
UC Irvine
ICS Technical Reports

Title
Estimation of schedules for control/datapath pipelining

Permalink
https://escholarship.org/uc/item/03s8s6gx

Authors
Fan, Nong
Gajski, Daniel D.

Publication Date
1996-08-22
 
Peer reviewed

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/03s8s6gx
https://escholarship.org
http://www.cdlib.org/


Notice: This Material
may be protected
by Copyright Law
(Title 17U.S.C.)

Estimation of Schedules

for Control/Datapath Pipelining

Nong Fanf
Daniel D. Gajskij:

Technical Report #96-36
August 22, 1996

fDepartment of Electrical and Computer Engineering
JDepartment of Information and Computer Science

University of California, Irvine
Irvine, CA 92697

(714) 824-8059

nfaji@ics.uci.edu

gajski@ics.uci.edu

Abstract

Sckeduling estimation in system level design plays an important role in estimating
design metrics of a hardware implementation. Moreover, accurate estimates based on
a realistic design model are usually expected. In this report, we present techniques for
scheduling estimations based on a control/datapath pipelining architecture. Schedules
are computed under both resource and architectural constraints. The resource alloca
tion includes not only functional units but also storage and communication units. Our
techniques enable designers to obtain fast and accurate estimates of scheduling.

(SL

c3

no.



Contents

1 Introduction

2 Previous Work

2.1 Operator-use method

2.2 Scheduling method .

2.3 Limitations of previous scheduling algorithms

3 Design Model

4 Problem Definition

5 Scheduling Algorithms

5.1 DFG scheduler ,

5.2 CDFG scheduler

6 Experimental Results

7 Conclusion and Future Work

8 Acknowledgments

9 References



List of Figures

1 Comparison of operator-use and scheduling methods 2

2 The general FSMD model 4

3 Example of binding checking 7

4 General DFG scheduling algorithm 8

5 A sample specification and its CDFG representation 10

6 State action tables for different architecture types 11

7 CDFG scheduling algorithm 12

8 Generated schedules for different architecture types: (a) non-pipelined control, (b)

pipelined control with status register, (c) pipelined control with status and control

registers 12

9 Number of control steps needed to execute each CDFG node 13

10 Resource allocation with delays 13

11 Number of states for different benchmarks for manual design, operator-use and our

algorithms 13



1 Introduction

In system design, a system's functionality is usu

ally divided among system components, sucli that

constraints on various design metrics, such as

performance, area and power dissipation, are sat

isfied. In order to determine if these constraints

have actually been satisfied, we must be able

to obtain metric estimates as rapidly as possi

ble. However, fast estimation of design metrics

cannot be achieved by synthesizing a complete

implementation and then measuring the design

quality metrics. Therefore, estimation of design

quality at the system level is needed for at least

two reasons. First, it enables the system de

signer to explore design alternatives by provid

ing quick feedback for any design decision. Sec

ond, it enables the designer to evaluate the de

sign quality by comparing the estimates of any

design metric with the constraints specified for

that metric.

Among the quality metrics commonly used to

characterize a design, cost and performance of

hardware and software implementations are the

most important ones because many high-level

decisions are based entirely on these two metrics.

Gong et al. [5] proposed methods to estimate

program size, data memory size and execution

time of a software implementation. In this re

port, we will concentrate on scheduling estima

tion of a hardware implementation because of

its important role in estimating hardware qual

ity metrics. By estimating which operations are

performed within each control step, it is easy

for us to estimate metrics, such as area, execu

tion time and power dissipation. Particularly,

in order to obtain accurate estimates, schedule

is computed here based on different target ar

chitecture types which may have pipelined or

non-pipelined datapath with pipelined or non-

pipelined control path. In addition to estimat

ing a specification containing straight line codes,

methods of dealing with conditional and loop

constructs are also proposed. Since real func

tional units may have different propagation de

lays, different number of pipeline stages, and

perform several type of operations, the datap

ath must allow for operation chaining, multicycle

and pipelined operations. A given behavioral de

scription is scheduled under resource constraints,

where the resource includes not only functional

units, but also read/write ports of storage units

and communication buses.

The rest of the report is organized as follows.

In the next section, we will review previous re

search in this area. Our design model will be

explained in section 3 followed by two schedul

ing algorithms based on this model. Section 6

presents some experimental results. Finally, sec

tion 7 concludes the report and provides future

work.

2 Previous Work

Several previous papers [4] have addressed the

issue of estimating the number of control steps

needed for a behavior's execution at the system

level under resource constraints. They can be

classified into two categories, i.e, operator-use

method and scheduling method.



2.1 Operator-use method

The operator-use method [4] divides all state

ments in a behavior into a set of basic blocks

in such a way that all statements in a basic

block can execute concurrently. Let num{ti) and

clocks{ti) represent the number and delay (in

clock cycles) of functional units available to im

plement operations of type ti. Then, if there

are occur{ti) occurrences of an operation type

ti in any basic block, then at least x

clocks{ti) control steps are needed to execute op

erations of type ti. The number of control steps

needed for any basic block is equal to the maxi

mum number of control steps needed to perform

operations of any type in the basic block.

The operator-use method is illustrated with

the example shown in Figure 1(a). Let us assume

that two adders, each with delay of one clock

cycle, are available in the resource allocation.

Because there is a read-after-write dependency

between statement (1) and (2), they can not be

executed within the same control step. Thus the

first basic block contains one statement. State

ments (2) to (4) belong to the second basic block

because no dependencies exist among them and

they can be executed concurrently if enough re

sources are available. According to the operator-

use method, three control steps are needed to

execute the behavior as shown in Figure 1(b).

Since the operator-use method operates at a

statement-level granularity and ignores the de

pendencies betw^n the operations within a state

ment, the operator-use method can provide fairly

rapid estimates of the number of control steps

required by a behavior.

Example;

<i) x:«a+b;-
P) y:ax + c;-
P) z := a c;

(4> w :s b c;

Operator-use method:

x:=a + b:

y :s X + c;

z + c:_
w :a b + c;

Scheduling method:

X :s a b;
z := a + c;

y :s X + c;
w := b + c;

Figure 1: Comparison of operator-use and scheduling
methods

2.2 Scheduling method

A scheduling technique may be applied to the

behavior in order to determine the number of

control steps as well as the scheduling of opera

tions. Given resource constraints, the operations

in the behavior are scheduled with a goal of min

imizing the total number of control steps. One of

the most popular algorithms for scheduling oper

ations under resource constraints is list schedul

ing. Compared with other scheduling techniques

[3], list scheduling is more appropriate for the

purpose of design space exploration at system

level because of its simplicity and efficiency.

The list scheduling algorithm maintains a pri

ority list which contains a set of ready operations

that have all their predecessors already sched

uled. At each control step, the algorithm tries

to schedule the operations with the highest pri

ority under the resource constraints. Scheduling

those operations makes other operations ready

and they are inserted into the priority list. The

process repeats until all operations in the given

behavior have been scheduled. Applying this al

gorithm to the example in Figure 1(a), two con

trol steps are needed as shown in Figure 1(c).



The operation in statement (3) can be sched

uled in step one because it is ready at the first

step. For this example, the minimum number of

control steps is two.

While the scheduling method allows the de

signer to obtain more accurate estimates of schedul

ing, it is computationally more expensive than

the operator-use method. The complexities of

the two methods are O(n^) and 0(n), respec

tively, where n is the number of operations in

the behavior. However, because the schedule is

an important issue in estimating hardware qual

ity metrics, an accurate estimate of scheduling

is usually expected.

2.3 Limitations of previous scheduling
algorithms

Without considering realistic design issues, even

scheduling methods can not produce accurate re

sults. To the best of our knowledge, no schedul

ing algorithm has been published which takes all

the following realistic issues into consideration at

the same time:

• In addition to straight line code, behav

ioral descriptions usually contain both con

ditional and loop constructs.

• Functional units may have varying delays.

• Operations can be chained within a single

control step.

• Operations can taJce multiple clock cycles

to complete its execution.

• Functional units can be pipelined.

• One functional unit can perform several dif

ferent types of operations.

• One operation can be performed in several

different functional units with different de-

• Resource allocation includes not only func

tional units, but also storage units and com

munication units.

By considering all the above issues at the

same time, our algorithms provide a more re

alistic scheduling estimation.

3 Design Model

Before presenting the algorithms, we will show

the underlying design models used for our schedul

ing estimation.

Given the specification of a system for which

estimates are to be computed for a hardware

implementation, the corresponding design is as

sumed to be implemented as an finite state ma

chine with a datapath (FSMD) [2], which con

sists of a datapath and a control unit, as shown

in Figure 2. The datapath, consisting of func

tional units, storage units and communication

units, is used to perform computations and data

transfers. The control unit contains a state regis

ter and two combinatorial blocks computing the

next-state and control signals.

This architecture may be defined in terms of

a set of functional units, storage units and com

munication units as follows:

1. Each type of functional units is defined as



state reg

Input Buses

^ ^
^"aRW I b PR I > ARR

"roi ^
next state

logic
Output Buses

Control Unit Datapath

Figure 2: The general FSMD model

a triple, /,• = in which U is the

number of available functional units of type

fi, di is the propagation delay of and

Oi = {oti,Ot2^ *••» %•} the set of opera

tions fi can perform.

2. Each type of storage units is defined as a

quintuple, 5,- = (t,-, d,-, r^, u;^, rtn,), in which

ti is the number of storage units of type

Si, di is the access delay of s,-, and ri, Wi

and rwi are the number of read ports, num

ber of write ports and number of read/write

ports of Si, respectively.

3. Communication units are defined by the

number of input buses, ibus, and number

of output buses, obus. Multiplexers are

not specified expBcitly. A multiplexer is

inserted in front of a port if the port has

more than one sources connected to it.

Each type of functional units can perform dif-

ferent types of operations and each type of op

erations can be performed on a different type of

functional units. For storage units, currently we

only support one register file and one memory

module in our architecture with an access delay

of one clock cycle for the register file and an ar

bitrary delay for the memory. Memory read op

erations are carried out by first setting the read

address register, and memory write operations

are performed by first setting the write address

and data registers. Then, in the next cycle, data

can be read from memory or written to it. The

input buses are used to connect the read ports of

the register file with the input ports of functioned

units or the write ports of memory module, and

the output buses are used to connect the out

put ports of functional units or the read ports

of memory module with the write ports of the

register file.

According to our design model, the execu-



tion of a computational operation needs two read

ports and one write port of register file to read

operands and write results and two input buses

and one output bus to move operands from and

result back to register file. Memory read needs

one read port of the register file to get the ad

dress and one read port of the memory to read

data from it. One input bus is needed to set the

read address register. Memory write needs two

read ports of the register file to get the data and

the address. Thus two input buses are needed.

If the specified clock period is long and unit

delays are short, our design model allows func

tional unit chaining, that is, it performs two or

more operations in a single clock cycle. On the

other hand, if the unit delay for a functional unit

is long compared to the clock cycle, our model

allows both multicycle and pipelined functional

units. Designers can select one of them by spec

ifying a non-pipelined or pipelined datapath. If

a pipelined datapath is specified, the number of

pipeline stages of a functional unit is assumed to

be the latency of the unit in terms of the number

of clock cycles.

The longest register to register delay, which

starts with the state register, through the con

trol logic, the register file, components in the

datapath and the next state logic returning the

state register, determines the length of the clock

cycle in our design model. In order to reduce the

longest delay and make the clock run faster, the

control path may also be pipelined [11] by insert

ing a status and/or a control register between

control unit and datapath. Therefore, totally

six different architecture types are supported by

this model:

1. non-pipelined control path and non-pipelined

datapath,

2. pipelined control path with status register

and non-pipelined datapath,

3. pipelined control path with status and con

trol register and non-pipelined datapath,

4. non-pipelined control path and pipelined

datapath,

5. pipelined control path with status register

and pipelined datapath, and

6. pipelined control pa,th with status and con

trol register and pipelined datapath.

The architecture type is specified as the ar

chitectural constraint in the design model.

4 Problem Definition

Our problem can be defined as follows:

Given is the following:

1. clock period, elk,

2. a behavioral specification in VHDL or Spec-

Charts,

3. architectural constraint T, and

4. resource allocation which includes:

• a set of functional units, F = {/i, /2,

•• ' ?/n }i



• a register file, Si = {l,clk,ri,wi,rwi),

and a memory module, 52 = (lid2, ?'2,

W2, rw2), and

• number of input buses ibus and num

ber of output buses obus.

The goal is to find the number of control steps

needed to execute the specification under the

specified architectural and resource constraints.

This problem will be solved in two steps. First

we will transform the specification into a CDFG

internal representation. Then we will schedule

the CDFG along each mutually exclusive path.

The algorithm for transforming a behavioral spec

ification into a CDFG is given in [7]. In this

report, we will concentrate on the algorithms

for scheduling the CDFG based on our design

model. The number of control steps will be found

by scheduling the specification using the algo

rithms.

5 Scheduling Algorithms

Our CDFG scheduling algorithm consists of a

DFG scheduler and a CDFG scheduler. The

DFG scheduler is used to schedule operations in

a basic block, while the CDFG scheduler is used

to schedule operations across basic blocks.

5.1 DFG scheduler

A data-flow graph (DFG) captures operational

activity described by the VHDL assignment state

ments. By compiling the sequentially arranged

assignment statements into a DFG, we caji make

the hidden pajallelism more explicit. Our DFG

scheduler assigns operations in the DFG into

separate control steps with a goal of minimiz

ing the total number of control steps. It is based

on the list scheduling algorithm because of its

simplicity and efliciency of scheduling operations

under resource constraints. The main feature of

the algorithm is that the delay of each functional

unit does not need to be the same, each func

tional unit may perform more than one type of

operations, each type of operations can be per

formed by different types of functional units with

different delays.

To make the explanation of the algorithms

easy, we assume that F is arranged in the as

cending order of di, i.e., di < dj, if i < j.

Let O = {oi,02,- • be the set of all

types of operations that can be performed by

F, then we have

O = U O2 U - • •U On

Let d{oi) be the minimum delay among all

types of functional units which can perform op

eration Oi, i.e.,

d{oi) —̂mn {dj\oi € Oj]

The total number of functional units, f(o,),

which can perform operation type o,-, is defined

as:
n

t{0i) =
i=i

where

= iioi£Oj
^ To otherwise

Our DFG scheduler inserts ready operations,

which have all their predecessors scheduled, into



a priority list with a three level key. The first

level is the operation's mobility which is calcu

lated as the difference between the latest and the

earliest start time of the operation. The smaller

the difference, the higher the priority because a

smaller value of mobility indicates a higher ur

gency for scheduling an operation. If two oper

ations have the same mobility values, the sec

ond level key is used such that the one with a

smaller t(ot) is given a higher priority because

the scheduler will run out of alternative func

tional units sooner. In case two operations have

the same values for the first two level keys, the

third level key is used which is the number of im

mediate successor operations: an operation with

more immediate successors is scheduled earlier

because it makes more of these operations ready.

At each control step, the DFG scheduler al

ways tries to use the fastest functional unit to

perform the ready operations. If the fastest func

tional unit is not available, a decision should be

made on whether to use slower ones. Because

the functional units can be pipelined or non-

pipelined, which is specified as the architectural

constraint T, different decisions will be made.

In case the fastest functional unit has already

been assigned to other operations, whether or

not to use a slower functional unit is determined

as follows. Let us consider non-pipelined func

tional units first. As shown in Figure 3(a), sup

pose that at current control step 7 there are three

additions x, y and z are ready to schedule with

their priorities from high to low and there are

two adders available in F with delay of 2 and 5

clock cycles, respectively. If the three additions

are executed only with the faster adder, it wiU

take six clock cycles to finish them. However, if

we use the fast adder to perform x and the slower

adder to perform z at step 7, then five cycles are

needed to finish them. In case of pipelined func

tional units as shown in Figure 3(b), four cycles

are needed if all of them are executed using the

faster adder while five cycles are needed if z is

executed with the slower one at step 7.

(a) non-pipelined functonal units (b) p^lined functional units

Figure 3: Example of binding checking

In general, the conditions under which the op

eration a: should be assigned to a slower func

tional unit with delay dj, di > d{Type{x))^ such

that the operation can be finished in the earli

est possible state are given as the following two

rules:

Rule 1 For a non-pipelined functional unit fi,

the conditions are

di < Mobility(x)-\-d{Type{x)) or

»>L^J +L^J +--+L^J.
Rule 2 For a pipelined functional unit fi, the

conditions are

di < Mobility(x) -{- d{Type{x)) or

u; > {di - d\) + {di - 4) + .. .-H (d,- - <).



In the above rules, d{Type{x)) is the delay of

the fastest functional unit able to perform op

eration X, and w is the number of operations

which have higher priority than x and ready to

be scheduled in the current control step but are

not scheduled because they do not satisfy either

condition, like operation y in Figure 3 at step

7. dj's, 1 < i < i, are the delays of those func

tional units which have smaller delays than /,•

and have already been assigned to execute other

operations at the current step.

Satisfying the first part of the condition means

using a slower unit to execute x will not delay

the worst case completion time of x, while satis

fying the second part means that it is better to

use the slower one because there are too many

operations waiting for the faster units.

Let us assume the mobility values for oper

ations X, y and z are 0, 1 and 2, respectively.

Figure 3(a) shows the case of non-pipelined func

tional units. At step 7, operation x is considered

for scheduling first because it has the highest pri

ority. The fastest adder with delay two in the

allocation is assigned to x. The delay of the sec

ond fastest adder for y is 5 and no operations

are waiting for the first adder. The conditions

in Rule 1 becomes 5 < 1 -H 2 or 0 > [(5 —2)/2j.

Because neither of them are satisfied, y will not

be scheduled to step 7 and it will wait for a

faster adder than the current one. Then w be

comes 1. For z, the conditions are 5 < 2 H- 2

or 1 > [(5 —2)/2j. It is assigned to this adder

because the latter is met. Thus, x and z get

scheduled at step 7 if the functional units are

not pipelined.

In case of pipelined functional units, the con

ditions for y and z are 5 < H- 2 or 0 > (5 —2)

and 5 < 2 -|- 2 or 1 > (5 —2), respectively. None

of them is met, so only x gets scheduled at step

7.

Algorithm: DFG Scheduler
input: a DFG, elk, T, and resource aUocation;
output: schedule;

begin
Cstep = 0;
while (there are operations to schedule) do

Cstep = Cstep + 1;
Reset(Watt);
Compute_Mobility(DFG);
Insert_Ready_Op(DFG, PList);
while {PList # <^) do

Op = First(/'itst);
Funit = Find_Avail_Funit(F, Op}\
if (Binding-Check(Op, Funtt.r, Wait) = Ok)
then

if (Check_Ports_Buses(si, S2,ibus, obus) = Ok)
then

Update_Schedule(5, Cstep, Op, Funit);
end if;

else

Wait[Type(Op)]-|"l-;
end if;

end while;
end while;

end.

Figure 4: General DFG scheduling algorithm

The DFG scheduler is described in Figure 4.

For each type of operations, the element of the

array Wait stores the number of operations which

are ready to be scheduled but are not scheduled

because waiting for faster ones may speed up

their completion time. Cstep represents the cur

rent control step into which operations are being

schedided. The procedure Compute-Mability

computes the mobility values of the unscheduled

operations in the DFG by using the ASAP and

ALA? algorithms. The procedure InsertJteadyJDp



inserts the ready operations in the DFG into the

priority list PList using as a three level key the

mobility, number of functional units which can

perform the operation and the number of im

mediate successor operations. Given a list, the

function First returns the first element of the

list and removes it from the list. The function

FindJivam'unit scans the available functional

unit in F in the ascending order of delay and

tries to find the fastest one which is able to

perform the type of operation Op. The func

tion Binding.Check decides whether or not the

scheduler should use the available fastest func

tional unit Funit to perform operation Op based

on the above two rules. The function CheckJ'orts.

Buses checks if there are enough ports and buses

to fetch operands and write results. The proce

dure Update.Schedule modifies the schedule S

by assigning the specified operation to the cur

rent control step.

Compute.Mobility calculates the earliest and

the latest start time of each unscheduled opera

tion in the DFG by using d{oi) as the delay of the

operation if its type is o^. During each control

step, the mobility values of unscheduled opera

tions need to be recomputed only if the sched

uler coiild not use the fastest functional units to

perform any operations in the previous step.

5.2 CDFG scheduler

A behavioral specification usually contains con

trol constructs, like conditional branches and loops.

To schedule the operations specified in it, the in

put textual description is first transformed into

a control dataflow graph (CDFG) internal repre

sentation, where control constructs are mapped

to control-flow nodes and assignments within ba

sic blocks are mapped to data-flow nodes [7].

Figure 5 shows a behavioral description and its

corresponding CDFG. The goal of our CDFG

scheduler is to find the minimum number of con

trol steps needed to execute the operations in a

CDFG under the given resource and architec

tural constraints.

The architecture type specified as the archi

tectural constraint plays an important role in

scheduling condition evaluations and mutually

exclusive operations [11]. Mutually exclusive op

erations can be scheduled either into different

control steps or into the same steps. The result

of condition evaluation may be available to the

control unit in the same state as it is generated

or in the next state after it is generated. Also the

control signals may be available to the datapath

in the same state as they are generated or in the

next state after they are generated. These will

be illustrated as follows by using the example

shown in Figure 5.

Figure 5 shows a specification in a high level

language and its corresponding CDFG represen

tation. The specification includes one condition

evaluation operation, x > n and two mutually

exclusive operations, y/n and y + x. Suppose

that the resource allocation includes one adder,

one divider and one comparator with delays of

one, two and one clock cycle, respectively. We

will consider the impact of different kinds of con

trol pipelined architecture types on the schedul-



Control Row

X := X + 1:

y :s a + b;

if X > n then

y:=y/n;
else

yi^y + x;

end if;

Read V Read x

Read y Read n

Figure 5: A sample specification and its CDFG rep

resentation

First let us consider the case of non-control

pipelined architecture type without status and

control registers. As shown in the state action

table of Figure 6(a), the condition evaluation op

eration is computed in Si and the result is im

mediately available to the controller. Without

the status register, the architecture provides no

place to store the result of the condition eval

uation for future use. Therefore, it is impos

sible for mutually exclusive operations to share

the same state in order to reduce the number

of control states. The execution of the mutually

exclusive operations must be scheduled into dif

ferent states, like ^2 and 54, respectively. The

result of condition evaluation must be tested in

the same state as the condition evaluation op

eration, i.e., 5i, to determine whether the next

state is 52 or 54. At the subsequent clock rising

edge, the selected next state is stored in the state

register and control signals are generated which

are immediately available to the datapath.

Rule 3 For non-control pipelined architectures,

mutually exclusive operations should be sched

uled into different control steps and the next state

may be determined immediately after the condi

tion evaluation.

We now consider the control pipelined archi

tecture with only status registers. The condition

evaluation is scheduled in 5i and the result is

stored in the status register. Thus, the result

is not available to the controller for testing until

next state S2. At state 52, based on the result of

the condition, the decision can be made on which

of the mutually exclusive operations should be

carried out and the control signals generated at

S2 are immediately available to the datapath.

Rule 4 For control pipelined architectures with

only status register, mutually exclusive operations

may be scheduled into the same control steps and

their execution should begin one state later than

the condition evaluation.

Finally, we come to the control pipelined ar

chitecture with both status and control registers.



Because of the control register, the control sig

nals generated in S3 cannot reach the datapath

until 54. Therefor, a NOP operation is sched

uled in S3. Also, the result of condition evalua

tion stored in the status register is used in two

states after it is generated in 52. It is first used

in 53 to generate the appropriate control signals

to be used in 54. Then it is used in 54 to decide

what the next state is.

Present state
Next state Datapath actions

conrStion state condition operations

'C1 » True S2'

.01 > False S4.,

X := X + 1;

fCt >x>n:T

ly>a +b; J
(y >y/n):

y:ay/n:

y:=y + x;

(a) Non Control Pipelined Architecture

Present state

Present state

Next state Datapath actions
condition state condition operations

SI x:»x + 1:

33 "I roisTrue (y:=y/n):^
- J [01 =False y:= y+x; J

'01= True S3

.01 "False

y;=y/n:

(b) Status Pipelined Architecture

Next state Datapath actions
condition state condition operations

x;= x+ 1;

54 NOP

35^ ^01 = True (y:»y/n):'|
- J [ci =False y;= y+x; J

^ True S5

' False

y:=y/n;

(c) Control Status Pipelined Architecture

Figure 6; State action tables for different architec
ture types

Rule 5 For control pipelined architectures with

both status and control registers, mutually exclu

sive operations may be scheduled into the same

control step and their execution should begin two

states later than the condition evaluation.

Our CDFG scheduling algorithm takes as the

inputs the CDFG, the resource and architectural

constraints and the start state from which the

operations are to be scheduled. It recursively

traverses the nodes in the CDFG along mutu

ally exclusive paths. It schedules operations con

tained in the DFG node using our DFG schedul

ing algorithm. At the FORK node, it decides

when to schedule mutually exclusive operations

based on the architectural constraint. The mu

tually exclusive paths get merged at the JOIN

nodes. The number of control steps for non-

control pipelined architecture is the sum of the

steps of each node along all paths, while the

number of control steps for control pipelined ar

chitectures is the length of the longest path of

the CDFG because the mutually exclusive oper

ations can share the states under these architec

tures.

Figure 7 describes our recursive CDFG sched

uler. The function DFGScheduler is similar to

our DFG scheduler discussed before. The differ

ence is that it starts scheduling operations from

the specified control step instead of from state

one and it returns the last control step of the

schedule along that particular path so that the

schedule of the succeeding CDFG node can be

accumulated with it. At each FORK node, the

result of the condition evaluation is used to select



Algorithm: CDFG Scheduler
input: root, next^tep, T, and resource allocation;
output: schedule;

begin
if (root is DFG_NODE) then

next_step = DFG-Scheduler(root, nextjstep);
else if (root is FORK_NODE) then

next-Step = Find_Cond_Evaluate-State(5);
if (T is status pipelined) then

nextjstep = next-step + 1;

else if (T is status+control pipelined) then
nextjstep = nextjstep + 2;

end if;
else if (root is JOIN-NODE) then

if (all predecessors scheduled) then
next-step = Longest_Path(S) + 1;

else

return;

end if;
end if;

for each successor of root do

CDFG-Scheduler(child of root, nextjstate);
end for;

end.

Figure 7: CDFG scheduling algorithm

which mutually exclusive path should be taken.

The function FindJ^ondJBvaluate^tate finds

the control state during which the condition eval

uation is scheduled. At each JOIN node, the

function LongestJPath returns the number of

control states along the longest path from the

beginning node of the CDFG to the JOIN node.

If the current CDFG node contains a DFG,

the CDFG scheduler uses our DFG scheduler

to schedule the operations in the DFG starting

from the specified control state. After scheduling

it, the CDFG scheduler continues scheduling the

succeeding CDFG nodes. If the current node is

a FORK node, it first finds when the condition

evaluation is performed, and then it schedules

operations along each mutually exclusive paths

separately. The starting state is determined ac

cording to the architectural constraint. If the

architecture type is non-control pipelined, the

mutually exclusive operations can be scheduled

right after the condition evaluation. If the archi

tecture type is control pipelined with only sta

tus register, the mutually exclusive operations

can only be scheduled one state later then the

condition evaluation. If the architecture type is

control pipelined with both status and control

registers, the operations can only be scheduled

two states later than the condition evaluation.

If the current node is JOIN node, its successor

nodes will not be traversed until all its predeces

sors have been traversed.

S©_ .y©© "

iiS©: ,i:a©z:

Figure 8; Generated schedules for different architec

ture types: (a) non-pipelined control, (b) pipelined
control with status register, (c) pipelined control with
status and control registers.

Figure 8 depicts the scheduling process for

different architecture types. The nodes in the

CDFG are traversed from up to bottom and from

left to right if branches occur. For each architec

ture type, the figures show from left to right the



intermediate results after travsersing and schedul

ing each CDFG node.

Figure 9: Number of control steps needed to execute
each CDFG node

Figure 9 shows the number of control steps

needed to execute each CDFG node. The num

ber of control steps for non-control pipelined ar

chitecture is obtained by summing the number

of control steps for each CDFG node as shown

in Figure 9(a). The number of control steps for

both pipelined architectures is easily obtained

by checking the length of the schedule in Fig

ure 8(b) and (c), respectively. In all the cases,

the numbers are the same as the ones obtained

by manually scheduling the CDFG with state

action tables, which are 5, 4, and 6, respectively.

6 Experimental Results

We have incorporated our architecture based sche

duling method into our system design tool, Spec-

Syn [4]. To compare our method with previ

ous operator-use method, we assume the infinite

number of ports and infinite number of buses in

our design model and use the architecture type

of pipelined control path with status register and

non-pipelined datapath. The allocation of dat

apath components is shown in Figure 10. The

delays of the components are obtained from the

VDP ICQ datapath library [14] as examples. Let

us assume that the clock period is 60ns.

Component Oelay(ns)

Figure 10: Resource allocation with delays

Our
algorithm

Ibeamfomner 212

)acobian

elliptical2

. Operator_use - Manual
•rroii = — X 100%

Our - Manual•rror2 —" • X 100%
Manual

Figure 11: Number of states for different benchmarks
for manual design, operator-use and our algorithms

We have tested 8 examples written in Spec-

Charts to compare the results obtained with dif

ferent methods. For each example, we first man

ually schedule it by building the state action

table and then use the result as our reference.

Some examples may includes several behaviors

and they are scheduled separately. The results

obtained by using operator-use method and our

scheduling method are compared with the man-



ually scheduling results to see how accurate they

are. As shown in Figure 11, the errors for operator-

use method can range from -40 percent to 87 per

cent, while the errors for our scheduling method

only range from -5 to 5 percent. Particularly,

5 out of 8 benchmarks have errors less than 2.5

percent. The results for control intensive appli

cations, like volume, are not relatively accurate

because of wait statements in the specifications.

7 Conclusion and Future Work

In this report, we have presented our design model

which supports six different target architecture

types. Based on this model, we have presented

two scheduling algorithms to schedule operations

in a DFG and/or CDFG. A set of experiments

have been conducted to show how accurate our

schedule is.

Our future work includes obtaining more ac

curate results on datapath area estimation based

on our scheduling estimation. The datapath area

consists of the area of functional units, storage

units and communication units.

8 Acknowledgments

This work was partially supported by the grant

from Toshiba Corporation, and we gratefully ac

knowledge their support. We would also like to

thank Smita Bakshi and H-P Juan for their help

in defining the problem.

9 References

[1] R. Camposano, "Path-Based Scheduling for

Synthesis," in IEEE Trans. CAD, Vol.10,

No.l, Jan. 1991.

[2] D. D. Gajski, Principles of Digital Design,

Prentice Hall, 1997.

[3] D. Gajski, N. Dutt, A. Wu, and S. Lin,

High-level Synthesis: Introduction to Chip

and System Design, Kluwer Academic Pub

lishers, 1992.

[4] D. Gajski, F. Vahid, S. Narayan, and J.

Gong, Specification and Design of Embed

ded Systems, Prentice Hall, 1994.

[5] J. Gong, D. Gajski a,nd S. Narayan, "Soft

ware Estimation from Executable Specifica

tions," in Journal of Computer and Soft

ware Engineering, 1994.

[6] R. Jain, "MOSP: Module Selection for

Pipelines Designs with Multi-Cycle Opera

tions," in Proc. of the IEEE Conference on

Computer Aided Design, 1990.

[7] A. Orailoglu and D. Gajski, "Flow Graph

Representation," in Proc. of the 23rd Design

Automation Conference, 1986.

[8] B. Pangrle and D. Gajski, "State Synthesis

and Connectivity Binding for Microarchi

tecture Compilation," in Proc. of the IEEE

Conf. on Computer Aided Design, 1986.

[9] U. Prabhu and B.M. Pangrle, "Super

pipelined Control and Data Path Synthe

sis," in DAC Proceedings, June'92.



[10] T. Kim, J.W.S. Liu and C.L. Liu, "A
Scheduling Algorithm for Conditional Re

source Sharing," in Proc. ICCAD, 1991.

[11] L. Ramachandran and D. Gajski, "Archi
tectural Tradeoffs in Synthesis of Pipelined

Controls," in Proc. of the European Design

Automation Conference (EuroDAC), 1993.

[12] K. Wakabayashi and T. Yoshimura, "A Re
source Sharing Control Synthesis Method

for Conditional Branches," in Proc. IC

CAD, 1989.

[13] W. Wolf, "Hardware-Software Co-Design of
Embedded Systems," in Proc. of the IEEE,

Vol. 82, No. 7, 1994.

[14] VDPlOO 1.5 Micron CMOS Datapath Cell
Library, 1988.




