that the positive impact is probably caused by the advertising effect of

the outlet store. However, our paper does not take the advertising effect into consideration.

Finally, even though the profit from the main store decreases due to the outlet store, the

firm would overall benefit from it as the total profit is higher due to wider market coverage.

This result is supported by both academic research and industry reports (see, e.g., Myers et

al. (2004), Kumar and Venkatesan (2005) and Neslin and Shankar (2009)).

2.4.2 Sensitivity Analysis

Based on the optimal expressions presented in Proposition 2, we can also conduct some

sensitivity analysis of the model parameters.

Corollary 1. At optimality:

(a) quality and price differentiation decreases in Fo and c; and

(b) location differentiation increases in Fo and c.

The implications of the results are as follows. First, when the fixed cost of operating the

outlet store at the main store location is high, it is intuitive to create location differentiation

in order to lower fixed costs. Due to the substitution effect of location differentiation, both
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quality and price differentiation will be low. Secondly, when the base unit production cost

is high, it becomes difficult to adopt quality (and price) differentiation. So, the firm relies

more on location differentiation.

Table 3 displays a complete summary of the sensitivity analysis of the store differentiation

and profit with respect to model parameters, Fo, c and a.

Table 2.3: Sensitivity Analysis

Fixed Cost Fo Production Cost c Distance Sensitivity a

Quality Diff. ↓ ↓ not monotone

Price Diff. ↓ ↓ not monotone

Location Diff. ↑ ↑ not monotone

Profit ↓ ↓ ↓

Following Table 3, we can draw a number of new implications in addition to Corollary 1.

First, the effect of travel sensitivity a on store differentiation crucially depends on the value

of fixed cost, Fo. For low values of Fo, location differentiation (t) is monotone and decreasing

in travel sensitivity, which is as expected. However, when the fixed cost is high, location

differentiation is no longer decreasing in a. This can be explained as follows. Recall that the

firm uses three dimensions to differentiate the two stores: quality, price and location, and

that the effective fixed cost of operating an outlet store is (1 − t)2Fo. When Fo is low, as

travel sensitivity a increases (or customers are less willing to travel), the firm can move the

outlet store close enough to the main store (i.e., by reducing location t) without significantly

increasing the effective fixed cost of the outlet store. However, when Fo is sufficiently high,

using this strategy is quite costly, especially when the outlet store is close to the main

store (i.e., when location differentiation (t) is small). So the firm would instead decrease

the quality (and price) differentiation, which could lead to an increase in location t due to

the substitution effect between these dimensions of differentiation observed in Corollary 1.
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Second, the firm’s profit would be negatively affected as the cost (either the fixed or unit

production cost) associated with the outlet store increases or as customers become less willing

to travel to the outlet store.

Lastly, note that from Table 2 that all the optimal decision variables can be expressed as a

function of distance t. So, if we treat distance t as a parameter, in some sense, we can infer

how the distance of the outlet store would affect the firm’s price and quality decisions.

Corollary 2. If we treat the location of the outlet store as fixed, that is, t is a given

parameter, and solve for the optimal price and quality decisions, then, at optimality, we

have ∆q = δm − δo and ∆p = pm − po both decreasing in t.

The immediate implication is that an increase in the stores’ location differentiation will

reduce the firm’s quality and price differentiation at optimality. In other words, location

differentiation can be treated as a substitute for the other two types of differentiation. Note

that the substitution effect is also indicated in Corollary 1.

Note that we consider three types of differentiation – quality differentiation measured by

∆q = δm − δo, price differentiation defined by ∆p = pm − po and location differentiation

quantified by t. An alternative way to understand their individual impacts is to analyze

and compare models with and without one kind of differentiation. Since price and quality

differentiation are always coupled together, we assume that either both of them exist or

neither of them exists.

Proposition 4. The individual effect of store differentiation is presented below:

(a) In a model without location differentiation, if Fo ≥ 2
675c

, the optimal strategy is to open

the main store only, where (δm = 1
3c
, pm = 2

9c
) and Πm = 1

27c
; otherwise, it is optimal to

open both the main and outlet stores, where (δm = 2
5c
, pm = 7

25c
), (δo = 1

5c
, po = 3

25c
) and

Πmo = 1
25c
− Fo.
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(b) In a model without price and quality differentiation, it is optimal to open the main store

only, where (δm = 1
3c
, pm = 2

9c
) and Πm = 1

27c
.

The result above indicates that in the absence of price and quality differentiation, the outlet

store would not be opened. As such, the addition of location differentiation on top of the

price and quality differentiation can help mitigate the need to create differences in price and

quality offerings (see Corollary 2).

2.4.3 The Effect of E-Commerce

In retailing, an irreversible trend is probably the rising of e-commerce, which imposes

significant competition to physical stores. In response, many retailers, e.g., Macy’s, are

forced to either reduce the footage of the main stores or open/expand their outlet stores;

see, e.g., Kieler (2016) and Wilson (2016). In view of these observations, in this subsection

we consider the effect of e-commerce on the operations of the main and outlet stores. In

particular, we will focus on the firm’s store offering strategies and the contribution of the

main store in the firm’s total sales. Due to competition from e-commerce, some customers

may decide to switch from the physical stores to online channels. We assume that, with

probability γm ∈ [0, 1], a customer who originally would buy from the main store will

switch to buy from online channels, and with probability γo ∈ [0, 1], a customer who

originally would buy from the outlet store will switch to buy from online channels. We

further assume that γm ≥ γo, which implies that customers who originally buy from main

store are more likely to switch to buy online than those who originally buy from outlet

stores. A justification for this is as follows: Based on the demand characterization

discussed in §3, customers who buy from main stores have higher valuation relative to

those who buy from outlet stores. As such, it implies that higher valuation/income

customers are more likely to buy online than lower valuation/income ones, due to, e.g.,

43



better access to internet and lower security risk, which is supported by both academic and

trade literature, see, e.g., Horrigan (2008), Akman and Rehan (2014), and Smith (2015).

In the presence of e-commerce, the demand functions now become Q′m = (1 − γm)Qm and

Q′o = (1 − γo)Qo, where Qm and Qo are demand functions in the base model provided in

§3. Since the potential population buying at the main and outlet stores is reduced (due

to e-commerce), it is reasonable to assume that the fixed cost of operating the physical

stores is also reduced proportionally to the reduction in the population size. So, the fixed

costs are reduced to F ′m = (1 − γm)Fm and F ′o = (1 − γo)Fo. Accordingly, the firm will set

(δm, pm, t, δo, po) to maximize

Π = (pm − cm)Q′m + (po − co)Q′o − (1− t)2F ′o − F ′m

= (pm − cm)(1− γm)Qm + (po − co)(1− γo)Qo − (1− t)2(1− γo)Fo − (1− γm)Fm(2.3)

= (1− γm)[(pm − cm)Qm + b(po − co)Qo − b(1− t)2Fo − Fm],

where b = 1−γo
1−γm and b ≥ 1 since γm ≥ γo. Following this formulation, we discuss a few points.

First, the ratio b can be used to measure the degree of competition from e-commerce; that is,

the higher b is, the stronger the competition from e-commerce. Letting b = 1 results in the

base model without e-commerce. Second, it is clear that the firm’s store offering and other

decisions will depend on γm and γo only through their ratio b, rather than their individual

values. Lastly, similar to the base model without e-commerce, Fm can be treated as a sunk

cost and ignored in analysis. A similar analysis procedure is followed to solve for the firm’s

store offering strategy.

As shown in Appendix A (Part II), we were able to analytically derive the constrained

optimal decisions and profit in case (m) and case (o). We use a numerical approach to derive

the constrained optimal values in case (mo), followed by a comparison of the three cases.
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Figure 3(a), 3(b) and 3(c) presents the impact of e-commerce on i) the firm’s optimal store

offering strategy, ii) the optimal distance between the two stores, t, and iii) the contribution

of the main store to the overall sales, measured by r = Q′m
Q′m+Q′o

, respectively. In the numerical

study, we set b ∈ [1, 1.25] to focus on the effect of e-commerce and fix c = 0.1. In Figures 3(b)

and 3(c), we further fix Fo = 0.05 and a = 0.2, under which both the main and outlet stores

are operational with positive sales.

(a) on the store offering strategy

(b) on the store distance t (c) on contribution of the main store

Figure 2.3: Impact of Competition from E-Commerce
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There are a number of interesting observations. First, Figure 3(a) indicates that the stronger

the competition from e-commerce, the more likely that the firm will forgo the strategy of

using the main store only, that is, size of region R1 is reduced. Instead, the firm becomes

more likely to add the outlet store in the same location of the main store, that is, size of

region R2 increases. Second, according to Figures 3(b) and 3(c), as the competition from the

e-commerce increases, if both the main and outlet stores are active, they would be located

closer, that is, t is lower, and the sales contribution of the main store will decrease. These

observations are consistent with the anecdotal evidence of increasing sales of outlet stores at

Macy’s, see, e.g., Kieler (2016).

2.5. Model Extension: Heterogeneous Travel

Sensitivity

So far we have assumed that all consumers are homogeneous in their sensitivity to travel.

However, due to their heterogeneity in valuation of the product, they may have different

sensitivity to travel as well. For example, customers’ willingness to pay for a product might

be contingent on their income level. Oftentimes, higher willingness to pay is associated

with higher income levels, which translates into higher disutility for time to travel. More

specifically, we assume that customers with a lower valuation of the product (i.e., v ∈ [0, 0.5])

will have a travel sensitivity coefficient a1 and customers with a higher valuation of the

product (i.e., v ∈ (0.5, 1]) will have a travel sensitivity coefficient a2, where 0 ≤ a1 ≤ a2 ≤

1. Note that our assumption that a1 ≤ a2 is supported by both economic theory (see,

e.g., Hill (1985) that higher income consumers tend to have higher costs of personal time)

and empirical studies (see, e.g., Ngwe (2014) that consumers’ travel sensitivity is positively
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correlated with their taste for quality).1 When a1 = a2, the model converges to the base

model studied in the previous section.

Given the heterogeneity in travel sensitivity, we first characterize the demand function for

the main and outlet stores based on consumers’ utility functions. If a customer buys from

the main store, its utility is the same as that in the base model where Um = δmv−pm, where

v ∼ U [0, 1]. However, depending on where the customers’ valuation of the product, their

utility from buying at the outlet store can be written as

Uo =

 δov − a1t− po if v ∈ [0, 0.5]

δov − a2t− po if v ∈ (0.5, 1]

According to the utility functions above, we derive demand for the main and outlet stores in

each of the two customer segments – segment 1 refers to v ∈ [0, 0.5] and segment 2 refers to

the remaining valuations. So, we use notation (Q1
m, Q

2
m) to represent customers’ demand for

the main store from segments 1 and 2, respectively, and (Q1
o, Q

2
o) for the outlet store from

the two segments. If we characterize these four demand quantities based on whether they

are zero (i.e., no sales) or non-zero (i.e., positive sales), there are sixteen possible different

combinations. To simplify the presentation, we first focus on the demand at the main store,

which gives us four combinations presented in the following table:

1Note that we have v = 0.5 as the cutoff for high and low valuation customers. Indeed, our model can
be extended for any cutoff value in [0,1].
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Table 2.4: Demand Scenarios in the Main Store

Q2
m = 0 Q2

m > 0

Q1
m = 0 No sales at Only customers from segment 2

the main store. will buy from the main store.

Q1
m > 0 Not feasible. Positive sales at the main

store from both segments.

Our analysis in Appendix B indicates that it is never possible to set decisions within their

boundaries such that some customers from segment 1 will buy from the main store but no

customers in segment 2 would do so. That is, the case with (Q1
m > 0, Q2

m = 0) is not feasible.

In our subsequent equilibrium analysis of the firm’s decisions, it can be verified that it is

never optimal to have either no sales at all or positive sales from both segments at the main

store. That is, the cases with (Q1
m = 0, Q2

m = 0) and (Q1
m > 0, Q2

m > 0) are not optimal.

Hence, the only combination remaining is the one in the top right corner, (Q1
m = 0, Q2

m > 0),

when no customers with low valuation (in segment 1) would buy in the main store, but some

customers with high valuation (in segment 2) would do so. To be more specific, we present

the demand functions in this scenario in Table 5 below.
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Table 2.5: Demand Functions when (Qm
1 = 0, Qm

2 > 0)

Q1
m Q2

m Q1
o Q2

o

Case (1) 0 1− pm
δm

0 0

Case (2) 0 1− pm
δm

1
2
− po+a1t

δo
0

Case (3) 0 1− pm−po−a2t
δm−δo 0 pm−po−a2t

δm−δo − po+a2t
δo

Case (4) 0 1− pm−po−a2t
δm−δo

1
2
− po+a1t

δo

pm−po−a2t
δm−δo − po+a2t

δo

Note from Appendix B that the conditions for (Qm
1 = 0, Qm

2 > 0) are po ≥ pm−a2t+ δo− δm

(to ensure Qm
2 > 0) and po ≤ pm−a1t+

δo
2
− δm

2
if pm ≤ δm

2
(to ensure Qm

1 = 0). Under these

conditions, for any given set of decision variables, we can characterize demand functions

which fit into one and only one of the corresponding four cases presented in Table 5. This is

an equivalent way to provide the conditions for each of the four demand cases to occur.

� Case (1): pm ≥ δm
2

, po ≥ δo
2
− a1t and po ≥ δopm

δm
− a2t;

� Case (2): pm ≤ δm
2

, po ≤ pm − a1t+ δo
2
− δm

2
and po ≥ δopm

δm
− a2t;

� Case (2): pm ≥ δm
2

, po ≤ δo
2
− a1t and po ≥ δopm

δm
− a2t;
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� Case (3): pm ≥ δm
2

, po ≥ δo
2
− a1t and pm − a2t+ δo − δm ≤ po ≤ δopm

δm
− a2t;

� Case (4): pm ≤ δm
2

, po ≤ pm − a1t+ δo
2
− δm

2
and pm − a2t+ δo − δm ≤ po ≤ δopm

δm
− a2t;

and

� Case (4): pm ≥ δm
2

, po ≤ δo
2
− a1t and pm − a2t+ δo − δm ≤ po ≤ δopm

δm
− a2t.

Given the demand functions, the firm can set the decisions on two pricing (pm and po), two

quality (δm and δo) and one location (t) to maximize

Πmo = (pm − cm)(Q1
m +Q2

m) + (po − co)(Q1
o +Q2

o)− Fo(1− t)2.

In order to find the global optimal decisions for the firm, we need to analyze the four

cases presented in Table 5 and compare the constrained optimal solution in each case. The

optimal decisions include choosing δm, δo, pm, po, and t. The constrained optimal solution

in case (1) can be solved analytically and is provided in Appendix B. We can also obtain

the unconstrained optimal solution in cases (2)– (3) analytically in Appendix B. In case (4),

we were able to characterize the unconstrained optimal solution in closed form for a given

δo and parametric space (c, Fo, a1, a2) in Appendix B. However, given the complication in

the firm’s profit function in δo, it is analytically challenging to derive the unconstrained

optimal δo in this case. Hence, we resort to numerical analysis to obtain the constrained

optimal δo and the other corresponding decisions and profit. Without loss of generality, we

have used c = 0.1 throughout the numerical study here. We will focus on the other three

parameters Fo, a1 and a2. In particular, our numerical study indicates that the effect of

travel sensitivity heterogeneity depends on whether Fo is below or above a threshold value,

F ′o = 2
675c

, which also appears in the base model in Figure 2. Hence, the two values we take

for Fo are (19
20

)( 2
675c

) < F ′o and (4)( 2
675c

) > F ′o which represent cases of low and high fixed cost

of the outlet store (compared to the threshold F ′o), respectively.
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Similar to the case with homogeneous travel sensitivity, we can plot the firm’s optimal store

strategy (whether to operate both the main and outlet stores) in the (a1, a2) plane. In our

numerical examples, the travel sensitivity a1 and a2 range from 0 to 1, where a2 ≥ a1. So we

only need to examine the upper left triangle. Moreover, due to different strategies derived

under a low or a high fixed cost for the outlet store, we plot the case with a low fixed cost

in Figure 4(a) and the case with a high fixed cost in Figure 4(b).

(a) Low Fixed Cost: Fo =
19
20 ( 2

675c )
(b) High Fixed Cost: Fo = 4( 2

675c )

Figure 2.4: Equilibrium Regions with Heterogeneous Travel Sensitivity

According to the equilibrium regions presented in Figure 4, we plot the corresponding

demand distribution/sales of both stores in each region in Figure 5 to facilitate the

discussion on the impact of heterogeneous travel sensitivity.

According to Figures 4 and 5, similar to Figure 2 in the homogeneous travel sensitivity case,

when sensitivity becomes heterogeneous, we still have region R1 where only the main store is

effective with positive sales, region R2 where both stores have positive sales and are operated

at the same location, and region R3 where both stores have positive sales but are maintained

with a distance. In both regions R2 and R3, the customers who decide to buy are all high

value customers and located in segment 2 with v ≥ 0.5. This observation is also consistent

with that in the homogeneous travel sensitivity case. In addition to these three regions (R1,
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Figure 2.5: Demand Distributions in Equilibrium Regions

R2 and R3), the heterogeneity in travel sensitivity results in a new region R4 as a potential

equilibrium offering strategy. In this region, both main and outlet stores are active and

operated at different locations. Moreover, the low valuation customers in segment 1 will buy

only from the outlet store and the high valuation customers in segment 2 will buy only from

the main store. This new region leads to the following conclusion:

Observation 1. The firm will use the main store (resp., the outlet store) to target the high

(resp., low) valuation customers when the degree of travel sensitivity heterogeneity (measured

by 4a = a2 − a1) is sufficiently high.

An immediate implication is that heterogeneous travel sensitivity helps the firm to use the

two stores to differentiate its customer segments better. When a1 and a2 are close to each

other, customers in both segments are relatively equally sensitive to travel and the model is

reduced to the base case with homogeneous travel sensitivity. Then, the firm is more willing

to set its pricing and quality decisions so as to target only the high valuation customers (since

targeting also the low valuation ones implies that the price and/or quality at the outlet store

has to be low and the pricing and/or quality decisions between the two stores have to be

highly differentiated). However, when a2 is significantly higher than a1, the two segments of

customers are already highly differentiated in their travel sensitivity, which makes it much

easier for the firm to set decisions to direct each of the two customer segments into its
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corresponding stores.

Finally, comparison of the high and low fixed cost cases in Figure 4(a) and (b) indicates

that it is never optimal to operate the main store only (respectively, the two stores at the

same location) if the fixed cost of having an outlet store is low (respectively, high). This

difference matches well with the observation in Figure 2 which is a special case of Figure 4

when a1 = a2.

In the rest of this section, we will examine how travel heterogeneity affects the firm’s

profitability. The numerical result is presented in Figure 6, and we fix Fo = (19
20

)( 2
675c

), a

value also used in Figure 4.

Figure 2.6: Impact of Travel Heterogeneity on the Firm’s Profit

Figure 6 indicates that the firm’s profit generally increases in the degree of travel

heterogeneity (corresponding to R4), except when both a1 and a2 are low in which case the

firm’s profit decreases as the degree of travel heterogeneity increases (corresponding to R3).

In R4, the firm’s optimal store offering strategy is to segment the consumer groups. Since

higher degree of travel heterogeneity implies higher differentiation between the two groups

of customers, the firm can use this to better segment the customers in setting the prices

and qualities of its products sold in the two stores, and hence gain from it. In R3, when

both a1 and a2 are small, the firm’s optimal store offering strategy is to offer both stores at
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a distance and set prices and qualities in the two stores to compete for the high value

customers. An increase in the degree of travel heterogeneity will result in a higher travel

sensitivity of high-valuation consumers, which actually undermines the firm’s profit since

now both stores are targeting the high-valuation customers (as in the base case). Then, an

increase in the travel sensitivity will make travel more costly which will discourage the

customers to buy from the outlet store (but not necessarily encourage them to buy from

the main store). So, the firm’s profit will be reduced as travel heterogeneity increases.

2.6. Conclusion

Outlet stores have existed for a long time and have increasingly become an integral part of

a firm’s retail distribution strategy. The role of outlet stores has evolved from traditional

disposal of surplus inventory as an operational practice to nowadays being considered as a

distribution channel strategy in order to achieve customer segmentation, market

differentiation and wider coverage. It is generally accepted that the main and outlet stores

offer differentiated products in the sense that the main store offers a product with a higher

quality but at a higher price while the product in the outlet store usually has a lower

quality and is also sold at a lower price. In view of this, on one hand, the outlet store can

help the firm better segment its heterogeneous customer group and achieve higher market

coverage since customers whose valuation might be too low to buy from the main store can

now buy from the outlet store. But, the outlet store may cannibalize sales in the main

store where prices are usually higher and hence undermine the firm’s overall profitability.

In addition to product quality and price differentiation between the main and outlet stores,

we introduce a third type of differentiation between the two stores, i.e., the location

differentiation. Since the outlet store is usually located far away from the main store

(where the consumer base is) in order to save cost, there is a disutility for consumers who
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travel to the outlet store. So, customers need to consider the quality and price of the

product and the travel cost when they decide whether and where to buy. In this paper, we

formulate a stylized economic model to gain understanding of the trade-offs faced by the

firm and the interplay among the three types of differentiation between the main and

outlet stores.

Our analysis of the base model where customers are heterogeneous in product valuation

but are equally sensitive to travel to the outlet store, indicates that the outlet store is more

likely to be introduced when (1) the fixed cost to open the outlet store or the base unit

production cost is lower; or (2) the customers are more willing to travel to the outlet store.

Moreover, introduction of the outlet store would actually encourage the firm to improve

the quality of the product sold in the main store so as to differentiate relative to the

product sold in the outlet store. These results have implications for both the firm and the

customers. The firm should seriously consider the outlet store strategy if the customers are

not very sensitive to travel. Indeed, the higher the (fixed or unit production) costs

associated with the outlet store are, the further the outlet store should be located away

from the main store. From the perspective of customers, they should be less concerned

about the possible deterioration in the quality of the product sold in the main store. Our

analysis also demonstrates that location differentiation can be considered as a substitute to

product quality and price differentiation. We also consider the effect of competition from

e-commerce and show that it makes the firm more likely to introduce the outlet store and

even bring it closer to the main store. The resulting effect of reduced location

differentiation is to enhance quality and price differentiation in offerings between the two

stores.

In an extension when customers are heterogeneous in both product valuation and in travel

sensitivity, we show that it becomes more likely for the firm to use the segmentation strategy

where high valuation customers buy from the main store and the low valuation customers
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buy from the outlet stores. A direct implication from it is that the more different customers

are, it becomes easier for the firm to reduce the cannibalization effect and could lead to a

higher profit.

Finally, note that we have made a number of simplifying assumptions for model tractability

purpose. One of the main assumptions is that we considered a monopoly firm in the market

and competition from e-commerce was formulated in an exogenous manner. There might

be multiple firms competing in the market who would consider the option of opening outlet

stores. Introducing horizontal competition is an interesting extension which would lead to

different decisions and insights in terms of whether or not to open an outlet store.
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2.8. Appendix

Appendix A (Part I): Base Model with Homogeneous Travel Sensitivity

Proof of Lemma 1: In this proof, we solve for the constrained optimal decisions and profit

in each of the three cases (m), (o) and (mo). We start with case (m) first.

Case (m): In this case, only the main store has positive sales and the condition that enables

this is po ≥ pmδo
δm
− at. Given this condition, the firm sets δm and pm to maximize

Πmo = (pm − cδ2
m)(1− pm

δm
), subject to δm ≥ 0 and 0 ≤ pm ≤ δm.

It is straightforward to verify that the firm’s profit function is concave in pm for a given δm

and the unconstrained optimal selling price in the main store is

pm =
δm(1 + cδm)

2
≥ 0.

Note that this unconstrained pm is also less than δm if cδm ≤ 1. If cδm > 1, it is easy to

verify that there does not exist a proper value of pm so that the firm can have both non-

negative profit margin, measured by (pm − cδ2
m), and non-negative sales/demand, measured

by (1 − pm
δm

). In other words, it is never optimal for the firm to set cδm > 1. Substituting

pm = δm(1+cδm)
2

into the firm’s profit function and simplifying yields Πmo = 1
4
δm(1 − cδm)2.

It is fairly easy to show that there exists a global optimal product quality

δm =
1

3c
∈ [0,

1

c
]
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that maximizes the firm’s profit. The resulting optimal profit in case (m) is

Πmo =
1

27c
.

In terms of the decisions associated with the outlet store (t, δo, po), they need to satisfy the

condition stated earlier, i.e., po ≥ pmδo
δm
− at.

Case (o): In this case, only the outlet store has positive sales and the condition that enables

this is δm − pm ≤ δo − po − at. Given this condition, the firm sets (t, δo, po) to maximize

Πmo = (po− cδ2
o)(1−

po + at

δo
)− (1− t)2Fo, subject to 0 ≤ t ≤ 1, δo ≥ 0 and 0 ≤ po ≤ δo.

Similar to case (m), the firm will never set δo such that cδo > 1 since it makes it impossible

to obtain a positive total profit. Using a similar approach as in case (m), for any given (t, δo),

the firm’s profit function is concave in the selling price po and the unconstrained value is

po =
δo
2

(1 + cδo)−
at

2
≤ δo.

Note that this value of po would be non-negative if δo ≥ at, which will be satisfied, since, if

not, the outlet store will not have positive sales/demand at all.

Substituting po = δo
2

(1 + cδo) − at
2

into the firm’s profit function and simplifying yields

Πmo = 1
4
c2δ3

o − 1
2
cδ2
o + (1

4
+ 1

2
act)δo + 1

4
a2t2

δo
− (1− t)2Fo. With some algebra, it can be shown

that there exists a unique constrained global optimal value of δo, where

δo =
1 +
√

1 + 12act

6c
.

Substituting this value back into the profit function and simplifying yields a function of
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decision variable t only,

Πmo =
(1− 12act+

√
1 + 12act)2

54c(1 +
√

1 + 12act)
− (1− t)2Fo

which has two stationary points : t =
a3c−2aFo+6F 2

o±
√
a6c2−4a4cFo+a2F 2

o +12a3cF 2
o

6F 2
o

. The general

approach is to calculate the firm’s profit at all stationary points and at the extreme points

of the corresponding decision set and compare these profits to derive the best profit, which

will also identify the optimal solution of the decisions. With some algebra, we can rule out

t =
a3c−2aFo+6F 2

o−
√
a6c2−4a4cFo+a2F 2

o +12a3cF 2
o

6F 2
o

since the first-order condition of the profit with

respect to t at this point is positive which implies that the firm’s profit is still increasing as

t increases. The other stationary point,

t =
a3c− 2aFo + 6F 2

o +
√
a6c2 − 4a4cFo + a2F 2

o + 12a3cF 2
o

6F 2
o

is possible to be optimal since the first-order condition at this point is negative. With some

algebra, we can show that this value of t is always less than 1. Further, it is non-negative if

and only if Fo ≥ a
6
.

Hence, for Fo ≤ a
6
, we need compare the firm’s profit at t = 0 and at t = 1, which results

with t = 0 being optimal. Accordingly, (δo = 1
3c
, po = 2

9c
) and Πmo = 1

27c
− Fo.

For Fo ≥ a
6
, we need to compare the firm’s profit at

t =
a3c−2aFo+6F 2

o +
√
a6c2−4a4cFo+a2F 2

o +12a3cF 2
o

6F 2
o

(i.e., the interior solution) and at the two

extreme points t = 0 and t = 1, which results with the interior solution being optimal.

Accordingly, we have (δo = 1+
√

1+12act
6c

, po = 1−3act+
√

1+12act
9c

) and

Πmo = (1−12act+
√

1+12act)2

54c(1+
√

1+12act)
− (1− t)2Fo.

In summary, the optimal decisions and profit in case (o) are as follows:
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� If Fo ≤ a
6
: (t = 0, δo = 1

3c
, po = 2

9c
) and Πmo = 1

27c
− Fo.

� Otherwise:

(t =
a3c−2aFo+6F 2

o +
√
a6c2−4a4cFo+a2F 2

o +12a3cF 2
o

6F 2
o

, δo = 1+
√

1+12act
6c

, po = 1−3act+
√

1+12act
9c

) and

Πmo = (1−12act+
√

1+12act)2

54c(1+
√

1+12act)
− (1− t)2Fo.

Case (mo): In this case, both the main and outlet stores have positive sales, and it is the

most complicated case to analyze. The firm sets (δm, pm) and (t, δo, po) to maximize

Πmo = (pm − cδ2
m)(1− pm − po − at

δm − δo
) + (po − cδ2

o)(
pm − po − at
δm − δo

− po + at

δo
)− (1− t)2Fo,

subject to 0 ≤ δo ≤ δm, 0 ≤ po ≤ δo, 0 ≤ pm ≤ δm, 0 ≤ t ≤ 1 and pm + δo − δm − at ≤ po ≤
pmδo
δm
− at. Given many decisions and constraints involved, here is our solution approach.

First, we will solve the first-order-conditions (or equations) to derive all possible stationary

points. And then, we will calculate the firm’s profit at stationary points (given they are

within the constraints) and at the boundary points of the parametric space and compare

these profits to derive the best value. According to the first-order conditions, we were able

to derive eight possible stationary points. Seven of these eight points either violate at least

one of the constraints or have the Hessian matrix that is not negative definite (which is

a necessary condition for the stationary point to be at least a local optima). For space

consideration, we will not list these seven stationary points here. The only stationary point

that can possibly be locally and globally optimal is as follows:

t = t̂ =
−9a3c+ 2aFo + 10F 2

o − 3
√

9a6c2 − 4a4cFo + a2F 2
o − 20a3cF 2

o

10F 2
o

,

δm =
B

5c
, pm =

−20A+ 7B

50c
, δo =

B

10c
, po =

3(−10A+B)

50c
,

where A = 20act and B = 1 +
√

1− 20A. We next need to check whether this point satisfies

the constraints of the problem. It is easy to show that 0 ≤ δo ≤ δm, 0 ≤ po ≤ δo and

64



0 ≤ pm ≤ δm. The two important sets of constrains that need special attention are 0 ≤ t ≤ 1

and pm + δo − δm − at ≤ po ≤ pmδo
δm
− at. Let us first look at the second set of constraints,

pm + δo − δm − at ≤ po ≤ pmδo
δm
− at. Note that if any of the two constraints in this set

is violated after substituting the values of the stationary point in, then we can conclude

that the firm makes a negative profit in either the main store or the outlet store since the

corresponding demand is negative. So the total profit from both the main and the outlet

stores under this stationary point will be dominated by either case (m) or case (o) (which

are the two possible boundary solutions of the problem). Given this observation, we do not

need to specifically check this set of constraints since they will be taken care of when we

compare the profit under this stationary point with the profits under boundary solutions.

In terms of the first set of constraints, 0 ≤ t ≤ 1, with some algebra, we can show that t̂ < 1

always holds true, and that t̂ ≥ 0 when Fo ≥ a
10

.

Hence, for Fo ≤ a
10

, we need to compare the firm’s profit at t = 0 (where the other decisions

can be calculated based on δm = B
5c
, pm = −20A+7B

50c
, δo = B

10c
, po = 3(−10A+B)

50c
) and at the

boundary points of the problem. Note that it is clear that the boundary solutions at either

δo = 0, δo = δm, po = 0, po = δo, pm = 0 or pm = δm can never be optimal for the firm.

So the effective boundary solutions here are t = 1, or po = pmδo
δm
− at (i.e., case (m)) or

pm + δo − δm − at = po (i.e., case (o)). It turns out that t = 0 dominates all of these

boundary solutions if Fo ≤ 2
675c

; otherwise, case (m) dominates all other possibilities. Hence,

we conclude that, if Fo ≤ min( a
10
, 2

675c
), the firm’s optimal decisions are (δm = 2

5c
, pm = 7

25c
),

(t = 0, δo = 1
5c
, po = 3

25c
) and the corresponding profit is Πmo = 1

25c
−Fo; otherwise, case (m)

dominates.

For Fo ≥ a
10

, we have the stationary point as the interior solution, and we need to compare

the firm’s profit at this interior stationary point with those at the boundary points of the

problem, which are t = 0, or t = 1, or po = pmδo
δm
−at (i.e., case (m)) or pm+δo−δm−at = po

(i.e., case (o)). It turns out that the interior stationary point dominates all the boundary

65



solutions if a
10
≤ Fo ≤ F̄o, where F̄o = 1 if a ≤ 1

36c
and F̄o = 9(−3a2c+

√
15
√
−a4c2+36a5c3)

8(−2+45ac)
)

otherwise. The corresponding profit is Πmo = 200A2−10A+B
25Bc

− (1− t)2Fo; otherwise, case (m)

dominates the rest of the possibilities.

Given the analysis above, we can summarize the optimal decisions and profit as follows:

� If Fo ≤ min( a
10
, 2

675c
), the optimal decisions are (δm = 2

5c
, pm = 7

25c
) for the main

store and (t = 0, δo = 1
5c
, po = 3

25c
) for the outlet store, and the optimal profit is

Πmo = 1
25c
− Fo.

� If a
10
≤ Fo ≤ F̄o, the optimal decisions are (δm = B

5c
, pm = −20A+7B

50c
) for the main

store and (t = t̂ =
−9a3c+2aFo+10F 2

o−3
√

9a6c2−4a4cFo+a2F 2
o−20a3cF 2

o

10F 2
o

, δo = B
10c
, po = 3(−10A+B)

50c
)

for the outlet store, and the optimal profit is Πmo = 200A2−10A+B
25Bc

− (1 − t)2Fo, where

A = 20act and B = 1 +
√

1− 20A.

� In all other cases, case (m) dominates resulting with the highest profit for the firm.

The above analysis completes the proof of Lemma 1.

Proof of Propositions 1 and 2: The firm’s optimal store offering strategy and the

corresponding optimal decisions and profit can be derived by comparing the firm’s profits

in the three cases analyzed in the proof of Lemma 1 – cases (m), (mo) and (o). The

comparison will lead to the following outcome.

� If 0 ≤ Fo ≤ min( a
10
, 2

675c
) (Region R.2), we show that case (mo) dominates the other

two cases and hence becomes the firm’s best strategy to offer both the main and outlet

stores. Further, the two stores will be located at the same site due to low fixed cost

of opening an outlet store so that the firm can afford to have it next to the main

store. Accordingly, the optimal decisions are: for the main store, (δm = 2
5c
, pm = 7

25c
),
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which leads to sales of the main store being Qm = 1 − pm−po−at
δm−δo = 1

5
; for the outlet

store, (t = 0, δo = 1
5c
, po = 3

25c
), which leads to the sales of the outlet store being

Qo = pm−po−at
δm−δo − po+at

δo
= 1

5
. The firm’s optimal profit is Πmo = 1

25c
− Fo, which is

composed by its profit in the main store Πmo
m = (pm − δ2

mc)Qm = 3
125c

and that in the

outlet store Πmo
o = (po − δ2

oc)Qo − (1− t)2Fo = 2
125c
− Fo.

� If a
10
≤ Fo ≤ F̄o (Region R.3), where F̄o = 1 if a ≤ 1

36c
and F̄o = 9(−3a2c+

√
15
√
−a4c2+36a5c3)

8(−2+45ac)

otherwise, we show that case (mo) is again the best strategy for the firm. But what is

different from Region 2 above is that the outlet store is opened with a distance to the

main store, where t = t̂ =
−9a3c+2aFo+10F 2

o−3
√

9a6c2−4a4cFo+a2F 2
o−20a3cF 2

o

10F 2
o

. Accordingly, the

optimal value of other decisions are: for the main store, (δm = B
5c
, pm = −20A+7B

50c
), which

leads to the sales of the main store being Qm = 1 − pm−po−at
δm−δo = 40A+B

5B
; for the outlet

store, (δo = B
10c
, po = 3(−10A+B)

50c
), which leads to the sales of the outlet store being Qo =

pm−po−at
δm−δo −

po+at
δo

= −60A+B
5B

. The firm’s optimal profit is Πmo = 200A2−10A+B
25Bc

−(1−t)2Fo,

where A = 20act and B = 1+
√

1− 20A, and the total profit is composed by the firm’s

profit in the main store Πmo
m = (pm−δ2

mc)Qm = (5−B)(40A+B)
250c

and its profit in the outlet

store profit Πmo
o = (po − δ2

oc)Qo − (1− t)2Fo = (−60A+B)(−10A+B)
125Bc

− (1− t̂)2Fo.

� Otherwise (Region R.1), we show that case (m) dominates the other two cases which

implies that the firm will only offer the main store. Accordingly, the optimal decisions

are (δm = 1
3c
, pm = 2

9c
) which leads to the sales being Qm = 1 − pm

δm
= 1

3
. The firm’s

optimal profit is Πmo = 1
27c

.

Plotting the three regions derived above on the (Fo, a) panel yields Figure 2 in Proposition 1,

which completes the proof of this proposition. By summarizing the optimal decisions and

profit in each specific region we derive Table 2 in Proposition 2, which completes the proof

of this result.

Proof of Proposition 3: Note that if the outlet store is not offered, the optimal quality
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and pricing decisions are consistent with those in region R1. So, we have (δm = 1
3c
, pm =

2
9c
, Qm = 1

3
,Πm = 1

27c
). In order to prove this result, we only need to compare the quality

and pricing decisions in regions R2 and R3 to those values.

� Quality of the main store. From Table 2 of Proposition 2, it is known that the optimal

quality in regions R2 and R3 is δm = 1+
√

1−20act
5c

, where t = 0 in region R2 and t = t̂ in

region R3. We can verify that t̂ ≤ 1
36ac

. Given this, it is not difficult to show that

δm =
1 +
√

1− 20act

5c
>

1

3c
.

� Price of the main store. In regions R2 and R3, the optimal retail price of the main

store can be expressed as a function of the quality of the product in the same store,

i.e., pm = δm+cδ2m
2

. Given δm > 1
3c

from above, we can easily show that

pm =
δm + cδ2

m

2
>

1
3c

+ 1
9c

2
=

2

9c
.

� Sales of the main store. The sales volume in the main store is

Qm =
40act+ 1 +

√
1− 20act

5(1 +
√

1− 20act)
=

3

5
− 2
√

1− 20act

5
<

1

3
,

where the last inequality is due to the fact that t ≤ t̂ < 1
36ac

.

� Profit in the main store. The profit in the main store is

Πmo =
(4−

√
1− 20act)(1 + 40act+

√
1− 20act)

250c
,

which is an increasing function in t. So, Πmo < Πmo(t = 1
36ac

) = 1
27c

.

Proof of Corollary 2: Since we use the result in Corollary 2 to prove Corollary 1, so we
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will first prove Corollary 2, followed by the proof of Corollary 1.

Note that this result only applies to the case when both the main and outlet stores are

offered so that the distance of the outlet store, measured by t, is relevant. In this case, for

any given model parameter set (a, c) and any t, we shall first solve for the optimal quality

and pricing decisions for the two stores and express the difference in quality and price in

terms of (a, c, t). Accordingly, they can be expressed as follows:

∆δ = δm − δo =
1 +
√

1− 20act

10c
; (2.4)

∆p = pm − po =
δm + cδ2

m

2
− δo + cδ2

o − at
2

=
2 + 5act+ 2

√
1− 20act

25c
. (2.5)

Clearly, ∆δ in (2.4) is decreasing with t, which implies that quality differentiation decreases

in location differentiation, which is measured by t.

Taking derivative of ∆p given in (A-2) with respect to t results with

∂∆p

∂t
=
a

5
(1− 4√

1− 20act
) ≤ 0,

which implies that price differentiation also decreases in location differentiation. This

completes the proof of Corollary 2.

Proof of Corollary 1: Recall that this result only applies to region R3 where the outlet

store is active and it is located within a certain distance to the main store. The equilibrium

values of qualities, prices and location of the outlet store are given in the last column of

Table 2 in the paper.
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In terms of the sensitivity analysis on the optimal location of the outlet store t = t̂, we have

∂t̂

∂Fo
=
a(18a2c− 2Fo)G(Fo) + 3a(F 2

o + 18a4c2 − 6a2cFo − 20acF 2
o )

10aF 3
oG(Fo)

and

∂t̂

∂c
=

3a2(−3a+ −9a3c+2aFo+10F 2
o√

G(Fo)
)

10F 2
o

,

where G(Fo) =
√

9a4c2 − 4a2cFo + F 2
o − 20acF 2

o . With some simple algebra, we can show

that ∂t̂
∂Fo
≥ 0 and ∂t̂

∂c
≥ 0, which implies that the location differentiation increases in Fo and

c.

In terms of sensitivity analysis on the quality differentiation δm − δo, we have

∂(δm − δo)
∂Fo

=
∂(δm − δo)

∂t̂

∂t̂

∂Fo
≤ 0 and

∂(δm − δo)
∂c

=
2a2c− Fo + 10acFo −

√
9a4c2 − 4a2cFo + F 2

o − 20acF 2
o

10c2
√

9a4c2 − 4a2cFo + F 2
o − 20acF 2

o

.

With some simple algebra, we can show that ∂(δm−δo)
∂c

≤ 0 for any (a, c, Fo) in region R3.

This implies that the location differentiation decreases in both Fo and c.

In terms of sensitivity analysis on the price differentiation pm − po, we have

∂(pm − po)
∂Fo

=
∂(pm − po)

∂t̂

∂t̂

∂Fo
≤ 0 and

∂(pm − po)
∂c

=
∂(pm − po)

∂c

∂c

∂c
+
∂(pm − po)

∂t̂

∂t̂

∂c
.

With some simple algebra, we can show that ∂(pm−po)
∂c

≤ 0, which implies that the price

differentiation decreases in both Fo and c.

Proof of Proposition 4: In this proof, we prove items (a) and (b) and we start with (a)
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first.

(a) In the case without location differentiation, the firm can choose either to open the main

store only or to open both the main and outlet stores on the same site.

If the firm chooses to operate the main store only, according to our previous analysis in the

proof of Propositions 1 and 2, we have the optimal decisions and profit consistent with the

corresponding values in region R1 of Table 2 of the paper as follows: δm = 1
3c

, pm = 2
9c

and

Πm = 1
27c

.

If the firm decides to operate both stores, we have the optimal decisions and profit consistent

with the corresponding values in regionR2 of Table 2 of the paper as follows: δm = 2
5c

, δo = 1
5c

,

pm = 7
25c

, po = 3
25c

and Πmo = 1
25c
− Fo.

By comparing the profits in the above two scenarios, we have Πmo ≥ Πm if Fo ≤ 2
675c

, which

implies that the optimal strategy is to open both stores at the same location; otherwise,

Πmo ≤ Πm, which implies that the optimal strategy is to open the main store only.

(b) In the case without price and quality differentiation (i.e., there is only location

differentiation), we have δm = δo = δ and pm = po = p. Given location differentiation t > 0,

if consumers buy from the main store, their net utility is Um = δv− p. If they buy from the

outlet store, the net utility is Uo = δv − p − at, which is dominated by the net utility of

buying from the main store. Therefore, the consumers would never buy from the outlet

store and the firm would choose to open the main store only. Accordingly, the optimal

decisions are δm = 1
3c

and pm = 2
9c

and the optimal profit is Πm = 1
27c

.

Appendix A (Part II): Base Model with Homogeneous Travel Sensitivity and

with Competition from E-commerce

Recall from the main paper that notation γm and γo represent the switching probability of
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customers who buy from the main and the outlet stores , respectively, to online channels.

Due to competition from e-commerce, the profit function can be revised as follows:

Π = (pm − cm)Q′m + (po − co)Q′o − (1− t)2F ′o − F ′m

= (pm − cm)(1− γm)Qm + (po − co)(1− γo)Qo − (1− t)2(1− γo)Fo − (1− γm)Fm(2.6)

= (1− γm)[(pm − cm)Qm + b(po − co)Qo − b(1− t)2Fo − Fm],

where b = 1−γo
1−γm measures the degree of competition from e-commerce. In particular, the

higher the value of b is, the higher competition intensity from the e-commerce. Following the

profit function, it is clear that the firm’s optimal decisions would only depend on b, rather

than individual values of switching probabilities, γm and γo. We follow the same approach

as that in the base model without competition from e-commerce. That is, we will analyze

the three cases – (m), (o) and (mo) and then compare the firm’s profit across these cases to

derive the best store offering strategy and the corresponding decisions and profit.

Case (m): In this case, only the main store is available. The firm’s profit function can

be rewritten as Π = (pm − cm)(1 − γm)(1 − pm
δm

) = (1 − γm)
[
(pm − cm)(1− pm

δm
)
]
, where[

(pm − cm)(1− pm
δm

)
]

is identical to the firm’s profit function in case (m) without e-commerce.

Therefore, the optimal decisions are the same as in case (m) of Lemma 1: δm = 1
3c

, pm = 2
9c

for the main store. As for the outlet store, the decision set (t, δo, po) can be any values that

satisfy po ≥ pmδo
δm
− at. Accordingly, the firm’s optimal profit is Π = (1− γm) 1

27c
.

Case (o): In this case, only the outlet store is available. The firm’s profit function can be

rewritten as Π = (po − co)(1 − γo)(1 − po+at
δo

) − (1 − t)2(1 − γo)Fo =

(1 − γo)
[
(po − co)(1− po+at

δo
)− (1− t)2Fo

]
, where

[
(po − co)(1− po+at

δo
)− (1− t)2Fo

]
is

identical to the firm’s profit function in case (o) without e-commerce. Thus, the optimal

decisions are the same as in case (o) of Lemma 1. That is, for the effective outlet store, we

72



have:

� If Fo ≤ a
6
: (t = 0, δo = 1

3c
, po = 2

9c
) and Πmo = 1

27c
− Fo.

� Otherwise:

(t =
a3c−2aFo+6F 2

o +
√
a6c2−4a4cFo+a2F 2

o +12a3cF 2
o

6F 2
o

, δo = 1+
√

1+12act
6c

, po = 1−3act+
√

1+12act
9c

) and

Π = (1−12act+
√

1+12act)2

54c(1+
√

1+12act)
− (1− t)2Fo.

As for the inactive main store, the decision set (δm, pm) needs to satisfy po ≤ pm−at+δo−δm.

Case (mo): As seen from the profit functions in cases with and without e-commerce, in

case (mo), the firm’s profit functions do not have a proportional relation as that in cases (m)

and (o). Due to the additional parameter b in the profit function, we were not able to

analytically derive the optimal decisions and profit in this case. So, we use a numerical

approach to derive the constrained optimal values in case (mo), followed by a comparison of

cases (m), (o) and (mo). Figure 3(a), 3(b) and 3(c) of the main paper presents the impact of

e-commerce on i) the firm’s optimal store offering strategy, ii) the optimal distance between

the two stores, t, and iii) the contribution of the main store to the overall sales, measured by

r = Q′m
Q′m+Q′o

, respectively. In the numerical study, we set b ∈ [1, 1.25] to focus on the effect of

e-commerce and fix c = 0.1. In Figures 3(b) and 3(c), we further fix Fo = 0.05 and a = 0.2,

under which both the main and outlet stores are operational with positive sales.

Appendix B: Extended Model with Heterogeneous Travel Sensitivity

Demand function

Let us first derive the demand function. Note that one major difference of this model from

the base model with homogeneous sensitivity analysis is that we have two separate customer

groups/segments: one with low valuation where v ∈ [0, 0.5] and the other with high valuation

where v ∈ [0.5, 1]. Within each customer group/segment, we could use a similar approach
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as that used in the base model in §3 to derive the demand function and then we combine

the demand functions in the two segments to derive the overall demand.

In segment 1 where customers have low valuations, we could have four possible cases:

� Case (1m): Positive sales occurs in the main store only, which happens when po ≥
δopm
δm
− a1t and pm ≤ δm

2
;

� Case (1mo): Positive sales occurs in both the main and outlet store, which happens

when pm− a1t+ δo
2
− δm

2
≤ po ≤ δopm

δm
− a1t. These conditions also imply that pm ≤ δm

2

and po ≤ δo
2
− a1t;

� Case (1o): Positive sales occurs in the outlet store only, which happens when po ≤

pm − a1t+ δo
2
− δm

2
and po ≤ δo

2
− a1t;

� Case (1n): No sales occurs in either of the two stores, which happens when po ≥ δo
2
−a1t

and pm ≥ δm
2

.

Accordingly, the demand function of the main store from segment 1 customers can be

summarized as follows:

Qm
1 =


1
2
− pm

δm
if in (1m)

1
2
− pm−po−a1t

δm−δo if in (1mo)

0 if in (1o) or (1n)

Similarly, the demand function of the outlet store from segment 1 customers can be

summarized as follows:
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Qo
1 =


0 if in (1m) or (1n)

pm−po−a1t
δm−δo − po+a1t

δo
if in (1mo)

1
2
− po+a1t

δo
if in (1o)

As for segment 2 customers, we again have four possible cases:

� Case (2m): Positive sales occurs in the main store only, which happens when po ≥
δopm
δm
− a2t;

� Case (2mo): Positive sales occurs in both the main store and the outlet store, which

happens when pm − a2t+ δo − δm ≤ po ≤ δopm
δm
− a2t and pm − a2t+ δo

2
− δm

2
≥ po;

� Case (2o): Positive sales occurs in the outlet store only, which happens when po ≤

pm − a2t+ δo − δm;

� Case (2n): No sales occurs in either of the two stores, which happens when po ≥ δo−a2t

and pm ≥ δm.

Accordingly, the demand function of the main store from segment 2 customers can be

summarized as follows:

Qm
2 =


1−max{pm

δm
, 1

2
} if in (2m)

1−max{pm−po−a2t
δm−δo , 1

2
} if in (2mo)

0 if in (2o) or (2n)

Similarly, the demand function of the outlet store from segment 2 customers can be

summarized as follows:
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Qo
2 =


0 if in (2m) or (2n)

max{pm−po−a2t
δm−δo , 1

2
} −max{po+a2t

δo
, 1

2
} if in (2mo)

1−max{po+a2t
δo

, 1
2
} if in (2o)

Since there are four possible cases for each segment, we totally have 16 possible cases.

However, some of the cases are not possible. For example, due to the assumption pm ≤ δm,

case (2n) is not possible. Also segment 2 customers have a higher valuation than segment 1

customers, which implies that whenever segment 1 customers buy from the main store,

segment 2 customers would also buy from the main store. In other words, when case (1m)

happens, case (2m) would also happen. Therefore, we could rule out the combination of

cases (1m) and (2o) and the combination of cases (1mo) and (2o). As a result, there are 10

possible combinations of cases in total. They are:

1) Combination of case (1n) and case (2m);

2) Combination of case (1m) and case (2m): This combination requires pm
δm
≤ 1

2
. Accordingly,

the profit function can be written as: Π = (pm − cδ2
m)(1

2
+ 1

2
− pm

δm
) − Fo(1 − t)2. It is

straightforward to characterize the optimal decisions as: pm = 2
9c

and δm = 1
3c

. As a result,

we have pm
δm

= 2
3
≥ 1

2
, which contradicts with the condition of pm

δm
≤ 1

2
. So, this case is not

optimal.

3) Combination of case (1mo) and case (2m): This combination requires pm
δm
≤ 1

2
.

Accordingly, the profit function can be written as:

Π = (pm − cδ2
m)(1

2
+ 1

2
− pm−po−a1t

δm−δo ) + (po − cδ2
o)(

pm−po−a1t
δm−δo − po+a1t

δo
) − (1 − t)2Fo. It is

straightforward to derive the optimal decisions as: pm = 1
2
(δm + cδ2

m) and δm = 1+
√

1−20a1ct
5c

.
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Since pm
δm

= 1
2
(1 + cδm) ≥ 1

2
, which contradicts with the condition pm

δm
≤ 1

2
. So, this case is

not optimal either.

4) Combination of case (1o) and case (2m);

5) Combination of case (1n) and case (2mo);

6) Combination of case (1m) and case (2mo): This combination requires δopm
δm
−a1t ≤ po and

pm−a2t+δo−δm ≤ po ≤ δopm
δm
−a2t. These conditions further lead to po+a2t

δo
≤ pm

δm
≤ pm−po−a2t

δm−δo .

Since a1 ≤ a2, we also have po+a1t
δo
≤ po+a2t

δo
≤ pm

δm
, which leads to δopm

δm
−a1t ≥ po, contradictory

to the requirement of this combination. So, this case is not possible either.

7) Combination of case (1mo) and case (2mo): This combination requires pm−po−a1t
δm−δo ≤ 1

2
≤

pm−po−a2t
δm−δo . However, due to a1 ≤ a2, we must have pm−po−a1t

δm−δo ≥ pm−po−a2t
δm−δo . Contradiction.

Therefore, this case is not possible either.

8) Combination of case (1o) and case (2mo);

9) Combination of case (1n) and case (2o): In Proposition 1 of the main paper, we have

proved that case (2o) is dominated by case (2mo). So, this case is not optimal either.

10) Combination of case (1o) and case (2o): This combination is dominated by

combination (8), since it can be viewed as a special case of combination (8) when one of

the constraints is binding, resulting in Qm
2 = 0. So, this case is not optimal either.

According to the analysis above, there are only four combinations/cases that can possibly

be optimal: (1) combination of case (1n) and case (2m); (2) combination of case (1o) and

case (2m); (3) combination of case (1n) and case (2mo); and finally, (4) combination of case

(1o) and case (2mo). For presentation purpose, possible scenarios of the demand function for

the main store have been summarized in Table 4 in the main paper. Further, the demand

functions for the four combinations that can possibly be optimal have been summarized
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in Table 5 in the main paper. The four combinations here correspond to the four cases

presented in Table 5.

The next step is to analyze each of the four possible combinations/cases and compare to

derive the best combination.

Case (1): In this combination, only segment 2 consumers would buy from the main store.

This is corresponding to case (m) in the base model studied in §4. So, the optimal decisions

are the same as that of case (m) in Lemma 1, where δm = 1
3c

and pm = 2
9c

. Accordingly, the

firm’s optimal profit is Π = 1
27c

.

Case (2): In this combination, segment 1 customers would buy from the outlet store and

segment 2 customers would buy from the main store. The profit function is Π = (pm −

cδ2
m)(1− pm

δm
) + (po− cδ2

o)(
1
2
− po+a1t

δo
)− (1− t)2Fo. Solving the first-order conditions yields a

stationary point that can possibly be optimal:

δm =
1

3c
, pm =

2

9c

t =
2a3

1c− 2a1Fo + 12F 2
o + a1

√
4a4

1c
2 − 8a2

1cFo + F 2
o + 48a1cF 2

o

12F 2
o

δo =
1 +
√

1 + 48a1ct

12c
, po =

1− 12a1ct+
√

1 + 48a1ct

36c
.

(2.7)

Case (3): In this combination, segment 2 customers would buy from both the main and

the outlet stores. This is corresponding to case (mo) in the base model studied in §4. The

optimal unconstrained decisions are the same as that of case (mo) in Lemma 1:
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t =
−9a3c+ 2aFo + 10F 2

o − 3
√

9a6c2 − 4a4cFo + a2F 2
o − 20a3cF 2

o

10F 2
o

δm =
B

5c
, pm =

−20A+ 7B

50c
, δo =

B

10c
, po =

3(−10A+B)

50c
,

where A = 20act and B = 1 +
√

1− 20A.

Case (4): In this combination, segment 1 customers would buy from the outlet store,

segment 2 customers would buy from both the main store and the outlet stores. The profit

function is

Π = (pm − cδ2
m)(1 − pm−po−a2t

δm−δo ) + (po − cδ2
o)(

pm−po−a2t
δm−δo − po+a2t

δo
+ 1

2
− po+a1t

δo
) − (1 − t)2Fo.

Unfortunately, we were not able to solve the first-order conditions for all five decision

variables. However, if we treat δo as fixed, solving the other four first-order conditions

yields a stationary point that can possibly be optimal:

δm =
C −

√
C2 + 3cδo(a1a2 − a2

2 − δoFo) [2a2
1cδo − 2(4a2 + δo + 2cδ2

o)Fo + a1(a2 − 2a2cδo + 4Fo)]

6c(a1a2 − a2
2 − δoFo)

(2.8)

t =
δo(−2a1δm + 2a2δm − 2a1cδ

2
m + 4a2cδ

2
m − a1δo + 4a1cδmδo − 4a2cδmδo + 2a1cδ

2
o + 8δmFo + 8δoFo)

2(−4a1a2δm + 4a2
2δm − a2

1δo + 4δmδoFo + 4δ2
oFo)

pm =
δm(2δm + 2cδ2

m + δo + 2cδ2
o − 2a1t+ 4a2t)

4(δm + δo)
,

po =
2δmδo + 2cδ2

mδo + δ2
o + 2cδ3

o − 4a2δmt− 2a1δot

4(δm + δo)
,

where C = a1a2 − a2
2 − a2

1cδo − δo(1− 4cδo)Fo.

Given the complication in the firm’s profit function in δo, it is analytically challenging to

derive the unconstrained optimal δo in this case. Hence, we resort to numerical analysis to
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obtain the constrained optimal δo and the other corresponding decisions and profit. Without

loss of generality, we have used c = 0.1 throughout the numerical study here. We will focus

on the other three parameters Fo, a1 and a2. In particular, our numerical study indicates

that the effect of travel sensitivity heterogeneity depends on whether Fo is below or above

a threshold value, F ′o = 2
675c

, which also appears in the base model in Figure 2. Hence, the

two values we take for Fo are (19
20

)( 2
675c

) < F ′o and (4)( 2
675c

) > F ′o which represent cases of low

and high fixed cost of the outlet store (compared to the threshold F ′o), respectively.

Similar to the case with homogeneous travel sensitivity, we can plot the firm’s optimal store

strategy (whether to operate both the main and outlet stores) in the (a1, a2) plane. In our

numerical examples, the travel sensitivity a1 and a2 range from 0 to 1, where a2 ≥ a1. So we

only need to examine the upper left triangle. Moreover, due to different strategies derived

under a low or a high fixed cost for the outlet store, we plot the case with a low fixed cost

in Figure 4(a) and the case with a high fixed cost in Figure 4(b) in the main paper.
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Chapter 3

Coordinating Supply and Demand on

an On-demand Service Platform with

Impatient Customers

3.1. Introduction

Recent advances in internet/mobile technologies have enabled the creation of various

innovative on-demand service platforms for providing on-demand services

anytime/anywhere. Examples include grocery delivery services (e.g., Instacart, Google

Express), meal delivery services (e.g., Sprig, Blue Apron), and food delivery services

directly from restaurants (e.g., DoorDash, Deliveroo (U.K.), Yelps Eat24), consumer goods

delivery services (e.g., UberRush), dog-walking services (e.g., Wag), and taxi-style

transportation (e.g., Uber, Didi).

To meet dynamic customer demand anytime/anywhere, it is economical for on-demand

service firms to use independent providers (or agents) to fulfill customer requests quickly.
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However, using independent agents to deliver on-demand services can be challenging

because work participation of independent providers is primarily driven by earnings.

However, because independent agents do not get compensated for idle times, earnings

depends on wage rate and utilization, which depends on customer demand. At the same

time, the demand associated with wait-time and price sensitive customers depends on two

key factors: price and waiting time. Since customer’s waiting time depends on the number

of participating agents, which depends on the wage and the customer demand. Therefore,

the “supply” of participating agents and the “demand” of customer requests are

endogenously dependent on the wage and the price specified by the firm.

The underlying interactions between supply and demand through wage and price selections

make it challenging for an on-demand service firm to coordinate endogenous supply and

demand in different time periods by: (1) setting the right wage (i.e., compensation) to get

the right supply (i.e., the right number of earnings sensitive participating agents); and (2)

charging the right price to control the right demand (i.e., the right amount of wait-time and

price sensitive customers). To elaborate, consider the simple case when the demand is fixed.

If the firm offers a higher wage, more agents will participate and customer satisfaction will

increase due to a quicker service. However, participating agents will earn less due to low

utilization. On the other hand, if the firm offers a lower wage, fewer agents will participate

and customer satisfaction will decrease due to longer waiting times. For example, as reported

by Klein (2016), the recent closure of SpoonRocket (a 10-minute meal on-demand delivery

service based in Berkeley, California) was due to the low wages offered by SpoonRocket to

its independent drivers that resulted in an insufficient number of independent participating

drivers. Consequently, many meals were delivered late, causing many unhappy customers

and sales dropped subsequently. Eventually, SpoonRocket was bankrupt in March 2016.

In view of the intricate relationship between endogenous supply and demand through wage

and price selections, we develop an analytical framework to examine how an on-demand
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service firm should set its price, wage and payout ratio (i.e., the ratio of wage over price).

(Throughout this paper, we shall refer to “payout ratio” as the percentage of the price

collected from the customers that is paid to the providers.) In our framework, we use a

queueing model to study the situation where both supply (i.e., number of providers) and

demand (i.e., customer arrival rate) are “endogenously” dependent on wage, price and other

operating factors. Our model captures an operating environment where (1) wait-time and

price sensitive customers are “heterogeneous” in their evaluation of the service; and (2)

earnings sensitive independent providers are “heterogeneous” in their reservation price (i.e.,

the minimum wage for work participation).

By analyzing the steady state performance of our queueing model in equilibrium, we

characterize the optimal price, wage and payout ratio (i.e., the ratio of wage over price) in

the basic setting under which the objective is to maximize the firm’s profit. We then

extend our analysis to a more general setting under which the objective is to maximize the

firm’s profit plus the social (customer and provider) welfare. For both settings, we obtain

two key findings:

1. When the potential customer demand becomes higher, it is optimal for the firm to

charge a higher price, pay a higher wage, and offer a higher payout ratio.

2. When customers become more wait-time sensitive, it is optimal for the firm to pay a

higher wage and offer a higher payout ratio; however, the firm may need to charge a

lower price to sustain the demand of increasingly impatient customers.

Our findings have the following managerial implications. First, as both the optimal price

and the optimal wage are increasing in the maximum potential customer demand rate, our

result provides an additional explanation/justification for an on-demand service firm (such

as Uber) to charge its customers a higher price and pay its independent providers a higher

wage when demand is higher. Second, while it is simple to share a fixed percentage of its
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revenue with the independent agents (e.g., Uber shares 80% of its revenue with its drivers;

see Damodaran (2014)), we find that the firm can increase its own profit as well as the total

(customer and provider) welfare by offering a higher payout ratio when demand is higher.

We hope this result might motivate on-demand service firms to re-evaluate their current

fixed revenue sharing scheme. For instance, the firm may offer a higher (lower) payout ratio

during peak hours (non-peak hours). Third, we also find that it is optimal for the firm to

reduce its payout ratio when the number of registered independent providers becomes larger.

This analytical result provides an economic justification for explaining why Uber reduced

its payout ratio from 0.8 (initial payout ratio for its first cohorts of drivers) to 0.75 (for

its second cohorts of drivers in 2014). Fourth, for urgent on-demand services with highly

wait-time sensitive customers, the firm may need to lower its price to sustain demand from

increasingly impatient customers.

This paper is organized as follows. We provide a brief review of related literature in Section

2. Section 3 presents our queueing model of endogenous supply and demand along with

heterogeneous providers and customers. In Section 4, we analyze the equilibrium behavior

of our queueing system to determine the optimal price, wage and payout ratio for maximizing

the firm’s profit. We also adapt our base model to two special cases when the firm uses a

fixed payout ratio and when the firm sets a fixed service level. In Section 5, we extend our

analysis to the case when the objective of the firm is to maximize its own profit plus the

total (customer and provider) welfare. We construct some illustrative numerical examples

in Section 6 based on actual data provided by Didi: the leading taxi-style transportation

on-demand service in China. We conclude the paper in Section 7. We also extend some of

our analytical results for the base model under more general assumptions in Appendix A.

For ease of exposition, all mathematical proofs for the results in the main text are provided

in Appendix B.
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3.2. Literature Review

Our paper belongs to an emerging stream of research that examines operations and pricing

issues arising from the sharing economy. Besides on-demand service platforms, a number

of researchers have also studied other types of platforms in the sharing economy. Benjaafar

et al. (2015), Fraiberger and Sundarajan (2015), and Jiang and Tian (2015) examined

a customer’s decision to purchase or to rent assets in the presence of “product sharing

platforms” such as Airbnb. By crawling data from Airbnb, Li et al. (2015) showed empirically

that “professional” owners earned more. Our paper differs from this stream of research in

the following aspect. While product sharing platforms set the payout amounts to the owners

and owners set the price, customers using such product sharing platforms often reserve the

service in advance, which present very different issues in the decision making process and

timing of the underlying service request mechanisms, as compared with on-demand service

platforms which provide wait-time sensitive service on-demand.

Recent developments of various on-demand service platforms such as Uber and DoorDash

(see Kokalitcheva (2015), Wirtz and Tang (2016), and Shoot (2015)) have motivated

researchers to explore various operational issues. First, there is an on-going debate

regarding the definition of independent contractors for various on-demand service platforms

(e.g., see Roose (2014)). At the same time, it is of interest to examine how dynamic wage

affects supply especially when independent providers can freely choose whether and when

to work. Chen and Sheldon (2015) examined transactional data associated with 25 million

trips obtained from Uber and showed empirically that dynamic wage (due to surge pricing)

could entice independent drivers to work for longer hours. Moreno and Terwiesch (2014)

also examined empirically the independent contractor’s bidding behavior on freelancing

platforms. Allon et al. (2012) explored the process for matching providers to consumers

when capacities are exogenous.
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A number of researchers have recently studied the impact of wage and price on supply and

demand in the context of on-demand services. Specifically, they examined whether it would

be beneficial for an on-demand service firm to adjust its prices and wages dynamically based

on real-time system status including the current number of customers requesting service and

the number of providers in the system. Riquelme et al. (2015) and Cachon et al. (2015)

compared the impact of static versus dynamic prices and wages. By assuming that customers

are heterogeneous in terms of valuation and the payout ratio is exogenously given, Riquelme

et al. (2015) found that static pricing performs well. On the other hand, Cachon et al. (2015)

found that surge pricing performs well by assuming that customers are homogeneous and the

payout ratio is endogenously determined. Hu and Zhou (2016) developed a general model

where supply purely depends on wage and demand purely depends on price, and derived

the conditions under which the optimal revenue sharing ratio is a linear function of the

demand rate. Gurvich et al. (2015) also developed a newsvendor-style model to examine the

optimal price and wage decisions. This stream of research assumes that customer demand

is independent of waiting time and supply (or capacity) is independent of system utilization

over time. In contrast, our model captures the rational behavior of customers who are

sensitive to wait-time (and price) and independent providers who are sensitive to earnings

which depend on the system utilization.

One research stream in the queueing literature has studied pricing decisions for services

where customers can incur waiting or delay costs. Of particular relevance to our paper, a

number of research papers have examined an operating environment that uses a static

uniform (non-discriminatory) pricing strategy for heterogeneous customers. Afeche and

Mendelson (2004) analyzed the revenue-maximizing and socially optimal equilibria under

uniform pricing for heterogeneous customers with different evaluations of their service, and

found that the classical result that the revenue-maximizing admission price is higher than

the socially-optimal price (e.g., see Naor (1969)) can be reversed under a more generalized

delay cost structure. Zhou et al. (2014) analyzed the structure of the optimal uniform
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pricing strategies for two classes of customers with different service valuations and

wait-time sensitivities. Armony and Haviv (2003) and Afanasyev and Mendelson (2010)

studied the competition between two firms under uniform pricing for two classes of

heterogeneous customers. All the above research papers, however, are based on the

assumption that capacity is exogenously given. In contrast, our paper considers the case

when the supply (capacity) depends on wage and system utilization, which needs to be

determined endogenously.

Finally, our model is closely related to some recent work by Taylor (2016). To our knowledge,

Taylor (2016) is the first to examine pre-committed price and wage based on customer

demand and other operating factors in the context of on-demand services. He compared

the optimal prices when the providers are independent contractors or regular employees, and

examined the impact of wait-time sensitivity on the optimal price and wage using a two-point

distribution for both the customer valuation of the service and the provider’s reservation

price. Our model allows these two distributions to be continuous, and complements Taylor’s

work in two important ways. First, our focus is to examine the impact of demand rate,

wait-time sensitivity, service rate, and the size of available providers (who are on-reserve) on

the optimal price, wage and payout ratio (ratio between the optimal wage and the optimal

price). Second, in addition to maximizing its profit, we also consider the case when the firm

maximizes the sum of its own profit and the total welfare. We find that our key results

continue to hold: the optimal price, the optimal wage and the optimal revenue sharing ratio

are increasing in the potential customer demand rate.
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3.3. A Model of Wait-time Sensitive Demand and

Earnings Sensitive Supply

We consider an on-demand service platform that coordinates randomly arriving (price and

wait-time sensitive) customers with (earnings sensitive) independent service providers. As

our motivating example, we shall use on-demand transportation service platforms (such as

Uber) to illustrate our model formulation and results throughout this paper, whereas our

model can also be used to study other on-demand service applications.

Customers arrive randomly at the platform to request for service, and each service request

consists of a (random) amount of service units to be processed by a service provider (e.g.,

travel distance in km). Throughput this paper, we assume that the requested service by any

customer can be met by any of the available service providers. The platform charges each

customer a fixed price rate p per service unit (e.g., dollar per km), and offers a fixed wage

rate w per service unit to each participating service provider. (Here, we use “wage rate” per

service unit so that the payout ratio w
p

is well defined. However, we shall compute “earnings

rate” per unit time later for providers to decide whether to participate or not.)

In the same spirit as in Taylor (2016), the price rate p and wage rate w are pre-committed.

However, their values can vary across different time periods depending on the specific

market characteristics such as the average customer demand rate and the expected number

of available providers. In other words, we focus on time-based price/wage over

peak/non-peak periods instead of real-time dynamic pricing that depends on real-time

system status including the number of customers requesting service and number of

available providers in real time.1

1As articulated in MacMillan (2015) and Taylor (2016), other than Uber and Lyft, many customers resist
real time dynamic pricing and most on-demand service providers tend to adopt this form of time-based
pricing.
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Each customer decides whether to use the platform to request for service, and each

independent provider decides whether to participate. We assume that the price rate p and

wage rate w are known to the customers and the providers in advance so that they can

make their informed decisions. For each service request, the platform will assign one of the

available participating providers to serve the customer.2 The primary objective of the

service platform is to select the optimal price rate and wage rate, denoted by p∗ and w∗, so

as to maximize its average profit.

3.3.1 Customer request rate λ and price rate p

Consider a certain time period (say, peak hours from 8am to 10am). The maximum potential

customer demand rate for the service during this time period is given by λ̄, each of which

has a valuation of the service that is based on a value rate v per service unit, where v varies

across customers. To model heterogeneous customers without losing tractability, we assume

that there is a continuum of customer types so that the value rate v spreads over the range

[0, 1] according to a cumulative distribution function F (.), where F (.) is a strictly increasing

function with F (0) = 0 and F (1) = 1.

To capture the notion of wait-time sensitivity, we assume that the utility function of a

customer with value rate v is given by

U(v) = (v − p)d− cWq, (3.1)

where:

(v−p) is the surplus per service unit and d represents the average service units dictated by a

2Our model does not consider any specific assignment mechanism. For instance, the service platform can
assign an available participating provider based on certain specific criteria (e.g, Uber assigns an available
driver closest to the pickup location), or can announce a service request to all available participating service
providers and assign the request to the first respondent.
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customer (not the provider)3, c denotes the cost of waiting per unit time, and Wq represents

the expected wait-time for the service.4

Observe from (3.1) that U(v) = (v − p)d − cWq and assume that a rational customer with

valuation v will request for service only if U(v) ≥ 0,5 the platform can use p and w to

indirectly control the effective demand (i.e., the customer request rate) λ so that

λ = Prob{U(v) ≥ 0} · λ̄ = Prob{v ≥ p+
c

d
Wq} · λ̄.

By defining the “target” service level s = Prob{v ≥ p+ c
d
Wq}, the effective customer request

rate λ (i.e., demand) is given by:

λ = sλ̄. (3.2)

Because of the one-to-one correspondence between target service level s and the effective

demand rate λ, we shall focus our analysis on s instead of λ throughout this paper for

mathematical convenience. Using the fact that s = Prob{v ≥ p + c
d
Wq} and that v ∼ F (.),

the price rate p satisfies the following equation:

p = F−1(1− s)− c

d
Wq, (3.3)

where the price rate p decreases in the expected wait-time Wq and the unit waiting cost c.

3By leveraging internet and mobile technologies, customer requests (e.g., pick up and drop off locations)
and the service operations (e.g., route) can be monitored or controlled by the on-demand platform. As
such, service units (e.g., travel distance) can be assumed to be dictated by the customers, and cannot
be manipulated by the service providers. Thus, the service providers cannot increase their earnings by
lengthening the travel distance deliberately with information transparency and real-time location tracking
capabilities.

4We assume that customers can easily acquire knowledge about the expected waiting time for service
based on their prior experience or through internet/social media. For example, as reported by Mosendz and
Sender (2014), the average waiting time for an Uber service in different major cities (New York City, San
Francisco, etc.) is between 3 to 4 minutes.

5In other words, in equilibrium, only customers with value rate v ≥ p + c
dWq will use the platform to

request for service, and customer requests with value rate v < p + c
dWq will not use the platform to meet

their service need.
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3.3.2 Number of participating providers k and wage rate w

Let K be the (maximum) number of potential earnings-sensitive providers who may decide

to participate over the same time period. (Essentially, K represents the number of registered

providers who are eligible to participate.) For any given (p, w), let k be the actual number

of providers participating on the platform, where k ≤ K. Also, let µ denote the average

service speed (number of service units processed per unit time; e.g., travel speed measured in

terms of km per hour) of the service providers so that µ/d represents the service rate of the

providers (i.e., average number of customers served per hour).6 Given the customer request

rate λ and the number of participating providers k, the utilization of these k participating

providers is equal to λ
k·(µ/d)

, where λd < kµ to ensure system stability. The average wage

per unit time of a participating provider (when working) is equal to the wage per service

unit w multiplied by the average service speed µ. Accounting for the utilization, the average

“earning rate” per unit time of a participating provider is equal to wµ · λd
kµ

= w λd
k

.7

To model the notion of earnings-sensitivity, we assume that each potential provider has a

reservation rate r per unit time (i.e., corresponding to his outside option), where r varies

across different providers. To model the heterogeneity among providers, we assume that

there is a continuum of provider types so that the reservation rate r spreads over the range

[0, 1] according to a cumulative distribution function G(.), where G(.) is a strictly increasing

function with G(0) = 0 and G(1) = 1. For a (potential) provider with reservation rate r, he

will participate to offer service only if his average earning rate w λd
k

is at least equal to r.

Let β denote the proportion of providers who participate in the platform to offer service

during this time period. Then, β = Prob{r ≤ w λd
k
} = G(w λd

k
), and the actual number of

6If the service units d are already measured in terms of time units, we can simply set µ = 1 in this case.
7For independent service providers, utilization and wage rate are the two key factors for their participation.

For example, Depills (2016) reported that Uber drivers obtain higher earnings primarily because their
utilization rate (measured in terms of percentage of miles driven with a passenger) is much higher than
that for taxi drivers. For instance, Uber driver’s utilization is 64.2%, while taxi driver’s utilization is only
40.7% in Los Angeles.
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participating providers k (i.e., supply) is given by

k = βK. (3.4)

Also, in equilibrium, β = G(w λd
k

) so that:

G−1(β) = w
λd

k
. (3.5)

From (3.4) and (3.5), we can express the wage rate w as a function of the number of

participating providers k:

w = G−1(β)
k

λd
= G−1(

k

K
)
k

λd
. (3.6)

3.3.3 Problem Formulation

Since the platform earns an average profit of (p−w)d for each customer request, the platform’s

average total profit is then equal to π = λ(p−w)d. By substituting (3.3) and (3.6) into the

profit function, we can express the profit function π as a function of (k, s) below:

π(k, s) = λd

[
F−1(1− s)− c

d
Wq −G−1(

k

K
)
k

λd

]
. (3.7)

Considering the system stability condition λd < kµ, the optimization problem of the platform

can be formulated as

max
k,s

π(k, s) ≡ λd

[
F−1(1− s)− c

d
Wq −G−1(

k

K
)
k

λd

]
, subject to k >

λd

µ
,

from which we can determine the optimal supply (i.e., the number of participating providers

k∗) and the optimal demand (i.e., λ∗ via optimal s∗ through (3.2)). Then, we can use (3.3)
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and (3.6) to retrieve the corresponding optimal price rate p∗ and optimal wage rate w∗ from

k∗ and λ∗.

3.3.4 Notation

This summarizes our model and problem formulation that captures the impact of price and

wage rates on the decisions of wait-time and price sensitive customers to request for service

and earnings sensitive providers to participate. For ease of reference, we list below the basic

notation used in the paper.

� K : Maximum number of potential service providers who may opt to participate;

� k : Actual number of participating service providers (k ≤ K);

� λ̄ : Customer demand rate who may opt to use the platform to request for service;

� λ : Actual customer request rate (λ ≤ λ̄);

� d : Average amount of service units per service request;

� µ : Average service speed of the service providers;

� v : Value rate per service unit of a customer;

� F (.) : Cumulative distribution of value rate of customers v;

� r : Reservation (earning) rate of service providers;

� G(.) : Cumulative distribution of reservation rate of service providers r;

� c : Unit waiting cost of customers;

� s : Target service level;

� p : Price rate (price per service unit) charged to customers;

� w : Wage rate (wage per service unit) paid to service providers.

93



3.4. The Base Model

To characterize the optimal price and optimal wage, we need to determine the joint optimal

values of (s, k) that maximize the expected profit π(k, s) given in (3.7) subject to the system

stability constraint: k > λd
µ

. To explicate our analysis, we shall assume that the distribution

of value rate v and the reservation wage rate r are uniformly distributed over the range [0,1]

so that F (v) = v and G(r) = r. Furthermore, we shall approximate the (expected) waiting

time Wq given in the customer’s utility function (3.1) based on an M/M/1 queue with service

rate k(µ
d
) so that the wait-time function Wq has the following simple closed-form expression:

Wq =
λ(

k · µ
d

)
·
(
k · µ

d
− λ
) =

λd2

kµ(kµ− λd)
. (3.8)

While we shall assume that the following assumption holds for the reminder of this paper,

all our results can be directly extended to the more general case where the positive support

of the uniform distribution of F (.) or G(.) is within the ranges of [a, b] rather than [0, 1], as

used in our illustrative numerical examples in Section 6.

Assumption 1: F (.) ∼ U [0, 1], G(.) ∼ U [0, 1], and Wq = λd2

kµ(kµ−λd)
.

Under Assumption 1, the price, wage and profit functions given in (3.3), (3.6) and (3.7),

respectively, can be simplified as:

p = (1− s)− c
(
λd

kµ

)
1

kµ− λd
(3.9)

w =
k2

Kλd
(3.10)

π(k, s) = λd

[
(1− s)− c

(
λd

kµ

)
1

kµ− λd
− k2

Kλd

]
. (3.11)
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By using the above expressions, we can maximize the expected profit π(k, s) given in (3.7)

subject to the system stability constraint: k > λd
µ

, and obtain the following results:

Proposition 1. The optimal price p∗, the optimal wage w∗, and the platform’s optimal profit

π∗ exhibit the following characteristics:

1. When K or µ increases, w∗ decreases, π∗ increases, but p∗ is not necessarily monotonic.

2. When c increases, w∗ increases, π∗ decreases, but p∗ is not necessarily monotonic.

3. When λ̄ or d increases, w∗, p∗ and π∗ increase.

As given in the proof of Proposition 1, we can also derive some monotonicity properties on

how the different model parameters affect the optimal service level s∗, the optimal number

of providers k∗, the optimal expected wait-time W ∗
q , the optimal customer request rate λ∗,

and the optimal system utilization ρ∗ = λ∗d
k∗µ

. We summarize these monotonicity properties

in Table 1.

Table 3.1: Impact of model parameters on s∗, k∗, W ∗
q , λ∗ and ρ∗.

s∗ k∗ W ∗
q λ∗ ρ∗

K ↑ ↑ ↓ ↑ ×
µ ↑ × ↓ ↑ ×
c ↓ × ↓ ↓ ↓
λ̄ ↓ ↑ ↑ ↑ ↑
d ↓ ↑ ↑ ↓ ↑
↑(increasing); ↓(decreasing); ×(non-monotonic)

Proposition 1 shows that when the maximum number of potential providers K (or when the

service speed µ) increases, the potential capacity of the system becomes larger. As such, the

platform can increase the number of providers k∗ and increase the service rate s∗ (or the

corresponding customer request rate λ∗) by lowering its wage rate w∗, and can obtain a higher

profit π∗. However, when k∗ and s∗ (as well as λ∗) increase, Equation (3.9) reveals that the
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optimal price rate p∗ is not necessarily monotonic. This explains the first statement. This

result implies that it is beneficial for the platform recruit more potential service providers

K to join the platform, and help (if possible) to increase their average service speed µ.

Next, when the waiting cost c increases, the platform should lower its the service level s∗

so as to reduce the corresponding customer request rate λ∗ and expected wait-time Wq as

given in (3.8). Consequently, the platform earns less. However, as the optimal number of

providers k∗ is not necessarily monotonic, Equation (3.9) reveals that the optimal price rate

p∗ is also not necessarily monotonic. This explains the second statement.

Finally, when the potential customer demand rate λ̄ increases, the third statement reveals

that the platform should increase its price rate p∗ to increase the customer request rate λ∗

(even though the service level s∗ is actually lower since λ∗ = s∗ · λ̄), and increase its wage rate

w∗ so as to attract more providers k∗ to participate. Overall, the platform earns a higher

profit π∗ when the potential customer demand rate λ̄ increases. Also, when the average

amount of service units d increases, it increases the overall workload to the system for each

customer request and essentially has the same effect as increasing the customer demand rate

λ̄. Consequently, the optimal price rate, the optimal wage rate and the optimal profit behave

the same. This explains the third statement.

While optimal price rate is not necessarily monotonic with respect to K, µ and c, we can

prove the following monotonicity property of the optimal payout ratio w∗

p∗
as as the model

parameters change.

Proposition 2. The optimal payout ratio w∗

p∗
increases in c, λ̄ and d, and decreases in K

and µ.

Proposition 2 shows that the platform should increase the payout ratio w∗

p∗
to its providers

when the customer’s waiting cost c is higher, the maximum customer demand rate λ̄ is
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higher or the average amount of service units d is higher. On the other hand, the platform

should reduce the payout ratio when the maximum number of potential service providers K

or the average service speed µ increases. One interesting implication of this result is that it

would be more profitable for an on-demand transportation service platform (such as Uber)

to increase the payout ratio to its participating drivers when the customer demand rate λ̄ is

higher and/or the travel speed µ is lower during rush hours.

Proposition 2 also indicates that it is more profitable for the platform to lower its payout

ratio when the number of registered providers K increases. It is interesting to note that

this result is consistent with Uber’s strategy as reported by Huet (2014) that Uber offered a

payout ratio of 0.8 for its first cohorts of drivers in San Francisco initially, but Uber lowered

its payout ratio to 0.75 for its second cohorts of drivers in 2014 (i.e., as the number of

registered drivers increases). Therefore, this result provides an economic justification for

Uber to reduce its payout ratio as K increases.

3.4.1 Special case 1: when the payout ratio w
p is fixed

As many on-demand service platforms (such as Uber and Didi) have adopted a fixed payout

ratio to their service providers, we can adapt our base model to analyze this special case

by imposing an additional constraint w
p

= α. We can use a similar analysis to establish the

following result.

Proposition 3. Under the additional constraint that w
p

= α, 0 < α < 1, both the optimal

wage rate w∗ and the optimal price rate p∗ increase in λ̄ and d.

When the payout ratio is held constant so that w
p

= α, Proposition 3 implies that the optimal

price rate p∗ (and thus the optimal wage rate w∗ due to a fixed payout ratio) should both

be higher when customer demand rate for service λ̄ is higher or when the average amount of
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service units d is higher. (We remark that the optimal price and wages rates, however, are

not necessarily monotone in either the number of available service providers K, the average

service speed µ, or the unit waiting cost c.) Our results thus suggest that an on-demand

transportation service platform of using a fixed payout ratio (such as Uber) should charge

a higher price (and thus provide a higher wage rate) during rush hours when the customer

demand is high. This result is consistent with the notion of “surge pricing” as adopted by

Uber and Lyft; see Cachon et al. (2015) for some recent discussions on the role of surge

pricing.

We note that both Propositions 1 and 3 reveal that when the customer demand is higher,

the platform should charge a higher price rate and offer a higher wage rate, regardless of

whether the payout ratio is variable or fixed. In Section 6, we shall further compare the

optimal profits of the platform between these two different settings using some numerical

examples motivated by the sample data provided by Didi.

3.4.2 Special case 2: when the service level s is exogenously given

As on-demand service platforms continue to emerge and innovate, a new start-up platform

might need to target a very high service level to ensure high customer satisfaction and

gain popularity, at the expense of a lower near-term profit, during the initial phase of its

operations. We can adapt our base model to analyze this special case by imposing a fixed

target service level s. In other words, when the parameter s (or equivalently, the customer

request rate λ because λ = sλ̄) is exogenously given, the optimization problem of the platform

is now reduced to:

max
k

π(k) ≡ λd

[
(1− s)− c

(
λd

kµ

)
1

kµ− λd
− k2

Kλd

]
, subject to k >

λd

µ
.
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It is straightforward to show that the above profit function π(k) is concave and we can

determine the optimal number of participating providers k∗ using the first-order condition.

Then, we can use (3.9) and (3.10) to retrieve the corresponding optimal price rate p∗ and

optimal wage rate w∗ from the value of k∗. The following proposition summarizes the main

results for this special case.8

Proposition 4. The optimal price p∗, the optimal wage w∗, and the optimal profit π∗ exhibit

the following characteristics:

1. When K or µ increases, p∗ increases, w∗ decreases, and π∗ increases.

2. When c increases, p∗ decreases, w∗ increases, and π∗ decreases.

3. When λ̄ or d increases, p∗ decreases and w∗ increases.

Proposition 4 can be interpreted as follows. When the maximum number of potential

providers K or the service speed µ becomes higher, the potential capacity of the system

increases. The first statement asserts that it is then optimal for the platform to charge a

higher price p∗ (because of lower wait-time due to higher capacity), offer a lower wage w∗

(because there are plenty of potential providers), and earn a higher profit π∗. The second

statement states that when customers become less patient (i.e., when c increases), the

platform should lower its price p∗ (to compensate for the higher waiting cost), offer a

higher wage w∗ (to entice more providers to offer service), and consequently, the platform

earns less. Finally, when the customer request rate λ (or equivalent, λ̄, as λ = sλ̄ and s is

fixed) or the average amount of service unit d increases, the average workload of the system

increases. As such, the third statement reveals that the platform should lower its price p∗

to compensate for the higher waiting cost and offer a higher wage w∗ to entice more

providers to participate.

8The results of Proposition 4 continue to hold under more general distributions F (.) or G(.) and general
wait-time function Wq. For ease of exposition, we shall relegate the details to Appendix A.)
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By comparing the results of Propositions 1 and 4, one can observe that most of the results

remain the same except for the characteristics of the optimal price rate p∗. When the service

level s is endogenously determined, the optimal price rate p∗ is not necessarily monotonic for

certain model parameters, as stated in the first two statements of Proposition 1. However,

when λ̄ increases, the third statement of Proposition 1 reveals an opposite result, i.e., the

optimal price rate p∗ increases, versus p∗ being decreasing in λ̄ as given in Proposition 4. We

can explain this opposite result as follows. When λ̄ increases under a given s, the customer

demand rate λ = sλ̄ increases, and consequently, the platform has to offer a higher wage rate

w∗ to increase the number of providers k∗. Without the flexibility to adjust s, one can use

(3.9) and the fact that λ = sλ̄ to show that the corresponding optimal price rate p∗ would

decrease as stated in Proposition 4. On the other hand, when s (or thus the customer request

rate λ) is endogenously determined, the platform has the flexibility to charge a higher price

rate p∗ and offer a higher wage rate w∗ to better coordinate demand and supply as stated

in Proposition 1.

We point out that Proposition 4 confirms the results (as also shown in Proposition 1) that

it is always beneficial for the platform to recruit more potential service providers to join

the platform (i.e., increase K), and to help (if possible) providers to increase their average

service speed µ, regardless of whether the service level is fixed or endogenously determined.

We can use the results of Proposition 4 to characterize the optimal payout ratio w∗

p∗
as follows:

Corollary 1. The optimal payout ratio w∗

p∗
increases in c, λ̄ and d, but decreases in K and

µ.

The results in Corollary 1 are consistent with those given in Proposition 2. In particular,

the platform should still increase the payout ratio w∗

p∗
to its providers when the customer’s

waiting cost c is higher or the maximum customer demand rate λ̄ is higher, but should reduce

the payout ratio when the maximum number of potential service providers K or the average
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service speed µ increases, even if the platform intends to maintain a constant target service

level s at any time.

3.5. Extension: Social Welfare

Beside its own profit, the platform may have an interest in managing its customer and

provider welfare carefully, especially when the practices of some service platforms could be

potentially controversial. For example, the practice of Uber has been challenged by consumer

rights group (out of concerns about public safety including sexual assaults, physical attacks)

(e.g., Danielson (2015)), by independent drivers (due to their concerns about being treated

as regular employees without benefits) (e.g., Roose (2014)), by the government (due to

the concern over regulations), and by other taxi drivers (due to their concerns over unfair

competition). In a law review article, Rogers (2015) provides a comprehensive list of social

costs of Uber including: public safety, privacy, discrimination, labor law violations, etc.

These social concerns have motivated us to extend our base model to incorporate social

benefit. To do so, let us consider the case in which the platform expands the scope of its

objective function by also including social (customer and provider) welfare in addition to its

own profit.

In the same spirit as Cachon et al. (2015), we now extend our base model to the case when

the objective is to maximize the total welfare, which includes both the customer and provider

surpluses, and the firm’s profit. First, for an individual customer who requests for service

with a value rate of v ≥ F−1(1− s), her surplus is given by ((v− p)d− cWq). Therefore, the

total customer surplus is equal to Cs, where

Cs = λ̄

∫ 1

F−1(1−s)
[(v − p)d− cWq] dF (v) = λ̄

[(∫ 1

F−1(1−s)
v dF (v)− ps

)
d− cWqs

]
.(3.12)
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Similarly, for a provider who participates in the platform with a reservation rate of r ≤ w λ
kµ

,

his surplus is given by w λ
kµ
− r. Therefore, the total provider surplus is equal to Ps, where

Ps = K

∫ G−1( k
K

)

0

(
w
λd

k
− r
)
dG(r) = wλd−G−1(

k

K
)k +K

∫ G−1( k
K

)

0

G(r)dr. (3.13)

Then, the total welfare function can be expressed as Π(k, s), where

Π(k, s) =π(k, s) + γ(Cs + Ps)

=π(k, s) + γ

{
λ̄

[(∫ 1

F−1(1−s)
v dF (v)− sp

)
d− scWq

]
+ wλd−G−1(

k

K
)k +K

∫ G−1( k
K

)

0

G(r)dr

}

=π(k, s) + γ

{
λ̄d

[∫ 1

F−1(1−s)
v dF (v)− sF−1(1− s)

]
+K

∫ G−1( k
K

)

0

G(r)dr

}
,

(3.14)

where π(k, s) is the profit function (3.7) for our base model, and γ ∈ [0, 1] is the “equitable

payoff” parameter which represents the willingness of the platform to give up some of its

profit for a more equitable (or fairer) outcome for its customer and providers in setting its

price and wage rates; see Cui et al. (2007). For example, when γ = 1, the platform weighs

the social (customers and providers) welfare as equally important as its own profit. When

γ = 0, the platform does not care about the social welfare so that Π(k, s) simply reduces to

π(k, s) as given in (3.7).

In this extension, the platform’s problem is to determine the optimal values of (k, s) that

maximize the total welfare function Π(k, s) subject to the system stability constraint: k > λd
µ

.

By using the same approach in analyzing the base model, we can obtain the following results:

Proposition 5. When the platform is concerned about the total welfare as given in (3.14),

the optimal solution exhibits the following characteristics:
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1. All results as stated in Propositions 1,2,4 and Corollary 1 continue to hold.

2. When γ increases, the optimal wage rate w∗ increases (and both s∗ and k∗ increase),

but the optimal price rate p∗ is not necessarily monotonic.

Even when we incorporate both customer and provider surpluses in our objective function,

the first statement of Proposition 5 shows that our analytical results for the base model as

given in Section 4 are robust. The second statement shows that when a higher weight is

placed on the social (customers and providers) welfare, the platform can increase the total

welfare by increasing its target service level s∗ (to serve more customers as λ∗ = s∗λ̄) and

the wage rate w∗ (to attract more providers k∗ to participate). However, while both s∗ and

k∗ increase in γ, Equation (3.9) reveals that the optimal price rate p∗ is not necessarily

monotonic as γ increases.

3.6. Numerical Illustrations Based on Didi Data

3.6.1 Background information

To illustrate the implications of our analytical results presented in this paper, we have

collected real data from Didi, the largest on-demand ride sharing service platform

operating in over 360 cities in China that was founded in June 2012.9 Our data was based

on rides that took place in the city of Hangzhou, the capitol city of Zhejiang province with

an urban population of over 7 millions people, during the time periods between September

7-13 and November 1-30 in 2015. In Hangzhou city, Didi has approximately 13,000

registered drivers offering different types of services including Taxi (traditional taxi

9http://www.xiaojukeji.com/en/company.html. Didi merged with Kuaidi (a major competitor) in
February 2015 as a way to defend its market share when Uber officially launched its service in China in
July 2014. In August 2016, Uber decided to retreat from China and its China operations merged with Didi.
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service),10 Express/Private (equivalent to UBER X/Black with on-demand drivers), and

Hitch (passengers sharing similar routes). For our numerical illustrations, we shall focus on

the data associated with the Express/Private service, which accounts for 60% of all rides

provided by Didi in Hangzhou. There were 13,000 registered drivers for all services, but the

exact number of Express/Private drivers was not known to us. We shall assume that 60%

of Didi drivers were Express/Private drivers, i.e., the number of registered Express/Private

drivers in Hangzhou city was estimated to be K = 7, 800.

3.6.2 Number of rides and drivers across different hours

Figure 1 depicts the average number of Express/Private rides and drivers across different

hours on any given day. (Here, Hour 8 represents one-hour interval 8am-9am, Hour 19 for

7pm- 8pm, and so on. Data for Hours 1-7 were omitted due to incomplete data in the

database.) We observe from the Didi data that the pattern depicted in Figure 2 is consistent

throughout the weekdays, even though the average number of rides and drivers were slightly

lower on Saturdays and Sundays, and that the peak hours are being Hours 9 and 19, and

the slowest hours are being Hours 23 and 24. For instance, during the peak Hour 19, there

were an average of 1,969 Express/Private rides and an average of 1,182 drivers in any given

day. However, during the late night Hour 23, there were only an average of 1,033 rides and

an average of 600 drivers.

3.6.3 Travel distance and travel speed

While the average number of rides and drivers vary substantially across different hours of

the day, it is interesting to note from Figure 2 that the average travel distance for each

10Unlike Ubers business model that aims to displace the traditional taxi services, Didi integrates taxi
services into its business model by providing its mobile hailing service to taxi drivers free of charge.
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Express/Private ride is rather stable across different hours. For example, the average travel

distance d during the peak Hour 19 and during the late night Hour 23 were 6.3 km and 6.6

km, respectively, while the average price per km p charged by Didi during these two hours

were RMB 3.13 and RMB 2.76; respectively. We can also estimate the average travel speed

across hours µ, and they were about 19 km/hour and 26 km/hour for Hour 19 and Hour 23,

respectively. These numbers are thus consistent with the actual expected traffic conditions,

which show that traffic is much less congested during late night hours.

3.6.4 Pricing and wage rates

Didi’s price p for its service consists of two components so that p = p1+p2, where p1 represents

the fare that is primarily based on the travel distance, and p2 represents surcharges (e.g.,

tolls). Accordingly, Didi paid its drivers according to the following scheme. When a passenger

pays a total fee of p, the driver will receive (p1∗80%−0.5)∗(100%−1.77%)+p2∗(100%−1.77%)

from Didi, but the driver needs to pay p2 to cover various surcharges. Thus, the actual wage

that Didi pays its drivers is approximately 80% of the total price; i.e., w ≈ 0.8p. Figure 2

also shows that the average price per kilometer charged by Didi (excluding the surcharges)

is relatively stable across different hours of the day. However, we observe that the average

price per km p charged by Didi was RMB 3.13 during the peak hour (i.e., hour 19) and it

was RMB 2.76 during the non-peak hour (i.e., hour 23). It is interesting to note that the

observed price is higher during the peak hours, which corroborates with our results as stated

in Proposition 3 that the optimal price rate p∗ should be higher when customer demand rate

for service is higher.
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3.6.5 Strategic factors and their implications

It is important to note that the observed price that Didi charged its passengers was heavily

discounted or subsidized during the data collection periods for the following two strategic

reasons: (a) Didi wanted to attract more passengers by pricing its service below the

traditional taxi services;11 and (b) Didi was engaged in a price war to compete with Uber

by offering discount coupons to compete for market share. In addition to offering heavily

discounted price to attract passengers, Didi also provided extra “side payments” to its

drivers to entice more drivers to join their platform due to the intense market competition.

In addition to the regular payments of approximately 80% of the fare collected from the

passengers, Didi (and Uber) had offered extra payments (e.g., Didi offers an extra bonus if

the number of rides by a driver exceeds a certain quota within a 7-day period).

While we were unable to obtain the details of the bonus scheme, BBC (2016) had reported

that the extra payment can be as high as 110% of the fare paid by the passengers. With

such generous payments, more drivers reported to work and there was no need for Didi to

use surge pricing to attract more drivers to offer rides during peak hours. This explains

why Didi was able to offer relatively stable pricing in Hangzhou as depicted in Figure 2.

Furthermore, the waiting time for Dids’s service was reasonably short with an adequate

supply of drivers. Specifically, the average waiting time of all Express/Private rides over the

aforementioned time periods was about 6 minutes, of which the waiting time for accepting a

ride request was approximately 1 minute, while the waiting time for picking up a passenger

was approximately 5 minutes.

In view of the heavily discounted price due to the above strategic reasons, the price per km p

as reported in Figure 2 was biased and did not represent the regular prices p and the actual

11In Hangzhou, taxi charges RMB 11 initially and then RMB 2.6 per km. As a way to entice passengers
to choose Didi over taxi service, Didi had priced its service below taxi rates to increase market share. Based
on our discussions with passengers in China, there was an expectation that Didi’s price rate was lower than
the taxi rate.
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wages w the firm should offer in equilibrium. Nevertheless, we shall use the data given in the

Didi database to construct our numerical examples to illustrate how our analytical results

would compare with the actual prices/wages as reported in Didi’s data set.

3.6.6 Numerical examples for illustrative purposes

We next provide some numerical examples based on the Didi data to illustrate our model

results and discuss their implications. In all our numerical examples, we set the maximum

number of drivers K = 7, 800. We examined the average income for taxi drivers in Hangzhou

city and the average major out-of-pocket expenses borne by the Didi drivers (including car

insurance, license, fuel cost, etc.), and estimated that a minimum hourly wage of RMB 30 is

required for a Didi driver to offer service. Thus, we assume that the hourly wage reservation

r is distributed uniformly between RMB 30 to RMB 40 in our numerical examples.

As discussed earlier, the data were collected during the time when Didi (and Uber) was

offering large fare discounts to attract riders, and so there was an expectation among riders

that Didi price was less than the taxi rate in Hangzhou (which is RBM 2.6 per km). Thus,

we used the taxi rate as a benchmark and assume that the customer value per km v is

distributed uniformly between RMB 3 to RMB 4 in our numerical examples.

As shown in Figure 2, the average travel distances did not vary significantly across hours,

so we simply set the average travel distance d = 6 km across all hours in order to focus our

discussions on how different demand and congesting levels would affect the optimal price and

wage rates across different hours of the day. It is difficult to provide an accurate estimate

of the waiting cost parameter c, and so we simply varied the value of c from RMB 200 to

RMB 2,200 per hour to illustrate how the optimal price and wage rates would change with

respect to the cost of customer waiting for service.12

12While it is difficult to estimate the waiting cost, Gomez-Ibanez et al. (1999) reported that the waiting
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We used data from two specific time periods to show our model results as illustrative examples

for our discussions. In particular, we picked Hour 19 to represent peak-hour characteristics

with high demand and travel congestion levels, and Hour 23 to represent non-peak hour

characteristics with lower demand and congestion levels. Specifically, we set the average

demand λ̄ = 2, 000 with an average service speed µ = 19 km/hour, and λ̄ = 1, 000 with an

average service speed µ = 26 km/hour, respectively, in these two scenarios. In each scenario,

we solved the base model as discussed in Section 4. The optimal number of participating

drivers k∗, price rate p∗ and wage rate w∗ are given in Figures 3 and 4 for the peak hour and

non-peak hour scenarios, respectively.

These numerical results illustrate the properties as stated in Proposition 1. For example,

the optimal wages w∗ increase as the waiting cost c increases in both Figures 3 and 4, which

illustrates the results as stated in statement 2 of Proposition 1. By comparing the results in

Figures 3 and 4, we can also observe that the values of k∗ (scale on the left), p∗ and w∗ (scale

on the right) are all higher during the peak hour (Figure 3) than those during the non-peak

hour (Figure 4). These properties illustrate the results as stated in statements 1 and 3 of

Proposition 1 (and Table 1), because the peak hour period has a higher customer demand

rate λ̄ and a slower service speed µ than that during non-peak hour period. However, the

optimal number of participating driver k∗ is not monotonic in the waiting cost c. In both

scenarios, the optimal price rate p∗ decreases as c increases. (However, the optimal price

rate p∗ is not necessarily monotonic in c (in general), as noted in statement 2 of Proposition

1.)

We also computed the optimal payout ratio α∗ = w∗

p∗
; see Figure 5. The optimal payout

ratio α∗ increases from 0.68 to 0.84 for the peak hour scenario and from 0.54 to 0.72 for the

cost for a working class passenger in San Francisco is approximately 195% of the passenger’s after-tax wages.
Using this estimate and the fact that the average hourly wage of workers in Hangzhou is approximately
RMB 40 per hour (China Daily, 2016), one can argue that the waiting cost for an average passenger in
Hangzhou is approximately RMB 80 per hour. However, accounting for the income inequality and the
impatient characteristics of most city dwellers in China (Li (2016)), we simply choose to consider the range
of c varying from RMB 200 to RMB 2200 for illustrative purposes.
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non-peak hour scenario, respectively, as c increases from 200 to 2,200. Also, observe from

Figure 5 that the optimal payout ratio is always higher for the peak hour scenario than that

for the non-peak hour scenario for any fixed value of c. (We note that these monotonicity

properties are proved in Proposition 2.)

As Didi used a fixed payout ratio α ≈ 0.8, it would be interesting to compare the

corresponding optimal profit between using the dynamic payout ratio α∗ as given in our

model versus using a fixed payout ratio α = 0.8 to examine the potential benefits of

adopting the optimal dynamic payout ratio. We illustrate our results in Figure 6 based on

the peak hour scenario (i.e., Hour 19). Our numerical results show that, during these peak

hour periods, using a dynamic payout ratio α∗ can substantially increase the profit of the

service platform over that using a fixed payout ratio of 0.8, especially when the waiting

cost c is low when the optimal payout ratio is significantly different from 0.8 in our

numerical examples here. For instance, when c = 600, the optimal profit is equal to 10,115

when the platform uses the optimal payout ratio α∗ = 0.69. However, if the platform uses a

fixed payout ratio of 0.8, then the profit is equal to 7,001, which is much lower. However, it

is important to point out that Didi (and Uber as well) used a fixed payout ratio due to

various market considerations such as intense competition for driver participation and

ridership as well as other practical implementation issues. Nevertheless, our results can

serve as a guideline for understanding the magnitude of potential benefits for a

hypothetical situation where such market considerations were no longer valid. Specifically,

Figure 6 suggests that, when the waiting cost c is low, using a dynamic payout ratio can

enable the platform to earn a much higher profit.
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3.6.7 Additional observations from Didi data

We observe from the Didi data that the price per km p is highly correlated to the number of

rides λ over the peak (non-peak) hours, with a correlation coefficient of 0.81. In other words,

the price per km is usually higher during the time periods when the customer request rate is

high (i.e., peak hours), and is lower during the time periods when the customer request rate

is low (i.e., off-peak hours). Again, this pricing pattern corroborates with the results given

in Proposition 3 that the optimal price rate p∗ increases when the customer demand rate λ̄

increases (while the average travel distance d is rather stable across different hours as noted

in Section 6.3).

3.7. Conclusion

Motivated by the increasing popularity of on-demand service platforms with independent

service providers and time-sensitive customers, we develop an analytical framework to

understand how such platforms should set their optimal price and wage to match the needs

of providers and customers taking into considerations the underlying supply and demand

characteristics. The framework consists of a queueing model that captures some important

market characteristics including wait-time sensitive customers and earnings sensitive

suppliers. We analyze the steady state performance of a two sided queue in equilibrium

and investigate the behavior of the optimal price and wage rates. We derive analytical

results to show how different model parameters would affect these optimal price and wage

rates. Our findings provide some interesting implications in managing prices and wages for

on-demand service platforms.

Using some actual data collected from a major ride-sharing company in China, we

construct some numerical examples to illustrate the results of our analytical model and
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discuss various implications on the optimal price and wage with respect to the underlying

market characteristics. Although our model does not capture some important practical

issues due to intense competition existed in China when the data were collected (and thus

cannot be used to accurately predict the actual behavior of the players in the market), our

analytical results can help to illustrate and explain some general observations that are

consistent with the actual data provided by the company. More importantly, our model

results can serve as a guideline for potentially increasing profitability when the underlying

market conditions were to evolve to be consistent with the operating environment captured

in our modeling framework. Specifically, we illustrate the potential benefits if the company

were to adopt a dynamic payout ratio versus their current practice of using a fixed payout

ratio.

Our model considers price and wage rates that are pre-committed, and we analyze the

equilibrium behavior of the system. For future research, it would be interesting to study

dynamic pricing strategies in which the platform can offer dynamic prices and wages to

customers and providers based on the real-time status of the system. Specifically, one can

develop a modeling framework that considers the real-time interactions among the

customers, providers and the platform where the customers and providers need to make

real-time decisions on whether to accept the dynamic prices and wages offered by the

service platform.
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Figure 3.1: Number of rides and drivers across different hours.

Figure 3.2: Average travel distance and average price per kilometer across different hours.
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Figure 3.3: Optimal number of participating drivers, optimal price and wage rates during
peak hours (λ̄ = 2000 and µ = 19 km/hour).

Figure 3.4: Optimal number of participating drivers, optimal price and wage rates during
non-peak hours (λ̄ = 1000 and µ = 26 km/hour).
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Figure 3.5: Comparisons of the optimal dynamic payout ratios between peak and non-peak
hours.

Figure 3.6: Comparisons of optimal profit between the optimal dynamic payout ratio and a
fixed payout ratio for the peak hour scenario.
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3.9. Appendix

Appendix A: Extensions of results in Proposition 4
under more general settings.

The results for our base model with exogenously given service level s as given in Section 4.2

are based on some simplifying assumptions as stated in Assumption 1. In this Appendix,

we can relax these simplifying assumptions to more general settings in which Wq, G(.) and

F (.) satisfy the following assumptions:

Assumption 2: The wait-time function Wq is convex and increasing in λ, and is convex

and decreasing in both k and µ. Furthermore, ∂
∂λ

(∂Wq

∂k
) < 0, ∂

∂d
(∂Wq

∂k
) < 0 and ∂

∂µ
(∂Wq

∂k
) > 0.

Observe that the convexity of the waiting time function Wq is valid for an M/M/k queueing

model with arrival rate λ and service rate µ
d
; e.g., see Lee and Cohen (1983). The three

conditions, ∂
∂λ

(∂Wq

∂k
) < 0, ∂

∂d
(∂Wq

∂k
) < 0 and ∂

∂µ
(∂Wq

∂k
) > 0, basically require that the marginal

decrease in waiting time due to an additional service provider is larger at a higher system

utilization level. This assumption is reasonable, and is also supported by the waiting time

function of an M/M/k queuing system. However, we do not require any specific functional

form of Wq at this time.

Assumption 3: The cumulative value distribution F (.) is strictly increasing. The

cumulative wage distribution G(.) is concave and strictly increasing.

Assumption 3 stipulates that the density of the reservation wage rate r is decreasing. This

assumption implies that there are more service providers who would be willing to participate

and offer service at a lower minimum earning rate.

By considering Assumptions 2 and 3 along with the profit function π(k) given in (3.7), we

obtain the following result:

Lemma 3.1. The profit function π(k) given in (3.7) is concave in k. Also, the optimal

number of participating providers k∗ satisfies the following first-order condition:

−cλ∂Wq

∂k
= G−1(

k

K
) +G

′−1(
k

K
)
k

K
= G−1(β) + βG

′−1(β) =
∂(βG−1(β))

∂β
. (3.15)
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Proof of Lemma 3.1: Differentiate the profit function given in (3.7) with respect to k and

obtain

π′(k) = −cλ∂Wq

∂k
−
[
G−1(

k

K
) +G

′−1(
k

K
)
k

K

]
(3.16)

and

π′′(k) = −λc∂
2Wq

∂k2
−
[
2G

′−1(
k

K
)

1

K
+G

′′−1(
k

K
)
k

K2

]
. (3.17)

Assumption 3 implies that G−1(.) is convex and increasing. Together with Assumption 2, it

follows that π′′(k) < 0, which shows that π(k) is concave in k. Therefore, the optimal value

of k is given by the first-order condition π′(k) = 0, which is given in (3.15). This completes

our proof.

The first-order condition given in (3.15) can be interpreted as follows. The left side of (3.15)

measures the marginal reduction in waiting cost for each additional service provider joining

the platform. In view of (3.5), the term G−1(β) = w · λd
k

represents the average earning rate

of a provider. Hence, by noting that β = k/K, the right side of (3.15) can be interpreted

as the marginal benefit associated with the increase in the average earning rate for each

additional service provider participating in the platform in terms of β. Therefore, the first-

order condition (3.15) shows that the optimal value of k is achieved when marginal cost

equals marginal benefit.

By using the implicit function theorem to analyze the first-order condition (3.15), we can

establish the following proposition in order to illustrate that some of the key results

established in Proposition 4 continue to hold.

Proposition A1: Suppose that Assumptions 2 and 3 hold. Then,

(a) When K increases, both k∗ and p∗ increase, but the ratio β = k∗

K
decreases.

(b) When µ increases, both k∗ and w∗ decrease.

(c) When c increases, both k∗ and w∗ increase.

(d) When λ̄ (or s) increases, k∗ increases.

(e) When d increases, k∗ increases.

Proof of Proposition A1: (a) Suppose that k0 denotes the optimal value of k for K = K0.
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Using the first-order condition (3.15) and expressing the profit π as a function of k, we have

π′(k0) = −λc∂Wq(λ, k, µ, d)

∂k
|k=k0 −

[
G−1(

k0

K0

) +G
′−1(

k0

K0

)
k0

K0

]
= 0 (3.18)

Note that G
′−1(.) is an increasing function since G−1(.) is convex as G(.) is concave by

Assumption 3, which implies that {G−1(k0
K

) +G
′−1(k0

K
)k0
K
} is decreasing in K. Therefore, for

any K1 > K0,

−λc∂Wq(λ, k, µ, d)

∂k
|k=k0 −

[
G−1(

k0

K1

) +G
′−1(

k0

K1

)
k0

K1

]
> 0.

Since the profit function is concave in k, the optimal k∗ must be greater than k0 for any

fixed K = K1 > K0, which shows that the optimal k∗ is increasing in K. Since the waiting

time Wq is decreasing in k, the optimal p∗ given in (3.3) is also increasing in K.

Let β0 = k0
K0

, and rewrite the derivative of the profit function (3.18) as

π′(k0) = −λc∂Wq(λ, k, µ, d)

∂k
|k=k0 −

{
G−1(β0) +G

′−1(β0)β0

}
= 0, (3.19)

Let k1 be the optimal value of k when K = K1 > K0, and define β1 = k1
K1

. Then,

π′(k1) = −λc∂Wq(λ, k, µ, d)

∂k
|k=k1 −

{
G−1(β1) +G

′−1(β1)β1

}
= 0. (3.20)

Since k∗ is increasing inK, we have k1 > k0. Thus, −λc∂Wq(λ,k,µ,d)

∂k
|k=k1 < −λc

∂Wq(λ,k,µ,d)

∂k
|k=k0 .

From (3.19) and (3.20), we can obtain

G−1(β1) +G
′−1(β1)β1 < G−1(β0) +G

′−1(β0)β0.

Since G−1(β) + G
′−1(β)β is an increasing function in β, we can conclude that β1 < β0.

Therefore, β∗ is decreasing in K.

(b) Let k0 denote the optimal k when µ = µ0. Then,

π′(k0) = −λc∂Wq(λ, k, µ0, d)

∂k
|k=k0 −

[
G−1(

k0

K
) +G

′−1(
k0

K
)
k0

K

]
= 0
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We have ∂
∂µ

(∂Wq

∂k
) > 0 from Assumption 2. Then, for any µ1 > µ0,

−λc∂Wq(λ, k, µ1, d)

∂k
|k=k0 −

[
G−1(

k0

K
) +G

′−1(
k0

K
)
k0

K

]
< 0,

Therefore, the optimal k∗ must be smaller than k0 for any fixed µ = µ1 > µ0, which shows

that the optimal k∗ is decreasing in µ. From (3.6), the wage rate is increasing in k∗, therefore,

w∗ is decreasing in µ.

(c) Suppose that k0 denotes the optimal value of k for c = c0. Then,

π′(k0) = −λc0
∂Wq(λ, k, µ, d)

∂k
|k=k0 −

[
G−1(

k0

K
) +G

′−1(
k0

K
)
k0

K

]
= 0

It is clear that for any c1 > c0,

−λc1
∂Wq(λ, k, µ, d)

∂k
|k=k0 −

[
G−1(

k0

K
) +G

′−1(
k0

K
)
k0

K

]
> 0.

Therefore, the optimal k∗ must be greater than k0 for any fixed c = c1 > c0, which shows

that the optimal k∗ is increasing in c. It is clear from (3.6) that the wage rate w is increasing

in k. Therefore, the optimal w∗ is also increasing in c.

(d) Since λ = λ̄s, it suffices to show that k∗ is increasing in λ. Let k0 denote the optimal k

when λ = λ0. Then,

π′(k0) = −λ0c
∂Wq(λ0, k, µ, d)

∂k
|k=k0 −

[
G−1(

k0

K
) +G

′−1(
k0

K
)
k0

K

]
= 0.

We have ∂
∂λ

(∂Wq

∂k
) < 0 from Assumption 2, which implies that−λc∂Wq(λ,k,µ,d)

∂k
|k=k0 is increasing

in λ. Therefore, for any λ1 > λ0, we have

−λ1c
∂Wq(λ1, k, µ, d)

∂k
|k=k0 −

[
G−1(

k0

K
) +G

′−1(
k0

K
)
k0

K

]
> 0.

Therefore, the optimal k∗ must be greater than k0 for any fixed λ = λ1 > λ0, which shows

that the optimal k∗ is increasing in λ.
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(e) When d = d0, let k0 denote the optimal k. The first-order condition shows,

π′(k0) = −λc∂Wq(λ, k, µ, d0)

∂k
|k=k0 −

[
G−1(

k0

K
) +G

′−1(
k0

K
)
k0

K

]
= 0

Since from assumption 1, we know ∂
∂d

(∂Wq

∂k
) < 0. Therefore, for any d1 > d0, we must have,

−λc∂Wq(λ, k, µ, d1)

∂k
|k=k0 −

[
G−1(

k0

K
) +G

′−1(
k0

K
)
k0

K

]
> 0,

The optimal k∗ must be greater than k0 for any d = d1 > d0, which shows that the optimal

k∗ is increasing in d.
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Appendix B: Mathematical Proofs:

Proof of Proposition 1: It is straightforward to show that the profit function given in (3.7)

is jointly concave over (s, k) under the assumptions that Wq is given by (3.8), G(r) = r and

F (v) = v. This implies that the optimal values of s∗ and k∗ are given by the two first-order

conditions as given below:

∂π

∂k
= cd2λ

λ(2kµ− λd)

k2µ(kµ− λd)2
− 2k

K
= 0 (3.21)

∂π

∂s
= λ̄d

{
(1− 2s)− cλd(2kµ− λd)

kµ(kµ− λd)2

}
= 0 (3.22)

We shall use (3.22) to study the behavior of s∗, and (3.21) to characterize the behavior of

k∗, as a function of s∗.

(a) Let (s0, k0) and (s1, k1) be the optimal values of (s, k) when K = K0 and K = K1,

respectively. Suppose that K1 > K0. We shall show that s1 ≥ s0 and k1 ≥ k0, which implies

that both s∗ and k∗ increase when K increases.

We use the notation k∗(K, s) to denote the optimal value of k for the base model with

parameter K and fixed service level s. In particular, k∗(K0, s0) = k0 and k∗(K1, s1) = k1.

Since K1 > K0, it follows from Proposition A1(a) that k∗(K1, s0) ≥ k∗(K0, s0) = k0. It

is clear that the derivative ∂π
∂s

given in (3.22) is increasing in k. Since (s0, k0) satisfies the

first-order condition ∂π
∂s

= 0 and k∗(K1, s0) ≥ k0, we have

(1− 2s0)− c
λ̄s0d

[
2k∗(K1, s0)µ− λ̄s0d

]
k∗(K1, s0)µ

[
k∗(K1, s0)µ− λ̄s0d

]2 ≥ 0.

Therefore, the optimal value of s must be greater than s0 when K = K1, as π(s, k∗(s)) is

concave in s. Since (s1, k1) is optimal at K = K1, this proves that s1 ≥ s0. Also, it follows

from Proposition A1(d) that k1 = k∗(K1, s1) ≥ k∗(K1, s0) ≥ k0. Therefore, we prove that

both s∗ and k∗ increase in K.
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Using (3.21) and (3.22), we have

1− 2s =
cλd(2kµ− λd)

kµ(kµ− λd)2
= 2w. (3.23)

This proves that w∗ decreases in K since s∗ increases in K.

We next show that W ∗
q decreases in K. First, we can rewrite (3.22) as

λ̄sd(1− 2s) = λd

[
cλd(2kµ− λd)

kµ(kµ− λd)2

]
=
cρ2(2− ρ)

(1− ρ)2
. (3.24)

Clearly, the right side of (3.24) is increasing in ρ. Also, the left side of (3.24) implies that

0 < s∗ ≤ 1
2
. Suppose that 0 < s∗ < 1

4
. In this case, the left side of (3.24) increases in s.

Since s∗ increases in K as proved earlier, we can conclude that ρ∗ must also increase in K

in this case. The first-order condition (3.22) implies that

(1− 2s∗) =
cW ∗

q (2k∗µ− λ∗)
d(k∗µ− λ∗)

=
c

d
W ∗
q

2− ρ∗

1− ρ∗
. (3.25)

Since s∗ increases in K, the left side of (3.25) must be decreasing as K increases. On the

other hand, we have shown that ρ∗ increases in K in this case, which implies that 2−ρ∗
1−ρ∗ must

be increasing in K in this case. We can conclude from (3.25) that W ∗
q must be decreasing

as K increases in this case.

Now suppose that 1
4
≤ s∗ ≤ 1

2
. In this case, the left side of (3.24) decreases in s. Since s∗

increases in K, we can conclude from (3.24) that ρ∗ must be decreasing in K in this case.

The first-order condition (3.22) implies that

λ̄s∗(1− 2s∗) = λ∗
[
cλ∗d(2k∗µ− λ∗d)

k∗µ(k∗µ− λ∗d)2

]
=

c

d3
(k∗µW ∗

q )2(2− ρ∗). (3.26)

As K increases, the left side of (3.26) decreases since s∗ increases in K. On the right side of

(3.26), both (2− ρ∗) and k∗ increase with K as ρ∗ increases in K in this case. Thus, we can

conclude from (3.26) that W ∗
q must also be decreasing in K in this case.
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Furthermore,

π = λd(p− w) = λd(1− s− c

d
Wq − w) = λd(

1

2
− c

d
Wq), (3.27)

where the last equality follows from (3.23). Since λ∗ increases in K and W ∗
q decreases in K,

we can conclude that π∗ increases in K.

(b) Similarly, let (s0, k0) and (s1, k1) be the optimal values of (s, k) when µ = µ0 and µ = µ1,

respectively. Suppose that µ1 > µ0. Again, we use the notation k∗(µ, s) to denote the

optimal value of k for the base model with parameter µ and fixed service level s such that

k∗(µ0, s0) = k0 and k∗(µ1, s1) = k1. We also use the notation ρ∗(µ, s) and W ∗
q (µ, s) to denote

the corresponding optimal values of ρ and Wq for the base model with fixed µ and s.

As will be proved in Proposition 4(b), k∗(µ, s), ρ∗(µ, s) and W ∗
q (µ, s) all decrease in µ. Then,

the function

H(µ) =
λd [2k∗(µ, s)µ− λd]

k∗(µ, s)µ [k∗(µ, s)µ− λd]2
=
W ∗
q (µ, s)

d

2− ρ∗(µ, s)
1− ρ∗(µ, s)

decreases in µ.

Since (s0, k0) is the optimal solution when µ = µ0, they must satisfy the first-order condition

(3.22), i.e.,

λ̄d

{
(1− 2s0)−

cλ̄s0d
[
2k0µ0 − λ̄s0d

]
k0µ0

[
k0µ0 − λ̄s0d

]2
}

= 0. (3.28)

Since H(µ) decreases in µ and µ1 > µ0, it follows from (3.35) that

λ̄d

{
(1− 2s0)−

cλ̄s0d
[
2k∗(µ1, s)µ1 − λ̄s0d

]
k∗(µ1, s)µ1

[
k∗(µ1, s)µ1 − λ̄s0d

]2
}
≥ 0.

Therefore, the optimal value of s must be greater than s0 when µ = µ1, i.e., s1 ≥ s0. This

proves that s∗ increases in µ. It then follows immediately from (3.23) that w∗ decreases in

µ.

Similarly, we then show that W ∗
q decreases in µ. Suppose that 0 < s∗ < 1

4
. In (3.24), the left

side increases in s and the right side is increasing in ρ. Since s∗ increases in µ, therefore, ρ∗
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must also increase in µ. In (3.25), the left side decreases in µ, as s∗ is increasing in µ. Since

ρ∗ increases in µ in this case, 2−ρ∗
1−ρ∗ must also increase in µ. We can conclude from (3.25) that

W ∗
q must be decreasing as µ.

On the other hand, suppose that 1
4
≤ s∗ ≤ 1

2
. In this case, the left side of (3.24) decreases in

s. We just proved that s∗ increases in µ, therefore, from (3.24) that ρ∗ must be decreasing

in µ in this case.

The first-order condition (3.21) implies that

c(W ∗
q )2(2− ρ∗) =

2d2

µ2K

As µ increases, the right side decreases. On the left side, (2 − ρ∗) increases with µ as ρ∗

increases in µ in this case. We can conclude that W ∗
q must be decreasing in µ in this case.

Since λ∗ = λ̄s∗ increases and W ∗
q decreases in µ, it follows from (3.27) that π∗ increases in

µ. This proves statement 1.

(c) Let (s0, k0) and (s1, k1) be the optimal values of (s, k) when c = c0 and c = c1, respectively.

Suppose that c1 > c0. Here, we use the notation k∗(c, s) to denote the optimal value of k

for the base model with parameter c and fixed service level s such that k∗(c0, s0) = k0 and

k∗(c1, s1) = k1.

Since c1 > c0, it follows from Proposition A1(b) that k∗(c1, s0) ≥ k∗(c0, s0) = k0. Then,

c0d
2λ2(2k0µ− λd)

k0µ(k0µ− λd)2
=

2k2
0

K
≤ 2k∗(c1, s0)2

K
=

c1d
2λ2 [2k∗(c1, s0)µ− λd]

k∗(c1, s0)µ [k∗(c1, s0)µ− λd]2
, (3.29)

where the two equalities come from the first-order condition (3.21) and the fact that k0 and

k∗(c1, s0) are the optimal values of k for the base model with s = s0 when c = c0 and c = c1,

respectively.

Since (s0, k0) is the optimal solution when c = c0, they must satisfy the first-order condition

(3.22), i.e.,

(1− 2s0)− c0λd(2k0µ− λd)

k0µ(k0µ− λd)2
= 0. (3.30)
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Combining (3.29) and (3.30), we obtain

(1− 2s0)− c1λd [2k∗(c1, s0)µ− λd]

k∗(c1, s0)µ [k∗(c1, s0)µ− λd]2
≤ 0.

Therefore, the optimal value of s must be smaller than s0 when c = c1, as π(s, k∗(s)) is

concave in s. This proves that s∗ is decreasing in c. It follows immediately from (3.23) that

w∗ is increasing in c.

Also, we can use (3.10) to express ρ∗ =
√

λ̄s∗d
Kµ2w∗

, where ρ∗ = λ∗d
k∗µ

and λ∗ = λ̄s∗. Since s∗ is

decreasing in c and w∗ is increasing in c, ρ∗ is decreasing in c. Now rewrite (3.21) as

c(2− ρ)(
µ

d
Wq)

2 =
2

K
, (3.31)

which implies that W ∗
q is decreasing in c since 2− ρ∗ is increasing in c.

Since both s∗ and ρ∗ decrease in c, it follows from (3.25) that cWq increases in c. Since

λ∗ = λ̄s∗ decreases in c, it follows from (3.27) that π∗ is decreasing in c. This proves

statement 2.

(d) Now let (s0, k0) and (s1, k1) be the optimal values of (s, k) when λ̄ = λ̄0 and λ̄ = λ̄1,

respectively. Suppose that λ̄1 > λ̄0. Again, we use the notation k∗(λ̄, s) to denote the optimal

value of k for the base model with parameter λ̄ and fixed service level s. In particular,

k∗(λ̄0, s0) = k0 and k∗(λ̄1, s1) = k1. We also use the notation ρ∗(λ̄, s) and W ∗
q (λ̄, s) denote

the corresponding optimal values of ρ and Wq for the base model with fixed λ̄ and s.

As will be proved in Proposition 4(d), k∗(λ̄, s), ρ∗(λ̄, s) and W ∗
q (λ̄, s) all increase in λ̄. This

implies that the function

H(λ̄) =
λd2[2k∗(λ̄, s)µ− λd]

k∗(λ̄, s)µ[k∗(λ̄, s)µ− λd]2
= W ∗

q (λ̄, s)
2− ρ∗(λ̄, s)
1− ρ∗(λ̄, s)

increases in λ̄ since 2−ρ
1−ρ is an increasing function in ρ.

Since (s0, k0) is the optimal solution when λ̄ = λ0, they must satisfy the first-order condition
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(3.22), i.e.,

λ̄0d

{
(1− 2s0)− cλ̄0s0d[2k0µ− λ̄0s0d]

k0µ[k0µ− λ̄0s0d]2

}
= 0. (3.32)

Since H(λ̄) increases in λ̄ and λ̄1 > λ̄0, it follows from (3.32) that

λ̄1d

{
(1− 2s0)− cλ̄1s0d[2k∗(λ̄1, s0)µ− λ̄1s0d]

k∗(λ̄1, s0)µ[k∗(λ̄1, s0)µ− λ̄1s0d]2

}
≤ 0.

Therefore, the optimal value of s must be smaller than s0 when λ̄ = λ̄1, i.e., s1 ≤ s0. This

proves that s∗ decreases in λ̄. Then, it follows immediately from (3.23) that w∗ increases in

λ̄.

Using (3.31), (2− ρ∗) and W ∗
q must change in the opposite direction, which implies that ρ∗

and W ∗
q must change in the same direction as λ̄ increases. Also we can rewrite (3.21) as

cρ2(2− ρ)

(1− ρ)2
=

2k2

K
, (3.33)

which implies that ρ∗2(2−ρ∗)
(1−ρ∗)2 and k∗ must change in the same direction. It is easy to show

that ρ∗2(2−ρ∗)
(1−ρ∗)2 is increasing in ρ∗, which implies that ρ∗ and k∗ must change in the same

direction as λ̄ increases. Thus, we can conclude that k∗, ρ∗ and W ∗
q must all change in the

same direction when λ̄ increases.

Since s∗ decreases in λ̄, the left side of (3.25) increases in λ̄, which implies that the right

side of (3.25) also increases in λ̄. Since W ∗
q and ρ∗ must change in the same direction as λ̄

increases, we can conclude that both W ∗
q and ρ∗ increases in λ̄. Also, because k∗, ρ∗ and W ∗

q

all change in the same direction when λ̄ increases, we must have k∗ increases in λ̄. Also, we

must have λ∗ = ρ∗k∗µ
d

increases in λ̄.

Using (3.22) and (3.8), we obtain

s =
1

2

{
1− cλd(2kµ− λd)

kµ(kµ− λd)2

}
=

1

2

{
1− c

d
Wq

2− ρ
1− ρ

}
.
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We substitute the above equation into (3.9) to obtain

p = 1− 1

2

{
1− c

d
Wq

2− ρ
1− ρ

}
− c

d
Wq =

1

2

{
1 +

c

d
Wq

ρ

1− ρ

}
. (3.34)

Since both W ∗
q and ρ∗ increases in λ̄, it follows from (3.34) that p∗ increases in λ̄.

Let π∗1 and π∗0 denote the optimal profit when λ̄ = λ̄1 and λ̄ = λ̄0, respectively. Also, let

π∗(λ̄, s) denote the optimal profit for the base model with fixed values of λ̄ and s. For

any (λ̄, s) with a fixed value of λ = λ̄s in the base model, observe from (3.44) that the

optimal values of k remain the same. Furthermore, it follows from (3.8) and (3.10) that the

corresponding values of W ∗
q and w∗ are also the same. Using (3.27), this implies that

π∗(λ̄1,
λ̄0s0

λ̄1

) = λ̄0s0d(1− λ̄0s0

λ̄1

− c

d
W ∗
q −w∗) ≥ λ̄0s0d(1− s0 −

c

d
W ∗
q −w∗) = π∗(λ̄0, s0),

when λ̄1 > λ̄0. Then,

π∗1 = π∗(λ̄1, s1) ≥ π∗(λ̄1,
λ̄0s0

λ̄1

) ≥ π∗(λ̄0, s0) = π∗0,

where the first inequality is due to the fact that (k1, s1) is the optimal solution when λ̄ = λ̄1.

This proves that π∗ increases in λ̄.

(e) Let (s0, k0) and (s1, k1) be the optimal values of (s, k) when d = d0 and d = d1 > d0,

respectively. We use the notation k∗(d, s) to denote the optimal value of k for the base model

with parameter d and fixed service level s such that k∗(d0, s0) = k0 and k∗(d1, s1) = k1. We

also use the notation ρ∗(d, s) and W ∗
q (d, s) to denote the corresponding optimal values of ρ

and Wq for the base model with fixed d and s.

As will be proved in Proposition 4(e), k∗(d, s), ρ∗(d, s) and
W ∗q (d,s)

d
all increase when d

increases. Then,

H(d) =
λd [2k∗(d, s)µ− λd]

k∗(d, s)µ [k∗(d, s)µ− λd]2
=
W ∗
q (d, s)

d

2− ρ∗(d, s)
1− ρ∗(d, s)

increases in d.

Since (s0, k0) is the optimal solution when d = d0, they must satisfy the first-order condition
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(3.22), i.e.,

λ̄d0

{
(1− 2s0)−

cλ̄s0d0

[
2k0µ− λ̄s0d0

]
k0µ

[
k0µ− λ̄s0d0

]2
}

= 0. (3.35)

Since H(d) increases in d and d1 > d0, it follows from (3.35) that

λ̄d1

{
(1− 2s0)−

cλ̄s0d1

[
2k∗(d1, s0)µ− λ̄s0d1

]
k∗(d1, s0)µ

[
k∗(d1, s0)µ− λ̄s0d1

]2
}
≤ 0.

Therefore, the optimal value of s must be smaller than s0 when d = d1, i.e., s1 ≤ s0. This

proves that s∗ decreases in d. It then follows immediately from (3.23) that w∗ increases in

d.

We can use (3.31) to deduce that ρ∗ and
W ∗q
d

must change in the same direction when d

increases. We can also use (3.33) to deduce that ρ∗ and k∗ must change in the same direction

when d increases. Thus, we can conclude that k∗, ρ∗ and
W ∗q
d

must all change in the same

direction when d increases. Since s∗ decreases in d, we can use (3.25) and the fact that both

ρ∗ and
W ∗q
d

must change in the same direction to conclude that both ρ∗ and
W ∗q
d

increase in d,

which also implies that k∗ and W ∗
q increase in d. It also follows from (3.34) that p∗ increases

in d.

Let π∗1 and π∗0 denote the optimal profit when d = d1 and d = d0, respectively. Also, let

π∗(d, s) denote the optimal profit for the base model with any fixed values of d and s. For

any (d, s) with a fixed ratio of ds in the base model, it is easy to check from (3.44) that

the optimal values of k remain the same, and from (3.8) and (3.10) that the corresponding

values of W̃ ∗
q =

W ∗q
d

and w∗ are also the same. Then,

π∗(d1,
d0s0

d1

) = λ̄s0d0(1− d0s0

d1

− cW̃ ∗
q − w∗) ≥ λ̄s0d0(1− s0 − cW̃ ∗

q − w∗) = π∗(d0, s0),

when d1 > d0. Then,

π∗1 = π∗(d1, s1) ≥ π∗(d1,
d0s0

d1

) ≥ π∗(d0, s0) = π∗0,

where the first inequality is due to the fact that (k1, s1) is the optimal solution when d = d1.

Therefore, π∗ increases in d. This proves statement 3.
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Proof of Proposition 2: Let α∗ = w∗

p∗
. As shown in (3.27), we can express

p∗ − w∗ = (
1

α∗
− 1)w∗ =

1

2
− c

d
W ∗
q . (3.36)

We have shown in the proof of Proposition 1(c) that w∗ and cW ∗
q increase in c and in

Proposition 1(d) and (e) that w∗ and
W ∗q
d

increase in λ̄ and d. We can then conclude from

(3.36) that α∗ is increasing in c, λ̄ and d. On the other hand, we have shown in the proof

of Proposition 1(a) that w∗ and W ∗
q decrease in K and Proposition 1(b) that w∗ and W ∗

q

decrease in µ. Again, we can conclude from (3.36) that α∗ is decreasing in K and µ.

Proof of Proposition 3: With the constraint that w
p

= α, the objective function can be

expressed as π = λd(p − w) = λd( 1
α
− 1)w. We can solve the constrained problem as an

unconstrained Lagrange optimization problem with the Lagrange function of L(p, w, z) =

λd( 1
α
− 1)w + zλd(αp − w), where z is the nonzero Lagrange multiplier.13 We substitute

the values of p and w given by (3.9) and (3.10) and the fact that λ = λ̄s into the Lagrange

function L(p, w, z), and can obtain the following optimality conditions from the three first-

order conditions, δL
δk

= 0, δL
δs

= 0, and δL
δz

= 0, respectively:

(
1

α
− 1)

2k

K
+ z

[
αcλ2d2(2kµ− λd)

k2µ(kµ− λd)2
− 2k

K

]
= 0, (3.37)

(1− 2s)− cλd(2kµ− λd)

kµ(kµ− λd)2
= 0, (3.38)

α

[
1− s− cλd

kµ(kµ− λd)

]
− k2

Kλd
= 0. (3.39)

We next use the optimality conditions (3.38) and (3.39) to establish the following properties:

(i) λ∗ and k∗ change in the same direction for any fixed α, K, c, d and µ;

(ii) ρ∗ and k∗ change in the same direction for any fixed α, K, c and µ;

(iii) ρ∗ and w∗ change in the same direction for any fixed α, K, c and µ;

(iv) ρ∗ and
W ∗q
d

change in the same direction for any fixed α, K, c and µ;

(v) ρ∗ and s∗ change in the opposite direction for any fixed α, K and c.

13We ignore the constraints that 0 ≤ s ≤ 1 and 0 ≤ k ≤ K to simplify our exposition in the proof, but the
analysis can be easily adapted to include these constraints as well.
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First, we can substitute (3.38) into (3.39) and obtain

α

2

[
1 +

cλ2d2

kµ(kµ− λd)2

]
− k2

Kλd
= 0. (3.40)

The left side of (3.40) increases in λ but decreases in k for any fixed α, K, c, d and µ. Thus,

the values of λ and k at optimality must change in the same direction, which proves (i).

Let ρ = λd
kµ
< 1. We can rewrite (3.40) as

α

2

[
ρµ

k
+

cρ3

k2(1− ρ)2

]
− 1

K
= 0. (3.41)

The left side of (3.41) increases in ρ but decreases in k for any fixed α, K, c and µ. Thus,

the values of ρ and k at optimality must change in the same direction, which prove (ii).

We can use (3.10) to rewrite (3.40) as

α

2

[
1 +

cρ

(1− ρ)2Kµ2w

]
− w = 0. (3.42)

The left side of (3.42) increases in ρ but decreases in w for any fixed α, K, c and µ. Thus,

the values of ρ and w at optimality must change in the same direction, which proves (iii).

We can use (3.8) to rewrite (3.40) as

ρ =
1− (2d)/(Kαµ2Wq)

1− c
d
Wq

.

This shows that the values of Wq

d
and ρ at optimality must change in the same direction for

any fixed α, K, c and µ, which proves (iv).

Finally, we can again use (3.8) to rewrite (3.38) as

(1− 2s)− c

d
Wq

2− ρ
1− ρ

= 0,
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or equivalently,

s =
1

2

[
1− c

d
Wq

2− ρ
1− ρ

]
.

We show in (iv) that the values of ρ and Wq

d
at optimality change in the same direction for

any fixed α, K and c. It then follows that the value of ρ and s at optimality must change in

the opposite direction, which proves (v).

We can now rewrite (3.38) as

(1− 2
λ

λ̄
)− c

d
Wq

2− ρ
1− ρ

= 0. (3.43)

We have shown in (i), (ii) and (iv) that the values of λ, Wq

d
and ρ at optimality change in the

same direction for any fixed α, K, c, d and µ. We can deduce from (3.43) that the values of

λ, Wq

d
and ρ at optimality must all increase when λ̄ increases. It then follow from (iii) that

w∗ (and thus p∗ = w∗/α) increases when λ̄ increases.

We can also use ρ = λ̄s∗d
kµ

to express d as d = ρkµ
λ̄s

. It follows from (ii) and (v) that the value

of ρ at optimality must change in the same direction as k, but in opposite direction of s for

any fixed α, K, c and µ. Therefore, we can deduce that, at optimality, the values of ρ and

k must increase while the value of s must decrease when d increases. From (iii) we can also

conclude that w∗ (and thus p∗ = w∗/α) increases when d increases.

Proof of Proposition 4: We shall prove the results for more general distributions of F (.)

and G(.) satisfying Assumption 3, which clearly includes the uniform [0,1] distribution. Note

that the wait-time function Wq given in (3.8) satisfies Assumption 2, so that the results of

Proposition A1 hold.

(a) Since Proposition A1(a) holds, we know that p∗ increases as K increases. We need to

show that w∗ decreases as K increases. We can differentiate the profit function π given in

(3.11) with respect to k and obtain the first-order condition

π′(k) = cd2λ
λ(2kµ− λd)

k2µ(kµ− λd)2
− 2k

K
= 0. (3.44)
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Using (3.10) and (3.44), we can express

w = cλd
2kµ− λd

2kµ(kµ− λd)2
.

Therefore,

∂w

∂k
= −cλd3kµ(kµ− λd) + λ2d2 + k2µ2

2k2µ(kµ− λd)3
< 0,

which implies that w∗ decreases as K increases, as k∗ is increasing in K from Proposition

A1(a). Since π∗ = λd(p∗ − w∗), π∗ increases as K increases.

(b) We can use the same argument as given in part (d) and Proposition A1(b) to show that

w∗, µ
d
W ∗
q and ρ∗ decrease when µ increases. It follows that 1

d
W ∗
q must be decreasing when µ

increases. Therefore, from (3.3), p∗ increases when µ increases. Since π∗ = λd(p∗ − w∗), π∗

increases as µ increases. This proves statement 1.

(c) Consider any c1 > c0 > 0, and let ki be the corresponding optimal value of k∗ when

c = ci, i = 1, 2. Then, k0 < k1, as k∗ is increasing in c from Proposition A1(c). Also,

∂Wq

∂k

Wq

=
λd− 2kµ

k(kµ− λd)
= −1

k
− µ

kµ− λd
,

is increasing in k. Since k0 < k1, we have

∂Wq(λ,k,µ,d)

∂k
|k=k0

Wq(λ, k0, µ, d)
<

∂Wq(λ,k,µ,d)

∂k
|k=k1

Wq(λ, k1, µ, d)
. (3.45)

By the definition of ki and using the first-order condition as in the proof of Proposition

A1(c), we have

−λc0
∂Wq(λ, k, µ, d)

∂k
|k=k0 −

[
G−1(

k0

K
) +G

′−1(
k0

K
)
k0

K

]
= 0

and

−λc1
∂Wq(λ, k, µ, d)

∂k
|k=k1 −

[
G−1(

k1

K
) +G

′−1(
k1

K
)
k1

K

]
= 0.
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Since k0 < k1 and G−1(.) is convex and increasing, the above two equations imply that

−c0
∂Wq(λ, k, µ, d)

∂k
|k=k0 < −c1

∂Wq(λ, k, µ, d)

∂k
|k=k1 . (3.46)

Using (3.45) and (3.46), we can conclude that c0Wq(λ, k0, µ, d) < c1Wq(λ, k1, µ, d). It then

follows directly from (3.3) that the optimal price when c = c0 is higher than the optimal

price when c = c1. This shows that p∗ is decreasing in c. It follows from Proposition A1(c)

that w∗ is increasing in c, as Assumptions 2 and 3 hold. Also, π∗ = λd(p∗−w∗) is decreasing

in c. This proves statement 2.

(d) Since λ = λ̄s, it suffices to show that p∗ is decreasing in λ and w∗ is increasing in λ. Let

ρ∗ = λd
k∗µ

denote the provider utilization at optimality, so that we can rewrite the first-order

condition (3.44) as

c(ρ∗)2(2− ρ∗)
(1− ρ∗)2

=
2(k∗)2

K
,

or equivalently,

k∗ =

√
cK

2(2− ρ∗)
ρ∗(2− ρ∗)

1− ρ∗
.

It is clear from the above equation that ρ∗ increases as k∗ increases. It then follows from

Proposition A1(d) that ρ∗ increases when λ̄ or s increases.

Also, denote the waiting time at optimality, W ∗
q = λ∗d2

k∗µ(k∗µ−λ∗d)
, so that we can rewrite the

first-order condition (3.44) as

c(
µ

d
W ∗
q )2(2− ρ∗) =

2

K
.

This implies that µ
d
W ∗
q increases as ρ∗ increases. It then follows from (3.3) that p∗ decreases

when λ̄ or s increases.

Finally, since w∗ = (k∗)2

Kλd
, we can also rewrite (3.44) as

w∗ =
cµ
d
W ∗
q

2µ

(
2− ρ∗

1− ρ∗

)
. (3.47)
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Since both µ
d
W ∗
q and ρ∗ increase when λ̄ or s increases, we prove the result that w∗ increases

when λ̄ or s increases.

(e) We can use the same argument as given in part (d) and Proposition A1(e) to show that

p∗ decreases and w∗ increases when d increases. This proves statement 3.

Proof of Proposition 5: (a) Let us first adapt the proof of Proposition A1 to establish the

same results to this extension. To establish the result of Proposition A1(a), let k0 denotes

the optimal value of k for K = K0. The first-order condition for Π(k) now becomes

Π′(k0) = −λc∂Wq(λ, k, µ, d)

∂k
|k=k0 −

{
G−1(

k0

K0

) + (1− γ)G
′−1(

k0

K0

)
k0

K0

}
= 0, (3.48)

and we can show that, for any K1 > K0,

−λc∂Wq(λ, k, µ, d)

∂k
|k=k0 −

{
G−1(

k0

K1

) + (1− γ)G
′−1(

k0

K1

)
k0

K1

}
> 0.

Therefore, the optimal value of k must be greater than k0 for any fixed K1 > K0, which

implies that k∗ is increasing in K. Using the same argument as before, we can show that p∗

is increasing in K.

Let β0 = k0
K0

, we can rewrite the first-order condition (3.48) as

π′(k0) = −λc∂Wq(λ, k, µ, d)

∂k
|k=k0 −

{
G−1(β0) + (1− γ)G

′−1(β0)β0

}
= 0, (3.49)

Let k1 denote the optimal value of k when K = K1 > K0, and define β1 = k1
K1

. Then,

π′(k1) = −λc∂Wq(λ, k, µ, d)

∂k
|k=k1 −

{
G−1(β1) + (1− γ)G

′−1(β1)β1

}
= 0. (3.50)

As k∗ is increasing in K, we have k1 > k0. Therefore,

−λc∂Wq(λ,k,µ,d)

∂k
|k=k1 < −λc

∂Wq(λ,k,µ,d)

∂k
|k=k0 . It follows from (3.49) and (3.50) that

G−1(β1) + (1− γ)G
′−1(β1)β1 < G−1(β0) + (1− γ)G

′−1(β0)β0.

Since G−1(β)+(1−γ)G
′−1(β)β is an increasing function in β, we can conclude that β1 < β0.
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Thus, β∗ is decreasing in K.

The results for Proposition A1 (b),(c),(d) and (e) can be proved using the same arguments

from the proof of Proposition A1.

We can then easily adapt the proof of Proposition 4 to establish the same results to this

extension. In this case, the first-order condition (3.44) given in the proof of Proposition 4

now becomes

Π′(k) = cλ
λd2(2kµ− λd)

k2µ(kµ− λd)2
− (2− γ)

k

K
= 0, (3.51)

and we can use the same arguments as before to establish the results for Proposition 4 and

Corollary 1 in this extension. We omit the details here.

We next adapt the proofs of Propositions 1 and 2 to establish all the corresponding results

to this extension. To illustrate the adaptation, we next outline the proof of the results of

Proposition 1(a). The rest of the results can be proved by following the same arguments,

the details will be omitted here.

The two first-order conditions (3.21) and (3.22) given in the proof of Proposition 1 now

become

∂π

∂k
=

cλ2d2(2kµ− λd)

k2µ(kµ− λd)2
− (2− γ)k

K
= 0 (3.52)

∂π

∂s
= λ̄d

{
[1− (2− γ)s]− cλd(2kµ− λd)

kµ(kµ− λd)2

}
= 0. (3.53)

Let (s0, k0) and (s1, k1) be the optimal values of (s, k) when K = K0 and K = K1,

respectively. Suppose that K1 > K0. We use the notation k∗(K, s) to denote the optimal

value of k for the base model with parameter K and fixed service level s. Then,

k∗(K1, s0) > k∗(K0, s0) in view of Proposition A1(a). Furthermore, we can use the

first-order condition to establish that

[1− (2− γ)s0]− c
λ̄s0d

[
2k∗(K1, s0)µ− λ̄s0d

]
k∗(K1, s0)µ

[
k∗(K1, s0)µ− λ̄s0d

]2 ≥ 0.
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Therefore, the optimal value of s must be greater than s0 when K = K1, as π(s, k∗(s)) is

concave in s. Since (s1, k1) is optimal at K = K1, this proves that s1 ≥ s0. Also, it follows

from Proposition A1(d) that k1 = k∗(K1, s1) ≥ k∗(K1, s0) ≥ k0. Therefore, we prove that

both s∗ and k∗ increase in K.

Using (3.52) and (3.53), we can obtain

s+ w =
1

2− γ
.

It then follows that w∗ decreases in K, as s∗ increases in K.

We next show that W ∗
q decreases in K. We can rewrite (3.53) as

λ̄sd[1− (2− γ)s] =

[
cρ2(2− ρ)

(1− ρ)2

]
. (3.54)

Clearly, the right side of (3.54) is increasing in ρ. Also, the left side of (3.54) implies that

0 < s∗ ≤ 1
2−γ . Suppose that 0 < s∗ < 1

2(2−γ)
. In this case, the left side of (3.54) increases in

s. Since s∗ increases in K as proved earlier, we can conclude that ρ∗ must also increase in

K in this case. The first-order condition (3.53) implies that

[1− (2− γ)s∗] =
cW ∗

q (2k∗µ− λ∗)
d(k∗µ− λ∗)

=
c

d
W ∗
q

2− ρ∗

1− ρ∗
. (3.55)

Since s∗ increases in K, the left side of (3.55) must be decreasing as K increases. On the

other hand, we have shown that ρ∗ increases in K in this case, which implies that 2−ρ∗
1−ρ∗ must

be increasing in K in this case. We can conclude from (3.55) that W ∗
q must be decreasing

as K increases in this case.

Now suppose that 1
2(2−γ)

≤ s∗ ≤ 1
2−γ . In this case, the left side of (3.54) decreases in s. Since

s∗ increases in K, we can conclude from (3.54) that ρ∗ must be decreasing in K in this case.

The first-order condition (3.53) implies that

λ̄∗s∗d[1− (2− γ)s∗] =
c(λ∗d)2(2k∗µ− λ∗d)

k∗µ(k∗µ− λ∗d)2
= c

µ2

d2
(k∗W ∗

q )2(2− ρ∗). (3.56)

As K increases, the left side of (3.56) decreases since s∗ increases in K. On the right side of

(3.56), both (2− ρ∗) and k∗ increase with K as ρ∗ increases in K in this case. Thus, we can
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conclude from (3.56) that W ∗
q must also be decreasing in K in this case.

Furthermore, we can show that

π∗ = λ∗d(p∗ − w∗) = λ∗d(
1− γ
2− γ

− c

d
W ∗
q ). (3.57)

Since λ∗ increases in K and W ∗
q decreases in K, we can conclude that π∗ increases in K.

Also,

p∗ − w∗ = (
1

α∗
− 1)w∗ =

1− γ
2− γ

− c

d
W ∗
q (3.58)

Since w∗ and W ∗
q decrease in K, α∗ is also decreasing in K.

(b) We first consider the case where s is fixed and show that the optimal k∗ is increasing in

γ.

Let k0 denotes the optimal value of k when γ = γ0 ≥ 0. Then,

Π′(k0) = −λc∂Wq(λ, k, µ, d)

∂k
|k=k0 −

{
G−1(

k0

K
) +G

′−1(
k0

K
)
k0

K

}
+ γ0

k0

K
G′−1(

k0

K
) = 0.

For any γ1 > γ0, we must have γ1
k0
K
G′−1(k0

K
) > γ0

k0
K
G′−1(k0

K
). Therefore,

−λc∂Wq(λ, k, µ, d)

∂k
|k=k0 −

{
G−1(

k0

K
) +G

′−1(
k0

K
)
k0

K

}
+ γ1

k0

K
G′−1(

k0

K
) > 0.

Since Π(k) is concave in k, the optimal k∗ must be greater than k0 when γ = γ1 > γ0.

Now consider the joint optimization problem of (s, k). Let (s0, k0) and (s1, k1) be the optimal

values of (s, k) when γ = γ0 and γ = γ1, respectively. Suppose that γ1 > γ0. The two first-

order conditions are given by

∂π

∂k
|s=s0,k=k0 = −cλd2∂Wq(λ, k, µ, d)

∂k
|λ=s0λ̄,k=k0 −

[
G−1(

k0

K0

) + (1− γ0)G
′−1(

k0

K0

)
k0

K0

]
= 0

∂π

∂s
|s=s0,k=k0 = λ̄

{
d
[
F−1(1− s0)− (1− γ0)s0F

′−1(1− s0)
]
− cWq(s0λ̄, k0, µ, d)

−cs0λ̄
∂Wq(λ, k, µ, d)

∂λ
|λ=λ̄s0,k=k0

}
= 0

140



Let k∗(γ, s) be the optimal value of k with fixed values of γ and s. As we have shown that the

optimal k∗ is increasing in γ for fixed s, we have k∗(γ1, s0) ≥ k∗(γ0, s0). As both ∂Wq(sλ̄,k,µ,d)

∂λ

and Wq(s0λ̄, k, µ, d) decrease in k, we have

d
[
F−1(1− s0)− (1− γ1)s0F

′−1(1− s0)
]
− cWq(s0λ̄, k

∗(γ1, s0), µ, d)

− cs0λ̄
∂Wq(λ, k, µ, d)

∂λ
|λ=λ̄s0,k=k∗(γ1,s0) ≥ 0.

Therefore, the optimal value of s must be greater than s0 when γ = γ1, i.e., s1 ≥ s0. Also,

k1 = k∗(γ1, s1) ≥ k∗(γ1, s0) ≥ k∗(γ0, s0) = k0. Therefore, both s∗ and k∗ are increasing in γ.

We can use (3.52) and (3.53) to cancel out γ and obtain

k = c

(
1 +

λdsK

k2

)
λd(2kµ− λd)

µ(kµ− λd)2
= c

(
1 + ρ2Kµ

2

λ̄d

)
ρ(2− ρ)

µ(1− ρ)2
. (3.59)

Since k∗ is increasing in γ and the right side of (3.59) is increasing in ρ, we can conclude

that ρ∗ is increasing in γ. Also, we can rewrite (3.59) as

c

(
1 + ρ2Kµ

2

λ̄d

)
2− ρ
1− ρ

Wq

d
= 1.

Since ρ∗ is increasing in γ, we can conclude that W ∗
q is decreasing in γ.

Finally, we can use (3.10) and (3.52) to obtain

c
(2− ρ)

µ2(1− ρ)2
= (2− γ)Kw2. (3.60)

Since ρ∗ is increasing in γ, the left side of (3.60) is increasing in γ. Since (2−γ) is decreasing

in γ, we can conclude that w∗ is increasing in γ.
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