
UC Irvine
ICS Technical Reports

Title
SpecC modeling guidelines

Permalink
https://escholarship.org/uc/item/03t1r0k7

Author
Gerstlauer, Andreas

Publication Date
2001-08-05

Peer reviewed

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/03t1r0k7
https://escholarship.org
http://www.cdlib.org/

Modeling

Andreas Gerstlauer

Technical Report ICS-00-48
August 5, 2001

Center for Embedded Computer Systems
University of California, Irvine
Irvine, CA 92697-3425, USA

(949) 824-8059

gerstl@cecs.uci.edu
http://www.cecs.uci.edurgerstl

I

Spece Modeling Guidelines

Andreas Gerstlauer

Technical Report ICS-00-48
August 5, 2001

Center for Embedded Computer Systems
University of California, Irvine
Irvine, CA 92697-3425, USA

(949) 824-8059

gerstl@cecs.uci.edu
http://www.cecs. uci.edur gerstl

Abstract

Raising the level of abstraction to the system level has been touted as the main solution for closing the productivity gap
designers of embedded systems-on-chip (SOCs) are facing increasingly. However, in order to achieve the required productivity
gains, a well-defined methodology enabling a synthesis-oriented flow is necessary. The basis for every methodology are clear
and unambiguous models at different levels of abstraction.

In this report, we will define the four models that comprise the SpecC system-level design methodology. Using actual code
templates, we will show their features and properties in detail. All together, this report provides comprehensive guidelines
for modeling a design at each level. In addition to standardizing manually written models, the exact definition of the models
builds the basis of all automated tools for exploration, refinement, synthesis or verification.

Contents

1 Introduction
1.1 System Design Flow
1.2 Spece Methodology
1. 3 Spece Language

2 Specification Model
2.1 Specification Model Example .
2.2 Concurrency . . .
2.3 Communication .
2.4 Summary ...

3 Architecture Model
3.1 Architecture Model Example
3.2 Storage

3.2. l Local Memory
3.2.2 Global Memory .

3.3 Synchronization .
3 .4 IP Components
3.5 Scheduling
3.6 Time ...
3.7 Summary

4 Communication Model
4.1 Communication Model Example

4.1.1 Bus Wires ..
4.1.2 Bus Adapters

4.2 Protocol Layer . . .
4.3 Application Layer . .

4.3. l Synchronization
4.3.2 Addressing
4.3.3 Data slicing .

4.4 Transducers
4.5 Arbitration .
4.6 Timing ..
4.7 Summary

5 Implementation Model
5 .1 Behavioral RTL

5.1.l Custom Hardware
5 .1.2 Programmable Processors

5 .2 Structural RTL . .
5 .2.1 Clock . . .
5 .2.2 Controller .
5.2.3 Datapath
5.2.4 Bus Interface

5.3 Summary

6 Summary and Conclusions

References

1
2
3
4

4
4
5
6
7

9
9

11
11
11
13
14
16
17
17

18
18
20
20
21
23
23
25
25
25
27
29
30

30
31
31
33
34
35
35
36
37
39

39

39

List of Figures

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19

Y-Chart. ...
Spece methodology.
Spece models in the Y-Chart. .
Specification model.
Specification model with explicit dependencies.
Specification model with message-passing communication.
Architecture model. ... ·
Shared memory architecture model.
Architecture model with multiple inter-component behavior transitions.
Architecture model with IP. .
Communication model.
PE bus adapters
DSP56600 protocol timing diagram.
Application layer synchronization protocol.
Communication model with IP. . . .
Communication model with arbiter. . .
Implementation model.
Custom hardware bus interface FSMD ..
Structural RTL model for custom hardware.

ii

1
3
4
5
6
7

10
12
14
16
18
21
21
23
25
29
30
32
35

List of Listings

1 Specification model.
2 Specification model with explicit dependencies.
3 Message-passing channel.
4 Specification model with message-passing communication.
5 Architecture model.
6 Shared memory architecture model.
7 Global memory component.
8 Shared memory accesses in leaf behaviors ..
9 IP component model.
10 Architecture model with IP
11 IP accesses in leaf behavior BJ. .
12 Behavior timing.
13 Communication model.
14 Signal channel for modeling of wires.
15 PE bus adapter interface. . ..
16 Bus adapter protocol layer. . .
17 Bus adapter application layer ..
18 Communication model with IP.
19 Transducer component model.
20 Communication model with arbiter.
21 Bus adapter with arbitration.
22 Arbiter component model.
23 Implementation model.
24 Custom hardware behavioral RTL model.
25 Custom hardware bus interface FSMD. . .
26 DSP instruction set simulator (ISS) model. .
27 Structural RTL model for custom hardware.
28 Clock generator.
29 Custom hardware controller.
30 State register. .
31 Output logic.
32 Next state logic.
33 Custom hardware datapath.
34 Bus interface hardware unit.
35 Bus interface controller. . . .

iii

5
6
7
7

10
12
12
13
15
16
16
17
19
20
21
22
24
26
27
28
28
29
30
31
32
34
35
35
36
36
36
36
37
38
38

Spece Modeling Guidelines

A. Gerstlauer

Center for Embedded Computer Systems

University of California, Irvine

Irvine, CA 92697-3425, USA

Abstract

Raising the level of abstraction to the system level has been
touted as the main solution for closing the productivity gap
designers of embedded systems-on-chip (SO Cs) are facing
increasingly. However, in order to achieve the required
productivity gains, a well-defined methodology enabling a
synthesis-oriented flow is necessary. The basis for every
methodology are clear and unambiguous models at differ­
ent levels of abstraction.

In this report, we will define the four models that com­
prise the SpecC system-level design methodology. Using
actual code templates, we will show their features and
properties in detail. All together, this report provides com­
prehensive guidelines for modeling a design at each level.
In addition to standardizing manually written models, the
exact definition of the models builds the basis of all auto­
mated tools for exploration, refinement, synthesis or verifi­
cation.

1 Introduction

The design of embedded computer systems is the process
of implementing a given specification of the desired sys­
tem on a chip in silicon. Following a formal methodology,
defined as a set of models and a set of transformation be­
tween the models, the design is gradually refined to lower
and lower levels of abstraction.

As depicted by the Y-Chart (Figure 1), four general lay­
ers of abstraction are commonly distinguished [l]:

(a) System level

(b) Register-transfer level (RTL)

(c) Gate level

(d) Transistor level

With lower levels, the design process focuses on more and
more detailed aspects of the system. At each level, the
designer works with a specific set of objects. Objects at
higher levels of abstraction are hierarchically composed

System level

Physical

Figure 1: Y-Chart.

of lower-level design objects. For example, at the sys­
tem level, components of the system architecture are pro­
cessing elements (PEs) and system busses. At the register­
transfer level, in turn, the microarchitecture of PEs is build
out of functional units, registers, and so on.

At each layer, the design object at that level can be de­
scribed or modeled in three different views:

(a) A behavioral view describes the functionality of the
design in terms of abstract concepts, independent of
any implementation details.

Building blocks of a behavioral description are ab­
stract entities that do not represent physical compo­
nents. Each block describes a piece of functional­
ity that takes inputs, processes them and finishes af­
ter producing its output. In a behavioral view, such
blocks are then arranged hierarchically to model the
control and data dependencies between them.

Parallelism in a behavioral description does not im­
ply true concurrency in hardware. Again, behavioral
blocks are abstract representations of algorithms that
are free of implementation assumptions.

(b) A structural view describes the design as a netlist of
lower-level components and their connectivity.

Building blocks of a structural description represent
real, physical objects that are connected via wires.
As such, each of the blocks is active all the time,
constantly processing data. In a structural view, the
system is then modeled as a set of non-terminating,
concurrent processes representing the way the system
is composed out of tangible lower-level components.
Dependencies have to be modeled as part of the pro­
cesses' functionality by insertfog synchronization as
needed.

Since the processes of a structural description rep­
resent real hardware, the parallel composition of
the processes reflects the true concurrency available
among the set of physical components on the chip or
the board.

(c) A physical view describes the spatial layout of the
lower-level components on the chip. A physical view
describes the floorplan of how the components and
their interconnect are placed and routed on the chip.

Points in the Y-Chart form specific levels of abstracting a
design. In addition to the amount of structure as shown by
the layers and views of the Y-Chart, models of the design
at certain abstraction levels are defined by the amount of
01;der in the model.

In general, given two events ei and e1, where an event ei
is a tuple (ai,ti) of action ai occurring at time ti, ei and e1
are ordered iff it can be determined that t1 < t2 or t1 < ti. A
system is totally ordered if all pairs of events are ordered
as is the case with real time on the chip, for example. A
system is partially ordered if only subsets of all events are
ordered. For example, at higher levels, a relationship be­
tween independent parts is not specified. An abstraction
level employs a model of time to specify order. Real time
is abstracted as discrete logical time. Two unordered events
are modeled to occur at the same logical time, leaving the
freedom of implementing them in any oder in real time.

1.1 System Design Flow

Design is the process of moving from a behavioral to a
structural (and eventually physical) description at a cer­
tain level, implementing the desired functionality through
an architecture of subcomponents. The subcomponents, in
turn, are designed by moving from a behavioral description
to a structural (and physical) description of the subcompo­
nent at the next lower level of abstraction. For example, at
the system level, the designer will create a system architec­
ture consisting of a set of processing elements (PEs) con­
nected through system busses that implements the desired
system functionality. The processing element's functional­
ity, in turn, is implemented by designing a microarchitec-

2

ture of functional units, registers files, and so on for the PE
at the register-transfer level.

A design flow can be bottom-up or .top-down. In a
bottom-up approach, design moves from the lowest level
of abstraction up to the system level by assembling pre­
viously designed components such that the desired behav­
ior is achieved at each level. In a top-down approach, de­
sign starts with a specification of the system behavior and
moves down in the level of abstraction by mapping the de­
sired behavior at each level onto a set of components and
specifying the behavior of each component for the next
level.

In order to automate the design process with CAD tools,
the models and transformations of the design methodol­
ogy must be formalized. Languages with special support
to describe different views of the design at different levels
of abstraction in a formal and efficient manner are needed.
In addition to the application of formal methods for veri­
fication, an executable language allows validation through
simulation of the models.

Once the models for the different design views at differ­
ent abstraction levels are formally defined, CAD tools can
automate parts of the design process. Specifically, the for­
malized process of deriving a structural description from a
behavior description of the desired functionality is called
synthesis. The synthesis processes at the highest levels of
abstraction are:

(a) System synthesis
Given a specification of the system behavior, synthe­
size a system architecture consisting of processing el­
ements and system busses that implements the desired
functionality.

(b) High-level/behavioral synthesis
Given a behavioral description of a PE, synthesize a
microarchitecture implementation out of RTL compo­
nents like functional units, register files, and so on.

(c) Logic synthesis
Given a description of the functionality of an RTL
component, synthesize a gate netlist that implements
the combinatorial/sequential logic for the component.

In this report, we formalize the different models of the
Spece system-level design methodology, representing dif­
ferent views of the design at different levels of abstrac­
tion. The SpecC methodology covers system and register­
transfer levels of abstraction. Formalizing the models of
the methodology forms the basis for developing the corre­
sponding system-level and high-level synthesis tools.

I
'I

I

I . ______________ .J _____ f '!~q_t!_o_n_aj, ____ _

1 unt1med

- - - - - - - - - - - - - - ~- - - - _ /?'!'!:f]l_n~!Jg[!~~ -
timed

Software ! Interface /Hardware

compilation ~ynthesis !synthesis

______________ .J _____ fJ!YJ9§.! ____ _
1 cycle-accurate

Manufacturing

L----------------------J
Gate net/ist,
sub-cycle delays

Figure 2: Spece methodology.

1.2 SpecC Methodology

The Spece system-level design methodology is shown in
Figure 2. The Spece methodology is a set of four models
and three transformation steps that take a system specifica­
tion down to an RTL implementation [2].

The Spece design flow consists of two main parts: (a)
system synthesis, and (b) a backend for high-level synthe­
sis and compilation. In the Spece methodology, system
synthesis is further subdivided into two orthogonal tasks,
architecture exploration and communication synthesis. Ar­
chitecture exploration implements the computation behav­
ior of the specification on a set of processing elements that
form the system architecture. Communication synthesis,
on the other hand, implements the communication func­
tionality of the specification over the system busses.

Each system synthesis and backend task refines the
model of the design at the current stage of the design pro­
cess into a new model representing the details of the imple­
mentation added during the synthesis step. At the output of
each task, the model of the design reflects the implementa-

3

tion decisions made in the previous step. At the same time,
each model forms the input to the next task.

The system-level design process starts off with a speci­
fication of the desired system behavior. This specification
model is written by the user and forms the input to the de­
sign process. It is purely functional and free of any imple­
mentation details. There is no notion of time yet and only
a purely causal ordering of events, i.e. events in the sys­
tem are limited to synchronization events only which are
needed to ensure causality.

In the Spece methodology, the first task of system syn­
thesis is architecture exploration. Architecture exploration
selects a set of processing elements and maps the compu­
tation behavior of the specification onto the PEs. Archi­
tecture exploration refines the specification model into the
intermediate architecture model. The architecture model
describes the PE structure of the system architecture and
the mapping of computation behaviors onto the PEs, in­
cluding estimated execution times for the behavior of each
PE.

Architecture exploration is followed by communication
synthesis to complete the system synthesis process. Com­
munication synthesis selects a set of system busses and
protocols, and maps the communication functionality of
the specification onto the system busses. Communication
synthesis creates the communication model which reflects
the bus architecture of the system and the mapping of com­
munication onto the busses.

The communication model is the result of the system
synthesis process. It describes the structure of the system
architecture consisting of PEs and busses, and the imple­
mentation of the system functionality on this architecture.
It is timed in both computation and communication, i.e.
simulation detail is increased by events for estimated exe­
cution and communication delays.

The communication model is a structural view at the sys­
tem level. At the same time, the specification of the func­
tionality of each PE of the system in the form of a behav­
ioral view at the register-transfer level forms the input to
the RTL synthesis of those components in the backend. In
a hierarchical fashion, each PE is synthesized separately in
the backend and the behavioral view of the PE is replaced
with a structural view of its RTL or instruction-set (IS) mi­
croarchitecture. The result of this backend process is the
implementation model.

The implementation model is a cycle-accurate, struc­
tural description of the RTL/IS architecture of the whole
system. In a hierarchical fashion, the implementation
model describes the system structure and the RTL structure
of each PE in the system. Simulation detail is increased
down to the clock level, i.e. the timing resolution is in terms
of clock events for each local PE clock.

Figure 3: Spece models in· the Y-ehart.

Figure 3 summarizes the four models of the Spece
methodology by their position in the views and abstraction
layers of the Y-ehart.

1.3 Spece Language

The Spece methodology is supported by the Spece
system-level design language (2]. The SpecC language
was developed to satisfy all the requirements for an ef­
ficient formal description of the models in the Spece
methodology. It supports behavioral and structural views
and contains features for describing a design at all levels
of abstraction.

In general, at all levels of abstraction, behavioral and
structural views of a Spece behavior at any point in the
code hierarchy are defined as follows:

(a) A behavioral view is modeled as a serial-parallel com­
position of behaviors. Behaviors terminate after they
are finished processing the current input data set and
producing corresponding outputs. Behaviors are then
arranged hierarchically to explicitly model data and
control flow between blocks, describing the desired
functionality.

(b) A structural view is defined as a set of non­
terminating, communicating, and concurrent behav­
iors representing the tangible components of the ar­
chitecture. In Spece, a structural description is a par­
allel decomposition of a behavior into subbehaviors
that each execute in endless loops and communicate
through ports and variables, events, or channels.

Starting with the system behavior description at the top
level, behavioral views are replaced with structural views
as design progresses down to lower levels.

In the Spece methodology, all four models of the design
process starting with the specification model and down
to the implementation model are written and described in
the Spece language. One common language removes the
need for tedious translation. Furthermore, all the mod­
els in Spece are executable which allows for validation

4

through simulation, reusing one single testbench through­
out the whole design flow. In addition, the formal nature of
the models enables application of formal methods, e.g. for
verification or equivalence checking.

The purpose of this report is to define the four different
models of the Spece methodology within the framework
of the Spece language and to define how each model is
described in Spece. Based on code templates and exam­
ples, we will give guidelines for modeling implementation
details available at each level of abstraction and in each
design view.

The rest of this report is organized as follows: the report
starts with a description of the specification model in Sec­
tion 2. Section 3 and Section 4 detail the architecture and
communication models, respectively. Finally, Section 5 in­
troduces the major aspects of the implementation model.
The report then concludes with a summary in Section 6.

2 Specification Model

The specification model is the input of architecture explo­
ration. It is written by the user to specify the desired sys­
tem functionality. The specification is a behavioral view
of the system, i.e. it describes the desired functionality in
an abstract manner. The specification model is a purely
functional model, free of any implementation details. For
example, objects at the specification level are abstract enti­
ties that do not correspond to real components.

In general, the specification is hierarchically composed
of behaviors. Behaviors are arranged sequentially, con­
currently, or in a mix of both, i.e. in a pipelined fashion.
Behaviors at the leaves of the hierarchy contain basic al­
gorithms that perform arithmetic and logical operations on
data. In addition to temporary data, leaf behaviors will en­
capsulate any permanent storage required by the algorithm.

The ordering of events in the system is based on causal
relationships only and there is no notion of time. The sys­
tem is partially ordered based on causality as determined
by the dependencies between behaviors. Simulation de­
tail is limited to events used for synchronization to ensure
causality.

2.1 Specification Model Example

Figure 4 shows an example of a simple yet typical speci­
fication model. The corresponding Spece code is shown
in Listing l. The design is a hierarchical, serial-parallel
composition of behaviors. In the example, behavior Bl is
followed by the parallel composition of behaviors B2 and
BJ. The three leaf behaviors B 1, B2, and BJ contain algo­
rithms in the form of e code.

11 leaf behavior 1
behavior Bl(out typel vl)
{

void main (void) {
5

vl = ...
}

};

10 II leaf behavior 2
behavior B2(in typel vl,

out type2 v2,
out event el)

{
15 void main (void) {

v2 = f2 (vl , . . .) ;
notify (el) ;

20 }
};

11 leaf behavior 3
behavior B3(in typel vl,

25 in type2 v2,
in event el)

{
void main (void) {

30 wait(el);
f3 (v 1 , v2 , . . .) ;

}
};

35
II B2 11 BJ
behavior B2B3(in typel vl)
{

type2 v2;
40 event el ;

B2 b2 (v 1 , v2 , e 1) ;
B3 b3 (v 1 , v2 , e 1) ;

45 void main (void) {

}
};

par { b2. main (); b3 . main (); }

50 II Top-level
behavior Design ()
{

typel vl;

55 Bl bl (vl) ;
B2B3 b2b3 (vl) ;

void main (void) {
bl. main();

60 b2b3 . main();
}

};

Listing 1: Specification model.

5

Figure 4: Specification model.

Behaviors communicate through variables attached to
their ports. Synchronization of concurrent behaviors is
handled through events connected to behavior ports. In this
case, behavior Bl produces the variable vl of type type] at
its output The variable is passed into B2 and B3 by connect­
ing v 1 to the corresponding inputs of those two behaviors.
The concurrent behaviors B2 and B3 communicate through
the variable v2 (of type type2) and the event el. Behavior
B2 writes to v2 and notifies B3 when the data is ready. Be­
havior B3 in turn waits for event notification before reading
from variable v2.

2.2 Concurrency

In general, concurrent behaviors in the specification model
should reflect the available parallelism in the specification.
Therefore, they should be as independent as possible. Data
or control dependencies between behaviors at the specifica­
tion level should be explicitly captured through the behav­
ior hierarchy. Instead of concurrent behaviors that com­
municate or synchronize through variables or events, the
behaviors should be split into independent parts that can
run in parallel and dependent parts that have to be executed
sequentially.

Figure 5 and Listing 2 show the specification model ex­
ample after splitting the concurrent behaviors B2 and BJ
to explicitly model the data dependency through the serial­
parallel behavior hierarchy. Instead of synchronization via
the event el, the dependency on variable v2 is represented
by executing the corresponding parts of the behaviors se­
quentially.

Note, however, that the modified example introduces an
artificial dependency between behaviors BJ_] and B2.2.
Depending on the actual implementation, this dependency
might result in an unnecessary delay before the execution
of behavior B2.2. Therefore, the tradeoff between im­
plicit versus explicit parallelism and dependencies will de­
termine whether to cut or combine concurrent threads.

5

II leaf behavior 2, two parts
behavior B2_l (in typel vl,

out type2 v2)
{

void main (void) {

}
};

v2 = f2 (v 1 ,) ;

10 behavior B2_2 (in type2 v2)
{

void main (void) {

}
15 };

11 leaf behavior 3, two parts
behavior B3_l (in type I vl)
{

20 void main (void) {

}
};
behavior B3_2 (in type 1 vl ,

25 in type2 v2)
{

void main (void) {
f3 (v 1 , v2 , . . .) ;

30 }
};

II B2 11 BJ, two parts
behavior B2B3_ l (in type 1 vl ,

35 out type2 v2)
{

B2_1 b2(vl, v2);
B3_l b3 (vl);

40 void main (void) {

}
};

par { b2 . main () ; b3 . main (); }

behavior B2B3_2 (in type 1 vl,
45 in type2 v2)

{
B2_2 b2 (v2) ;
B3_2 b3 (vl , v2) ;

50 void main (void) {

}
};

par { b2. main () ; b3 . main (); }

55 II Top-level
behavior Design ()
{

60

typel vl;
type2 v2;

Bl bl (vl);
B2B3_l b23_l (vl , v2) ;
B2B3_2 b23_2 (vl, v2) ;

65 void main (void) {

}
70 };

bl. main();
b23_ l . main ();
b23_2 . main ();

Listing 2: Specification model with explicit dependencies.

6

Figure 5: Specification model with explicit dependencies.

2.3 Communication

If the relationship of concurrent behaviors in the specifica­
tion model extends beyond synchronization through pure
events and necessitates some actual form of data commu­
nication, the specification needs to clearly separate such
communication from the normal computation by encapsu­
lating communication functionality in the form of chan­
nels.

In general, behaviors at the specification level commu­
nicate via message-passing channels. Behaviors exchange
data by sending and receiving messages over communica­
tion channels with appropriate semantics. In the case of
a sequential composition, message-passing degenerates to
simple variables. Data is exchanged by reading and writing
from/to the variable. In the case of a parallel composition
with simple synchronization only, the synchronization is
implemented via a single event. In the general case of data
communication between concurrent behaviors, however, a
message-passing channel is instantiated.

The specification model instantiates channels out of
a SpecC channel library. The library contains chan­
nels with abstract communication semantics like buffered
and unbuffered message-passing, FIFOs, shared-memory
semaphores/mutexes, and so on. By using the predefined
channels out of the library, commonly needed communica­
tion functionality is available for integration into the spec­
ification model.

The simulation model for a channel with blocking
message-passing semantics for messages of arbitrary type
is shown in Listing 3. Both, the send() and recv() meth­
ods block the sender and receiver until the other end ac­
knowledges receipt or signals readiness to complete the
data· communication. The double-handshake protocol in­
side the channel effectively implements the rendevouz­
style semantics of blocking message-passing.

Note that the simulation model of the channel does not

interface I Send {
void send (void *data , int size) ;

};
interface IRecv {

5 void recv (void *data , int size) ;
};

channel ChMP() implements !Send , IRecv
{

10 void * buf = 0; II temporary buffer
event eReady, eAck; 11 handshake events

11 blocking send
void send (void *data , int size) {

15 II copy data to temp. buffer
buf = malloc (size) ;
memcpy(buf, data, size);
II notify receiver
notify one (eReady) ;

20 11 wait for acknowledge
wait (eAck) ;

}
II blocking receive
type2 recv (void *data , int size {

25 11 wait for data
while (! buf) wait (eReady) ;
11 read data from temp. buffer
memcpy(data, buf, size);
free(buf);

30 II acknowledge receipt
buf = 0;

}
};

notify (eAck) ;

Listing 3: Message-passing channel.

imply any specific implementation of the message-passing
semantics. The code inside the channel is for simulation of
the correct semantics during execution only. It is the task
of communication synthesis to refine those abstract chan­
nels into an actual implementation of the desired semantics
using the available system bus protocols and PE interfaces.

An example of the specification model which uses an
abstract message-passing channel for communication be­
tween the concurrent behaviors B2 and B3 is shown in Fig­
ure 6 and Listing 4. The global variable v2 and event el are
replaced with a message-passing channel C2 that connects
the two concurrent behaviors B2 and B3 via the channel's
sender and receiver interfaces /Send and !Recv.

Inside the concurrent leaf behaviors B2 and B3, the algo­
rithms operate on local copies of the variable v2. Whenever
the copies of v2 need to be updated, they are transfered be­
tween the behaviors by calling the send() and recv() meth­
ods of the channel.

2.4 Summary

The purpose of the specification model is to clearly and un­
ambiguously described the system functionality. The spec­
ification model is free of any implementation issues. It is

5

10

Figure 6: Specification model with message-passing com­
munication.

11 leaf behavior 2
behavior B2(in type 1 vl, ISend c2) {

void main (void) {

}
};

type2 v2;

v2 = f2 (v 1 , . . .) ;

11 send message
c2.send(&v2, sizeof(v2));

II leaf behavior 3
15 behavior B3 (in type 1 v 1 , IRecv c2)

{
void main (void) {

type2 v2;

20 II receive message
c2.recv(&v2, sizeof(v2));
f3 (v I , v2 , . . .) ;

}
25 };

30

II B2 11 BJ
behavior B2B3 (in type 1 vi) {

ChMP c2; II message-passing channel

B2 b2 (v I , c2) ;
B3 b3 (v I , c2) ;

void main (void) {
3 5 par { b2 . main (); b3 . main (); }

}
};

II Top-level
40 behavior Design () {

45

type! vl;

Bl bl (vi);
B2B3 b2b3 (vi) ;

void main (void) {
bl. main();
b2b3 . main ();

}
50 };

7

Listing 4: Specification model with message-passing com­
munication.

a purely behavioral model specifying the desired function­
ality of the system. Any hierarchical, serial-parallel com­
position of behaviors is allowed without implying anything
about the structure of the system architecture.

Through the specification model, the user defines the ba­
sis for synthesis and exploration. Therefore, the quality of
the specification model is critical. Synthesis results can
always only be as good as the input description. General
guidelines for the specification model are:

Hierarchy At each level of hierarchy, the system should
be composed of self-contained blocks with well­
defined interfaces enabling easy composition, rear­
rangement, and reuse. Closely related functionality
is grouped through hierarchy. Higher-level behaviors
encapsulate tightly coupled groups of subbehaviors
such that the ratio of external to internal communi­
cation is minimized. On the other hand, the number
of subbehaviors per parent should be kept small and
manageable. As a guideline, behaviors typically have
2-5 children on average.

At each level, the behavior hierarchy should be clean.
Different behavioral concepts shouldn't be mixed in
the same level. A behavior is either a hierarchical
composition of subbehaviors or a leaf behavior with
sequential code. Similarly, a hierarchical behavior is
either a sequential, parallel, pipelined or FSM compo­
sition of subbehaviors but does not contain arbitrary C
code.

Granularity Behaviors at the leaves of the hierarchy de­
fine the granularity for exploration. Leaf behaviors
contain basic algorithms in the form of C code, read­
ing from their inputs, processing a data set, and pro­
ducing outputs. An algorithm is a sequence of com­
putational steps that transform the input into the out­
put (3]. Leaf code is split into behaviors along the
boundaries defined between reading and writing of
data structures. On the other hand, all the code needed
to process a complete, consistent data set should be
kept together in one leaf behavior.

Also, similar to higher levels of hierarchy, the ratio of
communication to computation should be minimized
yet the size of the leaf behaviors be kept small and
manageable with well-defined, sensible interfaces and
possible reuse in mind. As a rule of thumb, what
would be a traditional C function will become a leaf
behavior with typically half a page to maximally two
pages of code.

Communication Computation and communication in the
specification model are separated into behaviors and

8

channels, respectively, allowing for a separate im­
plementation of both concepts. Data dependencies
should be reflected explicitly in the behavioral hierar­
chy as transitions between behaviors, either through
a sequential composition or conditionally using the
f sm statement. In this case, channels degenerate to
simple variables connecting behaviors, and the need
for implicit synchronization through message-passing
is eliminated.

All dependencies are explicitly captured through the
connectivity between behaviors and no hidden side ef­
fects exist. Global variables should be avoided com­
pletely. Static variables accessed from a single leaf
behavior become member variables of that behavior.
Global variables used for communication have to be
turned into explicit dependencies in the form of con­
nectivity as behaviors are only allowed to exchange
data through their ports.

Encapsulation In general, information should be local­
ized as much as possible. This includes code (func­
tions, methods), storage (variables), and communica­
tion (port variables, channels). Each hierarchical unit
(behavior) encapsulates and abstracts as many local
details as possible, hiding them from the higher levels.
Hierarchical behaviors encapsulate dependencies and
communication of a group of sub behaviors, providing
only an interface to their combined functionality.

At the leaves, behaviors encapsulates all the code
and storage needed by the algorithm. As mentioned
above, global, static variables become member vari­
ables of the leaf behavior. Furthermore, global func­
tions that are called out of leaf behaviors should be
avoided. Instead, depending on size and number of
callers, consider converting functions into separate
leaf behaviors that get instantiated as subbehaviors
of the caller, or move global functions into the call­
ing behavior where they become local methods. An
exception are small helper functions with a few lines
of code that are used ubiquitously and can be consid­
ered basic operations (on the same level as additions
or multiplications).

Parallelism Any concurrency available between indepen­
dent behaviors should be exposed through their par­
allel or pipelined composition. That is, all behaviors
that do not have any control or data dependencies (or
data dependencies only across iterations) should be
arranged to execute in a concurrent fashion. Further­
more, the behavior hierarchy should be constructed in
such a way as to maximize the number of independent
behaviors and hence the available parallelism.

Dependent behaviors, on the other hand, should gen­
erally not be arranged in a concurrent fashion. In­
stead, their dependencies should be captured explic­
itly through transitions as explained above and in Sec­
tion 2.2. An exception are rare (control) dependen­
cies between otherwise highly independent top-level
tasks, for example. In those cases, communication
and synchronization are modeled using channels be­
tween the tasks.

Time The specification model is untimed and all behav­
iors execute in zero logical time. The only events in
the system are events for synchronization in order to
specify causality. Synchronization events establish a
partial order among concurrent threads of behaviors.

In summary, the specification model hierarchically groups
closely related functionality, defines the granularity of
the exploration units (behaviors), exposes the available
behavior-level parallelism, clearly separates computation
from communication, and identifies dependencies through
system states, events and transitions.

3 Architecture Model

The architecture model is the intermediate model after ar­
chitecture exploration. Architecture exploration maps the
computational parts of the system specification represented
by the SpecC behaviors onto processing elements (PEs) of
a system architecture. The architecture model represents
this mapping, thus exposing the communication between
the components to be implemented by the following com­
munication synthesis task.

The architecture model reflects the PE structure of the
synthesized system architecture. Therefore, it represents a
structural view of the design at the system level. At the
top level of the architecture model, the system is described
as a parallel composition of non-terminating, concurrent
behaviors representing the PEs of the architecture.

Communication in the architecture model, on the other
hand, remains at an abstract message-passing level. Com­
munication between behaviors mapped to different PEs
becomes system-global communication. Corresponding
message-passing channels are instantiated between PE be­
haviors at the top level, and behaviors inside the PEs are
connected to the channels through the PE's ports.

PEs with fixed, pre-defined external communication se­
mantics are modeled as behaviors that directly provide
communication channel functionality at their interfaces.
A behavior's channel interface abstracts the PE's internal
communication implementation and provides a canonical
access for communication with the PE at the message-

9

passing level. Examples are IPs or memories that are not
capable of implementing arbitrary communication.

The PE behaviors of the architecture model represent a
behavioral view of the PEs. The functionality of each PE is
described by grouping the behaviors of the original spec­
ification under the PE behaviors according to the selected
system partitioning. The original hierarchy is preserved
and communication and synchronization behaviors are in­
serted to preserve the original semantics.

In addition to computation, a PE in general provides
system-level storage capabilities. The union of variables
inside the behaviors executing in a PE represents the lo­
cal memory of the PE. A special case of PEs are dedicated
system memories which are not capable of executing func­
tionality and only provide variable storage.

All parallelism in the architecture model is captured
through the structure of concurrent PEs. Internally, PEs
allow a single thread of control only. Behaviorals mapped
onto a PE are scheduled to serialize their execution. Static
or dynamic scheduling results in a total order among the
behaviors inside each PE. Dynamic scheduling emulates
parallelism through multitasking yet its time-shared nature
allows for only one active behavior at any given time. True
parallelism is only available at the PE level with all PEs
being constantly active.

The architecture model introduces the notion of time for
the computation mapped onto the PEs. Based on estimated
execution times on the target PE, behaviors are annotated
with timing information. Apart from the total order created
by scheduling behaviors inside PEs, execution delays re­
fine the partial order among PEs. Depending on the granu­
larity of the timing information, actions are further ordered
in time beyond the pure causality of the specification.

3.1 Architecture Model Example

Figure 7 and Listing 5 show the architecture model for the
example design from Section 2.1 (Figure 4 and Listing 1)
after mapping the specification onto a system architecture
with two components, PEI and PE2. Behaviors bl and b2
are mapped onto PEI, while b3 is mapped onto PE2.

Inside the two PE behaviors, the parts of the original
behavior hierarchy that are mapped to the corresponding
component are instantiated. In addition, pairs of behaviors,
Bl 3Snd I Bl 3Rcv and B34Snd I B34Rcv (Listing 5(a)), are
inserted into the hierarchy to transfer control and data from
P El to P E2 in oder to preserve the execution semantics of
the original specification. The behavior pairs communicate
over two system-global message-passing channels, CBI 3
and CB34, that are inserted between the PEs.

In this example, communication between behaviors
mapped to different PEs is transformed into an implemen-

11 Send data from Bl to BJ
behavior Bl3Snd(in type I vl, !Send cbl3) {

void main(void) { cbl3. send(&vl, sizeof (vl)); }
};

5 behavior Bl3Rcv (out type I vl, IRecv cbl3) {
void main(void) { cbl3.recv(&vl, sizeof(vl));}

};

11 Send data from BJ to B4
10 behavior B34Snd (ISend cb34) {

void main (void) { cb34 . send (0, 0) ; }
};
behavior B34Rcv (IRecv cb34) {

void main (void) { cb34. recv (0, 0) ; }
15 };

5

10

(a) Communication and synchronization behaviors.

II Processing element 1
behavior PEI (!Send cbl3, ISend c2, IRecv cb34)
{

type I vl;

Bl bl (vl) ;
Bl3Snd bl3snd (vl, cbl3);
B2 b2 (vl , c2) ;
B34Rcv b34rcv (cb34) ;

void main (void) {
bl. main(); II original behavior Bl
bl3snd.main(); II send Bl output to BJ
b2. main(); II original behavior B2

15 b34rcv. main (); 11 receive BJ output
}

};

II Processing element 2
20 behavior PE2(IRecv cbl3, IRecv c2, IRecv cb34)

{
type I vl;

Bl3Rcv bl3rcv (cbl3, vl);
2 5 B3 b3 (v I , c2) ;

B34Snd b34snd (cb34) ;

void main (void) {
bl3rcv. main(); II receive BJ input from Bl

30 b3. main(); II original behavior BJ
b34snd. main(); II send BJ output

}
};

35 II Top-level
behavior Design () {

ChMP c2; II message-passing channels
ChMP cbl3, cb34;

40 PEI pel(cbl3, c2, cb34);
PE2 pe2 (cbl3, c2, cb34);

void main (void) {
par { pe l . main (); pe2. main (); }

45 }
};

(b) Top level hierarchy.

Listing 5: Architecture model.

10

Figure 7: Architecture model.

tation with message-passing between PEs. Local copies of
the variable v 1 used for communication between sequen­
tial behaviors B 1 and B3 are created in the local memo­
ries of each PE. Inside the PEs, the behaviors operate on
the local copies of the variable. In addition, code is in­
serted to update and synchronize local variable copies over
message-passing channels at points where control is trans­
fered between PEs. In the example, the new value of v 1 is
communicated through the synchronization and communi­
cation behavior pair Bl 3Snd I Bl3Rcv and the message­
passing channel CBI 3 together with transferring control
from behavior Bl on PEI to behavior 83 on PE2.

In case of concurrent behaviors mapped to different
PEs (e.g. behaviors B2 and B3 mapped to PEI and PE2),
communication between the behaviors is transformed into
a message-passing implementation as described in Sec­
tion 2.3 (Figure 6 and Listing 4). The message-passing
channel C2 used for communication between the behav­
iors becomes a system-global channel connecting PEI and
P E2, and send() and recv() calls in the behaviors are routed
through behavior and PE ports to the global channel.

In the example, behaviors inside the PEs are statically
scheduled (see Section 3.5). As shown in Figure 7 and List­
ing 5, scheduling is done in a straightforward way based on
the constraints posed by the behavior dependencies with
the goal to exploit the available parallelism. On PEI, ex­
ecution starts with behavior B 1. After B 1 is finished, be­
havior Bl 3Snd transfers the output of Bl to PE2 such that
behavior B3 on PE2 can then run in parallel with behav­
ior B2 on PEI. Finally, behavior 82 on PEI is followed
by behavior B34Rcv which waits for the results of B3 from
PE2. On component PE2, execution starts with behavior
BJ3Rcv, waiting for BJ's results. Once the data is received
from PEI, behavior B3 is started. After B3 is finished, con­
trol is transfered back to PEI through behavior B34Snd.

3.2 Storage

Member variables of the behaviors in the specification
model represent storage that has to be mapped to memo­
ries in the implementation of the architecture model. This
includes member variables as part of leaf behaviors as well
as variables connecting subbehavior ports that are used for
communication.

In the implementation, the memory space of the system
is formed by the union of the system PE memories. In
general, processing elements each have local memories as
part of their microarchitecture. If the local memory of a PE
can be accessed from other PEs it becomes global system
memory. A special case are memory components whose
sole purpose is to provide global storage. They are not
able to execute any computational behavior and, therefore,
do not provide any processing functionality.

Member variables in the specification are mapped to lo­
cal or global memories in the architecture. Of special in­
terest are variables used for communication between be­
haviors mapped to different PEs (see Section 3.3). If a
member variable connects two subbehaviors mapped to
different PEs it becomes a shared variable on the system
level. In a message-passing implementation, such variables
are mapped to local memories and messages are passed
among the components to communicate updated values.
In a shared memory implementation, on the other hand,
shared variables are mapped to a global memory compo­
nents which is accessed directly by the PEs.

3.2.1 Local Memory

In the PE behaviors of the architecture model, the union of
all its sub behavior's member variables (i.e. of all the behav­
iors instantiated under the PE behavior in the architecture
model hierarchy) represents the amount of local memory
occupied in the PE. For example, in the architecture model
of Section 3.1 (Figure 7), both PEI and PE2 provide stor­
age for a variable v 1 in their local memories, as specified
by the declarations in line 4 and line 22 of Listing 5, re­
spectively.

Unless mapped to global memory (Section 3.2.2), a be­
havior's member variables will normally be stored in the
local memory of the PE the behavior is mapped to. How­
ever, member variables that connect subbehaviors mapped
to different PEs need to be shared between PEs. In
a message-passing implementation, copies of the shared
variable are created in the local memories of all PEs ac­
cessing the variable. Behaviors inside the PEs then operate
on the local copies. In order to implement the shared se­
mantics of the variable and to keep local copies in sync,
updated variable values are communicated over message­
passing channels between the components at synchroniza-

11

tion points, as discussed in detail in Section 3.3.
The example of Section 3 .1 implements such a message­

passing implementation. As defined by the original speci­
fication model (Section 2.1), variable vi is shared between
behaviors Bl, B2, and BJ. Since behavior BJ is mapped to
a different PE than behaviors Bl and B2, variable vi has to
be shared between the PEs of the system architecture. As
shown in Figure 7 and Listing 5, local copies of ~he variable
are instantiated in the components P El and P E2. Inside the
components, the corresponding ports of behaviors Bl, B2,
and BJ are connected to the local copies of v 1. Finally, the
additional communication and synchronization behaviors
Bl3Snd and Bl3Rcv (see Listing 5(a)) send and receive
updated values of vi from PEI to PE2 after behavior Bl
has finished and before behavior BJ starts to execute.

3.2.2 Global Memory

As discussed in the previous section, the scope of variables
stored in the local PE memories usually limits access to
behaviors inside the PE. However, if a PE allows other PEs
to access variables stored in its local memory, this storage
becomes global memory in both scope and lifetime.

Usually, only dedicated shared memory components
will support external access of variables stored inside the
component. Such memory components provide storage
only and can not execute arbitrary functionality, i.e. no be­
havior can be mapped onto a memory component. On the
other hand, it is generally possible for any PE to provide
global access to its local memory. In this case, a PE pro­
vides global system storage in addition to implementing
computation.

In general, any member variable of any behavior run­
ning on a certain processing element can be mapped to
global memory, for example if the PE's local memory is
exhausted. The variable is then removed from the behav­
ior and all accesses to the variable inside the behavior are
replaced with global memory accesses.

However, especially the variables used for communi­
cation between behaviors mapped to different PEs are
candidates for a mapping to global, shared memory. In
a message-passing implementation (as described in Sec­
tion 3.2.1), local copies of such variable have to be created
in each connected PE, increasing the total storage cost of
the system. In a shared memory implementation, on the

\ other hand, shared variables are mapped to global memory
where they can be directly accessed from each PE. Again,
accesses to the variable in the leaf behaviors are replaced
with accesses to the shared variable in the global memory.
Synchronization that is added to preserve the execution se­
mantics of the specification (see Section 3.3) also ensures
that global variable accesses are properly ordered accord­
ing to their sequence in the original specification.

11 Send data from Bl to BJ
behavior Bl3Snd(I Send cbl3) {

void main (void) { cbl3.send(0, 0
};

5 behavior Bl3Rcv(IRecv cbl3) {
void main (void) { cbl3. recv (0, 0

} ;

11 Send data from BJ to B4
10 behavior B34Snd (I Send cb34) {

void
};

main (void) { cb34 . send (0, 0

behavior B34Rcv (IRecv cb34) {
void main (void) { cb34 . recv (0, 0

15 };

(a) Synchronization behaviors.

II Processing element 1
behavior PEI (IMem ml,

!Send cbl3,
IS end c2,

5 IRecv cb34) {
Bl bl (ml) ;
Bl3Snd bl3snd (cbl3) ;
B2 b2 (ml , c2) ;
B34Rcv b34rcv (cb34) ;

10
void main (void) {

) ; }

) ; }

) ; }

) ; }

bl. main (); II original behavior Bl
bl3snd. main(); II Bl->BJ transition
b2. main(); II original behavior B2

15 b34rcv . main(); 11 wait for BJ to fin is h
}

};

II Processing element 2
20 behavior PE2 (IMem ml,

IRecv cb13,
IRecv c2,
IRecv cb34) {

Bl3Rcv bl3rcv (cbl3);
25 B3 b3 (ml, c2) ;

B34Snd b34snd(cb34);

void main (void) {
bl3rcv.main(); II wait for Bl to finish

30 b3. main(); II original behavior BJ
b34snd. main(); II send BJ completion

}
} ;

35 II Top-level
behavior Design () {

40

45

ChMP c2; II message-passing channels
ChMP cbl3, cb34;

Ml ml(); 11 Shared memory

PEI pel (ml, cbl3, c2, cb34);
PE2 pe2(ml, cbl3, c2, cb34);

void main (void) {

}
} ;

par { pe l . main () ; ml. main () ; pe2 . main (); }

(b) Top level hierarchy.

Listing 6: Shared memory architecture model.

12

Figure 8: Shared memory architecture model.

II Shared memory interface
interface IMem {

type 1 r_ v 1 (void) ;
void w_vl(type! d);

5 };

II Shared memory component
behavior Ml() implements IMem
{

10 · type! vl;

15

II Memory read/write interface
typel r_vl (void) { return vl; }
void w_vl(type! d) { vl = d;}

void main (void) { /* nothing *I } ;
};

Listing 7: Global memory component.

A shared memory implementation of the architecture
model from Section 3.1 is shown in Figure 8 and List­
ing 6. Instead of a message-passing implementation, the
variable vl, which is shared between behaviors Bl, B2, and
BJ, is mapped to a dedicated shared memory component
Ml. There are no local copies of vl in components PEI or
PE2, and all three behaviors access the variable vl inside
the global memory M 1 instead.

Like other system components, the dedicated memory
component is represented by a behavior which is instanti­
ated at the top level of the architecture model, running in
parallel with all other PEs. The code for the global memory
component behavior M 1 is shown in Listing 7. Since it is
a dedicated memory component that does not execute any
computational functionality, the behavior's main() method
remains empty. In general, if global memory is provided
by a processing element, the PE behavior will execute the
behaviors mapped to the component in addition to imple­
menting an interface to its memory.

11 leaf behavior i
behavior Bl (IMem mem)
{

void main (void) {
5

mem. w_vl (...) ; II Memory write vi

} ; }

10 II leaf behavior 2

15

behavior B2(IMem mem, ISend c2)
{

void main (void) {
type2 v2;

v2 = f2 (mem. r _v 1 (), ...) ; II read vi

c2.send(&v2, sizeof(v2));

20 }
};

11 leaf behavior 3
behavior 83 (IMem mem, IRecv c2)

25 {
void main (void) {

type2 v2;

c2.recv(&v2, sizeof(v2));
3 0 f3 (mem. r_ v 1 () , v2 , . . .) ; 11 read vi

}
};

Listing 8: Shared memory accesses in leaf behaviors.

The shared variable v 1 is instantiated as a member vari­
able of the memory behavior (line 10). The memory behav­
ior provides access to the global variables through a chan­
nel interface /Mem. Other PEs can connect to the mem­
ory's interface which supplies type-safe methods to read
(r_vJ()) and write (w_vJ()) shared variables stored inside.

Inside the processing elements, accesses to the shared
variable vi are replaced with corresponding read or write
accesses to the global memory component through behav­
ior ports, PE ports, and the memory interface. Listing 8
shows the updated accesses to variable v 1 in the leaf be­
haviors. Variable reads are replaced with calls of the mem­
ory's r_vJ() method and variable assignments with calls to
the w_vJ() method.

Since updated values of v 1 are exchanged between PEs
via the shared memory, behaviors Bl JSnd and Bl JRcv (see
Listing 6(a)) only perform pure synchronization by ex­
changing empty messages. No data communication is per­
formed over the message-passing channels. All data trans­
fers are handled through the global memory. On the other
hand, the synchronization behaviors ensure that the shared
variable vi is accessed by BJ only after Bl is finished, in
consistency with the original specification.

13

3.3 Synchronization

In the architecture model, synchronization has to be in­
serted to preserve the execution semantics of the original
specification. The behaviors of the specification model are
mapped onto a set of concurrent components according
to the structural nature of the architecture model. There­
fore, synchronization has to ensure that behaviors execute
in the proper order according to the transitions in the orig­
inal specification.

All communication and synchronization between sys­
tem components in the architecture model is handled via
message-passing channels connecting the components. As
shown in the architecture model example in Section 3.1
(Figure 7 and Listing 5), for each behavior transition that
crosses component boundaries (transitions from Bl to BJ
and back), a pair of synchronization behaviors (behavior
pairs BJ3Snd I BJJRcv and BJ4Snd I BJ4Rcv, see List­
ing 5(a)) that communicate over a message-passing chan­
nel (channels CB J J and CBJ4) is inserted.

By passing messages over the channels, the synchro­
nization behavior pairs ensure that the semantics of the
corresponding original behavior transition are preserved
among the PEs. In this case, for example, behavior Bl JRcv
blocks execution of BJ on PE2 until it receives the message
from behavior Bl JSnd that Bl on PEJ has finished. Sim­
ilarly, behavior BJ4Snd on PE2 notifies BJ4Rcv on PEJ
that BJ has completed execution.

Along with passing control from one behavior to an­
other, a behavior transition usually represents a transfer of
data through the shared variables connecting the ports of
the behaviors. If the transition crosses PE boundaries, this
data has to be transfered together with passing control. In
a shared memory implementation (see Section 3.2.2), data
is transfered via a global system memory component and
simple synchronization via synchronization behavior pairs
and message-passing channels is sufficient for implemen­
tation of inter-component transitions.

On the other hand, in a message-passing implementa­
tion (see Section 3.2.1), local copies of the shared vari­
ables are created inside the components, and local val­
ues have to be synchronized across behavior transitions.
In this case, communication of data values is combined
with control synchronization using the behavior pairs and
message-passing channels. For each transition that crosses
components, the synchronization message contains all the
updated data values shared between the behaviors. Local
copies of variables connecting the source behavior's out­
put ports to the target behavior's input ports are transfered
in the message for each inter-component behavior tran­
sition. The communication and synchronization behav­
ior pairs are responsible for assembling and disassembling
messages from/into local variables.

Figure 9: Architecture model with multiple inter-
component behavior transitions.

For example, in the architecture model presented earlier
in Section 3.1, local copies of the variable vl shared be­
tween behaviors Bl and BJ are synchronized when execut­
itig the transition from Bl on PEI to B2 on PE2. As shown
in Listing 5(a), the synchronization behaviors Bl JSnd and
Bl JRcv for that transition read the local value of vl in PEI,
pass it in a message over channel CB J J, and update the
local value of vl in PE2. Together with the synchroniza­
tion described earlier, this ensures that BJ doesn't start ex­
ecuting until Bl has finished and all the output data of Bl
needed by BJ is available.

In general, there can be multiple inter-component behav­
ior transitions originating from a single behavior on a PE.
For each such transition, a message-passing channel and a
synchronization behavior pair is inserted. For example, if
behavior B2 had been mapped to a third component P EJ in
our example, an additional channel CB12 and an additional
behavior pair Bl2Snd I Bl2Rcv would have been inserted
after Bl and before B2 on PEI and PEJ, respectively (Fig­
ure 9). Likewise, an additional channel CB24 and an ad­
ditional behavior pair B24Snd I B24Rcv would have been
inserted to signal completion of B2.

Note that it is part of the implementation issues related
to the architecture model to decide in which order the send
and receive behaviors are scheduled inside the PEs, e.g.
whether BJ3Snd will execute before or after Bl2Snd on
PEI (for more discussion of scheduling issues see Sec­
tion 3.5).

Finally, after scheduling has determined the order of
synchronization behaviors, an optional code optimization

14

step can be applied to merge consecutive synchroniza­
tion behaviors inside the same component into a single
synchronization behavior that successively sends and re­
ceives the necessary messages. For example, in the model
from Figure 9, the behaviors BJ J Snd and B 12Snd could be
merged into a single behavior Bl Snd. Alternatively, be­
haviors Bl2Snd, BJ3Snd, B24Rcv, and BJ4Rcv on PEI
could be merged into one large synchronization behavior
(e.g. Bl4Sync).

3.4 IP Components

Intellectual property (IP) processing elements are charac­
terized by the fact that their computational functionality
(behavior), their communication functionality (interface),
or both are predefined and fixed. In general, IP supplier
and IP intergrator are different entities, either in-house or
among a global IP trading marketplace. The IP supplier
provides models of the IP component which are integrated
into the architecture and following models for validation
and synthesis. An IP creator can choose to supply different
models of an IP varying in their amount of detail at differ­
ent levels, trading off accuracy and simulation speed, for
example.

In the architecture model, a behavioral model of the IP
is required. At this level, the IP model describes the IP
functionality annotated with performance and other qual­
ity metrics similar to other PE models (see also Section 3.6
about timing annotation). However, in their interfaces to
other PEs, IPs, by definition, are not capable of implement­
ing arbitrary inter-PE communication, and it is not possible
to simply connect any message-passing channels to the IP
in the architecture model, for example.

Therefore, IP models directly provide a channel inter­
face at the message-passing level. An IP's channel inter­
face describes the communication with the rest of the sys­
tem supported by the IP. It abstracts the underlying IP be­
havior and IP interface to the external world. Furthermore,
IP channel interfaces at this high level are canonical for all
IPs of the same class, enabling plug-and-play of IPs with­
out modifications to the rest of the system. For example,
different DCT IPs from different suppliers can be easily ex­
changed since they all provide the same channel interface.

Listing 9 shows an example of an IP model. For this ex­
ample, we assume that the functionality of B2 is available
in the form of this IP. As part of exploration, we then have
the option to implement B2 using the IP instead of map­
ping it onto a general-purpose PE, depending on quality
metrics like performance, cost, and power.

The purely behavioral model in Listing 9(a) is at the
highest level of abstraction for integration into the archi­
tecture model and as such the minimal requirement an IP

II IP interface
interface IIP
{

II Start IP, send parameters
5 void start (typel vl);

II Get value of v2 from IP
type2 v2 (void) ;
II Wait for IP to finish, get result
void done (void) ;

10 };

II IP model
behavior IP () implements IIP;
11 Declaration only

15 II Implementation is external

11 Annotations
note IP.WMOPS= 13476; II Quality metrics

(a) Behavioral IP.

II Bus-functional IP model
behavior IPBF(inout bit [63: OJ

in event
out bit [2J

5 out event
11 Declaration only
11 Implementation is external

II Behavioral IP model
10 behavior IP() implements IIP

{
II IP bus
bit[63:0J dat;
event st, dn;

15 bit [2J rdy;

II Bus-functional IP instance
IPBF ip(dat, st, rdy, dn);

data ,
start ,
ready ,
done);

20 II Implementation of IP communication
void start(typel vl){

II Put params on bus, notify IP
da t = v l;
notify (st) ;

25 }

type2 v2 (void) {
11 wait for data, read from bus
while (! rdy [l J) wait (dn) ;

30 return dat;
}

void done (void) {
II wait until IP becomes ready again

35 while (! rdy [OJ) wait (dn);

40 };

}

II Run internal bus-functional model
void main (void) { ip . main (); }

(b) Bus-functional IP with wrapper.

Listing 9: IP component model.

15

supplier must provide. The interface IIP defines the pos­
sible communication with the IP. Corresponding to its B2
functionality (compare to Listing 4), the interface provides
three message-passing methods: start() sends the parame­
ter v 1 to the IP and starts execution of one iteration; v2()
receives the value of v2 from the IP during its execution;
finally, done() waits for the message from the IP that it has
finished. Again, note that this is the general interface for all
possible IP components that provide functionality equiva­
lent to B2.

The actual IP model IP then implements the IIP inter­
face, modeling the IP functionality (and performance) in
response to incoming data and generating outgoing mes­
sages from/to other PEs. Usually, the IP supplier will want
to protect the details of the IP implementation. Therefore,
only the declaration of IP is provided. The actual code is
supplied in the form of a precompiled library that will get
linked into the architecture model for simulation. In ad­
dition, the IP is annotated with various information about
quality metrics, verification properties, and so on. Note
that the IP supplier always has the option to provide full
source code. Especially at the behavioral level, source code
can serve as additional documentation about IP functional­
ity without disclosing any implementation details.

In Listing 9(b), a slightly more detailed IP model is
shown. In this case, the IP model includes a bus-functional
IP description IPBF that will be needed for the communi­
cation model later anyway. As will be explained in Sec­
tion 4.4, the bus-functional IP model describes communi­
cation with the IP as events on the actual IP bus in a timing­
accurate manner. In our example, the IP bus includes bi­
directional data wires (data[63:0]), status lines (ready[2]
and done), and control lines (start).

The behavioral IP model IP then wraps a channel in­
terface around the bus-functional model. Internally, the
behavioral model instantiates IPBF and executes its func­
tionality in the main() method. The wrapper then imple­
ments the message-passing communication of the channel
interface by translating them into actions on the IP bus ac­
cording to the IP protocol. For example, the v2() method
waits for the corresponding ready line to be asserted before
reading the value from the data bus.

Figure 10 and Listing 10 show the architecture model in
which B2 is mapped onto an instance IP 1 of the IP pro­
cessing element. Instead of PE3, the IP component is in­
stantiated in the top level of the design (Listing lO(b)).
Compared to the model from Section 3.3 (Figure 9), all
communication with B2 on PE3 is replaced with direct
connections to the IP's channel interface. Inside the com­
munication and synchronization behaviors Bl2Snd and
B24Rcv (Listing lO(a))), message-passing methods of the
IP's channel interface are called for all communication

11 Send data to IP
behavior B12Snd(in typel vl, IIP ipl) {

void main(void) { ipl. start (vl); }
};

5
II Receive results from IP
behavior B24Rcv (IIP ipl) {

void main (void) { ip 1 . done(); }
}; .

(a) Synchronization with IP.

II Processing element 1
behavior PEI (!Send cbl3, IIP ipl, IRecv cb34)
{

5
typel vl;

Bl bl (vl);
B13Snd b13snd (vl, cbl3);
B12Snd b12snd (vl, ipl);
B24Rcv b24rcv (ip 1) ;

10 B34Rcv b34rcv (cb34) ;

void main (void) {
bl. main(); II original behavior Bl
bl3snd. main(); II Bl->B3 transition

15 bl2snd. main(); II Bl->B2 transition
b24rcv.main(); II wait for B2 to finish
b34rcv.main(); II wait for B3 to finish

20

}
} ;

II Processing element 2
behavior PE2(IRecv cb13, IIP ipl, IRecv cb34)
{

typel vl;
25

B13Rcv bl3rcv (cb13, vl);
B3 b3 (vl, ipl);
B34Snd b34snd (cb34) ;

30 void main (void) {
b13rcv.main(); II wait for Bl to finish
b3. main(); II original behavior B3

}
35 };

b34snd. main(); II send B3 completion

II Top-Level
behavior Design ()
{

40 ChMP cbl3, cb34; II message-passing

IP ip 1 (); 11 IP component

PEI pel (cbl3, ipl , cb34) ;
45 PE2 pe2(cbl3, ipl, cb34);

void main (void) {

channels

}
50 };

par { pel.main(); ipl.main(); pe2.main();}

(b) Top level hierarchy.

Listing 10: Architecture model with IP.

16

Figure 10: Architecture model with IP.

II Leaf behavior 3
behavior B3 (in type 1 vi, IIP ip 1)
{

void main (void) {
5 type2 v2;

10 }
};

v2 = ip. v2 (); II receive v2 from IP
f3 (v 1 , v2 , . . .) ;

Listing 11: IP accesses in leaf behavior B3.

with the IP. Similarly, inside leaf behavior B3, all channel
calls for communication with B2 are replaced with calls
to the IP's corresponding interface methods, as shown in
Listing 11.

3.5 Scheduling

By definition, the components of the system architecture
are single-threaded in terms of the computation they are
executing. According to the inherently sequential nature
of components, behaviors mapped onto a PE have to be
scheduled in order to serialize their execution. The order
of execution of both, the original computation behaviors
and the additional communication/synchronization behav­
iors determines the schedule of computation and commu­
nication on each PE.

In the simplest case, static scheduling is performed. The
execution order of the behavioral blocks inside the PEs is
fixed by introducing artificial dependencies according to
the selected schedule. Therefore, the behavior hierarchy
inside the components becomes a purely sequential com-

pos1t10n. Behaviors are executed in the pre-defined or­
der defined by the sequential transitions inside the PEs of
the architecture model. For example, as described in Sec­
tion 3 .1, the sub behaviors in each PE of the architecture
model from Figure 7 (Listing 5) are executed sequentially
in the order determined by the static schedule. Hence, the
PEI and PE2 behaviors are a purely sequential composi­
tion executing their subbehaviors in the given order.

In a dynamic scheduling approach, on the other hand,
the order of execution is determined dynamically during
runtime. Behaviors are arranged into potentially concur­
rent tasks. Inside each task, behaviors are executed sequen­
tially. Tasks can be dynamically forked and joined through
par statements in the code. A scheduler maintains a pool
of task behaviors and dynamically selects a task to exe­
cute according to its scheduling algorithm. The scheduler
in the architecture model is a behavioral abstraction of the
scheduling policy of the underlying operating system.

3.6 Time

After behaviors have been partitioned onto PEs, the con­
cept of time is introduced for the computation represented
by the behaviors. Behaviors grouped under a PE are re­
fined to include execution times on the target. As a result,
behavior executions among the concurrent PEs are ordered
additionally beyond the pure causality established by the
inter-PE synchronization.

Behavior execution delays can be based on estimated
execution times derived from a model of the target com­
ponent, for example. Alternatively, execution delays can
describe a timing budget allocated for different behaviors.
These budgets will later serve as timing constraints for the
behavior implementation on the target PEs.

Execution times can be specified on different levels of
granularity, ranging from the statement level to the behav­
ior level. Execution delays at the behavior level are used
to model average or worst-case execution times of the cor­
responding behavior. On the other hand, execution times
at the basic-block level can accurately model even data­
dependent delays. The leaf behaviors are annotated with
wai tf or () statements to model execution time. In addi­
tion to providing feedback about logical time during sim­
ulation, the annotations serve as constraints for synthesis
and verification tools.

Listing 12 shows a code template for a leaf behavior
with estimated timing. In this case, execution delays are
modeled at the basic block level. At this granularity, data­
dependent delays are accurately modeled while keeping the
simulation overhead incurred by the wai tfor () state­
ments at a minimum.

17

behavior Bx (...)
{

void main (void)
{

5 if (. . .) {

waitfor (Tl) ; 11 execution time 1
}
else {

10

15

}
};

waitfor (T2) ; II execution time 2
}

waitfor (T3) ;
Cy. send (. . .) ;

waitfor (T4) ;

11 execution time 3

11 execution time 4

Listing 12: Behavior timing.

3.7 Summary

The architecture model describes the implementation of
the computation on the PEs of the system architecture. It
is a structural view of the system's PE architecture. It con­
tains behavioral views of the PEs that represent the map­
ping of computation onto each PE. Communication, on the
other hand, remains at an abstract level. The architecture
model exposes the communication between PEs which will
be implemented in the next step.

In summary, properties of the architecture model are:

(a) At the top level of the behavior hierarchy, the PE
structure is modeled as a parallel composition of non­
terminating PE behaviors.

(b) PE behaviors communicate via system-global
message-passing channels connecting their ports.

(c) PE behaviors with predefined, fixed communication
functionality (IPs. memories) directly provide chan­
nel interfaces for communication.

(d) Original specification behaviors are grouped under
the PE behaviors to specify the functionality to be im­
plemented by each PE.

(e) Member variables of behaviors instantiated inside a
PE represent the amount of storage allocated in the
local PE memory.

' (f) Behaviors inside different PEs communicate by send­
ing and receiving messages over ports and global
channels.

(g) True parallelism is limited to the concurrency among
PEs. Internally, PEs are single-threaded. Execution
of behaviors inside a PE is serialized in tirrie through
static or dynamic scheduling.

(h) Computation in the leaf behaviors is annotated with
estimated or projected execution times on its target
PE.

All in all, the architecture model accurately reflects the im­
plementation of the computational aspects of the system
for analysis and validation.

4 Communication Model

The communication model is the final output of the
system-level design process after architecture exploration
implements computation on the PEs and communication
synthesis implements communication over the busses of
the system architecture. The communication model rep­
resents the mapping of computation and communication
onto PEs and busses, respectively.

The communication model is a structural view of the
complete system including computation and communica­
tion. It shows the PE and bus structure of the final system
architecture. The system is described as a netlist of concur­
rent, non-terminating PEs connected via system bus wires.

Unaltered from the architecture model described in Sec­
tion 3, the communication model gives a behavioral view
of the computation and storage to be implemented by each
PE. The functionality of each PE is described by the be­
haviors grouped under the PE and executing inside. Fur­
thermore, the union of all its behavior's member variables
represents the storage allocated inside the PE's local mem­
ory.

In contrast, the behavioral view of the communication in
the architecture model is replaced with a structural descrip­
tion in the communication model. The abstract channels
connecting the PEs in the architecture model are replaced
with an implementation of their communication function­
ality over wires and protocols of system busses connecting
the PEs.

Inside the PEs, behavioral models of bus drivers and bus
interfaces describe the PE's communication functionality,
i.e. the implementation of the message-passing communi­
cation over the bus protocols. Those bus adapters specify
how the PE implements the semantics of the abstract chan­
nels by driving and sampling the wires of the system bus.
Behavioral blocks inside the PEs, in turn, connect to the
equivalent message-passing channel interfaces provided by
the bus adapters.

In general, not all PEs can be programmed or synthe­
sized to implement arbitrary communication functionality.
For example, PEs with fixed, pre-defined bus interfaces and
protocols like memories or IP components are not capable
of connecting to any bus protocol. In those cases, the com­
munication model will include additional transducers that

18

A[1S·O]

0(23:0]

MCS

nRD

nWR T __ r_ea_;dy __

: ~.

Figure 11: Communication model.

translate between incompatible protocols. Transducers are
special PEs that act as bus bridges or bus interfaces, con­
~ecting two busses or interfacing a PE to a bus.

As explained in Section 3, the architecture model in­
troduced a total order for the computation inside the PEs.
On top of that, the communication model imposes a to­
tal order on the communication performed over the busses.
Communication on each bus is scheduled. In case of dy­
namically occurring conflicts between multiple bus mas­
ters, arbitration resolves conflicts at run-time in either a
distributed fashion or through a centralized arbiter PE.

Finally, the communication model adds timing informa­
tion for the system communication. Target bus delays are
estimated and communication behavior in the drivers and
on the busses is annotated with timing information. In­
creasing timing accuracy to cover both computation and
communication further refines the partial order of events in
the system architecture. The bus-functional PE models in
the communication model accurately describe the behav­
ior and timing of the PEs at their bus interfaces. Therefore,
the system model describes their interaction in a timing­
accurate manner.

4.1 Communication Model Example

The communication model of the example design from
Section 3 .1 (Figure 7 and Listing 5) is shown in Figure 11
and Listing 13. As in the architecture model, the system
consist of two processing elements, P El and P E2. How­
ever, instead of abstract channels, the two PEs are con­
nected via a single, shared system bus. During communi-

5

II Processing
behavior PEI (

{

element 1
out bit [15: 0] A,
inout bit[23:0] D,
OSignal MCS,
OSignal nRD,
OSignal nWR,
ISignal ready

I I Bus driver
10 PElBus bus (A, D, MCS, nRD, nWR, ready);

typel vl;

Bl bl (vl) ;
15 Bl3Snd b13snd (vl, bus);

B2 b2 (v 1 , bus) ;
B34Rcv b34rcv (bus) ;

void main (void) {
2 0 b 1 . main () ;

bl3snd. main();
b2. main();
b34rcv . main ();

}
25 };

30

II Processing
behavior PE2 (

{

element 2
in bit [15: 0] A,
inout bit [23: O] D,
ISignal MCS,
ISignal nRD,
ISignal nWR,
OSignal ready

35 II Bus interface
PE2Bus bus (A, D, MCS, nRD, nWR, ready) ;

typel vl;

40 B13Rcv bl3rcv(bus, vl);
B3 b3 (v 1 , bus) ;
B34Snd b34snd (bus) ;

void main (void) {
45 b13rcv.main();

50

}
} ;

b3. main();
b34snd . main ();

II Top-level
behavior Design ()
{

II System bus wires
55 bit[l5:0] A;

bit [23: 0] D;
CSignal MCS, nRD, nWR, ready ;

II address
II data
11 con trot

60
PEI pel (A, D, MCS, nRD, nWR, ready);
PE2 pe2 (A, D, MCS, nRD, nWR, ready) ;

void main (void) {
par { pe 1 . main () ; pe2 . main (); }

}
65 };

(a) Top level hierarchy.

Listing 13: Communication model.

19

II Send data from Bl to BJ over bus
behavior Bl3Snd(in type 1 vl , IBus bus) {

void main (void) {
bus. send (CB13, & vl, sizeof (vl)) ;

5 }
};
behavior B13Rcv(out type 1 vl , IBus bus) {

void main (void) {
bus. recv (CB13, & vl, sizeof (vl)) ;

10 }
};

II Send data from BJ to B4 over bus
behavior B34Snd (IBus bus) {

15 void main (void) { bus. send (CB34, 0, 0) ;
};
behavior B34Rcv (IBus bus) {

void
};

main (void) { bus. recv (CB34, 0, 0) ;

(b) Communication and synchronization behaviors.

II leaf behavior 2
behavior B2(in typel vl, IBus bus)
{

void main (void) {
5 type2 v2;

v2 = f2 (vl , ...) ;

II send message
10 bus. send (C2, & v2, sizeof (v2)) ;

}
};

15 II leaf behavior 3

20

behavior B3(in typel vl, IBus bus)
{

void main (void) {
type2 v2;

11 receive message
bus. recv (C2, & v2, sizeof (v2)) ;
f3 (V 1 , v2 , . . .) ;

25 }
} ;

(c) Bus communication in leaf behaviors.

Listing 13 (continued): Communication model.

}

}

cation synthesis, all message-passing communication be­
tween the PEs has been mapped onto that bus.

In this example, it is assumed that P El is a digital signal
processor (DSP) from Motorola's DSP56600 family [4] of
DSPs. Therefore, the DSP's external bus protocol was cho­
sen as the system bus protocol. The DSP56600 bus consists
of an 16-bit wide address bus A, a 24-bit wide data bus D,
and a set of control lines for master chip select (MCS) and
read/write control (nRD/n WR). Details of the protocol and
its implementation on the PEs will be explained in Sec­
tion 4.2.

The DSP56600 bus protocol is a typical master-slave
protocol with the DSP (PEI) being the master on the bus.
In the example, PE2 is assumed to be a custom hardware
component that will be synthesized to implement the pro­
tocol as a bus slave listening to requests. On the other hand,
PE2 can signal PEI through a ready line for synchroniza­
tion purposes.

4.1.1 Bus Wires

In the communication model, the control wires of system
busses are represented by instances of a SpecC channel
C~ignal (shown in Listing 14). The signal channel com­
bines a value and an event into the signal semantics needed
for efficient modeling of physical communication. Similar
to VHDL signal semantics, an event is generated whenever
a value is assigned to the wire. Hence, sampling a wire can
be efficiently modeled in the event-driven simulation envi­
ronment by blocking behaviors/tasks on the wire event.

The signal channel CSignal provides two interfaces !Sig­
nal and OSignal for read (val() method) or write (assign()
method) access to the corresponding wire. In addition, the
reader interface (!Signal) provides a method waitval() to
efficiently model sampling of the wire until a certain value
is reached.

Internally, the signal channel encapsulates the necessary
code for simulation of all functionality provided by the
wire model. Note that the signal channel code is for sim­
ulation purposes only. During synthesis, accesses to the
channel's methods will be implemented as corresponding
accesses to the real, physical wire.

At the top level of the communication model (List­
ing 13(a)), signal channels representing the control wires
of the system bus are instantiated (line 58). In addition,
address and data busses are represented by simple bit vec­
tors of the required width (line 56 and line 57). The PEs
then connect to the wires through their ports (lines 2-7 and
lines 28-34). Depending on the access direction, PEs con­
nect to the reader and/or writer side of the bit vectors and
signal channels.

20

II Reader interface
interface IS ignal {

bit [1] val (void) ; 11 get current value
void waitval (bit [1] v); II wait for value

5 };

II Writer interface
interface OSignal {

void assign(bit[l] v); II drive signal
10 };

II Channel implementation
channel CSignal () implements !Signal , OSignal {

bit [1] value ;
15 event e ·

20

25

};

void assign (bit [1] v) {
value = v;
notify (e) ;

}
bit [1] val () {

return value;
}
void waitval (bit [1] v) {

while (value ! = v)
wait (e) ;

}

Listing 14: Signal channel for modeling of wires.

4.1.2 Bus Adapters

Inside the PEs of the communication model, bus adapters
PEI Bus and PE2Bus are instantiated (see Listing 13(a),
line 10 and line 37, respectively). The bus adapters spec­
ify how the communication methods and semantics of the
abstract channels from the architecture model are imple­
mented over the bus wires on the corresponding PE.

Bus adapters are channels with ports that connect to
the bus wires through the PE's ports. At their chan­
nel interfaces, on the other side, the bus adapters pro­
vide abstract communication methods equivalent to the
message-passing methods of the architecture model chan­
nels. Instead of the message-passing channels, the be­
haviors executing inside the PEs then connect to the bus
adapter's equivalent interfaces, and the adapters implement
the message-passing by driving and sampling the bus wires
according to the bus protocol.

As shown in Listing 13(b) and Listing 13(c) for the PE's
synchronization and leaf behaviors, respectively, calls to
the channel's send() and recv() methods are replaced with
calls to the corresponding methods of the bus adapter inter­
face !Bus (Listing 15). The bus adapters provide methods
for every type of communication handled over that bus, i.e.
for sending and receiving messages of arbitrary size in this
case. In addition, in order to differentiate between differ­
ent logical connections mapped onto the same bus, a vir­
tual addressing scheme is introduced at the adapter level.
Different transfers over the same adapter are distinguished

II Virtual bus addresses
enum { CB13, C2, CB34 } addr;

II Message-passing over bus
5 interface IBus {

void send (addr a, void *data , int size) ;
void recv (addr a, void *data , int size) ;

};

Listing 15: PE bus adapter interface.

(a) PEl bus driver. (b) PE2 bus interface.

Figure 12: PE bus adapters.

by their virtual address which, in general, is an identifier
for the original connection the transfer belongs to. The bus
adapter will then translate virtual addresses into unique,
·real addresses on the bus.

As depicted in Figure 12, the bus adapter channels are
hierarchically composed out of two layers: a high-level ap­
plication layer and a low-level protocol layer. The protocol
layers PEI Protocol and PE2Protocol perform actual bus
transactions by driving and sampling bus wires. At their
interfaces to the application layer, they provide methods
for all bus primitives supported by the protocol. The ap­
plication layer, on the other hand, sits on top of the proto­
col layer and provides the adapter's outer interface to the
external world. Using the protocol layer primitives, it per­
forms the necessary synchronization, data slicing, address­
ing, and arbitration to implement the communication over
the bus protocol.

4.2 Protocol Layer

The protocol layer implements the bus protocol for simu­
lation and synthesis. During communication synthesis, a
description of the selected bus protocol is taken out of the
protocol library in the form of a protocol channel. The pro­
tocol channel encapsulates the bus wires and implements
the protocol by driving and sampling the wires according
to the timing diagram of the protocol. At its interface, the
channel abstracts the protocol by providing methods for
all primitive transactions like read, write, burst read, burst
write, etc. supported by the bus. Protocol channels are
then split and moved into the PEs where they become the
protocol layer of the PE 's bus adapters. In the process, pro­
tocol descriptions are adapted to the PE's capabilities (for

21

T1

CLKOUT _

Address
Bus

Data In

TO T1

(Read) ----.---r----r-<:

Data Out ----+----+---<'~
(Write)

TO
1--- ws---!

Tw Tw T1

I I
I I

Ii i
l (Data Sa~pled at t>

I

(Data D~iven at!>

Note: For detailed timing specification see the device's Technical Data sheet.

Figure 13: DSP56600 protocol timing diagram.

example by inserting timing estimates), and the application
layer is generated on top of the protocol primitives.

The timing diagram for the DSP56600 bus protocol cho­
sen for our example is shown in Figure 13 [4]. A bus trans­
fer starts with the DSP driving the address bus and assert­
ing the MCS line. Depending on the direction of the trans­
fer, the DSP then asserts either the nRD or n WR control
line. In case of a bus read, the slave will put the selected
data on the data bus where the DSP will read it from be­
fore deasserting the nRD line again. In case of a bus write,
on the other hand, the DSP will drive the data bus and the
slave will sample the data when the DSP deasserts then WR
line again. Finally, the transfer completes with the DSP re­
leasing the address bus and deasserting the chip select line.

Figure 13 shows the protocol layers of the bus adapters
in the PEI (DSP) and PE2 (slave) components for the
DSP56600 protocol. The external interface !Protocol of
the protocol layer (see Listing 16(c)) provides methods for
the two simple bus read and write transfers supported by
the DSP56600 protocol. The protocol layers P El Protocol
and PE2Protocol then implement the master and slave side
of the read() and write() primitives by driving and sam­
pling the bus wires according to the sequence of events
in the timing diagram. Bus wires are accessed by reading
from and writing to corresponding ports of of the proto­
col channel which, in turn, will connect to the reader and
writer interfaces of the bit vectors and signal channels rep­
resenting the bus wires at the top level.

In the DSP56600 manual [4], the timing diagram from
Figure 13 is annotated with additional timing constraints
between events on the wires. In the protocol layer code
(Listing 16), timing constraints are modeled by enclosing
the code sampling and driving the wires in a do-timing

channel PE 1 Protocol (out bit [15: 0 J A,
inout bit [23: OJ D,
OSignal MCS,
OSignal nRD,

5 OSignal nWR)

{

10

15

20

25

30

35

40

45

50

55

implements !Protocol

II Bus master read
bit[23:0J read(bit[l5:0J addr)

{
bit [23: OJ data;

do {
tl: A= addr; II assign address

waitfor (3);
t2 : MCS. assign (1); II assert chip select

waitfor (12);
t3 : nRD. assign (0); II assert read line

waitfor (5);
t4 : data = D; II sample data bus

waitfor (18);
t5 : nRD. assign (1); II deassert read

waitfor (7);
t6 : MCS. assign (0); II deassert chip select

}
timing { II constraints

range (t 1 ; t6 ; 45; 100) ;
range (t2; t3 ; 4;) ;
range (t3 ; t5 ; 33;) ;
range (t3 ; t4; 30;) ;

}

return data ;
}

II Bus master write
void write (bit [15: OJ addr, bit [23: OJ data)
{

do {
t 1 :

t2 :

t3 :

t4 :

t5 :

A= addr;
waitfor (5);
MCS. assign (1);
waitfor (10);
nWR. assign (O);
waitfor (3);

II

II

II

II

II

assign address lines

assert chip select

assert write control

drive data outputs

deassert write

t6:

D = data;
waitfor (20);
nWR. assign (1);
waitfor (10);
MCS. assign (0); II deassert chip select

}
timing {

range (
range (
range (

II constraints
t 1 ; t6 ; 45 ; 100) ;
t2 ; t3 ; 8;) ;
t3 ; t5 ; 20 ;) ;

} }
};

(a) PEl bus master protocol.

Listing 16: Bus adapter protocol layer.

22

channel PE2Protocol (in bit[l5:0J A,
in out bit [23: 0 J D,
IS ignal MCS,
IS ignal nRD,

5 !Signal nWR)
implements !Protocol

{
II Bus slave write (answer to bus read)
void write (bit [15: OJ addr, bit [23: OJ data

10 {

15

20

25

30

35

do {
II wait for chip select

tl: MCS. waitval (1);
11 address decoding

t2 : if (A ! = addr) goto t 1 ;
waitfor (15) ;
II check control line

t3 : if (nRD. val () ! = 0) goto tl ;
11 drive data bus

t4: D = data;
II wait for end of cycle

t5: MCS. waitval (0);
}
timing {

range (
range (
range (

11 constrain ts
t 1 ; t5 ; 100) ;
t2 ; t3 ; 4; 50) ;
t3 ; t4 ; 30) ;

} }

II Bus slave read (answer to bus write)
bit[23:0J read(bit[l5:0J addr)

{
bit [23: 0] data ;

do {
II wait for chip select

tl: MCS. waitval (1);
11 address decoding

40 t2: if (A!= addr) goto tl;
waitfor (20) ;
II check control line

t3 : if (nWR. val () ! = 0) goto tl ;
11 sample data bus

45 t4 : data = D;

50

11 wait for end of cycle
t5: MCS.waitval(0);

}
timing {

range (
range (
range (

}

II constraints
t 1 ; t5 ; ; 100) ;
t2 ; t3 ; 8 ; 50) ;
t3 ; t4 ; 20 ;) ;

55 return data ;
}

};

(b) PE2 bus slave protocol.

II DSP56600 protocol primitives
interface !Protocol {

bit [23 : 0 J re ad (bit [15 : 0 J add r) ;
void write(bit[l5:0J addr, bit[23:0J data);

5 };

(c) Protocol layer interface.

Listing 16 (continued): Bus adapter protocol layer.

construct. Constraints are specified as ranges between la­
bels marking events on the wires. For example, there is
a minimum delay of 4 time units between asserting the
MCS and the nRD signals in case of a read transfer on
the DSP (PEI) side (Listing 16(a), line 28). The corre­
sponding slave (PE2) write method, therefore, has to have
a delay of at least 4 time units between receiving MCS and
sampling of nRD to ensure that the value of nRD is correct
(Listing 16(b), line 26). For more information about the
DSP56600 protocol timing please refer to [4].

In addition to timing constraints, the protocol layer
code is annotated with estimated delays by inserting
wait for () statements into the code sequence. Those de­
lays are instances of the protocol timing constraints based
on an estimation of actual average delays when implement­
ing the protocol on the given PE. Note that the waitfor()
statements only serve as a feedback about communication
timing for simulation, similar to the waitfor() statements
inserted into the behavior code in the architecture model
(see Section 3.6). Interface synthesis as part of the back­
end process, however, will start from the ranges specified
for the timing constraints of the protocol. Based on the
constraints and the PE's clock period, a state machine im­
plementing the protocol will be synthesized which will de­
termine the actual, exact protocol delays.

4.3 Application Layer

The application layer wraps around the protocol layer and
implements the abstract, high-level communication seman­
tics from the architecture model as a sequence of low­
level, primitive bus transactions supported by the protocol.
At its interface, the application layer provides message­
passing methods equivalent to the architecture model's
global channels. Therefore, the behaviors inside the PE can
be directly connected to the application layer instead. In
order to implement message-passing, the application layer
has to perform tasks like synchronization of PEs, arbitra­
tion in case of multiple bus masters, addressing of data on
the bus, and slicing of abstract data types into bus words.
Internally, the application layer instantiates the protocol
layer and calls the protocol methods in order to perform
the actual bus transfers.

Listing 17 shows the top levels of the two bus adapters,
PEIBus and PE2Bus, which form the application layers
inside the two PEs. The application layers implement the
send() and recv() methods of the I Bus interface (line 7) in­
troduced earlier (Listing 15). Internally, they each instan­
tiate the corresponding PE's local protocol layer (line 10)
described in the previous section (Section 4.2). The pro­
tocol layers are connected to the bus wires through corre­
sponding ports of the bus adapters, and they are responsible

23

-+·'W·. '~";" .. c•.;c:::::::>-
::> r===
--G9--­
~

Figure 14: Application layer synchronization protocol.

for actually driving and sampling the bus wires according
to the protocol timing diagram. In the code of its methods,
the application layer then calls the protocol layer methods
to implement the sequence of transactions over the bus.

In the following sections, we will outline each of the
tasks performed by the application layer in its implemen­
tation of message-passing over the protocol. In this report,
we will focus on the modeling aspects for the application
layer only. A more detailed description of the communi­
cation synthesis process for the application layer can be
found in [5].

4.3.l Synchronization

To implement the blocking semantics of the message­
passing communication, the application layer has to per­
form the proper synchronization of PEs. Depending on the
bus, synchronization can be inherent in the protocol. In
all other cases, the application layer has to synchronize the
communication partners on top of the protocol, possibly
over additional wires between the PEs that are driven and
sampled by the application layer according to a high-level
synchronization protocol.

In our example, rendevouz synchronization is handled
through the bus protocol in one direction and through the
ready signal in the other direction (Figure 14). The slave
PE2 signals its ready status by asserting the ready line
(line 24 and line 50 in Listing l 7(b)). In its calls of the
protocol methods, the PE2Protocol layer will then listen
on the bus for the sequence of transfers as initiated by the
DSP, i.e. it will wait repeatedly for the start of each bus
transfer. The DSP (PEI), on the other hand, first polls the
ready line (line 26 and line 47 in Listing l 7(a)), thereby
blocking the DSP until the slave is ready. Once the ready

' signal is received, the DSP initiates the sequence of trans­
fers through calls to its PEI Protocol layer. Through the
bus protocol, the DSP will, in turn, wake up the slave which
is blocking on the corresponding bus wire events. All to­
gether, synchronization in this example is implemented by
sending events from the DSP to the slave via the bus proto­
col whereas events from the slave to the DSP are sent over
the ready line.

channel PElBus (out bit (15: O] A,

5

{

10

15

20

25

30

inout bit (23: O]
OSignal MCS,
OSignal nRD,
OSignal nWR,
IS ignal ready

implements IBus

II Instantiate protocol layer

D,

PE 1 Protocol protocol (A, D, MCS, nRD, nWR) ;

II Send message
void send (addr a, void *data , int size) {

bit[l6] Addr;
short * p;

II Addressing: convert to bus
switch (a) {

case CB13:
Addr = Ox8005 ; break;

case C2:
Addr = Ox8020 ; break;

}

address

II Synchronization: wait for ready signal
ready. waitval (1) ;

II Sliced data transfer
for (p = data ; size > 0; size -= 2) {

11 call protocol layer
} protocol. write (Addr, * p++);

}

35

40

45

50

}
55 };

II Receive message
void recv (addr a, void *data , int size

bit[I6] Addr;
) {

short * p;

II Addressing: convert to bus address
switch (a) {

case CB34:
Addr = Ox800c ; break;

}

II Synchronization: wait for ready signal
ready . wai tval (1) ;

II Sliced data transfer
for (p = data ; size > 0; size -= 2) {

II call protocol layer
* p++ = protocol. read (Addr);

}

(a) PEl bus driver.

Listing 17: Bus adapter application layer.

24

5

10

15

20

25

30

35

40

45

50

channel PE2Bus (in bit[l5:0] A,

{

in out bit [23: O] D,
!Signal MCS,
I Signal nRD,
I Signal nWR,
OSignal ready

implements IBus

II Instantiate protocol layer
PE2Protocol protocol (A, D, MCS, nRD, nWR) ;

11 Send message
void send (addr a, void *data , int size) {

bit[l6] Addr;

}

short * p;

II Addressing: convert to bus address
switch (a) {

case CB34:
Addr = Ox800c ; break;

}

II Synchronization: assert ready signal
ready . assign (1) ;

II Sliced data transfer
for (p = data ; size > 0; size -= 2) {

II call protocol layer
protocol. write (Addr, * p++);

}

II Synchronization: deassert ready signal
ready. assign (0) ;

II Receive message
void recv (addr a, void *data , int size

bit[16] Addr;
) {

short * p;

II Addressing : convert to bus address
switch (a) {

case CB13:
Addr = Ox8005 ; break;

case C2:
Addr = Ox8020 ; break;

}

II Synchronization: assert ready signal
ready. assign (1) ;

II sliced data transfer
for (p = data ; size > 0; size -= 2) {

II call protocol layer
55 * p++ = protocol . read (Addr) ;

60 }
};

}

II Synchronization: deassert ready signal
ready . assign (0) ;

(b) PE2 bus interface.

Listing 17 (continued): Bus adapter application layer.

4.3.2 Addressing

Virtual addresses on the application side have to be turned
into a bus addressing scheme. In general, bus addresses are
a combination of source PE, destination PE, and ID of the
message to be transfered. Depending on the application,
however, the bus addressing scheme can be simplified. For
example, if there is a predefined order of messages between
two PEs, the message ID can be removed from the address.

If the bus protocol's address bus is wide enough, vir­
tual addresses can be directly converted into bus addresses.
Otherwise, address information has to be transfered over
the data bus as a header of the message frame, preced­
ing the actual message content. Meta-data in the message
header can also contain other information like the size of
the message in case of variable-length messages. After
synchronization, header data is transfered just like normal
data (see the next section, Section 4.3.3) by calling the pro­
tocol's bus transaction primitives.

In the case of our example (Listing 17), the virtual, sym­
bolic addresses on the application layer interface are di­
rectly converted into 16-bit bus addresses. Although un-

. necessary in this case since there is a predetermined or­
der of transfers, one address in the range available on
the DSP's external bus is assigned to each virtual address
CB13, C2, and CB34. Note that since all three messages
are uni-directional, each of the virtual addresses needs to
be resolved in only one of the two methods on each side.

4.3.3 Data slicing

As part of the application layer, the abstract data types in
the messages on the application side have to be sliced into
bus words supported by the protocol. In general, slicing is
the process of splitting large, complex data structures into
a series of bus transfers on the sending side and reassem­
bling the messages from the data received over the bus on
the receiving side. Depending on the capabilities of the
protocol, data slicing can make use of burst or other block
transfer modes, for example.

In addition, slicing has to ensure correct interpretation
of the sequence of low-level transfers on both sides in case
of different data layout conventions on the PEs. For ex­
ample, in case of a big-endian PE communicating with a
little-endian PE, slicing performs the necessary byte swap­
ping on one of the PEs. In general, different implemen­
tations of data serialization on the bus are possible, e.g.
based on memory layout, based on a layout imposed by an
IP component, or a canonical serialization as part of the
bus protocol definition [5].

In the example shown in Listing 17, a simple loop slices
the message into 16-bit words that are transfered over the
24-bit data bus. The application layer send() and recv()

25

A{15:0]

0(23:0]

MCS.

nRD

Figure 15: Communication model with IP.

methods loop over all the words in the message and trans­
fer the message one word at a time by calling the corre­
sponding read() or write() methods of the protocol layer.

4.4 Transducers

As part of the communication model, additional process­
ing elements that translate between incompatible bus pro­
tocols might have to be inserted into the system architec­
ture. Such transducers will act as bridges connecting two
busses or as bus interfaces for PEs with fixed, predefined
protocols. Especially in the case of IP components, trans­
ducers serve as universal glue logic, allowing to interface
IP components to arbitrary busses. Their functionality can
range from a simple conversion of signal levels up to com­
plete protocol translators that include buffers for transfer
rate adaption and decoupling.

In Section 3.4, we introduced an architecture model that
included an IP component (Figure 10 and Listing 10). Fig­
ure 15 and Listing 18 show the corresponding communica­
tion model for the same architecture with communication
via a single system bus based on the DSP56600 protocol.
The communication model instantiates the bus-functional
model IPBF of the IP component (line 60, Listing 18(a))
introduced in Section 3.4 (Listing 9(b)). Like the other PE
models of the communication model described in the pre­
vious sections, the bus-functional IP model describes the
behavior of the IP at its bus interface in a timing-accurate
manner, i.e. the IP BF model generates events in response
to incoming stimuli on the wires connected to its ports with
correct timing.

Since the IP with its fixed protocol can not be directly

II Processing element 1
behavior PEl (out bit [15: 0 J A, bit [23: 0 J D,

OSignal MCS, OSignal nRD,
OSignal nWR, !Signal ready) {

5 PElBus bus (A, D, MCS, nRD, nWR, ready) ;

typel vl;
Bl bl (vl) ;
Bl3Snd b13snd (vl, bus);

10 B12Snd b12snd (vl, bus);
B24Rcv b24rcv (bus) ;
B34Rcv b34rcv (bus) ;

void main (void) {
15 bl. main();

b13snd. main();
bl2snd. main();
b24rcv. main();
b34rcv. main();

20 }
};

II Processing element 2
behavior PE2(in bit[15:0J A, bit[23:0J D,

25 !Signal MCS, !Signal nRD,
!Signal nWR, OSignal ready) {

PE2Bus bus (A, D, MCS, nRD, nWR, ready) ;

typel vl;
30 B13Rcv bl3rcv (bus, vl);

B3 b3 (v 1 , bus) ;
B34Snd b34snd (bus) ;

void main (void) {
35 b13rcv.main();

40

}
};

b3. main();
b34snd. main();

II Top-level
behavior Design ()
{

bit [15: OJ A; II System bus
45 bit [23: 0 J D;

CSignal MCS, nRD, nWR, ready;

bit [63: OJ <lat; II JP bus
event st, dn;

50 bit[2J rdy;

PEI pel (A, D, MCS, nRD, nWR, ready);
PE2 pe2 (A, D, MCS, nRD, nWR, ready) ;

55 II Transducer instance
Tl ti (A, D, MCS, MCS, nRD, nRD, nWR, nWR,

ready , ready , <lat, st , rdy, dn) ;

II Bus-functional IP instance
60 IPBF ipl (<lat, st, rdy, dn);

void main (void) {
par {

pe 1 . main () ; pe2 . main ();
65 tl. main(); ipl. main();

}
};

}

(a) Top level hierarchy.

Listing 18: Communication model with IP.

26

11 Send data to IP
behavior Bl2Snd (in typel vl, Ibus bus) {

void main (void) {

5 };
bus. send (CB12, & vl, sizeof (vl')) ; }

II Receive results from IP
behavior B24Rcv (IBus bus) {

void main (void) {
10 bus. recv (CB24, 0, 0); }

};

(b) Synchronization with IP.

Listing 18 (continued): Communication model with IP.

connected to the system bus, a transducer component Tl
is inserted into the communication model. The transducer
connects to the IP bus and to the system bus, translating
between the two protocols. Like the other PEs, the trans­
ducer behavior is instantiated (line 56, Listing 18(a)) and
added to the set of concurrent, non-terminating PE behav­
iors (line 65) at the top level.

The transducer component model is shown in Listing 19.
The transducer behavior (Listing 19(b)) connects to the
system bus on the one hand and to the IP bus on the other
hand through corresponding sets of ports. Since the trans­
ducer has to act as both master (for communication with
PE2) and slave (for communication with the DSP PEI) on
the system bus, it connects to both reader and writer inter­
faces of the control lines.

For implementation of the IP protocol, the transducer
instantiates an IP bus adapter (line 12). The TJIP adapter
(shown in Listing 19(a)) copies the channel interface meth­
ods of the IP wrapper from the architecture model (Sec­
tion 3.4, Listing 9). As in the architecture model, the wrap­
per methods describe the implementation of the IP proto­
col over the adapter's IP bus ports while providing a set
of methods at the message-passing level on the adapter's
interface.

Similarly, the transducer contains adapters for master
and slave communication over the system bus. In this
simple case, the adapters are instances of the PEJBus
and P E2Bus adapters described in Section 4.1.2 and Sec­
tion 4.3. Since the transducer's system bus functional­
ity is largely equivalent to the bus communication in P El
and PE2, we are including copies of their bus adapters in
this example. The necessary minor modifications of the
adapters to support the additional CB12 and CB24 mes­
sages of the transducer are, however, not shown here and
are left as an exercise to the reader.

In its main() method, the transducer then calls the meth­
ods provided by the adapters for communication on the IP
and on the system bus side. In our example, the order of
communication is predetermined and the transducer per-

channel TlIP(inout bit[63:0] data,
out event start ,
in bit [2] ready,
in event done)

5 implements IIP
{

void start (typel vl) {
dat = vl;
notify (st) ;

10 }
type2 v2 (void) {

}

while (! rdy [1]) wait (dn) ;
return dat;

15 void done (void) {

}
};

while (! rdy [O]) wait (dn);

(a) IP bus adapter.

behavior Tl(bit[15:0] A, bit[23:0] D, II Bus
!Signal iMCS, OSignal oMCS,
!Signal inRD, OSignal onRD,
ISignal inWR, OSignal onWR,

5 !Signal irdy , OSignal ordy,
bit[63:0] data, II IP
out event start ,
in bit[2] ready,
in event done)

10 {
II IP adapter
TlIP ipl (data, start, ready, done);

II Adapters to act as bus master or slave
15 PElBus master (A, D, oMCS, onRD, onWR, irdy) ;

PE2Bus slave (A, D, iMCS, inRD, inWR, ordy);

void main (void) {
typel vl;

20 type2 v2;

II Receive IP parameters from Bl (PEI)
slave . recv (CB12, & vl, sizeof (vl)) ;

25 II Start IP execution
ipl.start(vl);

30

II Receive v2 from IP
v2 = ip 1 . v2 ();

I I . . . and send to B3
master. send (C2, & v2, sizeof (v2)) ;

II Wait for IP to finish
35 ipl. done();

}
40 };

II Send result back to PEI
slave. send (CB24, 0, 0);

(b) Transducer behavior.

Listing 19: Transducer component model.

27

forms a sequence of data transfers according to this pre­
defined schedule. In the most general case, the transducer
will listen on both sides simultaneously in order to handle
transfers dynamically as they come in.

In this example, complete messages are received on one
side, buffered in the transducer's local memory, and sent
out on the other side. In order to reduce latency and mem­
ory requirements in the transducer, data transfers could be
overlapped, i.e. the transducer could start sending out a
words of a message on on side while still receiving remain­
ing parts of the message on the other side. Such transducer
optimizations can be part of communication synthesis or
the backend process. In the latter case, the implemen­
tation model (see Section 5) will include optimized code
for the transducer PE. In the former case, the communica­
tion model will include a transducer model in which the
code of the adapter methods-shown separately here-is
inlined into the transducer's main() method, flattened, and
reordered across method boundaries.

4.5 Arbitration

In case of multiple masters on a system bus, the commu­
nication model has to include bus arbitration. If the order
of transactions on each bus is statically fixed and predeter­
mined, and if it can therefore be guaranteed that no con­
flicts will occur (as in the case of the example from Sec­
tion 4.4), a static arbitration is inherent in the model. Oth­
erwise, PEs have to dynamically resolve bus contention at
runtime through an arbitration protocol as part of their pro­
tocol or application layers. Arbitration can be distributed
or centralized. In a distributed scheme, PEs resolve con­
flicts among themselves through a distributed arbitration
protocol. In a centralized scheme, a central arbiter PE
is inserted into the communication model, and the arbiter
grants bus requests based on a builtin arbitration algorithm.

For example, if we modify our design such that both PEJ
and PE2 can act as either master or slave on the system
bus, arbitration becomes necessary. Figure 16 and List­
ing 20 show the modified example including a centralized
arbiter component. In this implementation, for each mes­
sage to be transfered over the bus, the sending PE ·acts as
the bus master while the receiving PE serves as bus slave.
Therefore, the protocol and application layers of the bus
adapter common to both PEs (shown in Listing 21) con­
tain the write() and send() methods from the master side
(i.e. from PEJProtocol, Listing 16(a), and PEJBus, List­
ing l 7(a)) and the read() and recv() methods from the
slave side (PE2Protocol, Listing 16(b), and PE2Bus, List­
ing 17(b)). Note that the code for the protocol layer meth­
ods is the same as in Section 4.2. However, for simplicity
the do-timing constraints have been omitted here.

5

II Processing element 1
behavior PEl (bit [15: 0] A,

!Signal iMCS,
!Signal inWR,
!Signal rdy2,

{
OSignal req I ,

bit[23:0] D,
OSignal oMCS,
OSignal onWR,
OSignal rdyl ,
IS ignal ackl)

PEBus bus (A, D, iMCS, oMCS, inWR, onWR,
rdy2, rdyl, reql, ackl);

10

15

type I vi;
Bl bl (vl
B13Snd b13snd(vl ,
B2 b2 (vl ,
B34Rcv b34rcv (bus

void main (void) {
bl. main();
bl3snd. main();

) ;
bus) ;
bus) ;
) ;

2 0 b2 . main () ;
b34rcv . main();

}
};

25 II Processing element 2
behavior PE2 (bit [15: 0] A,

!Signal iMCS,
!Signal inWR,
!Signal rdyl,

30 OSignal req2,
{

bit [23: 0] D,
OSignal oMCS,
OSignal onWR,
OSignal rdy2,
!Signal ack2)

PEBus bus (A, D, iMCS, oMCS, inWR, onWR,
rdy I , rdy2 , req2 , ack2) ;

35

40

type I vi;
Bl3Rcv bl3rcv(bus, vl);
B3 b3 (v 1 , bus) ;
B34Snd b34snd (bus) ;

void main (void) {
bl3rcv. main();
b3. main();
b34snd . main ();

}
45 };

II Top-level
behavior Design ()
{

50 bit [15: 0] A;
bit [23: O] D;
CSignal MCS, nWR, rdy 1 , rdy2;
CSignal req I , ack I , req2 , ack2;

55 II Arbiter
Arbiter arbiter I (req 1 , ackl , req2 , ack2) ;

PEI pel (A, D, MCS, MCS, nWR, nWR,
rdy2 , rdy I , req I , ack I) ;

60 PE2 pe2 (A, D, MCS, MCS, nWR, nWR,
rdy I , rdy2, req2 , ack2) ;

void main (void) {
par {

65 arbiter I. main(); pel. main(); pe2. main();
}

}
};

Listing 20: Communication model with arbiter.

28

channel PEProtocol(bit[IS:O] A, bit[23:0] D,
!Signal iMCS, OSignal oMCS,
!Signal inWR, OSignal onWR)

implements IProtocol
5 {

10

15

20

11 Bus slave read
bit [23: 0] read (bit [15: 0] addr) {

bit [23:0) data;
ti: iMCS. waitval (1);
t2: if (A != addr) goto tl ; waitfor (20) ;
t3: if (inWR. val() != 0) goto ti;
t4: data = D;
t5: iMCS. waitval (0);
return data ;

} .
II Bus master write
void write(bit[l5:0]

t I : A = addr ;
t2: oMCS. assign (I);
t3 : onWR. assign (0);
t4 : D = data ;
t5: onWR.assign(l);
t6: oMCS.assign(O);

addr , bit [23: 0]
waitf or (5);
waitfor (10);
waitfor (3);
waitfor (20);
waitfor (10);

data) {

}
25 };

(a) Protocol layer.

channcl PEBus(bit [15:0] A,
I Signal iMCS,
!Signal inWR,
!Signal irdy,

5 OSignal req ,

bit [23: 0] D,
OSignal oMCS,
OSignal onWR,
OSignal ordy,
!Signal ack)

10

15

20

25

30

35

{

}

implements IBus

PEProtocol p (A, D, iMCS, oMCS, in WR, on WR) ;

11 Bus master message send
void send (addr a, void *data , int size) {

short * p;

irdy. waitval (I) ;

req. assign (I);
ack.waitval(I);

II Synchronization

II Request bus
11 Wait for acknowledge

for (p = data ; size > 0; size -= 2) {
switch (a) {

}
}

case CB13: p.write(Ox8005, *P++); break;
case C2: p. write (Ox8020 , * p ++); break;

req. assign (0) ; 11 Release bus

II Bus slave message receive
void recv (addr a, void *data , int size

short * p;

ordy. assign (I) ; II Synchronization
for (p = data ; size > 0; size -= 2) {

*P++= p.read(Ox800c);
}
ordy. assign (0); II Synchronization

{

}
};

(b) Application layer.

Listing 21: Bus adapter with arbitration.

A[15:0]

0[2a:o1 behavior Arbiter (!Signal reql, I Signal req2,
_________, ______, __ M __ c_s.... OSignal ackl , OSignal ack2)

Figure 16: Communication model with arbiter.

The two PEs communicate with the arbiter component
Arbiter] via two request lines reqX and two acknowledge
lines ackX. As part of its application layer (Listing 2l(b)),
a PE's first action is to request bus access as a master in
the send() method by raising its req line (line 16). It then
waits until it is granted access by the arbiter through the
corresponding ack line (line 17) before performing the ac­
tual data transfers. Finally, the sending PE releases the bus
again at the end of the transfer (line 26).

For synchronization, the PEs communicate via two
ready lines. Each rdyX line signals whether the corre­
sponding PE is ready to receive data. Similar to synchro­
nization in the original communication model example (see
Section 4.3.1), the receiving PE drives its outgoing rdy line
in its application layer recv() method while the sending PE
blocks on the ready signal coming in from the other, re­
ceiving PE.

The communication model instantiates an arbiter com­
ponent Arbiter] and includes it in the set of PEs. The ar­
biter (Listing 22) receives requests from and grants bus ac­
cess to the PEs. In an endless loop, the arbiter checks for
incoming requests and grants them on a first-come, first­
serve basis by sending out ack signals. It then waits for
the release of the bus as signaled by the PE before con­
tinuing to process requests. In case of requests that come
in simultaneously, PEI has priority over PE2 in this sim­
ple example. Due to the sequential nature of the arbiter,
a total order is created among the events on the arbiter's
ports, guaranteeing that only one PE is granted access at
any given time.

29

void main (void)
5 {

ackl. assign (0) ; ack2. assign (0) ;

while (true) {

10
II Priority I: request from PEI?
if (reql . val ()) {

15

20

25
}

};

}

ackl . assign (I) ; II Acknowledge
reql. waitval (0) ; II Wait for release
ackl . assign (0) ; II Release bus

II Priority 2: request from PE2?
else if (req2 . val ()) {

}

ack2. assign (I) ; II Acknowledge
req2. waitval (0) ; II Wait for release
ack2. assign (0) ; II Release bus

II Wait for request
else {

wait (reql , req2);

} }

Listing 22: Arbiter component model.

4.6 Timing

As part of the architecture model, scheduling of behav­
iors created a total order inside each PE (see Section 3.5).
Hence, there is also a total order of events generated at the
ports of each PE. In case of a single bus master (i.e. a single
driver), this guarantees a total order among the transactions
on that bus. In all other cases, arbitration, either statically
or dynamically as explained in Section 4.5, will create a
total order of bus transactions. Therefore, transactions on
each bus in the communication model are totally ordered.

Furthermore, the communication model introduces the
concept of time for the communication among the PEs in
the system. As shown in Section 4.2, the protocol layers
of the bus adapters are annotated with waitfor() statements
for estimated protocol delays on the target PE. Similarly,
the application layer methods can be annotated with timing
information based on estimated or budgeted execution de­
lays for the application layer code. As a result, the order of
events on the system busses is further refined beyond the
order imposed by the sequential PEs (including arbiters)
driving the busses.

All together, the communication model provides a
timing-accurate description of the interaction between PEs
at the system level. From the system's perspective, the bus­
functional PE models accurately describe each PE's behav­
ior as seen at its bus interface. Therefore, the communica­
tion model allows to validate the order and functionality of
the system at the level of PEs communicating via wires.

4.7 Summary

The communication model is the output of the system-level
design process and the hand-off to the backend process. It
reflects the structure of the system architecture consisting
of computation running on PEs and communication over
busses. The PEs in the communication model specify the
computation and communication behavior to be synthe­
sized into PE microarchitectures in the backend process.
The communication model is a timed model in terms of
computation and communication. Leaf behaviors and bus
adapters are annotated with estimated or projected execu­
tion times on the target PE. The backend process will then
further refine time into a cycle-accurate model.

In summary, compared to the properties of the architec­
ture model presented in Section 3. 7, the properties of the
communication model are:

(a) At the top level of the behavior hierarchy, the PE
structure is modeled as a parallel composition of non­
terminating PE behaviors.

(b) PE behaviors communicate via shared, bit-true vari­
ables representing system bus wires.

(c) Bus adapters inside the PEs implement message­
passing semantics by driving and sampling the wires
of the bus according to the bus protocol.

(d) Behaviors inside different PEs communicate by send­
ing and receiving messages via the PE's bus adapters.

(e) Computation in the leaf behaviors and communica­
tion functionality in the bus adapters are annotated
with estimated or projected execution times on their
target PE.

In terms of behaviors executing inside each of the PEs,
the communication model inherits the respective properties
(computation functionality, storage, parallelism, schedul­
ing) from the architecture model. Also note that with re­
spect to the properties of the communication model, spe­
cial PEs like IPs, memories, transducers, or arbiters are no
different from the other, general-purpose PEs. As part of
the backend process, the implementation of the functional­
ity inside each PE will feed into different flows depending
on the type of the PE.

5 Implementation Model

The implementation model is the result of scheduling the
functionality mapped onto the PEs (both, computation and
communication functionality) into register transfers per
clock cycle. Therefore, the implementation model is a
cycle-accurate model at the register-transfer level.

5

10

A[15:0]

0[23:0]

MCS

nRD

nWR

ready

Figure 17: Implementation model.

behavior Design()
{

II System bus wires
bit[15:0] A;
bit [23: O] D;
CSignal MCS, nRD, nWR, ready ;

II PEI = Processor (DSP)

II address
II data
II control

DSP pet (A, D, MCS, nRD, nWR, ready) ;

11 PE2 = Custom HW
HW pe2 (A, D, MCS, nRD, nWR, ready) ;

15
void main (void) {

par {

30

}
};

}
pe 1 . main (); pe2 . main ();

Listing 23: Implementation model.

For each PE, the implementation model defines the
datapath, the control logic and the clock frequency at
which the component runs. In general, the implementation
model requires allocation of a datapath, binding of opera­
tions, variables, and transfers onto functional units, regis­
ters/memories and busses, and the scheduling of register­
transfers into clock cycles.

For custom hardware PEs, high-level synthesis creates
the implementation model of the hardware PE from the
code of the behaviors and adapters inside the PE behav­
ior of the communication model. For programmable pro­
cessors, the code of the behaviors in the communication
model is converted into C code and compiled into assem­
bly code to create the implementation model.

Figure 17 and Listing 23 show the top level of the im-

plementation model for the example design. In this exam­
ple, PEI is implemented as a digital signal processor DSP
and P E2 is implemented as a custom hardware PE HW.
As specified by the communication model, the two compo­
nents communicate via a bus with 24-bit wide data, 16-bit
wide address and four control lines.

The implementation model supports two views of the
PEs in the design: a behavioral RTL view and a structural
RTL view [6]. In both cases, the steps of allocation, bind­
ing and scheduling are required to derive the implemen­
tation model. The difference is that the behavioral RTL
view does not explicitly represent the datapath architec­
ture and the binding information. However, it corresponds
closely to the original C code in the communication model.
The structural RTL view, on the other hand, explicitly de­
scribes the structure of data path plus control unit. There­
fore, structural RTL is closer to the implementation and
forms the immediate input to logic synthesis.

5.1 Behavioral RTL

Behavioral RTL specifies the operations performed in each
clock cycle without explicitly modeling the units in the
PE's datapath. Instead, operations in each cycle are de­
scribed at the C level. Therefore, behavioral RTL is close
to the original, sequential C code. Essentially, behavioral
RTL is obtained by scheduling the operations in the C code
into clock cycles.

Depending on the type of PE, different styles are needed
for the implementation models of the PEs at the behavioral
RTL level. For programmable processors, the operations
performed in each clock cycle are defined by the assembly
code compiled for that PE. On the other hand, for custom
hardware PEs the operations in each clock cycle can be
explicitly modeled.

5.1.1 Custom Hardware

Listing 24 shows the behavioral RTL code for the custom
hardware PE in the implementation model of the example.
At the top level, the PE behavior HW (Listing 24(b)) re­
mains largely unchanged from the communication model
(compare to PE2 in Listing 13(a)). The HW behavior in­
stantiates the bus adapter and the group of subbehaviors
mapped onto the custom hardware PE, connects them via
variables and interfaces, and executes the subbehaviors in
the sequence determined during scheduling.

However, leaf behaviors and bus adapters in the HW
behavior replaced with refined FSMD models of their
state machine implementation. For example, the behav­
ioral RTL code for a leaf behavior B3 is outlined in List­
ing 24(a). The code describes the behavior as a finite state
machine with datapath (FSMD) model. The FSMD model

31

5

10

15

20

25

behavior FSMD3(in type 1 vl , IBus if)
{

void main (void) {
type2 v2;

11 State variable
enum { SO, Sl, S2, ... , Sn } state ;
state = SO;

11 State machine
while (state != Sn) {

switch (state)
{

case Si:
vl += v2;
if (vl)

state
else

state
break;

11 datapath June .
II next state June.

Si+l;

Sj;

II Superstate:
case Sj: II call bus receive FSMD

bus. recv (C2, & v2, size of (v2)) ;
state = Sj+l;
break;

II Superstate:
30 case Sj+l: II call J3 () FSMD

f3 (v 1 , v2 , . . .) ;
state = Sj+2;
break;

35 }

}

II Clock period delay
waitfor (HW_CLOCI<-PERIOD);

40 }
};

(a) FSMD leaf behavior.

behavior HW(in bit [15: 0] A,
inout bit[31:0] D,
!Signal MCS,
ISignal nRD,

5 ISignal nWR,
OSignal ready

{

10

II Bus interface logic FSMD
HWBus bus (A, D, MCS, nRD, nWR, ready) ;

typel vi;

II FSMD models of leaf behaviors
FSMD13Rcv bl 3rcv (bus , vl) ;

15 FSMD3 b3 (v 1 , bus) ;
FSMD34Snd b34snd (bus) ;

void main (void) {
bl3rcv. main();

2 0 b3 . main () ;
b34snd . main ();

}
};

(b) PE behavior.

Listing 24: Custom hardware behavioral RTL model.

MCS!= t

MCS!=O

Figure 18: Custom hardware bus interface FSMD.

is the result of scheduling B3's operations into clock cycles
and converting the code into states and transitions.

The state machine is modeled by a state variable and
a switch-case statement inside a loop. The state ma­
chine starts at state So and runs until the end state S11 is
reached. Each case represents a state and specifies the op­
erations and transitions executed in that state. Each state
in: turn corresponds to one clock cycle. The timing and de­
lay of the PE clock is modeled by inserting await for ()
statement which describes the state delay based on the PE's
clock period.

The statements in each state are taken from the origi­
nal C code of the leaf behavior and represent the datapath
operations (register transfers) performed in the correspond­
ing clock cycle. The original control flow in the C code is
transformed into state transitions in the FSMD model. In
each state, the next state is determined, possibly condition­
ally as in the case of state Si, by assigning a new value to
the state variable state. Variables inside behaviors model
the local storage of the component. Depending on the type
of storage a variable will be bound to, variable accesses
represent reads or writes of the corresponding register file,
memory, ROM, etc.

In general, FSMDs can be hierarchical. Superstates are
modeled by including function or method calls in a state
as shown in states SJ (bus adapter method call) and SJ+l
(regular function call). While being in a superstate, the
FSMD of the callee is executed. Upon entering a hierar­
chical state, control is transfered to the first state of the
sub-FSMD. Control returns to the parent superstate when
the end state of the sub-FSMD is reached. For example, the
state SJ is a superstate which calls the bus adapter's recv()
FSMD to transfer a message over the bus.

Similar to the computation in the leaf behaviors, the bus
adapter functionality is scheduled into clock cycles and de-

32

channel HWprotocol (in bit [lS: O] A,
inout bit [23: 0 J D,
!Signal MCS,
!Signal nRD,

5 IS ignal nWR)

{
implements !Protocol

II Bus slave read (answer to bus write)
bit[23:0J read(bit[lS:OJ addr)

10 {
bit [23:0J data;

II State variable
enum{ SO, Sl, S2, S3, S4, SS, S6 } state;

15 state = SO;

20

25

30

35

40

45

50

55

60

}

11 State machine
while (state != S6
{

}

switch (state)
{

}

case SO: 11 sample MCS
if (MCS. val() == 1) state Sl;
break;

case Sl: II sample address
state = S2;
if (A != addr) state = SO;
break;

case S2: II wait state
state = S3;
break;

case S3: 11 sample nWR
state = S4;
if (nWR. val() != 0) state SO;
break;

case S4: II sample data
data = d;
state = SS;
break;

case SS: II sample MCS
if (MCS. val()== 0) state S6;
break;

II State delay = clock period
waitfor (HW_CLOCK_PERIOD) ;

return data ;

II Bus slave write (answer to bus read)
void write (bit [15: OJ addr, bit [23: OJ data
{

}
} ;

II Omitted ...

(a) Protocol layer.

Listing 25: Custom hardware bus interface FSMD.

channel HWBus(in bit [15: OJ A,
inout bit [31 : 0] D,
!Signal MCS,
!Signal nRD,

5 !Signal nWR,

{

OSignal ready
implements IBus

II Protocol layer FSMD
10 HWProtocol protocol (A, D, MCS, nRD, nWR) ;

II Receive message FSMD
void recv (addr a, void *data , int size)
{

15 bit[l6] Addr;
short * p;

II State variable
enum {SO, SI, S2, S3, S4} state;

20 state = SO;

11 State machine
while (state != S4
{

25 switch (state)
{

30

35

40

45

50

}

II de.fault next state
state++;

case SO:
ready. assign (1); II assert ready
switch (a) { 11 load addr reg.

case CB13:
Addr = Ox8005 ; break;

case C2:
Addr = Ox8020 ; break ;

}
p = data ;
break;

II init loop

case Sl: II receive data item
Data = protocol . recv (Addr) ;
break;

case S2:
* p++ = Data; II write into mem.
if ((size -= 2) > 0) state = Sl;
break; 11 loop condition

case S3:
ready. assign (0); II deassert ready
break;

55 II State delay
waitfor (HW_CLOCK.PERIOD) ;

}
}

60 II Send message FSMD
void send (addr a, void *data , int size
{

65 }
};

11 Omitted

(b) Application layer.

Listing 25 (continued): Custom hardware bus interface
FSMD.

33

scribed as an FSMD model. Listing 25 shows the behavior
RTL code of the FSMD models for application and proto­
col layer of the HW bus interface. The model for the appli­
cation layer (Listing 25(b) is similar to theFSMD model of
the leaf behaviors model shown above. Each method of the
application layer is implemented as a FSMD by scheduling
operations into states and transitions. The protocol layer,
on the other hand, is a simple FSM driving and sampling
the output and input wires of the bus, respectively. The pro­
tocol FSM sits directly at the ports of the PEs and imple­
ments the bus protocol in terms of the PE's internal clock.

5.1.2 Programmable Processors

In contrast to custom hardware, the behavioral RTL model
of programmable processors is based on the execution of
assembly output generated by compiling the communica­
tion model PE behavior code. Therefore, the behavioral
RTL model for programmable components implements an
instruction set simulation (ISS) of the assembly code.

Assembly code is generated from the communication
model by transforming the behavior hierarchy into a cor­
responding C function call hierarchy and compiling the
resulting C program for the target processor. The C pro­
gram is then linked against a custom or standard operating
system kernel which implements dynamic scheduling, syn­
chronization, communication, and so on.

Bus drivers including interrupt handlers, etc. are gener­
ated from the application and protocol layers of the bus
adapters. In general, a programmable processor can be
connected to the system bus through its builtin bus inter­
face or via a set of general-purpose ports. In the former
case, the protocol layer is usually implemented in hard­
ware as part of the processor's microarchitecture. In those
cases, the instruction-set architecture of the processor will
provide special instructions for bus transfers and usually
each protocol layer method directly translates into a single
assembly instruction. In the latter case, the protocol layer
is implemented in assembly code as a sequence of I/O in­
structions.

In both cases, application layers are translated into as­
sembly routines that call the protocol layer routines. The
mapping of bus wires to processor ports will also determine
the implementation of synchronization in the application
layer. Depending on whether a synchronization input is
connected to an interrupt line or a general purpose input
port, an interrupt-driven or polling-based scheme is imple­
mented. In the former case, interrupt handlers that commu­
nicate with the application layer routines are generated. All
together, interrupt handlers and application/protocol layer
routines become the bus drivers of the operating system
kernel that is linked to the compiled C program in order to
get the final executable.

II ISS CIC++ interface
#include "iss .h"

II Instruction Set Simulator (ISS)
5 behavior DSP(out bit [15: 0] A,

10
{

inout bit [23: 0] D,
OSignal MCS,
OSignal nRD,
OSignal nWR,
!Signal intC

II DSP bus interface model

for DSP

PE 1 Protocol if (A, D, MCS, nRD, nWR) ;

15 void main (void)
{

20

II initialize ISS, load program
iss. startup();
iss. load("a. out");

II run simulation
for (; ;)
{

II drive ISS input
25 iss. intC = intC. val();

11 run DSP cycle
iss .exec();

30 II MOVFM instruction ?

35

if (iss . IR == MOVEMRD) {

}

II Simulate external bus read cycle
iss .DR= if. read (iss .AR);

else if (iss . IR == rvIOVElYLWR) {

}

II Simulate external bus write cycle
if. write (iss .AR, iss .DR);

else {
40 II Simulate DSP clock period

waitfor (DSP_CLOCK_PERIOD) ;

}
45 };

} }

Listing 26: DSP instruction set simulator (ISS) model.

Different levels of instruction set simulation of the exe­
cutable are possible. In a compiled instruction set simula­
tion, each assembly instruction is translated into a set of C
statements that perform updates of a simulated processor
state cycle by cycle [7]. This e code is then wrapped into
a behavior and plugged into the implementation model as
PE behavior for the processor.

On the other hand, for interpreted instruction set simu­
lation, the behavioral RTL model of the programmable PE
consists of a program that reads and interprets the instruc­
tion stream. Any instruction-set simulator (ISS) that sup­
ports a e-based API can be hooked into the Spece model.
As shown in Listing 26, the external ISS is wrapped into a
Spece behavior that calls the ISS routines via the ISS API
(line 2). The core of the processor behavior is a loop which
simulates one clock cycle per iteration. The exec() function

34

fetches and decodes instructions, performs the correspond­
ing operations in each clock cycle, and updates the simu­
lated processor state accordingly.

In both cases of compiled or interpreted simulation, the
simulation model of the processor drives and samples the
ports of the PE behavior based on the instruction stream ex­
ecuted. For each I/O instruction, the PE ports are updated
from the processor state and vice versa. For example, in
the model from Listing 26, the simulated intC input of the
processor is updated in each cycle by sampling the corre­
sponding input port of the PE behavior (line 25).

Any special bus interface hardware of the processor is
simulated through corresponding bus adapters. For exam­
ple, the model in Listing 26 instantiates the PEI Protocol
bus adapter to simulate the DSP's bus master interface.
For every MOVEM instruction encountered in the instruc­
tion stream, the corresponding method in the bus adapter
is called. The bus adapter simulates the driving and sam­
pling of bus wires in the implementation model as specified
by the timing diagrams of the processor hardware for that
I/O instruction. Note that this is equivalent to the protocol
layer in the bus adapters from the communication model
(see Section 4.2).

5.2 Structural RTL

A structural RTL view of the PEs in the implementation
model accurately reflects the microarchitecture internal to
the system PEs. As a result of the high-level synthesis
process, structural RTL explicitly models the allocation of
RTL components, the scheduling of register transfers into
clock cycles, and the binding of operations, variables and
assignments to functional units, register/memories and PE
busses. The result is an RTL netlist of sequential and com­
binatorial logic inside each PE. Structural RTL is the input
to traditional logic synthesis which in turn will derive a
gate-level netlist from the netlist of units inside each PE.

A structural RTL representation is usually used for cus­
tom hardware PEs which have to be synthesized further.
Since structural RTL represents the hardware microarchi­
tecture of PEs, at this level there is no difference between
models for custom hardware or programmable processors.
In both cases, structural RTL is a netlist of functional
units, busses, memories and registers. However, in case of
predesigned components (IPs, programmable off-the-shelf
processors, memories) the level of detail for further syn­
thesis of the hardware is not needed. A more abstract be­
havioral RTL model is sufficient for effective simulation.

Figure 19 and Listing 27 show the structural RTL view
of the custom hardware PE in the example design. The sys­
tem interface of the component remains unchanged from
the communication model or the behavioral RTL view.

Figure 19: Structural RTL model for custom hardware.

behavior HW(in bit [15: 0] A,
inout bit [23: O] D,
!Signal MCS,
!Signal nRD,

5 ISignal nWR,
OSignal ready

{

10

II Clock signal
event elk ;

II Status lines
bit[l5:0] status;
event _status ;

15 II Control lines
bit [117 : 0] c trl ;
event _ctr l ;

II Clock generator
20 ClkGen cg (elk) ;

11 Control
Control ctrl (elk,

status , _status,
25 ctrl, _ctrl);

II Datapath
Datapath dp (elk ,

A, D, MCS, nRD, nWR, ready,
30 ctrl , _ctrl,

status, _status);

II Parallel (structural) composition
void main (void)

35 {
par {

cg. main();
ctrl. main();
dp. main();

40 }
}

};

Listing 27: Structural RTL model for custom hardware.

35

behavior ClockGen (out event elk)
{

void main (void)
{

5 while (1)

10 }
};

{

}

waitfor (HW_CLOCK.PERIOD) ;
notify (elk) ;

Listing 28: Clock generator.

However, the component itself is now implemented as a
purely structural netlist of subcomponents. Subcompo­
nents are represented by subbehaviors. All subbehaviors
operate in parallel and are connected via busses and/or
wires. Each bus or set of wires is associated with an event
that signals a change of the values on the wires.

At the top level of the custom hardware, the PE is com­
prised of a clock generator ClkGen, a controller Control,
and a datapath Datapath. Controller and datapath are con­
nected by a set of control and status lines. Both are driven
by the PE's clock signal elk.

In general, subcomponents themselves can be further de­
composed hierarchically. At each level, however, the same
purely structural netlist of behaviors running concurrently
and being connected through wires is repeated in the struc­
tural RTL view. Therefore, if the hierarchy is flattened all
the leaf behaviors will operate in parallel and communicate
via wires and corresponding events.

Leaf behaviors of the structural RTL hierarchy model
registers and combinatorial logic between registers. Leaf
behaviors are reactive, i.e. they are continuously reacting
to events on their inputs and create events at their outputs
in turn. Structural RTL models hardware as a reactive sys­
tem with a set of non-terminating processes operating con­
currently [8].

5.2.1 Clock

Register transfers cycles are controlled by the common
clock event. The clock generator shown in Listing 28 gen­
erates the clock by issuing clock events according to the
PE's local clock frequency. In an endless loop, a clock
event is generated every clock period.

5.2.2 Controller

As shown in Listing 29, the main control unit is hierarchi­
cally decomposed into state register, next-state logic and
output logic. As previously described for the top level of
the PE, subcomponents operate concurrently and are con­
nected through wires and corresponding events.

behavior Control (in event elk,
in bit[15:0] status,
in event _status ,
out bit[117:0]

5 out event
{

bit [21: O] state, nextstate;
event _state ;

10 II State register
StateReg sr (elk, nextstate,

state, _state);

II Output logic
15 OutputLogic ol (state, _state,

ctr!, _ctr!);

II Next state logic

ctr I ,
_ctr I

NextStateLogic nsl (state , _state,
20 status , _status,

nextstate);

void main (void) {
par {

)

25 sr.main(); ol.main(); nsl.main();

}
};

}

Listing 29: Custom hardware controller.

The behavior modeling the state register is shown in
Listing 30. The state register continuously reacts to clock
events. In an endless loop, the state register is updated
with the new value at the input whenever a clock event is
received. The corresponding new value is assigned to the
current state output and an output event signaling a value
change is generated.

The output logic combinatorial block that generates the
control signals from the current state value is shown in
Listing 31. The output logic is a reactive, non-terminating
behavior that is sensitive to changes on the current state
value, i.e. the state register output. Whenever the state
value changes an evaluation cycle of the output logic is
triggered, control values are reevaluated and correspond­
ing control update events generated.

Finally, the next state logic of the controller, shown in
Listing 32, is organized similar to the output logic. It gen­
erates the next state value from the current state register
output and the status output of the datapath. Hence, the
non-terminating next-state logic is sensitive to changes of
either the state value or the status inputs, and an evaluation
cycle is triggered whenever a state or status update event is
received.

5.2.3 Datapath

The main datapath of the example design is shown in List­
ing 33. At the top level, the datapath is hierarchically com-

behavior StateReg (in event elk,
in bit [21: O] next,
out bit [21: 0] cur,
out event _cur) {

5 bit [21: 0] state;

void main (void) {
while (l) {

wait (elk) ;
10 state = next;

}
15 };

}

cur state;
notify (_cur) ;

Listing 30: State register.

behavior OutputLogic (in bit [21: O] state,
in event _state ,
out bit [117:0] ctrl,
out event _ctrl) {

5 void main (void) {
while (1) {

wait(_state); II sensitivity
switch (state) {

10 case Si :
ctr! = "000 ... lOb";
break;

case Sj: II send recv() start signal
.15 ctrl = "100 ... OOb";

break;

}
notify (_ctrl);

20 }
}

};

Listing 31: Output logic.

behavior NextStateLogic (in bit (21: O] state,
in event _state,
in bit [15 : 0] status ,
in event _status ,

5 out bit (21: 0] next) {

10

15

void main (void) {
while (1) {

wait(_state, _status); II sensitivity
switch (state) {

case Si :
next = Si+l;
if (! status [7]) next= Sj;
break;

case Sj : 11 wait for recv () done
if(status[l5]) next= Sj+l;
break;

20 }

36

}
};

}

Listing 32: Next state logic.

posed as a structural netlist of the different datapath com­
ponents connected through internal busses. The example
shown here is a typical datapath with RAM, ROM, register
file, functional units, and three busses. The datapath's sub­
components are then in turn modeled following standard
structural RTL design guidelines as outlined in the previ­
ous sections of this report. In general, sub-components are
register/storage units driven by the clock event, combina­
torial logic blocks sensitive to input changes or a hierarchi­
cally composition thereof.

The datapath contains a bus interface module IF. The
bus interface module is itself an FSMD (see Section 5.2.4)
that implements message-passing communication over the
PE bus. It connects to the PE's bus ports and communi­
cates with the main controller through parts of the control
and status vectors. In addition, the bus interface FSMD can
exchange data with the memory via the data bus. For this
purpose, the bus interface can directly control the mem­
ory via the ifctrl lines connected to the memory's control
inputs.

5.2.4 Bus Interface

The bus interface unit implements the protocol and appli­
cation layers of the bus communication. It drives the bus
wires and executes the correct protocol timing to transfer
data words over the bus.

Listing 34 shows the top level of the bus interface. The
bus interface is a separate FSMD that communicates with
the main state machine through a set of control wires and a
common internal data bus. Similar to the top level FSMD
for the custom hardware PE, the bus interface module is de­
composed into a controller and a datapath communicating
via control and status lines. Incoming start control signals
trigger execution of the bus interface state machine and de­
termine what kind of bus transfer to perform (i.e. message
send or message receive). Upon finishing the transfer, the
bus interface sends a done status signal to the main con­
troller. Data items are exchanged between the bus inter­
face and the main datapath through the data bus and a set
of memctrl lines that allow the bus interface FSMD to act
as a DMA controller for the PE 's memory.

The bus interface controller is shown in Listing 35. In
this example, the state register, output logic and next-state
logic are merged into one combined model. In each clock
cycle, as dictated by the sensitivity to the clock event, the
non-terminating behavior assigns new values to its outputs
and updates the internal state value depending on the cur­
rent state and the inputs.

The bus interface state machine implements the proto­
cols for sending and receiving messages over the bus wires
in one single state machine. The cross-product of the send
and receive state machines is optimized to minimize the

behavior Datapath (in event elk,
in bit [15: O] A,
in out bit [23: 0] D,
ISignal MCS,

5 ISignal nRD,
ISignal nWR,
OSignal ready ,
in bit[ll7:0] e trl '
in event _etrl,

10 out bit[l5:0] status,
out event _status

{
bit[l:O] ifctrl ;
event _ifetrl ;

15
bit[31:0] bus, bus 1 , bus2;
event _bus , _bus 1 , _bus2;

IF if (elk'
20 A, D, MCS, nRD, nWR, ready,

etrl[ll7:116], _etrl,

25

bus , _bus ,
ifetrl, _ifetrl,
status [15], _status);

ROM ram(elk, etrl [115: 94],
bus , _bus) ;

Mem mem (elk , e tr l [9 3 : 61] @ i fc tr l [1 : 0],
30 bus , _bus) ;

RF rf (elk, etrl [60: 30],
bus , _bus ,
busl, _busl,

35 bus2, _bus2) ;

40

45

ALU al u (et rl [29 : 15] ,
bus,
bus 1 ,
bus2,
status [14:8],

MPY mpy (e trl [14: 0],
bus,
bus 1,
bus2,
status [7:0],

void main (void) {
50 par {

if. main();
ram . main () ;
mem. main ();
rf. main();

55 alu . main();
mpy. main();

}
};

60

}

_etrl,
_bus ,
_bus 1 ,
_bus2,
_status);

_e trl ,
_bus,
_bus 1 ,
_bus2,
_status);

Listing 33: Custom hardware datapath.

37

)

behavior IF (in event elk,
in bit [15:0J A,
inout bit[23:0JD,
IS ignal MCS,

5 IS ignal nRD,
!Signal nWR,
OSignal ready ,
in bit [1 : 0 J s tart ,
in event _start ,

10 inout bit [31: OJ bus,
inout event _bus,
out bit [1: 0 J memctrl ,
out event _memctrl ,
out bit done,

15 out event _done)
{

20

II Control lines
bit [3: OJ ctr!;
event _ctr! ;

II Status lines
bit status;
event _status;

25
1
II Controller

! IFCtrl ctr! (elk,
MCS, nRD,
inp[l:O],
status ,

30 ctr! ,
memctrl ,
done,

nWR, ready,
_start,
_status,
_ctr I ,
_memctrl ,
_done) ;

I I Datapath (addr. & data reg.)
35

40

IFDP dp (elk,
A, D,
ctr! ,
bus,
status

_ctr I ,
_bus ,
_status);

II Parallel composition
void main (void)
{

par {
45 ctr!. main();

dp. main();

}
};

50

}

Listing 34: Bus interface hardware unit.

behavior IFCtrl (in event elk,
IS ignal MCS, !Signal nRD,
IS ignal nWR, OSignal ready ,
in bit [l:OJ start,

5 in event _start,

10

{

in bit status ,
in
out
out
out
out
out
out

event _status,
bit [3: OJ ctrl,
event _ctrl ,
bit [1: OJ memctrl,
event _memctrl ,
bit done,
event _done)

15 bit [3: OJ state = O;

20

25

void main (void) {
while (1) {

wait(elk); II sensitivity

done = 0; II defaults
state++;
ctrl = "OOOOb";
memctrl = "OOb";

switch (state) {
case 0: II wait for start

if(start[OJ) state= 1;
break;

30 case 1:
ready. assign (1) ; II assert ready
break;

case 2: II wait for MCS
if (MCS. val() != 1) state = 2;

35 break;
case 3:

ctr! [OJ= I; II sample A
break;

case 4: II address match?
40 if (! status [OJ state = 2;

if(start[lJ) state=9;
break;

case 5: II check nWR
if (nWR. val() != 0) state = 2;

45 break;
case 6:

ctrl [lJ = 1; II sample D
break;

case 7: II wait for MCS
50 if (MCS. val()) state = 7;

break;
case 8:

memctrl [OJ = 1; II data -> mem
ctr! [3:2J = "llb"; II dee, check count

55 state = 15;

60

}

if (status [I J) state = 2;
break;

case 15:
ready. assign (0) ;
done = 1;
state = 0;
break;

II deassert ready
II transfer done
II back to start

65 notify (_done, _ctr! , _memctrl);

};

38

}
}

Listing 35: Bus interface controller.

state space. The common state machine is triggered by an
external start signal. After synchronization and address
decoding, the transitions branch into the send or receive
protocol depending on the corresponding control inputs.
Both branches are joined at the end of the bus cycle and
an external done signal is asserted.

The accompanying datapath (not shown) contains regis­
ters that connect to the external address and data busses.
Driven by the controller output, the address and data reg­
isters are used to drive and sample the external busses.
In addition, the data register connects to the PE's internal
data bus in order to exchange data with the local memory.
Finally, the bus interface datapath includes counters and
comparators for loop control and address decoding.

5.3 Summary

At the top level, the implementation model is equivalent to
the communication model (see Section 4.7). The system
is a set of concurrent, non-terminating PEs communicat­
ing via busses and wires. Internally, on the other hand,
PEs represented by the PE behaviors, are further refined

. and turned into a model of the PE's microarchitectures.
The minimal requirement for the PEs in the communica­
tion model is that they provide a cycle-accurate description
of events on their ports through a behavioral microarchitec­
ture model. Alternatively, more detailed PE models can be
used in the communication model, e.g completely struc­
tural RTL descriptions.

PE behaviors are interchangeable between communi­
cation and implementation model. This allows mixed­
level simulations in which a cycle-accurate PE behavior is
plugged into an otherwise bus-functional simulation of the
design and vice versa. Therefore, different parts of the sys­
tem can be simulation at different levels of detail, allowing
to quickly validate isolated PE's, for example.

In summary, the implementation model is a cycle­
accurate model of the system implementation of both, the
communication between the PEs and the microarchitecture
inside the PEs. In contrast to the bus-functional commu­
nication model, the computation inside the PEs is refined
down to the register-transfer level. As a result of high-level
synthesis of custom hardware and compilation of software
for programmable components, the implementation model
is the basis for further refinement down to the gate level
through logic synthesis or instantiation of hard IP cores.

6 Summary and Conclusions

In this report, we presented and defined the four models
of system design which are part of a system-level design
methodology from specification down to implementation.

39

The models vertically cover different levels of abstraction,
gradually increasing the level of implementation detail as
the design flow progresses from top to bottom.

The division of the design flow into four models sup­
ports rapid design space exploration by focusing on criti­
cal decisions at early stages and providing quick feedback.
Unnecessary details are abstracted away at higher levels
while important aspects are immediately visible. For ex­
ample, for validation through simulation high-level models
achieve fast simulation speeds while still providing feed­
back about the crucial aspects at each stage of the de­
sign process. Furthermore, model refinement requires only
minimal modifications, allowing to leave large parts of the
design untouched when exploring different implementa­
tions or moving between levels.

Having well-defined, formal models at each step of the
design process is the basis for automated synthesis and
refinement between the models. With the help of tools,
lower-level models can be automatically generated from
the model at the next higher level of abstraction based on
a corresponding set of refinement rules and transforma­
tions. In addition, formal verification can be applied to
check properties of the models or to verify equivalence of
models at different levels. Therefore, the definition of the
models enables fast system-level design exploration paired
with a synthesis-based design flow.

References

[l] D. D. Gajski, R. Kuhn. "Guest editors introduction -
New VLSI tools." IEEE Computer, pp. 11-14, 1983.

[2] D. D. Gajski et al. SpecC: Specification wnguage
and Design Methodology. Kluwer Academic Publish­
ers, 2000.

[3] T. H. Carmen, C. E. Leiserson, R. L. Rivest. Intro­
duction to Algorithms. McGraw-Hill, 1992.

[4] Motorola, Inc., Semiconductor Products Sector, DSP
Division. DSP5660016-bit Digital Signal Processor
Family Manual, DSP56600FMIAD, 1996.

[5] A. Gerstlauer, D. D. Gajski. Communication Soft­
ware Code Generation. Technical Report ICS-TR-
00-46, University of California, Irvine, August 2000.

[6] H. Lehr, D. D. Gajski. Modeling Custom Hardware in
VHDL. Technical Report ICS-TR-99-29, University
of California, Irvine, July 1999.

[7] J. Zhu, D. D. Gajski. "A Retargatable, Ultra-fast In­
struction Set Simulator." In Proceedings Design, Au­
tomation and Test in Europe, 1999.

posed as a structural netlist of the different datapath com­
ponents connected through internal busses. The example
shown here is a typical datapath with RAM, ROM, register
file, functional units, and three busses. The datapath's sub­
components are then in turn modeled following standard
structural RTL design guidelines as outlined in the previ­
ous sections of this report. In general, sub-components are
register/storage units driven by the clock event, combina­
torial logic blocks sensitive to input changes or a hierarchi­
cally composition thereof.

The datapath contains a bus interface module IF. The
bus interface module is itself an FSMD (see Section 5.2.4)
that implements message-passing communication over the
PE bus. It connects to the PE's bus ports and communi­
cates with the main controller through parts of the control
and status vectors. In addition, the bus interface FSMD can
exchange data with the memory via the data bus. For this
purpose, the bus interface can directly control the mem­
ory via the ifctrl lines connected to the memory's control
inputs.

5.2.4 Bus Interface

The bus interface unit implements the protocol and appli­
cation layers of the bus communication. It drives the bus
wires and executes the correct protocol timing to transfer
data words over the bus.

Listing 34 shows the top level of the bus interface. The
bus interface is a separate FSMD that communicates with
the main state machine through a set of control wires and a
common internal data bus. Similar to the top level FSMD
for the custom hardware PE, the bus interface module is de­
composed into a controller and a datapath communicating
via control and status lines. Incoming start control signals
trigger execution of the bus interface state machine and de­
termine what kind of bus transfer to perform (i.e. message
send or message receive). Upon finishing the transfer, the
bus interface sends a done status signal to the main con­
troller. Data items are exchanged between the bus inter­
face and the main datapath through the data bus and a set
of memctrl lines that allow the bus interface FSMD to act
as a DMA controller for the PE's memory.

The bus interface controller is shown in Listing 35. In
this example, the state register, output logic and next-state
logic are merged into one combined model. In each clock
cycle, as dictated by the sensitivity to the clock event, the
non-terminating behavior assigns new values to its outputs
and updates the internal state value depending on the cur­
rent state and the inputs.

The bus interface state machine implements the proto­
cols for sending and receiving messages over the bus wires
in one single state machine. The cross-product of the send
and receive state machines is optimized to minimize the

5

10

15

behavior Datapath (in event

{
bit [1 : 0] if ct rl ;
event _ifctrl ;

in bit[l5:0]
in out bit [23: 0]
!Signal
IS i gnal
!Signal
OSignal
in bit [117: 0]
in event
out bit[l5:0]
out event

bit [31 : 0] bus , bus 1 , bus2;
event _bus , _bus l , _bus2 ;

IF if (elk ,

elk,
A,
D,
MCS,
nRD,
nWR,
ready ,
c trl '

_c trl ,
status ,

_status

20 A, D, MCS, nRD, nWR, ready,
ctrl[l17:116], _ctrl,

25

bus , _bus ,
ifctrl, _ifctrl,
status [15], _status);

ROM rom(elk, ctrl [115: 94],
bus , _bus) ;

Mem mem (c I k , c tr l [9 3 : 61] @ i f c tr l [1 : 0],
30 bus , _bus) ;

RF rf (elk, ctr! [60: 30],
bus , _bus ,
bus 1 , _bus 1 ,

35 bus2, _bus2) ;

40

45

ALU alu (ctrl [29: 15],
bus,
bus 1 ,
bus2,
status [14:8],

MPY mpy (c tr l [14 : 0] ,
bus,
bus l,
bus2,
status [7:0],

void main (void) {
50 par {

if. main();
rom. main () ;
mem. main ();
rf. main();

55 alu . main();
mpy. main();

}
};

60

}

_ctr I ,
_bus,
_bus 1 ,
_bus2,
_status);

_c trl ,
_bus,
_bus 1 ,
_bus2,
_status);

Listing 33: Custom hardware datapath.

37

)

5

10

15

20

behavior IF (in event elk,

{

in bit [15:0] A,
in out bit [23: O] D,
!Signal MCS,
!Signal nRD,
IS ignal nWR,
OSignal ready ,
in
in
in out
in out
out
out
out
out

II Control lines
bit [3: 0] etrl;
event _e trl ;

II Status lines
bit status ;
event _status;

bit [1: 0] start,
event _start,
bit [31 : 0] bus ,
event _bus ,
bit [1: 0] memetrl ,
event _memetrl ,
bit done,
event _done)

25
1
II Controller

! IFCtrl e trl (elk,
MCS, nRD,
inp [1: 0],
status ,

30 etrl ,
memetrl ,
done,

nWR, ready,
_start,
_status,
_e trl ,
_memetrl,
_done);

II Datapath (addr. & dqta reg.)
35 IFDP dp (elk,

A, D,
e tr l , _e tr l ,
bus, _bus,
status , _status

40
II Parallel composition
void main (void)
{

par {
45 etrl . main();

dp. main();

}
} ;

50

}

) ;

Listing 34: Bus interface hardware unit.

5

10

15

20

25

30

35

40

45

50

55

60

behavior IFCtrl (in event elk,

{

!Signal MCS, !Signal
!Signal nWR, OSignal
in bit [1:0] start,
in event _start,
in bit status ,
in
out
out
out
out
out
out

event _status,
bit [3: O] etrl,
event _etrl ,
bit [1 : 0] memetrl ,
event _memetrl ,
bit done,
event _done)

bit [3:0] state = O;

void main (void) {
while (1) {

wait(elk); II sensitivity

done = 0; II defaults
state++;
etrl = "OOOOb";
memetrl = "OOb" ;

switch (state) {

nRD,
ready ,

case 0: II wait for start

}

if(start [0]) state= 1;
break;

case 1 :
ready. assign (1); II assert ready
break;

case 2: II wait for MCS
if (MCS. val() != 1) state 2;
break;

case 3:
etrl [O] = 1;
break;

case 4:
if (! status [O]
if (start [1])
break;

II sample A

II address match?
state = 2;
state = 9;

case 5: II check nWR
if (n WR. v a I () ! = 0) s tat e = 2 ;
break;

case 6:
etrl [1] = 1;
break;

case 7:
if (MCS. val ()
break;

case 8:

II sample D

II wait f9r MCS
) state = 7;

memetrl [O] = 1; II data -> mem
etrl [3:2] = "llb"; II dee, check count
state = 15;
if (status [1]) state = 2;
break;

case 15:
ready. assign (0) ;
done = 1;
state = 0;
break;

II deassert ready
II transfer done
II back to start

65 notify (_done, _e trl , _memetrl) ;

38

}
};

}

Listing 35: Bus interface controller.

state space. The common state machine is triggered by an
external start signal. After synchronization and address
decoding, the transitions branch into the send or receive
protocol depending on the corresponding control inputs.
Both branches are joined at the end of the bus cycle and
an external done signal is asserted.

The accompanying datapath (not shown) contains regis­
ters that connect to the external address and data busses.
Driven by the controller output, the address and data reg­
isters are used to drive and sample the external busses.
In addition, the data register connects to the PE's internal
data bus in order to exchange data with the local memory.
Finally, the bus interface datapath includes counters and
comparators for loop control and address decoding.

5.3 Summary

At the top level, the implementation model is equivalent to
the communication model (see Section 4.7). The system
is a set of concurrent, non-terminating PEs communicat­
ing via busses and wires. Internally, on the other hand,
PEs represented by the PE behaviors, are further refined

. and turned into a model of the PE's microarchitectures.
The minimal requirement for the PEs in the communica­
tion model is that they provide a cycle-accurate description
of events on their ports through a behavioral microarchitec­
ture model. Alternatively, more detailed PE models can be
used in the communication model, e.g completely struc­
tural RTL descriptions.

PE behaviors are interchangeable between communi­
cation and implementation model. This allows mixed­
level simulations in which a cycle-accurate PE behavior is
plugged into an otherwise bus-functional simulation of the
design and vice versa. Therefore, different parts of the sys­
tem can be simulation at different levels of detail, allowing
to quickly validate isolated PE's, for example.

In summary, the implementation model· is a cycl~­

accurate model of the system implementation of both, the
communication between the PEs and the microarchitecture
inside the PEs. In contrast to the bus-functional commu­
nication model, the computation inside the PEs is refined
down to the register-transfer level. As a result of high-level
synthesis of custom hardware and compilation of software
for programmable components, the implementation model
is the basis for further refinement down to the gate level
through logic synthesis or instantiation of hard IP cores.

6 Summary and Conclusions

In this report, we presented and defined the four models
of system design which are part of a system-level design
methodology from specification down to implementation.

39

The models vertically cover different levels of abstraction,
gradually increasing the level of implementation detail as
the design flow progresses from top to bottom. .

The division of the design flow into four models sup­
ports rapid design space exploration by focusing on criti­
cal decisions at early stages and providing quick feedback.
Unnecessary details are abstracted away at higher levels
while important aspects are immediately visible. For ex­
ample, for validation through simulation high-level models
achieve fast simulation speeds while still providing feed­
back about the crucial aspects at each stage of the de­
sign process. Furthermore, model refinement requires only
minimal modifications, allowing to leave large parts of the
design untouched when exploring different implementa­
tions or moving between levels.

Having well-defined, formal models at each step of the
design process is the basis for automated synthesis and

·refinement between 'the models. With the help of tools,
lower-level models can be automatically generated from
the model at the next higher level of abstraction based on
a corresponding set of refinement rules and transforma­
tions. In addition, formal verification can be applied to
check properties of the models or to verify equivalence of
models at different levels. Therefore, the definition of the
models enables fast system-level design exploration paired
with a synthesis-based design flow.

References

[1] D. D. Gajski, R. Kuhn. "Guest editors introduction -
New VLSI tools." IEEE Computer, pp. 11-14, 1983.

[2] D. D. Gajski et al. SpecC: Specification Language
and Design Methodology. Kluwer Academic Publish­
ers, 2000.

[3] T. H. Cormen, C. E. Leiserson, R. L. Rivest. Intro­
duction to Algorithms. McGraw-Hill, 1992.

[4] Motorola, Inc., Semiconductor Products Sector, DSP
Division. DSP5660016-bit Digital Signal Processor
Family Manual, DSP56600FMIAD, 1996.

[5] A. Gerstlauer, D. D. Gajski. Communication Soft­
ware Code Generation. Technical Report ICS-TR-
00-46, University of California, Irvine, August 2000.

[6] H. Lehr, D. D. Gajski. Modeling Custom Hardware in
VHDL. Technical Report ICS-TR-99-29, University
of California, Irvine, July 1999.

[7] J. Zhu, D. D. Gajski. "A Retargatable, Ultra-fast In­
struction Set Simulator." In Proceedings Design, Au­
tomation and Test in Europe, 1999.

[8] G. Berry, G. Gonthier, "The Esterel Synchronous
Programming Language: Design, Semantics, Im­
plementation." Science of Computer Programming,
vol. 19,no.2, 1992.

40

	20141104123815246_0001
	20141104123815246_0002
	20141104123815246_0003
	20141104123815246_0004
	20141104123815246_0005
	20141104123815246_0006
	20141104123815246_0007
	20141104123815246_0008
	20141104123815246_0009
	20141104123815246_0010
	20141104123815246_0011
	20141104123815246_0012
	20141104123815246_0013
	20141104123815246_0014
	20141104123815246_0015
	20141104123815246_0016
	20141104123815246_0017
	20141104123815246_0018
	20141104123815246_0019
	20141104123815246_0020
	20141104123815246_0021
	20141104123815246_0022
	20141104123815246_0023
	20141104123815246_0024
	20141104123815246_0025
	20141104123815246_0026
	20141104123815246_0027
	20141104123815246_0028
	20141104123815246_0029
	20141104123815246_0030
	20141104123815246_0031
	20141104123815246_0032
	20141104123815246_0033
	20141104123815246_0034
	20141104123815246_0035
	20141104123815246_0036
	20141104123815246_0037
	20141104123815246_0038
	20141104123815246_0039
	20141104123815246_0040
	20141104123815246_0041
	20141104123815246_0042
	20141104123815246_0043
	20141104123815246_0044
	20141104123815246_0045
	20141104123815246_0046
	20141104123815246_0047
	20141104123815246_0048
	20141104123815246_0049

