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ABSTRACT OF THE DISSERTATION

Smart Grid Cyber and Physical Security

by

Sajjad Amini

Doctor of Philosophy, Graduate Program in Electrical Engineering
University of California, Riverside, September 2017

Dr. Hamed Mohsenian-Rad, Chairperson

Anomalies in the form of natural faults or malicious attacks can affect the dynamics

of power systems. They can be physical or cyber-physical, and can affect the generation

side or the load side. Most changes in power system dynamics that are caused by faults

and attacks are damped and do not cause any major harm. However, some faults and

attacks may make the system unstable. The focus in this thesis is on such destabilizing

faults and attacks. In a destabilizing attack against a power system, the adversary hacks

into generators or load control mechanisms to insert positive feedback into the power system

dynamics. In this thesis, Dynamic Load Altering Attack is introduced as a new class of

cyber-physical destabilizing attacks against smart grid demand response programs and its

fundamental characteristics are investigated.

It is crucial to detect presence of anomaly in power system and identify the loca-

tion(s) of the affected generators and/or loads. In this thesis, the focus is on the problem

of data-driven anomaly detection in power systems from measurement data provided by

Phasor Measurement Units and without knowledge of the power system dynamics. It is

shown that a destabilizing anomaly is detectable through a frequency-domain analysis of

measurements. As for the location identification problem, an optimization-based approach

in frequency domain is proposed to identify the unknown location(s) of the destabilizing
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faults and attacks in power systems. The proposed approach does not require prior knowl-

edge about the number of affected location(s). It is fast and computationally more efficient

than its time-domain counterparts. Importantly, it is well-suited to be implemented in a

hierarchical fashion, with applications such as in Wide Area Monitoring Systems. It is also

observed in this thesis that destabilizing anomalies can be modeled as a reparameterization

of the power system’s dynamical model. Therefore, an identification method that uses the

unscented Kalman filter to jointly estimate both the system states and parameters of the

anomaly is developed. A low-rank modification to the Kalman filter is also proposed that

improves computational efficiency while maintaining the identification accuracy.

Finally, a protection and mitigation scheme is designed to protect vulnerable loads

against destabilizing anomalies by formulating and solving a non-convex pole-placement

optimization problem.

Various case studies are presented in this thesis to assess performance of the pro-

posed detection, identification, and protection approaches in standard IEEE 9 and 39 bus

test systems.
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Chapter 1

Introduction

The development of distributed intelligence technologies have introduced new op-

portunities to enhance efficiency and reliability of power grid. However, if these technolo-

gies are not accompanied with appropriate security enforcements, they may also create

new vulnerabilities in power networks, leaving them open to a wide range of cyber-physical

anomalies [52,74,76].

Anomalies in the form of natural faults or malicious attacks can affect the dynamics

of power systems. They can be physical or cyber-physical, and can affect the generation

side or the load side. Most changes in power system dynamics that are caused by faults and

attacks are damped and do not cause any major harm. However, some faults and attacks

may make the system unstable. The focus in this thesis is on such destabilizing faults and

attacks.

1.1 Motivation

Power system destabilization is the result of creating oscillations or positive feed-

back within the power system. This can happen, in particular, due to natural faults or

intentional attacks at power system inputs, i.e., power generation levels or power consump-
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tion levels, e.g., see [6,26,27,45,63,75]. Therefore, there is a need to devise methods to not

only protect power systems against such faults or attacks, i.e., take preventive actions, but

also detect and identify the fault/attack location(s) in order to take timely diagnostics and

corrective actions. In this regard, the focus in this thesis is to develop accurate and com-

putationally efficient methods to detect and identify the location(s) of destabilizing faults

and attacks in power systems. Also, designing protection schemes that assure power system

stability in presence of such destabilizing anomalies.

1.2 Related Work

The literature related to destabilizing faults and attacks in power systems can be

divided into protection, detection, identification, and mitigation. Different methods have

been developed to protect power systems against destabilizing faults/attacks, e.g., in [6,38,

58]. For example, in [58], a protection and control system mechanism is designed against

frequency instability. In [38], a measurement-based online load identification approach is

proposed to assess the margin of voltage instability in order to prevent voltage collapse. In

this thesis, a protection scheme for protecting vulnerable portion of the loads is designed

by formulating and solving a non-convex pole-placement optimization problem.

Detection and mitigation are also studied in many papers, e.g., in [5, 31, 64]. For

example, an attack-mitigation model, based on a game-theoretic analysis, is proposed in [64]

to effectively reduce the impact of attack and to maintaine physical stability of the power

system. Also, in [31], an algorithm is proposed to automatically detect the fast separa-

tion of phase angles among the critical areas in the power system by using synchrophasor

data, and by triggering suitable control actions. While most approaches use model-based

techniques, in this thesis we focus on the problem of anomaly detection in power systems

from power grid measurement data and without knowledge of the power system dynamics.

Specifically, we use data of smart meters in this thesis. Smart meters are advanced mea-
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suring equipment that are used to measure electrical energy consumption at much higher

time-resolutions than conventional meters [18]. They are also capable of two-way communi-

cations with utility companies. Currently, there are over 45 million smart meters installed

in the U.S. that generate more than one billion data points every day [1]. Our results

in this thesis show that it is indeed possible to detect destabilizing anomalies via purely

data-driven approaches. Specifically, we apply the fast Fourier transform (FFT) to sys-

tem measurements. It detects frequencies that a destabilizing anomalies adds that are not

present during normal operation. The presence of such new frequencies beyond certain

pre-specified magnitude thresholds indicate the presence of a destabilizing anomaly.

Location identification problem is addressed, e.g., in [79] using pattern recognition,

in [31] using Kalman Filters, in [66] using observer design, and in [54] using state fault diag-

nosis matrix. In this thesis, we identify destabilizing attacks against power systems by only

monitoring state variables. That is, we devise a method that examines the state-variable

data from power system sensors such as phasor measurement units (PMUs), to indicate

at which exact power system buses (i.e., nodes) the load and/or generation are compro-

mised. The proposed location identification approach operates in frequency-domain and is

customized to work well against a class of destabilizing faults/attacks in power systems,

whether in generation or load side. It has several advantages over the existing methods

that operate in time-domain. Additionally, we use the unscented Kalman filter (UKF) to

perform dual state estimation to estimate fault/ attack parameters. We then identify the

location(s) through a proper thresholding mechanism. In terms of the methodology used

in this thesis, the UKF has been used before for power system problems, e.g., to estimate

the rotor angle and speed in synchronous generators [21]. A more recent analysis estimates

the parameters of the motor controller and bus loads [22]. However, no joint estimation is

used, and the system is not under fault/attack. Note that, our results show that the current

power system monitoring systems would require calculation of a large Jacobian matrix if

one wants to apply the UKF without modification for the purpose of identifying destabi-
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lizing anomalies. In this regard, the current study is related also to a thread of work, such

as in [57, 59], that similarly have to deal with the computational issues that arise when

applying the UKF to power systems.

1.3 Dynamic Load Altering Attack

In this thesis, we introduce a new type of destabilizing anomalies that target

the consumption sector of the power grid. Specifically, we are concerned with attacks

that seek to compromise the demand response (DR) and demand side management (DSM)

programs. DR programs are used by utilities to control the load at the user side of the

meter in response to changes in grid conditions [61]. In a related field, DSM techniques

seek to exploit the load flexibility in different load sectors, e.g., by using automated energy

consumption scheduling [65].

An important class of cyber-physical attacks against DR and DSM systems is

load altering attack (LAA) [49]. LAA attempts to control and change a group of remotely

accessible but unsecured controllable loads in order to damage the grid through circuit

overflow or other mechanisms. There is a variety of load types that are potentially vulnerable

to LAAs, e.g., remotely controllable loads [34], loads that automatically respond to price

or Direct Load Control (DLC) command signals [48,50,78], and frequency-responsive loads

[51, 81]. Some of the recent studies that address modeling, detection, and prevention of

LAAs include [36,39,43].

So far, the focus in the LAA literature has been mainly on static load altering

attacks, where the attack is concerned with changing the volume of certain vulnerable

loads, in particular in an abrupt fashion. In contrast, in this thesis, we address Dynamic

Load Altering Attacks (D-LAA), where we are concerned with not only the amount of

the change in the compromised load but also the trajectory over time at which the load

is changed. Unlike in [36, 39, 43, 49], the analysis in this thesis is based on power system
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dynamics. Accordingly, we use feedback control theory as the main analytical tool to model

or prevent the attack. In this regard, we take into account not only the cyber security

challenges but also the physics of the power system.

This study complements and merges two generally independent lines of research in

the literature. First, it benefits the recent efforts in designing efficient and practical demand

response and demand side management programs [34, 48–51, 61, 65, 78, 81] by increasing

awareness about potential vulnerabilities in these programs, not only to consumers, but

also to grid as a whole. Second, it also adds to the existing results on control-theoretic

study of cyber-physical attacks, c.f. [14, 47,53,54].

1.3.1 Attack Classification

A D-LAA can be open-loop or closed-loop. In an open-loop D-LAA, see Fig.

1.1(a), the attacker tends to manipulate some vulnerable load without monitoring the grid

conditions in real-time or monitoring the impact that its load manipulation may cause

on the power grid while the attack is being implemented. Accordingly, an open-loop D-

LAA relies on some historical data that it may collect prior the attack to impose a pre-

programmed trajectory to the compromised load. In contrast, in a closed-loop D-LAA,

the attacker constantly monitors the grid conditions, e.g., through the attacker’s installed

sensors or via hacking into an existing power system monitoring infrastructure, such that

it can control the load trajectory at the victim load bus(es) based on the grid operating

conditions. An adversary can conduct a successful D-LAA only if it compromises sufficient

amount of vulnerable loads. That is, D-LAA is meaningful only if there is enough flexible

and vulnerable (not secured) load to potentially compromise.

The feedback in a closed-loop D-LAA can be based on different types of power grid

measurements. For example, the grid conditions can be monitored by measuring voltage

magnitude or frequency, aiming for various malicious goals.

The D-LAAs can be classified also based on their scope. Specifically, D-LAAs can
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Figure 1.1: Three examples of dynamic load altering attacks: a) open-loop D-LAA, b)
single-point closed-loop D-LAA, c) multi-point closed-loop D-LAA.

be single-point or multi-point. In a single-point D-LAA, the attacker seeks to compromise

the vulnerable load at one victim load bus. In a multi-point D-LAA, the attacker seeks to

compromise a group of vulnerable loads at several victim load buses. The vulnerable loads

at different load buses are compromised in a coordinated fashion. Examples of single-point

and multi-point closed-loop D-LAAs are shown in Figs. 1.1(b) and (c), respectively.

Finally, one can classify D-LAAs also based on the type of controller being used

in order to manipulate the control variable which is load consumption of victim bus(es),

whether through a feed-forward controller in case of an open-loop attack or a feedback

controller in case of a closed-loop attack. For example, if the D-LAA is closed-loop, then

the attacker may use a bang-bang, P, PI, or PID controller [15], or any other more complex

feedback control system mechanism.

1.3.2 Attack Adverse Impacts

Load altering attacks may seek to cause different adverse impacts. For example,

a static load altering attack may involve abruptly increasing the load at the most crucial

locations in the grid in order to cause circuit overflow on distribution or transmission lines

that can cause significant damage to the utility company and/or user equipment. Such

attacks may also seek to disturb the balance between power supply and demand during
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peak-load hours. Please refer to [49] for more details about the possible impacts of static

load altering attacks.

As for dynamic load altering attacks, the attack objective depends on the type

of attack. For example, for a closed-loop D-LAA where the feedback is based on power

grid frequency, the attack may seek to deviate the frequency from its nominal value. Note

that, an entire interconnected power grid operates at or around a nominal frequency. For

example, the nominal frequency in North America is 60 Hz and regional transmission system

operators are required to maintain and stabilize frequency at or very closely around this

level. Accordingly, a D-LAA may try to damage the grid by destabilizing the frequency

away from its nominal value.

For a D-LAA against power system stability, an attack may be considered success-

ful once it trips one or more over/under frequency relays, c.f. [70], e.g., to force at least one

generator go offline, causing a major disturbance to the normal operation of power grid.

Such disturbance can potentially trigger ripple-effects across the interconnected power sys-

tem. In fact, due to the connectivity of the grid, small localized perturbations can reach far

away regions, and in a disruptive fashion. See for instance the Nature paper in [60] for a

characterization of certain cascading effects across interconnected networks. Alternatively,

if the size of the compromised load is small, it is also possible that triggering the relays

and protection systems rather confines the compromised load area, avoiding the attack to

spread out to other regions of the power grid, c.f. [68]. But even in that case, the attack

is considered successful because it cuts off service for a subset of loads, even though the

impact is not catastrophic as in case of an attack with cascade effects.

1.3.3 Closed-loop Attack Implementation

In this thesis, we are interested in closed-loop D-LAAs because they can potentially

affect power system stability. We assume that the attack feedback based on measuring

power grid frequency. This setup is of practical importance also due to its link to the
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concept of frequency-responsive loads [51, 81]. Note that, if a frequency-responsive load

is compromised, then power system frequency is already available to the attacker through

local measurements. The frequency sensor can be either co-located with the victim load

bus, or it can be placed at some other bus but on the same interconnected network. We

refer to the bus where the frequency sensor is located as the sensor bus s. While D-LAAs

take place at the customer and distribution level, their impact is understood only when the

system dynamics are studied at the transmission level. Because it is at the transmission

level where the area frequency is affected due to an aggregate impact of compromised loads.

Nevertheless, the adversary does not need access to the transmission-level SCADA/EMS

system to implement the attack. All that he/she needs is to hack into the remote load control

systems that often exist in demand response programs to adjust the power consumption

trajectory.

To implement a D-LAA, the adversary must undergo two major tasks: 1) changing

load, and 2) sensing feedback.

Changing Load

The adversary must alter the energy consumption of target vulnerable loads by

breaking into the smart grid communications, monitoring, or control infrastructure. This

can be done in different ways depending on the type of attack, type of load, or type of the

communications infrastructure. In particular, an attack may target compromising price sig-

nals in price-based demand response programs or command signals in Direct Load Control

(DLC) programs [16,33,78]. For example, the communications infrastructure vulnerability

in price-based demand response is discussed in details in [30, 77]. Compromising the com-

mand signals in DLC programs is also directly related to D-LAAs, because DLC programs

allow remote and direct access to and control over the load without the need to bypass

an intermediate or local load control mechanism. Fig. 1.2 shows how an adversary may

generate its desired aggregated load profile by sending a carefully selected sequence of DLC
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Figure 1.2: An example on how an adversary may achieve its desired aggregated load by
sending proper DLC command signals to individual vulnerable loads.

signals - in form of simple on/off commands - to three air conditioners.

In [34], the authors proposed a remote load control mechanism that works over the

Internet. Hacking into this Internet-based system may allow taking simultaneous control

over several small controllable loads, see Fig. 1.3. Other communications infrastructures,

such as cellular or other wireless networks that are used in advanced metering infrastructures

(AMIs) [67], may also be vulnerable to various intrusion attempts.

Some load types that could potentially be vulnerable to load altering attacks due

to their major role in demand response and DLC include: vacuum cleaners, e.g., Roomba,

smart washing machines, e.g., Miele, smart ovens, e.g., LG Thinq, [46], air conditioners [78],

water heaters [69], irrigation pumps [42], electric vehicles [62], and computation equipment

[23].

Sensing Feedback

In a closed-loop D-LAA, the energy consumption of vulnerable loads is changed

according to a feedback signal, such as power system frequency. While a single-point attack

requires installing one frequency sensor, a multi-point attack may need one or multiple

frequency sensors, depending on how the attack is designed and implemented.
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Figure 1.3: A demand response program may involve two-way communications between
grid operator and aggregators and between aggregators and loads. An intrusion may occur
in any of these communications infrastructures.

In general, measuring frequency of power grid is not difficult as it can be done

at any power outlet using an inexpensive commercial sensor [2]. In fact, such sensing

mechanism is already embedded in frequency responsive loads that control power usage to

contribute, e.g., to frequency regulation [81].

Attack Steps

In summary, an adversary may undergo the following three main steps to imple-

ment a D-LAA:

1. Monitor frequency at sensor bus(es) and constantly send measurements to the D-

LAA controller. For the special case where the D-LAA controller measures frequency

locally, i.e., when the sensor bus and the victim bus are the same, frequency can be

measured without the need to intrude into any cyber or physical system.

2. Calculate the amount of vulnerable load PLV that needs to be compromised at victim

bus(es) according to the feedback signal and based on the attack control mechanism.

This step is done inside the D-LAA controller; therefore, no intrusion is needed in this

step.

3. Remotely control the victim load at the amount that is calculated in Step 2. This is
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the only step which requires an intrusion mechanism in order to remotely control the

load.

Assessing the vulnerability of Supervisory Control and Data Acquisition (SCADA) systems

in smart grids, i.e., the focus of Step 3 above, is also discussed in [20,67].

1.4 Main Contributions

The main contributions of this thesis are summarized as follows:

1.4.1 Destabilizing Anomalies

• A comprehensive model for power system dynamics in presence of destabilizing anoma-

lies is developed.

• Dynamic Load Altering Attacks (D-LAA) are introduced, characterized, and classified

as a new form of cyber-physical attacks against smart grid.

• A closed-loop D-LAA against power system stability is formulated and analyzed,

where the attacker controls the changes in the victim load based on a feedback from

the power system frequency. System vulnerabilities and the impacts of single-point

and coordinated multi-point attacks are assessed.

1.4.2 Data-Driven Detection Methods

• This thesis introduces the problem of detecting destabilizing anomalies from mea-

surement data only, and without knowledge of the power system dynamics. The

data-driven detection problem is addressed for smart meters readings only, and for

smart meter readings together with frequency measurements.
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• The detection with smart meter readings only is addressed in the frequency domain.

We show that a destabilizing anomaly is detectable through a frequency domain anal-

ysis, and that the attack signature corresponds to the system poles that are relocated

by the adversary. We provide conditions on the time resolution of the smart me-

ters to ensure anomaly detection, and we highlight the potential interference from

instrumentation and communication devices.

• For the case when smart meter readings and frequency measurements are both avail-

able, we show that a cross-correlation analysis allows to detect anomaly, and to dis-

tinguish between anomalies and the effect of benign frequency responsive loads.

1.4.3 Location Identification Approaches

• The proposed location identification approaches do not require prior knowledge of the

number of buses that are compromised. That is, as in practice, we assume that the

grid operator is not initially aware of how many buses are compromised. Nevertheless,

our methods can identify which buses are compromised. In fact, we provide a means

to effectively estimate the unknown number of affected fault/attack location(s).

• They are capable of distinguishing destabilizing attacks, i.e., load or generation control

loops that are malicious and based on positive feedback, from the many load and

generation control loops that exist in a power system that are benign and based on

negative feedback.

• The frequency-domain location identification approach makes direct use of the infor-

mation that is obtained during the detection phase. In particular, it uses the frequency

at which the fault/attack signature was detected.

• Compared to its time-domain counterparts, such as unknown input observers, it needs

a lower time resolution for measurements, because it does not need to reconstruct the
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entire unknown input signals before it can identify the location(s) of affected power

system inputs.

• The proposed optimization-based location identification approach is computationally

efficient.

• The proposed approach is well-suited to be deployed in wide area monitoring systems

(WAMS) to do fault/attack location identification in a hierarchical fashion.

1.4.4 Protection and Mitigation Schemes

• A protection scheme is designed against destabilizing anomalies by formulating and

solving a non-convex pole placement optimization problem. It seeks to minimize

the total vulnerable load that must be protected to assure power system stability

under destabilizing anomalies against the remaining unprotected vulnerable loads.

Designing under uncertainty with respect to the exact anomaly location is also taken

into consideration.

The techniques that are developed in this thesis are tested and verified on illus-

trative examples based on an IEEE 9 bus test system, and on a large multi-area IEEE 39

bus test system.
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Chapter 2

Power System Dynamics in

Presence of Anomalies

2.1 Power System Dynamics

Consider a power transmission system with B = G ∪ L as the set of buses, where

G and L are the sets of generator buses and load buses, respectively. An example is shown

in Fig. 2.1. The linear power flow equations at each bus i ∈ B can be written as [24]:

PEi =
∑
j∈G

Hij(δi − δj) +
∑
j∈L

Hij(δi − θj), ∀i ∈ G, (2.1)

−PLi =
∑
j∈G

Hij(θi − δj) +
∑
j∈L

Hij(θi − θj), ∀i ∈ L, (2.2)

where PEi is the injected electrical power of the generator at bus i, PLi is the power con-

sumption of the load at bus i, δi is the voltage phase angle at generator bus i, θi is the

voltage phase angle at load bus i, and Hij is the admittance of the transmission line between

buses i and j. If there is no transmission line between buses i and j, then we have Hij = 0.

We adopt the linear swing equations, c.f., [35], to model the generator dynamics
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at each generator bus i ∈ G, that is,

δ̇i = ωi, (2.3)

Miω̇i= PMi −DG
i ωi − PEi , (2.4)

where ωi is the rotor angular frequency deviation at the generator bus i, Mi > 0 is the

inertia of the rotor, DG
i > 0 is the damping coefficient, and PMi is the mechanical power

input. We assume two controllers that affect the mechanical power input: turbine-governor

controller and load-frequency controller [24]. The turbine-governor controller compares the

rotor frequency with a base frequency, for instance 377 rad/s, to determine the amount of

mechanical power that is needed to compensate the generated electrical power at steady

state. The load-frequency controller, which has a slower dynamic, aims to maintain the

rotor frequency at its nominal level by pushing the frequency deviation ωi back to zero.

The two controllers can together be modeled as a proportional-integral (PI) controller, that

is,

PMi = −
(
KP
i ωi +KI

i

∫ t

0
ωi + PGi

)
, (2.5)

where PGi denotes the constant power generation at the generator bus i which is zero for

generators with Automatic Generation Control (AGC) and non-zero for generators without

AGC. Also, KI
i > 0 and KP

i > 0 are the proportional and integral controller coefficients,

respectively. These coefficients are zero for the generators without AGC. Equation (2.4)

can be rewritten by combining (2.1) and (2.5) as

−Miω̇i =
(
KP
i +DG

i

)
ωi +KI

i δi +
∑
j∈G
Hij (δi − δj) +

∑
j∈L
Hij (δi − θj)+PGi , ∀i ∈ G. (2.6)

Three load types are considered in this system [80]: (i) uncontrollable, (ii) control-

lable but frequency-insensitive, and (iii) controllable and frequency-sensitive. For notational
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convenience, at each load bus i, we represent the type (i) and type (ii) loads with term PLi

in (2.2), and represent the type (iii) loads with term DL
i ϕi, where ϕi = −θ̇i is the frequency

deviation at load bus i. The power flow equation in (2.2) becomes

−DL
i ϕi − PLi =

∑
j∈G

Hij(θi − δj) +
∑
j∈L

Hij(θi − θj), (2.7)

and the overall power system dynamics can be conveniently written as the following linear

state-space descriptor system:



I 0 0 0

0 I 0 0

0 0 −M 0

0 0 0 0


︸ ︷︷ ︸

E



δ̇

θ̇

ω̇

ϕ̇


=



0 0 I 0

0 0 0 −I

KI+HGG HGL KP +DG 0

HLG HLL 0 DL


︸ ︷︷ ︸

A

x︷︸︸︷

δ

θ

ω

ϕ


+



0 0

0 0

I 0

0 I


︸ ︷︷ ︸

B

u︷ ︸︸ ︷PG
PL

, (2.8)

where HGG, HGL, HLG, and HLL are derived from the imaginary part of the Y-bus admit-

tance matrix , i.e., we have:

Ybus =

HGG HGL

HLG HLL

 .
In practice, several sensors, such as Phasor Measurement Units (PMU) [56], can

be used to measure the system states. We denote such measurement outputs by y. We may

have:

y = Cx, (2.9)
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Figure 2.1: The IEEE 9 bus test system. G = {1, 2, 3} and L = {4, . . . , 9}.

where C is the measurement matrix.

2.2 Destabilizing Anomalies

The focus in this thesis is on cases where one or more power system inputs, i.e., the

power generation level of generators and/or the power consumption level of loads, are either

faulty due to natural causes, or compromised by adversarial actions. We are concerned with

those cases where the faulty or compromised inputs have the potential to destabilize the

power system at certain operating conditions. In this setup, we model faults and attacks

using the following general expression:

uc = u+ f, (2.10)

where uc denotes the new input vector under faults and/or attacks, and f denotes the fault

and/or attack vector.

We shall point out four notes with respect to (2.10). First, the faults and attacks

in this thesis are related to physical quantities of the power system inputs. For example,
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in case of a faulty generator, either there is a fault in choosing the set point or there is a

fault in following the set point. In either case, the physical generation output is affected.

Second, without loss of generality, here we assume that faults and attacks are additive. In

principle, the analysis in this thesis is applicable also to multiplicative faults and attacks.

Third, if an input is neither faulty nor compromised, then the corresponding entry in f

is zero. Fourth, the fault and attack vector f is essentially a signal. In order to cause

destabilization, it must demonstrate certain dynamics. In practice, e.g., when it comes to

implementing a destabilizing attack, vector f is likely to be constructed through a positive

feedback mechanism, see [6], and also the illustrative example in Section 2.3.1.

Once we substitute u with uc in (2.8), the power system dynamics under destabi-

lizing faults or attacks is read as

Eẋ = Ax+Buc,

y = Cx.

(2.11)

The dynamics in (2.11) are different from those in (2.8). The reason is the fact that uc is

not an exogenous signal vector; rather it includes intrinsic positive feedback from system

states, as we explained in the forth item in the previous paragraph.

2.2.1 Dynamic Load Altering Attack

Based on the system model in (2.8), a dynamic load altering attack can be charac-

terized based on how it affects the vulnerable portion of the load vector PL, i.e., the input

signal in (2.11). Accordingly, at each load bus i, we define

PLi = PLSi + PLVi , (2.12)

where PLSi denotes the secure and PLVi denotes the vulnerable portion of the load at bus

i, respectively. An attack may compromise only the vulnerable part of a victim load bus.
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Now, consider a single-point closed-loop D-LAA that is implemented at victim

load buses V ⊆ L. Suppose a proportional controller is used by the attacker. Let KLG
vs ≥ 0

denote the attack controller’s gain at bus v ∈ V if the sensor bus s is a generator bus.

Similarly, let KLL
vs ≥ 0 denote the attack controller’s gain at bus v if the sensor bus s is a

load bus. Note that, for each victim load bus v, only one of the two parameters KLG
vs and

KLL
vs can be non-zero, depending on the choice of sensor bus. We can write

PLVv = −KLG
vs ωs −KLL

vs ϕs. (2.13)

Note that, since KLG
vs and KLL

vs are positive valued, PLVv is updated in opposition

to the values of ωs and ϕs. For example, if ωs decreases, i.e., the frequency drops from its

nominal value, then the attack controller increases the load at bus v. This is exactly the

opposite of how a frequency-responsive load would react to frequency lag in a DR program,

c.f. [81]. The power system dynamics subject to the above D-LAA becomes



I 0 0 0

0 I 0 0

0 0 −M 0

0 0 0 0





δ̇

θ̇

ω̇

ϕ̇


=



0 0 I 0

0 0 0 −I

KI +HGG HGL KP +DG 0

HLG HLL −KLG −KLL +DL





δ

θ

ω

ϕ


+



0 0

0 0

I 0

0 I


 PG
PLS

.

(2.14)

From (2.14), the attacker is capable of affecting the system dynamics. Specifically,

the attacker can affect the system matrix and the system poles by adjusting its controller

matrices KLG and KLL. If the size of the vulnerable load is large enough, then the attacker

can render the system dynamics unstable by moving the system poles to the right-half

complex plane [15]. Of course, in practice, since the generators are equipped with over-

and under-frequency relays as part of their protection systems, c.f. [70], a D-LAA may

ultimately force certain generators to disconnect from the main grid, possibly triggering
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cascading effects or blackouts.

Next, we investigate sufficient conditions for making (2.14) unstable. To do so,

we modify the system model in (2.14) into a regular, i.e., non-descriptor state-space model.

This is done by eliminating the power flow equations and integrating them into the swing

equations. Suppose the sensor bus s is a generator bus, i.e., s ∈ G. Accordingly, we have

KLL
vs = 0 for all victim load buses v. From this, and the last row in (2.14), we have:

ϕ = −
(
DL
)−1




HLG

HLL

−KLG


T 

δ

θ

ω

 + PLS

 . (2.15)

If we substitute (2.15) with ϕ in (2.14), the equivalent non-descriptor / regular

state-space model under attack becomes:


δ̇

θ̇

ω̇

=A


δ

θ

ω

+B

−


0 0

0 0

0 KLG


T

δ

θ

ω

+

 PG
PLS


 , (2.16)

where

A =


I 0 0

0 (DL)−1 0

0 0 −M−1




0 0 I

HLG HLL 0

KI +HGG HGL KP +DG


and

B =


0 0

0 (DL)−1

−M−1 0

 .

Note that, we have KLG
ij = 0 for any i /∈ V and any j 6= s.
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The state-space model in (2.16) represents the system dynamics in presence of a

closed-loop D-LAA, where A and B are the system and input matrices in the corresponding

open-loop system in absence of the D-LAA. The instability of this linear system can be

analyzed using the Linear Quadratic Lyapunov Theory that is overviewed in the Appendix

A.1. Specifically, the closed-loop system in (2.16) is unstable if there exists a symmetric

negative definite matrix X such that

A−B


0 0

0 0

0 KLG


T

T

X +X

A−B


0 0

0 0

0 KLG


T
 < 0. (2.17)

This Nonlinear Matrix Inequality (NLMI) can be changed to Linear Matrix Inequality (LMI)

by applying linear fractional transformation [11]. Specifically, if we define Y , X−1 and

W ,

 0 0 0

0 0 KLG

X−1, we can rewrite (2.17) as

(A−BWY −1)TY −1 + Y −1(A−BWY −1) < 0. (2.18)

If we multiply both sides by Y , we obtain [11]:

Y AT −W TBT +AY −BW < 0, (2.19)

which is an LMI in Y and W . If this LMI has a solution over Y < 0, then the Lyapunov

function V (z) = zTY −1z proves the instability of the closed loop system under attack.
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Figure 2.2: An example on how a destabilizing fault or attack can move the dominant
eigenvalues of the power system matrix towards the jω axis.

2.3 Case Studies

2.3.1 Impact of Destabilizing Anomalies on System Dynamics

Consider the IEEE 9 bus network in Fig. 2.1. Suppose the power system is under

a Dynamic Load Altering Attack. The dynamics of the system in Fig. 2.1 under a D-LAA

can be described by (2.11), where parameters of matrices E and A are as in [3]. We assume

that all three generators have AGC, i.e., PG = 0. Also, PL6 and PL9 are affected by D-LAA

through the adversary’s proportional controllers, with gains 25, and 24, respectively, by

taking feedback from ω3 according to (2.13). Accordingly, the entries in rows 6 and 9 in

attack vector f are non-zero. All buses are equipped with PMUs, except for bus 7.

Fig. 2.2 shows how a destabilizing D-LAA changes the power system dynamics

by moving the dominant eigenvalues of its system matrix towards the jω axis. The power

system frequencies at different buses start deviating from their nominal value, i.e., 60 Hz,
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Figure 2.3: The attack in Section 2.3.1 creates a clear signature on frequency ω∗ of the FFT
magnitude of frequency deviation signal at load bus 6.

putting the system at the margin of instability.

One can evaluate the destabilizing impact of the attack by performing a frequency-

domain analysis. This requires taking the Fast Fourier Transform (FFT) [17] of the mea-

surement outputs. The results are shown in Fig. 2.3 for both the regular and under-attack

scenarios. Here, Φ6(jω) denotes the FFT representation of the power system frequency de-

viation at bus 6, i.e., ϕ6. The magnitude of Φ6(jω) is shown by |Φ6(jω)|. We can see a clear

signature and a large beam at frequency ω∗ in this figure for the case with the presence of

the attack. The above aforementioned fault/attack signature in frequency domain provides

the grid operator with an effective tool to detect the fault/attack through a proper data-

driven analysis, as explained in [5] or Section 3.2. Accordingly, to monitor the signature at

ω∗, sampling frequency of sensors must be at least two times of ω∗. In this example, since

ω∗ = 2.3, the minimum sampling frequency must be 4.6 radian per second or 0.73 Hz.
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Figure 2.4: The IEEE 39 bus test system based on the 10-machine New-England power
network, where L = {1, . . . , 29} and G = {30, . . . , 39}.

2.3.2 Dynamic Load Altering Attack

Consider the IEEE 39 bus power system in Fig. 2.4. Suppose the parameters of

the transmission lines and the inertia and damping coefficients of generators are as in [1].

Secure loads and vulnerable loads at each load bus are as in Table 2.1. Generator controller

parameters are KP
1 = 100, KP

2 = KP
3 = 45, KP

4 = 10, KP
5 = KP

10 = 50, KP
6 = KP

9 = 40,

KP
7 = 30, KP

8 = 20, and KI
1 = . . . = KI

10 = 60. The damping coefficient for each fixed

dynamic load is 10. Controller parameters are set so as to keep the system stable during

normal operations, i.e., in absence of an attack. The system is initiated to run with PL
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Table 2.1: Total loads and vulnerable loads

Load
Bus

PLS

(p.u)
PLV

(p.u)
Load
Bus

PLS

(p.u)
PLV

(p.u)

1 4 0 16 7.8 3.1

2 4 0 17 4 0

3 7.2 0 18 5.6 0

4 9 0 19 4 1.6

5 4 0 20 10.3 0

6 5 2 21 6.7 0

7 6.3 0 22 4 0

8 9.2 0 23 7 2.8

9 4 0 24 7 0

10 4 0 25 6.2 0

11 4 0 26 5.4 0

12 4.1 0 27 6.8 0

13 4 0 28 6.1 0

14 4 0 29 10.8 4.3

15 7.2 0 — — —

being equal to PLS + PLV /2.

We assume that only five load buses have vulnerable loads. They can potentially

become victim buses, i.e., we can have V = {6, 16, 19, 23, 29}. These victim load buses

are highlighted using color gray in Table 2.1. Sensor buses are assumed to be placed only

at S = {31, 33, 36, 38}. The nominal system frequency is 60 Hz. The generator’s over-

frequency relays trip at 62 Hz and the under-frequency relays trip at 58 Hz.

Assessing System Vulnerabilities

The attacker can assess the vulnerability of the loads at each load bus to see the

possibility of conducting D-LAA in the power system, also the type of attack. Fig. 2.5

shows how the root locus [15] analysis helps the attacker to find the minimum attack gain

KLG
19,33 = 15 to conduct a single-point D-LAA when v = 19 and s = 33. If we multiply the

minimum attack gain by two times the frequency deviation threshold ωmax
s = 2/60 at which

the generators frequency relays trip, then we can conclude that at least 2KLG
19,33ω

max
s =

25
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Figure 2.5: Power system poles versus the attack gain KLG
19,33.

15 × 2 × 2/60 = 1 p.u. of the total 1.6 p.u. vulnerable load at victim bus 19 must be

compromised when the frequency sensor is at bus s = 33 in order to have a successful single-

point D-LAA. Note that the compromised load consumption must follow the frequency

signal by a proportional controller. Also, the frequency signal deviates around its nominal

value. Hence, the multiplication by two in 2Kωs is due to the fact that the compromised

load must provide enough room to allow both over and under frequency fluctuations before

the attack makes the frequency relays tripped. Similarly, we can calculate the minimum

portion of vulnerable load that must be compromised for having successful single-point D-

LAAs for all victim and sensor bus scenarios to find the vulnerabilities of the power system.

The results are shown in Table 2.2. We can see that only two successful single-point attacks

are feasible: a single-point attack at victim bus v = 19 with sensor bus s = 33, and a single-

point attack at victim bus v = 29 and sensor bus s = 38. No other single-point attack

is feasible due to lack of sufficient vulnerable load. Another implication of the results in

Table 2.2 is with respect to the coordinated multi-point attacks. For example, based on

the column with s = 33, although hacking the loads individually at victim buses 16 and 23
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Table 2.2: Minimum portion of vulnerable load that must be compromised to assure a
successful D-LAA

Sensor Bus
—————
Victim Bus

31 33 36 38

6 4.9 18.4 81.2 128.1

16 24.7 1.2 6.5 23.3

19 69.2 0.6 15.2 48.8

23 79.1 3.2 1.9 66.8

29 92.2 8.9 46.5 0.7

cannot lead to successful single-point attacks, it might be possible to hack some loads at

both buses and conduct a successful coordinated multi-point D-LAA.

Single-point Attack

Next, we examine three single-point attack scenarios for the case where v = 19 and

s = 33. The results are shown in Fig. 2.6. First, assume that the attack is static, causing

an abrupt change in victim load as shown in Fig. 2.6(d). The poles of the system are not

changed under this attack. We can see in Fig. 2.6(a) that the system can easily absorb such

one-time abrupt change. Second, assume that the attack is dynamic and KLG
19,33 = 10. We

can see in Fig. 2.6(b) that the attack causes some relatively major over- and under-shoots

in frequency. Nevertheless, the system remains stable and the frequency deviation is forced

back to zero.

Finally, suppose the attack is dynamic and KLG
19,33 = 20. Under this third attack,

two of the system poles are pushed to the right half-plane, making the system unstable.

What is different in this case is that load Bus 19 is assumed to be equipped with a three-

step UFLS protection relay [28]. This UFLS sheds only the vulnerable (but protected)

portion of the load in response to frequency drop in its three sequential steps as listed in

Table 2.3. Fig. 2.6(c) shows that even after the three load shedding steps by the UFLS

relay, the attack can still force the frequency deviation at generator bus s = 33 to reach
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Figure 2.6: Simulation results under various attack conditions. First row: system frequen-
cies over time. Second row: vulnerable load changes. First column: S-LAA causing an
abrupt load increase. Second column: an unsuccessful D-LAA with KLG

19,33 = 10. Third

column: a successful D-LAA with KLG
19,33 = 20.

Table 2.3: Frequency settings of the UFLS relay

Step
Number

Frequency
Setting (Hz)

Amount of PLV
19

to be shed (p.u)

1 59.5 20% = 0.32

2 59 10% = 0.13

3 58.5 5% = 0.06

the threshold ωmax
1 = 2/60 p.u., causing the over-frequency relay of the generator at bus

33 to trip at time t = 103s, pushing this generator offline, thus, concluding the attack.

Interestingly, the D-LAA under this last scenario did not need to hack the entire available

vulnerable load at bus v = 19. Instead, it only followed the right trajectory in response to

the changes in frequency in order to be successful.

Note that, implementing a D-LAA does not require all loads to be equipped with

smart meters. In fact, according to Table I, only less than one-third of the loads at each

bus are assumed to be vulnerable. That means, at each bus, over two-third of the loads are

traditional loads and may not even have smart meters or any demand response equipment.
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Also, only a portion of the vulnerable loads needs to be compromised to conduct a successful

attack. For example, according to Table II, the adversary can plan a single-point D-LAA

by compromising only 60% of the total vulnerable loads at bus 19. Hence, only 60 % of

smart meters at bus 19 need to be compromised.

Coordinated Multi-point Attack

Recall from Section 2.3.2 that a coordinated multi-point attack at victim buses

v = 16 and v = 23 might lead to a successful D-LAA. The amount of vulnerable load

that needs to be hacked at each of the two victim buses to make the system unstable can

be obtained using a two-dimensional root locus analysis in form of an exhaustive search.

The results are shown in Fig. 2.7. This figure shows the attack success time, i.e., the time

that takes from the moment the attack is launched until the moment the target generator

goes offline, for all possible combinations of hacking vulnerable loads at buses v = 16 and

v = 23. Note that, for those combinations where a successful attack is not feasible, no point

is plotted in the curve. We can conclude that, while increasing the amount of compromised

loads may not always be necessary to make the system unstable, it can still be beneficial to

decrease the attack success time.

29



Figure 2.7: Attack success time versus the amount of compromised load at each victim load
bus in a coordinated multi-point closed-loop D-LAA.
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Chapter 3

Data-Driven Detection Methods

3.1 Smart Meter Data and a Case Study

The focus in this section is on data-driven detection of destabilizing anomalies in

power systems. In this regard, we use the experimental data in [8], which includes the

smart meter data of three different homes (A, B, and C) in Western Massachusetts; see

Fig. 3.1. The time-resolution for all smart meters is one second. All three homes have

typical household appliances such as refrigerator, washing machine, etc. Home A is fur-

ther instrumented with appliance-level submeters that monitor the loads for all appliances

separately. For example, about 30 of 35 wall switches have been replaced with units that

transmit on-off-dim events for the switches to a gateway server at about every 2.5 seconds

(on average) by using Power Line Communication (PLC) data transmissions.

To utilize the above smart meter data in a study on anomaly detection, we inte-

grated them into the 39-bus IEEE test system in Fig. 2.4. The parameters of the transmis-

sion lines and the inertia and damping coefficients of generators are as in [1]. The generator

controller parameters are chosen as KP
1 = 100, KP

2 = KP
3 = 45, KP

4 = 10, KP
5 = KP

10 = 50,

KP
6 = KP

9 = 40, KP
7 = 30, KP

8 = 20, and KI
1 = . . . = KI

10 = 60. The damping coefficient

for each fixed dynamic load is 10. Note that, the generator controller parameters are set so
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Table 3.1: Power consumption at load buses in per unit.

Bus PL Bus PL Bus PL Bus PL Bus PL

1 4 7 6.3 13 4 19 B 25 6.2

2 4 8 9.2 14 4 20 10.3 26 5.4

3 7.2 9 4 15 7.2 21 6.7 27 6.8

4 9 10 4 16 A 22 4 28 6.1

5 4 11 4 17 4 23 C 29 10.8

6 5 12 4 18 5.6 24 7 - -

as to keep the system stable during normal operations and in the absence of attacks.

The system is initiated to run with constant PL for all load buses as in Table 3.1.

The load on buses 16, 19, and 23 change according to the smart meter data in Fig. 3.1.

We assume that there are 10,000 homes at bus 16 whose load profile equals that of Home

A, 30,000 homes at bus 19 whose load profile equals that of Home B, and 20,000 homes at

bus 23 whose load profile equals that of Home C. A closed-loop D-LAA with KLL
vs = 43 is

attempted at bus 19 which is both victim and sensor bus.

There is a frequency-responsive load with gain −2 at bus 23. Fig. 3.2 shows load

and frequency at buses 19 and 23 for two hours on day 12. The D-LAA at bus 19 and the

frequency-responsive load at bus 23 are activated at t = 16.6 min.

3.2 Detection Solely Based on Input Signal

In this section we characterize the possibility of detecting anomalies through the

knowledge of the input data only.

3.2.1 Frequency Domain Analysis

Consider the typical smart meter data in Fig. 3.1. Notice that the load signal has

major fluctuations during the day. Suppose that a portion of the load at a victim bus is

compromised, e.g., in form of the load in Fig. 3.2(a). If the volume of the compromised
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Figure 3.1: Smart meter data at second-by-second resolution over 20 days from May 1, 2012
to May 20, 2012: a) Home A, b) Home B, c) Home C.

load is high, then it can be detected by looking at the smart meter data in time domain,

because the frequency-responsive behavior of the compromised load under D-LAA in this

case significantly changes the shape of the total metered load. Such detection can be done

automatically, e.g., by using appropriate pattern recognition algorithms, c.f. [37]. However,

if the volume of the compromised load under D-LAA is low, then the attack may be difficult

to detect through time-domain analysis, and a frequency-domain analysis may be preferable.

We first take the Fast Fourier Transform (FFT) [17] of the original load signals of

Fig. 3.1, i.e., the second-by-second load profile in the absence of D-LAAs. Fig. 3.3 shows

the results. The DC portion of the signal is omitted before applying the FFT algorithm.
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Figure 3.2: The measurements corresponding to the case study in Section 3.1: a) load signal
for a home at bus 19, b) load signal for a home at bus 23, c) frequency signal a home at
bus 19, d) frequency signal for a home at bus 23.

We can see that, except for some noticeable non-zero coefficients around 0.47 Hz for Home

A, the FFT coefficients are negligible at frequencies above 0.05 Hz. Note that, for the non-

zero coefficients around 0.47 Hz, they do not represent any residential load. Instead, they

are created due to extensive instrumentation of Home A and the fact that about 30 wall

switches make PLC-based transmissions of the submeter data to a gateway once roughly

every 2.5 seconds, see Section 3.1 and Remark 3. From Fig. 3.3, the FFT of a typical

residential load signal has non-zero coefficients only at very low frequencies.

Remark 1 The spectrum analysis of the smart meter data in this thesis is very different

from the well-studied analysis of harmonics for nonlinear loads in power systems and power
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Figure 3.3: The spectral analysis of the residential load signals in Fig. 3.1 over the entire
20 days period using (3.2) and (3.3): a) Home A, b) Home B, c) Home C.

electronics, c.f., [19, 44]. Let p(t) denote the instantaneous power draw for a load. Note

that, p(t) is a continuous-time signal. In order to analyze the harmonics for nonlinear loads,

one would take the following continuous Fourier transform:

FC {p(t)} . (3.1)

Now, consider a smart meter that reports the average power usage every T seconds. The

kth meter reading is calculated as

p̄[k] =
1

T

∫ kT

t=(k−1)T
p(t)dt. (3.2)
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Figure 3.4: Spectral analysis of the original and compromised load signals of each home at
bus 19 over a two-hour period: a) original, b) compromised.

In this paper, for the purpose of dynamic load altering attack detection, we take the following

discrete Fourier transform:

FD {p̄[k]} . (3.3)

Thus, our spectral analysis is focused on much lower frequencies than in a typical harmonics

analysis of nonlinear loads.

Next, consider the two-hour zoomed-in time frame in Fig. 3.1(b). The frequency

spectrum for the load signal of each home at bus 19 without and with attack is shown in

Figs. 3.4(a) and (b), respectively. We see that the presence of D-LAA has created a new

signature to the frequency spectrum at about 0.26 Hz; see Remark 2. This new signature

is away from the load signatures. Hence, it can be used to detect the attack; see Section

3.2.2. The magnitude of attack signature depends on factors such as amount and location

of the compromised load.

Remark 2 The attack has moved a pair of system poles from −0.55± 2.01i to −0.0095±

1.64i. Since the real part of these poles has increased, the poles are now much closer to the

imaginary axis, making the system (almost) only marginally stable. The new poles induce

slowly decaying oscillations with larger magnitudes compared to other oscillations in the
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system, creating a noticeable attack signature in frequency domain. As for the imaginary

part of relocated poles, it highly affects the frequency at which we should see the attack

frequency signature. Specifically, the attack signature in Fig. 3.4(b) has appeared at the

natural frequency of the relocated poles [15]:

ωn =
√
−0.00952 + 1.642 = 1.64. (3.4)

Note that, fn = ωn/(2π) = 0.26Hz, which equals the central frequency of the attack signature

in Fig. 3.4(b).

The above remark may also give some basic hints on how an attacker may conduct

an optimal pole placement - subject to the available load vulnerabilities - in order to max-

imize the attack impact on the power grid while minimizing the chance of being detected

through frequency-domain analysis.

Remark 3 Besides the main attack signature at 0.26 Hz, the attack has also created a

small signature at 0.47 Hz in Fig. 3.4(b). Interestingly, this signature is indirectly related

to the instrumentation signature that we previously identified for the load at bus 16. Note

that, since the grid is an interconnected system, the dynamics of loads/genertors at any bus

may have impact on the frequency at another bus. Accordingly, since the instrumentation

signature at 0.47 Hz at bus 19 has some impact on the frequency fluctuations at bus 19, and

also because the compromised loads at bus 19 respond to the frequency fluctuations at bus

19, the instrumentation signature at bus 16 has now appeared, although with attenuations,

at bus 19. This suggests that the communications activities of instrumentation devices can

potentially interfere with attack detection. However, such interference is likely negligible in

practice, as the power usage of instrumentation is low compared to the load of a home.

One may ask: is it possible to see the attack signature if the meter data is minute-

by-minute instead of second-by-second? The answer is ‘no’, as it is explained in the next
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remark.

Remark 4 Based on the Nyquist-Shannon sampling theorem [25], the sampling frequency

must be twice the highest frequency of the signal in order to avoid aliasing in the signal

spectrum. Of course, the integral nature of energy metering operation in (3.2) is different

from standard sampling. Nevertheless, the above theorem may still provide a good practical

approximation for the minimum required time resolution of smart meters. Loosely speaking,

for the attack signature to be observable in a frequency-domain analysis, it is required that

T ≤ 1

2fn
=

π

ωn
, (3.5)

where T is the smart meter pulse interval; see (3.2). For example, to detect the attack

signature in Fig. 3.4(b), the reading interval of the smart meter needs to be roughly two

seconds or less.

3.2.2 Real-time Detection in Frequency Domain

In the previous section, we studied the detectability of D-LAA via spectral analysis.

In order to detect an attack in a prompt and efficient manner, in this section we employ

the Windowed FFT (W-FFT) method [19]. The performance of W-FFT is affected by

the choices of three parameters: window size, sampling rate, and detection threshold. The

window size indicates the length of time series signal in each FFT window. The sampling

rate indicates the time between two consecutive FFT window samples. The detection

threshold indicates the smallest magnitude for the FFT or W-FFT coefficients around

the natural frequency of a relocated system pole that triggers the detection of an attack

frequency signature.

Suppose we set the sampling rate to 100 sec, window size to 200 sec, and detection

threshold to 0.001. To assess the efficiency of W-FFT in detecting D-LAAs, we calculate

the W-FFT coefficient at attack frequency 0.26 Hz for each sliding window. The results
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Figure 3.5: The W-FFT coefficient of a compromised load at attack frequency 0.26 Hz
versus the W-FFT sliding windows for each home at bus 19.

are shown in Fig. 3.5. We can see that the W-FFT coefficient at attack frequency 0.26 Hz

exceeds the detection threshold right after the attack is launched. This allows an immediate

detection of the attack. However, there are also certain windows, e.g., windows number 21

and 22, where the W-FFT coefficient is below the detection threshold.

Finally, we must also point out a key limitation of detecting D-LAA solely based

on load signals. Consider the W-FFT coefficients for a benign frequency-responsive load of

a home at bus 23 in Fig. 3.6. We can see that there are still quite a few W-FFT coefficients

that exceed the detection threshold, even though a frequency-responsive load is helping the

grid.

Remark 5 The frequency-domain analysis in this section is effective in detecting load ac-

tivities around the natural frequencies of the system poles. However, it cannot distinguish

between a compromised load (with adverse activity) and a frequency-responsive load (with

benign activity), because such distinction is not possible by solely looking at the load signal

and without considering frequency measurements.
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Figure 3.6: The W-FFT coefficient of a frequency-responsive load at attack frequency 0.26
Hz versus the W-FFT sliding windows for each home at bus 23.

3.3 Detection Based on Both Input and State Signals

In this section, we examine the possibility of detecting anomalies when there is

access to both input and state signals. We show that the additional information that is

provided by the state signal can particularly help in distinguishing between the adversarial

action, e.g., D-LAA and benign action, e.g., frequency-responsive load.

The analysis in this section is in time-domain; and Cross-Correlation (CC) is the

main mathematical tool [12]. Since we are interested in detecting anomalies in real-time, we

use the Windowed Cross-Correlation (W-CC) method. Analogously to Section 3.2.2, three

parameters of sampling rate, window size, and detection threshold can affect the analysis

performance.

Suppose we set the sampling rate to 100 sec, window size to 200 sec, and detection

threshold to 0.05. The results for the W-CC analysis of the load and frequency signals

are shown in Figs. 3.7 and 3.8. For each W-CC sliding window, only the zero-lag cross-

correlation coefficient is shown. Unlike in Figs. 3.5 and 3.6, where compromised loads
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Figure 3.7: The zero-lag W-CC coefficient between the compromised load and frequency
signals versus the W-CC sliding windows of a home at bus 19.

and frequency-responsive loads create similar coefficients, here, one can easily distinguish

D-LAAs from frequency-responsive loads. Specifically, the zero-lag coefficients are negative

for a compromised load under D-LAA and positive for a frequency-response load.

Recall from Remark 4 that the frequency-domain analysis in Section 3.2.1 requires

the reading interval of the smart meter to be two seconds or less. Next, we examine the

impact of smart meter time-resolution on detecting the correlations between the load and

frequency signals. The results are shown in Fig. 3.9 for the zero-lag W-CC coefficient

between a compromised load signal and the frequency signal of a home at bus 19. We

can see that the magnitude of the correlation coefficients attenuate quickly as we lower the

smart meter time-resolution.

Remark 6 It appears that the need for high resolution smart meters does not depend on

the method of detection, whether it is in time or frequency domain. This is an important

observation because in practice most smart meters do not support high resolution readings.

In fact, the need for such frequent meter readings has not been raised yet. In this regard, the
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Figure 3.8: The zero-lag W-CC coefficient between the frequency-responsive load and fre-
quency signals versus the W-CC sliding windows of a home at bus 23.

problem of detecting anomalies in this chapter appears to be one of the first smart meter data

applications that can justify second-by-second or higher time-resolutions for smart meters.

Remark 7 For the analysis in this chapter, it was implicitly assumed that the D-LAA

sensor bus is the same as the D-LAA victim bus, i.e., v = s. In other words, the feedback on

system frequency is measured at the same bus that the potential compromised load is located.

However, in general, the sensor bus and the victim bus may not be the same in a D-LAA,

see [4, 6]. Accordingly, if the location of the sensor bus is unknown, selecting the right

frequency signal to be used as the base for cross-correlation analysis could be challenging.

Another challenge in this case is to select the detection threshold for the CC and W-CC

algorithms for each specific sensor bus location, even if such location is known.

The challenges highlighted in Remark 7 suggest that, even if the frequency signals

are available, one may not rely only on a time-domain cross-correlation analysis. It is more

desirable if a frequency-domain analysis of the load signal is combined with a time-domain
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Figure 3.9: The zero-lag CC coefficient between the compromised load and frequency signals
versus smart meter time-resolution for a home at bus 19.

analysis of the load and frequency signals. In fact, in addition to the concerns in Remark 7,

since the performance of both the frequency-domain and time-domain detection methods

are highly sensitive to the choices of parameters such as the detection threshold, a proper

combination of the two methods may lead to a more accurate and robust detection.
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Chapter 4

Location Identification Approaches

Consider a power system such as the one in Fig. 2.1. Suppose some fault(s)

and/or attack(s) have affected a subset of inputs, such as the power generation level of

certain generators and/or the power consumption level of certain loads, putting the system

at the margin of instability. Suppose the presence of the fault or attack has already been

detected using a frequency-domain data-driven analysis, such as the one in [5] or Section

3.2. That is, for a given threshold µ, the following expression holds:

∃ i : |Yi(jω)| ≥ µ, (4.1)

where Yi is the Fourier Transform of the ith entry of the output signal y in (2.11). Thus,

the fault/attack frequency ω∗ is known:

ω∗ = arg max
ω

|Yi(jω)|. (4.2)

Parameter µ can be obtained from historical data, c.f. [5].

The next step is to answer the following two questions:

• How many power system inputs are affected?
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• Which power system inputs are the ones that are affected?

We seek to answer both questions by using power system measurements. Only

those measurements that capture frequency information around ω∗ are of potential use.

Such measurements are often provided only by advanced power system sensors such as

PMUs that are used to monitor/estimate the states of the power system, where the reporting

rate is a fraction of a second [56]. Note that, traditional SCADA systems do not support

the reporting rate needed for this type of analysis, since their reporting rate is in the order

of minutes.

4.1 Location Identification of Destabilizing Anomalies

In this section, we propose a novel optimization-based approach to identify which

power system input(s), i.e., generators or loads, are affected by destabilizing faults and/or

attacks.

4.1.1 Baseline Time-Domain Approach

Based on the existing literature, a somewhat standard approach to solve the desta-

bilizing fault/attack location identification problem is to combine an unknown input observer

(UIO) with any detection method, such as the one in [5] or Section 3.2. From [32, Definition

1], an UIO is defined for the system in (2.11). Its goal is to have estimation error vector

approach zero asymptotically, despite the presence of the unknown input in the system. Dif-

ferent approaches can be used to design an UIO, e.g., see [72]. In principle, all approaches

essentially seek to collect a time series of measurements ŷ(t) from field sensors over a time

interval D, and then reconstruct the unknown input signal uc(t) so as to minimize the

residual observation error:

‖ŷ(t)− y(t)‖2 , (4.3)
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subject to the power systems state space equations in (2.11) as constraints. Ideally, (4.3)

approaches zero asymptotically. Note that, the constraints must hold at any time instance

t ∈ D.

Once the UIO problem is solved and the unknown input signal uc(t) is recon-

structed in time-domain, then one can identify the location(s) of the power system inputs

that are affected by destabilizing fault/attack using, for example, the Fourier Transform

of uc(t), see [5]. Accordingly, the set of affected power system inputs, denoted by K, is

obtained as:

K = {i ∈ B | |U ci (jω∗)| ≥ µ}. (4.4)

4.1.2 Proposed Frequency-Domain Approach

The first fundamental step in our proposed approach is to transform the power

system dynamics under destabilizing fault/attack in (2.11) from time-domain to frequency-

domain. This can be done by applying the Fourier Transform to the model in (2.11) as

follows:

E(jω X(jω)− x0) = AX(jω) +BU c(jω), (4.5)

Y (jω) = CX(jω), (4.6)

where x0 denotes the power system’s initial states in time domain. From (2.9), x0 is related

to y0, i.e., the power system’s initial outputs in time domain through y0 = Cx0.

We propose to identify destabilizing fault/attack location(s) by solving the follow-
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ing optimization problem:

minimize
X(jω∗),Y (jω∗),Uc(jω∗),x0,I

∥∥∥Ŷ (jω∗)− Y (jω∗)
∥∥∥
2

(4.7a)

subject to

E(jω∗X(jω∗)− x0) = AX(jω∗) +BU c(jω∗), (4.7b)

Y (jω∗) = CX(jω∗), (4.7c)

ŷ0 = Cx0, (4.7d)∑
i∈B

Ii = |K|, (4.7e)

|U c(jω∗)| ≤ diag (I)Umax, (4.7f)

where the variables X, Y , and U c are complex numbers, variable x0 is scalar, and variable

I is binary and defined as

Ii =

 1 i ∈ K,

0 i /∈ K.
(4.8)

The entry of I corresponding to location i ∈ B indicates whether or not the power system

input i is a fault/attack location. The characteristics of problem (4.7) are as follows.

First, suppose we drop I as variable and also drop (4.7e) and (4.7f) as constraints.

The remainder of the optimization problem in (4.7a)-(4.7d) is intended to reconstruct the

frequency-spectrum of the unknown input signal uc(t), but only at frequency ω∗. Here, we

make no effort in reconstructing the unknown input signal uc(t) at frequencies which are not

ultimately of interest to the destabilizing fault/attack location identification problem. As

we will see in Section 4.1.4, this will not only drastically reduce the computation complexity

and thus the delay in identifying the fault/attack location(s), but it also will enhance the

design performance, in the sense that one can now identify the destabilizing fault/attack

location(s) with fewer number of sampled measurements.

Second, the binary decision making framework in optimization problem (4.7) elim-

47



inates the need to separately apply the data-driven method in [5] or Section 3.2, unlike in

the case of the baseline time-domain approach in Section 4.1.1. Here, we assume that the

number of affected power system input(s) is given, i.e., the cardinality of set K, denoted

by |K|, is known. Accordingly, in (4.7e), we make sure that exactly |K| entries of vector I

are non-zero. This assumption will be relaxed later in Section 4.1.3, where we develop an

algorithm for the case where the number of affected location(s) is unknown.

Third, as for constraint (4.7f), it forces the frequency spectrum of the reconstructed

unknown input signal uc(t) at each location i to have no signature at the fault/attack

frequency ω∗, unless such input is indeed identified as a fault/attack location, i.e., Ii = 1.

Notation diag (I) indicates a diagonal matrix with its diagonal entries being equal to the

entries of vector I. The upper bound vector parameter Umax includes sufficiently large

numbers in its entries. It can be obtained empirically.

One can explain the feasible set of optimization problem (4.7) by examining its

constraints. First, consider constraint (4.7d). This constraint specifies the initial state of

the power system based on the initial output measurements. Since a destabilizing fault or

attack may affect only the system inputs but not the system outputs, from (2.10), ŷ0 can

directly be obtained from any given x0. Therefore, (4.7d) always results in a solution for

x0. Next, consider constraints (4.7e) and (4.7f). Any arbitrary choice of I that satisfies

constraint (4.7e) would result in a feasible solution for U c(jω∗) in constraint (4.7f). Finally,

given the feasible solutions for both x0 and U c(jω∗), constraints (4.7b) and (4.7c) simply

provide the evolution of system states and outputs from the initial state and inputs according

to the system model in (2.11). Hence, corresponding to the obtained feasible solutions of

x0 and U c(jω∗), there always exist solutions for X(jω∗) and Y (jω∗). Therefore, we can

conclude that problem (4.7) always has a feasible solution. Of course, the extent of the

accuracy of such feasible solutions depends on how small one can make the residual error

Ŷ (jω∗)− Y (jω∗) in the objective function of problem (4.7).

Although problem (4.7) is nonlinear and mixed-integer, it is tractable. In fact, once
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we slightly reformulate constraint (4.7f), we can present it as two separate linear inequality

constraints on real and imaginary components. Therefore, the nonlinearity in (4.7) is solely

due to the convex quadratic objective function. Accordingly, problem (4.7) is a standard

mixed-integer least-square problem with linear constraints. Throughout this chapter, we

solve optimization problem (4.7) using the MOSEK solver within the CVX software package

[13]. CVX is installed in MATLAB to facilitate solving convex optimization problems.

Before we end this section, we shall point out that, an alternative option for the

design in this section is to conduct a similar analysis as in the baseline design in Section 4.1.1,

but this time in frequency-domain, and accordingly develop an UIO in frequency-domain.

However, in principle, there is no advantage in doing so, as far as the reconstruction of

the unknown input signal is concerned. Interestingly, we are not really concerned with

the reconstruction of the unknown input signal. The UIO would be simply a middle step

for us to ultimately identify the location(s) of power system inputs that are affected by

destabilizing fault or attack. That explains why we took a rather different approach to

tackle the problem, as it was described earlier in this section.

4.1.3 Proposed Algorithm

Problem (4.7) was formulated based on the assumption that the number of affected

power system inputs, i.e., parameter |K|, is known in advance. However, this is not always

the case. In fact, the number of affected inputs is often unknown in practice. Accordingly,

we propose to first conduct a sensitivity analysis of the objective function in (4.7a) with

respect to parameter |K|. We will then utilize the results to develop an algorithm to identify

destabilizing fault/attack location(s), when the number of such location(s) is unknown.

Let F (|K|) denote the optimal objective value of problem (4.7) for a given |K|.

Next, we introduce a new definition.

Definition 8 (Sensitivity Function) The difference between two consecutive optimal ob-
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jective values in (4.7), is referred to as the sensitivity with respect to |K| and defined as

S(|K|) = F (|K|)− F (|K|+ 1), |K| = 1, ..., |B| − 1. (4.9)

The main properties of the above sensitivity function can be explained in a theo-

rem, as it is presented next.

Theorem 9 (Properties of Sensitivity Function) The sensitivity function, S(|K|), has

the following two key properties:

• Non-negative Function: S(|K|) ≥ 0

• Non-increasing Function: S(|K|+ 1) ≤ S(|K|)

proof : see Appendix A.2.

From the non-increasing property of the sensitivity function in Theorem 9, we can

conclude that S(1) ≥ S(|K|) for any K. Accordingly, we can introduce a new definition for

sensitivity.

Definition 10 (Normalized Sensitivity Function) The normalized sensitivity function

is defined as

N(|K|) =

 1 |K| = 0,

S(|K|)/S(1) |K| 6= 0.
(4.10)

Corollary 11 (Identification Threshold) For any arbitrary choice of parameter ε, there

always exists a location set K for which the following conditions hold at the same time:

 N(|K| − 1) > ε,

N(|K|) ≤ ε,
(4.11)

where 0 < ε < 1 is the identification threshold.
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Algorithm 1: Frequency-Domain Location Identification

1 Inputs: Measurements, Fault/Attack Frequency.
2 Parameters: System Model, Threshold ε
3 Take Fourier Transform of ŷ(t).
4 for |K| = 1 to |B| do
5 Solve optimization problem (4.7).
6 if condition (4.11) holds then
7 break

8 return K

In Corollary 11, parameter ε specifies the residual error in state estimation. Set K

is then selected through optimization to meet the limit on residual error that is set forth by

parameter ε. The proposed frequency-domain location identification method, in presence of

uncertainty about the number of affected power system inputs, is summarized in Algorithm

1.

According to Corollary 11, the number of affected inputs, i.e., |K|, will increase

by decreasing the value of ε. Decreasing ε does not change the fact that the inputs which

are selected by Algorithm 1 are the ones that are most affected by the destabilizing fault

or attack. For example, if decreasing ε results in selecting 3 instead of 2 inputs, then the

third selected input is the third most affected input by the destabilizing fault or attack,

e.g., due to the use of benign negative feedback but based on a state that is highly affected

by the anomaly, see the illustrative example in Section 4.1.4. Nevertheless, one should be

careful in selecting parameter ε, e.g., by using historical data of different fault and attack

scenarios, so as to maintain a desirable sensitivity of the location identification system.

Note that, both detection and location identification would be implemented in real-

time in practice in order to allow immediate and proper reaction in presence of an anomaly.

Accordingly, we conduct our analysis in a window-based fashion, similar to the Windowed

FFT (W-FFT), e.g., in [19], where the FFT is taken for a window of measurements. The

size of the window in our case studies is 300 seconds.
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4.1.4 Illustrative Example

Location Identification Performance

The performance of a fault/attack location identification algorithm can be eval-

uated in terms of two factors: the ability to find the location(s) that are affected; and

the ability not to select the location(s) that are not affected. The latter is the ability to

avoid false alarms. Therefore, we next introduce one metric, called location identification

accuracy (LIA), that incorporates both factors:

LIA (%) =

[
# of Correct−# of Incorrect

# of Actual

]+
× 100. (4.12)

The numerator in (4.12) is the total number of correctly identified affected input(s) minus

the total number of benign input(s) that are incorrectly identified as affected. The denomi-

nator is the true total number of the affected input(s). This fraction is always less than one.

Using operator [x]+ = max{x, 0}, LIA is always between zero and one, or between 0% and

100%. As an example, suppose the power system is under a multi-point destabilizing attack

where four power system inputs are affected. Suppose a location identification algorithm is

applied, and it correctly identifies three of the four affected inputs. Suppose the algorithm

also incorrectly identifies a benign input as affected. In that case, the numerator is 3 - 1 =

2 and the denominator is 4. Accordingly, LIA is obtained as 50%.

Again consider the power system under destabilizing attack in the illustrative

example in Section 2.3.1. Suppose all buses are equipped with measurement devices, such

as PMUs. Also, suppose the number of affected inputs (two) is known in advance. The

performance, in terms of LIA, of the time-domain versus frequency-domain approaches are

compared in Fig. 4.1(a). The x-axis is the time sampling rate of sensors. We can see that

the LIA for the proposed frequency-domain method reaches 100% at only 0.8 Hz. This is

in fact the same sampling rate that is required to detect the fault/attack in this example,
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Figure 4.1: Comparing the performance of time-domain and frequency-domain location
identification methods: a) LIA index; b) computation time.

see Section 2.3.1. In contrast, the time-domain method has a zero LIA all the way up to 10

Hz.

Another important performance metric is computation time, i.e., the time needed

by the algorithm to identify the location(s) of faults/attacks. This is shown in Fig. 4.1(b).

We can see that, the time-domain method needs at least 17 seconds before it can reach

100% accuracy. In contrast, it takes less than 1 second for the frequency-domain method to

reach 100% accuracy. The exact computation platform is not a major factor; of importance

is rather the relative computation time. That being said, the computation platform in this

example was an Intel Core i7-2600 with 3.4 GHz CPU and 8 GB memory.

Ability to Identify the Number of Affected Inputs

Next, suppose all buses, except for bus 7, are equipped with sensors that take

two samples per second. Suppose µ = 1.5, which allows detecting the presence of the
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Figure 4.2: Identifying number of affected inputs, i.e., |K| using Algorithm 1.

fault/attack by examining the frequency-spectrum of the measurements at bus 6, as it was

previously shown in Fig. 2.3. Now, suppose the identification threshold is ε = 0.2, the

unknown location(s) of affected power system inputs are identified using Algorithm 1. The

results are shown in Fig. 4.2, where N(|K|) is plotted versus |K|. The algorithm stops in

this case at |K| = 2, which is associated with solution I = [0 0 1 0 0 1]. That is, K = {6, 9},

which is exactly the correct locations of the attacks. Therefore, LIA = 100%, despite not

knowing the number of affected inputs.

Finally, the outcome of running Algorithm 1 for different choices of parameter ε is

shown in Table 4.1. If ε = 1, then only input 6 is identified, which is one of the two affected

inputs. If ε = 0.2, then inputs 6 and 9 are identified. This is the ideal result, because inputs

6 and 9 are the exact two affected inputs. As we keep decreasing the value of ε, inputs 6

and 9 will continue to be identified as the affected inputs; however, additional benign inputs

will be added to set K, which degrades the LIA.
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Table 4.1: Impact of parameter ε on the performance of Algorithm 1.

ε |K| K LIA

1 1 {6} 50%

0.2 2 {6,9} 100%

0.1 3 {6,9,7} 50%

0.01 4 {6,9,7,5} 0%

0.0001 5 {6,9,7,5,4} 0%

'0 6 {6,9,7,5,4,8} 0%

Practical Implementation Challenges

Recall that in practice, W-FFT is used for detection and location identification

instead of continuous Fourier transform. Sampling frequency is one of the important factors

in accuracy of W-FFT. We seek to examine impact of sampling frequency on residual error

of observation in (4.7) for the illustrated example in Section 2.3.1. Results are shown in

Fig. 4.3 for different W-FFT’s sampling frequencies. According to this figure, observation

accuracy would be increased by increasing the sampling frequency of W-FFT. Therefore,

not only PMU sampling time resolution, but also sampling frequency parameter of W-FFT

affects on accuracy of frequency-domain location identification approach.

4.2 Hierarchical Approach

One possible application of the methodology developed in Section 4.1 is in WAMS

to conduct fault and attack location identification in a hierarchical fashion. Consider a

typical WAMS data collecting and data processing network, as in Fig. 4.4. In practice,

it is divided into several areas. Multiple PMUs are often installed in each area, providing

synchrophasor measurements at high resolutions, e.g., with 30 readings per second [56]. The

PMUs in each area are connected to a Phasor Data Concentrator (PDC). PDCs are then

connected to the control center. Applications of synchrophasors include state estimation,

parameter identification, and model validation [56].

The focus in this section is on answering the following question: How can we
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Figure 4.3: Impact of W-FFT’s sampling frequency on location identification accuracy.

integrate a fault/attack location identification mechanism into a typical WAMS? There are

at least two main challenges to address. First, any such mechanism is preferred to be

hierarchical to fit into the multi-level structure of WAMS networks. Second, any such

mechanism must be light-weight in its computational burden so as to have minimal overhead

on PDCs and their existing data processing tasks.

4.2.1 System Configuration

Suppose the set of all buses in each area within an n-area system is denoted by

Aa, for a = 1, ..., n. The buses in each area are classified as internal versus boundary. An

internal bus does not have any direct line to a bus outside its own area. A boundary bus

has at least one direct line to a bus in another area. Two areas are neighbors if there is

at least one direct line between their boundary buses. PDCs are configured to collect data

from not only the PMUs in their own area; but also the PMUs on boundary buses in their

neighboring areas. For example, the PDC corresponding to A5 = {25, 26, 27, 28, 29, 37, 38}
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Figure 4.4: The hierarchical structure of a typical synchrophasor network.

in Fig. 4.5, collects PMU data from these buses: {2, 17, 25, 26, 27, 28, 29, 37, 38}. We refer

to this latter set of buses as the subsystem of area A5.

4.2.2 Hierarchical Identification

The proposed hierarchical destabilizing fault/attack location identification algo-

rithm is given in Algorithm 2. The central idea in this algorithm is to keep track of three

sets, denoted by P, C, and N . They specify the previous, current, and next areas to run

Algorithm 1. In this regard, Algorithm 2 can be interpreted as an intelligent mechanism to

hierarchically run Algorithm 1 across different areas in the system. In addition to breaking

down the original large system-wide fault/attack identification problem into several small

area-level identification tasks, Algorithm 2 is also capable of accurately identifying the

fault/attack locations by examining only a small subset of the areas, see Section 4.2.3. Set

T keeps track of the identified location(s) as Algorithm 2 examines different areas.

The Initial area to examine, i.e., the starting point for Algorithm 2, is area As,

which is obtained as

s = arg max
a

maximize
i∈Aa

|Ŷi(jω∗)|. (4.13)

Here, we start with the area that has detected the strongest fault/attack signature in the

frequency spectrum.
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Figure 4.5: The IEEE 39 bus test system is partitioned into five areas.

The operation of Algorithm 2 is as follows. The outer loop in lines 4 to 13 is

executed until the algorithm stops. The inner loop in lines 6 to 10 runs Algorithm 1 in all

areas within set C. The next areas to run Algorithm 1 are decided in line 9 based on the

boundary buses that are identified as fault/attack locations. Only the internal buses that

are identified as fault/attack locations are added to set T in line 10. From lines 11 and

12, set C is updated to identify a new set of areas in the next round of the algorithm. The

algorithm ends if set C is empty, i.e., there is no need to examine any further area.

It is worth clarifying that the accuracy of the location identification approach can

reach 100%, i.e., LIA=100%, when it is implemented in a centralized fashion, as long as

parameter ε is selected properly. However, there is no similar guaranty for the hierarchical

approach to achieve 100% accuracy. This is due to the fact that the hierarchical approach

involves model decomposition and such model decomposition creates additional residual

error in the input observation aspect of the proposed design. Of course, as we will show in
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Algorithm 2: Coordination Algorithm

1 Inputs: Measurements Grouped into Subsystems.
2 Parameters: System Model.
3 Initialization: P = {}, C = {As}, T = {}.
4 repeat
5 N ← {}
6 for any area Ai ∈ C do
7 Run Algorithm 1 on subsystem of Ai to obtain K.
8 for any boundary bus j ∈ K \ Ai do
9 N ← N ∪ {Aa|j ∈ Aa}

10 T ← T ∪ (K ∩Ai)
11 P ← P ∪ C
12 C ← N \ P
13 until C = {}
14 return T

our case studies in Section 4.2.3, the performance loss is not significant, such as at only 6%.

4.2.3 Case Study

Consider the IEEE 39-bus test system in Fig. 4.5. The parameters in (2.8), and

the loads at load buses, are set as in [1]. All generator and load buses are equipped with

PMUs. The grid is partitioned into five areas. Without loss of generality, the destabilizing

anomaly is assumed to be due to D-LAAs [6]. We simulated 200 different D-LAA scenarios.

In scenarios 1 to 80, 81 to 120, 121 to 160, 161 to 180, 181 to 200, the adversary compromised

one, two, three, four, and five power system inputs, respectively. The number of affected

power system inputs is assumed to be unknown to our algorithm.

We aim to compare the centralized location identification approach of running

Algorithm 1 for the entire power system versus the hierarchical approach in Algorithm 2.

The results are shown in Fig. 4.6(a). Note that, the choice of victim bus(es) in all ten

scenarios is the same within each test group, but the choices of anomaly feedback gains are

different in each scenario. In total 20×10 = 200 cases are examined. In order to save space

in presenting the results, we grouped together the scenarios with the same choice of victim
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Figure 4.6: Comparing the centralized versus hierarchical location identification methods
across 200 different test scenarios: a) Average LIA; b) Average computation time.

buses and showed their average results in one bar, thus showing a total of 20 bars for each

design setup. We can see that the hierarchical approach can work almost as good as the

centralized approach. While the average LIA across the 200 test scenarios is 95% for the

centralized approach, it drops only by 6% to 89% in the hierarchical approach. In return, the

hierarchical approach provides a much better performance with respect to computation time,

as shown in Fig. 4.6(b). On average, the computation time for the hierarchical approach is

almost half of that for the centralized approach, i.e., 0.98 second versus 1.86 second. Recall

from Section 4.2 that the hierarchical approach does not guarantee 100% accuracy due to

the presence of additional residual observation error caused by model decomposition.

Of interest is the perfect 100% LIA for both centralized and hierarchical designs

on the first 80 scenarios in Fig. 4.6(a), i.e., the first 8 bars. Recall from the setup of our
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Figure 4.7: An example for step-by-step operation of the hierarchical approach.

case studies that, only one power system input is affected in each of these 80 scenarios.

Accordingly, these are the cases that are more likely to occur in practice. The hierarchical

approach improves the computation time significantly in all these 80 scenarios, without

degrading the performance in location identification.

The step-by-step details of running Algorithm 2 for scenario number 200 is depicted

in Fig. 4.7. Similar diagrams can be plotted for every other scenario. From Fig. 4.7,

Algorithm 2 starts with s = 2, and by running Algorithm 1 on the subsystem of area A2.

This results in identifying buses 5, 10, 12, 13, 14 as potential fault/attack locations. Buses

10, 12, and 13 are internal to area A2. Therefore, they are permanently added to set T .

However, buses 5 and 14 are boundary buses, as they belong to area A1 and area A3,

respectively. Next, areas A1 and A3 are considered to run Algorithm 1. At the second level

of the algorithm, running Algorithm 1 in area A1 results in identifying bus 5; and running

Algorithm 1 in area A3 results in identifying buses 13 and 19. Bus 5 is internal to area

A1 and bus 19 is internal to area A3. Therefore, they are added to set T . Note that, bus

13 was already added to set T in the first level of the algorithm. We reach C = {} at this

point. Therefore, the algorithm stops. The final set of identified fault/attack locations is

T = {5, 10, 12, 13, 19}.

61



4.3 Location Identification of Dynamic Load Altering At-

tacks

Consider the power system model under Dynamic Load Altering Attack in (2.16).

This model can be rewritten as

ẋ = (A+BAp)x +B(un + up), (4.14)

where

Ap =

0 0 −(DL)−1KLG

0 0 0

 . (4.15)

and the vector un denotes the control input under normal operation and up is the constant

term for the proportional controller. The attack will be destabilizing if the matrix (A+BAp)

has an eigenvalue whose absolute value is greater than 1 in discrete-time model of (4.14).

In this section, we propose a location identification method that directly estimates

the KLG matrix. Our method automatically determines which load buses are compromised

and can distinguish between destabilizing and benign loads. Our method requires access

only to synchronized measurements of the state vector x, and does not require access to the

control input u. These state measurements are widely available in existing modern power

systems through Phasor Measurement Units (PMUs).

4.3.1 Attack Identification Method

Our attack identification procedure has two steps. First we estimate the KLG

matrix using dual state estimation. This is a standard technique that applies the unscented

Kalman filter (UKF) [71] to simultaneously estimate the entries of matrix KLG and the

system states x. Unfortunately, the standard application of this technique does not work

well for our problem. It is too slow computationally and has poor accuracy. So we introduce
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a novel rank-1 approximation which lets us effectively apply dual state estimation to our

problem. Finally, once KLG is estimated, we apply a thresholding procedure to identify the

attacked buses.

Standard Dual State Estimation and Its Limitations

Dual state estimation is traditionally described using the system’s discrete state

equations, so we begin our presentation by discretizing (4.14) as

xt+1 = (sA+ sBApt + I)xt + sB(unt + upt ) + ε. (4.16)

The subscripts indicate the timestep, s is a scalar that represents the length of

a time step, and ε ∼ N (0, Qε) is an error term capturing both modeling and observation

errors.

Now we describe how to estimate the Apt matrix. Recall that in the definition of

Apt , the KLG
t matrix is unknown and determined by the attacker; all other elements are

statically known. In dual state estimation, we augment the original dynamical system’s

state variables to also include the elements of KLG
t . The resulting augmented system is

 xt+1

vecKLG
t+1

 =

sA+ sBApt + I 0

0 I


 xt

vecKLG
t

+

sB 0

0 I


unt + upt

umt

+

 ε

εm

 , (4.17)

where

ε ∼ N (0, Qε) , εm ∼ N
(
0, Qε

m)
. (4.18)

Here we have also introduced a new control input umt with error εm. It is un-

observed and controlled by the attacker. Specifically, the attacker uses umt to manipulate

the entries of KLG
t , and hence Apt . The notation vecKLG

t refers to the column vector

constructed by stacking the columns of KLG
t on top of each other.

Next we note that the control inputs unt , upt , and umt are unobserved. A standard
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technique for modeling unobserved inputs is to replace them with random error terms. The

true distribution of these random errors is unknown, but for computational convenience we

assume they are normally distributed. In particular, we assume the control inputs are zero-

mean Gaussians with covariance Qn, Qp, and Qm respectively. Under these assumptions,

we can rewrite the dualized system dynamics described in (4.18) as

 xt+1

vecKLG
t+1

 =

sA+ sBApt + I 0

0 I


 xt

vecKLG
t

+

 ε

εKL

 , (4.19)

where

ε ∼ N (0, B(Qn +Qp) +Qε) ,

εKL ∼ N (0, Qm) .

Observe that the dynamical system described by (4.19) is nonlinear because the

KLG term appears in the definition of Apt . It is standard to solve systems of this form using

the UKF [71]. We defer to the cited paper for details.

The UKF encounters two problems when run on (4.19). The first is that the

problem is underspecified. The number of parameters we are trying to estimate (i.e. the

number of entries in KLG) grows as O(|G||L|), but the size of the observed data (i.e. the

size of x) grows at the slower rate of O(|G| + |L|). In general, underspecified problems

are difficult to solve without introducing additional statistical assumptions. As the size of

the power grid increases, the degree of underspecification increases, so we would expect this

method to have low accuracy on large grids. The second problem is computational. At each

time step, the UKF takes the inverse of a matrix whose dimension depends on the number

of state variables. There are O(|G||L|) states in (4.19), and so the runtime of this inversion

is O((|G||L|)3). This poor scaling makes the standard method impractical to run on power

systems with more than about 50 buses. These limitations of the standard method motivate
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our proposed rank-1 method, which we describe next.

The rank-1 method

In this method, we assume that the KLG matrix has rank 1. We justify this

assumption as follows. In a typical destabilizing attack, only a small number of buses are

compromised and subject to positive feedback. For each of these compromised buses, there

is a corresponding nonzero entry in the KLG
t matrix. A basic fact of linear algebra is that

the rank of a matrix is less than or equal to the number of nonzero entries in the matrix.

Specifically, we have

Rank{KLG
t } ≤ Non-zero entries in KLG

t . (4.20)

Therefore, assuming that there are a small number of compromised buses is equiv-

alent to assuming that KLG has low rank.

Specifically, we assume that

KLG
t = kLt kG

T
t , (4.21)

where kLt and kGt are column vectors. Under this assumption, we can rewrite the standard

method’s dynamics from (4.19) as


xt+1

kLt+1

kGt+1

 =


sA+ sBApt + I 0 0

0 I 0

0 0 I




xt

kLt

kGt

+


ε

ε1

ε2

 , (4.22)
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where

ε ∼ N (0, B(Qn +Qp) +Qε) ,

ε1 ∼ N (0, Qm +Qε1) ,

ε2 ∼ N (0, Qm +Qε2) ,

and the new attack matrix is

Apt =

0 0 −(DL)−1kL
T
t kGt

0 0 0

 .
This system remains nonlinear and is solved using the UKF.

The rank-1 method has improved statistical and computational performance. Sta-

tistically, there are only O(|G| + |L|) parameters to estimate in the rank-1 method. This

matches the size of the state vector x, so the problem is no longer underspecified. We no

longer expect statistical performance to degrade as the problem size increases. Computa-

tionally, the run time of each iteration of the UKF is only O((|G| + |L|)3). This is much

faster than the O((|G||L|)3) required for the standard method.

Thresholding

Once the matrix KLG is estimated, we apply a thresholding procedure to identify

the attack. Define the function

ft(i) =
n∑
j=1

KLG
t (i, j), (4.23)
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to be the sum of the entries in the ith row of the KLG
t matrix. This value is the total

predicted attack on the ith bus in the power grid. Also define

αt = arg max
i

|ft(i)|, (4.24)

to be the bus we predict has the most compromised load and so is under the heaviest attack.

If ft(αt) is greater than some threshold τ , then we declare that the system is under attack

at bus αt. At this point, the system operator can take defensive measures such as isolating

the bus from the system.

4.3.2 Simulation Results

In this section we compare the performance of the proposed method in Section

4.3.1 with a baseline approach that does not apply the rank-1 assumption from Section

4.3.1. We refer to the latter method as the standard method. In this section, we show that

compared to the standard method, our proposed method can:

1. significantly lower the computation time;

2. significantly lower the identification error; and

3. better distinguish positive and negative feedback.

We begin with a qualitative demonstration of these facts, and then conclude with a quan-

titative demonstration.

Test Setup and Qualitative Results

All experiments in this section use a single randomly generated power grid with 20

generator and 20 load buses. We test on this relatively small grid size because the standard

method that estimates a full rank KLG matrix cannot scale to larger problems. On this

size problem, a single iteration of our rank-1 method takes about 1 second, and a single
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iteration of the standard method takes about 1 minute. On a problem with 100 generators

and 100 loads, a single iteration of our rank-1 method takes about 5 seconds, and a single

iteration of the standard method takes over an hour. The computation advantage of our

proposed method is evident.

We follow the clusterSmallWorld procedure for generating the power grid [73].

Note that, standard methods for generating random graphs do not exhibit the topological

and electrical properties of real world power grids [29], but clusterSmallWorld was designed

specifically for modeling real world power grids. An outline of the procedure is: First

generate a random number of ring shaped grids with fewer than 10 buses each; Then

randomly add connections between the buses until the average degree of each node is 4. To

ensure the stability of the resulting system, scale matrix A so that its maximum eigenvalue

is no greater than 0.999. This model generates realistically shaped power grids up to about

300 buses. Once the power grid has been generated, a load input vector, i.e., ut, is sampled

from a Gaussian process truncated so that values are always non-negative.

The first experiment has 6 separate scenarios that test how the proposed method

and the standard method perform in identifying 1, 3, and 5 compromised buses. In each

case, the attack begins at time 0.1 seconds. Matrix Apt is selected such that (A + BApt )

has maximum eigenvalue 1.05, ensuring that the attack destabilizes the system. Figure

4.8 shows the results. The proposed method clearly has better qualitative performance on

this particular problem. Specifically, it identifies the compromised buses faster and more

accurately.

To look carefully into how our proposed method can differentiate between benign

and malicious loads, next we randomly selected a load i and generator j, then set the ith row

and jth column of KLG to −10. Recall that negative values of the KLG matrix correspond

to benign loads. The results are shown in Figure 4.9. Negative feedback does not destabilize

the system, yet we are able to detect the feedback. The standard method (not shown) has
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Figure 4.8: Each line in the figures above represents the predicted positive feedback of a
particular load bus. Compromised buses are drawn in bold red, and uncompromised buses
are drawn in thin green. For all times t before the attack begins, each bus i has fi(t)
near zero. After the attack begins, the fi(t) deviate from zero. Our method is correctly
identifying the attacked buses whenever the red lines are above the green lines. In the top
row, we see that our rank-1 approximation of KLG provides relatively accurate predictions
even when the number of attacks increases and the rank-1 approximation is no longer true.
In the bottom row, we see that the standard method has poor accuracy.

difficulty with this problem as it takes much longer for the standard method to converge.

Quantitative Results

We now explore the quantitative performance of our methods by measuring its

performance on several power systems. We generated two sets of power grids, one with 20

generators and 20 loads (as in the previous section), and the other one with 100 generators

and 100 loads. The standard method was run only on the smaller grid, again because it is

computationally infeasible to run it on the larger one, and the proposed method was run

only on both grids.

A major strength of both methods is that they experienced no false positives. We

define a false positive to be the detection of an attack when no attack occurred. It does
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Fig. 2. Each line in the figures above represents the predicted positive feedback of a particular load bus. Compromised buses are drawn in bold red, and
uncompromised buses are drawn in thin green. For all times t before the attack begins, each bus i has fi(t) near zero. After the attack begins, the fi(t)
deviate from zero. Our method is correctly identifying the attacked buses whenever the red lines are above the green lines. In the top row, we see that
our rank-1 approximation of KLG provides relatively accurate predictions even when the number of attacks increases and the rank-1 approximation is no
longer true. In the bottom row, we see that the standard method has poor accuracy.

and electrical properties of real world power grids [6], but
clusterSmallWorld was designed specifically for modeling
real world power grids. An outline of the procedure is: First
generate a random number of ring shaped grids with fewer
than 10 buses each; Then randomly add connections between
the buses until the average degree of each node is 4. To
ensure the stability of the resulting system, scale matrix A
so that its maximum eigenvalue is no greater than 0.999. This
model generates realistically shaped power grids up to about
300 buses. Once the power grid has been generated, a load
input vector, i.e., ut, is sampled from a Gaussian process
truncated so that values are always non-negative.

The first experiment has 6 separate scenarios that test how
the proposed method and the standard method perform in
identifying 1, 3, and 5 compromised buses. In each case,
the attack begins at time 0.1 seconds. Matrix Apt is selected
such that (A+BApt ) has maximum eigenvalue 1.05, ensuring
that the attack destabilizes the system. Figure 2 shows the
results. The proposed method clearly has better qualitative
performance on this particular problem. Specifically, it iden-
tifies the compromised buses faster and more accurately.

To look carefully into how our proposed method can
differentiate between benign and malicious loads, next we
randomly selected a load i and generator j, then set the ith
row and jth column of KLG to −10. Recall that negative
values of the KLG matrix correspond to benign loads. The
results are shown in Figure 3. Negative feedback does not
destabilize the system, yet we are able to detect the feedback.
The standard method (not shown) has difficulty with this

simulation time (sec)

f i
(t
)

0.0 0.5 1.0 1.5 2.0

responsive load added

bus with responsive load

buses with normal loads

Fig. 3. In this simulation, we added a benign frequency responsive
load. Our rank-1 method is able to quickly identify the load with the
responsive feedback. The corresponding value of fi(t) is negative because
the feedback is negative. Previous work cannot distinguish these benign
frequency responsive loads from malicious loads, whereas ours can.

problem as it takes much longer for the standard method to
converge.

B. Quantitative Results

We now explore the quantitative performance of our
methods by measuring its performance on several power
systems. We generated two sets of power grids, one with 20
generators and 20 loads (as in the previous section), and the
other one with 100 generators and 100 loads. The standard
method was run only on the smaller grid, again because it
is computationally infeasible to run it on the larger one, and

Figure 4.9: In this simulation, we added a benign frequency responsive load. Our rank-1
method is able to quickly identify the load with the responsive feedback. The corresponding
value of fi(t) is negative because the feedback is negative.

not matter if the value of αt is correct. When no attack is underway, the largest entries of

the estimated KLG
t are typically less than 10−6. When an attack is underway, the largest

values of the estimated KLG skyrocket to well above 10−1. Therefore, it is easy to set the

threshold τ to avoid false positives.

Finally, we evaluate the method’s accuracy of identification. We define the ac-

curacy at time point t to be the fraction of αt values that correctly predict the attacked

bus. Figure 4.10 shows that the longer we wait to declare an attack occurs (i.e. the larger

we set τ), the higher our accuracy is. In the case of the rank-1 method detecting a single

attack, we observed 99% accuracy in under one second. The rank-1 method operating on

the 200 bus system has much higher accuracy than the standard method operating on the

significantly easier 40 bus system. The standard method’s accuracy is little better than

random guessing after two seconds.
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Fig. 4. It takes only about a quarter of a second for our rank-1 method
to detect a single attack with 99% accuracy. As the number of attacks
increases, our rank-1 method takes longer to achieve high accuracy. With
5 compromised buses, the attack is detected with 95% accuracy by two
seconds. This is fast enough to implement corrective actions. The full
KLG method has much worse accuracy no matter how many buses are
compromised.

the proposed method was run only on both grids.
A major strength of both methods is that they experienced

no false positives. We define a false positive to be the
detection of an attack when no attack occurred. It does
not matter if the value of αt is correct. When no attack
is underway, the largest entries of the estimated KLG

t are
typically less than 10−6. When an attack is underway, the
largest values of the estimated KLG skyrocket to well above
10−1. Therefore, it is easy to set the threshold τ to avoid
false positives.

Finally, we evaluate the method’s accuracy of identifica-
tion. We define the accuracy at time point t to be the fraction
of αt values that correctly predict the attacked bus. Figure 4
shows that the longer we wait to declare an attack occurs (i.e.
the larger we set τ ), the higher our accuracy is. In the case
of the rank-1 method detecting a single attack, we observed
99% accuracy in under one second. The rank-1 method
operating on the 200 bus system has much higher accuracy
than the standard method operating on the significantly easier
40 bus system. The standard method’s accuracy is little better
than random guessing after two seconds.

VI. CONCLUSIONS

In this paper we addressed the open problem of detecting a
destabilizing attack against the power system, i.e., identifying
which buses are compromised through a possible positive
feedback. Our method does not require prior knowledge on
the number of buses that are compromised. It also does not
require conducting a separate analysis at each bus. Instead,
it naturally identifies attacks on the entire system considered
as a whole. Therefore, it has low computational complexity.

Furthermore, it is capable of distinguishing destabilizing at-
tacks, i.e., load or generation control loops that are malicious
and based on positive feedback, from the many load and
generation control loops that exist in a power system that
are benign and based on negative feedback. Numerical results
show that this method successfully identifies complex attacks
involving many buses. The detection is accurate and fast.
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Chapter 5

Protection and Mitigation Schemes

We assume that each vulnerable load can be protected, e.g., by implementing

reinforced security measures, but at some cost. The cost is due to adding hardware and

software security components, whether at device level [41, Section 6.2] or at communication

level [40, 76]. Such cost is incurred directly to utility companies and indirectly to end

consumers. Accordingly, we propose an algorithm to determine the minimum amount of

load that must be protected at each load bus in order to assure power system stability under

destabilizing anomalies against the remaining unprotected vulnerable loads. Specifically, we

address designing protection scheme against D-LAAs in this chapter.

Note that, besides protecting the load, there might also exist some compensators

to counter-attack D-LAAs to keep the power system stable. This may include frequency-

responsive loads or load protection mechanisms such as UFLS protection relays (see Section

2.3.2), as well as ancillary generation mechanisms that respond to under- or over- frequen-

cies. All such compensators can be integrated into our analysis by adding their correspond-

ing system dynamics to the state-space system model in (2.14). Once such state-space

model is updated, the rest of the attack analysis in Section 2.2.1 as well as the protection

scheme design approaches in this Section can still be applied similarly to the new system

model.
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5.1 Protection Problem Formulation

The foundation of the proposed protection mechanism is to protect enough vul-

nerable loads such that we can maintain the system in (2.14) stable. Specifically, we want

to keep the poles of the system on the left-half complex plane even if all unprotected vul-

nerable loads are compromised. This requires formulating and solving a non-convex pole

placement optimization problem, as we will explain in details next.

The stability of the closed-loop system (2.16) can be analyzed using the Linear

Quadratic Lyapunov Theory that is overviewed in Appendix A.1. Specifically, the closed-

loop system in (2.16) is stable if there exists a symmetric positive semi-definite matrix X

such that A−B


0

0

KLG


T

T

X +X

A−B


0

0

KLG


T
 < 0. (5.1)

For each victim load bus v, let PLPv denote the potentially vulnerable but protected

load. Note that, we have 0 ≤ PLPv ≤ PLVv . Accordingly, the amount of unprotected

vulnerable load at bus v is calculated as PLVv − PLPv . This puts an upper bound on the

attack controller gain KLG
vs . Specifically, we have

KLG
vs ω

max
s ≤

(
PLVv − PLPv

)
/2, (5.2)

where ωmax
s denotes the maximum admissible frequency deviation for generator s before its

over or under frequency relays trip. The division by two on the right hand side is due to

the fact that the compromised load PLVv − PLPv must provide enough room to allow both

over or under frequency fluctuations, e.g., see Fig. 2.6(c) and (f), before the attack can trip

the frequency relays at generator s, e.g., see Fig. 2.6(f).

To design an efficient load protection plan against D-LAAs, we need to solve the
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following optimization problem:

minimize
∑
v∈V

PLPv

subject to 0 ≤ PLP ≤ PLV ,

X � 0,

X = XT ,

Eqs. (5.1) and (5.2), ∀v ∈ V,

(5.3)

where the variables are PLP , KLG, and X. Notation � indicates matrix positive semi-

definiteness. Here, we seek to deploy the minimum total load protection that guarantees

power system stability under D-LAA attacks against any unprotected vulnerable load when

the frequency sensor is located at generator bus s. Problem (5.3) is a non-convex optimiza-

tion problem due to the non-convex quadratic constraint in (5.1).

5.2 Solution Method

First, we note that the inequality constraint in (5.2) must hold as equality for any

optimal solution of problem (5.3). This can be proved by contradiction. Note that, if at

optimality, the constraint in (5.2) holds as strict inequality at a victim load bus v, then

one can reduce PLPv and lower the objective function, thus, contradicting the optimality

status. Therefore, KLG
vs acts as a slack variable as far solving optimization problem (5.3) is

concerned. Once PLPv is known, we have

KLG
vs =

(
PLVv − PLPv

)
/ (2ωmax

s ) . (5.4)

Therefore, there are only two sets of variables in the optimization problem in (5.3),

PLP and X. They are coupled through the non-convex inequality constraint in (5.2). To

tackle this non-convexity, we propose to solve problem (5.3) using the coordinate descent
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method [9, pp. 207]. The idea is to first take PLP as a constant and solve problem (5.3)

over X only:

Minimize
∑
v∈V

PLPv

Subject to X � 0,

X = XT ,

Eqs. (5.1) and (5.4), ∀v ∈ V,

(5.5)

where the variables are the entries of matrix X. Here, the objective function could be any-

thing because problem (5.5) is essentially a feasibility problem, c.f. [10, pp. 129]. Problem

(5.5) can also be classified as a semi-definite program [10, pp. 168]. Next, we take X as a

constant based on the solution of problem (5.5) and solve problem (5.3) over PLP only:

Minimize
∑
v∈V

PLPv

Subject to 0 ≤ PLP ≤ PLV ,

Eqs. (5.1) and (5.4), ∀v ∈ V,

(5.6)

where the variables are the entries of vector PLP . This procedure is repeated, leading to an

iterative algorithm. As for the initial condition, we start with full protection, i.e., we initially

set PLPv = PLVv for all potential victim load buses v. Next, we continue improving the

protection system by lowering the amount of protected load while maintaining the stability

of the system using the Lyapunov criteria in (5.1). The convergence of the coordinated

descent algorithm is guaranteed, c.f. [9, Proposition 2.5]. Note that, at each iteration, the

total protected load either reduces or remains unchanged. Therefore, the iterations continue

until either we find the exact optimal solution for (5.3) or we reach a stationary point that

is sub-optimal. As we will see in Section 5.3, the optimality gap for the above algorithm is

typically very small.
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5.2.1 Protection System Design Under Uncertainty

For the analysis in Sections 5.1 and 5.2, it was implicitly assumed that the power

system operator knows where the frequency sensor is deployed. That is, it knows the

location of sensor bus s. However, this assumption may not always hold in practice. This

creates uncertainty when designing the protection system. The key to tackle uncertainty is

to design the protection system in a way that it is robust to any scenario for the location

of the sensor bus. This can be done by solving the following optimization problem which is

an extension of problem (5.3) across various sensor bus location scenarios:

minimize
∑
v∈V

PLPv

subject to 0 ≤ PLP ≤ PLV ,

Xs � 0, ∀s ∈ S,

Xs = XT
s , ∀s ∈ S,

Eqs. (5.1) and (5.4), ∀v ∈ V, ∀s ∈ S,

(5.7)

where the variables are PLP , KLG, and Xs for any s ∈ S. Here, S ⊆ G denotes the set of

all potential locations for the sensor bus. Problem (5.7) can be solved similar to problem

(5.3) using the coordinated descent method, see Section 5.2.

5.3 Case Studies

Consider the power system in Section 2.3.2. We would like to protect this system

against closed-loop D-LAAs.

5.3.1 Known Sensor Bus Location

Suppose the sensor bus is located at bus s = 33 and this is known to the grid

operator. The results for solving the protection system optimization problem in (5.3) in
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Figure 5.1: The optimal load protection scheme when the sensor location is known.

this case are shown in Fig. 5.1. We can see that as long as we fully protect the vulnerable

load at bus 19 and protect 30.4% of the vulnerable load at bus 16, then no D-LAA with

s = 33 can make the power system unstable. Note that, the total optimal load protection

in this case is only 18.4% of the total vulnerable load in the system.

The operation of our proposed iterative algorithm to solve problem (5.3) is illus-

trated in Fig. 5.2. Recall from Section 5.2 that the algorithm starts from full protection

and iterates until it reaches a stationary point at a much lower protection level. We can

see that, the algorithm has indeed converged to the global optimal solution in this case

after less than 45 iterations. Here, the global optimal solution is verified by conducting an

exhaustive search based on an extensive root locus analysis.

77



5 10 15 20 25 30 35 40
0

2

4

6

8

10

12

14

Iteration

O
bj

ec
tiv

e 
F

un
ct

io
n 

in
 (
5.
3)

 

Coordinated Descent Method
Exhaustive Search

Figure 5.2: The iterative approach to solve the optimization problem in (5.3).

5.3.2 Unknown Sensor Bus Location

Next, consider the more practical scenario where the operator does not know

where the attack frequency sensor is located. Accordingly, it needs to solve the extended

optimization problem in (5.7). The results are shown in Fig. 5.3. As expected, the amount

of vulnerable loads that need to be protected is higher in this case. However, such amount

is still not too high and only at 26.8% of the total vulnerable load in the system. We can see

that the uncertainty about the attack sensor location can be tackled by slightly adjusting

the load protection plan, where we also protect 29.3% of the vulnerable load at bus 29.

Interestingly, such protection allows some decrease, from 30.4% to 26.9%, in the level of

vulnerable load that must be protected at bus 16.
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Chapter 6

Conclusions and Future Work

Conclusions

Destabilizing anomalies in the form of natural faults and malicious attacks were

introduced. Also, model of power system dynamics in presence of such anomalies were

investigated. Specifically, Dynamic Load Altering Attacks were introduced, characterized,

and classified. Of particular interest was a closed-loop D-LAA against power system stability

with feedback from power system frequency. Both single-point and coordinated multi-point

attacks were investigated.

The problem of detecting presence of destabilizing anomalies in power systems from

measurement data provided by Phasor Measurement Units and without knowledge of the

power system dynamics was studied. Specifically, two scenarios were addressed: detecting

anomalies solely based on load signal using a frequency-domain analysis and detecting

anomalies based on both load and frequency signals using a time-domain analysis. Several

detailed remarks are made in each case to gain analytical and practical insights. It was

shown that depending on the type of anomaly and available data, both time-domain and

frequency-domain detection analysis could be needed in order to ensure accurate anomaly

detection.
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The crucial problem of identifying location of destabilizing faults/attacks in power

systems was also studied in this thesis. A novel optimization-based approach was proposed

to identify the location(s) of destabilizing faults and attacks in power systems using synchro-

nized measurements. The proposed method works in frequency-domain. It makes direct

use of the information that is obtained during the detection phase. Compared to its time-

domain counterpart, it needs much lower time-resolution in power system measurements.

It does not require knowing the number of affected input location(s). It is also more com-

putationally efficient. Importantly, it is well-suited to be deployed in wide area monitoring

systems to do fault/attack location identification in a hierarchical fashion. It was also ob-

served in this thesis that destabilizing anomalies can be modeled as a reparameterization

of the power system’s dynamical model. Therefore, an identification method that uses the

unscented Kalman filter to jointly estimate both the system states and parameters of the

anomaly was developed. A low-rank modification to the Kalman filter was also proposed

that improves computational efficiency while maintaining the identification accuracy. The

proposed method does not require prior knowledge on the number of buses that are com-

promised. It also does not require conducting a separate analysis at each bus. Instead, it

naturally identifies anomaly on the entire system considered as a whole. Therefore, it has

low computational complexity. Furthermore, it is capable of distinguishing destabilizing

anomalies, i.e., load or generation control loops that are malicious and based on positive

feedback, from the many load and generation control loops that exist in a power system

that are benign and based on negative feedback. Numerical results show that this method

successfully identifies complex destabilizing anomalies involving many buses.

Finally, a protection scheme was designed against destabilizing anomalies by for-

mulating and solving a non-convex pole placement optimization problem. The non-convexity

was tackled by using an iterative algorithm which solves a sequence of semi-definite opti-

mization and convex feasibility optimization problems.

Various case studies were presented in this thesis to assess system vulnerabilities
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and the impacts of destabilizing anomalies on power system dynamics. Also, accuracy and

efficiency of the proposed detection, identification, and protection approaches are verified

in standard IEEE 9 and 39 bus test systems.

Future Work

This thesis can be extended in several following directions:

• Developing a more comprehensive model for capturing behavior of anomalies that also

target power system measurements in addition to the inputs. Accordingly, developing

new approaches for detection, identification, and protection.

• As we explained in this thesis, there are some challenges regarding to the practical

implementation of frequency-domain detection and location identification approaches.

Of interest for future work is optimal and adaptive selection of the sampling rate,

window size, and detection threshold in windowed FFT for detection and location

identification purposes.

• In this thesis, we investigated the location identification problem at transmission level

of power system. Once the affected substation is identified, further examination of

of the underneath distribution system is necessary to exactly pinpoint the location

of anomalies. Therefore, similar frequency-domain techniques can be exploited to

develop location identification approaches for distribution system as well.
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Appendix A

Appendix

A.1 Linear Quadratic Lyapunov Theory

Consider the linear time-invariant system ẋ = Ax. Using Lyapunov function

V (x) = xTXx, one can show that:

1. The system is stable if there exists a real, symmetric, and positive definite matrix X

such that C = ATX +XA and C is negative definite [7, Theorem 7.3]; and

2. The system is unstable if C = ATX+XA is negative definite, andX is real, symmetric,

and either negative definite or indefinite [7, Theorem 7.3].

A.2 Proof of Theorem 9

To prove the first property, recall from Section 4.1.2 that constraint (4.7e) deter-

mines the number of non-zero entries in vector I. Accordingly, constraint (4.7f) is equivalent

89



to

|U ci (jω∗)| ≤ 0 i /∈ K, (A.1a)

|U ci (jω∗)| ≤ Umax
i i ∈ K. (A.1b)

Constraint (A.1b) is less restrictive than constraint (A.1a). Therefore, as we increase |K|,

we expand the feasible set, i.e., we make the optimization problem more relaxed. As a

result, the optimal objective value in problem (4.7) either decreases or remains the same.

Therefore, we can conclude that function F (|K|) is non-increasing. That is, we have:

F (|K|+ 1) ≤ F (|K|). (A.2)

From (4.9) and (A.2), and after reordering the terms, we have:

S(|K) = F (|K|)− F (|K|+ 1) ≥ 0. (A.3)

Next, we prove the second property. According to the mixed integer problem

sensitivity analysis in [55], the optimal objective value of problem (4.7) is a convex function

of parameter |K|. In other words, F (|K|) is a convex function. From the definition of

convexity, for any 0 ≤ θ ≤ 1, we have:

F (θx+ (1− θ)y) ≤ θF (x) + (1− θ)F (y), ∀x, y. (A.4)

Suppose θ = 0.5, x = |K|, and y = |K|+ 2. We can derive:

F (|K|+ 1) = F (0.5|K|+ 0.5(|K|+ 2)) ≤ 0.5F (|K|) + 0.5F (|K|+ 2), (A.5)

where the inequality is due to (A.4). Once we multiply both sides by two, and after
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reordering the terms, we have:

F (|K|+ 1)− F (|K|+ 2) ≤ F (|K|)− F (|K|+ 1). (A.6)

From (4.9) and (A.6), we can conclude the second property.
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