UC Davis

Pediatrics

Title

Beware the Transverse Plane: Variability of "Normal Gait" In Typically Developing Children

Permalink

https://escholarship.org/uc/item/03q3q3tn

Authors

Panesar, Paramjyot Bagley, Anita Kulkarni, Vedant

Publication Date

2021

Data Availability

The data associated with this publication are not available for this reason: N/A

Beware the Transverse Plane: Variability of "Normal Gait" In Typically Developing Children

Paramjyot S. Panesar, BA1; Anita Bagley, PhD2; Vedant A. Kulkarni, MD1,2

¹UC Davis School of Medicine

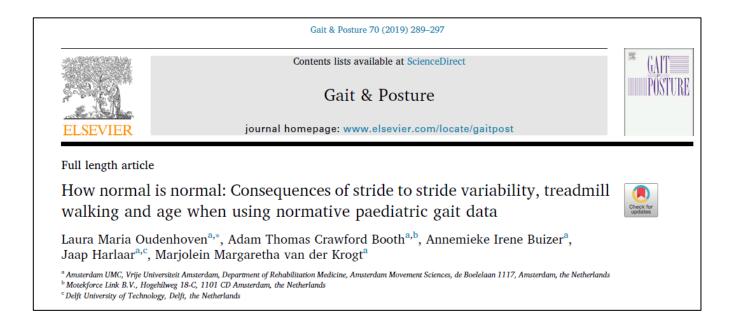
²Shriners Hospitals for Children – Northern California

Gait Variability

Gait matures by 4-8 years of age

Complex Neurological Processing

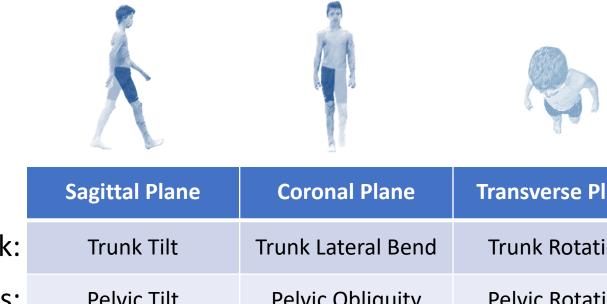
Precision Surgery


- 3D Gait Analysis is the only quantitative method to study gait
- Provides accurate and reliable data on joint and body segment motion
- An important component of "precision surgery" for a child with a fixed gait abnormality

Current Literature

- Stride-to-stride variability for gait variables is low, but outliers do exist
- Choosing the wrong stride for analysis can lead to improper surgical decisions
- Better quantification of gait variability is foundational for proper surgical decision-making
- Existing studies have omitted trunk or pelvis measures in variability characterization

Gait & Posture 46 (2016) 194–200					
	Contents lists available at ScienceDirect	📼 GAIT			
	Gait & Posture	POSTURE			
ELSEVIER	journal homepage: www.elsevier.com/locate/gaitpost				
The gait standard deviation, a single measure of kinematic variability					
Morgan Sangeux ^{a,b,c,*} , Elyse Passmore ^{a,b,c} , H. Kerr Graham ^{a,b,d} , Oren Tirosh ^a					
^a The Royal Children's Hospital, Melbourne, Australia ^b The Murdoch Childrens Research Institute, Australia ^c The University of Melbourne, School of Engineering, Australia ^d The University of Melbourne, Department of Paediatrics, Australia					



Purpose

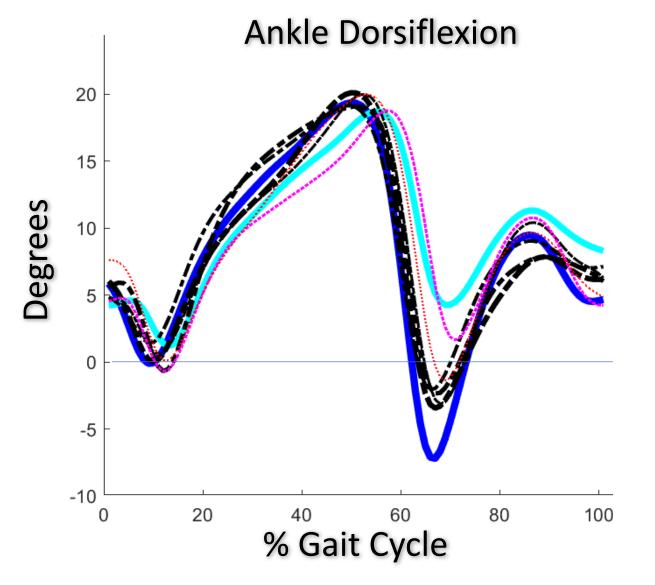
- Quantify stride-to-stride variability in typically developing (TD) children using three-dimensional gait analysis (3DGA) in an expanded set of 14 kinematic variables.
- 2. Assess the effect of laterality, age, and sex on stride-to-stride variability

Methods

	Sagittal Plane	Coronal Plane	Transverse Plane
Trunk:	Trunk Tilt	Trunk Lateral Bend	Trunk Rotation
Pelvis:	Pelvic Tilt	Pelvic Obliquity	Pelvic Rotation
Hip:	Hip Flexion	Hip Abduction	Hip Rotation
Knee:	Knee Flexion	Knee Flexion	Knee Rotation
Foot & Ankle:	Ankle Dorsiflexion		Foot Progression

Methods

20 Female 17 Male



Ages 5 - 17

Average 7 strides

Methods: Data Collection

GVSD

Gait Variable Standard Deviation (Best statistical measure of variability)

= $\sqrt{\sum_{t} SD(i,t)^2/T}$

where:

SD = standard deviation

i = gait variable of interest

t = time point

T = total number of time points (101)

GVR

Gait Variable Range (Sensitive to outliers)

 $= v \left(\sum_{t} RNG(i,t)^2 / T \right)$

where:

RNG = range

i = gait variable of interest

t = time point

T = total number of time points (101)

Methods: Statistical Tests

- Paired t-Test used to compare laterality
- Unpaired t-Test to compare sex differences
- ANOVA with Tukey's Post Hoc to compare between planes of motion
- Linear regression to evaluate the effect of age

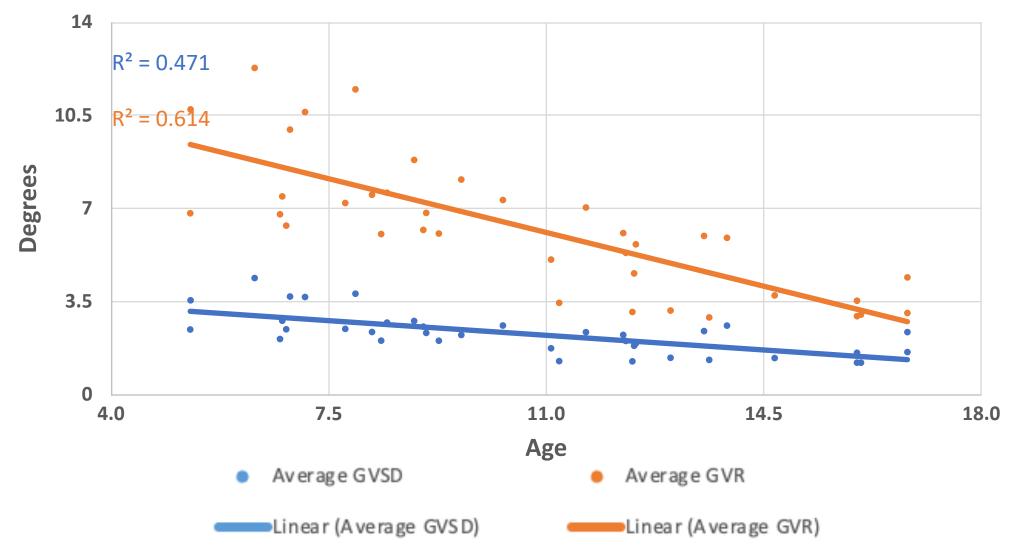
Results - Right Side

- Transverse Plane is the most variable at all body segments except for the knee
- GVSD is low, indicating that gait is consistent in TD children
- GVR is large, indicating that the range of joint motion is sensitive to outliers
- Choosing an outlier trial could affect clinical decision making

** Significant Difference between Transverse and Sagittal/Coronal Planes
Isignificant Difference between Sagittal and Transverse/Coronal Planes
* Significant Difference between Transverse and Sagittal Planes

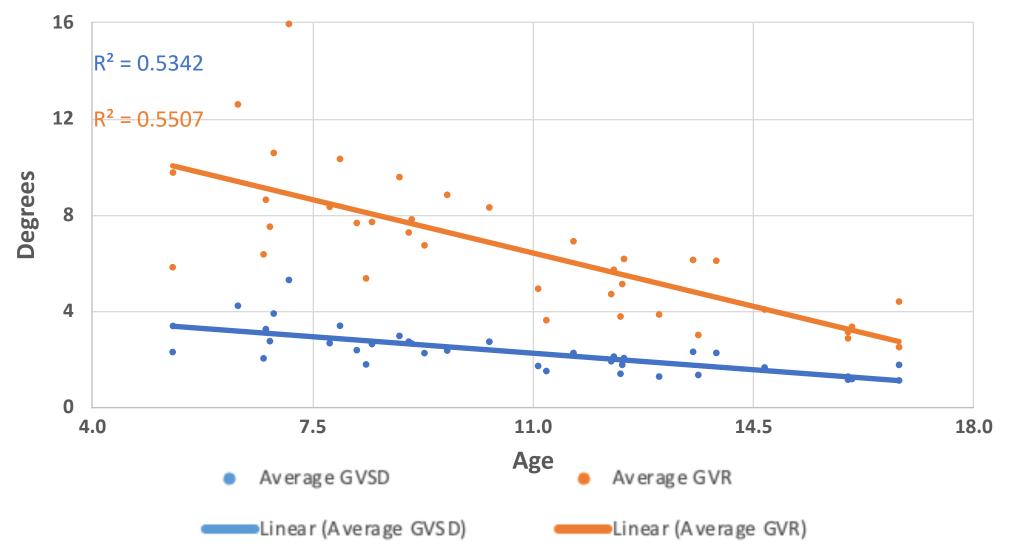
	Kinematic Measurement	GVR (deg)	GVSD (deg)
	Trunk Rotation	9.4**	3.4**
Trunk	Trunk Tilt	6.4	2.3
	Trunk Lateral Bend	4.5	1.6
	Pelvic Rotation	7.8**	2.8**
Pelvis	Pelvic Tilt	4.4	1.6
	Pelvic Obliquity	2.9	1.1
	Hip Rotation	8.3**	3**
Нір	Hip Flexion	6.3	2.3
	Hip Adduction/Abduction	4.1	1.5
	Knee Rotation	4.7	1.8
Knee	Knee Flexion	8.8 [†]	3.2+
	Knee Varus/Valgus	1.7	0.6
Ankle	Foot Progression Angle	10.4*	3.8*
AIINE	Ankle Dorsiflexion	7	2.6

Results – Left Side


- Transverse Plane is the most variable at trunk, pelvis, and ankle. Knee has most variability at the sagittal plane.
- GVSD is low, indicating that gait is consistent in TD children
- GVR is large, indicating that the range of joint motion is sensitive to outliers
- Choosing an outlier trial could affect clinical decision making

** Significant Difference between Transverse and Sagittal/Coronal Planes
+ Significant Difference between Sagittal and Transverse/Coronal Planes
* Significant Difference between Transverse and Sagittal Planes

	Kinematic Measurement	GVR (deg)	GVSD (deg)
	Trunk Rotation	9.5**	3.3**
Trunk	Trunk Tilt	6.7	2.4
	Trunk Lateral Bend	4.6	1.6
	Pelvic Rotation	7.8**	2.8**
Pelvis	Pelvic Tilt	4.4	1.6
	Pelvic Obliquity	3	1.1
	Hip Rotation	8	2.8
Hip	Hip Flexion	6.6	2.3
	Hip Adduction/Abduction	4.2	1.5
	Knee Rotation	4.8	1.7
Knee	Knee Flexion	10.1 [‡]	3. 5 ⁺
	Knee Varus/Valgus	1.7	0.6
Ankle	Foot Progression Angle	12*	4.1*
AIIKIE	Ankle Dorsiflexion	8.3	3


Results - Right Side

Effect of Age on Average GVR and GVSD for Right Side

Results – Left Side

Effect of Age on Average GVR and GVSD for Left Side

Conclusions:

- Statistically and clinically significant kinematic variability was the greatest in the transverse plane in all body segments except for the knee, where variability was greatest in the sagittal plane.
- Foot progression can have up to a 12° GVR, indicating that surgeons should not place emphasis on a single trial in isolation for surgical treatment.
- Variability of gait decreases in older children, so determination of fixed gait deviations will be more accurate closer to skeletal maturity.
- Sex and laterality had no statistically significant effect on variability.

Limitations & Further Research

- Limitations:
 - Equal weight given to all 101 time points of the gait cycle
 - Analysis limited to typically developing children
- Future Directions:
 - Expand analysis to children with neuro-developmental disorders
 - Assess variability at clinically significant points in the gait cycle.
 - For example: Ankle position at initial foot contact.

Thank You!

