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Politics takes place in time and space -- both the immutable physical space and the institutional space that
politics can alter, but with much inertia. The size of polities matters for their functioning, as stressed early
on by Robert Dahl and Edward Tufte in Size and Democracy (1973). Institutional size places constraints.
For instance, in a 5-seat district at least one party and at most five can win seats. Within these bounds
politics is not predetermined, but at and close to these bounds the limiting frame does restrict the political
game.

Things take time. Sizes of populations, polities and markets change over time, but not
instantaneously. Change rates over time impose further constraints on politics and on factors that affect
politics. This is another limit.

The effects of such limiting frames have concerned me over 35 years, and it is time to give an
overview of my contribution to this aspect of political science.1 The purpose is twofold: Make my
approaches and results more understandable (even to myself), and enable others to extend the use of this
particular set of methods to further problems in political science and related fields.

The general focus of this endeavor has been modeling the impact of physical and institutional
constraints on the political process and the society more generally. By modeling I mean logical
quantitative models. These models go beyond empirical correlation analysis that is quantitative but does
not specify logical connections. They extend logical reasoning to a degree of quantitativeness that goes
beyond "When x increases, y must decrease". A logical and quantitative model is more specific: "When x
changes by a certain amount, y must change by a specific corresponding amount, because of the following
mechanisms or constraints". The resulting theoretical curves, y vs. x (or in many variables), can then be
compared to empirical findings.

More specifically, the issues I have tried to model fall into the following four categories.
1) The size of countries, assemblies and electoral districts matters for their functioning. Exactly

how does country size affect the size of its legislative assembly, its foreign trade/GNP ratio,
and the sizes of cities?

2) Sizes of populations, countries, and defense budgets change over time -- growing, declining,
interacting. How do more universal patterns of growth and duration enter those of empires
and cabinet coalitions? How do social phenomena such as population explosion and
hyperinflation proceed?

3) The number and size distribution of political parties is affected by institutional frameworks.
According to which logical models?

4) Finally, conversion from people to representatives takes place in several forms. Popular votes
translate into assembly seats for different parties. Populations of countries determine their
seat shares in supranational assemblies. The conversion is usually less than perfectly
proportional, under-representing the smaller parties, yet over-representing the smaller
nations. What are the hidden rules of conversion?

Such are the questions that have puzzled me. My physics background has influenced the choice of
topics tackled and the methods used. I have preferred issues where hard numerical data are available at
least in principle -- square kilometers, populations, numbers of votes and seats, durations in months --
rather than percentages in opinion polls, game theoretical combinations and the like. I appreciate the
value of the latter but personally prefer to focus on issues where logical quantitative models can be built
and tested with hard data. It puts me outside the study of the core of the political process, but when the
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core processes are affected by outside constraints, then being outside the core is not the same as being
marginal. Indeed, some cores may be disentangled by first addressing the external layers in a systematic
way.

Some of my topics extend into related fields. Trade/GNP ratio belongs to political economy, the
populations of cities within countries to geography, and world population growth to demography. I am
not concerned with disciplinary borders. These issues bring understanding about the general methodology
used and thus contribute to potential further applications in politics.

This overview is limited to those aspects of my work that are universal -- models that apply over
time, space and cultural differences, to the extent the underlying assumptions hold. This is science in the
strict timeless meaning of the term. Political science also includes painstaking collecting and processing
of empirical data, as well as softer aspects: qualitative area studies, fashionable trends, and glorified
journalism. I have done my share of it, including about 50 articles (some of them quite quantitative) and
several books on small East European nations.2 This is outside the scope of the review. So are numerous
analyses of electoral systems that involve no model building as such.

I have received support and encouragement from many colleagues. The short list of thanks would
have to include Harry Eckstein, Bernard Grofman, and Arend Lijphart. Going further back, my training in
logical thinking began with my mother. When I guessed at 11 times 3 being 28, she did not say it was the
wrong answer but built on my knowing that 10 times 3 just meant adding a zero. She said: "But how
much is 10 times 3? Then how can 11 times 3 be less?" This is the moment when the 5-year-old realized
that, beyond authoritative transmitted knowledge, there was such a thing as logical reasoning, in
everyone's reach. And then there was this young physics instructor, Monsieur Flèche, at Lycée Mangin in
Marrakech who drove me nuts by always muttering about things being actually more complex than he
was supposed to tell us. I wanted simple answers. We both were right.

1. Lessons from Physics

A logical order would be to present first my general philosophy and method in some detail, pointing out
its strong, weak and complementary aspects, compared to those now predominant in political science.
Only thereafter would the approach be applied. Yet I start here with only short and incomplete
methodological notes, because it's the results that matter. If my results awake interest in readers, then they
might wish to look further into the method. If not, why bother?

The payoff of any method should be in expanding our explanatory power. Yet the very term
"explanatory" needs explaining, because it has undergone a risky shift since the times that canned
statistical analysis programs became widespread. Suppose a multifactor correlation analysis tying y to x1

and x2 leads to R2=0.60. This would mean that x1 and x2 account for 60% of the variation in y. In the
statistician's shorthand, they "explain" 60% of the variation, and both may be statistically significant. But
throw in another variable x3, and R2 may go up while the previously significant x1 may become
statistically non-significant. Then what does x1 "explain" in a substantive way?

The statistician cannot be faulted for using "explain" as a short synonym for "accounting for
variation", because it is not his job to look into sociopolitical reasons behind the regularities. But a social
scientist should do so. In the example above, x1 and x3 are obviously collinear to an appreciable degree.
Which one comes first and affects the other? Or do they both result from some underlying third factor?
There are many ways to tackle the problem, some of them statistical (e.g. with lagged variables).
Constructing logical quantitative models is another approach. In retrospect, my first two incursions into
such models for social sciences came early on. They offer a nice starting point, before bringing what I
learned from studying physics.

The Battle Equations. While herding our seven cows on an Estonian farm I had plenty of leisure
time and, since WWII was going on, I pondered the following. Suppose 100 men fight 50 men to death on
an open field. The two sides have equal guns and skills. How many of the larger force will remain when
the smaller force is destroyed? I sensed it would be more than just 100-50=50, because while the smaller
force manages one hit, the larger one will already have two hits, so that the ratio changes from 100/50=2
to 99/48, which is more than 2. Thus the advantage of the larger force keeps increasing. I could not



3

proceed much further because I had no paper with me in the pasture, and at home there were other things
to do.

Much later, while working in an industrial laboratory, I recalled the problem and easily solved it,
using differential equations, only to find that F. L. Lanchester had published such equations much earlier
(see Lanchester 1956). They are akin to Richardson's arms race equations discussed in Section 4.6. The
basic idea is to consider what happens during a short time spell, and deduce the consequences over a
longer period.

Reporting of Casualties. As I was completing high school in Marrakech, the first Moroccan
uprising against French colonial rule took place in Casablanca. My friend Jacques Favreau, with family in
high military circles, asked me to guess how many people actually were killed. My answer was along the
following lines. "The official figure reported in the newspapers is forty. Our Moroccan servant claims
about four thousand. Taking the geometric mean yields about four hundred." It turned out I was off only
by 100, compared to confidential army estimates.

Why did I use the geometric mean rather than the simpler arithmetic? The latter would have
amounted to slightly above 2,000, regardless of whether the official figure was 4 or 400. The discrepancy
between the rumored 4,000 and the official 40 clearly showed considerable over- and underamplification,
respectively, of the actual figure. Not knowing which side would distort more, my best possible guess was
to assume an equal distortion on both sides, by a factor of about 10. It was a model of equal distortion.

Little did I suspect that going by the geometric mean of the extremes would become the
workhorse of what I consider my main accomplishment -- putting specific numbers into Duverger's
statements (1951, 1954) on the number and size of parties (Sections 5 and 6). Jacques, who later
commanded an armored division, said he could not think of any other person who would try to answer his
question by such means. How many such people are there, almost 50 years later, among established
political scientists?

It is time to proceed to the lessons of physics. My first MA (yielding a note in Nature, Taagepera
et al. 1961) as well as my Ph.D. (resulting in Taagepera and Williams 1966) were in experimental solid
state physics. I worked in applied physics until 1970, while taking night courses in political science.

Among model building techniques (used in Taagepera and Nurmia 1961), I was struck most by
the ability of differential equations to start with stipulations of local conditions and end with broad overall
patterns. Thus the simple statement "rate of growth is proportional to existing size" is expressed as a very
simple equation, dS/dt=kS. Yet it produces the much more complex exponential pattern, S=S0exp(kt),
where k is rate constant and S0 the value at time t=0. In political science around 1970, only Lewis F.
Richardson's longstanding arms race equations (with major publication in 1960) applied such an
approach, with several differential equations interacting, along with the aforementioned battle equations.

Connected with the former, initial conditions play a role. For instance, they determine the value
of the constant S0 in the exponential equation. Sometimes boundary conditions play a similar role, in
conjunction with assumption of continuity (or quasi-continuity, in the case of granular matter). Along
with basic differential equations for electricity, the nature of container walls (some conducting, some
isolating) fully determines the electric field in every location. Thus various constraints help make a
general equation more specific.

Another notion is minimizing of some quantity. When traversing media that impose different
speeds on light, light follows a path that minimizes the total time needed. While differential models are
solved by integration, here the path is opposite: the derivative of the initial equation is calculated and
required to be zero. All these calculus approaches assume continuity, but summations of discreet items
are often easily changed into integrations as fair approximations.

An even broader notion is squeezing maximum information out of almost complete ignorance --
ignorance-based quantitative models, as I have called them in a more detailed exposition (Taagepera
1999b). Take the growth equation dS/dt=kS. If k itself is a function of S, any growth pattern is included,
as long as no factors other than the existing size S enter. In utter ignorance of whether k is an increasing or
decreasing function of S (at a given value of S), our best guess is not to favor either direction. This means
assuming that k is constant, in the absence of contrary information. The ubiquitous and powerful
exponential pattern results. It rests not on information but on dearth of it.
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A specific aspect of the ignorance-based models is to determine the extremes that are
conceptually possible. In the absence of any other information, there is no reason to expect the median of
actual cases to be closer to either conceptual extreme. E.g., in an electoral district where 25 seats are
allocated by proportional representation, at least one party must win seats, and at most 25 parties. In the
absence of any other information, the best guess is the geometric mean of 1 and 25, meaning 5 -- which
usually comes close.

Does this reasoning "explain" the outcome any more substantively than does correlation analysis,
an approach I have characterized as empirical rather than explanatory? There is one tremendous
difference -- the difference between prediction and postdiction. Once data on a large number of elections
in 25-seat districts are in, statistical analysis may show that the mean number of seat-winning parties is,
say, 4.76, with some standard variation. Before such data are gathered, the statistician has no inkling of
the outcome. In contrast, the conceptual extremes approach enables us to make a prediction on logical
grounds, before any data are in. We might prefer a model with more political substance to it, but at least
we have some predictive ability. And we should be cautious not to look for exclusively political reasons
for phenomena that are largely determined by broader limiting frames.

There is nothing inherently physical in all these notions. This is logic, expressed in a systematic
way. Physics was merely the context in which I first learned to apply them. When shifting to the social
scene I noted analogous situations. The analogies are with the mathematical notions of continuity,
minimization, etc. No naive analogies between social and physical worlds are involved.

For each of the issues discussed, I'll first state the problem, then present the answer (usually in the
form of an equation) and supply a data graph as a reality check. Only then, when some agreement with
the real world is established, will I outline the logical model. Finally, I ask what the findings are good for.
The concluding Section 7 reviews the various methodological notions involved. To see in detail how the
models were built, how well they fit actual data, and what their assumptions and limitations are, one must
go to the original articles. I have tried to limit the references to the strict minimum; for bibliographies of
previous and related work, see articles listed.

2. Effective Number of Components

Although this is not a logical model in the strict sense, I will start here, for the following reasons. The
effective number of components (parties, in particular) has been my most visible and cited contribution to
political science. More important, this number is a building block that enters several of the models to be
described.

It is relatively easy to construct models with equal-sized components, but it is much harder to do
so when some components are large and some are tiny. In this case some equivalent constellation with
equal-sized components must be devised. As an example, when seats in a 100-seat assembly are
distributed as 45-29-21-5, do we essentially have a two-, three-, or four-party system? The problem is
analogous when the same constellation (45-29-21-5) represents the percentages of religious or ethnic
groups in a country, or the distribution of its exports among other countries, or the production shares of
automobile manufacturers.

The Laakso-Taagepera effective number of components (Laakso and Taagepera 1979) is

N = (ΣΣS)2/ΣΣ(Si
2) = 1/ΣΣ(si

2),

where S is the total size, Si the size of the i-th component, and si=Si/S its fractional share. The example
above is chosen so that N=3.00 exactly, suggesting that the constellation 45-29-21-5 is somehow
equivalent to 33.3-33.3-33.3. Most often N is a non-integer, making such direct interpretation fuzzier.

There are other ways to express an effective number of components (see Taagepera and Shugart
1989: 259-260 and Taagepera 1999c), but N has become the standard measure in political science
(Lijphart 1994: 70; Cox 1997: 29). It is not utterly new, having analogues in physics. In economics the
"equivalent number of firms" has been mentioned at least since the 1950s, but this notion has offered less
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interest to economists than the number of parties has for political scientists. Economists and others have
been using for a long time the Herfindahl-Hirschman concentration index, which is the inverse of N:
HH=Σ(si

2)=1/N. Hence it carries exactly the same information content. So does the Rae (1967)
fractionalization index F=1-HH=1-1/N.

Why use N rather than HH, which is simpler to calculate? It's that N has more intuitive content.
N=3.2 evokes the image of approximately three parties, while the corresponding HH=0.31 or F=0.69
evoke no such images. This becomes important in building logical models. It will be seen that various
models can be built on the basis of the number of parties, while I have noticed no ways to start from HH
or F. The latter are abstract indices, while N can be visualized.

Of course, N has its limitations.3 When one looks at coalition potential (assuming a need for
absolute majority), other approaches are advisable. In particular, N can be misleading in cases like 53-17-
9-9-8-3-1 that yields N=3.00, intimating three fairly equal parties when actually one party has absolute
majority. In such cases N should be supplemented by the inverse of the largest share (1/0.53=1.89), which
is another measure of the number of parties. Its advantage is that it falls below 2 whenever one party
predominates (Taagepera 1999c), thus automatically signaling an absolute majority. But under other
circumstances N gives us more information than the inverse of the largest share can.4

3. The Effects of Country Size

The importance of country size was stressed early on by Robert Dahl and Edward  Tufte in their Size and
Democracy (1973). In particular, they noted empirical connections with parliamentary size (1973: 80-84),
foreign trade as percentage of GNP (1973: 113-116), and military expenditures as percentage of GNP
(1973: 122-128). For assembly size, a logical quantitative model had by this time already been formulated
and tested (Taagepera 1972). A model for trade came later (Taagepera 1976a). The size dependence of
military expenditures remains to be explained, as far as I know. So do other issues, such as what
determines the number of administrative subunits in a country. On the other hand, a model for sizes of
cities in a given country (Taagepera and Kaskla 2001) extends, surprisingly but logically, to citation
shares of political science journals (Taagepera 2001c,d).

3.1. The Cube Root Law of Assembly Sizes (first or only chambers)

The number of seats (F) in first or only chambers of democratic legislative assemblies depends on
population represented (P) as

F=P1/3,

as a first approximation (Taagepera 1972). E.g., for P=8 million, one would expect F=200. When the
population is unusually young and largely illiterate, assemblies tend to be smaller. Hence a second
approximation for the cube root law is

F=(2LWP)1/3,

where W is the working-age share of the population and L is the fraction of adult population that is literate
(Taagepera 1972). In this form, the law applies within a factor of 2 to most countries with populations
over 500,000 (see Figure 1). Even with the second approximation, countries of less than 500,000 still tend
to have assemblies smaller than expected.5 Communist one-party states tend to have larger assemblies
than expected. The overall correlation between logF and logP is around R2=0.8 (Taagepera and Recchia
2002).
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FIGURE 1.  Assembly Size vs. Active (adult literate) Population

Source: From Taagepera and Shugart (1989: 178).

The logical quantitative model behind the cube root law is based on minimization of the total
number of three types of communication channels: from representative to constituent, from one
representatives to another, and monitoring interactions between two other representatives. A basic
building stone that will be encountered again in other contexts is the number of communication channels
(c) between p actors. It is easy to show that it is c=p(p-1)/2, which for large p approximates to c=p2/2.
Given that communication is what turns isolated individuals into society, this equation must be among the
most fundamental in social sciences.6

Does the number of seats in first or only chambers matter in politics? The number of parties
represented and the degree of proportionality of representation is demonstrably reduced in assemblies of
less than 100 members -- meaning most countries below 1 million (Lijphart 1994). Further ways in which
assembly size may matter are offered in Dahl and Tufte (1973). Larger size can be expected to make
communication more cumbersome, but to an extent that is hard to pin down. We'll see that assembly size
becomes a significant building block when constructing a model of representation.

3.2. The Size of Second Chambers

Second chambers are constituted on quite varying grounds. They tend to have fewer seats than the
corresponding first chambers, but no general model has been devised. The best empirical fit of second
chamber sizes (S) to first chamber sizes (F) is S=1.00F0.79, with R2=0.68 (Taagepera and Recchia 2002).
The connection to total population (P) seems more remote: S=0.46P0.30, with R2=0.55.
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A logical model can be constructed for a subset of second chambers -- those where the seats are
based on territorial subunits (federal or other). If the number of such subunits is n and the first chamber
has F seats, then the best guess for second chamber seats, in the absence of any other knowledge, is

S=(nF)0.5

(Taagepera and Recchia 2002). The empirical best fit between S and (nF)0.5 is S=1.18(nF)0.5+6, with
R2=0.45 (see Figure 2).

FIGURE 2.  Number of Subunit-based Second Chamber Seats vs. the Geometric Mean of First
Size Chamber Size and the Number of Subunits.

Source: From Taagepera and Recchia (2002).

This equation results from an ignorance-based model based on two boundary conditions. 1) To
represent n units, at least n seats are needed -- this lower limit would represent pure representation of
territorial units regardless of their populations. 2) A size equal to that of the first chamber (S=F) is taken
as the upper limit -- this would be pure representation of the total population. Taking equally into account
both units and their populations leads to the geometric mean of n and F. Both conceptual extremes (S=n
and S=F) do occur, but (nF)0.5  is close the actual world median.7 This model also raises a further
question: What determines the number of territorial subunits in a country? I have no answer, as yet.

Given the weakness of most second chambers, their number of seats may matter in politics even
less than is the case for the first chambers. However, the limited model presented here may offer some
guidelines when new quasi-federal structures are set up. One such timely issue is presented by the
assemblies in the European Union.

3.3. The Size of European Assemblies

The European Parliament (EP) is organized by party groupings that transcend countries. Thus it arguably
represents the population of European Union (EU) as individuals and thus is akin to a first chamber.
Indeed, EP size has edged ever closer to the cube root of the EU population. The enlargement expected in
2003 would raise EP to 732 seats, while the cube root of the corresponding population (481 million) is
784 (Taagepera and Recchia 2002).

In contrast, the Council of the EU (CEU) explicitly represents people through their countries and
hence is arguably akin to a federal second chamber that represents the countries, yet allocates more votes
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to larger countries. Indeed, from 1979 to 1999, the total number of votes in the CEU was within 10% of
the value predicted by the model S=(nF)0.5, if S is the number of CEU votes, n is the number of countries
and F is the number of EP seats (Taagepera and Recchia 2002). However, the Treaty of Nice in 2000
boosted the CEU to a size comparable to that of EP, which may not be functional. The usefulness of the
logical models for first and second chamber sizes lies in pointing out such discrepancies.

3.4. Trade/GNP Ratio

This is a quite different effect of country size, with relevance for political economy. Smaller countries
tend to have larger Import/GNP and Export/GNP ratios than larger countries. The reason becomes clear
when one considers conceptual extreme cases. A country encompassing the entire world would by
definition have zero external trade, while a country of one person would have Imp/GNP and Exp/GNP
ratios of 1.00 (and more in the case of transit trade). Assuming continuous change in-between these
limits, trade/GNP must decrease with increasing country size. The question is: How fast does it decrease?

Empirically, the following simplified equation was found to apply within a factor of 2 in 94% of
the cases (R2=0.69):

Imports/GNP=40/P1/3.

where P is country population (Taagepera and Hayes 1977). Conveniently enough, if P is in million, the
Imp/GNP ratio comes in per cent. (This would not be the case if the exponent were different from 1/3.)
The occurrence of the cube root of population is reminiscent of the cube root law of assembly sizes, but
this is coincidental. For exports, an equation close to Imp/GNP=30/P1/3 applies to a poorer degree: only
77% of the countries are within a factor of 2. The shortfall of exports compared to imports is made up by
tourism, export of labor, shipping, banking services, foreign aid, etc. The simplified combined equation

Trade/GNP=70/P1/3

applies within a factor of 2 in 92% of the cases (Taagepera 1976a; Taagepera and Hayes 1977). The
pattern is broadly confirmed by several other studies. In particular, the best fit by Dahl and Tufte (1973:
114) corresponds to Trade/GNP=66/P0.29 where P must be in millions and the ratio in per cent. Dahl and
Tufte argue convincingly why the share of foreign trade should decrease with increasing population. But
why should it decrease with an exponent around 0.30 rather than, say, 0.10 or 0.50? We need a logical
quantitative model.

The model proposed (Taagepera 1976a) proceeds from the one used in physics for absorption of
any flux of particles in homogeneous surroundings. The relative change in flow intensity (I) with distance
(r) is constant: dI/dr=-kI, where k is the absorption constant. In one-dimensional space this differential
equation integrates into an exponential function: I=I0exp(-kr), where I0 is the intensity at the source.
Many simplifying assumptions enter. I assume that goods produced flow out of such sources (factories
etc.) and are absorbed by customers. Whatever flow continues beyond a country border is called export. It
is a matter of integrating the production and absorption of many sources, assumed to spread uniformly
across the country.

In one dimension the problem is quite simple, but for two-dimensional countries only an
approximate solution is possible, as given in Taagepera (1976a). The central constant, akin to constant k
above, is the "characteristic absorption number". It is the number of people that a flow of goods
encounters before its intensity is reduced to 1/e=0.37 of its original intensity. The best fit to data, fairly
close to the empirical Imports/GNP=40/P1/3 in the population range of actual countries, is found with
population number around 500 (see Figure 3).8 For countries of more than 100 million the model falls
below the simple empirical fit, in agreement with the data points for US, USSR and China, but not India.9
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FIGURE 3.   Import/GNP Ration versus Population, on log-log scale

Source: From Taagepera (1976a).

What is the model good for? It helps to evaluate whether a country's trade is out of line given its
size. At face value, China's low Trade/GNP ratio (around 1970) suggests isolation, but in reality it merely
expresses the fact that China has a large population. Thus the model helps us compare realistically the
trade activities of countries of disparate sizes -- and also the world at different time periods. If country-to-
country trade within the European Union comes to be considered domestic trade, then the world total
trade figures will drop drastically, unless corrected using a model like the present one.

3.5. The City-country Rule

In all previous models in this section country population was a given starting point. In the following, in
contrast, it is constructed by adding up the populations of cities and other settlements. Once more we shift
away from politics, this time in the direction of human geography.

The starting point is the well-known rank-size rule, often called Zipf's law.10  It has long been
observed that the population (PR) of the R-th ranking city in a country tends to be around PR=P1/R, where
P1 is the population of the largest city. More complex variations exist, but let us focus on the simple
expression. It uses one extreme anchor point -- the largest settlement. However, let us also consider the
other conceptual extreme -- the smallest conceivable settlement, an isolated forest hut inhabited by a
single person.

The model proposed (Taagepera and Kaskla 2001) assumes that the rank-size rule applies all the
way down to this hypothetical one-person settlement, thus accounting for the entire population of the
country. What is the total population (P) that would result? The answer is

 P= P1lnP1.

This "city-country rule" predicts that the total population of a country is the largest city's population
multiplied by its natural logarithm.

How is this city-country rule is obtained?  One sums up the populations of all settlements, from
rank 1 to the rank of the smallest settlement of one person. The previous rank-size rule PR=P1/R implies
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that the rank of that smallest settlement equals the population of the largest city (P1). The summation is
then approximated by integration of P1/R, and P= P1lnP1 results.

Since the largest city often deviates from the rank-size rule (the so-called primacy factor), one
often obtains a better fit with the second- or third-largest city, using the more general expression

P= RPRln(RPR),

where P is the population of the country and PR is the population of the R-th ranked city.
The model fits well, on the average, for countries of less than 100 million. For larger countries a

more elaborate formula holds. The largest city in the country, subject to the aforementioned primacy
factor, needs a correction factor that vanishes for large countries.

The important result is that we can use the equation in the reverse direction and predict the
populations of all cities in a country, once the total population of the country is given. We can quickly tell
whether the actual city populations are large or small, compared to the world average in countries of
comparable size. Figure 4 shows the six countries with populations closest to exactly 10 million
(Taagepera and Kaskla 2001).11 If the deviations from expectation look large, please keep in mind that
this is the only model proposed, as far as I know, to deduce city sizes from the total population of a
country. We are making progress.

FIGURE 4.  City Populations in Six Countries with Exactly 10 Million Population: Actual and
as Predicted by City-County Rule with Primacy Adjustment. Both Axes Use Logarithmic Scales

Source: From Taagepera and Kaskla (2001)
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3.6. From Cities to Journals

The city-country rule applies in principle to other systems of defined total size and defined smallest
conceivable component. One example is the number of citations to various journals.

The chapter bibliographies in Political Science: The State of the Discipline II (Finifter 1993) have
a total of 1834 citations to journals (excluding books and other non-periodicals). On that basis the city-
country rule predicts 318 different journals cited at least once, and also 318 citations for the topmost
journal. The actual figures are 281 periodicals cited, and 317 citations for APSR (Taagepera, 2001c).
Figure 5 shows that agreement is good at all ranks, except for a shortfall for the 4th- and 5th-ranking
journals. The fit is almost as good for another overview, A New Handbook of Political Science (Goodin
and Klingemann 1996).

FIGURE 5.  Hyperbolic Relation between the Frequency of Citations and Ranking of Journals,
Based on the State of the Discipline II.

Source: From Taagepera (2001c).

In contrast to geographical settlements, here the rule can be tested literally down to the smallest
conceivable component.12  But the basic question remains: What is the reason for such empirical
regularity as the rank-size rule? Why should it hold? Once more, the answer comes from an ignorance-
based model (Taagepera 2001d). At the moment, the assumptions made in the model are satisfied by
journal articles but not quite so by small settlements. It's a beginning of an explanation.

We have shifted far away from the effects of country size -- and in a way closer to home for
political scientists. How does the regularity observed (and now partly explained) matter, outside the city-
country context? Directly, it remains a mere curiosity. But curiosity is the driving wheel of science. Here
we have an example of how a model devised for one purpose applies elsewhere--which means that we
have a phenomenon of considerable generality. This generality reinforces the need for understanding the
logical reasons behind the rank-size rule.
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3.7. The Number of Speakers and the Cultural Vigor of Languages

In a world where English is rapidly becoming a universal lingua franca, what is the outlook for other
languages? A language spoken and/or read by 100 million is clearly likely to preserve a wider scope than
one used by 10 million. And with one million speakers a language has better survival chances than with
100,000. But by how much?

FIGURE 6.  Weighted Circulation vs. Core Population of Finno-Ugric Peoples in the Russian
Federation.

Source: From Taagepera (1999a: 401).

To be more specific, consider the total yearly circulation of periodicals published in a language
(C). With the population (P) doubled, the existing journals double their potential market, but this is not
all. New, more specialized periodicals can be published, instead of people having to read on such topics in
another language. Hence one would expect C=kPn, with n>1 and k a constant. The number of
communication channels between P people is close to P squared (see Section 3.1), and periodicals are a
form of communication. Hence one would expect

C=kP2.

I have been able to test it with only one data set (Taagepera 1999a), because in general the
condition "all other things being the same" is hard to satisfy. The model C=kP2 fits rather well, with
k=2x10-6 (see Figure 6).13
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4. Changes over Time: Growth, Decline and Duration

In this section we proceed from world population to hyperinflation, the number of polities in the world,
and arms races. The common feature is interactive change over time. Growth of Western civilization and
the fading of older periods of history in our minds are simpler processes in principle but harder to pin
down in practice. Duration of cabinet coalitions follows a different logic.

4.1. World Population Growth

The basic growth pattern of self-sustaining systems is exponential, meaning constant relative (percent)
growth. As mentioned earlier, it fits an ignorance-based model: In the absence of any other knowledge on
whether the growth rate is increasing or decreasing, the safest median bet is that it remains constant. Most
growth processes slow down after a while, because they encounter food and space limitations or internal
checks. Such input represents addition of further information to be built into the model.

The exponential equation dP/dt=kP means growth without limits. The so-called simple logistic
equation offers the simplest way to model growth with limits, by making the previous constant k itself
decrease linearly with increasing size: dP/dt=k(1-P/M)P, where M is the maximum sustainable size. The
human population, however, has increased with an increasing growth "constant" k for the last thousand
and most likely a million years, reversing gears only a few decades ago. Hyperinflation is the only other
phenomenon I know that has an increasing growth constant.

The simple model to express super-exponential population growth consists of two exponentials.14

Basically, population still grows at a rate proportional to the existing population: dP/dt=kP. But at the
same time, technology grows at a rate proportional to the existing level of technology: dT/dt=hT.
Moreover, the two exponentials interact. A higher level of technology boosts the population growth
"constant" (k), because the same area can now support more people. And a larger population of potential
inventors boosts the technology growth "constant" (h). Thus both population and technology grow faster
than exponentially.

In mathematical terms (Taagepera 1976b), population grows as dP/dt=k[T]P, and technology
grows as dT/dt=h[P]T. Assuming that the functions k[T] and h[P] are positive power functions and that
zero population means zero technology, integration yields a quasi-hyperbolic equation:

P=A/(D-t)M,

where A, D and M are constants, and a similar equation for technology, which is harder to test. For
population,

P=50 billion/(2005-t)0.74 

agreed with various estimates within 30%, from -4000 to +1970. It is a quasi-hyperbolic pattern where
population would shoot up to infinity at "doomsday time" t=D, unless something changes. From the
vantage point of 1976, D=2005 was disquietingly close: Something had to change very suddenly.

Several other authors (Meyer 1974, in particular; cf. Taagepera 1979b) observed the same pattern
on empirical grounds, but with doomsday around 2026. Indeed, such a constant yields a better fit for
population estimates as far back as one million years. On closer look (Taagepera 1979b), I noticed a
discontinuity during the Neolithic agricultural revolution. Up to -4500, the best fit is with P=3 billion/(-
4500-t)0.74, intimating some sort of a major shift around -4500-- see Figure 7.
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FIGURE 7.  World Population (log/log scale)

Source: From Taagepera (1979b)

For the same time period a simple measure of technology is available: the blade length obtained
from 1 kg of silex. Up to -5300, this length, as estimated by archeologists (see Meyer 1974: 39-40), fits
well a quasi-hyperbolic equation using the same constants D and M as the corresponding population
equation: T=20,000 meters/(-4500-t)0.74 -- see Figure 8. What happened around this earlier "doomsday "
of -4500? Stone began to be replaced by metal, but also several early civilizations went under. This
"Neolithic singularity" deserves further study.

Later, I devised a simple graphical way to determine the doomsday date (D) and visualize the
momentous issue involved. The quasi-hyperbolic patterns become straight lines when graphed logP vs.
log(D-t), but this presupposes finding first the proper value of D by trial and error. This inelegant
approach is circumvented by shifting to population doubling time (T2) after a given date. The quasi-
hyperbolic model predicts a linear decrease in T2, hitting T2=0 at time D. Within the variation range of
various population estimates, the line

T2=0.53(2015-t)

fits for the last 1000 years, up to 1950 -- see Figure 9. Extending this best-fit line back to the most distant
estimates available (900,000 years) still yields a marginally satisfactory agreement (Taagepera 1981).15
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FIGURE 8.  Blade Length Obtained from 1kg of Silex (log/log scale)

Source: Taagepera (1979b)

FIGURE 9.  The Strange Case of the Vanishing Doubling Time of World Population

Source: From Taagepera (1981).

Populations cannot grow to infinite sizes because of limited resources (including space). Thus I
reworked the simple interaction of population and technology, adding the rate of depletion of resources
(dR/dt), which increases with larger populations and may or may not increase with higher technology.
The resulting equations, too complex to be reproduced here, are shown in Taagepera (1979b). Resource
depletion eventually imposes a decrease in population growth rate (dP/dt), as has been the case since
about 1975. A million-year trend has reached an end. Testing these more complex equations can be
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carried out meaningfully only when population figures far beyond the turning point of 1975 become
available, but a start could be made now.

Remember that the simple interaction model assumed that more people meant more potential
inventors. This may not hold when people become so numerous that many inventors merely duplicate
each other's findings. In this case the model suggests a shift from quasi-exponential (with a doomsday
date) to "doubly exponential", still super-exponential but with no finite doomsday date. Population
growth since 1900, when world population reached 1 billion, is compatible with such a simplification
(Taagepera 1979b).

How do these models matter? They highlight the potentially catastrophic nature of world
population explosion, which still continues. But this is well visible on empirical grounds too. What the
models add is explanation of the phenomenon in terms of interaction of population, technology, and
resource squeeze. Such explanation may help us to alleviate what I consider the greatest danger facing
humankind in centuries to come: a catastrophic population collapse resulting from overpopulation,
depletion of resources (including clean air) and warfare over the last remaining resources. The problem is
in the realm of demography, but solutions involve politics. Meanwhile, increasing populations affect
governability in cities and entire countries.

4.2. Hyperinflation

As mentioned, hyperinflation is the only other phenomenon I know that shows a super-exponential
pattern. Here the interaction is between loss of value by currency and loss of trust in currency by people.
It looks simple enough, but somehow I could not formulate the suitable differential equations. Drafting
the present overview made me attempt it once more, and I got it! -- only to find that the resulting equation
is essentially equivalent Cagan's (1956) money demand function. Just in case my approach might cast
some additional light on the issue, it is briefly presented here.

The price index (p) is what is tabulated in data sources, reasonably enough. But whether the
absolute prices are in thousands of yens or in tens of dollars does not matter, as long as p does not change
abruptly. What people do notice and react to is the relative (percent) rate of change of prices, r=(dp/dt)/p.
The faster prices go up (meaning high r), the faster people try to get rid of money on hand, and this
increasing turnover boosts r. Hence dr/dt=kr, so that r increases exponentially (r=aekt), and prices
themselves increase as

p=b exp(aekt).

The growth in prices is steeper than exponential (decreasing doubling times) but without shooting to
infinity at a final time (like the quasi-hyperbolic model). This is the same "doubly exponential" model
that emerges in population growth, when increasing population no longer affects the number of non-
duplicating inventors.

The model is best tested by taking logarithms twice. With the constant b properly chosen, this
leads to a linear relationship: ln ln(p/b)=kt-A, where A=ea. Figure 10 shows the degree of fit for the
famous German hyperinflation of 1921-1923. The fit is even better for the preceding German inflation of
1919-1920, which looks mild in comparison but actually annihilated the prewar savings, reducing their
value to 1/17 of the original.

What is this model good for? I have no overview of what economists have done with it. What
seems of interest to me is that it would enable us to compare the rate constants k for various cases of
hyperinflation. For Germany, k=0.25 per month during the relatively mild inflation of 1919-20.
Surprisingly, it was less during the infamous hyper-inflation of 1921-23: k=0.14 per month.
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FIGURE 10.  Prices during Hyperinflation in Germany, 1921-23

4.3. Size and Effective Number of Polities

Over 5000 years of recorded history, the areas of the largest political entities have tended to increase.
Accordingly, the effective number (see Section 2) of separate polities has decreased. We can measure that
it has decreased from close to a million to 24, when going by geographical area. When going by
population, the effective number of polities has decreased from about a thousand to 15 (Taagepera
1997b). What has caused this concentration of politics? Compared to the millennial trend, are the present
large polities overly large or overly small? If this trend continues, when can we expect a single world
government to materialize?

Consider the effective number of polities both in terms of area (NA) and population (NP). We may
expect that NP tends to be the square root of NA --

NP=NA
0.5,
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for the following reasons (Taagepera 1997b). Large polities tend to include the densest population areas.
Hence NP is smaller than NA, which is the upper limit on NP. The conceivable lower limit on NP

approaches 1. This would be the case when a single polity in one fertile river valley (a "super-Nile")
encloses most of humankind. The Egyptian Old Empire came close to this situation 4700 years ago. In the
absence of any other knowledge, we should expect NP to be the geometric mean of NA and 1, meaning the
square root of NA. Obviously, when NA=1 we must also have NP=1. The square root relationship satisfies
this condition.

In the absence of any further knowledge, the best guess for the pattern of decrease of N over time
is that its rate of decrease is proportional to N itself: dN/dt=-kN. This leads to exponential decrease:

NA=a e-kt and NP=a0.5e-kt/2,

where the constants a and k are to be determined empirically.

FIGURE 11.  Effective Number of Polities, Based on Area and on Population

Source: From Taagepera (1997b) with dashed line at square root of NA added.

This model of two interlocked exponentials works indeed -- see Figure 11. The overall pattern of
logNA vs. time is linear, corresponding to an exponential decline

NA=1300exp(-0.19t) ["EQ. 3" in Figure 11]

when t is time in centuries. Here R2=0.90. The square root model would then predict Np=36exp(-0.095t) -
- the dashed line in Figure 11. This is very close to the actual best fit for NP, which is

NP=31exp(-0.08t), ["EQ. 4" in Figure 11]

with R2=0.68. Population estimates of polities are second order estimates (compared to areas) and hence
more error is to be expected.16 What determines these rates of 19% and 8% per century? Why should the
effective number of polities tend to decrease at such average rate, and not faster or slower? It may have
something to do with increase in information flux. I have no answer, yet.

The modeling actually was preceded by considerable empirical work. The area growth and
decline curves of the largest polities at all time periods had to be measured and graphed, and only one
brief previous attempt (Hart 1945) existed. This kept me busy for quite a while (Taagepera 1968, 1978a,b,
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1979c, 1997b). Only then could the effective numbers be measured and graphed against time (Taagepera
1997b).17

What is the use of such mapping of secular trends? For one, it offers a cautious answer to the
question of when one might expect the advent of a single world state. According to the equation above,
NA=1 will be reached in +3800 (when the best fit line for NP projects to NP=1.5). Within the range of
fluctuations observed, a single word state has a nil probability prior to +2600. These are more remote
dates than suggested by most other researchers (see references in Taagepera 1997b). A completely bipolar
world (NA=2) could briefly occur by +2200 but has a 50-50 chance only by +3400. Of course, all
extrapolations are speculative as long as empirical measurements are not supported by a logical
explanation for the value of rate constant k. Meanwhile, when guessing at when "history will end", the
best we can do is look at all the history we've got and extrapolate, very skeptically.

Another use of mapping secular trends is to guess at the prospects of present large polities.
Compared to the average trend, we are emerging from one of the fluctuations toward low N, meaning
unusually large empires (British, in particular) -- cf. Figure 11. The world still is slightly over-
concentrated compared to the average secular trend, and earlier history has repeatedly seen a pendulum
movement from over-concentration to over-fragmentation. This bodes ill for some of the largest present
polities, the largest being Russia.

4.4. Will Russia Last?

Before addressing that issue, potential regularities in duration of polities must be considered. There is no
evidence that durability is tied to size. However, rapid rise may lead to shoddy structure and hence early
demise. Rise (R) and duration (D) times for individual polities can be defined: R as the time span to rise
from 20 % to 80 % of eventual maximum, and D as the time span at one-half the maximum size. Russia
has by far the longest rise time in history (235 years, after 1555), followed by Han (160 years) and several
empires at 140 years. The median duration has been 160 years, and only 16 polities have lasted 300 years
or more. The record (D=700 years) belongs to the Parthian-Sassanid continuum. Russia already has lasted
for 335 years at more than one-half its maximum area (starting in 1665). The Soviet debacle left Russia
with one-half of the Soviet population but still 75% of the area of the USSR (and the late tsarist empire).

My early work suggested that D=3R, and I even had a model of sorts to support that. But the
more polities I measured, using more refined operationalization, the more the pattern became blurred. The
best empirical fit in Taagepera (1997b) is around D=25R0.5, where R and D are in years, but the
correlation is extremely weak.

Having already lasted over 300 years, Russia has entered the perilous zone, but its record rise
time improves its chances. The empirical average of D=25R0.5 would offer Russia a duration up to year
2050. Meanwhile, however, it could continue to contract appreciably at the margins and still remain
above one-half its former maximum area. A new increase in area, though possible, is less likely. Polities
that lose momentum rarely recover it. For implications of a breakup of Russia, see Taagepera (2000,
2001a).

4.5. Arms Races

This is the first and indeed the only marked case where differential equation models were used in political
science more than 40 years ago. Lewis F. Richardson formulated his famous equations in the aftermath of
WWI, but his work was widely noticed only through the posthumous Arms and Insecurity (1960). I
approached it enthusiastically. Unfortunately, I located some intractable problems with the model, which
made me give up this line of research after 1980.

Richardson's basic model for the arms budgets (x, y) of  two mutually distrustful countries is that
increases in budgets are encouraged by the other side's budget but held back by one's own budget (which
is a burden on economy):
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dx/dt=ky-ax+g
dy/dt=lx-by+h,

where k, l, a and b are positive constants, while the inherent trust/distrust constants g and h can be
negative or positive. Richardson (1960:32) solved these equations only partly, first assuming k=l and a=b
(which is fair enough) and then adding the two equations. With S=x+y, the result is dS/dt=(k-a)S+(g+h),
leading to a simple exponential solution. And Richardson found an excellent fit for 1909-1913.

Two serious problems were pointed out in an article I published with two undergraduate students
(Wagner, Perkins and Taagepera, 1975). Summations tend to smooth out the data, making the fit look
better than it is. A more serious objection is that exactly the same equation for S would result if the two
countries ignored each other and based their budget changes only on their own previous budget -- the
usual internal bureaucratic pressure. Indeed,

dx/dt=(k-a)x+g
dy/dt=(k-a)y+h

also lead to dS/dt=(k-a)S+(g+h). Mutual stimulation could not be distinguished from self-stimulation!
Instead of the sum, one could also use the difference D=x-y. The result is dD/dt=-(k+a)D+(g-h),

and now the 1909-1913 data are scattered all over the place (see graph in Wagner, Perkins and Taagepera,
1975). Of course, differences do overemphasize random fluctuations.

Given those difficulties, I worked out the general solution to Richardson's arms race equations. It
involves two exponentials (as Richardson noted, without calculating the constants):

x=Aemt+Bent+C
y=Eemt+Fent+G,

where the constants A to G depend on the original constants (k, l, a, b, g, h) and initial conditions in a
pretty messy way, as given in Wagner, Perkins and Taagepera (1975). Surprisingly, testing with expanded
1907-1914 data yielded a fit with one single exponential (plus a constant), meaning that the budget
increases could be explained as pure self-stimulation, pure mutual stimulation, or varied combinations of
the two. In later testing of the "pre-Cuban" Soviet-American race 1945-1960 and the Israeli-Arab race
1949-1972 (Taagepera, Shiffler, Perkins and Wagner, 1975) only the US needed a second exponential --
see Figure 12. This was unsettling.

FIGURE 12.  Soviet and United States Military Expenditures, 1945-1960

Source: From Taagepera, Shiffler, Perkins and Wagner (1975). (Curves Show the Richardson Model Fit).
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The roof fell in around 1980 when my calculations showed that even the complete solution in two
exponentials still included the basic flaw: Bureaucratic self-stimulation could lead to exactly the same
observed pattern as mutual stimulation. In other words, even with the best possible data, one could not
prove there was a race going on, rather than the military machines operating in isolation and using their
existing strength to pressure for ever more resources. This result was never published, while I looked for a
conceptual breakthrough, so as to distinguish between mutual stimulation and self-stimulation. None has
come.18

4.6. Growth of Western Civilization and the Fading of History

Gray (1966) estimated quantitatively the creativity at various periods of Western history. Recalculating
his "creative points" per year (C), Taagepera and Colby (1979) found a fair exponential fit from -950 to -
400. It is equivalent to C=3.0x10-6exp(1.0t), where t is in centuries. This would correspond to the
differential equation dC/dt=1.0C, meaning an increase rate of 100% per century. More recently (from
+885 to +1935), the fit is C=0.017exp(0.6t), meaning dC/dt=0.6C or 60% increase per century. The
intermediary period (-400 to +850) offers a decrease, with no clear pattern.

Given the lack of a logical model and the inevitably subjective ratings used as raw data, one can
only observe that the exponential pattern occurs over long periods, while failing to occur during an even
longer intermediary period. The rate constants during the two exponential periods are similar (100% and
60% per century). We may wonder whether this has something to do with the rate at which existing
creativity can foster further increase in creativity -- and possibly a decrease when random chance reduces
creativity below a critical mass.

I now note that these rate constants are similar to those of the observed maximal short-term (5-
century) decreases of effective number of polities: 90% per century from -950 to -450, and 70% per
century from +1500 to +2000. Conversely, the best long-term fit to Gray's creativity points, from -950 to
+1935, is around C=0.7exp(0.20t), with a rate constant of 20% per century close to that of NA, which is
19% per century. There may be a connection.

In part, the apparent growth in creativity may be due to the fading of past history in our minds.
Indeed, in nearly all history books and tabulations of important dates more space is given to more recent
periods. In the absence of any other information it is reasonable to expect a uniform discount rate as one
goes further back in time. This would lead to an exponential pattern.

Figure 13.  The Discount Rate of History in CBS News Almanac.

Source: From Taagepera and Colby (1979)
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A quick check (Taagepera and Colby 1979) yielded a steep exponential fall for the most recent
500 years (rate constant 1.1 or 110% per century) and a slower one for the preceding 5000 years (0.08 or
8% per century) -- see Figure 13. This is akin to the decay pattern of a mix of two radioactive isotopes.
My later analysis of a number of world history books published over two centuries, however, yielded
such divergent patterns that this study has remained a conference paper (Taagepera 1988). A main
irregularity is that the 19th-century authors often concentrate on Antiquity and give short shrift to modern
times.

4.7. Inverse Square Law of Coalition Durability

In contrast to previous topics in this section, this one does not deal with growth phenomena expressed as
differential equations in time. Instead, it ties the duration (C) of a coalition cabinet to the effective number
(N) of legislative parties: C=400 months/N2 (Taagepera and Shugart 1989:99-102).19 A recent recheck
with data in Lijphart (1999) yields a higher constant:

C = 470 months/N2 = 39 years/N2

-- see Figure 14. Switzerland with its peculiar cabinet structure is a glaring outlier. Without it, R2 is
around 0.8.

FIGURE 14.  Average Cabinet Life (C1) in Years vs. Effective Number of Assemble Parties.

Source: From Taagepera (2002b).
Note: Data from Lijphart (1999: 76-77 and 132-133). BOT=Botswana; GRE=Greece; MAU=Mauritius,
PNG=Papua-New Guinea; SWI=Switzerland.
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The logical model starts out with the aforementioned observation (Section 3.1 on the cube root
law of assembly sizes) that the number of communication channels (c) between p actors is c=p(p-1)/2.
Even at moderate values of p, c=p2/2 is a fair approximation. If the effective number of parties in an
assembly is N, we may assume about N2 meaningful communication channels among the parties -- and
these are also the potential conflict channels. Duration can be expected to be inversely related to the
number of conflicts. An inverse square law results. The constant is found empirically, although Taagepera
and Shugart (1989) point out why it should be expected to be around 400 months.

Remarkably, by far the best fit is obtained by considering the total number of parties in the
assembly as a whole, not just those inside the coalition cabinet. The important implication is that coalition
cabinets collapse not only through internal frictions but also through the pull by parties outside the
cabinet.

What is the model good for? It cannot be used to predict the duration of a single cabinet, because
too many other considerations enter, including random chance. The law applies to averages over long
periods. Impressionistically, short cabinet durations in a number of countries have been blamed on an
excess of parties, and the empirical tendency has been confirmed by more systematic studies (lately by
Lijphart 1999). The inverse square law explains why cabinet duration decreases with increasing number
of parties precisely at the rate it does. When institutional changes are considered (such as New Zealand's
change in electoral rules in 1996) that can be expected to alter the number of parties represented, the
inverse square law allows one to estimate the average change in cabinet stability introduced.20

4.8. Differential Equations of Cycle of Regimes

This is a model I would lie to construct. It deals with changes over time, yet not in the limiting frames of
political games but in a fundamental aspect of the game itself. Aristotle (Politics, Book III-15) intimated a
cycle of Monarchy --> Oligarchy --> Tyranny --> Democracy --> Monarchy. I would consider a cycle in
terms of citizens' and rulers' respective balance of rights and obligations. The differential equations in
these four variables should be manageable, given previous examples of prey-predator demographic cycles
in biology. The difficulty would be in finding empirical data sufficiently clear-cut for testing and
establishing the values of parameters.

5. The Number and Size Distribution of Parties in Assemblies

This section deals with putting specific numbers into Duverger's "law" and "hypothesis" (Duverger 1951,
1954). These are among the most celebrated (and disputed) statements in political science. In the wording
used in Taagepera and Shugart (1989: 65): 1) Plurality rule tends to reduce the number of parties to two,
regardless of the number of issue dimensions, and 2) proportional representation (PR) rules tend not to
reduce the number of parties, if the number of issue dimensions favors the existence of many parties. (For
issue dimensions, see Section 5.5.) Since plurality is mostly applied in single-member districts, and
several issue dimensions usually exist, the Duverger statements largely boil down to "M=1 leads to two
parties, while M>1 leads to three or more parties". Here M stands for district magnitude, meaning the
number of seats allocated in the district.

Powerful as they are, Duverger's statements represent a semi-quantitative rule rather than a
quantitative one. In the case of single-member plurality rule (SMP), how large can third parties be
expected to be? How large is the second-largest major party expected to be, compared to the first? In the
case of multi-seat PR, how many parties beyond three can one expect, and of what size are the top three
parties? Duverger statements offer no answer to such questions. In contrast, this section proceeds to offer
specific formulas, predicting specific numbers that can be compared to the actual. In order to reach this
goal we have to proceed by small but systematic steps.
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5.1. The Number of Seat-winning Parties in District and Nationwide

My direct concern is with parties within an assembly, but much of the argument applies to any set of
components that come in integer numbers and add up to a well-defined total.

Consider an electoral district of magnitude M, meaning that M seats are to be allocated. How
many parties should be expected to win at least one seat? In the absence of any other knowledge, the best
guess is that the number of seat-winning parties (p') is square root of M:

p'=M0.5

(Taagepera and Shugart 1993). If M=1, it's p'=1 (as it should). If M=100, as in The Netherlands prior to
1956, p'=10 -- and this was the case in The Netherlands.21

This equation results from an ignorance-based model. The number of seat-winning parties has
firm conceptual limits: at least one and at most M. The square root of M represents the geometric mean of
1 and M. Why not use the arithmetic mean, many political scientists keep asking. The quick and dirty
answer is: in a district of 100 seats, would you rather expect 10 parties to win seats, or 50? The theoretical
reasons are given in Taagepera (1999b).22

 Nationwide, the number of seat-winning parties (including independents) can be directly
estimated only if all seats are distributed within districts of fairly equal magnitude. In this case this
number is

p=(MS)0.25,

where S is the total number of seats in the assembly (Taagepera and Shugart 1993). The calculated and
actual results for 30 electoral systems are tabulated in Taagepera (2002a), and there is fair agreement.23

This is the best guess for the average of many elections. For individual elections the number can vary
widely, as illustrated in Figure 15.

FIGURE 15.  Frequency Distribution of the Number of Seat-winning Parties

Source: From Taagepera (2001b); Expected Value p = (MS)0.25
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Once more, the model expressed in the formula above results from considering conceptual limits.
If exactly the same parties win seats in all districts, their nationwide number is the same as in a single
district: the square root of M. This is the lower limit. The upper limit is the number of parties that would
win seats, if the entire country formed a single district of magnitude S. This leads to square root of S.
Taking the geometric mean of M0.5 and S0.5 yields the result above.

What is the use of the result? By itself, a number of parties that includes even the tiniest ones that
still manage to win a seat may be of minor interest. But it is the first building block for more to come.

5.2. The Size of the Largest Component

If a well-defined total size (S) is divided among p parts, our best guess for the size of the largest share (L)
is the inverse of the square root of the number of parts:

L=1/p0.5 or  L2p=1

(Taagepera 1999b). This is a formula of extreme generality. Within 25%, it fits the largest components of
federal units in USA, Canada and Australia, both by area and population (Taagepera 1999b). But it can
also be tested for every single seat distribution resulting from an election, representing a huge amount of
data. The mean of 952 national elections listed in Mackie and Rose (1991, 1997) fits the equation within
1% -- see Figure 16 (Taagepera and Roopalu 2002).24

FIGURE 16. Frequency Profile of Normalized L2p for 752 Elections.

Source: From Taagepera and Roopalu (2002).
Note: L is the seat share of the largest party and p the number of seatwinning parties. The conceptual
bounds on logL2p /logp are -1 (when all shares are equal) and +1 (when the largest share approaches 1).
Expected mean and median: 0; actual arithmetic mean: -0.006; actual median: +0.015. Standard
deviation: 0.3.

The model again uses the geometric mean of conceptual limits. The largest component cannot be
smaller than the mean (1/p) nor larger than the whole (1). That's all. While the number of seatwinning
parties (previous subsection) depends on district magnitude, the present result does not. Whatever causes
the number of components to be what it is, this number has implications for the largest component.

The direct use of the model is in locating anomalies, meaning major deviations from the average
pattern. In such cases one might wish to look for the reasons, just as we might do when a distribution
deviates from the normal. But this model is also a building block for estimating the entire size structure of
parties in an assembly, as seen next.
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5.3. Distribution of Party Seat Shares

Having the number of seatwinning parties (p) and the largest share (L), the entire size structure can be
estimated, if we can also anchor the other end of the distribution by pinning down the share of the
smallest seatwinning party. In the absence of any other knowledge (such as existence of a threshold of
votes or seats), this smallest conceivable non-zero share is one seat, or a fraction 1/S of  the total number
of seats. Indeed, for electoral systems with no thresholds the observed median number of seats won by the
smallest party (or independent) is one seat.

Considerations of continuity would make us place the remaining parties by uniformly decreasing
shares between the largest and the smallest. What does uniform decrease from first- to last-ranking party
mean? One may consider an arithmetic progression (equal differences, leading to a linear pattern) or
geometric progression (equal ratios, leading to an exponential pattern). The arithmetic mean usually leads
to the sum of the components being larger than 100 %. The geometric mean most often yields a sum of
components lower than 100 %. Thus something in-between may be needed.

Here the model cannot be expressed in a simple equation. Figure 17 shows the shares of parties in
a sample country (Finland) graphed versus their rank, on semilog paper (i.e., log of share vs. rank). One
way (used in Taagepera 2001b) to estimate the shares of mid-ranked parties is shown there. Place the
previously established "anchor points" (first- and last-ranking parties), and draw a straight line between
them. Check the resulting total, and shift the line up or down for the intermediary parties, so as to make
the sum add up to 100 %.25

FIGURE 17.  Average Seat Share in Finland, 1907-95, S=200, M=15

Source: From Taagepera (2001b).

Figure 17 shows the typical degree of resemblance between the seat shares thus estimated and the
actual long-term averages. On the basis of these estimated seat shares the effective number of assembly
parties can be calculated.
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5.4. Putting Numbers into Duverger's Law and Hypothesis

Combining the models in the previous subsections, specific numbers can be offered for the sizes of all
parties, at least in the case of very simple electoral rules26 and as averages over many elections. In this
sense we are now putting numbers into Duverger's law and hypothesis. The overall flow chart is as
follows.

S, M ----> p ----> largest share \  \
     ------> other shares  -----> effective number

S ---------------> smallest share /  /

Magnitude and assembly size determine the number of parties. The number of parties determines the
largest party's seat share. Assembly size alone determines the smallest party's relative seat share. These
two anchor points determine the seat shares of  the intermediary parties. These together determine the
effective number of parties in the assembly.

Given that each step adds error, a large cumulation of error is to be expected. In the case of four
relatively simple systems at extreme values of M and S, the results are as follows. The combined model
yields a good fit for New Zealand, and a fair one for Finland and The Netherlands. For UK the fit is poor
but nonetheless reproduces the semiquantitative predictions of Duverger's statements (only two large
parties), as shown in the following table (condensed from Taagepera 2001b). This table includes assembly
size (S), district magnitude (M), the number of seatwinning parties (p), the seat share of the largest party
(L) and the effective number of assembly parties (N). Subscript m indicates prediction by the model, and
subscript a refers to the actual long-term average value. As one proceeds from low to high MS, the actual
p, L and N change in the expected direction.
_____________________________________________________________________
                                                  S          M          pm       pa         Lm      La           Nm     Na

New Zealand 1890-1993   82     1    3.0   3.5   58% 58%   2.0 2.1
UK 1922-1992 629     1    5.0   6.9   45% 56%   2.6 2.2
Finland 1907-1995 200   15    7.4   6.9   37% 34%   3.7 4.5
Netherlands 1956-1994 150 150  12.2 10.6   28% 31%   5.9 4.7
_____________________________________________________________________

What is the model good for? The brief answer is that whatever the famous Duverger statements
(law and hypothesis) are good for, this model is even better for, because it offers more specific figures.
The model expresses the pure average effect of district magnitude and assembly size on the seat
distribution.

5.5. Issue Dimensions and the Number of Parties

In the wording of Duverger statements at the start of Section 5 the number of issue dimensions (I) was
mentioned. This refers to the different types of issues on which parties could disagree: socioeconomic,
religious, cultural-ethnic, urban-rural, etc. The effective number of  parties (N) could depend on the issue
dimensions according to either of the two following models (Taagepera and Shugart 1989:94):

1) Every new issue splits all existing parties. This implies N=2I.
2) Every new issue adds a new party to the existing. This implies N=I+1.

The empirical finding (Taagepera and Grofman 1985) is that only one of these models fits the data in
Lijphart (1984):

N=I+1.
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All countries are in the zone ranging from N=I to N=I+2, and R2=0.75 -- see Figure 18. Here N refers to
assembly parties; the fit with electoral parties is poorer, and it is not clear why. More extensive data in
Lijphart (1999) yields a steeper best fit than N=I+1, but out of 36 countries only Botswana is lower than
I=0, and only Papua-New-Guinea and Switzerland are above N=I+2. So it is too early to scrap the model.

FIGURE 18.  The Relationship between N and I in 22 Democracies

Source: From Taagepera and Grofman (1985)

A major problem is that, in contrast to all previous quantities discussed, the number of issue
dimensions is not a measured value but a judgment call which itself is heavily influenced by the number
of parties. If a social issue does not become a bone of contention among parties, then it may not be
counted until it generates a new party. Thus there is a risk of circular reasoning.

The effective number of assembly parties depends on district magnitude on the one hand and on
the number of issue dimensions on the other (cf. the wording of Duverger's statements at the start of
Section 5). But N=I+1 ignores M, while an expression in M derived in Taagepera and Shugart (1993),
N=0.85(MS)3/16, ignores I. (So do the values of N  obtained in Section 5.4.) Combining the two, I obtained
a somewhat better fit than with each one separately (Taagepera 1999d). This combination,

N=I0.6M0.15+1,

satisfies certain boundary conditions but looks complex and artificial. Unless we make progress in
operationalizing the measurement of I, this equation may not find much use.

6. Converting from People to Seats

This last substantive section involves two separate issues:
1) how are representative assembly seats allocated on the basis of votes; and
2) how are seats in a second chamber or supranational assembly allocated to  federal or

sovereign states with unequal populations.
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Not surprisingly, the two issues are interrelated. Finally, the effect of district magnitude on the vote shares
of parties will be modeled, and a graphical way to represent votes-to-seats conversion will be presented
and applied.

6.1. The Cube Law and the Seat-vote Equation for M=1

A hundred years ago a regularity in British elections was noted and dubbed the cube law -- although it
was empirical at the time and hence not a law in the sense of being supported by a logical quantitative
model. When vA and vB are the vote shares of two parties, and sA and sB are the corresponding seat shares
allocated by single-member plurality rule (SMP), then the seats ratio tends to be the cube of the votes
ratio: sA/sB= (vA/vB)3. The cube law applies, imperfectly and disputably, to a number of SMP elections for
assemblies. For computation of the seat share of one specific party (out of two or more), an equivalent
alternative form is more convenient: sA=vA

3/ΣvK
3, where the summation is over all parties.

More broadly, we might expect that the seats ratio depends on the votes ratio, i.e., sA/sB= f(vA/vB).
It can then be shown (Theil 1969) that the relationship must be of the form

sA/sB= (vA/vB)n, and hence sA=vA
n /ΣΣvK

n,

where n can take any value. This is the only functional form that does not lead to inconsistencies in the
presence of more than two parties. But why should n be 3?

A logical quantitative model (Taagepera 1973a) specifies that

n=logV/logS,

where V is the total number of votes and S the total number of seats. For only two stages (votes and seats),
n could be a function of total seats and votes in many ways: n=f(S,V). But consistency for three stages
(e.g., votes, electoral college, seats) imposes the more specific form n=f(V)/f(S),where f(V) and f(S) have
the same functional form. There are reasons to specify further that f(V)=log V ( see Taagepera 1973a).

Combining the two equations above leads to what I have called the seat-vote equation (SVE):

logS log(sA/sB)= logV log(vA/vB).

This form is elegantly symmetrical in seats and votes (and possible intermediary stages), but for most
purposes it is more practical to use n=logV/logS, followed by sA=vA

n /ΣvK
n.  Because of the

aforementioned cube root law of assembly sizes (F=P1/3, see Section 3.1), n is close to 3 in the case of
first chambers of representative assemblies. This explains the cube law (and turns it into a true law, based
on a combination of two logical models).

But SVE also applies to multi-seat plurality such as used for the US Electoral College. There the
best fit to very scattered data is around n=5 -- see Figure 19. In the opposite direction, SVE applies to
trade union elections where n is as low as 1.5. As extreme boundary cases, SVE also applies to
presidential elections (where S=1) and to imaginary elections with as many seats as voters (S=V). In
Caribbean countries where the sizes of SMP-elected assemblies fall below the cube root of population,
Lijphart (1987) has noted a much steeper seat disparity than expressed by the cube law, in line with SVE.
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FIGURE 19.  A Case with Minority Attrition Stronger than Predicted by the Cube Rule:
U.S. Electoral College Elections

Source: From Taagepera and Shugart (1989: 162).

The model building starts by widening the scope beyond SMP. One asks whether the cube law
would apply under real or imaginary extreme conditions. Does it apply to presidential elections, where the
number of seats is reduced to the conceivable minimum of one seat? The answer is "no" for exponent 3,
but "yes" if the exponent were changed to infinity. The opposite extreme case is the imaginary situation
where the elected assembly is as large as possible, namely including all voters.27 This would lead to
perfect proportionality, requiring an exponent "one". These considerations expand sA/sB= (vA/vB)3 to
sA/sB= (vA/vB)n, in line with Theil (1969).

Compared to the cube law, this may look at the first glance nihilistic: instead of n=3, any value of
exponent n goes. However, assuming continuity, the extreme cases also say that as S expands from 1 to V,
the exponent n must decrease from infinity to one. It so happens that n=logV/logS is the simplest way to
satisfy these boundary and continuity conditions -- and it also satisfies certain other desirable criteria. 28

6.2. The Seat-vote Equation for Multiseat PR Elections

Expansion of SVE to multiseat PR elections owes to George Shiffler, the undergraduate who also co-
authored an arms race article (Taagepera, Shiffler, Perkins and Wagner, 1975). Around 1975 he boldly
proposed that with PR in districts of magnitude M, the ratio of logarithms in n=logV/logS should be put to
the power 1/M. With logV/logS=3 (cube root law) and M=15 (as in Finland), n=(logV/logS)1/M leads to
n=1.07 -- hardly distinct from the conceptual limit of n=1 (Taagepera and Shugart 1989:186) -- see Figure
20.
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FIGURE 20.  Seat Ratios and Vote Ratios in Near-PR Systems: Finland and Individual Finnish
Districts.

Source: From Taagepera and Shugart (1989: 168).
Note: The graph shows medians of groups of 11 data points closest to each other on the x-scale.

For years, I discarded this idea. First, there was no logical model behind the expression. Second, I
mistakenly thought the true expression should go to n=1 when M=S. Third, there was no way to test such
small deviations from n=1. But when I developed more refined ways to test the seat-vote relationships
(Taagepera 1986), George turned out to be in the right ball park. Reed (1996) has carried out a detailed
testing of SVE regarding Japan, where district magnitudes are low and hence the resulting n=1.3 is
relatively high as far as PR goes.

The only remaining specification needed (Taagepera 1986) was to include multi-seat plurality
elections by replacing district magnitude M by "allocation magnitude" M', which is the number of parties
that conceivably could obtain seats in the given district. For PR, M' is simply M, but for multiseat
plurality M'=1 for any M. So the general expression in PR and plurality elections is

n=(logV/logS)1/M'.

It still nags me that the power 1/M does not have a logical foundation, in contrast to SVE for
plurality elections. Yes, it does satisfy the constraint that for M'=1 the general equation is reduced to the
specific one (for plurality). And it also seems to reflect the reality for PR (although testing is difficult and
has been limited). But, simplicity apart, why should the exponent be 1/M rather than, say, (1/M)2 or
(1/M)0.5? Maybe another curious undergraduate will supply the answer.
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6.3. Seat Allocation in Second Chambers and EU Assemblies: The Seat-population Equation

This issue is highly topical because of the expansion of the European Union (EU). How many seats
should various countries receive in the European Parliament (EP)? And how many "votes" should they
receive in the Council of the EU (CEU)? What makes the answer difficult is that the countries must be
represented both as being equal (since they are distinct entities) and also as unequal (given huge
disparities in populations). The same problem arises for some upper chamber (such as Canada's). One
extreme is to represent all entities equally and ignore disparities in population (e.g., the US Senate and the
UN General Assembly). The other extreme approach would be to represent populations proportionately;
but then Luxembourg would obtain no seats at all in the EU bodies.

The compromise is to over-represent the smaller countries while still giving them fewer seats than
to larger countries. In terms of SVE format, it means a value of exponent n smaller than 1. Indeed, the
following "seat-population equation" emerges from boundary conditions (Taagepera and Hosli 2002). For
two countries (or federal subunits) A and B, this equation connects their seat shares (or "vote" shares in
the CEU), sA and sB, to their populations (pA and pB), taking into account the total number of countries (N),
their total population (P) and the total number of seats (S):

sA/sB= (pA/pB)n or sA=pA
n /ΣΣpK

n,
where

n=(1/logN-1/logS)/(1/logN-1/logP).

In 1997, EU had 365 million people in 15 countries. EP (626 seats) yields n=0.672, while CEU
(87 "votes") yields n=0.456, meaning a steeper overrepresentation of smaller countries. The agreement
with the successive EP seat and CEU "vote" distributions from 1970 to 1997 is remarkable (except for
heavy actual overrepresentation of Luxembourg, compared to the model) -- see Figure 21.

FIGURE 21. Seat Distribution in the European Parliament and the Council of the EU (1997)

Source: From Taagepera and Hosli (2002).
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Various empirical fits for CEU seat distributions have been proposed previously. (Surprisingly,
none have for EP.)  They include the use of SVE with the exponent n arbitrarily set at 0.5. The beauty of
the new "seat-population equation" is that the same equation applies to both EU bodies, without the need
to insert any empirical coefficients. It is not a retroactive data fit, a postdiction. It is truly predictive, once
N, S and the country populations are given.

The logical quantitative model uses three constraints or boundary conditions. The first two
parallel the SVE:

1) For only one seat available, the exponent n in sA/sB=(pA/pB)n must tend to infinity, allocating
the single seat to the largest country.

2) For as many seats as the total population, we must have n=1.
3) The new additional constraint comes in when there are as many seats as there are countries;

then one seat should be assigned to each country, and n=0 yields this outcome.
The seat-population equation satisfies these constraints. It may not be unique doing so, but it is the
simplest way.

Implications for the proposed expansion of EU come on two levels. First, the optimal total sizes
of EP and CEU are suggested by the aforementioned extension of the cube root law (Taagepera and
Recchia 2002 -- see Section 3.2). Second, either this optimal size or the actual size chosen by EU can be
used as a starting point for allocating the seats among the countries through the seat-population equation.
The actual allocation has fallen in line with this equation for the last 30 years. The changes proposed in
Nice, December 2000, however, tend to deviate from the equation (Taagepera and Hosli 2002), which
means they may be excessively influenced by political games. Application of the model to second
chambers such as Canada's remains to be completed.

6.4. Distribution of Party Vote Shares

In Section 5.4 the distribution of party seat shares was modeled, thus putting specific numbers into
Duverger's statements. By reversing the SVE we can use these expected seat shares to calculate the
corresponding vote shares:

vA/vB=(sA/sB)1/n or vA=sA
n /ΣΣsK

1/n,
where

n=(logV/logS)1/M'.

On this basis the effective number of electoral parties can be calculated.
This completes putting numbers into Duverger's statements. Compared to the effect of district

magnitude and assembly size on seat shares, their effect on vote shares is more indirect. The model
involves further simplifying assumptions; therefore, further deviations can be expected. Still, there is
some resemblance between the model-based and actual vote shares of the largest party and of the
effective number of parties.29 Using the same countries as in Section 5.4 (based on Taagepera 2001b), the
picture is as follows. In the following table, L is the vote share of the largest party, and N is the effective
number of parties based on votes. Subscript m indicates prediction by the model, and subscript a refers to
the actual average value. Only UK is out of line in a major way.
_______________________________________________________________
                                                  S          M                     Lm      La           Nm     Na_
New Zealand 1890-1993   82     1   42% 47%   2.9 2.7
UK 1922-1992 629     1   32% 45%   4.0 2.8
Finland 1907-1995 200   15   35% 32%   4.0 4.9
Netherlands 1956-1994 150 150   28% 30%   6.1 4.9
________________________________________________________________
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6.5. Prediction of Proportionality Profiles

It remains to visualize the average long-term seat-vote patterns predicted by the models and compare
them with the actual patterns. The following format brings best out the fine differences of various
empirical and theoretical patterns. For each party, calculate the "advantage ratio"

A=%seats/%votes,

and graph it against the % votes (Taagepera and Laakso 1980; Taagepera and Shugart 1989:67-76).
Because perfect proportionality corresponds to the horizontal line at A=1, deviations from proportionality
are brought out most visibly. This approach can be applied to purely empirical data or for comparing
models with data.

Earlier testing of the seat-vote equation (Taagepera 1986; Taagepera and Shugart 1989:191-196)
still fell short of a prediction on purely institutional grounds because the average effective number of
electoral parties was among the inputs. Taagepera (2001b) goes essentially all the way: For seat shares
only the institutional inputs of assembly size (S) and district magnitude (M) are used. For vote shares (and
hence the advantage ratio) the total number (V) of voters also enters in n=logV/logS. To the extent the
cube root law of assembly sizes determines S, the total input is reduced to M and V.

FIGURE 22.  Proportionality Profiles of Countries with Different Combinations of Assembly
Size and District Magnitude: Model and Actual Mean Values for Largest Party, Second-largest,
etc.

Source: Based on data in Taagepera (2001b). A=% seats/% votes.
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Figure 22 shows theoretical and actual proportionality profiles for four countries with widely
different combinations of M and S (based on Taagepera 2001b). The agreement of the model with the
empirical averages is fair for The Netherlands, Finland and also New Zealand (except for overestimating
the largest party advantage in New Zealand). UK is appreciably off the mark. Many more countries need
to be tested, and this should be my focus during the next few years.

7. Review of Types of Models

What types of model-building methods have been used here? I'll try systematize the various approaches in
hindsight. While solving a particular problem, one of course catches it as catch can, sometimes shifting
from one approach to another. I'll try to point out such mixed strategies too.

7.1. Boundary Conditions as Anchor Points

Boundary conditions are a form of constraints -- conceptual extreme values beyond which a quantity
cannot go. Sometimes these extremes can occur in practice (such as all parties having the same number of
seats, in Section 5.2); at other times they can be approached but not reached (such as the largest party
having all the seats, leaving nothing to other seatwinning parties). As a first approximation we can
overlook this distinction. The main thing is that values outside the extremes are impossible not only
practically but also conceptually. Compare the assertion of having caught a fish plus 10 feet long versus
one minus 10 feet long. Boundary conditions can be used to estimate the median value likely to be
encountered. In conjunction with assumption of continuity, they can anchor a set of varying values. The
following comments deal with some subvarieties.
 The geometric mean of conceptual extremes: The model of almost complete ignorance. If  the
conceptual extremes are all we know, then the best we can do is to guess that values around the median
will materialize, since we have no reason to shift away from the median. When both conceptual extremes
are positive and of different orders of magnitude, the median tends to be around the geometric mean of
the extremes (Taagepera 1999b).

Sections 3.2 and 3.3 apply this approach to federally constituted second chambers, where the
extreme choices are whether to represent only the territorial units or only the total population. Here both
extremes actually occur with appreciable frequency, but the median still is around the geometric mean.
Section 4.3 sets two boundaries for the effective number of polities by population: one single polity, and
as many as there are on area basis. Here the boundary values are not observed to occur. The geometric
mean is a fair fit over 5000 years.

Section 5.1 sets the number of seatwinning parties between 1 and M in a single district, and
between M0.5 and S0.5 nationwide. In the district the boundary values are frequently reached when the
district magnitude is very low. For the nationwide, the boundaries no longer are true conceptual
boundaries but previous best guesses at medians. And this cumulating may continue in Section 5.2, where
the lower boundary on the largest party's seat share may be based either on the actual number of
seatwinning parties or on the theoretical estimate. (The upper boundary always is the total number of
seats.) The theoretical estimate in Section 5.2 is based on a reachable lower boundary (all seatwinning
parties have equal shares) and on an unreachable upper one (the largest party has all seats).

Continuity between extreme ranks. In contrast to the previous situation, we may have the extra
information that the anchor points are populated and that all other cases must fall in-between. This is by
definition the case when dealing with rankings. With the population of the first- and last-ranking
components known, the best we can do in the absence of any further information is to guess at quasi-
continuous decrease in-between. Two different cases arise: either we know the total number of
components, or we don't.

1) For seat shares of parties an estimate of the total number of seatwinning parties is known from the
geometric mean of conceptual extremes. It's a matter of spreading the sizes of the known number of
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intermediary parties uniformly between the largest and the smallest, subject to a fixed total. Sections
5.3 and 5.4 find that the actual patterns range from exponential to linear.

2) For ranked cities, the total number of entities is not known. The size of the largest component is
known, and a simple relationship with rank is empirically observed. In Section 3.5 the strategy is to
define logically another anchor at the low end (a settlement of one person) and assume that the
observed relationship continues to the very end. A figure for the total population emerges and can be
compared to the actual. The rankings of journals (Section 3.6) follow the same pattern, and here the
low anchor (at one item) is very real and documented, in contrast to its artificial nature in the case of
cities.

Continuity between extremes on two quasi-continuous scales. In the seat-vote equation (SVE,
Section 6.1, leading to 6.4 and 6.5) the independent variable is different from the previous in that
discontinuous rankings are replaced by a quasi-continuous variable: the votes. Rankings impose a non-
positive slope, but this is not the case here. The boundary conditions on exponent n are the following:
S=V leads to n=1; S=1 leads to n-->infinity. A further requirement (to be discussed later) is applicability
to more than two stages. Assuming continuity and maximum simplicity, n=logV/logS results. Extension
to multiseat election (Section 6.2) follows the same approach but is incomplete theoretically because only
one anchor is defined: For M=1 the expression for n must reduce itself to a previous form. The rest is
based on picking the simplest form possible and finding that it fits the data.

Continuity between extremes on three quasi-continuous scales. For seat allocation in EU
assemblies and federal chambers that pay attention to different populations of constituent units (Section
6.3), exponent n must satisfy boundary conditions for two independent variables, the number of countries
and their total population. S=P leads to n=1; S=1 leads to n-->infinity; and S=N leads to n=0. The
simplest mathematical form that satisfies these constraints turns out to fit the data. Except for increased
complexity, the approach is the same as for SVE.

7.2. Changes  in Time and Space

Assuming continuity or at least quasi-continuity (as in the case of votes or electric current, carried by
discrete electrons), differential equations are the standard way to deduce the overall picture from what
happens at one instant.

Ignorance about the direction of change. If we have no idea whether a quantity is increasing or
decreasing over time (or a space direction), the best possible assumption is that it remains the same. Any
other assumption presumes some further information. If we have the further information that something
increases on its own (rather than being built from the outside), the best possible assumption is that the
relative growth rate of this variable remains constant. The solution of the resulting differential equation is
the exponential function. The rate constants are determined empirically, in the absence of other
information. In this sense, the exponential model is an ignorance-based one.

A single variable dependent on time. This is the case for the fading of history and the two growth
periods of Western civilization (Section 4.5). The exponential model of ignorance fits to a limited extent.
The empirically determined rate constants offer possibilities for comparison.

Two dependent variables with non-time-dependent interconnection. The basic assumptions and
solutions are the same as above. However, effective numbers of polities in terms of population and area
(Section 4.3, leading to 4.4) are interconnected at any instant in a non-time-dependent way, based on a
model of ignorance: The rate constant of the first is one-half of that of the second. Otherwise the rate
constants are empirical.

A system of two equations in two dependent variables. The change rate of each variable depends
on the values of both variables. In arms races (Section 4.6) the impacts of both variables add, while for
world population growth (Section 4.1) they multiply. They also multiply, in a way, in hyperinflation
(Section 4.2). Solutions are correspondingly more complex.
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Changes in space. The model for trade/GNP ratio (Section 3.4) starts with the assumption of
constant absorption rate over distance. In one dimension, this leads to a simple differential equation with
exponential solution. However, in contrast to time, space has multiple dimensions, adding complexity. As
in physics, extension from one to several dimensions involves technical difficulties and approximate
solutions. Fortunately, the trading space is only two-dimensional. Complexity is compounded by insertion
of constructs called borders.

7.3. The Number of Communication Channels

This may be a key variable in many social issues, given that society means communication. I have used
the number of communication channels in two very different ways. In duration of cabinet coalitions
(Section 4.7) this number is plugged in directly, as it is. In contrast, the minimum value of this number is
sought when determining the size of representative assemblies (Section 3.1). The latter has implications
for the sizes of second chambers and European assemblies (Sections 3.2 and 3.3), more remotely for the
distribution of seat shares in all these bodies (all of Section 5), and even more remotely on the vote shares
of parties (Sections 6.4 and 6.5).

7.4. Minimization and Maximization

Minimization or maximization of some quantity (implying dy/dx=0) is a frequent approach in physics but
has remained relatively rare in political science, ever since Kochen and Deutsch (1969) used it for a
model of optimal decentralization. Of course, Richardson (1960) used dx/dt=0 for placing the stability
lines for arms races. In retrospect, I'm surprised how little I have used it myself, apart from assembly sizes
(Section 3.1).

7.5. Consistency with More Than Two Components or Stages

If something explains the relation between A and B and also A and C, does it apply between B and C? It
must, if it is to be general. The seat-vote equation (Section 6.1) uses this requirement twice. Once one
accepts that the seat ratio sA/sB of two parties must be some function f(vA/vB) of their vote ratio, a
profusion of functional forms present themselves. However, as Henri Theil (1969) shows, when one
considers more than two parties, only one form guarantees internal consistency, and that is sA/sB =
(vA/vB)n.

In determining the exponent n in the previous equation, analogous considerations enter, but with
stages instead of components. For only two stages (votes and seats), n could be a function of total seats
and votes in many ways: n=n(S,V). But consistency for three stages (e.g., votes, electoral college, seats)
imposes that n be a function of V divided by the same function of S: n=f(V)/f(S). Why f(V) should be logV
is another matter.

Three-stage elections are rare, but a universal model must be consistent with them -- and this
constraint narrows down our choice of functional relationships in a fruitful way. Consistency with more
than two components or stages is a question to be posed whenever one constructs a relationship between
two quantities: Does it lead to consistency when a third quantity of the same type is added?

7.6. Replacing Unequal Shares with Equal Shares

This is the task when defining the effective number of components (Section 2). We must have Σsi=1 by
definition when the summation is over all shares. But Σsi

2<1. If we assign meaning to the squares of
shares (as we do, for instance, in least square calculations), we may ask which number (N) of equal shares
would yield the same sum of squares as do the actual components. Those equal shares still must add up to
1. Hence each share is 1/N, and its square is 1/N2. This means that N(1/N)2=Σsi

2, so that N=1/si
2 results as

the effective number of components.



38

Of course, this is the effective number only in the sense of yielding the same sum of squares as
the original constellation. If we want, say, the same sum of cubes, the effective number is different. The
general formula for Σsi

n with any n is given in Laakso and Taagepera (1979) and Taagepera and Shugart
(1989:259). However, n=2 is the simplest and has some other desirable features. In particular, it
represents self-weighting: each share is assigned a weight equal to itself.

Replacing of unequal shares with equal shares -- is this model building or mere definition of a
new quantity? It's in-between. The notion of equal shares that are somehow equivalent to the actual shares
is akin to a model. However, a model must be testable and may be disproved by empirical data. In
contrast, the effective number of components always works out in a formal way. Thus it is a definition
grounded in the spirit of model building.30

7.7. Addition or Multiplication of Components

This is a broad issue discussed in Taagepera and Shugart (1989:243) and Taagepera (1999b). I'd say that
physicists instinctively multiply while social scientists instinctively add. Consider the following example.
To remain alive we need air (A) and food (F). The product AF implies that no amount of food can replace
air. In contrast, an addition a1A+a2F would suggest that plenty of food can substitute for zero air. I remain
a physicist: In case of doubt, better multiply than add.

In the case of parties and issue dimensions (Section 5.5), however, addition turns out to be the
proper course. The model N=I+1 fits data, while the multiplicative N=2I does not. But note that this is not
a knee-jerk addition a1I+a2, with contentless coefficients. There are logical reasons why we should have
a1=a2=1.

7.8. Mixed Approaches

Of course, mixing and sequences occur. The effective number of polities (Section 4.3) starts with
geometric mean of conceptual extremes to connect area and population, and then continues with the
exponential assumption. The number and size distribution of parties (Section 5) applies geometric means
of conceptual extremes over and over, and then throws in a quasi-exponential distribution. The seat-vote
equation (Section 6.1) results from considerations of conceptual extremes, plus consistency with more
than two components and stages. The same is the case for the seat-population equation (Section 6.3).

8. Conclusion

I have presented here some methods to construct models that are logical and quantitative. Various testable
predictions result regarding the framework surrounding politics. These methods are not a panacea. But
they come handy in addressing certain types of problems among those of interest in the study of politics.
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Endnotes
                                                       
1 The flow has been quite uniform. Of the 21 separate models or indices presented, the 1970s (and the late 1960s)
account for 7, the 1980s for 4, the 1990s for 5, and the 2000s already for 5.

2 Rein Taagepera, Softening without Liberalization in the Soviet Union (1984); Romuald Misiunas and Rein
Taagepera, The Baltic States: Years of Dependence 1940-1990  (1993); Rein Taagepera, Estonia: Return to
Independence  (1993); Rein Taagepera, The Finno-Ugric Republics and the Russian State (1999a).

3 A technical difficulty is that determination of N becomes uncertain when data include a large "Other parties"
bracket. However, methods to minimize the uncertainty have been devised (Taagepera 1997a).

4 Among my other attempts at index building, elaborations on the effective threshold of representation (Taagepera
1989, 1998a,b, 2002a) are likely to have an impact. Effective magnitude (Taagepera and Shugart 1989: 126-141,
Taagepera 1998a) has been used by many, but needs adjustment, so as to take into account the assembly size.  A
"generalized index of concentration" (Taagepera and Ray 1977) has been overtaken by the effective number. An
index of imbalance was designed to discriminate in cases where inequality and concentration indices both fail to do
so (Taagepera 1979a); but I have found little occasion to use it later on. "Effective size" (Taagepera and Grofman
1981) connects the effective number of components to an earlier paradox noted by Feld and Grofman (1977) and
tries to distinguish between average density and crowding (bunching). Measurement of the latter remains a sore
point. When a country has an ethnic minority of 20 %, it matters very much whether the minority "density" is a
uniform 20% throughout the country or 90 % in some provinces and near-zero elsewhere.

5 Hence the empirical best fit has a power exponent higher than 1/3=0.33. The best fit by Dahl and Tufte (1973: 80-
82) corresponds to F=0.25P0.40. This agrees with their logical semiquantitative hypothesis: "The size of parliaments
increases with the population of a country, but at a lower rate." They did not try to answer the question why this rate
(of logarithms) is around 0.4 rather than, say, 0.2 or 0.6. The communication channel model that leads to the cube
root law does answer this more specific question. The simple model does not fit reality in a perfect way but is in the
ball park.

6 A few days before Christmas 1970 I read in Jean Blondel's Comparative Politics (1969) that the main endeavor of
legislative assemblies is not passing laws but communicating. Upon that, at lunch in the UCI cafeteria I scribbled the
cube root model on the back of a notice about cafeteria closing for Christmas.

7 To what extent can S=(nF)0.5 be said to "explain" anything in a substantive way? How does it differ from just
postulating that S may depend on n and F, and then finding that R2 is maximized by logging both variables? The
difference is that here we predict not just any connection with n and F but a specific one. Empirically determined
coefficients in the more general formula S=AFa+Bnb+CFcnd +D may yield a somewhat higher R2, but without any
explanation of the coefficient values obtained. In contrast, here we predict ahead of time that, in the above equation,
A=B=D=0 and c=d=0.5 -- and it comes close to the actual median. This is not the entire explanation we'd like to
have. Why do some countries weigh F much higher than n, and vice versa? Answering this would be the next step.
But we already have explained the median value.

8 In Figure 3 the empirical equation corresponds to Imports/GNP=40/P1/3. The entropy model also shown offers a
poorer fit and is not discussed in the present overview.

9 The logical model is based on a visualization of exports, while testing uses imports, because formal export figures
exclude the export equivalents such as labor export and tourism profits. To the extent the model applies, the
characteristic absorption number varies from 160 in Uruguay to 1700 in Belgium. Using areas rather than
populations of countries, the median characteristic transport distance of goods and services is found to be 58 miles
(100 km), varying from 310 miles for sparsely populated Canada to 10 miles in Haiti.

10 Actually, the rank-size expression has been an empirical rule rather than a "law" in the sense of being justified by
a rational model -- and others noticed this regularity before Zipf did.

11 In Figure 4 the secondary cities fit the model in Cuba, Belgium and also Greece within a factor of 2, while falling
markedly below prediction in Cameroon, Ivory Coast and most markedly in Madagascar. Largest cities exceed the
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average primacy correction in Greece, Cuba and Ivory Coast, fit in Belgium, and fall below in Cameroon and
Madagascar. One should distinguish between the absolute primacy (compared to country population) and relative
primacy (compared to other cities). Madagascar is high on relative primacy but low on the absolute.

12 The reader who has published a fair number of journal articles might be interested in testing the model with
her/his own vita. How close is the number of journals in which you have published to the number of articles
published in the journal with most articles? How well does either figure (times its logarithm) predict the total
number of articles? How well does the geometric average of the two approaches predict it?

13 The data are for linguistically Finno-Ugric peoples within the Russian Federation. Subjected by Russians at least
since 1600, their external conditions have been quite similar. Core population is taken as those living in their titular
area and speaking their own language as main language. Weighted circulation takes into account frequency of
publication and whether it's a journal or a magazine (see Taagepera 1999a: 401). For peoples of less than 10,000 the
yearly circulation levels off around 1000, because it depends mainly on outside financing.

14 When I pointed out the faster than exponential population growth in a class around 1975, a student piped up: "But
if it doesn't follow the exponential pattern, what pattern does it follow?"  Indeed. By the time I reached my office, I
had the answer. The lesson: We tend to get so used to facts of life that we give up asking "Why?" when we should.

15 The bending away from the straight line since 1950 cannot be accurately mapped until future population figures
become known. This is due to my using doubling times after a given date. But instead, one can use doubling times
before a given date -- and this is what I'll do when returning to this issue.

16 Within the long-term exponential trend, three sudden decreases occur in NA: around -3000 (invention of
"government at a distance") , -600 (breakthrough in bureaucratic delegation of power), and +1600 (oceanic
shipping). These dates introduce three successive stages. In the case of NP, where fluctuations are wider, the 2nd and
3rd stages blend.

17 The effective number of components depends heavily on the largest components. Hence the areas of  the  5 to 10
largest polities at the given time, along with total dry land area, are sufficient to determine the effective number
based on areas. The procedure was repeated using estimates of populations of those polities (and the world).

18 It now occurs to me that even when the equational forms cannot distinguish between mutual and self-stimulation,
the ranges of the coefficient values could discriminate between them. At the time, I did consider several refinements
of Richardson's model (Taagepera 1979-1980), all with some problems.

19 The inverse square law was first presented in a conference paper (Taagepera 1987) that was supposed to be
expanded in cooperation with Arend Lijphart. But we were both busy with other things, and the paper was overtaken
by the need for a short overview in Taagepera and Shugart (1989).

20 There is also feedback from model to measuring. Lijphart (1999) considers two ways to measure cabinet duration.
The more generous "Life I" fits the inverse square law; the more restrictive "Life II" does not. If one is interested in
prediction, operationalization I is preferable to II (cf. Taagepera 2002b).

21 The model fits pretty well countries where the entire country is a single district (The Netherlands, Israel). It
underestimates p' when there are many multiseat district, because resources from outside the district can help a party
win a seat where it is inherently weak. A logical correction is given in Taagepera and Shugart (1993), but can be
neglected when our main focus is on the nationwide number of parties.

22 If we have further information in addition to M itself, we'll of course make use of it. Thus, if we know that
district-wide plurality rule is used (instead of the much more usual PR), the answer shifts to p'=1 for any M.

23 Taagepera (2002a) includes 14 systems with M>1 and 16 systems with M=1 (but different values of  S). Space
considerations for this article caused deletion of analysis of the p=(MS)0.25 aspect, which remains unpublished. In all
but one case the actual number is within a factor of 2 of the estimate. The actual average is high by 22%, compared
to the model.
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24 Figure 16 uses the form log(L2p)/logp, which is zero when L2p=1. This expression becomes -1 when all p shares
are equal; it approaches +1 when the largest share L approaches 1. The actual mean is around -0.006, and the actual
median is +0.015, both close to the expected 0.

25 This may not always be the optimal way to proceed, because sometimes the actual pattern is closer to linear than
to exponential. One might combine the numbers of seats resulting from arithmetic and geometric approaches,
adjusting their relative weights so as to make the sum of seats equal to 100%. A more elegant way might use
"fractional logarithms" (Taagepera 1973b). One can take logarithms once (log x), twice (loglog x), or not at all (just
x). Use notation x = log0 x, log x = log1 x, and loglog x = log2 x., so that he general expression is logn x. Now define
an operational way to determine logn x  for fractional values of n. For Finnish data in Figure 17 a good fit, summing
up to about 100% is obtained with log0.6 R.

26 I define the ideally simple electoral system to include the following (Taagepera 2001b). The S seats are allocated
in districts of equal magnitude M. Ballot is categorical. Seats are fully allocated in districts, by PR. There are no
legal thresholds or primaries. Parties are distinct, with no alliances or internal competition.

27 Political scientists tend to have difficulties with imaginary situations,  patiently or impatiently pointing out their
unreal nature. In contrast, physicists are at ease not only with unachievable conceptual boundary cases but even with
"Maxwell's demon", if it helps to visualize the situation. Incidentally, New England town meetings are assemblies
consisting of all voters.

28 The seat-vote equation emerged from my 1969 Master's thesis in international relations at the University of
Delaware, in the wake of my Ph.D. in solid state physics. The SVE certainly owes to conceptual tools acquired in
physics. I thank the UD Department of Political Science for graciously accepting a thesis that had little to do with
international relations.

29 The analogue of the number of seatwinning parties, the number of "vote-getting" parties, cannot be estimated.

30 Indirectly, the suitability (if not the "truth") of N can be tested. It leads to good correlations with cabinet duration
(Section 4.7) and issue intensity (Section 5.5), and the effective number of polities based on areas and on
populations also correlate (Section 4.3).  One could run the same correlations with the effective numbers based on
the sum of cubes etc. If one of them should yield better correlations than N, then a switch should be considered.




