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Abstract Dispersal within metacommunities can play a
major role in species persistence by promoting asynchrony
between communities. Understanding this role is crucial
both for explaining species coexistence and managing land-
scapes that are increasingly fragmented by human activities.
Here, we demonstrate that spatial patterning of dispersal
connections can drastically alter both the tendency toward
asynchrony and the effect of asynchrony on metacommu-
nity dynamics commonly used to infer the potential for
persistence. We also demonstrate that changes in dispersal
connections in strictly homogeneous predator-prey meta-
communities can generate an extremely rich variety of
dynamics even when previously investigated properties of
connectivity such as the magnitude and distribution of dis-
persal among patches are held constant. Furthermore, the
dynamics we observe depend strongly on initial conditions.
Our results illustrate the effectiveness of measures of spa-
tial structure for predicting asynchrony and its effects on
community dynamics, providing a deeper understanding
of the relationship between spatial structure and species
persistence in metacommunities.
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Introduction

Modern ecology has demonstrated that spatial processes
play a major role in community functioning. Spatially
extended communities (‘“metacommunities”) differ fun-
damentally from the classical conception of individual
well-mixed communities (Leibold et al. 2004) as their
component parts (patches) can exhibit differing dynam-
ics (“synchrony”), while still interacting through dispersing
organisms. Asynchrony can include a range of dynami-
cal differences depending on operational definition, from
variation in the timing of otherwise identical community
dynamics to dramatic shifts in equilibrium values or limit
cycle amplitudes. Asynchronous dynamics have many dra-
matic effects on metacommunities, enabling the persistence
of extinction-prone species through rescue effects (Brown
and Kodric-Brown 1977), reducing population variability
through averaging (Maser et al. 2007), and otherwise buffer-
ing the effects of perturbations (Buckling et al. 2000; Ches-
son and Huntly 1997) relative to isolated communities. As
the key feature governing the effects of space on commu-
nity dynamics, understanding the conditions necessary for
asynchrony to occur is a crucial goal of metacommunity
ecology (Gouhier et al. 2010; Steiner et al. 2011), and has
implications for conservation, reserve design, and biolog-
ical control (Crooks and Sanjayan 2006; Murdoch et al.
2003). It has been well demonstrated that high dispersal
tends to synchronize communities and thereby remove the
effects of space from metacommunities (Hastings 1993;
Koelle and Vandermeer 2005). However, the structure of
dispersal connections (“spatial structure”) between commu-
nity patches determines the amount of dispersal necessary
to synchronize a metacommunity (Arenas et al. 2008), play-
ing a central although less understood role in governing
metacommunity dynamics.
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A complete theory on the dynamics of ecological com-
munities therefore requires that the effect of spatial struc-
ture on metacommunity synchronization be fully described.
Thus far it has been well established that synchronization is
strongly influenced by the number of dispersal connections,
or “connectivity,” (Liebhold et al. 2004; Paradis et al. 1999;
Holyoak and Lawler 1996) and the evenness of their distri-
bution among patches, or the “degree” of each patch (Watts
and Strogatz 1998; Holland and Hastings 2008; Gilarranz
and Bascompte 2012). As a result, connectivity and related
measures have been the focus in studies of structure and
dynamics (Bunn et al. 2000; Marleau et al. 2014; Plitzko
and Drossel 2015; Saunders et al. 1991; Taylor et al. 1993).
However, such measures remove information about the pat-
terning of connections among communities such as how
often communities share neighbors, form tightly intercon-
nected neighborhoods, and how distant communities are
from these neighborhoods (Arenas et al. 2008). The pat-
terning of connections among communities also includes
many properties which may be unintuitive but play an
important role dynamically such as the spectral properties
of the connectivity matrix (Barahona and Pecora 2002).
Because these elements of structure are more challenging
to measure and observe, they are often overlooked and as
a result the role of the patterning of connections in meta-
community synchronization has not been well described.
Moreover, overlooking these features risks confounding the
effects of connectivity and the patterns of connections on
synchronization. Identifying the unique contribution of the
patterning of connections among communities is therefore
necessary to understand how spatial structure determines
synchronization in metacommunities.

Here, we demonstrate the unique effects of dispersal con-
nection patterning on the tendency of metacommunities to
synchronize, independent of connectivity or degree distribu-
tion. To accomplish this, we consider a set of “regular” spa-
tial structures with the same number of connections between
each patch and a completely even distribution of these con-
nections among patches. The set of regular spatial structures
we consider are therefore perfectly equivalent in terms of
measures of connectivity, specifically the total number of
connections and the evenness of their distribution among
communities. Nevertheless, alternative measures describing
the pattern of connections, such as the frequency of clus-
tering and topological distance between communities, do
differ among these structures and have been shown to influ-
ence synchronization (Arenas et al. 2008; Barahona and
Pecora 2002; Watts and Strogatz 1998). We further asses
the role of the pattern of connections among communities
in synchronization by comparing the dynamics of a simple
metacommunity model on regular structures with equal con-
nectivity but varying patterns of connection. We consider a
simple case of community dynamics, a predator-prey model,
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to focus on the role of spatial processes. Furthermore, by
holding parameter values equal across all patches, we guar-
antee that each patch is identical to every other across all
spatial structures, as each patch has the same number of
dispersal connections and local dynamics. These metacom-
munities are therefore completely homogeneous and highly
prone to synchrony.

We explore the role of the patterning of dispersal con-
nections on synchronization by analyzing the reaction of
these metacommunities with regular spatial structures to
a range of asynchronous initial conditions, simulating a
spatially heterogeneous perturbation. These tests reveal the
tendency of individual structures to either synchronize or
switch to asynchronous states following perturbation, high-
lighting the role of connectivity-independent structure. We
further determine how asynchrony influences the dynamics
of communities, particularly how well asynchrony stabilizes
an unstable predator-prey interaction at both the regional
and local scales. Through this analysis, we hope to fur-
ther reveal the deeply complex relationship between spatial
structure and community interactions, a topic of central
importance for understanding metacommunity ecology and
explaining the spatial dynamics observed in nature.

Methods

To simulate metacommunity dynamics, we chose a
Rosenzweig-MacArthur predator-prey model (Rosenzweig
and MacArthur 1963) with dispersal:

dH; H, aP; H; -
! rﬂ(Lﬂi)——Li+Dzyﬁ% (1)
j=1

dt K) brtH
dP; caP; H; "
a0 " pwm PP LD @

where H; and P; are the prey and predator abundances,
respectively, in patch i, K is the prey’s carrying capac-
ity, a is the predator’s attack rate, b is the half-saturation
coefficient of the predator’s functional response, c¢ is the
conversion rate of consumed prey to predator offspring, m
is predator mortality, D is dispersal rate (equal for both
species). The matrix L;; is a negative Laplacian describing
the structure of dispersal between patches; an off-diagonal
element L;;, (i # j) indicates the presence (1) or absence
(0) of dispersal from patch j to patch i and a diagonal ele-
ment L;; is the negative sum of off-diagonal elements for
column i, reflecting the total amount of emigration from
patch i. In our networks, dispersal is always bi-directional
(Lijj = Lji).
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To further simplify model analyses, we employ a non-
dimensional form of Eqgs. 1 and 2 (Holland and Hastings
2008):

dh; p

d—t’ = hi(1 — Oh;) — —— +82Lljh 3)
dp; ¢Pz i

- = sy L 4
ar 1w P Z P X

This model retains the same dynamics, but is rescaled
in terms of ratios of initial parameters. This reduces the
number of parameters while highlighting the relationships
which drive dynamics. Time is rescaled in terms of the
prey instantaneous per-capita growth rate (tr = rt). As a
result, dynamics are determined exclusively by the predator-
prey conversion rate relative to prey growth(¢p = ca/r),
prey self-regulation (¢ = b/K), predator mortality rela-
tive to prey growth (n = m/r), dispersal relative to prey
growth (6 = D/r), and spatial structure (L) which remains
unchanged from the previous equations. To complete the
substitution predator and prey abundances are rescaled (h =
H/b, p = aP/rb). To focus on the effects of changing spa-
tial structure, we constrained dynamics to parameter values
analyzed in Holland and Hastings (2008) corresponding to
high-amplitude oscillations (¢ = 5,6 = 3,n = 1). In
nature these dynamics would correspond to a highly extinc-
tion prone, unstable predator-prey pair, and are therefore
ideal for observing the effect of spatial stabilizing mecha-
nisms on species interactions. Similarly, a single value of
dispersal was used (6 = .018). Preliminary simulations
showed little effect of dispersal beyond the expected trend
of increasing asynchrony with lower dispersal. Thus, we
selected a relatively high level of dispersal where asyn-
chrony is possible but not universal to emphasize the effects
of structure on asynchrony.

Spatial structure

We explore the effects of spatial properties on asynchrony
and community dynamics by varying spatial structure L.
Specifically, we isolate properties of spatial structure inde-
pendent of connectivity by using only regular structures.
These regular structures are all constructed with ten patches
and four connections per patch, for which fifty-six distinct
structures are possible. Thus, connectivity and related mea-
sures do not vary among these structures. Other properties
expected to play a role in synchronization do vary among
these structures, however, specifically mean path length and
transitivity (Arenas et al. 2008). Path length is the short-
est number of dispersal connections an organism must cross

to get from one patch to another, one for directly con-
nected patches, two for those which share a neighbor but
no direct connection, etc. Mean path length is the average
of path lengths between all patches, and reflecting how iso-
lated patches are from each other. Similarly, transitivity is
the proportion of connected patches which share a neighbor
to those which do not, measuring the tendency of patches
within a structure to form tightly interconnected clusters.
These measures were calculated for our networks using the
igraph package in R (Csardi and Nepusz 2006).

We also characterize spatial structure using spectral the-
ory, which utilize the eigenvalues (1) and eigenvectors
(v) of the spatial structure matrix as a Laplacian matrix,
—L. Specifically, the ratio of the largest eigenvalue to the

smallest non-zero eigenvalue (’\f‘”) can be used to deter-

mine the stability of a metacommunity’s synchronized state
(Barahona and Pecora 2002). This has been shown for
any general model of coupled dynamics % = F(X;) —
) Z;':] (—L;j)H (X ), where F(X;) is the change in X due
to local processes in patch i, and H (X ;) describes the effect
of interaction with patch j. The synchronized state of this
model is S, such that X;(tr) = S(¢) for all times ¢ when all
patches are synchronized. To determine the stability of this
state, a small perturbation £ is introduced (which is a vec-
tor with an element for each patch) and separated into the
components of the eigenvectors of the Laplacian v by solv-
ing the linear system & = )", _, ¢;v;. Then, the change in
each eigenvector is given by v; (t) = ¢ielF (S@)=8h H' (S0t
where F’(S(t)) and H'(S(t)) are the Jacobian matrices
describing the effects of of local dynamics F and dispersal
interactions H on § at time ¢.

Following this, the term [F’'(S(r)) — 81; H'(S(2))] is the
master stability function, and if it is greater than zero at
any time the ith eigenmode is unstable, as perturbations
of the ith eigenvector will always increase over time. For
synchrony to be stable across all eigenvectors, [F'(s) —
3A; H'(s)] must be less than zero for all A;, the range of
which can be found from the maximum (X,,,,) and smallest
non-zero eigenvalue (A2). Due to the Laplacian’s zero row-
sum, the zero eigenvalue is associated with an eigenvector
with all elements equal and corresponds to synchrony; thus,
change in this eigenvector is ignored. The greater the range
of asynchronous eigenvalues is in terms of the ratio between
Amax and Xo, the more likely at least one value falls in
the range where [F'(S(t)) — 8A; H'(S(¢))] is less than zero
regardless of the exact model used (Barahona and Pecora
2002). While the ratio )‘K’% is commonly used in the litera-

ture, we use the inverse % to characterize our structures,
as this has a more linear distribution among the struc-
tures we consider. Following this we expect structures with
smaller values of % to be more prone to asynchronous
dynamics.

@ Springer
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Simulation methods

We ran the model with each of the fifty-six regular net-
work structures with ten patches and four connections per
patch to determine their tendency for asynchrony and result-
ing dynamics. Asynchrony was initially introduced through
variation in initial population abundance. For structure, two
hundred replicates of dynamics were simulated and ana-
lyzed. A range of randomly generated initial conditions was
used to determine the relative frequency of synchrony and
the range of asynchronous state possible for each structure.
Variation in the initial distribution was introduced for each
replicate by randomly selecting abundances from the uni-
form interval [.9x, 1.1x], where X is the unstable fixed-point
equilibrium density of species x: for prey (%), h= n/(d—n)
and for predators (p), p = (1 + fz)(l — Oﬁ). Dynamics
were simulated for 20000 time steps, by which point greater
than 95% of simulations had reached equilibrium. Dynam-
ics were simulated by solving the model system with the
R implementation (library deSolve) of the FORTRAN Ode-
pack solver Isoda (Soetaert et al. 2010). Select simulations
were also checked using the ode45 method of the deSolve
library, with no differences found.

For each simulation, we measured a number of char-
acteristics of metacommunity dynamics, particularly those
describing the ability of both species to persist. As there
is only a single tightly-coupled predator-prey pair, oscil-
lations and variability are highly correlated between both
species allowing us to simplify analysis by focusing on one
species for which we chose the prey. First, we consider
variability as a measure of extinction risk, and measured
the variability of prey in terms of the coefficient of varia-
tion (standard deviation divided by the mean) in the final
2000 time steps of each simulation. This was done both for
the total regional abundance of the metacommunity, which
shows the effects of averaging in asynchronous states, and
for the local abundances of patches to describe the appear-
ance and stabilizing properties of dynamical heterogeneity.
Finally, asynchrony was measured in terms of correlations
between patch dynamics (p;;), measured by the Pearson
product-moment correlation coefficient. Given the deter-
ministic nature of our simulations we use a strict definition
for synchrony, p;; = 1, considering patches with any form
of dynamical differences to be asynchronous. For asyn-
chronous equilibria, patches are grouped into synchronized
“clusters” (Holland and Hastings 2008) and characterized
by the number of clusters present; synchronous states hav-
ing one cluster, and purely asynchronous states having as
many clusters as patches, or ten.

Source code in R for all methods available at github.
com/SMHayes/Beyond-connectivity.
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Results
Frequency of asynchrony

We observed a substantial amount of variation in the fre-
quency of synchrony among metacommunities with regular
spatial structures. Differences in the frequency of synchrony
and the utility of mean path length, transitivity, and the eigen-
ratio —2- in predicting them are summarized in Fig. 1. Of

Amax
these measures, the eigenratio % appears to be the best
individual predictor of a metacommunity structure’s ten-
dency to synchronize. A combined model using all predic-
tors was considered; however, within our regular networks,
these measures are strongly correlated with one another;
p(%, Transitivity) = .795, p(%, Mean Path Length)
= .834, and p(Transitivity, Mean Path Length) = .720. As
a result of this multicollinearity, there is little difference
between the predictive power of all measures combined and
Ajﬁ alone.

As expected, synchrony was very common among our
metacommunties given the high degree of homogeneity
inherent in regular spatial structures. Nevertheless, a num-
ber of spatial structures were highly resistant to synchro-
nization, and in general, the tendency toward synchrony
varied considerably among structures. This presents a clear
demonstration that the spatial variation among these net-
works plays a significant role in their dynamics despite no
differences in connectivity both at the level of the entire
structure and between individual patches. While the eigen-
ratio % appears to capture much of the dynamically
relevant variation, a great deal remains unexplained even
when mean path length and transitivity are included.

Asynchronous dynamics

Despite the strict homogeneity of our metacommunities,
as each community is identical and connected to exactly
four other communities, we observe a substantial range of
different types of stable asynchronous dynamics, in which
patches differentiate into several different internally syn-
chronized dynamical regimes (“clusters”). We illustrate sev-
eral examples of these dynamics in Fig. 2 and compare them
with the synchronous equilibrium (a) which is identical for
all structures. Synchronous dynamics are characterized by
extremely high-amplitude oscillations and significant peri-
ods of low abundance for both species. Unsurprisingly,
asynchronous dynamics have universally lower variabil-
ity than the synchronous state. Additionally, asynchronous
dynamics typically feature at least one synchronized clus-
ter with oscillations of much higher average abundance and
lower amplitude than the metacommunity average. These
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Fig. 1 Predictive value of measures of spatial structure on meta-
community synchrony. Here, the frequency out of 160 simulations
that resulted in synchronized dynamics are plotted against structural
descriptors for each of 56 unique metacommunity structures. Stan-
dardized coefficients were obtained by fitting simple linear regression

patches in many cases are phase-locked and adjacent to
several high-amplitude patches (Fig. 2b, d, e). In these
cases, their maxima can be seen to occur just before the
maxima of high-amplitude patches, when abundances of
high-amplitude patches are very low. Dispersal is therefore
having a relatively high net negative effect on the low-
amplitude patches during their maxima, as migrants are sent
to the high-amplitude patches at their minima at a much
higher rate than they are received. This trend then switches
following the low-amplitude patches’ maxima, with disper-
sal having a net positive effect as the high-amplitude patches

models for each predictor as implemented using the Im command
in the R package “stats”. The associated R’ values estimate how
much variation in each metacommunity’s frequency of synchrony is
accounted for by the given measures of spatial structure. The eigenratio
22 js the single best predictor of synchrony based on R?

Amax

increase toward their maxima. Asynchronous patterns can
also be more complex, exhibiting complex multi-point limit
cycles (Fig. 2c) and secondary low-frequency oscillations
(Fig. 2e).

A full summary of the frequency and variability of asyn-
chronous dynamics produced by each regular spatial struc-
ture is presented in Fig. 3. The variability of predator-prey
oscillations are universally lower for asynchronous equi-
librium at both the local scale (Coefficient of variation of
prey .22 — 1.40 for asynchrony, 1.66 for synchrony) and
regional scale (coefficient of variation of prey .43 — 1.36

Fig. 2 Examples of the
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Fig. 3 Illustration of the
dynamical variation observed as
a result of variation in
metacommunity spatial structure
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and initial conditions. The y-axis
shows each metacommunity
structure ranked by decreasing
eigenratio. In (a), we show
differences in the frequency of
all observed spatial patterns of
asynchrony, noting that many
structures produce multiple
types of stable spatial patterns.
In (b) and (c¢), we show the
effect of these various spatial
patterns on the total regional and
lowest observed local variability b
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for asynchrony, 2.78 for synchrony). While this is expected,
the degree to which asynchronous equilibrium states vary rel-
ative to each other is surprising. Additionally, we note that
different asynchronous equilibria vary in their effect on the
regional and local scales. Specifically, states with two to three
clusters typically have higher regional variability (Fig. 3b)
than higher clusters states, but many have patches with equal
or lower local variability (Fig. 3c). This suggests that the
variability of asynchronous states are being influenced by
multiple mechanisms acting at different spatial scales, and
the degree to which each mechanism plays a role varies
depending on structure and pattern of clustering.

Any given spatial structure may produce multiple types
of asynchronous patterns with varying numbers of synchro-
nized clusters (Fig. 3). This leads, somewhat surprisingly,
to considerable differences in the pattern of asynchrony and

@ Springer

Metacommunities by decreasing A»/Amax

predator-prey dynamics produced even by the same disper-
sal structure. While a single structure may produce multiple
types of dynamics, each asynchronous regime is tied to a
specific pattern of clusters. The patterns possible are con-
strained by the structure of dispersal, specifically in that all
patches belonging to a synchronized cluster are connected
to the same types and numbers of patches belonging to other
synchronized clusters. For example, in the case of Fig. 2b,
teal patches are always connected to four red patches, and
red patches to three red patches and one teal patch. This
guarantees that patches which are synchronized experience
the same fluctuations as a result of dispersal. Thus, the struc-
ture of dispersal connections within the metacommunity is
influencing not only the frequency of asynchrony, but also
the variability of asynchronous dynamics by constraining
how partially synchronized clusters can be distributed.
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Altogether, it is extremely challenging to predict the
variation in asynchronous dynamics we observe from spa-
tial structure alone. In Fig. 3a, it is clear that while the
total frequency of asynchronous dynamics decrease with the
eigenratio of the structure, the number of clusters observed
in these patterns is highest at intermediate levels. Because
lower cluster states often have higher regional variability,
this means that patches with intermediate values of the
eigenratio also have the lowest regional variability. How-
ever this does not hold for local variability. Furthermore,
the actual variability of each structure will vary dramatically
depending on the specific pattern of clustering realized.

Discussion

Our results demonstrate that the tendency of metacommu-
nities to synchronize is strongly influenced by the pattern
of connections among community patches, even when con-
nectivity and degree distribution are held constant. This is
an important step to better understanding how metacommu-
nity dynamics are influenced by spatial structure given the
focus on connectivity in the literature (Bunn et al. 2000;
Marleau et al. 2014; Plitzko and Drossel 2015; Saunders
et al. 1991; Taylor et al. 1993). We further illustrate that
differences in the pattern of connections and initial condi-
tions among communities lead to the emergence of a wide
array of stable asynchronous dynamics, leading to substan-
tial differences in the potential persistence of an unstable
predator-prey interaction at both the regional metacommu-
nity and local patch level, despite the otherwise strict homo-
geneity of our metacommunities in which each community
is identical and connected to exactly four other commu-
nity patches. Our study is the first to produce this range of
dynamical variation as a result of such subtle changes in
spatial structure; this contrasts with earlier work that has
only produced comparable variation through heterogeneity
in connectivity or degree distribution (Holland and Hastings
2008; Gilarranz and Bascompte 2012), differences in dis-
persal among species (de Roos et al. 1998), or alteration
of community dynamics in more complex models (Marleau
et al. 2014; Hata et al. 2014). The appearance of this strik-
ing range of dynamical variation, both in the frequency and
and quality of asynchrony among metacommunities shows
the important role of the pattern of connections among
local communities in shaping the regional dynamics of
metacommunities.

Emergent asynchrony in nature
The emergence of complex asynchronous dynamics from

homogeneous metacommunities makes inferences about
habitat quality based on community dynamics challenging.

As our results demonstrate, differences between commu-
nities may be driven by spatial patterns imposed by the
structure of dispersal rather than any environmental effects,
or a combination of both. Without accounting for the effects
of spatial structure, approaches assuming that species distri-
butions are driven primarily by environmental features may
fail to accurately identify the importance of habitat patches
for conservation or predict the effects of environmental
changes on species (Keith et al. 2008; Swab et al. 2012).
When spatial heterogeneity is produced through pattern
formation, the structure as a whole is responsible for deter-
mining what patterns are possible and the resulting effects
on species. Conservation planning which includes the addi-
tion or removal of habitat or connections between them must
then consider the importance of these mechanisms.

Additionally, we have demonstrated that while asyn-
chrony generally provides enhanced stability for a commu-
nity relative to synchrony, its effect varies depending on the
spatial pattern of asynchrony. The relative strength of sta-
bilizing effects vary both at the regional scale, as through
spatial averaging and rescue effects, and at the local scale
through dispersal subsidies depending on the patterns pro-
moted by the spatial structure of the metacommunity. Plans
to promote stability at the metacommunity level then must
move beyond how to maintain asynchrony, but also con-
sider the patterns of asynchrony and their overall effect on
community dynamics.

Emergence of asynchronous dynamics

The emergence of the asynchronous equilibria we observe
is an example of pattern formation, wherein stable het-
erogeneity emerges from a homogeneous system (Turing
1952). In these cases, variation in initial conditions provides
a source of heterogeneity which is stabilized by the under-
lying structure of the environment and movement within it.
While these are typically studied in the context of Turing
instabilities, wherein spatial processes also destabilize the
synchronized homogeneous state, alternative mechanisms
for the formation of spatial patterns have been described
(Cahn and Hilliard 1958; Liu et al. 2013), and they can occur
in systems with locally stable homogeneous states (Wolfrum
2012). The patterns we observe are surprising because they
are equivalent to the special case of traveling wave patterns
as their equilibria are limit cycles rather than fixed points,
which typically require at least three species to occur (Tur-
ing 1952; Hata et al. 2014). Here they can arise with only
two species because the interaction between the predator
and prey is already prone to oscillation (Yang et al. 2004).
These dynamics are a prime example of emergent behav-
ior, wherein the interactions between the components of a
system give rise to collective dynamics which cannot be
predicted by understanding the parts alone (Anderson and
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et al 1972). Despite each community patch in our simu-
lations being identical when viewed individually, utilizing
the same parameter values and connecting to precisely four
other patches, they can generate entirely different dynamics
depending on the structure of the greater metacommunity
and their position within it.

We describe the effects of this emergent asynchrony on
the dynamics of metacommunities at both the local and
regional scale. Total regional variability (Fig. 3b) is deter-
mined both by the variability of individual patches and an
additional reduction due to spatial averaging effects that
result from phase differences among communities’ limit
cycles in our simulations (Goldwyn and Hastings 2008).
Spatial averaging effects occur on the regional scale of
the metacommunity, reducing total regional variability and
extinction risk by buffering population minima with dis-
persal from populations at different points in their limit
cycle (Briggs and Hoopes 2004; Maser et al. 2007). Spa-
tial averaging does not cause changes at the local scale,
however, and alone cannot be responsible for the differ-
ences in the dynamics among communities in the same
metacommunity that we observe, as in Fig. 3c. These dif-
ferences are created by an additional interaction with the
non-linearity of species’ interactions, which causes the same
relative amount of dispersal to have different effects on
communities depending on their current position in their
limit cycle. Dispersal can therefore simulate the effects of
changing prey growth or predator attack rates and change
the shape of communities’ limit cycles (de Roos et al. 1998;
Briggs and Hoopes 2004). The effect of dispersal on the
shape of the limit cycle depends on the magnitude of disper-
sal between communities, which is increased by differences
among communities. This feedback then causes the emer-
gence of a heterogeneous spatial pattern if a stable pattern
of differences among patches can be reached.

Spatial structure determines the emergence of stable
asynchronous patterns from our homogeneous metacommu-
nities primarily by constraining the spatial patterns possible.
As discussed, in all observed spatial patterns all patches
in a synchronized cluster are connected to the same type
and number of other synchronized clusters. This arrange-
ment is otherwise known as a balanced equivalence relation
or balanced coloring, and is strictly required for the pat-
tern of asynchrony to be stable (Theorem 6.5, (Stewart
et al. 2003). The number and corresponding pattern of
these balanced colorings is specific to the underlying spa-
tial structure, dictating the number of synchronized clusters,
a property which has been previously suggested to be the
major determinant in differences between asynchronous
metacommunities (Holland and Hastings 2008). However,
we observe that metacommunities with different numbers
of clusters can have identical stability properties and vice
versa (Fig. 3). Beyond influencing the synchronization of
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individual patches, structure also constrains how synchro-
nized clusters of unique dynamics interact with one another.
This indirectly determines the magnitude of dispersal expe-
rienced by each patch, a key driver of differences in the
variability and limit cycles of each patch.

Conclusion

Overall, we find that characteristics of metacommunity spa-
tial structure independent of connectivity play a crucial
role in determining dynamics not only by influencing asyn-
chrony frequency, but also by constraining the action of
asynchrony’s stabilizing mechanisms. Our findings strongly
suggest a need to both move beyond connectivity as the
focus of spatial structure and to move beyond the pres-
ence or absence of synchrony to understand metacommunity
dynamics. The spatial patterning of partially synchronized
clusters is a major determinant of the effect of space on
interactions between species. Considering that spatial struc-
ture is being dramatically altered as a result of human
development and the importance of these mechanisms for
maintaining stability of communities and persistence of
species, a deeper understanding of the relationship between
spatial structure, patterns of synchrony, and metacommunity
dynamics is absolutely necessary both from a theoretical
and conservation perspective.
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