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Optimal Measurement Location Planning for
Localizing Underwater Transponders

Jesse Garcia, Jay A. Farrell, and Zaher M. Kassas
Department of Electrical and Computer Engineering

University of California, Riverside
Riverside, California 92507

{jegarcia, farrell}@ece.ucr.edu , and zkassas@ieee.org

Abstract—An autonomous surface vehicle optimally plans
acoustic measurement locations to localize a set of pre-deployed
underwater transponders (UTs). Once localized, these transpon-
ders could serve as reference beacons for underwater navigation.
An optimal measurement location planning (OMLP) strategy, in
the D-optimality sense, is developed to localize this set of UTs. It is
shown that the matrix optimization criterion corresponding to the
D-optimality criterion simplifies to a scalar optimization problem
for single UT environments. Simulation results are presented
demonstrating the computational benefit of this simplification
over the standard D-optimality criterion. Experimental results
are given illustrating the proposed OMLP strategy to localize
one and two unknown UTs to within a few meters.

I. INTRODUCTION

Global navigation satellite system (GNSS) signals become
severely attenuated underwater, rendering them unusable at
depths below a few feet. Inertial navigation systems (INS) are
prevalent in underwater navigation. To correct drift inherent
in INS, underwater vehicles typically utilize a network of pre-
deployed underwater transponders (UTs), surface vehicles, or
resurfacing strategies. Resurfacing is not desirable in situations
where stealth and covertness are required. Also, it wastes
valuable resources, such as time and energy. This paper
focuses on localizing a set of randomly pre-deployed UTs at
unknown locations. Once the UT locations are known, they
could serve as reference beacons for underwater navigation.

This paper considers the following problem. An autonomous
surface vehicle (ASV) is estimating the positions (i.e., localiz-
ing) a number of UTs that are rigidly attached to the sea floor.
Where should the ASV place itself to optimally localize the
UTs? This problem is analogous to optimal sensor placement,
to which many optimization criteria have been developed.

Among the most common optimization criteria is the D-
optimality, namely maximization of the logarithm of the deter-
minant of the Fisher information matrix [1]. The D-optimality
criterion yields the maximum reduction in target location
uncertainty as measured by the volume of the uncertainty
ellipsoid [2], [3]. An alternative, computationally efficient
optimization criterion based on innovation maximization was
proposed in [4], which was shown to be identical to the D-
optimality criterion under linear Gaussian assumptions and

This work was supported in part by the Office of Naval Research (ONR)
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was demonstrated to yield comparable performance with non-
linear pseudorange measurements. Another computationally
efficient criterion with a geometric interpretation for sensor
placement based on pseudorange measurements was proposed
in [5]. Such criterion was shown to yield a family of convex
optimization problems that could be solved in parallel. A
collaborative sensor placement strategy was developed in [6],
wherein a network of coordinated ASVs attempt to optimally
place themselves to localize a single UT.

While the above papers considered planar sensor placement,
a three-dimensional (3D) sensor placement strategy is needed
for certain underwater and aerial applications. In underwater
applications, an additional complexity arises from the fact that
once submerged, an underwater vehicle is deprived of GNSS
signals; hence, accurate positioning information about itself.
This forces a reliance on onboard inertial sensor suites that
provide rapidly decaying self-positioning estimates due to in-
tegral effects. Aided navigation and simultaneous localization
and mapping (SLAM) techniques can be used to mitigate
this decay. In [7], inertial sensor drift was calibrated using
lower rate sensors (e.g., magnetic, transponders, and pressure).
Other approaches to this problem for underwater scenarios
were developed in [8] for sonar-based terrain-aided navigation
(TAN). In [9], criteria were developed to ensure observability
of the nonlinear system when ranging to a single acoustic
beacon, while [10] derives such criteria when measuring
pseudoranges to multiple terrestrial signal transmitters.

This paper develops an optimal measurement location plan-
ning (OMLP) strategy for an ASV in an environment compris-
ing multiple randomly pre-deployed UTs, each at an unknown
location. The ASV makes acoustic range measurements to the
UTs, computes an estimate of the location of the UTs along
with the estimation error covariance, and plans the D-optimal
measurement location to which it should move next.

The remainder of this paper is organized as follows. Section
II formulates the UT and OMLP problems. Section III presents
a maximum a posteriori (MAP) approach to solve the UT
localization problem and a computationally efficient approach
to solve the OMLP problem. Section IV presents simulation
results demonstrating both solutions. Section V presents ex-
perimental results showing OMLP for one and two UTs with
a localization accuracy of a few meters. Concluding remarks
are given in Section VI.
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II. UT LOCALIZATION AND OMLP PROBLEM
FORMULATION

This section formulates the UT localization and OMLP
problems. The UT localization begins after three measure-
ments have been made, according to the method presented
in Section III-A. The OMLP strategy is computed after each
localization computation, according to the method presented
in Section III-B.

Throughout this paper, pm
T ∈ R3 denotes the 3-D position

of the mth UT, where m = 1, · · · ,M , with M being the total
number of UTs; while pV (n) ∈ R3 denotes the position of
the ASV at the nth measurement epoch. The set of all ASV
locations is denoted by NPV = {pV (1), · · · pV (N)}. The
ASV positions are assumed to be known (e.g., from GNSS
signals). An estimate of pm

T based on N range measurements
is denoted by N p̂m

T .
The true range between the mth UT and the ASV at the

nth epoch is

rm(n) = ||pm
T − pV (n)||2. (1)

This range measurement is modeled as

zm(n) = rm(n) + wm(n), (2)

where wm(n) is the measurement noise, which is assumed
to be independent and identically distributed with wm(n) ∼
N (0, σ2). The vector of range measurements to the mth UT
is denoted by

zm = rm + wm ∈ RN×1, (3)

where rm , [rm(1), · · · , rm(N)]
T is the vector of true

range measurements and wm , [wm(1), · · · , wm(N)]
T is

the corresponding vector of measurement noise samples. The
range can be estimated by substituting N p̂m

T into (1)

r̂m(n) = ||N p̂m
T − pV (n)||2. (4)

The vector of estimated ranges is

r̂m = [r̂m(1), · · · , r̂m(N)]
T ∈ RN×1. (5)

The Jacobian vector hm(n) =
∂

∂pm
T (N)

[r̂m(n)] is

hm(n) =

[
N p̂m

T − pV (n)
]T

r̂m(n)
∈ R1×3. (6)

For all measurement epochs n = 1, · · · , N , the vectors in (6)
are stacked into the matrix

Hm =
[
(hm(1))T, · · · , (hm(N))T

]T ∈ RN×3. (7)

Problem 1: UT Localization

Given zm and NPV , estimate Npm
T .

Problem 2: OMLP: M ≥ 1

For M UTs in the environment, given {N p̂m
T }Mm=1, select

pV (N+1) that will minimize the aggregate uncertainty of the
next estimates N+1p̂m

T for m = 1, · · · ,M.

III. SOLUTION TO THE UT LOCALIZATION AND OMLP
PROBLEMS

This section presents solutions to the UT localization and
OMLP problems. To reduce the linearization error on UT
localization, an iterative Gauss-Newton approach is adopted
[11] along with a MAP estimation formulation. The iterative
estimation algorithm is initialized with an estimate and corre-
sponding covariance, denoted by 0p̂

m
T and 0P

m
T , respectively.

A. Solution 1: UT localization
Let the pre-subscript j denote the iteration number. For

example, the estimate of pm
T at the jth iteration is j p̂

m
T .

Estimated ranges and Jacobians at the jth iteration, j r̂
m(n)

and jh
m(n), are computed by substituting j p̂

m
T into (4) and

(6). Similarly, j r̂
m and jH

m are constructed by substituting
j r̂

m(n) and jh
m(n), ∀n ≤ N , into (5) and (7).

A MAP framework is adopted. The basic optimization
problem is

N p̂m
T = argmax

pm
T

[p(zm|pm
T ) p(pm

T )] . (8)

The assumption pm
T ∼ N (0p̂

m
T , 0P

m
T ) with a very large 0P

m
T

implies having virtually no prior information about pm
T (N).

With w(n) in (2) assumed to be zero-mean Gaussian, the
distribution of the measurement is zm ∼ N (rm,R), where
R = σ2 I3×3.

Defining the composite vectors y =
[
(zm)T , (0p̂

m
T )T

]T
and v(pm

T ) =
[
(rm)T , (pm

T )T
]T

and the covariance matrix
for y, C−1 = blkdiag

[
R−1 , (0P

m
T )−1

]
, the objective func-

tion of (8) is equivalent to

JMAP (pm
T ) =

−1

2
[y − v(pm

T )]
T
C−1 [y − v(pm

T )] , (9)

where blkdiag(·) denotes the block-diagonal matrix. This
allows (8) to be rewritten as

N p̂m
T = argmin

pm
T

JMAP (pm
T ). (10)

The MAP estimate of pm
T is computed by solving the batch

nonlinear least-squares optimization problem in (10) itera-
tively. Let j be the iteration counter, starting with j = 0. Let
the jth estimate of pm

T be j p̂
m
T . The estimated range vector is

j r̂
m = r̂m|p̂m

T = j p̂m
T

. The vector v(pm
T ) is linearized around

j p̂
m
T at each iteration, yielding

v(pm
T ) ≈ v(j p̂

m
T ) + Vj δpj , (11)

where

Vj =


Hm(j p̂

m
T )

[1, 0, 0]
[0, 1, 0]
[0, 0, 1]

 ∈ R(N+3)×3, (12)

δpj = pm
T − j p̂

m
T . (13)

Define δyj = y − v(j p̂
m
T ). The MAP objective function in

(10) is the same as

JMAP (δpj) = (δyj −Vj δpj)
TC−1(δyj −Vj δpj). (14)
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The linearized objective function (14) is minimized when

δpj = (VT
j C
−1Vj)

−1VT
j C
−1δyj . (15)

A new estimate is computed as

j+1p̂
m
T = j p̂

m
T + δpj . (16)

Iterations continue until ||j+1p̂
m
T − j p̂

m
T ||2 ≤ δmin as

long as j ≤ Jmax, for user-defined Jmax and δmin. After
convergence, the covariance is computed as

NPm
T = (VT

j C
−1Vj)

−1. (17)

B. Solution 2: OMLP

The D-optimality criterion [12, p. 387] is used to determine
pV (N + 1) that will maximize the information gain. For this
section, the subscript N corresponds to the number of ASV
locations. The symbol Ym

N ∈ R3×3 denotes the information
matrix after n ASV measurements to the mth UT (i.e., Ym

N =
(NPm

T )−1).

Define Dm
N (x) = hm(N)T hm(N), where the symbol

x = pV (N + 1) is used to simplify notation and hm(N) de-
pends on pV (N+1). When the (N+1)-st range measurement
is made, the information matrix becomes

Ym
N+1 (x) = σ−2 Dm

N+1 (x) +Ym
N . (18)

Define YN+1 = diag(Y1
N+1, . . . ,Y

M
N+1).

D-optimality is used to determine the ASV’s next measuring
location in an environment with M UTs. The D-optimality
optimization problem is

x∗ = argmax
x

J (x)

subject to g(x) ≤ dmax,
(19)

where

J (x) = log det [YN+1 (x)] (20)
g(x) = ‖x − pV (N)|22 (21)

The boundary constraint g(x) ≤ dmax restricts the maximum
distance to which the ASV could travel to make the next
measurement.

Given the form of (18) and the fact that each Ym
N is

independent of x, (19) reduces to

x∗ = argmax
x

log f(x)

subject to g(x) ≤ dmax,
(22)

where f(x) =
∏M

m=1det
[
Ym

N+1(x)
]
. Using the properties

of the logarithm function,

log f(x) =
M∑

m=1

log det
[
Ym

N+1(x)
]
. (23)

Sylvester’s matrix determinant theorem [13] could be applied

to (23) to give

det
[
Ym

N+1(x)
]

= det[Ym
N ]·

det[1 + (hm(N + 1))(Ym
N )−1 (hm(N + 1))T]. (24)

Define

αm(x) = [hm(N + 1)](Ym
N )−1 [hm(N + 1)]

T
, (25)

which is a positive scalar. Using (24)-(25), the optimization
function in (23) can be simplified to

log f(x) =
M∑

m=1

log[(1 + αm(x))det[Ym
N ]]. (26)

Properties of the logarithm function allow further simplifica-
tion to

logA(x) =
M∑

m=1

log(1 + αm(x)) +
M∑

m=1

log det[Ym
N ]. (27)

The term
∑M

m=1 log det[Ym
N ] is constant with respect to x, so

it can be dropped.
Letting J̄ (x) =

∑M
m=1 log(1 + αm(x)), the optimization

problem of (22) is written as

x∗ = argmax
x

J̄ (x)

subject to g(x) ≤ dmax.
(28)

Note that for M = 1, (28) is the same as

x∗ = argmax
x

J̄ ′(x)

subject to g(x) ≤ dmax,
(29)

where J̄ ′(x) = α(x).

IV. SIMULATION RESULTS

This section presents simulation results for the UT localiza-
tion and OMLP problems.

A. Gauss-Newton MAP estimator for UT localization

The Gauss-Newton MAP estimator treats each UT inde-
pendently. Therefore, this section considers the single UT
case (the superscript m = 1 is dropped). A Monte Carlo
type analysis is performed, simulating 500 runs of the MAP
estimation algorithm. For each run, four measurements are
used to estimate pT . The ASV makes N = 4 measurements
from the locations listed in Table I.

TABLE I
ASV LOCATIONS USED IN MONTE CARLO ANALYSIS

Symbol Value (m)
pV (1) [ 5 , 0 , 0]T

pV (2) [ 0 , 5 , 0]T

pV (3) [−5 , 0 , 0]T

pV (4) [ 0 , −5 , 0]T
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The UT is fixed at pT = [−2,−7,−7]T. The value 0p̂T is
drawn from a zero-mean Gaussian distribution with covariance
0PT = diag[100, 100, 4]. The USBL measurement noise
standard deviation σ = 0.1 m corresponds to the SeaTrac
x150 USBL product sheet [14].

Fig. 1 compares the 95% confidence ellipse in the x − y
plane from (17) to that fitted to 500 samples of p̂m

T . The match
can be seen to be very good.

-2.4 -2.2 -2 -1.8 -1.6

Easting (m)

-7.5

-7.4

-7.3

-7.2

-7.1

-7

-6.9

-6.8

-6.7

-6.6

-6.5

N
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h
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g

 (
m

)

Estimated x-y positions
True x-y position
Estimator 95% confidence ellipse
Monte Carlo data 95% confidence ellipse

Fig. 1. Scatter plot of p̂T in the x − y plane. The solid ellipse is created
by fitting the 500 samples of p̂T (4) and displays the true uncertainty in the
estimate. The dashed ellipse is created using PT from (17) and represents the
95% confidence ellipse calculated from the Monte Carlo data. The ellipses
are comparable, suggesting the estimator is performing correctly.

B. Evaluation of OMLP for M = 1

This section evaluates the OMLP strategy for the single
UT case (the superscript m is dropped). The optimization
problems outlined in (29) and (19) are solved numerically
in MATLAB using the function fmincon. The UT is again
placed at pT = [−2,−7,−7]

T. The initial assumed location
of UT1 is 0p̂T = [−10.10, −17.95, −9.65]T with covariance
0PT = diag[100, 100, 4]. As before, the measurement noise
standard deviation is set to σ = 0.1m.

It is worth noting that the solution to the unconstrained
maximization of (25) is achieved when hm(N + 1) lies along
the eigenvector associated with the largest eigenvalue of YN .
This in turn yields a pV (N + 1) along this eigenvector. As
dmax decreases, the motion constraint comes into play, such
that pV (N + 1) may not be able to lay along this eigenvector.

Using pV (1) = [0, 0, 0]T as the first measurement location,
Fig. 2 demonstrates this aspect of the path planner by plotting
pV (2) planned according to (29) as a function of dmax using a
sequence of green diamonds. Given one measurement, p̂T (1)
is shown as a purple dot. Its error ellipse is shown in solid

-20 -15 -10 -5 0 5
Easting (m)

0

5

10

15

20

25

30

N
o

rt
h

in
g

 (
m
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Fig. 2. The green sequence of diamonds indicates the optimal solution pT (2)
as function of dmax. A red asterisk denotes pV (1). The 95% confidence
ellipse corresponding to Y0 is shown in dark red, whereas that of Y1 is
shown in dark purple. The largest eigenvector of Y1

1 corresponds to the dashed
purple arrow pointing in the direction of the major axis of the purple ellipse.

purple and the direction of its largest eigenvector is shown
as a dashed purple arrow. When dmax is small, pV (2) is
constrained to be near pV (1). As dmax increases, pV (2)
moves away from pV (1) and towards the ray defined by the
eigenvector.1 The blue solid and yellow dashed circles display
the boundary of the feasible region when dmax = 10m
and dmax = 30m respectively. The value of pV (2) for
dmax = 10m is marked by a blue asterisk and the value
of pV (2) for dmax = 30m is marked by a yellow asterisk.
Note that the solutions are on the boundary of the feasible set.

C. Evaluation of OMLP for M = 4

This subsection evaluates the OMLP for the case where
M = 4, using Np = 12 vehicle positions. The motion
constraint uses dmax = 10m. The true UT locations and initial
location estimates are provided in Table II. Using the prior
for the UT positions, the initial ASV position is determined
according to (28) to be pV (1) = [−9.78, 2.10, 0]T.

Each initial uncertainty was set to 0P
m
T = diag[50, 50, 4].

Fig. 3 displays snapshots of the environment at measurement
epochs 2 and 3. Final localization results corresponding to this
scenario are provided in Table III. The first row of Table III
shows the norm of the error between the the true UT location
and the final estimated location (i.e., ||p̃m

T ||2 = ||pm
T −

Np p̂m
T ||2) and subsequent rows show standard deviations in the

final estimation error (i.e., σi =
√

NpPm
T (i, i), i = 1, 2, 3) in

1Two solutions are possible for this simple example, depending on whether
the vehicle moves to the northwest or to the southeast. For this example, we
always choose the solution to the northwest.
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millimeters. Columns of this table organize this data for each
UT.
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Fig. 3. (a) Environment at measurement epoch n = 2. (b) Environment at
measurement epoch n = 3. In (a) and (b), all symbols drawn in blue represent
items relevant to the epoch that is the input to the OMLP algorithm. Green
symbols denotes immediate future values (i.e., OMLP outputs). Red symbols
denotes immediate past values. Circles represent vehicle locations. Squares,
diamonds, stars, and asterisks correspond to p̂i

T (n) for all 1 ≤ i ≤ 4. The
95% confidence ellipses associated with Yi

n are drawn as blue ellipses around
the current UT estimates.

V. EXPERIMENTAL RESULTS

A. Data collection

Data collection for both single and multiple transponder
environments occurred on January 4th, 2018 along pier 169

TABLE II
SIMULATION SETTING OF OMLP FOR M = 4

Symbol Value (m)
p1
T [ 6, −9, −8]T

p2
T [−3, −6, −6]T

p3
T [ 4, −6, −8]T

p4
T [−7, 9, −7]T

0p̂
1
T [ 14.40, −3.10, −5.74]T

0p̂
2
T [ −1.94, −5.84, −5.19]T

0p̂
3
T [ 4.96, −9.64, −6.02]T

0p̂
4
T [ 3.61, 3.12, −5.46]T

σ 0.1

TABLE III
LOCALIZATION RESULTS FROM FIG. 3 USING OMLP

Value (mm) p1
T p2

T p3
T p4

T

||p̃T ||2 81 95 123 55
σx 46 41 44 43
σy 56 49 54 55
σz 72 78 65 74

Fig. 4. Top-down view of the the testing area and acoustic ranging
locations as measured by the Hemisphere GPS compass. Yellow push-pin
markers display the configuration of UTs during data collection. Green tear-
drop markers denote the three measuring locations used in Section IV for
localization of UT1.

at SPAWAR SSC Pacific, San Diego, California, USA. Fig. 4
illustrates the testing environment. Two SeaTrac x010 acoustic
beacons acted as UTs and were fixed to the pier at a depth of
1m.

A manned surface craft equipped with a SeaTrac x150
USBL beacon and Hemisphere v104s satellite-based augmen-
tation system (SBAS) GPS compass maneuvered in the ocean
near the pier while ranging to each UT. The GPS computed
differential GPS (DGPS) position estimates, which were accu-
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rate to 1m. Range data and GPS fixes were acquired at 0.67Hz
and 1Hz, respectively, and were written to two separate files
during collection. All data was time-stamped with UTC time,
which was used to align data in post-processing. Ground truth
positions of these UTs were determined by averaging GPS
fixes at each UT mounting point over periods of 3 minutes.

The range measurement standard deviation was estimated
using sets of approximately 250 range measurements. Ground
truth ranges were determined from GPS position fixes to
be r1 = 9.22m and r2 = 2.67m. Fig. 5 presents range
and measurement noise standard deviation estimates using
maximum likelihood:r̂i

σ̂i

 =


1

i

∑i
n=1 r(n)

√
1

i− 1

∑i
n=1

[
r(n)− R̂(n)

]2
 . (30)

In Fig. 5(a)-(b), the final value r̂1 = 9.02m and r̂2,= 2.66m
are displayed as solid red lines. The estimated range after
the i-th measurement is shown as a red crosses. The solid
blue curves show the the final value of the range plus and
minus estimated standard deviation in the estimated range after
measurement i. In Fig. 5(c), both the final value of σ̂1 = 62mm
and σ̂2 = 113mm are displayed as solid red lines. The values
of σ̂1 and σ̂2 after the i-th measurement are displayed as red
and blue markers, respectively. Solid blue curves represent the
final values of σ̂1 and σ̂2 plus and minus the estimates of their
standard deviation.

0 50 100 150 200 250

(a) Number of data, n

9
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Fig. 5. (a),(b) The estimated range between the USBL and each of the two
transponders using (30). (c) The estimated range standard deviation.

Note that σ̂1 and σ̂2 differ by approximately 50mm. The
difference in σ̂i suggests that measurement noise varies with

distance. The maximum of both standard deviation estimates
was used as the standard deviation of all measurements for
the MAP estimation algorithm, i.e., σ = max{σ̂i} = 113mm.
Also, r̂1 differs from the ground truth value by approximately
0.2 meters, which may be explained by the uncertainty asso-
ciated with the GPS measurements.

B. Processed Results: Localization

TABLE IV
CONSTANTS USED FOR SINGLE TRANSPONDER LOCALIZATION OF UT1

Symbol Value (m)
pV (1) [33.87 , 25.42 , −22.14]T

pV (2) [28.47 , 2.10 , −51.60]T

pV (3) [50.18 , 7.16 , −32.37]T

σ 0.12

In this subsection, all symbols are presented in the ECEF
coordinate frame. Table IV contains constants used in val-
idating the MAP estimation algorithm. All positions in Ta-
ble IV are in a local ECEF frame, determined by translat-
ing the global ECEF frame by [−2.448 × 106 , −4.7559 ×
106 , 3.4117 × 106]. These positions are labeled in Fig. 4.
A set of 3 range and GPS measurements (i.e. Np = 3)
were selected and used in the MAP estimation algorithm.
The value of p1

T = [32.79 , 9.96 , −39.53]Tm was measured
via GPS for comparison. The MAP estimation algorithm
was initialized with 0p̂

1
T = [27.35 , 13.25 , −41.32]Tm and

0P
1
T = diag[100, 100, 4]m2.
The final localization results are provided in Table V. The

rows of this table provide the final estimated UT location
Np p̂1

T , the norm of the error (i.e., ||p̃1
T ||2 = ||p1

T − Np p̂1
T ||2),

and the theoretical standard deviation of the final estimate (i.e.,
σi =

√
NpP1

T (i, i), i = 1, 2, 3).

TABLE V
LOCALIZATION RESULTS OF UT1

Symbol Value (m)
3p̂1

T [32.80 , 10.45 , −41.09]T

||p̃1
T ||2 1.63

{σ1
x, σ

1
y, σ

1
z} {1.17, 2.05, 1.84}

C. Processed Results: Localization: OMLP with M = 1

In this subsection, the symbol x = pV (N + 1) is used
to simplify notation. The optimal next measurement location
x∗ computed by fmincon could not be in the set of available
ASV locations PV . Therefore, the point used for the next range
measurement x̄ was chosen from PV according to

x̄ = argmin
x∈PV

||x−x∗||2. (31)
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OMLP was performed starting after the third measurement
for 3 more measurements (Np = 6). The motion constraint
dmax was set to 10m. Table VI contains final results of
this experiment. The rows of this table provide measurement
locations pV (n) for 4 ≤ n ≤ Np in the local ECEF frame,
the final estimated UT location Np p̂1

T , the norm of the error
(i.e., ||p̃1

T ||2 = ||p1
T − Np p̂1

T ||2), and the theoretical standard
deviations in the final estimate (i.e. σi =

√
NpP1

T (i, i), i =
1, 2, 3). Note that the theoretical accuracy is decreasing with
the number of range measurements and is much smaller than
the computed accuracy ||p̃1

T ||2. The most likely reason is that
the GPS measurement of the UT position is not correct due to
either GPS errors or the challenge of placing the GPS receiver
directly above the underwater UT.

TABLE VI
LOCALIZATION RESULTS OF UT1 WITH OMLP

Symbol Value (m)
pV (4) [51.66, −3.34, −46.01]T

pV (5) [49.61, −5.85, −52.50]T

pV (6) [45.08, −7.40, −58.06]T

Np p̂1
T [31.88, 8.65, −39.47]T

||p̃1
T ||2 1.60

{σ1
x, σ

1
y, σ

1
z} {0.11, 0.25, 0.20}

D. Processed Results: Localization: OMLP with M = 2

The OMLP was applied to a multi-UT scenario using
Np = 12 measurements. The true UT location pV (1) =
[22.09, 9.25, −37.94]T is determined by evaluating (28). As
before, dmax was set to 10m. The final localization results
and select measurement locations are provided in Table VII.
The results in this table are organized similarly to those in
table VI. The same comments discussed in Subsection V-C
apply regarding the final error ||p̃m

T ||2 being larger than the
theoretical standard deviation σm

i .

TABLE VII
LOCALIZATION RESULTS OF UT1 AND UT2 WITH OMLP

Symbol Value (m)
pV (1) [ 22.09, 9.25, −37.94]T

pV (6) [ 23.98, 13.04, −41.35]T

pV (12) [ 25.10, 14.33, −43.36]T

12p̂1
T [ 30.96, 11.83, −37.33]T

12p̂2
T [ 24.70, 12.87, −40.60]T

||p̃1
T ||2 3.43

||p̃2
T ||2 2.77

{σ1
x, σ

1
y, σ

1
z} {0.33, 0.60, 0.50}

{σ2
x, σ

2
y, σ

2
z} {0.13, 0.18, 0.16}

VI. CONCLUSIONS AND DISCUSSIONS

This article provided a MAP estimation algorithm for local-
izing underwater transponders as well as a theoretical founda-
tion for determining future best acoustic ranging locations of
an ASV. The simulation results demonstrated the performance
of the proposed estimator and measurement location planning
strategy. The experimental results based on data collected at
SPAWAR SSC Pacific demonstrated the performance of the
OMLP strategy in an environment containing two UTs. Future
work will aim at reducing effects of unmodeled errors (e.g.,
variable noise standard deviation with distance and position
uncertainty from GPS).
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