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Abstract

The corrosion of a zinc rotating disk in one molar hydrochloric acid has
been studied using a potentiodynamic polarization method. The relationship
between the electrochemical behavior of zinc and its corrosion rate in an
oxygen—free, aqueous solution is described. The principles of the corrosion
process presented here emphasize how important it is that engineers
understand the underlying fundamental electrochemical concepts. Both
experimental and theoretical treatments of the corrosion process have been

investigated.

Experimental rotating-disk data at a rotation speed of 1600 rpm are
presented. The polarization curves are analyzed to determine the transfer
coefficients and rate constants for the anodic zinc dissolution and cathodic
bydrogen evolution reactions. The set of parameters that may be used to fit
best the experimental data were compared to those reported in the
literature, and significant differences are apparent for the corrosion of zinc.

Electrolyte and electrode impurities are possible causes for the differences.

It is of interest to use the experimentally determined Kkinetic
parameters in a mathematical model to predict corrosion rates. A modified
Butler—Volmer equation is used to describe the kinetics of the zinc and
hydrogen charge—~transfer reactions accounting for the forward and back

terms of each reaction. Mass transfer of the electroactive and complexed



zinc species is accounted for assuming that the homogeneous reactions are
in equilibrium.

The experimental polarization curve shows good agreement with that
predicted theoretically provided the back reactions are neglected. However,
when the modified Butler—Volmer equation is used, the cathodic polarization
sweep away from the open—circuit potential is significantly different from
what was .expected owing to the effect of the cathodic zinc reaction. The
results of the model are compared to conventional polarization techniques
which underestimate the corrosion—current density. This indicates the

importance of the model.
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If my troubles and griefs were weighed on scales,
they would weigh more than the sands of the sea,
so my wild words should not surprise you.

Job, 6.1
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Chapter 1. Introduction

The deterioration of metallic engineering materials cost the U.S.A. 815
billion a year ten years ago. Today corrosion is a serious and even more
costly materials science problem. The future importance of corrosion will
only increase in the years ahead as our resources are increasingly utilized to
the limits of practicality. To meet future demands, it is necessary for
corrosion engineers to develop materials of increased corrosion resistance.
Improved corrosion resistance requires research to characterize surface
phenomena, to elucidate corrosion mechanisms, to predict the behavior of
materials in specific corrosive environments, and to identify materials and
processes which control the rate of corrosion reactions. Electrochemical
methods will have a significant role in better corrosion control and

prevention.

1. Purpose of Thesis

Corrosion is a well established electrochemical process, and new
developments leading to a better understanding and to the eventual control
of corrosion phenomena will come from the application of current
electrochemical analysis. Information about the nature of electrochemical
processes is usually obtained in the laboratory where research provides a
unique opportunity to separate and investigate .experimental variables.
Through studies of transport properties of electrolytic solutions, electrode
kinetics, and double~layer eflects, many electrochemical systems have been
well characterized. Similar work must be continued to understand and to
deduce mechanisms for corrosion processes. Only then may our materials

problems be solved.



The design of critical experiments to evaluate material/environment
compatibility depends on a knowledge of the underlying fundamental
concepts of the electrochemical nature of corrosion. Researchers, out of the
necessity to collect fast, accurate, and reproducible experimental data, have
developed systems which are well defined from the standpbint of
hydrodynamics, current distribution, and mass transfer. Among the most
commonly used is the versatile rotating—disk electrode. The rotating disk
may be used in conjunction with potentiodynamic polarization techniques to
accelerate the corrosion process. These methods improve the cost
effectiveness of corrosion research, which otherwise tends to be both time
consuming and expensive. The ability to increase carefully or control the
oxidizing potential of an environment and thereby reveal specific
characteristics of a material is another advantage of this electrochemical

technique.

A combination of theoretical understanding coupled with modern
scientific instrumentation is necessary to characterize the electrochemical
nature of corrosion processes. The principles governing electrochemical
phenomena have been presented by Newman,!!! who assesses the
fundamental equations as well as giving a general method of solution of
these problems. Next, the experimental data must be related to these
theoretical treatments. Combining the two becomes unavoidable in order to
simulate situations as close to the actual phyéica.l processes as possible.
However, due to the intricate coupling of charge—transfer reactions at the
surface and mass transfer in the presence of a nonuniform electric field in
the solution, the interpretation of experimental data turns out to be more
complicated than is usually anticipated. For this reason, rigorously bridging
the gap between experimental and theoretical analysis to date has been

limited.



This thesis‘ attempts to investigate the relationship between
experimental data and theory. Relating measured potentials to the proper
theoretical potential difference is fundamental to this work. The ability to
do this is important and would have a significant eflect vn the analysis of not
only corrosion processes, but all electrochemical systems. This work is a
small step toward the eventual coupling of experimental data with high
powered numerical methods for solving sophisticated models. Eventually,
with further technological advancements, desk—top computers will be able
to collect experimental data and simultaneously dctermine the physical
parameters that best match the experimental data. Computerized data
acquisition and a corresponding mathematical model to analyze the data
such as proposed here could bring about a change in the present methods of

electrochemical research.

2. Structure of Thesis

The specific problemn that is to be studied is the anodic dissolution of
zinc in a de—aerated one molar aqueous, hydrochloric acid solution. The
objective of the work is to demonstrate the experimental and theoretical
aspects of an electrochemical approach as applied to a corrosion system.
Before giving these results, background information pertaining to corrosion

in general and electrochemical engineering analysis is presented.

Chapter 2 gives a historical perspective of the development of the
electrochemical theory of corrosion, followed by a discussion of the
applications that zinc has in anodic dissolution processes. The third chapter
is fundamental in nature and applies thermodynamic and kinetic principles

to the analysis of practical electrochemical reactions. A rigorous treatment

‘of potentials is given attempting to relate measured quantities to

hypothetical terms with underlying theoretical meaning. The definitions of

the surface overpotential, thermodynamic reversible potential,



concentration overpotential, diffusion potential, solution ohmic potential
drop, and liquid junction potential are given. This section is long and rather
detailed. The most pertinent equations developed there will be given in the

following chapters for specific applications.

Chapter 4 describes the standard electrochemical polarization

technique used to characterize the zinc corrosion process. An iterative

scheme to determine the kinetic parameters from the experimental

rotating~disk data is given. The general transport equations are described
in chapter 5. However, only diffusion in a stagnant. Nernst boundary layer
coupled with charge—transfer reactions at the electrode, and equilibrium
zinc complexing reactions next to the surface are accounted for in the
present model. The emphasis is on the methodology that will enable the
measured potentials to be related to the theoretical potential differences
and to show their eflect. In chapter 8 the results of the model are compared
to conventional corrosion analysis. Lirnitations to the traditional ways are

pointed out.



Chapter 2. Corrosion and the Role of Zinc in Anodic Dissolution

Processes

1. Introduction

-One only has to contemplate that the pocket flashlight and the portable
transistor radio are commonly driven by the Leclanché dry cell to realize
that metallic corrosion is electrochemical in origin. Roughly 10 mg of zinc
are electrochemically oxidized every second a small flashlight is operated. If
we assume that one quarter of the world's population owns a
Leclanché—battery—operated device and has it switched on for an average of
one hour a day, then some 30 metric tons of zinc are dissolved daily in this
way. Clearly, metallic corrosion can amount to electrochemistry on a grand

scale.[?

In this chapter, a historical perspective of the electrochemical nature
of corrosion analysis will be given followed by a general review of corrosion
prevention techniques. The emphasis in the latter section however will be on
specific applications that zinc has for control and protection. The last
section of the chapter will discuss the role of the zinc electrode as the anode

of primary and secondary batteries.

2. Historical Perspective

It was long questioned whether the most familiar manifestations of
immersed metallic corrosion are electrochemical. Hoar with Evans{® in 1932
accomplished this by proving that the rusting of iron is gquantitatively
faradaic. Agar's more elaborate experiments[‘] with zinc in 1939 finally

secured the electrochemical basis for corrosion.



Pourbaix in 1938 developed diagrams to represent that the equilibrium
potential of a metal in an agueous solution depends not only on the activity
of the relevant metal ions in solution, but also on the hydrogen ion activity
as conveniently expressed by pH. Out of this essentially thermodynamic
approach, the potential/pH diagram has become attractive educationally for
summarizing in easy visual style a diversity of metals’ performance in
aqueous conditions. The diagram is extremely useful to know if a metal is
immune to corrosion in gi\?en circumstances. However, practical situations
most often subject metals to corrosive risks, and the rate of corrosion, which
is not apparent from the potential/pH diagram, then becomes of great

importance.

From about the turn of the century, the pioneer corrosion workers gave
considerabie attention to corrosion—-rate measurements, but the advent of
polarization curves in corrosion science waited until Evans and Hoar!®! had
demonstrated that the current in a corrosion cell could be equated to the
metal loss. It was the concept of mixed potential introduced by Wagner and
Traud!®) in 1938 that has been invoked at some time by almost every
electrochemist working in corrosion science. The acceptance of the
potentiostat and the importance of the anodic polarization curve were most

significant to the advance of corrosion science.

The polarization curves allow the electrochemical kinetics of corrosion
reactions to be studied. Probing the meaning of Tafel lines for corroding
metals and connecting this with the dissolution of the metal has become a
standard tool in corrosion analysis. Almost twenty years later, Stern and
Cearym were able to elaborate on the Russian electrochemical approach of
Frumkin established in the 1940's. By this time advances in electrochemical
kinetics had produced a detailed two—term expression for the current of a

reaction for the entire potential range starting from the reversible



potential.["] Stern and Geary showed by extrapolating the straight sections of
the Tafel lines of the anodic metal dissolution reaction and the cathodic
hydrogen evolution reaction back to the rest potential the current at this
conjunction could be identified with the corrosion rate of the metal. By
making these simplifying assumptions for the kinetic expressions, they
obtained a convenient and convincing expression for the metallic corrosion
current giving the constant of proportionality between polarization

resistance and corrosion rate.

Response to the Stern—Geary equation has been mixed since its
introduction in 1957. More rigorous treatments of its theoretical basis have
been published, leading to more complexity. On the other hand, many
practical corrosion workers trust the original Stern—Geary equation and the
corrosion rates calculated from it. Mansfeld and Oldham'®) have examined
theoretically the eflect on the reliability of the Stern—-Geary equation of
making the original assumptions. They show that the simplified equation can
yield wrong results under certain conditions. Therefore, the Stern-Geary
equation should be used with much circumspection, and the observer should
always prove first by independent measurement, ie., weight-loss
experiments, that the Stern—Geary equation is suitable for use with the

system of interest.

3. Corrosion Prevention

Corrosion of metallic materials is a major limitation in the chemical
industry. ln a variety of processes, dissolution of metal occurs at high rates
from locally active anodic regions leading to equipment failure or
contamination of the flnal product. Because of zinc's stability and highly
protective nature in aqueous media, it has an important role in corrosion
prevention.m Zinc is more negative than hydrogen on the EMF scale and is

more active than most common metals. Therefore, zinc would be expected



to undergo spontaneous dissolution by reacting with water to release
hydrogen. However, zinc dissolves very slowly except in strongly acid or
alkaline solutions.!'® The high hydrogen overpotential ostensibly exhibited
by zinc in near neutral solutions is deduced directly from this experimental
observation. Important results of this stability include the ability to use
zinc as a battéry anode material and for corrosion prohibition and

galvanizing.

3.1. Electrochemical Protection

Electrochemical protection is applied by one of two methods,
power—impressed current or sacrificial anodes. In the latter method, a
galvanic couple is formed when the sacrificial anode is attached to the
protected structure. In order to utilize this method, the anode must have a
potential that is more negative than that of the protected structure. When
connected, the structure is polarized cathodically, and the sacrificial anode
is polarized anodically, and the two reach the same potential, provided the
resistance of the electrolyte is sufficiently low. The sacrificial anode is
consumed by dissolution during protection of the cathode and requires
periodic replacement. For maximum efficiency of protection, the

self—corrosion of the anode should be a minimum.

Zinc's standard potential is more negative than all of the more common
metals of construction except aluminum and magnesium. When zinc coats
any of the more noble metals, a sacrificial electrochemical reaction may
occur with the active zinc forming the anode. While this action leads to
increased zinc corrosion, it provides the basis for the protection of metal
structures by coupling them to zinc metal. Pure zinc must be utilized to
obtain good efficiencies for cathodic protection. Because of the low driving
force for potential, cathodic protection of ships’ hulls, pipes, and other

structures using zinc finds application mainly in seawater and in more



conductive soil environments. The use of zinc may not be practical in

environments requiring high currents or involving high resistance.!!!]

Power;impressed current protection, whether anodic or cathodic, is
another important electrochemical method because it is easy to apply and
control. The impressed—current method operates by the maintenance of the
electrode potential of the object at a level where the corrosion rate is low.
Cathodic protection, i.e., controlling the potential in the cathodic region, is
presently being adopted instead of galvanic protection whenever electric
power is available. Impressed current is widely used today for internal and
external protection of pipelines and ships' external hulls. The amount of
current required to protect a metal depends on the corrosion rate and the
area of the surface. Anodic protection, which functions by the control of the
potential in the anodic region at a level where passivation is obtained, is
used mainly for titanium and for stainless steel in contact with sulfuric

acid.lt?]

3.2. Inhibitors and Alloys

A corrosion inhibitor is a chemical substance which, when added in
small concentrations to an environment, decreases, or prevents the reaction
of the metal with the environment. Most inhibitors are used in liquid
systems, t.e., alcohols and amines are common cathodic inhibitors, but vapor
corrosion inhibitors which prevent corrosion in the atmosphere also exist.
Even though the use of inhibitors is of great practical importance, their
widespread use has been limited because of the lack of general
understanding and the poor information available on specific commercial
inhibitor products.[’zl Corrosion prevention by inhibitors often seems risky
today, and considerable eflorts are needed to bridge the gap existing
between scientific work conducted in the laboratory and actual service

problems. Future work needs to be done to develop simple and quick
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electrochemical methods for the evaluation of a given inhibitor. Then
corrosion inbhibitors might become an eflective tool more generally

employed in the fight against corrosion.

The protective nature of zinc depends on, in part, the hydrogen
overpotential characteristics which control the rate of zinc corrosion in
agueous solutions. Again, pure zinc possesses a very high hydrogen
overpotential, implying a low exchange—current density for hydrogen on
zinc. The presence of impurities (e.g.. iron, copper, and nickel) with low
hydrogen overpotentials either in the zinc or in the environment drastically
increases the corrosion rate. Therefore, control of zinc corrosion rests on
control of the hydrogen evolution reaction. Alloying with higher hydrogen

overpotential metals (e.g. mercury and tin) decreases the corrosion rate.

3.3. Protective Coatings

The most common method of co\rrosion prevention is the application of
protective coatings.(”] The success of zinc coatings rests on the low cost of
zinc, the ease of application, and its high corrosion resistance. The two main
reasons for zinc's excellent protective coating have previously been stated.
The first is the natural resistance of zinc itself against corrosion in the
atmosphere and in most natural waters. The second is the fact that zinc's

standard potential is negative to iron and can protect it sacrificially.

The protective nature of the corrosion film results from a layer of
non—-conducting zinc hydroxide and oxides as well as basic carbonates and
salts, making the hydrogen evolution reaction negligible. The exact
composition of the protective film depends on the nature of the
environment. In aqueous solution the pH of the environment governs the
formation of the protective film. In alkaline and acid solutions, the
formation of protective layers is lessened, and corrosion increases at both

high and low pH. A conductive medium increases the protection provided by
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the zinc coating because it provides a low resistance electrolytic path

between zinc and base metal.

The natural resistance of zinc is its most important property in relation
to zinc coatings. The electrochemical property becomes important when the
zinc coating is damaged in any way to expose the metal. The sacrificial
corrosion of the zinc then occurs, and the more noble metal is thereby
protected. Moreover, the corrosion product of the zinc normally fills the
break in the coating and prevents or retards further corrosion of the
exposed metal. As the protective value of the zinc coating depends largely
on the corrosion resistance of zinc, t;he life of the coating is governed almost
entirely by its thickness and by the severity of the corrosion conditions to
which it is exposed. The principal method for applying zinc coatings to iron
and steel is hot—dip galvanizing. Other methods include spraying, plating,

and painting with zinc—rich paints.

Galvanizing

It is estimated that approximately 407 of the worid production of zinc is
consumed in hot—dip galvanizing of iron and steel, and this adequately
demonstrates the world-wide use of zinc as a protective coating.“sl The
oldest and most familiar of commercial processes used for applying metallic
coatings to other metals is hot dipping. Hot dipping refers to immersion in
molten metal. Zinc coating by hot dipping is known as the galvanizing
process. Galvanized, as applied to zinc—coated iron, had its origin in the
concept of the galvanic protection from corrosion afforded iron by zinc in
contact with it. The coating is not uniform in composition, but is made up of
layers of zinc—iron alloys becoming progressively richer in zinc towards the
surface, so that the actual surface layer is composed of more or less pure
zinc. Because of this alloy formation, there is a strong bond between the

coating and the steel resulting in a successful coating given by the
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hot—dipping process. The process produces a thick coating which thoroughly
covers the work, sealing all edges, rivets, seams, and welds when fabricated
articles are treated. Hot—dip galvanizing is the most widely used method for

coating with zinc.

Plating

There are many books and reviews dealing with electroplating as a
commercial technology and as an interesting process for scientific enquiry.
However, it is mentioned here because the production of electroplated
coatings can be used for the control of corrosion. Zinc coatings produced by
plating have the advantage that the thickness can be accurately controlled
according to the protection desired. The coating is of uniform composition
throughout, containing no alloy layer, and is united with the underlying
surface by a metal/metal bond. The process is more expensive, and plating
is confined to much smaller objects than those of the other methods given.
Thus, corrosion control is not the sole function of electroplated coatings.
Other virtues of plating are decoration, reflectivity, wear resistance,

solderability, and low contact resistance.

Metal spraying

The advantage which the metal spraying process possesses over almost
any other is that zinc coatings can be applied to very large structures, such
as bridges. In this method there is no alloy formation, and the bond is
primarily mechanical. Although porous, the coating is protective as
discussed before partly due to the zinc corrosion products which soon block
up the pores, stifling further attack. Sprayed deposits of zinc and aluminum
have protective properties proportional to their thickness. Therefore, if the
zinc coating has sufficient weight per unit area, it will give complete

protection.
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Painting

Antirust painting accounts for a major proportion of the total corrosion
budget.[”"] The main use is to protect structural stéel-work. ships’ hulls, and
vulnerable parts of car bodies, and to repair damage to other zinc coatings.
Paints capable of protecting steel prepared with zinc dust function
satisfactorily only in the presence of an electrolyte. The metallic pigment
paints are quite porous, and water containing a trace of salt or acid
completes the circuit formed by the two metals. The useful life of the paint
is not limited to the life of the electronic contact between the zinc particles,
because of the formation of hydroxyl ions at the steel surface. Consequently
as mentioned before, the surface becomes coated with these deposits, which
block the pores in the flim and render it very compact, adherent, and
impervious. Thus, although metallic contact between the steel and the zinc
dust particles is essential in the early stages of exposure, the paints provide
good protection after that contact has been lost. As was stated previously,
the metal spraying process provides a method of treating steel with coatings
of zinc or aluminum which can afterwards be painted. Outstanding virtues of
zinc—rich paints are simplicity of application and a combination of a
metallic primer and a good silicate—=bonded zinc-dust paint is the most
eflective means of combating corrosion of constructional steelwork at a

reasonable cost that is known yet.[!!]

In the same way as for an unprotected surface, the corrosion of a

painted metal surface proceeds by the action of an electrochemical

corrosion cell. The cathodic reaction is the reduction of oxygen permeating

through the paint film to the metal surface. The paint film which includes
absorbed water, constitutes an essential part of the electrolyte. Thus the
overall corrosion mechanism on a painted metal surface might be entirely

different than in plain metal-solution systems. Knowledge of the
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mechanism of corrosion on painted metal would provide a good basis for the
development of a rapid test method for anticorrosion paints. Such a method
is urgently needed, as even in this case the conventional field tests require
too long exposure times, and the accelerated test methods now being
employed are often far from representative of the exposure in practice. In
fact, a quick and reliable method for the evaluation of anticorrosion paints is

essential for rational development work in this field.

4. Battery Anodes

Zinc is the anode in many commercially important primary cells and in
several high—energy—density secondary cells. In the primary Leclanché cell,
zinc dissolves anodically into the separator layer as the simple ion, which
then forms complexes with the near—neutral electrolyte. Zinc corrosion and
its eflects on cell water balance constitute important limitations on the

storage or shelf life of the Leclanché cell.

In battery production, the zinc container for primary batteries and zinc
electrodes for silver—zinc cells are usually amalgamated with mercury to
keep the corrosion of metallic zinc at a very low rate. A zinc battery is very
easily destroyed if a salt containing ions of a metal with a high
exchange—current density is put into the battery electrolyte. This results
from the corrosion of zinc with common impurities being 10,000 times larger

than that of amalgamated zinc.!'¥]

Aqueous zinc halide Dbatteries, such as ZnCl;—-KCI-E,0 or
ZnBrz-KCl—HZO. are being investigated for electrical vehicles and utility
load-leveling purposes. - The major considerations are overall energy
efficiency and system cost. To maximize energy efficiency, cell design is
aimed at reducing coulombic and voltaic losses in cells. Parasitic hydrogen
generation at the zinc electrode and irreversibility of the zinc electrode are

two losses that may be overcome through fundamental kinetic studies.



15

Included in the cost issue is component stability and reliability, which affect
life cycle cost of the system. Again, corrosion and instability of the zinc

anode are problems that possibly can be solved only with more research.



Chapter 3. Electrochemical Reaction Fundamentals

1. Introduction

As was stated in chapter 1, the objective of this work is to understand
corrosion processes by emphasizing fundamentals. The purpose of this
chapter is to present the theoretical tools so that the electrochemical
reactions of a corrosion process may be studied and further understood. In
order to obtain useful information about the reactions from experimental
data, it is necessary to relate fhe measured quantities to idealized,
hypothetical quantities with underlying fundamental concepts. This requires
the use of thermodynamics, kinetics, and transport phenomena, and will be
presented in the next two sections. However, before proceeding with the
details of the fundamentél equations, it is necessary to understand how to

analyze the electrochemical cell used in this experimental study.

An electrochemical cell consisting of two electrodes separated by a
conducting, electrolytic solution is represented in figure 3—1. Because it is
of interest to study the corrosion process at the negative zinc electrode, it is
indicated on the schematic as the working electrode. The secondary
electrode chosen is chemically inert platinum and is specified as the
counterelectrode. Since the platinum electrode potential is positive relative
to the =zinc electrode potential and platinum has a low hydrogen
overpotential, hydrogen evolution will occur at the counterelectrode when
the electrodes are connected externally. When electrons are allowed to pass
from the negative to the positive electrode through the external circuit, the
circuit is completed by ionic, chemical species transfer across the cell
through the electrolyte. The change from electronic conduction to ionic

conduction occurs al the electrode surfaces. The electrodes must be

16
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electronic conductors to assure that electrons can get to or from sites at
which the electrochemical reaction takes place. It is these electrochemical

or faradaic reactions that are of interest to study at the working electrode.

It should be noted that it is possible also for electronic and ionic charge
to accumulate at an electrode without any chemical reactions occurring.
This capacitance eflect occurs next to the working electrode in the diffuse
double layer. The outer edge of the double layer is denoted with a 0 in figure
3—-1. This thin region actually is part of the electrode—electrolyte interface
and is about 1 to 10 nm thick. At steady-state, the double layer is charged,

and the measured potential difference is independent of the capacitance.

In addition to electrons getting to and from reaction sites, species in
the electrolytic solution must get to and from the reaction site. The
solution—phase transport gives rise to concentration variations near
reaction sites which affect the rate of reaction. All concentration gradients
may be assumed to be within a region next to the electrode interface, and
the bulk solution therefore has a constant concentration. The diffusion layer
is shown in figure 3-1 with thickness 4. For this system, as for most aqueous
solutions with excess supporting electrolyte, the Schmidt number Sc = v/ [,
is 1000 or higher. High Schmidt numbers result in thin diffusion layers (of

the order of 10 um thick) relative to the hydrodynamic boundary layer.

An important technique used to investigate cell behavior is to insert a
reference electrode into the cell. The purpose of the reference electrode is
to measure the potential in the solution. It should be pointed out that the
current flow is between the working electrode and the counterelectrode, and
the reference electrode with its high input impedance is used only to sense
the potential at a given solution composition and position within the cell.
The reference electrode should be reversible and reproducible, and its

potential should remain constant over the course of an experiment. The

>
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reference electrode should be chosen so that its electrolytic solution, which
is usually in its own separate compartment, is as similar as possible to the
electrolytic solution being measured. This minimizes contamination and
éomplicating liquid—junction effects. By careful placement of the reference
electrode, it is possible to determine how the cell potential changes with

varying operating conditions.

Also shown in figure 3-~1 are five different reference electrodes which
may be ‘used to assess the potential diflerence between the working
electrode and the solution at some distance from the working electrode.
There are four imaginary reference electrodes and one real reference
electrode. The potential difference that may be measured, &, — $g5. is the
potential of the metal &, minus the potential of an actual reference
electrode of a real kind %z placed in the bulk solution. However, if
thermodynamics is to be of any help in the analysis, it is necessary to break
down the overall measured potential into potentials with a theoretical basis.
This is done by the introduction of hypothetical reference electrodes. The
potentials of the hypothetical reference electrodes that are shown in figure
3-1 are designated by $ps . 335_-. $pc 0. and 31%-,.. Each is defined here and

will be discussed further in sections 3.2, 3.3, and the appendix.

$rso and $pc o are potentials which would be measured by reference
electrodes placed next to the working electrode just outside the diffuse

double layer. The difference between them is that $ps is the potential as

‘sensed by a reference electrode of the same kind as the working electrode.

The imaginary reference electrode $z5 ¢ is defined so that at a given position,
the electrolytic composition of the reference electrode is at the same
composition as the electrolytic solution that is being measured. Therefore,
no concentration differences or liquid=junction regions may exist between

this highly idealized reference electrode and the solution. $gc¢ is the
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potential given by a reference electrode of given kind. Its reference
electrode compartment usually will have a composition different from the
solution being measured. However, any liquid—junctiSn potential which
might exist between the solution in question and that within the
reference—electrode compartmefxt is corrected for by definition of the ideal
reference electrode. *“Corrected for liquid-junction potentials” means
making the (perhaps imaginary) requirement that the electrical states of

the two solutions be equal.!}

335,.. and 335'- are the potentials of reference electrodes of the same
and given kinds, respectively, at a large distance from the working electrode
and are for all practical purposes at infinity. The potentials indicated with
tildes represent the potential that would exist at the specified position if the
concentration everywhere were that of the bulk solution. These potentials
satisfy Ohm’s law and therefore are the solution of Laplace's equation

=0 , (3-1)

for the potential variation in a solution with uniform concentration.

The measured potential difference may be rewritten

V= Qm - 4’3};
= (= Prso) + ($rso = Frsa) + (Frsa — Br)
using the reference electrode potentials defined above. As will be shown

(3-2)

later, this is equivalent to

V=, +88ps + U pra - (3-3)
The potential diflerence between electrode reaction §, evaluated at the
species’ bulk concentrations, and a real reference electrode,
Ui, rr= = 3;5_- — ®xn. is calculated using principles of local equilibrium and
transport equations because a junction region exists between the bulk
solution and the actual reference electrode’s solution compartment. The

remaining terms on the right side of equation 3-3 are potential losses which
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are non—-zero when current flows. The surface overpotential for reaction j,
Mej = ®m — $rso. is associated with the energy losses that accompany driving
the charge—transfer reaction j at the reaction sites. Energy also is required
to transport electrons, ions, and neutral species to and from reaction sites.
The decrease in cell potential resulting from concentration variations is the
concentration overpotential, .. Added to the concentration overpotential is
the energy necessary to drive ions through the solution to carry electrical
current, which is the solution resistance loss or ohmic loss, Agohm. Both of
these energy losses go into Adps = ¢£_°—$Rg_-. Therefore, the potential
diflerence across the cell as measured by two reference electrodes of the
same type placed just outside the diffuse double layer and in the bulk
solution. may be given by A¢ps =7, + A$°hm. where Agohm is the potential
diflerence which would exist if there were the same current distribution but

no concentration gradient in the diffusion layer.

Since the bulk concentration of the cation being produced is quite often
zero for a corrosion process, the concentration overpotential and the
potential 3;;5,- are undesirable to use, as will be shown later. One can
rewrite V" as

V= (8 = bps0) + (Prso — $ro0) + ($rco — $rom) + (From — rp) - (3-4)
This will be shown to be equivalent to

V=14 + U,pco + 8%rc + Upc/rr= - (3-5)
The potential difference V' as measured between the metal and a real
reference electrode in the bulk is the same no matter how the cell is divided.
In equation 3-5, the surface overpotential 7,; is the same as is given in
equation 3-3. However, the remaining potential terms on the right of

equation 3-5 are defined diflerently.

Uisreo = $rso — Prco is a thermodynamic potential difference that

assesses the electrical state of the working electrode reaction j relative to
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the given reference electrode KRG evaluated at the same species surface
concentrations. Since the potential difference is defined by imaginary
reference electrodes, it contains no liquid—junction potentials. The
potential difference, A$pe =‘I’Rc.o'$kc.-- is the potential of a reference
electrode of a given kind placed next to the working electrode minus the
potential of another reference electrode of a given kind in the bulk. It may
be rewritten as A%py = Adgip + APorm. Where Ad4q is the diffusion potential
and A¢.;, is the ohmic potential drop of the solution'with concentration
variations. The potential difference Ugc,pre = $m_- - $gr between a
hypothetical reference electrode of a given kind 330._ placed in the bulk
solution (not containing a liquid junction) and a real reference electrode $pp
placed in the same bulk solution is established by the activity gradients of
species across the junction, and transport equations are necessary to treat

this problem.

It is the purpose of the remaining sections of this chapter to define
carefully the variables in equations 3-3 and 3-5 in terms of
thermodynamics, kinetics, and the laws of diffusion laking into account the
method of forming the junction.' The results will be of a general nature, but
only the applications specifically for the anodic zinc dissolution and the
cathodic hydrogen evolution reactions as they occur in the corrosion

process of zinc in dilute, aqueous hydrochloric acid will be presented.

2. Cell Potential for Corrosion Processes

The expression developed in section 1 for the measured cell potential

particularly for a corrosion process is given by

V=n, + Ui, pco +8%rc + Urc/ - - (3-86)
Before proceeding to give expressions for each of these terms, it is

! The notazion used in section 40 of reference 1 to define reference electrodes of a given
kind will be folowed. Newman uses [/ and to denote cell potentials without and with
junction regions, respectively.
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necessary to understand better the relationship between each of the
imaginary reference electrodes that have been introduced. Figure 3-2
gqualitatively gives the potential profiles within the electrochemical cell
shown in figure 3—1. Because three types of reference electrodes are used, it
is interesting to compare the results given by each. The potentials $p5 of
the reference electrodes of the same type as the reaction of interest
occurring on the working electrode are shown by dotted lines just below the
potential ¢, of the working electrode. The potentials ¢, of the reference
electrode of a given kind are given below. The potential of the real reference

electrode $zp is given at the bottom of the figure.

The significance of figure 3-2 is that it shows qualitatively how the
measured cell potential V' =¢, — ¢z, may be subdivided using the
hypothetical reference electrodes $zs and $p; into a number of potential
differences that are given on the right of the figure. The potential difference
that is shown first from the top is the kinetic potential driving force or
surface overpotential

Nej = Pm — Prso - (3-7)
At equilibrium,! this overpotential equals zero since &, = dp50. Next, the
potential difference between reference electrodes $450 and $5¢ 0. when both
are placed just outside the diffuse—double layer, is the thermodynamic
potential U,"/Rc,o between the two different reference electrode reactions j
and RG. As we move down the figure, A%zc is the potential difference
between the two ideal reference electrodes of e given kind, where one is
placed next to the electrode surface and the other in the bulk. This
difference includes the diffusion potential A4 and ohmic resistance of the
solution. Finally, the potential difference between the imaginary reference

electrode of a given kind and the real reference electrode is shown at the

? It will be shown later in this chapter that the corrosion process does not reach an
equilibrium state.



24

Very thin diffuse double loyer
1— ot electrode surfoce

rPotentinl of
working electrode

om L . -— -
/-Potentiol in solution oty = O 1 7
Ons ol ]
RS.0 =13
~Potentigl in solution gt y=0
(Loploce's eqn)
-~ ’
®Rs‘o e — , V
_ ' Yi/R6.0
> |
et otentigl in
° _ solution gty =@
= p
$ Prs. o f
& rPotentiol in solution vs o given
. reference electrode ot y= O
" YN 4 \ ‘
RGO ‘l ® (O ]
- Jét(‘?'%b’%%m
®rG,0
1I° L g fAQRG
10 KCD y
6o - - i ! ’
Diffusion ! - .
"~ “Layer ~—— Bulk Solution  — }URCJRR.Q
QRRI— - . . - . . . . -
1 >
y:0 y:3 y=b y ~®

Distonce from Working Electrode
XBL843-6725

Figure 3-2 Potential distributions. This figure applies to the case where the
reactant concentration does not go to zero in the bulk solution.
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bottom of the figure to be Ugrg, rR -

It should be noted that two additional potentials are shown in this figure
that were not given in figure 3-1. 335'0 and 339_0 are the poténtials of the
solution adjacent to the working electrode as measured by the two
hypothetical reference electrodes as if there were no concentration
gradients across the diffusion layer. If the conductivity is constant across
the diflusion layer, the difference between the reference electrodes of a
given kind $4; ¢ and 330,0 reduces to the diffusion potential. This potential
difference should be compared to the potential difference @R_g.c"ap_s.c
between the two reference electrodes of the same kind as electrochemical
reaction j. The latter potential diflerence is the definition of the
concentration overpotential. More will be said about it later, but for now it
should be pointed out that the zinc reference electrode is very sensitive to
- the potential difference across the difflusion boundary layer since the
difference in the zinc ion concentration is large. The reference electrode of
a given kind, a saturated calomel electrode (SCE).! is less sensitive to the
concentration difference across the boundary layer. For this reason, the
concentration overpotential is larger in magnitude than the diffusion
potential. For example, if the zinc bulk concentration is zero, then the
concentration overpotential is positive infinity. Each of these potential

differences will be discussed further in the following sections.

Figure 3-3 is a helpful representation of the cell potential V" measured
between the zinc working électrode and an actual saturated calomel
electrode placed in the bulk. Two of the terms in equation 3-8, L}, pco and
Urc/ rr.-. may be determined by constructing hypothetical electrochemical -

cells as shown in the figure, and then by applying local equilibrium concepts.

t For this work, the calomel electrode is chosen as the reference electrode because the
chloride ion, which participates in the reversible calome! reacuon, is common with the
electrolyte (reducing the junction potential) and has an invariant internal concentration within
the reference electrode compartment.
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Figure 3-3. Schemalic of the measured cell potential.
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The thermodynamic potential U,"/Rc,o refers to the conceptualized cell
potential difference between two electrode reactions at a given position
(adjacent to the working electrode) in the actual cell. For this case, the zinc
reaction occurring at the electrode surface is shown relative to the calomel
electrode, where the potentials of the § and A phases are equal by definition.
When the potential of the bulk solution is aésessed. a potential difference
Ugr, rc.- results from using a real reference electrode in the place of an
ideal reference electrode of a given kind. This difference between the two
types of calomel electrodes includes a junction or transition region and is

represented on the right of the figure.

The other two potential differences shown in figure 3—-3 are 7,,; and A%x¢.
Again, the surface overpotential 7,; is shown to be the difference between
the working electrode and an ideal reference electrode $p5 placed adjacent
to the working electrode. Adpg; is the potential difference across the cell as
given by two reference electrodes of a given kind placed outside the
diffuse—double layer and in the bulk solution. This diflerence includes the
potential variation with position due to activity gradients and ohmic
resistance of the solution. Transport processes must be considered to obtain
an equation for Adz;. In the next three sections, we should like to give
explicit expressions for each term in the measurable cell potential equation

3-8.

2.1. Cell Potentials Relative to a Given Reference Electrode

The theoretical thermodynamic potential difference between the
electrode reaction j and the reference electrode reaction KRG is given by
Uj,rco = $rso — $rco. where O denotes the position next to the electrode
surface shown in flgure 1. An expression may be derived for this potential
difference by mentally constructing an eléctrochemical cell for the zinc

corrosion process as follows:
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a ¢ £ A é g a'
Pt | Hg(s) | HgoCla(s) | 4.1 M KCl ZnCl, Zn(s) | Pt
saturated —« —and HCl,
in Hzo in Hzo

The corrosion of zinc in zinc chloride and dilute, agqueous, hydrochloric acid
electrolyte is represented here. A saturated calomel electrode is shown on
the left of the cell. This ideal reference electrode of a given kind with
potential $g¢ ¢ is used to access the potential $p5¢ of the electrode reaction
j. The dashed line does not denote a junction region; instead we make the
requirement that the electrical states of solutions A and § are equal in this

hypothetical cell so that thermodynamics alone may be applied.

The calculation of a finite cell potential U, gc may be carried out by
applying the concept of local equilibrium as ‘shown by Newman.[! 1t is
assumed that equilibrium exists between the reacting species and the metal
so that the sum of the electrochemical potentials of the electrode reactants
equals the sum of the electrochemical potentials of the products. The
mercury—mercurous chioride reference electrode reaction at the left of the
cell shown above is

2Hg + 2C1~ = Hg,Cl, + 2e~ : (3-8)
and one possible reaction at the right electrode is

Zn =Zn? + 2e” . (3-9)
Another reaction that occurs at the working electrode is hydrogen evolution

and will be given following this treatment of the zinc cell potential.

The local equilibrium relationship for reactions 3-8 and 3-9 are given

as

2ug; + 2;;&_ = pfig,cl, + 2 (3-10)
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udn =l + 202 (3-11)

These equat'io-ns relate the electrochemical potential of electrons in the
leads to the electrochemical potentials of reactants in the solution adjacent
to the eleétrodes. The thermodynamic cell potential Uj', re taken to denote
the potential of the right relative to the left, then may be expressed as
FUj, pe = mE = BZ. (3-12)
which is in terms of the electrochemical potentials of the electrons.
The electrical potential is related to the thermodynamic properties
using the phase—equilibrium equations 3—10 and 3-11 in equation 3-12

yielding

. 1 1 1

FUz/ roo = ufly = ShEg0p * HY- + FHomes — ok (3-13)

The electrochemical potential is given as
P =RTIn A\ =+ RTIna; , (3-14)

where Ay = Afa; is the dimensionless absolute activity and o, is the activity
of species 1 expressed in mol/kg. The standard state chemical potential is
given by u? = RT In A?, where A? is a property expressing the secondary
reference state in kg/mol and is independent of composition and electrical
state. Substitution of the electrochemical potential given by equation 3—-14

for each species into equation 3—-13 for the thermodynamic cell potential‘

yields
: RT 2
Uznsreo = U pe + 37 1D {ag,,, [aé,-] } : (3-15a)
~ where
1 1
FUZo pe = e = SHBe,crp = gh8n + KT In NG AT, (3-15b)

because the chemical potential of & pure phase simply is equal to its

standard state chemical potential uf.

Now we should like to relate the activity of the solute species to the
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concentration and electrical state of the solution.! It is desired to follow the
concepts and notation of previous workers in the thermodynamics field. For
example, the electrochemical potential of an ionic species is frequently split
into an electrical term and a ''chemical” term,

My = %P 4 g Fe = RT In AP T + 2, Fd (3-16)
>where % is the "electrostatic” potential, m; is the molality, and T is the
activity coefficient which now is supposed to be independent of the electrical
state of the phase. The electrostatic potential $ could be defined so that it is
measurable or unmeasurable. Depending upon how well defined ¢ is, I} is
just as well or poorly defined. In order to avoid proceeding with only a vague
concept of the electrostatic potential as supplied by electrostatic theory,

Newman's analysis given in his text(!] will be followed.

It should be pointed out that for a purely thermodynamic problem, the
introduction of the quasi—electrostatic potential is not necessary; the
electrostatic potential can be avoided, since»it is not directly related to
reversible work. However, the beauty of Newman's approach lies in the way
that it may be applied to the determination of potentials of
non—thermodynamic cells containing liquid—junction regions. A brief
outline of his method is given, and the determination of the thermodynamic
zinc electrodé potential relative to a saturated calomel electrode should
provide a simple example illustrating the computational ease of using

Newman's definition of the quasi—electrostatic potential.

The chemical or electrochemical potential, depending on whether the
solute species i is neutral or ionic, respectively, may be written in terms of
the molality or molar concentration ¢, as

M = RTIn A\¢m;y, = RT lnal%c.f; . (3-17)
The primes on the concentrations are used to indicate that the

1 As an aside, much of the motivation required for writing this terribly long introductory
chapter was a result of the effort to do just that
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concentration is expressed in mol/L.! The secondary reference state, which
again is taken to be at infinite dilution, is characterized by the molarity
constant a expressed in 1/mol. Since the absolute activity,
N = APmyy; = acf;. depends on electrical state for an ionic species, the
dimensionless activity coeflicients 9; and f; must also depend on this state.
This convention is different from that of splitting the electrochemical
potential into a chemical potential term, where the activity coefficient is
independent of the electrical state of the phase. However, the advantage of

the present method should become apparent as we proceed.

The electrochemical potential u; can be related to the electrical state of
a phase by using an ingenious concept introduced by Newman!!sl{1] By
selecting an ionic species n (for the present example, the chloride ion is a
good choiée). the electrochemical potential can be expressed as
Un = RTlnc, +2,Fd , (3-18)
where ¢ is defined as the quasi—electrostatic potential of the phase relative
to species n. Then, the electrochemical potential of any other species (for
example, the zinc divalent ion) can be expressed as

i = RTIn (c(f¢nad) + 2,FO (3-19)

where the neutral combination of molar activity coefficients is given by

7
Jin=Sti/ 120
and the property expressing the secondary reference state is

af = o? / a3V

for species t relative to species n. Next, it is necessary to give equalion
3-19 in terms of A? which characterizes the-secondary reference state so
that the tables of standard potentials such as those given by Newman!! may
be used. By our definition of the secondary reference states, the molar and

molal secondary-reference—state constants are related by a® = A2/ p¢ (see

Y Later in the text, € will be used to indicate the units mol/cm?.
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appendix A), where the density of pure solvent water pg is 1 g/cm®.
Therefore,

a0 =N,/ pfl TH ) (3-20)

where

N =N/ A"
Finally, we are in a position to achieve our desired, well—defined relationship
between vtbe activity, concentration, and electrical state. Even though
Newman never writes an equation for a;, such an equation may be obtained
by substituting equation 3—-20 into 3—19. When this result and equation 3-18

are compared to equation 3—14, the following equations for the activity

Cn [z, F |
a, = E expl T $
cfem || 2F | (3-21)
a; = —|exp| == ,
Po (A2/ po)™/ *» ? l RT J

are implied directly from the basic definitions given here.

We may now use equation 3-21 for the activity of solute species i and n
in equation 3—15 to obtain the theoretical thermodynamic cell potential
Uzn, rco. Where the prime egain implies the junction region is assumed not
to exist. The same equation may also be determined by substituting the
expressions given here for u, and u; into equation 3-13. The
electrochernical potential of the chloride ions in phase A is given by equation
3—18. Equations 3-19 and 3-20 may be used to give the electrochemical
potential of the zinc species in phase § relative to the chioride ioh. Thus,

equation 3-13, after making these substitutions, becomes

[c? [z:'A ]2f° ]
R _ RT Zn!‘ Cl'.lll Zn!‘.Cl' (3_22)
Uznsrco = UZe/re + oF IP Y, . .

where FUZ., pc is given by equation 3—-15b. The value of the standard cell

potential for the zinc reaction relative to the calomel electrode at 25°C is

%
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Ufns re = Uy = U = —0.7628 — 0.2676 = —1.0304 V
The brackets subscripted with 0 in equation 3-22 indicate that each species

is at its surface concentration. It should be pointed out that the
quasi—electrostatic potential difference between phases A and 6 does not
appear in equation 3—-22 because our definition of a reference electrode of a
given kind implies $¢ = $*. Appendices A, B, and C give a more thorough and
general description of these thermodynamic properties of the

electrochemical potential for determining cell potentials.

The zinc reaction is not the only electrode process occurring during
corrosion. Hydrogen evolution

H*+e-=%H; (3-23)

simultaneously takes place with the anodic zinc dissolution. The same

procedure is used to obtain the cell potential of the hydrogen reaction

relative to a reference electrode of a given kind as was obtained for the zinc

reaction. Therefore, the hydrogen potential is given by

. 1 1

FUny roo = iy = THg0, + KA.+ ul - oH (3-24)

In addition to the expressions given above for the electrochemical potentials

of solids and solutes, the partial pressure or fugacity of hydrogen must be

related to the standard potentials. The chemical potential of a real gas in a
multicomponent system is given by

ki = (T) + RTIn(pig,) . (3-25)

where p; = y,p is the partial pressure of species 1, and ¢; is the fugacity

coefficient describing departures from the ideal state and approaches one in

low-pressure mixtures. The potential difference Uﬁ,/m.o = ¢ps — $pp o for

the hydrogen reaction relative to an imaginary saturated calome! electrode

may be determined using equation 3-24 to be
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[ ] ‘A 8
: I RT € ke € - nat L2 01
Uk roo = Uy pe + = In 08

RT L, 18
0 2F In ka3¢hZJo(3 26)
where

FUB, re = il = giflry = 3By + RTIN AR o (3-27)

The value of the standard cell potential for hydrogen relative to the calomel
electrode at 25°C is

Uﬁ,/kc = Uﬁz - UB; = 0.0 - 0.2676 = -0.2676 V. (3-28)

A general equation for the cell potential of an electrode reaction j relative to

.a reference electrode of a given kind is developed in appendix C. A

discussion of the Nernst equation is given there as well.

The expressions for the cell potential of both the zinc and hydrogen
reactions contain activity coefficients of the solute ¢ relative to the chloride
ion. An equation for a neutral combination of molar activity coefficients f; ,

is given in chapter 4 of Newman!! as follows:

a'z(z, - z,.)\/; [ 2, ] .
——+2 Y |g, - —Fn . (3-29)
1+ BaVr jz-:o Fies znﬁ I|e

where the sum is over solute species. The coefficient for ion-ion specific

ln!l.n =-

interactions, f';;. can be taken to be zero for a pair of ions of like charge,
and By =84 Thus, Byg =0.271/ mol, and Bz,q, = 0.201/ mol. [' is the
molar ionic strength, and B'a is a Debye—Huckel parameter that is given the
same value of 1 (1/ mol)* for all electrolytes, which corresponds to a mean
diameter of ions, a = 3.04 :\. for aqueous solutions at 25°C. For each
electrolyte, there is only one adjustable parameter a’, which can be fit by
linear regression. At 25°C, a' = 1.1779 for aqueous solutions. ]t should be
pointed out that the activity coeflficient is small in dilute solutions and in

most cases may be neglected.
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2.2. Abpe

The third term in equation 3=6 A%z, = $pc 0 - $rc .« is the potential of a
reference electrode of a given kind placed in the solution adjacent to the
working electrode minus the potential of another reference electrode of a

given kind in the bulk. A general expression for this potential diflerence is

given byl!]
b 4 ] [o]
1‘1( RT (Ct’fi.n)- RT tp 91n Cpfp.n
V, = —dy + —/= ), sy In —————— + — —— ——————d{3-30)
" ’{ K "‘sz;: v (cifin)o F '{§ 2p oy

where V, strictly speaking is the potential of a movable reference electrode
of the same kind as the electrode reaction relative to a fixed reference
electrode. The transference number for species p relalive to the velocity of
the solvent is given by tp°. S;; is the stoichiometric coefficient of species i in
electrode reaction j, and x is the conductivity of the electrolyte.. The
integration is performed from the electrode surface to the bulk solution
denoted as b. The first term on the right of this equation is the ohmic
potential drop, and the second depends on the specific electrode reaction j.
The last term represents the diflusion potential resuiting from
concentration gradients of all species p in the solution excluding the
solvent. The last two terms are obtained by integrating the gradients of the
electrochemical potentials of neutral combinations of ions across the
diffusion layer. In the absence of concentration, they are zero, in which case

K is a constant.

We should like to use equation 3-30 for the potential difference A$pg of
two reference electrodes of a given kind. The electrode reaction for the
reference electrodes KRG is the mercury—mercurous chloride reaction given
by equation 3—-8. The chloride ion is the reference species n, and because
the concentration of the reference electrode compdrtment is the same (4.1
M saturated KCl) at the surface and in the bulk, the second term of equation

3-30is zero. Therefore, equation 3-30 reduces to
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® 0
ty Blncyf
P p/pn (3-31)
P

b

Aém-—;i’,.,:{%dy-o'%{;z— oty
where V., now rﬂ‘epresents the potential difference of a movable electrode of a
given kind relat%ive to a fixed reference electrode of a given kind. For dilute
solutions, the activity coefficients may be neglected, and the transference
number is replaced with a conductivity term resulting in

b i y 2, D, 8c
Mgy = [ Lay+F [§ 22 5 %Y (3-32)
[¢] 0 p

where D, is the diffusion coefficient of species p. Further simplifications

may be made for solutions with an excess of supporting electrolyte by
neglecting conductivity variations in the diffusion layer. Then equation 3-32
for Adp, becomes

b . _
Abpe = { -E”:dy + {;%} 25 D, (Cpa = Cpo) - (3-33)
At open circuit, the current density is zero so that Adp; reduces to the
diffusion potential Ady4e which is given by the last term on .the right in
equations 3-31, 3-32, and 3-33. This difference of potential is zero by
electroneutrality if all the diffusion coefficients are equal. The diffusion
potential - has the advantage of not approaching infinity as the bulk

concentrations go to zero. More will be said about this important point in a

later section.

It may be desirable to break doﬁn the potential variation across the cell
as shown in figure 2 to be
B%pc = ($rco = $rco) + (Proo — Fros) (3-34)
The second term on the right is the ohmic potential drop across the cell .
calculated as though there were no concentration gradients across the
diflusion layer and is given by

i
8 pm =8 ppo —Fpow = ,{ =y . (3-35)

Therefore, the first term gives the difference between $4¢ o and Emc as
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| 1.1 1) RT< tR € cyfpn |
°m.o-$m,o={lz,[;— rabiva ;f——-g”—’— dy . (3-35)

This equation shows that in a well-supported solution there is a negligible

diflerence between $zc o and $ g .

2.3. Potential of Junction Region

The final term in equation 3=6 Urc, gre = 330'- — $gp. where the double
primes again indicate a cell potential that contains a liquid—junction

potential, may be evaluated by mentally constructing another cell shown as:

¢ £ A 6 X £ ¢
Hg(s) | HgaCla(s) | 4.1 MKCl —-— HCI 4.1 M KO | HgoCly(s) | lig(s)
saturated in saturated
in Hgo Hzo in Hgo

Here, we have represented the potential difference’ Urr, rc - between a real
reference electrode shown on the right placed in the bulk solution and a
hypothetical reference electrode of a given kind placed in the same bulk
solution, phase 6. The reference electrode of a given kind (saturated calomel
electrode) is shown on the left, and as previously done, the dashed line
represents the region between the immaginary electrode and the bulk solution
where the liquid—junction potential is assumed to be zero since $* = $¢ by
definition of a reference electrode of a given kind. The electrode on the
right, which is used to measure experimentally the potential of the solution
phase 4, is also a saturated calomel electrode. Because of the diflerence in
composition between the bulk solution and reference electrode

compartment x, a liquid junction or transition region exists which is

t Note the change from Ugpc, pr.e 10 Urr, Rc = 30 that the same notation previously used
for potentials relative to an ideai reference electrode of a given kind may be applied.
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illustrated by the wavy vertical lines.
The same electrode reaction, equation 3-8, takes place on each side of
the cell, therefore the expression for the cell potential as shown becomes

FURR/ Rc.= = Ky-® =" = UG- L~ HE-. - (3-37)
Equation 3—-14 for the chloride ion may be substituted into 3-37 yielding

Urr/ o= = &< = 9* . (3-38)
The chloride concentration does not appear in this equation, because the two
calomel reference electrodes are both arbitrarily chosen to have the same
composition of saturated 4.1 M KCl. By definition of an electrode of a given
kind, $* = $¢ equation 3-38 becomes

Urp/ e = 3 =3¢ . (3-39)
Therefore, the last term in equation 3—-6 Ugg, gr.- is equal to the negative of

equation 3-39 and is the liquid—junction potential A$;; given by

Upc/rre = Bd; = &% — 9% . (3—-40)

Thermodynamics alone is not enough to solve this problem. Some
knowledge of how the junction is formed and its concentration profile are
needed to evaluate the liquid—junction potential. A simple and popular
model of the liquid junction is the continuous—-mixture junction. At all
points  in the junction, the concentrations are assumed to be linear
combinations of those of the solutions at the ends of the junction. This
assumption obviates the problem of calculating the concentration profiles by
the laws of diffusion. Assuming a continuous—mixture junction, the
Henderson formulal!®}{l1l may be used to get an estimate for the potential

diflference across the transition region. The liquid—junction potential is then

given by
B!
In 21
¢I_¢H-_£_7:A__B_ (3-41)
F B! -pol

where ] stands for the 6§ phase and 1l for the x phase, and
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A= }; 2, 0,(c{ -cf), Bl = z‘: z2D;cl, BI = Z‘: z2D.cf . (3-42)
This vpotential difference may be calculated since the composition of the &
phase would be known for any given ex;;'erimental conditions as well as the
composition of the actual reference ele_étrode compartment, phase x. If a
continuous junction does not exists or is not appropriate, then Smyrl and

Newman's!"*) more thorough treatment of the subject may be applied.

A final expression may now be written for the cell potential ¥V by
substituting equations 3—22, 3—33 and 3-40 into equation 3-6. This result is
an extension of the expressions that are given for the open—circuit potential
U given in section 40 of reference 1. The desire to elaborate on that section

initiated much of the work presented in this chapter.

3. Cell Potential for General Process

Next, for completeness, an expression for the measured cell potential in
more conventional terms is desired using the concentration overpotential.
Equation 3-3 that was developed in section 1

V=n, + Adps + Ui/ rr.= (3—-43)
is the starting point. Figure 3—4 is useful to see the potential distribution as
it applies to this equation. The surface overpotential n,; and the potential
variation across the cell as sensed by reference electrodes of the same type
as the reaction of interest j occurring at the working electrode A¢pc are
shown. The potential diflerence, U, gra = $rs e — ®rr. between reactions j
and KK may be broken down as

Uiy rrm = (Frse = Fpca) + (Fpcm = ¥rr) = Ui pcm + Urc/pra - (3-44)
An expression for Upc,gpr. has already been obtained and is given by
equation 3-40. Equation 3-22 could be used for UJ-', rc.- for the zinc reaction
simply by evaluating it at the bulk concentrations instead of surface
concentrations. However, another more general approach will be given in

the next section for the derivation of cell potentials with liquid junctions.
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Figure 3—4. Potential distribution. This figure applies to the case where the
reactant concentration does not go to zeroin the bulk solution.
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The purpose of the next two sections is to derive expressions for each of the

terms in equation 3-43.

3.1. Cell Potential with a Liquid Junction

In order to demonstrate further capabilities of the local equilibrium
concept, an expression for the potential difference U, pp~ = $ a5« — $pp may

be obtained by mentally constructing an electrochemical cell as follows:

a ¢ £ K : ) [} a
Pt | Hg(s) | HgaCla(s) | 4.1 M KCl \ junction ZnCl, Zn(s) : Pt
saturated region in ECl
in Hzo and Hgo

The ideal zinc reference electrode on the right with a potential denoted as
$m.- is placed in the bulk solution; and its electrolytic solution must be of
the same composition as the bulk electrolyte. The left electrode represents
the actual saturated calomel electrode of potential $gze. The potential
difference across this cell must account for the transition regior; in which
concentration gradients exist between the § and « phases. The treatment of
the open—circuit potential of electrochemical cells of this nature involves
first the description of phase equilibria between the electrodes and the
solutions or solids adjacent to them, followed by a consideration of the
junction region that is likely to exist between the solutions adjacent to the
electrodes. The reactions occurring at the left and right electrodes are
given by equations 3-8 and 3-9, respectively. The development of an
expression for the cell potential is like that given in section 2.1 except that
an actual reference electrode is being used in the place of a given kind.
Therefore, the cell potential is obtained by substituting the expressions

given for the electrochemical potential into an equation like 3-13 yielding
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which contains the liquid—junction potential $¢ — $%. This expression should

+ ( @6 - &=« )-(3“"45)

be compared with the equation that is obtained by substituting equation
3—22 when evaluated at the bulk concentrations and equation 3-40 into
equation 3-44. In each hypothetical cell that was constructed, the A and «
pbases make reference to the calomel electrode compartment. Because
each solution is saturated 4.1 M KCl, equation 3—45 is identical to the result
obtained by usirig the previously derived cell potentials. This confirms the

power of the local equilibrium and quasi—electrostatic potential concepts.

An equation for the hydrogen cell potential with a liquid junction UﬁyRR

may be obtained in a similar manner as shown here for the zinc reaction.
Uﬁe/m is given by equation 3—26 plus the liquid—junction potential ¢¢ — <. A
general expression for the cell potential with a liquid junction also is -
developed in appendix D. Table 1 in appendix D gives equations for the
electrochemical = potential of different types of species using the
quasi—electrostatic potential. For other examples of this procedure,

17}

Trainham and Newman! give results for waste-water, ion—-removal

reactions.

3.2. Adps

The potential difference A%ps = $pc0 — Prs - 8s measured by reference
electrodes of the same type as the reaction of interest j placed near the
working electrode and in the bulk is A%zs = V,,. where V, is given by
equation 3—30. This potential may be broken down as

B%gs = (Spso — Frso) + (Frso = Fpss) (3-46)
where the first term is the concentration overpotential n. and the second is

the ohmic drop A$°hm that would exist if there were no concentration
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gradients. Equation 3—46 may be rewritten as

] "V :
A¢ns=m+,[;—dy : (3-47)

At zero—current conditions, the potential difference A$gs reduces to the
concentration overpotential. From equations 3-30 for V, and 3-47, the

concentration overpotential for reaction j is

b .
1 1 T (ctf(n)-
= [il=- Z|dy + ==Y s, In —t2=
e {ly['c Ke Y nJ'th:su n (cifinde ( )
R 3-48
+RT EialnCJfJ,, y

F 0 7 % oy

Hence, one can see why the concentration overpotential is defined as the
potential difference between a reference electrode of the same kind as the
working electrode located adjacent to it and one of the same kind located in
the bulk solution, minus the potential drop between these reference

electrodes in the absence of concentration variations. It reduces to

]
. 11 RT Cym
m-‘"{[" "-]dy+"ipz":s‘jln°i

0
]
FIS
L

for dilute solutions. Surface concentrations are needed to determine a value

2D 05 (3-49)
oy WY

for n.. Also, if anyone of the bulk concentrations is zero, then the
concentration overpotential becomes undefined. This is the reason such an
expression should be avoided for corrosion processes if the bulk

concentration of any of the corrosion products is zero. -

At zero—current conditions,v the potential difference A%zs reduces to. the
concentration overpotential. Therefore, the final expression for the
measured cell potential ¥ in terms of the concentration overpotential now
can be written if equations 3-45, 3-47, and 3-49 are substituted into
equation 3—43. The resulting equation may be evaluated after the surface

concentrations are specified.
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4. Equilibrium Constant for Electrochemical Reactions

Strictly speaking, thermodynamic equilibrium calculations are for no
net current and uniform equilibrium composition conditions such that the
concentration at the surface and in the bulk are the same. This is written
Ci0= Cie =C{e, where * represents the equilibrium state. In an
electrochemical process this implies that the two electrode half reactions
are balanced so that there are no temperature, pressure, or concentration
gradients acting as driving forces for change. Before continuing the
development for determining an expression for the electrochemical reaction
equilibrium constant, we should obtain an expression for the thermodynamic
potential difference U;,, between two half reactions at equilibrium so that

the equilibrium conditions may be assessed.

4.1. Chemical Reaction Equilibrium Constant

In the zinc corrosion process, we know that two electrochemical
reactions take place on the zinc surface. The anodic zinc dissolution
reaction 3-9 simultaneously occurs with the hydrogen evolution reaction
3—23. The second reaction may.be subtracted from the first to obtain the
chemical reaction -

Zn + 2H* = Zn® + H, . (3-50)

The Gibbs energy for a chemical reaction m is related to the potential
diflerence between the two electrochemical reactions by

AGp =nFU;, . (3-51)

We previously have shown with equation 3—12 that the thermodynamic cell

potential U;,;, may be expressed in terms of the electrochemical potentials

of the electrons so that the Gibbs energy for reaction 3—50 is

8G = -2 (4,5, — H- j{2) : (3-52)

Again, the electrical potential is related to the thermodynamic properties
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using the phase—equilibrium equations 3—~11 for zinc and a similar equation
for hydrogen in equation 3—52 yielding

AG = py ey + i, = Hzr = 2y, - (3-53)
At equilibrium, AG must equal zero, and equation 3—-52 requires that the two

reactions occur at the same electrode potential.

The chemical and electrochemical potentials u; of species 1 have been
given previously and may be substituted into the chemical reaction
equilibrium equation 3-53 with AG = 0 yielding

OB M (g (Bt R, Po
)‘{nh )‘};, (lex)ﬁo

The chemical equilibrium constant defined by this equation may be rewritten

(3-54)

in terms of the standard Gibbs energy of the chemical reaction or as a
function of the diflerence in the standard electrode potentials of the two

electrochemical half reactions as

I !
K=exp[-"—,$',,;—]=exp[-%§-<uzn-uagj . (3-55)

where AG? = Y v Gf = Y} vy u? is the standard Gibbs energy of a chemical
T N

reaction. Values of the standard Gibbs energy of formation Gf of each

species may be obtained from the NBS Technical Note 270--3.018)

K is determined to be 8.23 x 10%® atm—kg/mol using standard potentials
of -0.76 and 0.0 V for the zinc and hydrogen reactions, respectively. For a
hydrogen partial pressure of 1 atm and 1 M hydrogen ion concentration, the
equilibrium zinc ion concentration would be 8.23 x 10%° M, ignoring activity
coeflicients. Henc_e. the corrosion process never reaches thermodynamic
equilibrium, and a steady-state uniform egquilibrium concentration

distribution will not be obtained for each species.
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4.2. Electrochemical Reaction Equilibrium Constant

In this section, w.e should like to develop a general expression for the
equilibrium constant for an electrochemical reaction. This is somewhat
different than in the previous section, where an eguilibrium constant was
given for a chemical reaction, because of the appearance of the
electrochemical potential of electrons in, for example, reactions 3-10 and
3—11. This is difficult to deal with because of the arbitrariness in the
reference state for electrons. Therefore, we shall continue the analysis here
to develop an expression for the equilibrium constant of the zinc and
hydrogen electrochemical reactions relative to the saturated calomel
electrode despite the fact that an equilibrium state for the zinc corrosion
process is not reached. It should also be pointed out that this method is not

limited solely to the SCE.

The purpose of this exercise will become apparent in the next section,
where the kinetics of electrode reactions will be discussed. For now, one
should keep in mind that if the ratio of kinetic rate constants of an
electrochemical reaction may be related to the thermodynamic propertieé
of the species, then only one of the tw'.o rate constants needs to be measured.
Thus, we have a convenient method for reducing the number of experiments

that must be carried out to characterize a given system.

Equation 3-45 for the potential difference of an electrochemical cell

with a liquid junction may be rewritten as

where
In k. = 22 Ui, pc +21In e : (3-57)
kg l,, RT Po

The superscripted brackets refer to the bulk solution phase § evaluated at



47

the hypothetical equilibrium conditions. An equation for the hydrogen

reaction relative to a real reference electrode is as follows:

RT

Ul'-'Iz/RC= ?ln

k. [5"1~Ig.'PHJ,s P ‘6
_CL SR 2| s @t —¢e) , (3-58)

k. F

€y Spear

where

[ e ]

k¢ F € C1- sat
In|{—| =-=5=U +In| —| . (3-59)
? [kc Lz RT ﬁe/m Po J

Equation 3-58 is similar to equation 3-26 for the thermodynamic potential
difference U}}z,m. but in addition to it, 3—58 contains the liquid—junction
potential. One can see from these two equations that the equilibrium
constants (k. / k'y) are independent of the equilibrium concentrations in the
cell. The value of the constant is dependent on the choice of reference
electrode and the composition of the electrolytic solution in the reference
electrode compartment. Therefore, equations 3-57 and 3-59 remain valid

for nonequilibrium conditions.

Equations 3-57 and 3-59 define the equilibrium constant for the zinc
and hydrogen reactions, respectively, but the correct units are not easily
seen. After rearranging these equations, the following expressions for the

zinc reaction

and the hydrogen reaction

kq

k. [‘PH,PH, Po [ ]
L s exp | 2 (Vi m - (@0 - 9] . (3-8
e Cyel peg- RT
are useful to determine quickly the units for the equilibrium constant. For
the two electron—transfer zinc reaction 3—9 at 25°C and a chloride species

concentration of 4.1 M in the reference electrode compartment, the

equilibrium constant as given by equation 3-57 is 2.414 x 10"¥ kg/ mol . The
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one electron—transfer hydrogen reaction 3—23 at the same conditions has an

equilibrium constant equal to 1.228 x 10™* atm*-kg/ mo! .

5. Electrode Kinetics

Up to this point, only thermodynamics and limited transport
phenomena have been discussed. However, the thermodynamics of a
reaction does not indicate how fast the reaction occurs. If so, zinc would
instantaneously corrode in an aqueous environment due to its very negative
or corrosive active standard electrode potential favoring anodic oxidation.
But we know that this is not the case, due to zinc's large overpotential for
the hydrogen evolution reaction. Thus, zinc is used for cathodic protection
of other metals with more positive standard potentials, i.e., steels. In a
corrosion process, it is usually the rate of the electrode reactions which is
controlling. Therefore, understanding and characterizing the charge
transfer or faradaic reactions are of primary importance in many
electrochemical systems of practical importance. Newman's!!) chapter 8 on

electrode kinetics will be the basis for this analysis.

The rate of a single electrode reaction j occurring at steady—state is
related by Faraday's law to the current density as r; = ¢;/ n; F and depends
on the nature and previous treatment of the electrode surface. Second, the
rate of reaction depends on the composition of the electrolytic solution
adjacent to the electrode, just outside the double layer. The diffuse part of
the double layer is regarded as part of the interface. Because of the high
ionic strength of the solution, the double layer is too thin to probe
adequately, and the theory of the diffuse layer is a microscopic model rather
than a macroscopic theory. Finally, the rate of reaction depends on the
electrode potential. The potential change across the interface results from

the distribution of potential in the double layer and may be written as
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V' =& = S - (3-62)

$ ., is the electrostatic potential of the electrode and $,,. is the electrostatic
potential of the solution just outside the double layer. This is not usually a
well-defined potential so a different potential driving force for electrode
reactions

V=%, -%rc0 (3-83)
may be used. This potential difference which was introduced in the previous
sections is relative to an imaginary reference electrode of a given kind
placed just outside the double layer so that there is no ohmic drop between
it and the metal. More specifically, $pco is the potential of an ideally
reversible electrode that by definition contains no liquid-junction potential
that actually might exist between it and the ionically conducting phase in

which it is placed.

The basic theory of relating the rate constants to the potential
difference V was given by Eyring et al. ! For the zinc reaction 3-9, the
following kinetic expression may be written provided that the reaction order

is proportional to to the reaction stoichiometry

izn [ (1-gz)2F ] [ Bym2F
Tzn = 2F = kg 2n €XP 7 V|-kczn Czn2e g EXP l - };T V(P-64)

In order to make such an assumption, the zinc oxidation reaction is taken to
be a simple, elementary reaction. This might not be true; but if so, the
symmetry factor § has quantum mechanical significance. Finally, because
the rate is given in mol/(cm?~s), the units of the rate constants for zinc, k,
and k. are mol/(cm®-s) and cm/s , respectively provided the concentration

is expressed in mol/cm?.

The expression for the rate of the hydrogen reaction 3-23 may be

written
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H, [(1-8y)F ) B F ]
Th = -;I,— = ka‘Hzp;‘,fg‘o exp [T;— V] ke 1, € e o €XP l He Vr3—65)

The “‘derivation’ of this equation is discussed in chapter 4. The units of the

anodic and cathodic rate constant are mol/ (atm¥cm?2-s) and em/s.
respectively. The rate constants are independent of concentration in each of

these kinetic equations.

At the hypothetical equilibrium conditions, the concentrations are

uniform, and the net current density is zero, so that equation 3-64 yields

. 1-6z.)2F 1
igzn = 2F kg zn €XP l T;‘— W]

3-66
[ g2 | (3-66)
= 2F k; 20 €, 24 €XP l =T v J

where iz, is the exchange—current density and V° is the equilibrium
potential. The two terms on the right of equation 3-66 can be rearranged to

obtain

_RT k| RT
Ve = In [ ]+2Flnc . (3-67)

and the substitution of this equation for V? back into equation 3—-66 yields

iozn = 2Fkf kP c)f ‘ (3-68)
Another way of expressing the concentration dependence of the
exchange—current density is given by

(1-8)
Conte

1.'IJ.Zn = iD.Zr. (3—69)

c
Conts o bt -

Finally, equation 3—64 can be rewritten in terms of the exchange—current

density and the equilibrium potential with the result

[ n)2F [ 8 ,2F
f2n = ig2n| €xp (+(V W)j—exp z

(v - W)] .(3-70)

The potential diflerence driving force in this equation may be written using

equation 3—83 as
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V-¥w= (¢m - QRC?O) - (q)m - QRG.O)' . (3"71)
At equilibrium, ¢, = ¢35 SO '

VW= ~bpso=my . (3-72)
Here we have defined the surface overpotential as the potential difference
between the working electrode and an imaginary reference electrode placed
just outside the difluse—double layer of the working electrode. This
reference electrode is of the same type as the working electrode and
contains no ohmic potential drop or liquid—junction potentials. Now

equation 3—70 may be written

o f(1-8)2r 1 [ gger
tzn = lo2r) €XP __RT_nt.ZnJ—expl— RT s .2r . (3-73)

which is the Butler—Volmer equation. This expression gives the dependence
of the current density on the surface overpotential and the composition

adjacent to the electrode surface for steady—state conditions.

Next, the kinetic rate—constant ratio should be compared with the
thermodynamic equilibrium constant derived in the previous sectioﬁ. The
equilibrium cell potential, V® = (¢, — $p; o). is the same as the previously
defined thermodynamic potential difference, U, pg .« = $ps+ — $pc . since
$n = $pso at the theoretical equilibrium potential. Even though equation _
3-67 was simplified from equation 3—-66 for equilibrium conditions, it
maintains a general nature as a result of the concentration—-independent
rate constants. When the kinetic equilibrium equation 3-67 which contains
the kinetic rate constant ratio k./ k, is equated with equation 3—-22 for the
thermodynamic potential difference without a liquid junction followed by
substitution of the result into equation 3-57 which defines the

thermodynamic equilibrium constant k. / k'y, the final result is
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o
Zn a jZn Po

Becaust .be kinctic expression 3—67 contains ¢; in mol/cm® and the
thermodynamic equation 3-22 contains ¢, in mol/], the density of the pure
solvent pg must be expressed in kg/cm3. This equation relates the
thermodynamic equilibrium constant that may be easily calculated using
standard electrode potentials with the desired kinetic ratio of the anodic and

cathodic rate constants that may be used in equation 3-84 for the zinc

reaction.

- We are now in a position to relate the actual cell potential V" to the
current density. With the aid of the introduction of highly conceptual
reference potentials with theoretical basis, equation 3-5 for the measured
potential of a f:of'rosion process was obtained and will be used here. The
potential driving force, V =&, — &5c 0, used in the kinetic expression 3-64
may be rewritten as

V=% ~%rso) + (®rso— Prco) =7 + Uj /R0 (3-75)

Hence, the substitution of equation 3-5 and 3-31 into 3-75 after

rearrangement yields

V=V -8b,m—8%n — Urc/rr= (3-76)

for the kinetic potential driving force. The ohmic potential drop A%, and

the diffusion potential Adye are given by the first and second terms in

equation 3-31, respectively. The junction region potential difference
Ugc, rr - iS given by equation 3—40. The following equation

Ny =V = U poo = 8%rm — 884ir = Urg, rr.m (3-77)

for the surface overpotential in terms of the measured cell potential may be

substituted into equation 3-73 for the current density. This gives the

relationship that was desired at the beginning of this chapter in terms of

clear, well-deflned expressions.



. Chapter 4. Experimental Study of the Corrosion of Zinc

1. Introduction

The results of an experimental study of the corrosion of zinc are
presented in this chapter. The purpose of the work is to determine the
kinetic parameters of the reactions of interest and to quantify the corrosion
rate in a one molar hydrochloric acid solution. Again, the most common
metals have much lower hydrogen overpotentials than zinc. This means zinc
will corrode at a smaller rate than those metals even though its negative
standard reduction potential makes it thermodynamically favorable for
instantaneous corrosion. Characterizing the eflect that the hydrogen
overpotential has on zinc corrosion is desired. The kinetic information
obtained gives a better understanding of the corrosion process and more
specifically the protective nature of zinc. A brief review of the experimental
method is presented next. Then, the equipment, details of the procedure,

and results will be described.

2. Experimental Method

Information about a corrosion process may be obtained in a number of
ways. For example, one could do a series of tests simply allowing zinc to
corrode in various concentrations of hydrochloric acid over a long period of
time. Afterwards, the measured weight loss may be related to the corrosion
rate by Faraday's law which states that for every equivalent of electrical
charge passed through an electrochemical cell, one equivalent of chemical
reactant is consumed at . each electrode. However, accelerated
electrochemical tests allow corrosion rate information to be obtained if the
zinc dissolution and hydrogen evolution reactions can be treated

independently. Each reaction essentially can be studied separately using

53
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standard electrochemical polarization techniques. We shall be concerned

with these methods.

2.1. Polarization Technique

The study of electrode kinetics has been done by means of polarization
methods. Sweeping the potential into the Tafel region is a useful technique
for determining the kinetic parameters. Graphical extrapolation from the
Tafel region back to the corrosion potential is a common way of determining
the corrosion—current density. The Stern—Gearym linear polarization
method and modifications thereof by Mansfeld ef al. (8] ére other common
methods of determining the corrosion—current density. Each will be

discussed in more detail in chapter 6.

The linear and Tafel polarization methods may be carried out
potentiostatically or potentiodynamically. The latter is a potential sweep
method, and only a quasi—steady state is obtained. Potentiostatic
experiments allow a true steady-—state current to be reached at each
potential before the next ]-V datum is recorded. The potentiodynamic
method has the advantage that the information may be obfained in a much
shorter time, therefore allowing the electrode surface to maintain its
original surface longe-r. This method has become the most common in
recent years and will be used in this study. The result of the accelerated
electrochemical test just described is the polarization curve. These
polarization curves allow electrode—kinetic information about each

independent reaction to be obtained.

2.2. Rotating—Disk Electrode

The rotating—disk electrode is a common tool for studying the kinetics

of moderately fast electrode reactions because the hydrodynamics/®¢l (2] (22]

and the mass—transfer characteristics!?®) are well understood. A rotating
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disk provides an uniformiy accessible surface. This means that if a
heterogeneous reaction is carried out at the disk, the mass—transfer rate is
uniform to all parts of the surface. This is important if one wants to study
the heterogeneous reaction uncomplicated by mass—transfer effects. Also,
‘the strong forced convection eliminates the eflects of natural convection.
However, the r"otating disk has one éerious disadvantage. The current
density at the disk is not uniform, because of the nonuniform ohmic
potential drop. The degree of nonuniformity of the current distribution was

assessed by Newman!?*] and will be discussed in more detail later.

3. Equipment
3.1. Design and Description of the Electrodes

Rotating Disk The size and the shape of the rotating—disk electrode is
important since it may affect t.ﬁe flow pattern. In a review on the
" rotating—disk system, Riddiford[®) has summarized the various designs and
recommended several design criteria based on theoretical and‘experimental
considerations. These criteria attempt to attain the theoretical
hydrodynamic model and concentration profile by minimizing the edge
eflects and ensuring laminar flow. In practice however, shape and alignment
factors are usually not troublesome, especially at low rotation speeds used in

this work.

The rotating—disk electrode is shown in figure 4—1. The 5 mm diameter,
active disk is embedded in a rod of insulating Teflon® with a 20 mm diameter.
Only the céntral ﬁortion of the lower surface of the disk is 98.99%
high—purify zinc. The electrode shaft and interchangeable'. screw-on, zinc

disk electrodes were obtained fiom Pine Instruments.

Since the rugosity of the disk surface should be considerably less than

the momentum—boundary—layer thickness (~5 x 102 cm), the disk surface



CBB 839-8210

Figure 4—1. Picture of the rotating—disk electrode.



57

was subjected to the following treatment before each run:

1. The electrodes were polished using a Buehler Econmet Il
grinder/polisher with 600 grit silicon carbide paper until all previous
traces of corrosion were gone. The maximum scratch on the surface
is then on the order of 10 um.

2. The electrode finally was rinsed with distilled water.

Reference Electrode A mercury—mercurous chloride reference electrode
saturated with a potassium chloride solution was used. This quartz—-fiber
saturated calomel electrode was obtained from Beckman Instruments, Inc.
The use of this reference electrode was desirable since the chloride ion is

common to both solutions, and this reduces the liquid—junction potential.

Counterelectrode A platinum-rhodium  screen served as the
counterelectrode, providing an area much larger than the working electrode

for the purpose of minimizing the cathodic overpotential.

3.2. Electrochemical Cell

A schematic of the pyrex glass cell is shown in figure 4—2. The cell holds
approximately 150 ml of electrolyte. The reference electrode and
counterelectrode compartments each are separated from the central
portion of the cell by two connections. The connections contain porous glass
frits which eliminate convective flow to the reference electrode. The
placement of the reference electrode in such a manner has been shown by
Newman(?®] to be essentially at infinity relative to the working electrode. The
c0uhterelectrode should be separated so any reaction occurring at its
surface will not interfere or its products will contaminate the electrolyte

next to the working electrode.
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Figure 4-2. Schematic representation of the electrochemical cell.
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The electrolyte is one molar hydrochloric acid prepared u‘sing
Mallinckrodt analytical-reagent—grade concentrated acid, and purified
water having a specific resistance of 17 M{QQ—cm. The water was purified
using a SYBRON/Barnstead NANOpure distilling apparatus with charcoal
filters to remove organics. The solution was de—aerated for at least two
hours befof'e starting the experiments using Liquid Carbonic high—purity
nitrogen. Nitrogen bubbling was continued at a much slower.rate during the
experiments so that the bubbles would not disturb the hydrodynamics. The

experiments were carried out at room temperature.

3.3. Electrical Set-Up

Figure 4-3 is a schematic of the experimental apparatus used in the
dc—polarization study. The electrochemical cell is shown on the left
consisting of the working electrode, reference electrode, and
counterelectrode. A Pine Instrument Company, Model PIR, rotating—disk
assembly was used. The electrical connection was made to the rotating—disk
electrode by means of a carbon-silver brush contact and a slip ring. No
observable noise was detected in the current response of the electrode as a
result of this contact for the steady—state dc experiments. The electrode
shaft is attached to a 1/15 horsepower hysieresis synchronous motor
(Bodine Electric Company) directly by a belt—drive system. The pulley
arrangement allows different rotation speeds to be obtained, and the speed
of rotation is determined using a Shimpo Digitacho DT-103B digital

tachometer with an accuracy of £+17%.

The potential between the working and saturated calomel reference
electrodes was potentiostatically controlled by a Stonehart, Model BC1200,
potentiostat. This high performance instrument has a 1.2 A capability and
was used in four—terminal operation. There are two leads from the

potentiostat to the working electrode and one each to the counterelectrode
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and reference electrode. This allows the potentiostat to have a differential
input which will subtract out the noise and inductance eflects. The stability
controlé and ac attenuation were set at a minimum. The external measuring

resistor was selected to be 10 ohm.

An IR bridge is available on the potentiostat to correct electronically a
percentage of a fixed resistance for the ohmic drop in solution. Results from
this method were compared to the results obtained from calculating the
ohmic drop and making the subtraction after the experiment. The latter
technique for ohmic correction is preferred, and all the results will be
presented using this procedure. The advantages and the disadvantages for
not using the IR-bridge feature of the potentiostat will be discussed in the

results section.

The time dependence of the open—circuit potential was recorded from
the potentiostat output. A Hewlett-Packard, Model 34564, digital voltmeter
also was used to confirm the readings. The potential could be ramped at a
constant rate from open circuit using a Princeton Applied Research Model
175 universal programmer. Various scan rates were used ranging from 1
mV/s to 50 mV/s in order to determine the optimum rate. It is desired to
have as fast a scan rate as possible so that the time for anodic dissolution is
kept to a minimum. However, the rate must be slow enough so that a
quasi—equilibrium state is maintained throughout the sweep. For the work
being reported, a sweep velocity of 1 mV/s was used so that the anodic
polarization required 300 s to reach a 300 mV overpotential from the
‘measured open—circuit potential. The choice of the proper scan rate will be

discussed in the results section.

The current and potential output were recorded with a Nicolet Model 206
digital oscilloscope as functions of time. Floppy disks were used Lo store the

data with 2048 points each for the potential and the current so that the
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recording speed was 200 ms/pt. A Hewlett-Packard, Model 7047A, analog X-Y
recorder was used to record the current—potential polarization curve. A
bucking box was used (not shown in figure 4-3) to subtract out the
open—circuit cell potential in order that the polarization curQe could be

recorded full scale. A picture of the equipment is shown in figure 4-4.
4. Experimental Results

4.1. Open—Circuit Potential Data

The corrosion of a zinc rotating disk at 1600 rpm in 1.0 M hydrochloric
acid was studied. Prior to any experiment, the electrode was held at zero
current for the given angular velocity of the disk till the corrosion potential
was stabilized. Under these conditions, the open-circuit cell potential was
measured to be -1.05 V after a hold time of twenty minutes had elapsed for
the electrochemical system to reach steady state. After twenty minutes, the
surface becomes dulled, so that the polarization sweep was not made using
the original polished surface. For this reason, polishing was not as critical
as it might be in other experiments. Figure 4-5 shows the time dependence
of the open-circuit cell potential prior to two polarization sweep
experiments. The solid line 1, where circles represent the measured
open—circuit potentials, shows the time dependency prior to the anodic
dissolution polarization sweep. The solid line 2, with triangles, gives the
results preceding the cathodic hydrogen evolution scan. These variations in
the open—circuit potential are a concern for both dc work and future ac
work. If the open-—circuit potential shifts during polarization, then the
corrosion potential becomes less well-defined. Even though these shifts are

important, the subject will not be discussed further at this time.
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4.2. Polarization Curves

The potentiodynamic polarization curves were obtained for the

experimental conditions described above and summarized in table 4-1.

Table 4—1. Experimental conditions for the zinc corrosion process.

Zinc disk radius 7y 0.25cm
Rotation speed 0 167.55rad/s (1600 rpm)
Scan rate S 1mV/s
1 M KECl, 25°C, 150 ml electrochemical cell
20 min hold time for steady—state achievement

2 hours of sparging with N, prior to experiment

'I'he'system's current response to a change in potential was found to be
rather slow; therefore, if a quasi—steady state is to be obtained, a slow scan
rate is required. A number of scan rates were used, but 1 mV/s appears to

be the best.

Ac—-impedance data' may be used to confirm the proper choice of scan

or sweep rate in dc-polarization measurements. Mansfeld™?”) reported a

criterion for the optimum scan rate. The maximum scan rate S,,, can be
calculated by

Smax = Vpp S max - (4-1)

where Vp, is the peak—to—peak amplitude of the voltage perturbation, and

J max is the maximum frequency characteristic of the scan rate. The value of

J max can be determined from a Bode plot of the magnigude of the impedance

versus the frequency of perturbation. From unpublished ac—impedance

datal?® for zinc corrosion in 1 M HECl, J max is approximately 40 Kz using a

! Neither the theory of ac impedance nor the electrochemical impedance—measureTen:
technique will be discussed here. Only the pertinent resuts will be used.
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0.07 mV peak—to-peak perturbation applied to the open—circuit potential.
Therefore, Sg., is found to be 10 mV/s, which implies that the chosen scan
rate is well below the maximum rate suggested b; Mansfeld. However, it
should be pointed out that if we strive to reach zero scan rate, other
problems will be encountered. For example, the length of the experiment
becomes longer, and the disk surface may significantly change. Therefore, a
trade off must be made between the errors associated with a scan rate that
is too fast (no longer a quasi—steady state), and a scan rate Lﬁat is too slow.
More work must be done to confirm the data prescnted here. For example,

ac~impedance data in the Tafel regions of both the zinc and hydrogen

reactions are needed to verify the proper scan rate.

The potentiodynamic polarization curve for a scan rate of 1 mV/s is
shown in figure 4-8. The current density versus the measured potential
Veoeas is represented by triangles in both the anodic and cathodic sweeps.
The open—circuit potential for the snodic sweep is -1.058 V. The curve for
the zinc reaction appears to be linear due to the uncompensated resistance.
The ohmic drop contﬁins contribulions from the electrolyte resistance
between the working electrode and reference electrode, surface films. the
bulk electrical resistance of the test electrode and its lead. Figure 4-6 also
shows the results after sweeping the potential cathodically from the
open—circuit potential of -1.049 V. (The differences in the open-—circuit
potential were illustrated in fijgure 4-1.) The polarization curve for the
hydrogen reaction also appears to be linear as a result of the
ohmic—potential drop in the solution. The line with circles represents the
ohmic corrected potential diflerence, Vpeay — J/Rn. where Ry is the ohmic
resistance. Only selected data points were used for the ohmic correction

procedure. This will be explained in more detail in Lthe next section.
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Experimental potentiodynamic polarization curve for the
corrosion of zinc in 1 M HCl. Both the anodic and the cathodic
potential sweeps showing the current densities relative to the
measured potential and the ohmic—corrected measured

potential difference. Sweep rate is 1 mV/s and rotation speed is
1600 rpm.
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5. Reduction of Data

6.1. Ohmic Compensation

One should compensate for the ohmic drop to obtain meaningful kinetic
parameters for the zinc and hydrogen reactions. For corroding systems, the
electrode and electrolyte resistance is potential-dependent due to changes
of electrolyte conductivity, surface—layer formation, and gas—bubble
evolution, in addition to the potential—-dependent kinetic resistance. Ideally,
the variations of the solution resistance should be accounted for and be
electronically subtracted as the potential sweep—measurements are made.
Compensation of the ohmic drop with a preset value of Ky determined either
at the beginning of thé test or by calculation can therefore lead to only
partial compensation or to over—compensation and potentiostat
instability.[eal In the case of a changing solution resistance, compensation is
in principal impossible due to the eflect of the nonuniform current

distribution. An interrupter t.echnique[”] should be used.

If one assumes that the electrolyte resistance is potential—independent,
then it is possibleb to correct an experimental polarization curve such as
figure 4—8 for the ohmic drop by subtracting a given value for the
uncompensated ohmic potential after the test. Even though for the work
presented here the reference electrode is placed at a finite distance from
the disk, it is assumed the reference electrode is positioned at infinity
relative to the working electrode. Therefore, the necessary correction is
rather simple to accomplish since one can assume without significant error
that the primary distribution prevails in the bulk of the solution. This
method of eliminating the linear distortion of polarization curves is
preferable to positive feedback compensation of /Rp—drop where potentiostat
oscillation is used as a criterion for correct compensation.(”] However, the

technique of ohmic subtraction after the experiment does not eliminate the
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effect of the uncompensated ohmic potential on the true scan rate. Thisis a
problem with potentiodynamic polarization t..echniques. Uncompensated
ohmic drop not only alters the shape of the polarization curve, but also
produces a varying eflective scan rate which depends on potential.
Depending on the shape of the polarization curve, the eflective scan rate S;p
can be larger or smaller than the applied scan rate Sg,p,. The relative error
associated with the scan rate due to uncompensated ohmic dropml must be
determined to verify the correctness of this procedure. The results of this
test will be given in the next section after the kinetic parameters are

presented.

The ohmic drop in the solution may be estimated from
A8 = IRg =inTdRy (4-2)
where 7y is the radius of the active disk electrode, and Ry is the primary
resistance of the bulk solution. [/ is the measured net current, and i is the
corresponding current density. Newman!?®) showed that the resistance for a
disk electrode embedded in an infinite insulating plane with the

counterelectrode in the form of a hemisphere at infinity is

_ 1
- 4K-r°

Rq (4-3)
where k. is the conductivity of the bulk solution. This resistance was
obtained from applying a separation—of—variables technique and Fourier
series and integrals. Later, Newman!3?] gives a thorough review of the
applications of potential theory in order to determine the primary current
distribution for a rotating disk including the method éf Hankel transforms
which Nanis and Kesselman!®) had used. The error associated with assuming
an infinite cell for the primary distribulion calculation is discussed by
Pierini and Newman.[34] They indicate that a carefully designed disk and cell

can approach conditions which allow calculations for infinite cells to be

applied to finite laboratory sized cells without correction. The authors
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specify a design criteria for which the uncorrected calculations are

accurate.

Law and Newman!®! and more recently Russell and Newman®® use a
more general form for the resistance of a disk electrode surrounded by an
infinite insulating plane depending on if either a uniform or
nonuniform—primary current distribution exists. A more general form is

given here by

3
Ra = 4K.To (4-4)
where £ is given by
1 primary current distribution
£={ 8/ n? uniform current distribution at the edge (4-5)

4/ n uniform current distribution at the center of the disk

The experimental conditions of the measurements determine if the current
distribution is approximated more closely by a primary or uniform
distribution. Both will be used to identify which is the most appropriate.
The error in using either of these equations may be assessed by introducing:

the dimensionless parameter[l]

s %9— . | (4-6)
for a disk electrode. This linear polarization parameter characterizes the
corrosion process, when the electrode kinetic equation is replaced by a
linear relation between the surface overpotential and the potential
derivative at the electrode. For J = =, one obtains the primary current
distribution. Then the ohmic resistance dominates over the kinetic
resistance at the interface. For any finite value of J, the distribution is more
nearly uniform and is finite at the edge of the disk. For J -0, the

distribution is uniform, but the average current must be small for the linear

polarization law still to apply.



71

The conductivity of the bulk solution is needed in order to determine
the ohmic resistance and the dimensionless parameter J. The specific
conductivity is given by |
k=z,v,cA , | (4-7)
where z, is the charge number and v, is the number of cations into which a
molecule of electrolyte dissociates. The concentration of electrolyte c is
expressed in mol/ cm3. The equivalent conductance A of a single salt is the
sumn of the values of the two ionic equivalent conductances, A, and A, which
is given by
A=A, + A . (4-8)
The equivalent conductance of an electrolyte containing more than one salt,
to a good approximation for dilute solutions, is equal to the sum of A for each
salt. Table 75—1 in Newman!! gives values of ionic equivalent conductances
at infinite dilu’tion in water at 25°C. For HCl, A = 426.1 mho—cm?/ equiv using
the infinite dilution data. So for a one molar solution, the conductivity is
0.4261 mho/cm. This should be compared with data given by Chapman and
Newman,!8”] where a measured conductivity of 0.3347 mho/cm is reported
for a one molar hydrochloric acid solution. The difference can be attributed
to the effect of concentration on the conductivity. The infinite dilution data
simply gives an estimate for the conductivity. Finally, the primary and
uniform ohmic resistances, Ry and Ry, are determined to be 2.35 and 2.99 2,
respectively, wusing the former conductivity. The uniform current
distribution is taken to be at the center of the disk, and € = 4/ n. Unless
stated otherwise, the primary resistance will be used for the remainder of
ther work, and this value is assumed to be constant over the entire

polarization range shown in figure 4-6.
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5.2. Kinetic Equations

As was stated earlier, the potentiodynamic polarization curve given in
figure 4—-6 may be of value for analysis only after the elimination of the
linear ohmic distortion. Kinetic parameters for the corrosion process are
determined from such a corrected polarization curve. First however, a
kinetic expression describing the current response of the potential sweep
must be established based on an assumed corrosion mechanism. The
dissolution of the zinc metal is taken to be a one step, two electron—-transfer
elementary reaction given by

Zn = Zn% +2e” . (4-9)
It is accompanied by the reduction of hydrogen ions given by the following
overall reaction

H*+ e~ =¥H, . (4-10)
For this work, reaction 4—10 is assumed to be the only cathodic reaction

occurring, because of the low pH and the deoxygenated solution.

The logarithm of the measured current density should be plotted versus
the theoretical potential difference, V = &, — $5¢ 5, where ¢, is the potential
of the metal rotating—disk electrode, and $z¢ o is the potential of an ideal
reference electrode placed just outside the double layer. This potential

driving force is used in the kinetic rate expressions for the zinc reaction 4-9

- iZn _ 2(1 -ﬁZn)F
T2 = 35 = Ken expl Vl
(4-11)
2ﬁZn

k.2, €p, ,.oexpl RT V]
where the rate r has units of mol/cm®-s . The symmetry factor g is used,
and k, and k. are the anodic and cathodic rate constants, respectively. The
kinetic rate constants are assumed to be independent of concentration, and
the reaction order is taken to be proportional to the stoichiometry of the

reaction. It is quite possible that the two electron—transfer zinc reaction is
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not an elementary step, but for the present analysis this assumption will

suffice.

The cathodic hydrogen evolution reaction given by equation 4-10 is the
most thoroughly investigated electrode process. This electrochemical
reaction seems to be simple although its mechanism has not yet been
clarified in a fully satisfactory manner. The mechanism that is used here is

the Volmer—~Tafel mechanism:

S+H*+e =H,, (4-12)

2H,a; = Hp +2S . (4-13)

The first step is the Volmer reaction rcported by Erdey—Gruz and Volmer.("

The solvated hydrogen ion is discharged at an available surface site S by an
electron from the metal to form atomic hydrogen, which remains adsorbed
on the metal surface. After the charge—transfer reaction, the formation of a
hydrogen molecule from two adsorbed hydrogen atoms may occur by direct
combination, as was originally discussed by Tafel,["!) leaving behind two
vacant surface sites. The hydrogen molecules are then dissolved in water,
and their removal in the form of bubbles is a mass—transfer eflect not

closely related to the electrode process.

The reaction mechanism and rate determining step change depending
on the nature of the metal, the condition of the surface, and other factors
such as electrode potential, current density, and temperature. According to
Erdey—Grdz."’z] the rate of. the hydrogen evolution reaction is limited by the
transfer of electrons from the metal to ions in solution. The reaction of
bhydrogen atoms with each other to form hydrogen molecules may therefore

be taken to reach equilibrium rapidly.

Reaction 4-12 is assumed to be an elementary step, so the reaction
order is again taken to be proportional to the reaction stoichiometry.

Therefore, the kinetic expression for the hydrogen reduction reaction is as
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follows:

tH .
fB=T=k¢,}49HEXP

[ (1 ‘ﬁH)F

] | (4-14)

-k, (1 -8y cH‘oexpl VJ

where 8y is the degree of surface coverage of hydrogen atoms which is
proportional to the actual surface concentration of atomic hydrogen. The
cathodic reaction 4—12 occurs only at the part of the surface which is not
covered by adsorbed hydrogen atoms. This fraction is 1 -8y and is
multiplied by the concentration of hydrogen ions at the surface. Again, the
rate constants are assumed to be independent of concentration, and g is the

symmetry factory.

The kinetics of the overall hydrogen electrode reaction are also
influenced by the desorption process given by equation 4—13, in addition to
the relationship between the concentration of hydrogen atoms formed as a
result of electron transfer and the coverage of the surface by hydrogen
atoms. The amount of gas adsorbed, after equilibrium is established,
depends on the nature of the surface, the temperature, and the pressure. At
constant temperature, an adsorption isotherm relates the amount of
adsorption to the partial pressure of the gas. Langmuir’s isotherm!”?] applies
to the ideal case of chemisorption on a perfectly smooth surface with no

interactions between adsorbed molecules.

The desorption process involves reaction between two adsorbed atoms.
The rate is therefore proportional to the square of the fraction of surface
covered which is given by k404% where k, is the desorption constant. The
reverse of reaction 4-13, the dissociation of }l; into two species H, must be
considered to be a reaction between the gas molecule and two surface sites.

The rate of adsorption may therefore be written as k“pu',o(l - 8y)% where

ko4 is the adsorption constant. At equilibrium, the rates are equal, giving
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By
1 -— GH - Kpgz.o . (4_15)

where K =kgq/ kg4 is the chemisorption equilibrium constant. When the
surface coverage is sufficiently small (the partial pressure must also be very

small), the fraction covered is simply proportional to pﬁz. These

assumptions lead to the following kinetic expression for the overall hydrogen
reaction 4—-10
. [(1-Bg)F ]
iy, = Py, PRLE exp[ —FRr VY

[ By F ]
=Pk, €y expl— T VJ.

(4-16)

where again, the degree of coverage is assumed to be small compared to
unity so that the 1 — @y term in equation 4—14 reduces simply to unity. The

rate constants are independent of concentration, and k,y, contains the

chemisorption equilibrium constant.

The potential V may be rewritten in terms of the measured cell
potential shown in figure 4-6, Vo = o — $rr. where ¢35 is the potential as
measured by an actual saturated calomel electrode placed in the bulk
solution far enough away that it may be treated as inﬁnity.' Equation 3-78
written for the measured cell polential V., is

V= Voess — 8%crm — Abye - UI;'G/RR.- . (4-17)
where the ohmic potential drop is given by

> .

Mo = [ Lay | (4-18)
and y is the normél direction away from the disk. Equation 4-2 may be used
for the ohmic drop if there are no concentration gradients across the cell.
The diffusion potential A%4e is given by the second term on the right of
equation 3—-31, and the junction—region potential difference Upc, gr.- iS given
by equation 3-40. For dilute solutions with excess of supporting electrolyte,

conductivity variations in the diffusion layer may be neglected, and the
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diffusion potential is given by

Bdyp = £§zppp(cp-_cp0) : (4-19)
where D, is the diffusion coefficient 6! species p. The equation for the
‘potential of the junction region is

Urc/rr= = 3% = &5 . (4-20)
This is simply the liquid—junction potential A$,; .. the 6§ phase represents the
bulk solution compartment, and the x phase is the reference electrode
compartment where the saturated calomel electrode has a 4.1 M
concentration of chloride ions. No concentration terms appear directly in
this equation, because the same reference electrode is used for the ideal

given kind and for the actual reference electrode.

5.3. Tafel Polarization Curves

In the previous section, kinetic expressions describing the current
response to potential were given based on the assumption that the individual
steps of the suggested mechanism were elementary reactions. The
theoretical potential driving force was then related to the measured
potential difference in terms of unknown surface concentrations. We would
now like to analyze the experimental polarization curves and verify our
proposed corrosion mechanism. A plot of log 1 versus V¥, known as a Tafe!
plot, is useful for this. Simplified Tafel equations will be introduced here,
which allow the kinetic parameters to be evaluated. The kinetic parameters
that result from our analysis of the measuréd data will then be presented in

the following section.

Figure 4-7 is a semi-logarithmic plot of the measured current density
given in figure 4—-8 versus the measured cell potential corrected for the
solution ohmic drop, V ® V., — IR, For a first approximation, the potential

across the junction is assumed to be negligible, and the diffusion potential is
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neglected because the surface concentrations of zinc and hydrogen are not
known. This assumption is most valid for high rotation speeds where the
mass—transfer boundary layer is thin and concentration variations are
small. On such a plot, the two linear regions to the left and right of the
open-circuit potential correspond to Tafel kinetics for the hydrogen
evolution and zinc dissolution feactions. respectively. The symmetry factors
are not equal, and therefore, the two curves are not symmetric. This is seen
on the plot with the cathodic part of the curve decreasing more sharply

because of its larger slope.

Near the open-circuit potential, the polarization curves have been
extrapolated from the Tafel regions so that the corrosion current is shown to
be 1.2 x 1072 A/ cm?. Allowing the Tafel law to remain valid all the way to the
open-circuit potential is simply an assumption. The error in making such an
approximation should be quantitatively assessed. This will be done in
chapter 5, where a mathematical model of the corrosion process will be
developed. However, kinetic parameters used in a model to determine the
corrosion current must be obtained from the experimental polarization

curves.

An equation that is commonly used to reduce polarization data is the
Tafel!”!] equation introduced in 1905. This simplified, yet successful model of
electrode kinetics, allows the kinetic parameters to be determined easily.
The equation governing the Tafel region for the zinc reaction is given by the
first term on the right of equation 4—11. It may be rewritten as

log ! ian = (1/ bc.Zn) V+ 108 (2er_2n) ' (4_21)
where the anodic Tafel slope 1/ bg 7, is given by

1 _ Blogiz, _ 2(1 = B F
bgzn 8V T 2303RT
Again, it should be pointed out that egquation 4-11 is based on the

(4-22)

assumption that the zinc reaction is a two electron—transfer elementary



79

step. Thus, the symmetry factor is used.

The Tafel region for the hydrogen reaction is described by the cathodic
second term on the right of equation 4—16. This equation resulted from a
two—step mechanism for hydrogen evolution, where the one
electron—transfer reaction is also assumed to be an elementary step. The
Tafel equation for the hydrogen reaction is written as

log |ig,] = = (1/ bey,) V + log (Fkc g0 ) (4-23)

where the cathodic Tafel slope is given by

1 _ Br,f
boy, 2.303RT

(4—24)

An extension of Tafel's work was introduced in 1938 by Stern and
Geary.[61 They showed that to a good approximation the net current density
in de—aerated solutions is the sum of the Tafel term of the anodic metal
dissolution reaction and the Tafel term of the cathodic evolution of hydrogen

reaction. Equations 4—-21 and 4~23 are summed giving

[2(1 - Bz)F ] [ BrF ] )
lnet = 2Fkq 75 €XP —-(—-}—?-Ti-— V] = FXc B, Cpe g expl— }?ET P], (4-25)

for the net current density.

The i, versus V curves that are given by the dotted lines in figure 4-7
are generated using the Stern—-Geary equation 4-25. The kinetic parameters
used in this equalion were determined by applying linear regression to the
two Tafel portions of the experimental curves and were adjusted efter
roundofl. The details of this procedure are given in appendix E. It is clear
that a good fit is not obtained over the entire polarization range. Therefore,
another method is presented in the next section for determining the kinetic

parameters.
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5.4. Kinetic Parameters

Kinetic parameters for the zinc dissolution and hydrogen evolution
reactions in one molar hydrochloric acid are to be presented. Various
methods may be used to analyze the data to determine these parameters.
The simplest method is a linear regression fit to calcuiate the zinc and
hydrogen transfer coeflficients and rate constants. Another approach utilizes
a routine called FIT that is based on the Stern—Geary eguation. However,
before discussing FIT, let us briefly summarize the results obtained using
the linear regression fit method. The physical significance of the
measurable quantities should become more evident by taking the time to

review the regression analysis.

The Tafel polarization curves were given in figure 4=7. The slope of the
anodic zinc dissolution curve is determined by linear regression to be 1.715
V! or b, =583 mV/decade. The measured Tafel slope. is given by

=2.303RT/ aF, where a is the transfer coefficient for the overall (anodic or
cathodic) process. The transfer coefficient may therefore be determined
without baving to make any assumptions about the reaction mechanism.
The anodic a for the zinc reaction is 0.102. Now if the
two—electron—transfer reaction 4-9 is truly an elementary step, then
equation 4-22 allows the anodic transfer coefficient to be written as
ag = (1 —f)n, where n =2. Hence, the symrmnetry factor is 82, = 0.949. The
symmetry factor should have a more theoretical underlying meaning,
because quantum mechanical concepts may be used to interpret it for an
individual step of complex reactions. However, we will not be concerned with
such analysis, and the overall experimentally measured transfer coeffcient
will be incorporated into the kinetic expressions for the remainder of the

work instead of symmetry factors.
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The transfer coefficient may be determined in a similar fashion for the
hydrogen evolution reaction. The Tafel slope of the cathodic hydrogen curve
in figure 4-7 is 643 mV/decade. A cathodic transfer coefficient of 0.092
results. The hydrogen symmetry factor is given by a. = fn if equation 4-24
is used. This kinetic expression is based on the two-step reaction
mechanism given by equations 4-12 and 4-13. The one electron-transfer
.react.ion 4—12 is assumed to be an elementary step. Hence, the symmetry

factor is also equal to 0.092.

The regression analysis may also be used to determine the intercepts of
the best Tafel lines through the experimental 1 versus Vg..s = /FRq
polarization curves. This allows the anodic and cathodic rate constants for
the zinc and hydrogen reactions, respectively to be calculated. The Tafel
expression 4-21 for the zinc dissolution reaction yields the anodic rate
constant which is determined from the log (2Fk4 z5) intercept of figure 4-7.
Equation 4-23 may be used to calculate the cathodic rate constant for the
hydrogen reaction assuming the surface concentration of the hydrogen ions
is the same as the bulk concentration of 0.001 mol/cm?®. Because the proper
rate constant is very sensitive to slight changes in the Tafel slope, round—ofl
errors must be considered. A discussion of this sensitivity is given in the
appendix. Its importance warrants pointing out that two additional
significant figures will be reported because of the computational errors that
arise from round ofl. However, one should at the same time keep in mind
that the accuracy of the data is not good enough to justify writing the extra

significant figures.

Next, we should like to discuss the curve fitting program, FIT, which is
based on the Stern—Geary equation 4—25. We are interested in the using this
equation to determine new kinetic parameters that will predict the entire

polarization curve. Three experimental data points may be incorporated
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into this equation by using i~V points of the zinc and hydrogen Tafel regions
and zero current at the corrosion potential. A trial and error procedure is
used by initially assuming a value for the anodic zinc transfer coefficient.
The cathodic hydrogen transfer coefficient, and the anodic and cathodic rate
constants for t.he zinc and hydrogen reactions then may be determined
iteratively. The polarization curves generated with the Stern—Geary
equation by different sets of parameters are compared to the experimental
curves to obtain the best graphical fit. This procedure can be carried out
simply and effectively without having to use a more expensive non-linear,
multivariate least—squares fitting routine. The approach used here does
sacrifice a more statistically meaningful method for finding the kinetic

parameters.

The results of using FIT for three cases are shown in figure 4-8. A
reasonable fit for the entire polarization curve is obtained from the set
which is determined based on a transfer coefficient of 0.10. This curve is
represented with a dotted line in the figure. The FIT routine is also used to
determine the best set of kinetic parameters based on transfer coeffcients
of 0.15 and 0.05. The larger a5 implies a larger Tafel slope and yields poor
agreement with the experimental data as shown by the dashed line. The
solid line is generated using an anodic transfer coeflicient of 0.05 and
surprisingly gives the best fit of the experimental data, which are
represented with circles. Therefore, this set will be used in the remaining
discussion of the results. Tables 4-2 and 4-3 give the best kinetic
parameters obtained from FIT. An interesting point should be made about
these results. The “"best fit"' transfer coeflicients imply Tafel slopes that are
significantly diflerent from the linear regression fitted slopes previously
mentioned. It is true that the parameters given in tables 4—-2 and 4-3 give a

good fit over the entire polarization range; however, their departure from
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Figure 4-8. Polarization curves generated by parameters using the FIT
routine. The experimentally determined potentiodynamic
polarization curve for the corrosion of zinc in 1 M KCl and 1600

rpm is also shown.
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physical reality is troublesome. The details of this approach and all of the

kinetic parameters used in figure 4—8 are summarized in appendix E.

Table 4—2. Kinetic parameters for the zinc reaction from the anodic
polarization curve for the zinc corrosion process in 1 M
HCl as obtained by FIT.

2.303RT .
ba = a F Qa2n log(Zch.Zn) ka
aln
1.183YV 0.050 -0.5115 ' 1.596 x 107 mol/ ecm?-s

Table 4—3. Kinetic parameters for the hydrogen reaction from the
cathodic polarization curve for the zinc corrosion process
in 1 M HCI as obtained by FIT.

- 2.303RT

bc —Q& HgF

KcHp log(Fk, .HgCH.,O) k.

1,849V 0.032 -1.976 1.095x 107*cm /s

5.5. Kinelic Parameters for the Reverse Reactions

Kinetic parameters for the reverse or back reactions may be calculated
by applying thermodynamics to the electrochemical reactions. The
determination of the transfer coeflicients and rate constants will be

discussed here.

There is a reason to expect that the sum ag + &, has an integral value.
We have shown by assuming reactions 4-9 and 4-12 are single elementary
steps that the sum of the anodic and cathodic transfer coefficients is simply
equal to the number of electrons n transferred in the reaction. The transfer
coeflficient for the zinc cathodic reaction is obtained from a, = n - a4 to be
1.950. The anodic transfer coefficient for the hydrogen reaction is 0.968

assuming a one electron—-transfer process.
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Next, it is necessary to obtain the cathodic rate constant for the zinc
reaction and the anodic rate constant for the hydrogen reaction. Equation

3-57 derived in chapter 3

k; 2F c'é]_"t
In|j—| ==zU +2In — 4--26
[ka JZn RT fos o ? Po ( )

k
is used to determine the thermodynamic equilibrium ratio k—c for the zinc
[ 3

reaction to be 2.414 x 1073 kg/mol at 25°C and for a saturated chloride
species concentration of 4.1 M. The density of pure solvent water pg is 1

gm/cm3. Equation 3-59

[ e ]
€ - sat J <4_27)

ke F
In|—| =—=U + In
[kc Lg RT gg/ RG Po

gives 1.228 x 10~* atm¥—kg/ mol for the equilibrium ratio of the hydrogen

kg - kc: f(.Cl‘
L[ = -~

relates the equilibrium constants that were just given with the desired ratio

reaction. Equation 3-74

of the cathodic and anodic kinetic rate constants for reaction j and species
i. The density of water pg is 0.001 kg/cm3. The cathodic kinetic constant for
the zinc reaction therefore is determined to be 4.942 x 1038 cm/ s using
0.1283 for the activity coefficient of the zinc species relative to the chloride
ion. The large difference in the magnitudes of the zinc rate constants
implies that the back or deposition reaction occurs at a small rate.
Equations 4—26 and 4—27 are used to obtain 3.858 x 10™* mol/ cm?-s —atm¥
for the hydrogen reaction anodic kinetic constant. The activity coeflicient of
the hydrogen ion relative to the chloride ion is 2.438 using equation 3-289
and data given in reference 1. The thermodynamic and kinetic rate constant

ratios are given in table 4—4.
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Table 4—-4. Thermodynamic and kinetic parameters for the zinc and
hydrogen reactions in the zinc corrosion process.

k. k.
T % Jia
a
Zn 2.414 x 10734 kg / mol 3.097 x 10732 cm 3/ mol 0.1283

H, 1.228 x 10~* atm¥-kg / mol 2.994 x 107! atm¥-cm 3/ mol 2.438

8. Discussion of Results

The experimentally determined kinetic parameters obtained in this
work are significantly different from what was expected based on other
values reported in the literature. In this section, comparisons will be made
with the results of other researchers for the zinc and hydrogen reactions,

followed by an attempt to explain the differences.
6.1. Kinetic Parameters

Zinc Reaction

The anodic Tafel constant b given in section 5.4. for the zinc
dissolution in 1 M HC! is 592 mV/decade of current. Kim and Jorné!®”} and
Chin and Venkatesh!®! give values of 108.5 mV and 125 mV in 0.5 M ZnCl;
solutions with pH of 2 and 4, respectively. In the same reference, Jorné gives |
the anodic Tafel slopes for 1 M and 2 M ZnCl; solutions with a pH of 2 as 94.4
and 80.6 mV, respectively. My Tafel slope follows Jorné's reported trend of
increasing slope with increasing zinc chloride concentration; however, my
value of b, is still unekpectedly quite large, reflecting a less steep slope on
the current—potential curve which also implies a larger polarization

resistance. The change in the anodic slope with zinc chloride concentration
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is unexpected, because the anodic current density should be independent of
concentration according to the proposed model. Therefore, these
unexbected differences in the anodic slope with zinc chloride concentration
may perhaps be accounted for by a reaction mechanism different from the
one—step two-—electron—transfer reaction assumed here. More work to

confirm this should be done.

The anodic Tafel constant given here implies an anodic transfer
coefficient of 0.1 assuming a two electron—transfer reaction. This value is
significantly different from what is reported by other investigators. Jorné
and Chin's data give approximately (using 118 mV/decade) a value of one for
the anodic and cathodic transfer coefficients. Landau!®® in his theoretical
model for zinc dendritic growth uses 0.5 for the transfer coefficient in an
assumed one electron—~transfer reaction. West[4] gives a range of Tafel
slopes between 30 and 60 mV/decade so that the arithmetic mean yields an
anodic transfer coeflicient of 1.3. Sung and Bennion*) in their
mathematical model of the zinc battery electrode use a value of 1.5. Hsie
and Selman{*?] determined the electrode—kinetic properties of zinc
deposition from potential—-time curves in the galvanostatic mode by
assuming a, = 1.5 and a. = 0.5. These anodic transfer coeflcients of 1.5

imply a slope of 49 mV.

A drastic difference results between 0.1 and 1.5 for the anodic transfer
coeflicient. If the zinc reaction is taken as a two electron—transfer single
elementary step, then the symmetry factor for these two cases is 0.95 and
0.25, respectively. This means that 95% of the applied potential promotes
the cathodic reaction instead of an expected 257%. Therefore, when
polarizing in the anodic direction since only 5% of the potential goes to the
anodic reaction, more applied overpotential is required to overcome the

activation energy.
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Another irnteresting point that should be considered is the fact that zinc
dissolution may not follow Faraday's law. Johnson et al. [*3] showed that the
weight loss of zinc during electrolysis is greater than that calculated from
Faraday's law using the normal valency of the metal cations in solution.
Apparent valencies of less than two for zinc ions in the presence of oxidizing
anions, in particular NOjs, are given and attributed to a combined effect of
self—dissolution and disintegration that accompany anodic dissolution.
These eflects would cause the anodic Tafel slope to be larger than expected if
vFaraday's law were obeyed. However, it is not anticipated that the reasoning
here can explain the discrepancy between my work and that of other
researchers, because there should not be anything in the solution which can

reduce the zinc, i.e. NOg.

The physical significance of the zinc Tafel constants reported .here and
in the literaturé has been discussed. The diflerences may perhaps be
accounted for by considering the experimental conditions and inherent
problems associated with making the measurements. These difficulties will
be presented in section 6.2. following a discussion of the kinetic parameters

for the hydrogen reaction.

Hydrogen Reaction

The cathodic Tafel constant b, for the hydrogen reaction is 592
mV/decade. However, ﬁbe commonly accepted value of b; for the hydrogen
reaction on most metals is 118 mV/decade. The larger b, reported here
represents a less steep slope and implies that a greater resistance exists for

the cathodic polarization.

A cathodic transfer coefficient of 0.1 results from my slope for the
hydrogen reaction, whereas cathodic and anodic transfer coefficients of 0.5

obtained from Tafel slopes of bc,}{,= 118 mV/decade are most frequently
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reported. West!*® gives 0.5 for the cathodic transfer coefficient of hydrogen

evolution on zinc in noncomplexing sclution. Bara'® reports acy, = 0.5 in

sulfuric acid over a wide pH range (0.01 N to 10 N) as well as being close to

0.5 in alkaline solutions.

Assuming a one electron-transfer reaction, a symmetry factor of 0.1
also results from my hydrogen data. The symmetry factor 8 represents the
fraction of the applied potential which promotes the cathodic reaction.
Frequently, it is assumed that f should have the value %, although the
theoretical justification for this is not completely rigorous. The kinetics of
hydrogen overpotential with 8 = ¥ generally conform to the slow discharge
reaction as the rate—controlling mechanism. Since g is 0.1, the cathodic
reaction requires more applied overpotential to achieve the same cathodic
activation energy and to obtain the same current. Because the
experimentally determined value reported here is less than a half, a
different mechanism may possibly be taking place, even though this is
unlikely. The reason for the difference may perhaps be better explained by
altributing the discrepancy to experimental ditﬁéulties that were

encountered.

6.2. Experimental Difficulties

First, when questioning the results, one may ask whether Tafel regions
for the zinc and hydrogen reaction were really obtained. To answer this, one
simply needs to repeat the experiments polarizing the electrode much
further in the anodic and cathodic directions. However, as the electrode is
polarized, other problems result. Polarization into the anodic Tafel region
significantly enhances the corrosion rate, which causes the electrode
surface to change, aflecting both the active surface area and to a smaller
extent the hydrodynamics of the rotating zinc disk. The roughened surface

results in an increased corrosion rate, and the original surface no longer
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exists. Polarization into the cathodic hydrogen Tafel region disrupts the
hydrodynamic boundary layer near the disk due to hydrogen nucleation and

bubble evolution which have not been controlled.

Another experimental difficulty, the eflect of the solution ohmic drop on
the scan rate, is considered next. It may not have a direct eflect on why the
Tafel slopes given here are not as steep as is expected, but it is an important
concern when doing polarization measurements. For this reason, discussing
this effect is justified. Hopefully, other researchers will consider it as a
problem and will confirm its significance (or better yet, the lack of) in their

work.

It was pointed out previously that it is possible to correct an
experimental polarization curve for the ohmic drop by subtracting the
uncompensated ohmic potential after the test using a set value for Hj.
However, this procedure does not eliminate the effect of the /Ry drop on the
eflective scan rate.! Again, the uncompensated ohmic drop not only alters
the shape of the polarization curve, but produces a varying effective scan
rate which depends on the potential. Because of this, the electrochemical
systern of interest does not actually *'see’ the potential that the potentiostat
is trying to maintain. Therefore, one will inevitably in.terpret the
experimental current response differently from that as if the scan rate were
not aflected. This could easily lead to gross errors when drawing conclusions

based 6n such data.

The relative error of the scan rate due to uncompensated ohmic

potential may be quantified by _Mansfeld's[“] equation (6)

Scpp off _ Rq
Sepp Ro+ Ry
R, can be calculated for any point on the polarization curve according to

(4-29)

1 The proper choice of scan rate was discussed in section 4.2 of this chapter, and
ac—impedance data confirmed that the 1 mV/s sweep used in the present study is well below the
mazximum rate that ensures a quasi~steady—siate scan.
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provided the kinetics of the zinc and hydrogen reactions are adequately
governed by equation 4-25. This form of the Stern-Ceary equation is in

terms of the corrosion—current density given by

823
. k‘H!cH,._ z“.u’ﬂcﬁgs (4-31)
teorr = 2}:.kaZn Zk.zn .

and the measured open=-circuit potential. The corrosion—current density

used in this equation was obtained from figure 4-6 to be 1.2 x 1072 A/ cm?.

Figure 4-9 is a plot of the relative error of the scan rate due to ohmic
drop as a function of the potential driving force as one polarizes the
electrode away from the open—circuit potential.. The relative error curves
shown by the solid and dashed lines are generated using the kinetic
parameters given in tables 4—2 and 4-3 for agz, = 0.05. The solid line is for
an assumed primary current distribution where Ry =2.350 is given by
equation 4-5 with £ equal to one. A uniform current distribution at the
center of the disk yields a resistance Ry =2.99 (2 that is 4/ 7 times that of
the primary resistance. The percent error due to the ohmic drop for the
uniforrﬁ current distribution and agz; = 0.05 is shown by the dashed line.
The uniform current distribution curve shown by the dotted line is
-fortu'xtously symmetric due to the fact that it is generated using
Qqzn = @y, = 2(1 =~ fz,) = By, = 0.1. The results given in this figure
demonstrate the small effect that ohmic resistance has on the effective scan
rate for this system. However, the importance of this effect in other systems
led Mansfeld®!) to state that most anodic potentiodynamic polarization
curves in 1 M E,SO, for systems with high corrosion rates and high critical

current densities reported in the literature are invalid.
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Let us continue our discussion of experimental difficulties. Impurities
are probably the most important reason for the differences in the kinetic
parameters reported by researcheré and are responsible for the significant |
changes in the corrosion rate. Little has been said about the corrosion rate
up to this point, since we have been concerned only with the kinetics of the
individual reactions contributing to the corrosion process. More discussion
will be given in the next chapter pertaining to the corrosion rate and factors
that enhance or prohibit it. At this time, we will only mention the effect that
impurities have on the hydrogen evolution reaction and hence the corrosion

rate.

It is well known that impurities can obscure the measurement of the
electrode kinetics of the hydrogen reaction on many metals. Impurities in
the zinc disk and in the electrolyte are therefore the most probable source
of error on the kinetics of the hydrogen reaction. Lead, iron, and cadmium
are natural impurities in special high grade zinc as ordinarily produced. The
§9.99% analytical grade zinc used in this study may contain up to 0.007%,
0.0057%, and 0.0057 of them, respectively. Cadmium and especially iron have
relatively high hydrogen exchange—current densities and increase the rate
of hydrogen evolution. Ettel et al. #4] state that As, Sn, Se, Co, Ni, Sb, and Ge
may catalyze the hydrogen discharge reaction. The concentrated
hydrdchloric acid used contains 3 X 10~7 % arsenic, but one should like to

think that this is insignificant.

8.3. Verification of Kinetic Parameters

The kinetic parameters given above were determined based on the
assumption that no concentration gradients exist across the cell so that the
diffusion potential is zero. This first approximation for determining the
kinetic parameters may be checked using the re‘sults of the model presented

in chapter 5. These parameters will be used initially in the model to



determine the surface concentrations of zinc and hydrogen. The diffusion
potential may then be calculated, and the results in figure 4—-6 will be
replotted versus a beller approximation for V =19, -‘bRcv.o taking into
account concentration variations across the diffusion—boundary layer. New
kinetic pararneters then may be determined and cornpared to the first set.
These eflects however are expected to be small relative to the other, more

drastic eflects mentioned in this chapter.

7. Conclusions and Recommendations

The kinetic parameters that have been presented are significantly
different from those reported by other investigators, and litlle confidence
should be placed in the data until the experiments are repeated with better
control of certain variables. In particular, instead of using reagent grade
bydrochloric acid, new solutions for each experiment should be made up
using analytical grade hydrochloric acid. Other conditions should be
examined so that a more thorough understanding of the causes of the
deviations of the parameters that are reported here from those reported in
the literature may be obtained. Different rotation speeds should be used so
that mass—transfer eflects on the corrosion rate and individual reaction
kinetic parameters may be studied. Different zinc chloride concentrations
and different pH solutions should be used to verify their effects on the Tafel
slopes as well as on the corrosion rate. Polarization further into the anodic
and cathodic regions should be carried out with the realization, however,
that doing so will alter the original electrode surface intended to be studied.
The hold time of the experiment should be varied, again to see its effect on
the corrosion rate and kinetic parameters. Better /Ky compensation and

computerized data acquisition methods could also be employed.

Finally, ac impedance techniques should be used to study the corrosion

of zinc, because of their ease of application for obtaining mechanistic data.
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A knowledge of the corrosion mechanism and the time dependence of the
corrosion rate would make it possible to predict the metal lifetime from
tests of relatively short duration. These accelerated corrosion tests should

prove to be very important in future research.



Chapter 5. Theoretical Analysis of the Corrosion of Zinc

¥

1. Introduction

The experimental work presented in the previous chapter will be treated
theoretically so that a better understanding of the corrosion process of zinc
may be obtained. First, the corrosion process is described in general terms
followed by the development of a mathematical model of steady-—-state anodic
metal dissolution in the presence of fluid flow to a rotating disk. The results
of the numerical determination of the corrosion current and potential are
given and compared with the Tafel approximation for the corrosion current.
The eflect of different parameters on the corrosion behavior of the rotating
disk are also studied with the aid of the model. The results are shown
graphically in a general way and may be used to describe many corrosion

systems.

1.1. Background

In general, a corrosion process consists of two or more reactions
occurring simultaneously. Each of the simultaneous processes may consist
of multiple st.epvs. but it is best to treat the reactions as one overall anodic
reaction and another overall reaction which proceeds cathodically. In the
case of a zinc rotating disk, it is assumed that the overall anodic zine
dissolution reaction

Zn -+ Zn?* + 2e~ (5-1)
occurs on the same surface at the same time and at the same potential as
the reduction of some species present in the electrolyte. Cathodic hydrogen
evolution reactions occur when hydrogen ions or water act as oxidizing

agents. The hydrogen ion is consumed by the following reaction
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2H*+2e-+H, 0.0V, (5-2)

and water reacls according to

2H,0 + 2e” - H, + 20H~- -0.828 V. | (5-3)
The latter decomposition of water reaction is not as thermodynamically
favored as the reduction of hydrogen ions, and therefore has a more negative
standard reduction potential than reaction 5-2. Oxygen, if it is present,
serves as a much stronger oxidizing agent than bydrogen ions. Oxygen is
easily reduced by the following reactions

%02 + ZH‘ + 2~ -+ Hzo +1.229 V. (5—4) .

or
Y0, + H,O0 + 2e~ - 20H~ +0.401 V. (5-5)
Both are more thermodynamically favorable than the hydrogen evolution

reactions due to their positive reduction potentials.

Following Wagner and Traud,!] the local (net) current density at each
point on the disk surface is the sum of the anodic and cathodic current
densities given by

ihet = izn +ip, - (5-6)
At open circuit where there is no external current to the rotating disk, the
reaction rates of zinc and hydrogen are of equal magnitude. The total net
current on the disk should be zero resulting in

izn = —lH, = Teorr - (5-7)
where 1., is the corrosion—current density at the mixed or corrosion
potential. This relation deflnes the coupling of simultaneous corrosion
reactions on an isolated homogeneous' metal surface. Under these
conditions, the open-circuit potential is not an equilibrium potential
corresponding to any one of these reactions, but is the corrosion potential

lying between the zinc and hydrogen reversible potentials.

For a nonhomogeneous metal surface, only the net current is zero as opposed to the
current density.
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Polarization of the metal slightly either anodic or cathodic to the
corrosion potential produces a net current. As the potential of the zinc
electrode is driven more positive, anodic dissolution becomes tk:le dominant
reaction with hydrogen evolution being negligible. The oxidation reaction
given by equation 5—1 produces electrons and causes an increase in the
valence of the zinc by producing cations (positively charged ions). When the
zinc is polarized to a more negative potential than its open—circuit
potential, hydrogen evolution is promoted and no zinc reaction occurs
unless there are zinc ions in solution which are able to be reduced.
Electrons are consumed in the cathodic hydrogen evolution reaction given
by 5-2 causing a net decrease in the hydrogen valence state. This reduction
reaction takes place on the locally more noble (positive) sites of the zinc

surface and dissolution occurs on the locally active (negative) sites.

2. Model Development

A mathematical model of steady-state énodic metal dissolution in the
presence of fluid flow to a rotating disk is developed. As was stated in
chapter 4, this particular corrosion system is attractive for analysis because
the hydrodynamic flow(20)1211122] s well known near a rotating disk, and one

can calculate the current and potential distribution for this geometry.[2‘]

Active dissolution occurs at the electrode surface with a rat_e which
varies with location along the anode owing to ohmic, mass transport, and
charge—transfer processes. For a primary current distribution, the metal
dissolution rate depends only on the potential distribution between
electrodes. The electrodes are taken to be equipotential surfaces: thus
polarization is neglected, and the potential varies according to solution
conductivity and electrode size. Generally, this distribution shows that the
more inaccessible parts of thé electrode receive a lower current density

resulting in a highly nonuniform current. A secondary distribution accounts
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for slow electrode—reaction kinetics. The general eflect of electrode
polarization is to make the current distribution somewhat more uniform

than the primary distribution.

For the problem at hand, concentration changes occur adjacent to the
metal surface and must be considered along with the charée—transfer
resistance and the ohmic potential drop in the solution. The Péclet number
Pe =vr/ D;, where v is a characteristic velocity, 7 is the radial distance
from the center of the disk, and [ is the diffusion coefficient, is assumed to
be large for the conditions investigated here. Then the concentration
variations are confined to a thin mass—transfer boundary layer near the
electrode surface since the fluid flow acts to wash reaction products away

from the disk rapidly.

2.1. Governing Equations

Mass transfer in an electrolytic solution requires a description of the
movement of mobile ionic species, material balances, current flow,
electroneutrality, and fluid mechanics. With a known velocity profile, the
concentration and potential distribution may be determined from four
equations. The first describes the flux of each dissolved species as

N, = —z,u, Fe, Ve — D Ve, + ve; (5-8)
according to dilute solution theory. The flux is due to migration in an
electric field -V¢$ if the species is charged, diffusion in a concentration
gradient Ve, and convection with the fluid velocity v. The quantity 2; is the
valence of the ion; thus, z;F is the charge per mole on a species. The
mobil.it); u; denotes the average velocity of a species in the solution when
acted upon by a for.ce of 1 newton/mol, independent of the origin of the

force. The material balance for species 1 is
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BC"
ot
where the production per unit volume R; involves homogeneous chemical

=-UN, + R . (5-9)

reactions, but not any electrode reactions, which occur at the boundaries of

the solution. The current density iis

1= F'}; zZN, .  (5-10)

Finally, the elecitrolytic solution is electrically neutral

2‘3 26y =0 (5-11)
to a good approximation except in a thin double—charge layer of the order of
10 to 100 A which is part of the electrode—electrolyte interface. These four
equations provide a consistent description of transport processes in
electrolytic solutions accounting for migration in laminar diffusion layers

with forced convection.

For the region outside the diffusion layer, all concentrations have their
bulk values ¢; = ¢; ., and one must solve Laplace's equation

V=0 , (5-12)

for the potential. The solution of this eguation must allow the current

density at the boundary to a.gree with the rate of the electrode reaction.

Hence, the boundary condition requires a knowledge of the kinetics of the

charge—transfer reactions. The electrode reaction j is represented by

3 -
YsyMt s njem (5-13)
%
where s;; is the stoichiometric coeflicient of species i, and n; is the number
of electrons transferred in reaction j. The flux of species i is related to the

Faradaic current density i; of reaction j by

Sie
- v_. -
N, ? nF i . (5-14)
The equations describing the potential dependence of the kinetics of the

specific electrochemical reactions will be given in the following sections.
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Finally, the material balances in the diffusion layer and Laplace's equation in
the bulk medium must be calculated simultaneously since the current
density and the concentration at the electrode surface hwst adjust
themselves to balance the overpotential available after the ohmic potential

drop in the bulk medium is subtracted from the potential applied to the cell.

2.2. Assumptions

Because rigorous calculations can sometimes be cumbersome, various
simplifications have been introduced into the physical picture described
above. The following assumptions retain the salient features of the system

being studied, but also avoid unwanted numerical complications.

1. Steady-—state and isothermal conditions exist so charging currents
are negligible. The steady—state assumption is justified in the dynamic
corrosion process, because the diffusion layer response time is short relative
to the time scale over which the surface changes as the potential is swept.

2. The double layer is assumed to be infinitely thin so that it may be
ignored.

3. It is simplest to regard the overall anodic and cathodic reactions in
the corrosion process as they occur independently, consequently the net
current density is the sum of the Faradaic current densities due to the two
reactions.

4. A modified form of the Butler—Volmer kinetic equation is used to
describe the potential dependence of the current densities over the entire
polarization r'ange. |

5. The Reynolds number Re = r2{)/ v, where (1 is the rotation speed in
rad/s and v is the kinematic viscosity in cm?/s, is less than the critical
value 2 x 10% so that the entire disk is assumed to be in the laminar flow

region.



102

6. The model only will be valid rigorously for a given point on the disk
surface, i.e., the center of the disk, and radial variations along the disk will

not be accounted for.

7. The surface of the disk remains uniformly smooth and accessible
during anodic dissolution so that the hydrodynamic boundary layer is not

disturbed.

8. The Schmidt number Sc = v/ D; is large, so.the mass—transfér
boundary layer at the active surface is thin with respect to the disk radius
and also with respect to the hydrodynamic boundary-layer thickness.
Diffusion along the direction of flow is negligible in comparison with

convection in the same direction.

9. A stagnant Nernst—-diffusion—layer thickness will be used for the zinc

divalent ion, the hydrogen ion, and molecular hydrogen.

10. The metal ions formed by dissolution do not undergo hydrolysis, and
all other complexing by chemical reaction are assumed to be in equilibrium

because their reactions occur infinitely fast.

11. Migration of dissolved metal species is assumed to be negligible

owing to the presence of supporting electrolyte.

12. The electrolyte is a Newtonian fluid, and infinitely—dilute solution

theory applies.

13. The physical and transport properties of the solution are assumed

to be constant depending only on the bulk composition.
2.3. Electrolytic—Solution Treatment

.2.3.1. Homogeneous Reactlions

The anodic dissolution of zinc in the presence of chloride ions results in

complexing of the zinc species. It has been shown in the literaturel® that
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four different complexed species may exist in addition to the zinc divalent
ion depending on the concentration of the chloride ions. The reactions are

as follows:

(a) 2Zn2?* + Cl™ » ZnCl* (5-15)
(b) 2ZnCl* + CI~ = ZnCl, (5-16)
(c) ZnCly + Cl~ -+ ZnClg (5-17)
(d) 2ZnClg +Cl™ -» ZnCi2-. (5-18)

Each reaction may be represented by

2; vij Mi =0, (5-19)
where v is the stoichiometric coeflicient of species i in reaction j and is
defined as being positive for products. The rate of the chemical reaction j is
given by the generalized equations |

R; = kjcicg —k_jciyy =k, [cica - E}—(l] . (5—-20)

j

for the four chemical reactions given by equations 5-15 through 5-18.
There are five different zinc species; ¢, through c5 are the concentrations of
Zn?*, ZnCl*, ZInCly, ZnClg, ZnCl2~, respectively, and cg represents the
chloride ion concentration. In more generalized notation, species ¢ =j is
the zinc reactant in reaction j and species 1+1 is produced in reaction j. The
expression on the right of equation 5-20 is written in terms of the forward
rate constant k; and the equilibrium constaﬁt K; for the homogeneous
reaction j. K; is defined as k;/ k_;, where the forward rate constant is
expressed in cm3/mol—s and the reverse rate constant k_; bas units of st
This equilibrium constant, expressed in cm3/mol, may be related to molality
equilibrium constant K; by K; = K;/ po. where pp is 0.001 kg/cm? for the
pure solvent and Kj is given by equation 3-55. Finally, the rate of

production of species i, which is included in the material balance equation
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5-9, is given by

Ro= T vk =R = &

cv;H] (5-21)
C"Cs— .

K;

for the five chemical species i participating in the reactions a through d.

k S
- . CA_ c -_— — .
J-1j=i—-1%8 1{)_-1 J
When i = j = 1, the resulting kg must be zero, because the first zinc species

Zn?* is taken to participate in only one homogeneous reaction.

The material balance equations 5-9, with 1 representing the five zinc
species, hydrogen gas, hydrogen and chloride ions, along with the
electroneutrality equation 5—11, are nine equations sufficient to solve for the
eight unknown concentrations and potential. Provided kinetic data are
available for the zinc homogeneous reactions, no additional assumptions
must be made to solve this problem. The homogeneous production terms,

RH* and RHZ' are zero for the two hydrogen species.

The total zinc material balance may be obtained by summing the five

individual zinc species balances yielding

8(c,+co+cgtcy+cCy)
ot
The general conservation of species equation 5—9 was shown in a previous

= —(V-N, + VN, + V"Ng + VN, + T Ng) (5-22)

section to contain the production rate R, however, the sum of the A 's is

zero for the five zinc species. Therefore, the divergence of the total zinc

flux, V- Nz, = i V-N,, is zero at steady state, without having to make any
1=1

assumptions about the rates of the homogeneous reactions. It should be
pointed out, however, that it still is necessary to specify rates of the
chemical reactions using equation 5-21 when writing the material balances
for the four other zinc species and for the chloride ion. These nine equations
are again sufficient to solve the problem at hand accounting for finite rates

of the homogeneous reactions.
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If the complexing reactions are assumed to be fast, then the rate
constants k; and k_; are implied to be large. As k; - =, the term in
parenthesis in equation 5-20 approéches zero. The concentrations therefore
satisfy the equilibrium relation

_ Lina
7 eeg

(5-23)
where K; is taken to be independent of position and the activity coefficients
have been ignored. It shbuld be pointed out that even if the concentration of
the species are in equilibrium with each other, the rate of chemical reaction
R; and the production rate of the individual species R, are not necessarily
equal to zero. Nevertheless, these four equilibrium relationships between
the zinc species and chloride ions in reactions a to d may be used to replace

four of the zinc species material balances.

Conservation of charge

Vi=F i z,V'N; =0 (5—-24)
i=1
implies that the current density must be independent of position in a one

dimensional system. This equation may replace the material balance

equation 5-9 for the chloride ion.

Equations 5—11, 5-22, 5—24, equation 5-23 for the four complexing
reactions, and equation 5-9 with K, =0 for the two hydrogen species are
another set of nine independent equations that may be used to solve for the
eight concentrations and the potential using the rapid equilibrium
assumption. These equations should be solved subject to the following two
boundary conditions: (i) the average concentration is ¢, outside the diffusion
boundary layer far from the surface; (ii) all species fluxes are specified at

the interface.

The general dilute—solution equations governing the zinc corrosion

process have been outlined above. Two approaches have been given for
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solving the steady—state model for simultaneous zinc dissolution and
hydrogen evolution at a rotating disk. One of the. mathematical
developments accounts for the finite rates of the homogeneous zinc
reactions, and the other assumes the complexing reactions reach
equilibrium rapidly. We would now like to examine specific special cases,

where the equations may be further simplified.

The flux for species i given by equation 5—8 reduces to
N, = -DVc; (5-25)
for a stagnant diflusion layer and if migration is neglected due to excess
supporting electrolyte. Combining this equation with the steady-state
conservation of species equation 5-9 yields
d2c;

dy?
when the concentrations are taken to vary only in the y-direction and the

D, +R =0, (5-26)
diffusion coefficient of species t is independent of concentration and

constant. The steady—state material balance for total zinc reduces to

dZCz
9N = 5 T(DVe) = DY) Voo = D22z, (5-27)
is1 {=1 Y
if all the individual diffusion coeflicients have the same value, Dz, This
implies a constant concentration gradient exists for total zinc when

migration and convection are neglected.

Equations 5-26 and 5-27 have been written without having to specify
the rates of the homogeneous reactions. Finite reaction rates, even for the
case of equal diffusion coefficients, yield in general nonlinear concentration
profiles for the individual zinc species. Now, if we choose to assume that the
complexing reactions occur infinitely fast and that all the diffusion
coefficients are the same Dz, then K = 0. Physically this means that all
complexing occurs adjacent to the surface, and no homogeneous reaction

takes place in the difflusion—boundary layer. This simplifies the analysis,
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because only the complexed species difflusing outward across the boundary
layer need to be accounled for. The diffusion—layer thickness will also be the

same for all the species if the diflusion coefficients are the same.

Let us now mathematically describe the case for infinitely fast
homogeneous reactions and all I the same. As previously stated, all
concentrations variations are taken to occur within the diffusion layer of
thickness 4, and outside this region, the concentrations are egqual to their
bulk values. Because the divergence of the- flux ié zero, the flux of each
species is constant and may be rewritten for a one—dimensional model for

the boundary layer as

(cu—cok
6 !

following the classical Nernst{!! diffusion theory. The diffusion—layer

N" = - D,‘_ (5—28)

thickness for a rotating disk is given by Levich! as

6; = 1.8117D/ 3y1/8-1/2 (5—29)
Therefore, a linear concentration profile results for each of the species,
when the diffusion coefficients are the same and rapid equilibrium is

assumed.

Next, let us examine more closely the implications of using linear
profiles for each of the species. Because the flux of species not participating
in charge—transfer reactions must be zero at the electrode, the constant
flux assumption for the complexed species therefore cannot remain valid all
the way up to the electrode surface. The equilibrium assumption must be
relaxed near the electr‘.ode.‘ Instead, a reaction zone exists where the.ﬁuxes
of the species are not constant, and nonlinear concentration profiles result

given by

¢ = —_ofp;ljo'fz.-dy dy . (5-30)

The steady-state concentration profiles are determined by the kinetics of
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the homogeneous reactions. To justify using equation 5-28 for all the
species throughout the diffusion layer, it must be shown that the reaction
front does not penetrate very far into the diffusion layer. 'I'hé penetration
depth of the homogeneous reactions depends on the magnitude of the rate -

constants and the diffusion coeflicients.

2.3.2. Perturbation Formulation

It was shown in the previous section that the electrolytic solution needs
to be treated as two regions: (i) the homogeneous reaction zone, where the
flux is not constant and the concentrations are distributed nonlinearly, and
(ii) the diffusion layer where the flux is constant resulting in linear
concentration profiles. We have achieved a rigorous justification of the
separation of the electrolytic solution into two regions by means of a
singular—perturbation expansion of the concentration.” A singular
perturbation consists of two perturbation expansions valid respectively in
the region far from the interface and close to the interface. Since these are
two expansions of the same function, they must match in an intermediate
region. In other words, the outer limit of the inner expénsion coincides with
the inner limit of the outer expansion. Again, the reason for constructing
two such perturbation expansions is that diflerent approximations are valid
in the two regions. In the outer region (in the diffusion—boundary layer), one
can neglect the rates of the chemical vcomplexing reactions assuming
infinitely fast equilibration as a first approximation, so only linear
concentration profiles need to be accounted f(;r. In the inner region (near
the interface), it is necessary to consider the finite rates of the
homogeneous reactions. As in the previous description of the system,

convection and migration are assumed to be negligible in both regions.

The perturbation parameter ¢ =6,,/d; represents a ratio of the

penetration depth (characteristic of the homogeneous reaction zone next to
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the surface) to a length characteristic of the thickness of the diffusion layer.
If ¢ << 1, then the assumption that the reactions occur simultaneously next
to the surface is valid. This allows us to use the simplified coﬁservation of
species equation with K equal to zero because equilibrium conditions would
prevail. If the two characteristic lengths are of the same magnitude (1),

then the results of the work to be presented cannot be justified.

The homogeneous reaction thickness 6,n, is given by Levich[*®l as

\/D,;/ k;. It is necessary to understand the nature of the zinc complexing
reaction to obtain a value for the forward rate constaﬁt k;. The zinc
complexing reaction in water occurs via an outer—sphere complex
intermediate!? given as

Zn(H,0)§* + C1~ = Zn(H,0)8".Cl- = Zn(Hz0)sCl* + H,0 .  (5-31)
Formation of the aquo complex is a diffusion—controlled process with a
bimolecullar rate constant of the order of 10% to 10!° M~1s~!. Next, the
outer-sphere complex is converted into an inner—~sphere complex. The rate
constant for the chloride ligand substitution of water is 3 x 107 s~!. Hence,
the rate—determining step of the overall reaction is the removal of a water
molecule from the inner coordination sphere and its replacement by a

particle in the second coordination sphere.

The penetration depth for homogeneous reaction 515 is 4.86 x 1077 cm,
when 0.71 X 10735 cm?/ s and 3 x 107 s™! are used for the diffusion coefficient
of the zinc divalent ion and rate constant, respectively. A diffusion—-layer
thickness of 1.16 X 1073 c¢m for the zinc species is large relative to the
reaction zone, so that the perturbation parameter of 4.2x 107* is
significantly less than 1. Hence, developing a perturbation expansion
accounting for the finite chemical reaction zone next to the electrode is not

necessary.
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2.4. Kinetics of Multiple Electrode Reactions

The equations given above describe the mass transfer within the
diffusion—boundary layer to and from the electrode vsurface. Next it is
necessary to describe the electrode—electrolyte interface. The electrode
reactions serve as the boundary conditions for the one—dimensional model
being described. The net current density is the sum of the zinc and
hydrogen current densities as was given earlier by equation 5—6. That
equation may be obtained by substituting Faraday's law given by equation
5—14 into e.quation 5—10 for the net current density in terms of the ionic
fluxes. If a kinetic relalion between the zinc and hydrogen current densities
and the potential is known, one can determine the corrosion current and
potential when the kinetic expressions are coupled to the mass—transport

equations 5—28 and 5-29.

The polarization curve of zinc is a function of several variables such as
the zinc divalent—ion concentration and the chloride ion concentration. The
polarization curve of the hydrogen reaction is a function of the partial
pressure of hydrogen gas‘and the pH of the solution. There are many kinetic
expressions from which to choose, but a modified Butler—Volmer
relationship is best for the application at hand since the kinetic parameters
used in this equation have been determined by methods given in chapter 4.
To characterize the overall response of the disk electrode undergoing anodic
polarization, the kinetics of the assumed one—step, zinc reaction are

described by the following equation

o F
17, = 2Fk, 72, exp VJ 2chznczng‘oexp[ CZP V] (5-32)

aq
RT

The expression for the cathodic evolution of hydrogen, derived from a two

step mechanism given in chapter 4, is
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aGHZF [ aCHgF

[ ] 1
iHB = Fka.}-lng?g.o exp[ RT V] - ch'HE CH‘.O exp[ - BT |4 l (5’"33)

Both kinetic equations are presumed to apply over the entire polarization
range. The electrode potential relative to an ideal reference electrode of a
given kind placed just outside the double layer is used as the électric driving
force V = &, — $pco in these kinetic rate expressions. Because the zinc and
hydrogen reactions 5—1 and 5-2 are taken to be the overall net anodic and
cathodic reactions, respectively, overall transfer coefficients a are used as
opposed to individual—-reaction—step symmetry factors £ as introduced in
chapter 3. Possible effects of mass—transfer limitations are accounted for
by including the concentration dependence of the reactants in the kinetic
expression. The reaction orders of equations 5-~32 and 5-33 are taken to be
proportional to the reactions’ stoichiometry, and rate constants k are
independent of concentration. These assumptions must be validated by
experimentation. Concentrations at the surface‘are needed in both kinetic
expressions; therefore, mass transfer to the disk should be taken into
account. The results of these considerations will be presented here for a

one-—step electrode reaction mechanism.

2.5. Resulting Kinetic—Diffusion Equations

The governing equations for the electrolylic solution and the electrode
interface have been presented in the previous sections. Simplified equations
assuming the homogeneous complexing reactions are in equilibrium are
given in addition to the formulation of the more generalized perturbation
expansiqn accounting for chemical reactions with finite rates. Now it is
possible to combine the results of the electrode interface and electrolytic

solution to vbtain an adequate description of the entire system.

Typically under the aSsumption that homogeneous reactions do not take

place, conservation of species within the boundary layer yields a uniform
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flux at steady state. Even for homogeneous reactions with finite rates, we
have shown with equation 5-22 that the gkradient of the total zinc flux is zero
at steady state, i.e., dN;,/ dy = 0. Equation 5-28 for the flux of species 1
across a stagnant, Nernst diffusion layer may be rewritten for total zinc and

then equated with the flux at the electrode surface given by equation 5—-14

yielding
izn =D €CZn= —Cz2no _ i E“"(C P . (5_34)
2F ~ VT &, &8 -7k

The right side of equation 5-34 represents the sum of the individual zinc
species fluxes. Again, making the assumptions that the chemical reaction
rate constants are large and that the diffusivities of all the zinc species are
equal implies K; = 0. Therefore, the equilibrium relationship equation 5-20

allows the zinc species to be related to each other as follows:

¢, = K,c'\c's/ Po . (5-35)

c's = K Kec'c'§/ p8 (5-38)
c'e= K ,K,Ksc',c'8/p8 (5-37)
c's = K \K,K3K ,c'\,c'd/ p§ . (5-38)

where the activity coeflicients have been ignored and the equilibrium
constants given by equation 3—54. The chloride ion concentration cg is also
required to be uniform in order to write equations 5-35 through 5-38. Each
species is simply a function of the chloride ion and Zn?* ion concentrations.
Therefore, the ratio of the zinc divalent ion species to total zinc is given by
€,ee/ €2n = (1 + Q)71 where

o | . -z. ¢ 8l

= DO e b KK 2o b KKKy + KKK K 2|  (5-39)
Q-Po 1 1K= 123p°2+1?34p03-

Equation 5-34 may be rewritten as

iz - D,
2F = %“ (14 @)(Cppern = Cpreeg) - (5-40)

Here we have related the Faradaic zinc current density to the surface
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concentration of the zinc divalent ions accounting for complexing. This
equation may be substituted into the zinc kinetic expression 5=32 and after

rearrangement gives the following

kognc Fl
aZn c Zn Zn. - Qe 2n
i kg 75 €XP 7 VJ G+0) exp T VJ
= (5-41)
eF é kc r ‘ acZnF
1 + —_— _._..;'exp V
Dl (1+@) RT ]

The current density for the zinc reaction is a function only of the potential
driving force V = ¢, — ép; , provided the other variables in the equation are

known input parameters.

An expression for the current density of the hydrogen reaction may be
obtained in a similar way. However, first a relationship for the solubility of
hydrogen is needed. The chemical potentials of hydrogen in the vapor and
liquid phases are equated as

ki, + RT Inpg, = uf, + RT In my, | (5-42)
where the fugacity and activity coefficients have been ignored. After
rearrangement and the use of. the NBS Technical Note 270-3,['8 equation

5—42 yields

my [ i, — 8, ) 17k
2 = exp _2—2_] =8.494 x 10~* M . (5_43)
Py, atm

The concentration of hydrogen is related to the molality by the solvent

density pp = ¢;/ my, so that using 1.00 gm/cm? for water gives

CH

_ SRy _y mol/cm3 _
S % o 8.34 x 1077 TS (5-44)

. mol/cm3

ot reported by Newman and

This may be compared to 7.52 x 10

Hsueh,*) and the latter value is used in the model. Equations 5—-14 and 5-28
are used with the solubility to obtain the following expression for the partial

pressure of molecular hydrogen at the surface
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ig, [ 5

TPl | = 5—-45

szo phg." 2F l D s L‘lz * | ( )

which then is substituted into the kinetic equation 5—33 for the hydrogen

reaction. The surface concentration of the hydrogen ion is given by

‘I.Hg
Chro = Cem t _l D L (5-46)

and also is substituted into equation 5—33, yielding

. -2C
14, = ' 5—47)
: B+ VB2 —-4AC (

for the hydrogen reaction rate expression where

2 [ 2a.4.F |
6 cHe
= 2 _— 548
1+2k[ L +k DLexpl =T VJ ( )
and
ncu | s ] [ 2oy, F 1 5 [ aenF ]
B= DslyzexP[_—R V]-f-Z]"k,_x.;e —E‘expl- BT 14
(5—-49)
2a. F ]
+ 2Fk2 Cpsm expl T VJ .
and
C = ks of exp | - — v] FokEnPag oXP |~ ~ oml J (5-50)

If the concentration of the hydrogen ion is assumed to remain constant
across the diffusion boundary layer, then A =1, and the last term on the
right of equation 5-49 is neglected. Again, the current density is only a
function of potential and is no longer written in terms of unknown surface

concentrations.

2.6. Method of Solution

The governing equations 5-41, 5-47, and 5-7 are solved by a
Newton—Raphson numerical technique. The potential is iterated on until
equation 5-7 is satisfactorily met with the correct value of the corrosion

potential and corresponding corrosion current. The four additional
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dependent variables, izp, iy, Cgne+ o PH,0 + BTE then deterrnined. Table 5-1
gives the values of the input variables for the model. A listing of the code is

givenin appendif_ F.

3. Model Results

The principal value of the model is a generalized and overall description
of the total current from a rotating—metal—disk electrode during anodic
polarization accounting for concentration variations across the boundary
layer. The model first is used to justify the assumptions that were made
earlier so that kinetic parameters could be obtained directly from
experimental, rotating—disk data. Next, the exchange—current density and
corrosion—current density may be determined as functions of the active
species surface concentrations. The corrosion—current density obtained
from this model will be compared to the simplified estimates of the
"corrosion—current density given in the next chapter. The magnitudes of the
exchange and corrosion current densities may be seen on the polarizalion

Table 5—1. Values of the kinetic—diffusion model parameters for the
corrosion of zinc in 1 M HClL.

Di. X 105 Ci.- X 108
species cm?/s mol/cm?
Zn2t 0.71 0.0
H* 9.312 1.0
Cl- 2.032 1.0
K* 1.957 0.0
H, 40  p;.=00atm

x = 0.4261 (N—cm)™! v=13x10"2cm?/s
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curves generated by the model as well as the regions of kinetic and

mass—transfer control.

3.1. Comparison of Experimental and Theoretical Polarization Curves

Figure 5—1 is a linear current—potential plot of the results of the model
using the best kinetic parameters obtained from the FIT routine given in
tables 4-2 and 4-3. The kinetic constants are summarized in table 5—-2. The
theoretical polarization curve, i, versus V, is represented with triangles,
and the experimental curve, i .., versus Vp.., — IRq, is illustrated with a
dashed line through the circles. The calculated curve shows good agreement
with that obtained experimentally in the anodic Tafel region. However,
substantial discrepancy results near the corrosion potential and especially

on the cathodic sweep.

Let us examine each contribution to the net current density before
giving an explanation for the discrepancy. The forward and reverse reaction
terms of both the zinc and hydrogen reactions are shown. Beginning with
the zinc current density, it should be pointed out that initially with no zinc
ions in the solution, the zinc reversible potential is negative infinity.
However, zinc ions are formed immediately after the electrode is placed in
the solution. An averaged experimental rest potential of -1.054 V is shown
where the net zinc current density balances the net hydrogen current
density. A corrosion—current density of 3.80 x 1072 A/cm? results. The zinc
exchange—current density at these corrosion conditions is 3.81 x 1072
A/cm? The corresponding thermodynamic zinc potential is -1.073 V
according to equation 3-22, when evaluated at the surface concentration of

0.0165 M for the zinc divalent ion at the corrosion conditions.

As anodic polarization begins, the anodic zinc current density increases
with the potential V. The dissolution process also causes an increase in the

zinc ion concentration. This enables the cathodic back reaction to take place
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Figure 5—1. Results for the zinc and hydrogen reactions as generated by the

kinetic—diffusion model accounting for complexing for the
corrosion of zinc shown on a linear plot near the corrosion
potential. The net current density is plotted versus V and is
given by the triangles. The experimental data are shown with
circles.
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Table 5-2. Kinetic parameters for the zinc and hydrogen reactions in the
zinc corrosion process in 1 M HCL

Zn Ha
ag 0.050 0.9678
a. 1.950 0.0322
k, 1.596 x 10~® mol/ cm?-s 3.658 x 10~* mol/ cm?~s —atm¥
k. 4.942x 103 cm/ s 1.095x 10™*cm /s

yielding an increasing cathodic zinc current density. Because of the finite

zinc divalent ion concentration, i, 5, _ is finite at low anodic voltages, but is

reduced both by the homogeneous complexation reactions and by increasing
anodic polarization. At large anodic potentials, only the anodic term

contributes significantly to the zinc current density.

For the range of potentials given, the anodic hydrogen term is, for all
practical purposes, negligible. The hydrogen anodic reaction is insignificant
because the corrosion potential lies so far from the hydrogen reversible
potential of -0.2422 V when evaluated at the corrosion conditions and is not
shown in the figure. The calculated net current density will approach the
measured current density far into the cathodic Tafel region, but this is not

shown in the figure.

Disagreement BeLween experimental and calculated net current density
results on the cathodic sweep away from the corrosion potential. This is a
consequence of the large contribution of the zinc cathodic reaction and is
shown to be most significant in the vicinity of the corrosion potential. One
possible factor that causes the calculated net current to deviate from the
experimental curve is the relatively large zinc ion concentration. However,
the most probable source for the lack of vagreement is the experimentally

determined transfer coefficient. The measured anodic transfer coefficient is



119

small, which makes the anodic sweep approximately linear. The predicted
scan in the cathodic direction exhibits a high degree of bowing following
from the extremely large cathodic transfer coefficient that results. Even
though the curves generated by the kinetic—~diffusion model are not in
agreement with the experimental data using the set of kinetic parameters
obtained by program FIT, we will continue the analysis using these
parameters to determine the concentration effects on the kinetic

parameters.

3.2. Concentration Effects on Kinetic Parameters

We would like to justify the assumption that was made in chapter 4
concerning the neglect of concentration variations as a first approximation
for determining the kinetic parameters. The following analysis will
demonétrate the magnitude of the concentration eflect by using the
parameters in tables 5—1 and 5—-2 to calculate the diffusion potential.

The simulated éxperimental polential V*is given by

V=V+Adpm + 8%an + Upc/RR= - (5-51)
The theoretical potential driving force which was used in the Tafel kinetic
expression 4—11 and 5-31 was transformed from the experimentally
measured cell potential V.. simply by subtracting the solution
ohmic—potential drop given by equation 4-2 and 4-3. The last two terms on
the right of equation 5-51, the diffusion and liquid—junction potentials,
respectively, were neglected as a first approximation so thal the kinelic
parameters could be obtained. Now, with the aid of the model accounting for
concentration variations, the diffusion potential given by equation 4—15 can
be calculated using the known surface concentrations. The liquid—junction
potential is given by equation 4—16. The potential ¥V given above may be
evaluated without having to neglect any of the terms and may be compared

to the potential when the diffusion and liquid—junction potentials are not
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considered.

Figure 5-2 is given in order to compare the simulated measured
potentials, ¥V and V,, given by equation 5-51, with and without the
calculated concentration dependent terms, respectively. The (i versus
V' = Veorr) and (i versus V; — V) curves are shown by the same dotted
line, because the diﬂ'érence between these simulated experimental
potentials as shown in this figure is negligible. At current densities of 10 and
30 mA/cm?, the percent difference between the two potential diflerences are
4.29 and 1.27 7, respectively. Therefore, the simulated potential difTference,
V'® V + IR, is simply the sum of the theoretical kinetic driving force V and
the ohmic drop JR;. The solution resistance is shown in the figure. The
eflect of the diffusion and liquid-junction potentials on the overall
polarization curve is so small that the rate constants and transfer
coeflicients would not be significantly different provided the concentration
var.iat.ions had been accounted for. Therefore, since these differences are
within experimental reproducibility, the set of kinetic parameters given in

table 5—2 will be used without further modification.

Also given in figure 5-2 are the experimentally measured data (i versus
Vineas — Voc ). which are represented with triangles and are connected by the
solid line. Because potential differences are being directly compared, it is
necessary to remove the effect of the arbitrary choice of the reference
electrode. The measured open—circuit potential V¥, has been subtracted
from Vg, in order to compare this curve to the simulated measured
potential, ¥V and V,, curves. The théoretical corrosion potential is
subtracted from the latter curves. Again, this is done solely for the purpose
of comparing the measured data with the computer—generated
current—potential curves at a given current density. Finally, good

agreement between the measured and theoretical curves is shown in the
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Tafel regions, but deviations occur near the corrosion potential. We should
like to examine these curves further so a better understanding of what

causes the disagreement may be ascertained.

In order to show a larger variation of the magnitudes of current
densities and potentials, a log—log current—potential plot of the results
shown in ﬁgure 5-2 is given in figure 5—3. The separate contributions to the
simulated experimental potential difference V* are given. The theoretical
potential driving force, V =n,; + Uj, gco. the diffusion potential Adyye, the
liquid—junction potential A%,,, and the ohmic—potential difference A%}, are
included. Only the sum of the surface overpotential and the thermodynamic
potential is shown because each of these will be shown separately in the next

section.

The measured potential differences minus the open—circuit potential,
Vineas — Yoc. are shown for the anodic and cathodic potentiodynamic
polarization sweeps by the symbols o and A, respectively. The kinetic
potential driving force, V¥V — V., for the zinc» and hydrogen reactions
contribute the most to the simulated overall potential difference V" and are
shown by the solid and dotted lines, respectively. The remaining potential

diflerences given by equation 5-51 are less significant.

The ohmic drop is the largest contributor to the difference between the
simulated measured potential ¥ and the theoretical potential driving force
V. Both the primary and uniform current distributions have been
considered, and the electrolyte resistances are given by Rp and Ry.
respectively. At current densities of 40 And 80 mA/cm? the percent
differences between the potentials corrected for ohmic drop V + /Rq = Veorr
and V + IRy = V..., are 0.46 and 0.51 for the primary and uniform resistance,
respectively. Again, these are well within experimental reproducibility.

Because there is no significant diflerence between the ohmic drop calculated
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using a primary or uniform current distribution evaluated at the center of
the disk, the primary resistance will continue to be used, and this justifies

the use of the primary resistance up to this point.

The diffusion potential as shown in figure 5-3 contributes to the total
potential difference in an interesting manner. In the absence of current,
there is a flnile potential difference as a resull of concentration gradients.
At the open-circuit potential, 1,,, is zero, and the diffusion potential is equal
to 3.8 x 103 V. The .diﬂ'usion potential is shown to increase with increasing
current density on the cathodic sweep away from the open—circuit potential.
On the anodic sweep, the diflusion potential decreases with increasing
current until A@dw passes through zero. The diffusion potential continues to
decrease with anodic polarization, which is shown by — %4, increasing. If
all the diffusion coefficients were equal, the diffusion potential would be zero
by electroneutrality. However, the diflusion potential is still small, even
though there is a large difference between the coefficients of zinc and
hydrogen, This is so, because the species’ concentration differences across
the boundary layer are small. Finally, the liquid junction potential as
calculated by the Henderson equation is a constant 2.5 x 1073 V, since the
concentrations in the bulk of the solution and the reference electrode

compartment are assumed not to vary.

Exchange—Current Density

Because modification of the kinetic parameters f§r concentration
eflects is not required, the exchange—current densities of the zinc and
hydrogen reactions may be determined using the kinetic parameters given
in table 5~2. The exchange—current density for the zinc reaction is given by

equation 3-75

Yoz = 2Pk Pk R ognll (5-52)

~written here in terms of the transfer coefficients instead of the symmetry
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factor 8. A surface concentration of 0.0185 M for the zinc divalent ion at the
corrosion | conditions yields an apparent exchange—current density of
3.813x 1072 A/ cm? accounting for complexing. The results for these
parameters at the corrosion conditions are summarized in table 5-3. The
following equation

Jaa’ 2

cZnE‘ J

iOZn = iOZn.n/ [C [ (5_53)

an‘,nf
allows 15 to be estimated for other zinc concentrations provided an exchangé

current is known at a reference concentration, and where a5/ 2 = 0.025.

The exchange—current density for the hydrogen reaction at the
corrosion conditions may be determined by using

ion, = Fkg® k' PRZo €ty o (5~54)

and the experimentally determined kinetic parameters. | An

exchange—current density of 1.415 x 1072 A/cm? results after substituting

0.99 M and 13.54 atm for the surface composition of the hydrogen ions and

molecular hydrogen, respectively. The calculated results for the bydrogen

reaction at the corrosion conditions are summarized in table 5—4.

3.3. Theoretical Polarization Curves of the Corrosion Process

We will continue to use the model as if the parameters did match the
experimental data so that a better understanding of the corrosion process
may be obtained. The logarithm of the zinc and hydrogen current densities

Table 5-3. Calculated zinc reaction parameters using the kinetic
parameters given in table 5-2.

€ znt+ copy = 1:646 X 1079 mol/ cm?

10Zncorr = 3.813 %X 102 A/ cm? Uzns RG corr = —1.073 V
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Table 5—4. Hydrogen reaction parameters as determined using the
experimental kinetic pararneters given in table 5-2.

C s corr = 9-88 X 10™* mol/ cm?3 PEgcorr = 13.54 atm

Lokgcorr = 1.415 X 1073 A/ cm? Uliy RG.corr = —0.2422 V

and the logarithm of the concentrations of the zinc divalent ion, the
hydrogen ion, and the hydrogen partial pressure are plotted in figure 5—~4
versus the electrode potential V relative to a saturated calomel electrode.
The same steady-—state kinetic—diffusion model results were shown in figure
5—1 also in terms of the theoretical potential difference V = ¢, — $p,,. Let

us examine the zinc curves first.

One can see that Vis the sum of the thermodynamic potential Uz, peg
and the surface overpotential 7, z,. The two regions of kinetic and diffusion
control are shown on this plot. The electrode potential given by a solid line
must be driven more positive than the thermodynamic potential shown by
the dotted line in order to force an anodic currenl through the cell. As the
electrode is polarized anodically, the concentration of zinc ions at the disk
surface exponentially increases as the potential increases. Noble of -1.1V,
the corrosion process becomes diffusion limited by the zinc ions. Therefore,
the electrode potential is essentially governed by the Nernst equation 3-18.
The conclusions concerning the two regions of control may be verified
mathematically by using equation 5-41. As the second term in the
denominator becomes much greater than 1, the process becomes diffusion
limited. When the term is less than 1, the kinetics of the reaction are

important.
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The results of the rotating—disk, kinetic—diffusion model for the
hydrogen reaction also are shown in figure 5—4. The electrode potential of
the disk given by a solid line must be driven more negative than the
thermodynamic potential shown by the dotted line in order to force a
calhodic current through the cell. As the electrode is polarized cathodically,
the partial pressure of hydrogen at the disk surface exponentially increases
as the potential becomes more negative. The hydrogen ion concentration at
the surface decreases as polarization in the cathodic direction increases. If
polarized far enough, the H* concentration would go to zero resulting in the

hydrogen reaction limiting current. The equation is

Cos iH
E AP R QL (5-55)
CHt w THp lim
where
D, F
ihpim = = Cyy 5 = ~3.28A/ cm? (5—56)
H-O

The hydrogen ion concentration remains essentially constant over the
polarization range shown. For potentials more positive than -0.15 V, the
corrosion process becomes mass—transfer limited by the amount of
hydrogen reaching the surface by diffusion. Again, as for zinc in the
mass—transfer controlled region, the Nernst equation 3—-25 for the hydrogen

reaction governs the cell potential.

Graphical results of the kinetic—diffusion model have been discussed
separately for the zinc and hydrogen reactions. Each has an eflect on the
overall zinc corrosion process. The intersection of the zinc and hydrogen
current densities yields a corrosion—current density of 3.80 x 1072 A/cm?
and a corresponding corrosion potential of -1.039 V. As was previously
stated, the surface concentrations of the zinc ions, hydrogen ions, and the
partial pressure of hydrogen are at the corrosion conditions 1.85x 107®

mol/cm?, 9.88 x 10~ mol/cm?, and 13.54 atm, respectively.
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4. Discussion of Results

The lack of agreement between the model and the experimental data
near the corrosion potential is due to the large contribution of the cathodic
zinc current density relative to the total zinc current density. This is a
result of the exceptionally large cathodic transfer coefficient that is used in
Lbe model. The unrealistic original experimental data are again the source
of the problem. Even with these problems, the exchange—current densities

and corrosion—current density will be discussed in the following sections.

4.1. Exchange—Current Density

Because of ihe nonuniform primary current distribution for the disk
electrode, Tiedemann, Newman, and Bennion!®] have shown that a correction
might be necessary to obtain the true exchange—current density. From
their figure 1, no correction is necessary for a value of 0.174 for the
dimensionless parameter J introduced in chapter 4. The exchange—current
density therefore remains the same due to the high conductivity and

essentially uniform current density. |

Zinc

Equation 5-52 allows for the zinc exchange—current density to be
estimated for other zinc concentrations provided an exchange current is
known at a reference concentration. Therefore, assuming the surface
concentration of zinc ions to be the same as the bulk concentration in a 0.5
M acidic zinc chloride solution, the exchange current—density is 41.5
mA/cm® accounting for complexing. This result may be compared to that
obtained by Jorné!®”) and Chin!®® for zinc in 0.5 M ZnCl, with pH of 2 and 4.
They determined ip to be 1.36 mA/cm? and 19 mA/cm?®, respectively. Hsie
and Selman!*? report for zinc deposition at low pH that the

exchange—current densities are in the range of 20.6 to 30.8 mA/cm® West(40)
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gives 0.001 mA/cm? as a mean value for the zinc exchange—current density.
Standard{deviations of 10 or 20 percent in exchange—current—density values
are coml;non. indicating that electrode kinetics are, in general, neither

predictable nor reproducible on solid electrodes.l!)

Hydrogen

There is a discrepancy between the value of the hydrogen
exchange—current density reported here and that in the literature.
However, it is difficult to make comparisons because of the wide range of
values reported. The differences are caused in part by the fact that the
hydrogen overpotential measurements on zinc are very sensitive to
impurities in the zinc electrode and in the solution. Fontana and Green!®!
use 10° A/cm? for the hydrogen exchange—current density in an example
problem. Bard!®] gives values for the hydrogen exchange—current density as
10® A/cm? on impure zinc and 107'2 A/cm? on amalgamated zinc in a 0.1 M
zinc chloride solution at a pH of 5. Standard kinetic texts(?} (8] (8} (10) ang
review articles!!!] which give the hydrogen overpotential on metals do not

give values for zinc at all due to these variations.

A low value of the hydrogen exchange current on zinc relative to the
other activé metals in the absence of impurities is a direct consequence of
the weak interaction between zinc and hydrogen. Because of the weak
hydrogen interaction, zinc is essentially free from a chemisorbed layer of
atomic hydrogen, and hydride formation even at high overpotentials should
not occur on zinc. These properties of hydrogen on zinc yield such low
corrosion rates in neutral environments, pure zinc is often used as

protective coatings and in cathodic protection processes.
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4.2. Corrosion—Current Density

Up to this point, we have discussed what affects each of the reactions
that participate in the corrosion process. In chapter 4 the kinetic
parémeters for the zinc and hydrogen reactions were presented and
discussed. In this chapter theoretical polarization curves illustrating the
corrosion process have been given as results of the kinetic—diflusion model,
and in the previous section we discusse.d the relative significance of the zinc
and hydrogen exchange—current densities. Now we would like to discuss
what other factors directly affect the overall corrosion process and more

specifically the corrosion—current density.

The corrosion rate of zinc in aqueous deoxygenated solutions depends
on pH., composition of the solution, flow rate, temperature, surface
roughness, and the metal composition. Figure 5-5 is a qualitative sketch of
the zinc corrosion process illustrating the effects of the first two variables.
Both the zinc and hydrogen current densities are plotted versus the
theoretical potential driving force V on a linear scale for several conditions.
Such a plot is useful for obtaining a general overview of the corrosion
process and useful for determining what are the most important

concentration factors aflfecting the corrosion—-current density.["]

Zinc Jon Concentration

The anodic part of the zinc current-density is independent of the zinc
divalent ion concentration as was shown by the modified Butler—Volmer
equation 5-30. Since the cathodic back reaction is a function of the zinc ion
concentration, the zinc exchange—current density is as well. As the zinc ion
concentration is decreased, then igz, also decreases. However, we expect
only an indirect effect of zinc concentration on the kinetics of the corrosion
process, because as the electrode is polarized anodically the rate of the

reaction essentially becomes independent of concentration.
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Figure 5-5. Qualitative plot of the corrosion of zinc illustrating the effect of

concentration on the zinc dissolution and hydrogen evolution
reactions.
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The concentration of the zinc divalent ion affects the reversible zinc
potential. As the zinc ion concentration goes to zero, the potential
approaches negative infinity. This affects the corrosion process by shifting
the thermodynamic driving force of the zinc reaction relative to hydrogen.
In figure 5-5 as the zinc concentration decreases, the anodic zinc curve 1is
shifted to the left to curve 2 as the thermodynamic potential shifts. The
corrosion—current density (i.r)2 for curve 2 at smaller zinc ion
concentrations is larger than (i.,); using curve 4 for the hydrogen current
density. This eflect is much more significant than that of the decreasing

zinc exchange—current density with a decrease in concentration.

pH

Increasing the hydrogen ion concentration was shown by equation 5-54
to cause an increase in the hydrogen exchange—current density. The same
concentration effect shifts the hydrogen reversible potential in the positive
direction increasing the thermodynamic driving force of the hydrogen
reaction relative to zinc for the overall corrosion process. The
corrosion—current density increases as a result of each of these eflects.
This concentration dependence of the corrosion—current density is shown in
figure 5-5 for the hydrogen reaction by curves 3 and 4 for a pK of 1 and 7,
respectively. When the 1 M zinc chloride curve is used for comparison for
solutions with diflerent pH, corrosion—current density 3 is significantly
larger than 1, because the H* concentration aflects the kinetic and
thermodynamic aspects of the corrosion process in the same way. The
dashed line in the figure represents a hydrogen ion mass—transfer limited
curve. This situation may arise by rotating the electrode at a lower rotation
speed. All of the other curves are for the same rotation s;peed. The
corrosion current is shown to be significantly less for this limiting case than

when there is an excess of hydrogen ions at the surface.
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Other Factors

Other factors aflecting the corrosion rate are rotation speed,
conductivity, size of the disk, and temperature. The velocity of the disk has
no direct eflect on the rate of corrosion of metals, but stirring does have
indirect eflects. The rate of diffusion of the corrosive species to the metal
and the rate of diffusion of the corrosion products away from the metal will
be increased resulting in increased corrosion rates. As the conductivity of
the solution increases, the corrosion rate becomes more uniform on the
surface of the disk. This is expected, because increasing the conductivity
will decrease the ohmic potential, and the potential becomes more uniform.
Consequently, the corrosion rate should be uniform too. The size of the disk
is an important factor in the corrosion rate. Increasing the radius of the
disk has a tendency to increase the nonuniformity of the corrosion rate.
However, for the small disk and high solution conductivity used in this study,
the whole area is in the laminar region, and, consequently, the corrosion
rate is uniform. Surface roughness is another variable that changes the
corrosion rate of the metals. Usually the corrosion rate of a rough surface is
higher than that of a polished one due to the increased surface area.
Temperature is a factor that increases the corrosion rate by promoting the

rate of electrochemical reaciion on the surface of the metal.

Next, a discussion of the merits of the model for determining the
corrosion—current density is pertinent. The corrosion—current density as
determined by the model accounting for complexing is 3.80 x 1072 A/ cm?
using the experimentally determined parameters for the zinc and hydrogen
reactions found in table 5-2. The extrapolation of the experimental Tafel
curves shown in figure 4-5 for the anodic zinc and cathodic hydrogen
reactions back to their intersection gives a corrosion—current density of

1.2 x 1072 A/cm? It should be noted that if the regression fitted parameters
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given in tables E-1 and E-2 are used, then the kinetic=diffusion
corrosion—current density is 1.105 X 1072 A/em? This is only 8.6 % less than
the result of the graphical method. The kinetic FIT parameters given by case
1 yield a corrosion-—cur‘rent density that is 68.5 7% greater than the graphical
icorr- This should be expected since the graphical result is based solely on
the Tafel regions of the curves as are the regression parameters; whereas,
the FIT parameters are slightly modified to match best the experimental
data over the entire polarization range. Because the intersection of the zinc
and hydrogen current densities occurs in the Tafel region of the hydrogen
reaction and near the Tafel region for the zinc reaction, the diflerence
between the Tafel approximation and the full kinetic expression for each
reaction when the regression Tafel parameters are used is hardly significant.
However, for other systems the difference, as will be shown in the next

section, may be much greater.

Copper Dissolution

Because the corrosion kinetics of copper in sulfuric acid is the same as
the two-electron transfer reaction for zinc in hydrochloric acid, the
developed model may be used to predict the corrosion—current density for
the copper system. Smyrl's datal!?l for the dissolution of a copper disk
rotating at 1000 rpm in 0.1 N sulfuric acid have been reduced and
summarized in table 5—5. These parameters are used in the model, and the
results are given in figure 5-6. The intersection of the copper and hydrogen
current densities lies between thé thermodynamic potentials of the two
reactions and in the mass—transfer controlled region of the copper reaction.
The Tafel graphical estimation used to determine the corrosion—current
density resulls in a 787 error. Therefore, the developed model is necessary
for copper dissolution in sulfuric acid if the corrosion current is to be

determined accurately.
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Table 5-5. Kinetic parameters for the copper and hydrogen reactions in the
copper corrosion process in 0.1 N HpSO,.

Cu - H,
ag 1.855 0.5
a, 0.345 . 0.5
k, 2.073 x 10"° mol/ cm?-s 8.40 x 107 mol/ em?-s —atm#*

k. 7.737x 103 cm/s 1.15x 107 cm /s
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Figure 5-8. Results for the copper and hydrogen reactions using the
kinetic—diffusion model for the corrosion of copper in 1 M
hydrochloric acid. The logarithms of the current densities are
plotted versus the potential ¥ shown by a solid line. The
thermodynamic potentials evaluated at the surface
concentrations of the species are shown by heavy dotted lines
and the copper and hydrogen ion concentrations and hydrogen
partial pressure are given by light dashed lines. Both kinetic
and diffusion controlied regimes are shown.
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5. Conclusions and Recommendations

For certain systems a model such as presented in this chapter is
necessary if the corrosion current is to be predicted accurately from
polarization measurements. However, analysis of the zinc data given in
chapter 4 shows that the experimental results are questionable, leading one
to doubt the validity of a calculated corrosion current. If the initial set of
rate constants and transfer coefficients had matched the experimental
polarization curve approximately, then the parameters could of been slightly
modified in an attempt to correct for concentration variations that were
originally neglected. However, because of the differences between the model
results using the given set of parameters and the experimental data, the
small concentration eflects as shown in the previous section will not
significantly modify the parameters. ‘Thus. good data are necessary, nd
matter how sophisticated a developed model is. Nonetheless, if one were to
make modifications, migration and a nonstagnant diffusion layer should be
accounted for in a nonsteady—state model. This might enable better

agreement with the experimental data.

It is instructive to have dimensionless parameters that characterize a
corrosion process in generalized terms. These parameters may be related to
electrode size and rotation speed, solution conductivity, and character'istic
reaction parameters such as the transfer coefficients and rate constants.
The previously given expressions that mathematically describe the process
may yield the desired polarization parameters. With such a set of
dimensionless variables, ma;ny corrosion systems may be more easily and

better understood.

The nonuniform ohmic—potential drop to a disk electrode may result in
errors in the measurement of electrode kinetic para’meters.ml The

correction for the exchange—current density should be expanded to include
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either Tafel or Butler—Volmer kinetics. The kinetic parameters obtained
using a rotating disk and correct.e.d for by this procedure should be
experimentally verified by using a rotating—hemispherical electrode. The
advantage of this geometry is its uniform primary current distribution for
which the measured average current is representative of the total surface.

(19]

Nisancioglu and Newman have given the results theoretically, but

experiments to confirm the theories would be useful.

The work that has been presented is of a fundamental nature. This
study has applicatiohs for understanding corrosion processes in general,
even though only the specific problem of examining the protective nature of
zinc is presented. Such a study, to be complete, should be expanded to
include ac impedance methods. This technique is a useful tool in corrosion
research due to its capability of elucidating electrode kinetics and other
interfacial phehomena in electrochemical systems. Frém a theoretical point
of view, ac models could be developed which have relevance in the
interpretation of time dependent measurements which give mechanistic
information about the processes occurring at the electrode—solution

interface.

For example, an ac model could be extended to incorporate a protective
zinc based porous paint coating over a metal substrate. Knowledge of the
mechanism of corrosion on such a painted metal would provide a good basis
for the development of a rapid test method for anticorrosion paints. Such a
method is urgently needed, as even in this case the conventional field tests
require too long exposure times and the accelerated test methods now being
employed are often far from representative of the exposure in practice. In
fact a quick and reliable method for the evaluation of anticorrosion paints

will be almost essential for rational development work in this field.



Chapter 8. Limitations of Polarization Methods

1. Introduction

Polarization resistance methods have been widely used to measure
corrosion rates electrochemically. The corrosion—curfent density is
determined from the slope of the current—voltage curve in the vicinity of the
corrosion potential, provided Tafel slopes of the anodic metal reaction and
cathodic reactions are known. This technique was first described by Wagner
and Traud,!®] and then simplifying approximations were given by Stern et al.
(6] [14] 1t s necessary to present the generalized formulation, and then show
the simplifications that have been introduced so that the corrosion current
may be obtained by the Stern—Geary polarization method. First, however, a
discussion concerning the use of the exchange—current density is necessary

since previous work uses this notation.

2. Kinetic Equations in Terms of the Exchange—Current Density

Numerous publications previously reported have elucidated electrode
kinetics in terms of exchange—current densities. The exchange—current
density for the one-—step, zinc reaction was derived in chapter 3 from a
kinetic expression similar to that given by equation 5-31. At equilibrium,
the net—current density is zero, and the forward and back rate terms of the
modified Butler—Volmer equation are equal. The equilibrium potential for

the zinc reaction Vg = (%, — QRc.o)aqusl may be written as

_RTl Kk
Vo— ?F— In I:+ln Czng¢‘o , (6_1)
and is used to obtain the exchange—current density
1= 2Rk Pkl P eyt (6-2)

A problem may result, however, if the experimental kinetic data are reported

140
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in terms of the exchange~current density. A different expression for the
exchange—current density is obtained provided a different mechanism is
assumed. A given expression for ip does not necessarily have a unique

mechanism attributed to it.

For example, let us assume that a two step zinc reaction mechanism

occurs as follows:

(1) Zn=ZIn*+e , . (6-3)
(8) Zn*=Zn% +e- . (6-4)
Modified Butler—Volmer equations are used to describe each reaction and are
given as
1- [ B,F
i, = Fk,, exp[ K ﬂl VJ Frcycyng expl BiF VJ (6-5)
and
. [ (1-8)F ‘ﬁz) [ BF
12 = Fka2Cy 0y exPl J Flez €404 exp[ VJ (6-6)

The net current density for the zinc reaction is the sum of the two equations

iy, =i, +ip . (6-7)

At equilibrium iz, = 0, and the exchange—current density is given by

=1, = -1, . (6-8)
A formality problem results here, because the exchange-~current density
cannot be solved analytically in terms of the kinetic parameiers and surface
concentrations. Various approximations may be used to obtain the
exchange—current density. Often an exchange—current density similar to
equation 5-52 is given for each reaction step in the mechanism. This has
the problem of not being able to measure each separately. What is measured
is an overallv exchange—current density for the combined individual
reactions.

If one step is relatively fast compared to the other, then making the

quasi-equilibrium assumption is possible for the fast reaction. Newman!!)
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gives the results of this procedure for a copper reaction assuming that the
first step of a two-step mechanism is in equilibrium. In terms of the
notation used here for the zinc reaction, the overall kinetic expression
obtained by combining equations 6~5 and 8-56 is of the same form as the
Butler—Volmer equation 3-73 with a, =2 -8, and a, = f,. The surface
overpotential for the overall two—stép reaction is given by n, = V = V,, where

the equilibrium potential is

- RT czkcl ]
Vo= 2F 10 | Bzke, S2t] (6-9)
The exchange—current density is
[kqokq, P2
ig = 2Pk, [k:’c:J clperz (6-10)
4 c

In most cases where multiple step mechanisms are required, a
rigorously correct form of the exchange—current density is not used. When
the equilibrium assumption is not made for the two—step mechanism given
above, the following equation for the current density of the overall zinc

reaction is obtained

[(2-g)F 1 BF

iolexp [T T J exp l T n.J
. _ 6—11
1= [ [+ 8 572 ( )

+ koz kczkcl c ex if;
k“ kozknl Znft.0 P RT b J
The surface overpotential 7, for the zinc reaction is given by

MW=V-V . (6-12)

and ig is defined in equation 6—10, but no physical significance should be
placed on this set of parameters. Ratios of the anodic and cathodic rate
constants for each reaction may be determined from thermodynamics as
was done in chapter 4. Hence, it is necessary to measure the slopes and

intercepts of the two Tafel regions of a potentiodynamic anodic polarization
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sweep, so that all of the kinetic parameters may be determined. This
approach is a fruitful alternative to using exchange—current densities. The
kinetics of the overall reaction are best characterized in terms of the rate
constants and transfer coefficients without the confusing introduction of a

not—so—well—-defined i,.

Nevertheless, a kinetic equation used often in the literature to
characterize the corrosion behavior of the disk is a Butler-Volmer

relationship. The rate equation for the zinc reaction is

o F .
i =i, exp -};_T (% = ®rco = Ui/ reo )J
(6-13)
a. F . ]
- expl - T (¢m —®rco— Uisreo )J .

where 1ip is the exchange—current density evaluated at the zinc species
surface concentration, and a; and a, are overall anodic and cathodic
transfer coeflicients, respectively. The electric driving force in equation
6-13 is the local surface overpotential which is given for reaction j by the
general expression

M =V = Uj,pco = %~ %rco— Uisroo (6-14)
where ¢ is the potential of the zinc rotating disk, and $z; ¢ is an ideal
reference electrode of a given kind placed just outside the diffuse—double
layer. For this work, a saturated calomel electrode is used. U,“/Rc,o is the
theoretical thermodynamic potential .given by equation B-11 between
reaction j and the mercury—mercurous chloride reaction. It is assumed
that no liquid junction exists in this bighly idealized cell. The kinetics of the
molecular hydrogen reaction also are presumed to follow that of equation
6-13, where the hydrogen exchange—current density is evaluated at the

surface concentrations of hydrogen and hydrogen ions.
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3. Mathematical Description of the Corrosion Process

The Butler—Volmer equation written for the zinc and hydrogen current
densities may be substituted into equation 5-8 to give an expression for the
local current density on the disk. At open circuit or zero net current,
equation 5—7 for the corrosion current may be rewritten using equation

6—13 yielding

[ fo § Z F ]
teorr = ToZn.corr ex—Pl _;?';T—( Ucorr = Uzrs RG corr )J

. QeznF | .
= ¥0Zn.corr exp[ - ;?;- ( Ucorr - UZn/ RG .corr )j

. . [ aap,F . ,
Teorr = ~ LoHp.corr expl RT ( Ucorr = Uh'g./ RC .corr )J

(6—-15)
. [ Qch,F . :

+ 10Hp.corr exPl - "‘ﬁ?—'( Ucorr = UHe/ RG .corr )J

This set of equations cannot be solved analytically for the theoretical

corrosion potential, Ucory = (¥4 — $re)corr- Instead, a numerical procedure

must be used to obtain the corrosion potential and current density.

3.1. Tafel Approximation

Many times one makes the Stern—Geary approximation that the zinc
and hydrogen reaclions are governed by Tafel kinetic equations. Assume
that the zinc current density may be expressed by the Tafel kinetic eqﬁation
given by the first term on the right of equation 6—-13. The Tafel equation for
the hydrogen current density is given by the second term on the right of the

same equation. The net current density is then given by

. . [ RaznF ] . [ a‘HzF !
thet = lozn €XP| —Hm Mazn ] = ok, exp[ — R Tk | - (6—16)

At zero current, an analytic expression for the corrosion potential may be

obtained from
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. . [ acZnF . ,
lecorr = 10Zn.corr expl RT (Ucorr - UZn./ RG,corr) J

[ aF (6-17)

= iOHz.corr exPl - TRT (Ucorr — Ul:{g/RC.corr) ]
The corrosion potential is identified as

, ) RT ion.COTT
0g7nUzns RC.corr + QcHp UHE/RG-“" + F In 102r.corr (6-18)

U

corr (2azn + acy,)
which corrects the sign of the first term on the right side of the equation
that Smyrl et al. (67] report. The corrosion potential may be eliminated from

equation 6—17 by substituting equation 8—-18 into it. The following expression

for the corrosion—current density results

Oc Hy 23.2n
. — +%2Zn*CcH, .%ntacy,
teorr = 10Zn.corr 10Hp.corr

a ] (6-19)
QgZn
X exp —r P (U]"ie/m corr = Uzn/ RG corr )|

(aqzn + aCHe) KT ' '

It is in terms of kinetic parameters which are functions of the species
concentrations at the corrosion conditions. The equation for the net current
density in terms of the corrosion—current density and corrosion potential

may now be written

[ Xg?2 F ]

Tpet = leorr expl -GR%' ( ém - Q1?0.0 - Uéorr )j
6-20

) . [ acHgF , ( “ )

= leorr expl - RT ( ¢m - ¢}?G,O - Ucorr )j

3.2. Linear Polarization Method

The expansion of equation 6-20 into a series which is then truﬁcated
after the linear term has been used previously in the literature even though
there is no theoretical reason for polarization curves to be linear over the
range of potentials. Equation 6—17 which is valid at the corrosion potential

then is rewritten as
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. - . F : .
teorr = XgZnloZn.corr RT Ucorr = Uzny RG corr
R (6-21)
= QcH, iOHz.cdrr RT [Ucorr - UHE/ RC.corr] ,
for the linear assumption. The corrosion potential is given as
. aaZniOZn.corr Uzns RC.corr aCHz.COfI""’OHz.COT’r UHE/ RG corr
Ucorr = . (6—22)

@gzrlozn.corr — RcHplokp.corr

and is used to determine the corrosion—current density yielding

Qgznt 0Zn.corr&c Hzi OHp.corr F

teorr T

. - == | Uz - Uy ] 6—23
&oznloZn.corr ~ XcHytOH, corr RT[ Zrs RG corr R/ RG.corr ( )
Oldham and Mansfeld[’ﬂrshow that the polarization curve is not linear and
must display curvature in the vicinity of the corrosion potential. They point
out that the misconception of the inappropriately named Stern-Geary linear

polarization method probably arose as a result of the linearization

approximation similar to equation 6-23 which is customarily used.

3.3. Stern—Geary Polarization Resistance Method

The form of the equation for the corrosion—current density given by
equation 8-19 is somewhat different from that of the Stern—Geary equation.
Differentiation of equation 6-20 with respect to the electrode potential V

relative to an ideal saturated reference electrode placed just outside the

double layer yields ’
[aab.F GCHZFI .

o + i
oV RT * TRT ‘e

when evaluated at the corrosion potential Ugor. The slope of the theoretical

(6—24)

Yearr

polarization curve at zero current given by equation 6-24 is equal to
1/ m&’.}?“. where K, is the theoretical charge~transfer resistance. The
usual, but seldom valid, assumption for the Stern—Geary analysis is that the
ohmic drop and concentration variations are neglected. This implies that

the slope 1/}\?,,=(6‘L/8V‘)ywrr of the experimental current—potential

polarization curve at the corrosion potential must equal 1/ R;. Hence,
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equation 6—-24 is commonly rewritten for the corrosion—current density as
i = K (6~25)
corr mg% ’
where K is given by

baancHg
K=
2.:303[ bazn + b,Hz]

(6-286)

The Tafel slopes bgz, and b.y, are defined by equations 4~18 and 4-20. This

equation is valid only when the corrosion potential is remote from the
reversible  potentials  Uzy pocorr @nd Uk procorr Of the  two
oxidation—reduction processes which are responsible for the corrosion. The
number of assumptions that are required for the Stern—Geary treatment

should make its use quite limited, even though that is not the case.

3.4. Modification of the Stern—Geary Polarization Resistance Method

Mansfeld and Oldham!®! show how the Stern—Geary equation has to be
modiﬁeci for cases where the corrosion potential lies close to either of the
reversible potentials Uz, gc or Ul:{,/RG- They begin their analysis with the
more general equation for the net current density obtzined by summing
equation 6—13 for the zinc and hydrogen reaction instead of using equation
8-—16. Their result for the corrosion—current density in terms of the
measured slope of the experimental polarization curve 1/ R,, consists of a
more generalized form of equation 6—26 which is a function of the difference
between the corrosion potential and the reversible potentials AUj.
Mansfeld's equation 18 for the corrosion—current density rewritten in the

notation of this text is given by

leorr = (7"'3}?;)—] X

[ . - [ oy
2.303 ‘ 2.303 . 2F . 2FA Uy, _ e Flogs| - FAUy, _ 6—-27)
bazn | by, = RT|CP|T RT RT|*P RT J '
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where

AU'Zr. = Uéorr - U'Zn/RG,corr i ,(6—28)

and
AUI.'{B = Ueorr — Ul"lg/RG.corr . (6—29)
Finally, Mansfeld(!€] proposes a method of determining the polarization

resistance R, the Tafel slopes (bgzn and bcgz). and the corrosion—current

density from polarization curves in the non-—Tafel region in the vicinity of
the corrosion potential. The starting point .for this analysis is the
Stern—Geary equation 6-25 and 8-20. Sophisticated computer programs,
CORFIT!'] and POLCURR,!!®] developed for the analysis of polarization data

are introduced.
4. Results and Discussion

The corrosion—current density may be estimated many diflerent ways
as was pointed out in the previous section. Results of each of the different
methods will be compared to the corrosion—current density,
3.80 x 1072 A/ cm?, obtained by the kinetic—diffusion model using the kinetic
parameters that best match the overall experimental curves. The FIT
parameters are given in tables 4-2 and 4—3 which are based on an anodic
transfer coefficient of 0.05. Equation 6—19, which wuses the Tafel
approximation, gives 3.93 x 1072 A/ cm? for i, Which is 3.32 % higher than
the 1., as determined by the kinetic—diflusion model. The Tafel graphical
method was discussed in chapter 5. Equation 8-23 uses the linear
approximation, and i, is given as 1.937 x 1072 A/ cm?, which is 151 % lower

than the actual 1.,,,. These results are summarized in table 6—1.

Polarization resistance measurements probably are the most widely
used electrochemical method for determining the corrosion—current
density. The corrosion—current density may be determined using the slopes

of the current—potential curve at the corrosion potential as given by the
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Table: 6—1. Estimation and comparison of the various methods for the
determination of the corrosion—current densxty using the
experimentally determined kinetic data. ;

i - _
Method ico" AZ corr' ( corr)!( D
("'corr)X-D
A/cm?

Kinetic—Diffusion Model 3.80 x 1072 0.0

Tafel Approximation 3.93 x 1072 3.32
equation 6-19

Linear Approximation 1.94 x 1072 -150.9

equation 6—23

Stern—Geary polarization resistance equation 6—25. The experimental data
for the zinc and hydrogen curves given in figure 4—6 indicate an average
slope of 47.5 (1 at the corrosion potential. This value for the polarization
resistance yields a value of 3.35 x 1072 A/cm?, which is 11.9 % lower than the
actual corrosion—current density. The corrosion—current density as
calculated by Mansfeld's correction to the Stern—Geary equation is 68.0 %
less than the Stern—Geary equation when a polarization resistance & of 47.5
) is used. The results given here based on the polarization resistance /&, are
not very good estimations for the corrosion—current density. For this case,
Mansfeld's modification is unexpectantly worse than the Stern—Geary

equation.

The experimental dc work was confirmed by independent ac—-impedance
.measurements. The impedance datal’® for the corrosion of zinc in 1 M
hydrochloric acid gave 18 () for the polarization resistance. This value used
in equations 6-25 and 8--27 gives 132 and -15 % error for the Stern—Geary
method and Mansfeld's modification, respectively. Again, the polarization

resistance does not lend itself to useful results. It should be pointed out
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bowever, that for the set of ac data, the modified Stern—Geary equation
yields a better estimation for the corrosion—current density than the
Stern—Geary equation. This is expected because the Stern—Geary equation
was shown by Mansfeld to give up to 30 % error for other corrosion systems
at such conditions. This is due to the thermodynamic potential of the zinc
reaction lying so close to the corrosion potential for which conditions the
Stern—Geary equation is not valid. Because the modified equation is of a
more general nature, confidence should be placed in the ac data more so
than using the slope of the polarization curve. The estimations for the

corrosion—current density based on R, are summarized in table 6-2.

From the same impedance data, a charge—transfer resistance of 16 {1 is
obtained using a simple Randles®®] circuit.t If this value for K., is used in
equations 6—25 and 6—27 in the place of A, the corrosion—current density is
determined to be 9.95 x 1072 and 3.62 x 1072 A/ cm? with an error of 161 and
-5 7%, respectively. Again, the . modified equation is better. The
Table 6—2. Estimation of the corrosion—current density and comparison with

the actual i,y = 3.80 x 1072 A/cm? based on the experimental

data using the Stern—Geary equation 6-25 and its modification
given by equation 6-27. The polarization resistance R, is used.

Stern—Geary Modification
Determination of /g, Teorr % Diflerence Teorr % Difference
A/cm? A/cm?
Slope of figure 4-4 3.35x 1072 ~-11.97 1.38 x 1072 -58.3%
at Veorr, Ry =47.5100
AC Impedance, 8.85 x 1072 132% 3.22 x 10 -15%

R, =180

C connected in parallel, with the ohmic resistance attached to this in sertes. On a compiex
plane plot of the imaginary and rea! components of the electrochemical impedance, the inter-
cept of the semicircle with the abacissa at the high—frequency end defines R, while that of the
low—{frequency end is determined by the sum of R, and R,,.

TThus equivalent circuit is composed of the chur%c—u'ans!er resistance K, and capacitance
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charge—transfer resistance also gives better results than R;.

Next, nroR,; may be approximated graphically from dc data by taking
the slope of the i-V polarization curve at the corrosion potential. The
potential ¥ is the measured potential corrected for the ohmic drop assuming
the Qdiffusion potential and ligquid—junction potential are negligible. The
I,Vgeas — IRq curve in figure 4—6 is used to obtain a R of 45.15 (). The results
of using this R, in equations 6-25 and 8—27 give an i, of 3.53 x 102 and
1.28 x "2 A/cm?® and a corresponding -7 and -86 % difference from the actual
i.orr- These results are not as good as when K, from the ac data is used. but
both are better than using the polarization resistance.

Finally, the charge—transfer resistance is given by["“]

_ __RT
Ret = nfignré

R, is 1.72 ? using the exchange—current given by equation 5~56 and the

(6-30)

Table 6-3. Estimation of the corrosion—current densxt) and comparison with
the actual .4y =3.80x 1072 A/crn using the Stern—Geary
equation 6-25 and its modification given by equation 6-27. The
charge transfer resistance K, is used instead of the polarlzatlon
resistance /.

Stern—Geary Modification
Determination of R teorr % Diflerence teorr % Diflerence
A/cm? A/em?
Slope of figure 4—4 3.53 x 1072 1% 1.28 x 1072 -66 %
at Veorr. Ky = 45.1510)
AC Impedance, 9.95 x 1072 161 % 3.62 x 1072 5%
R, =160
R, (ig2,) = 1.720 9.28 x 107! 2338 % 3.37 x 107! 786 %

R (ion,) =9.250 1.72 x 107} 352 % 8.26 x 107! 84 %




152

results of the model for the two—electron transfer zinc reaction. This value
of R, gives corrosion—current densities of 8.3 x 10~! and 3.4 x 10! A/cm?.
using equations 6-25 and 6-27, respectively. The difference between these
icorr 8nd the actual are 2338 and 786 7, respectively. The results of using the

charge—transfer resistance are summarized in table 6-3.

5. Conclusions

It is difficult to draw conclusions concerning the validity of the
numerous methods for determining the corrosion—current density when the
experimental data are questionable. However, it is possible to discuss
qualitatively advantages and disadvantages of the various methods based on
the present work. First, the resistance polarization method should be used
on a very limited basis. A number of restrictions must be applied in order
for the method to be valid. Neglect of solution ohmic drop, neglect of
concentration variations, and the use of Tafel kinetics in the place of a
Butler—Volmer expression are necessary assumptions. Such restrictions are
unrealistic. For example, it is true that in the vicinity near Ug,, in a well
supported electrolyte, the ohmic potential drop is small; however, as a result
of the diffusion potential's finite value at zero net current, the diffusion
potential becomes more significant and should not be neglected. Even if
these small corrections are not made, the major difficulty with the
Stern—Geary equation is that in the vicinity of the corrosion potential the
back term or cathodic Tafel expression of the metal dissolution and the
anodic Tafel term of the hydrogen evolution reaction are not always
negligible. It is quite possible to neglect them at potentials far from the
corrosion potential, but the back terms of the zinc and hydrogen reactions

must be maintained in the region near Ug,,, in order to be accurate.

Mansfeld in his earlier paperm stated that the Stern-Geary method may

lead to erroneous conclusions and proposed a modified equation. The
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modification was based on a more general equation for the net current
density that has been in the literature for over forty years. The authors
suggest the reason that the equation had not been accepted generally is that
it is too complex. They then proceed to give sirnplifications of their
modification equation 6-28 in an attempt to maintain simplicity with
“sufficient accuracy.” The major difficulty with Mansfeld's modification to the
Stern—Geary equation is not that it is too complex, but that the sometimes
very significant ohmic and concentration variations effects are not
considered. As has been seen, these must be taken into account before the

corrosion—current density may be determined accurately.

Mansfeld then, failing to use the more general current—density
equation, based sophisticated computer programs ironically on the
simplified Stern—Geary equation. The FIT routine which has been presented
here is similar to these programs since each is based on Tafel equations for
the metal dissolution and hydrogen evolution reactions. These routines
should be expected to be of limited value since extremely simplified
equations are chosen as the starting point. Another generalized
curve-fitting program similar to POLCURR should be written based on a
Butler—Volmer kinetic equation for each reaction instead of equation 6-18.
Such a method should prove to be useful when applied to polarization data
utilizing the computer to aid in the analysis of corrosion processes. Until
this is done, it is recommended that Tafel slopes and rate constants be
obtained from Tafel polarization curves. The kinetic parameters may then
be used in the modified Butler—=Volmer kinetic—diffusion model to determine

the corrosion-current density.
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List of Symbols

mean diameter of ions, cm
relative activity of species i, mol/kg

property expressing secondary reference state of
species i, 1/mol

property expressing secondary reference state
relative to species n, 1/mol

parameter used in the Henderson equation 3-41

variable used in the kinetic~—diffusion equation 5-47
for the hydrogen reaction and given by equation 5—48

anodic and cathodic Tafel slopes, V!
parameter used in the Henderson equation 3—-41

variable used in the kinetic—diflusion equation 5-47
for the hydrogen reaction and given by equation 5—49

Debye—Huckel parameter, (1/ mol )%/ A
concentration of species ¢, mol/ cm?3

concentration of species 1, mol/l

variable given by equation 5-50 wused in the
kinetic—diflusion equation 5—47 for the hydrogen
reaction

diffusion coeflicient of species p. cm?/ s

symbol for the electron

molar activity coefficient of species i

molar activity coefficient relative to species n
maximum frequency characteristic of scan rate, Kz
Faraday's constant, 96,487 C/equiv

Gibbs energy of formation for species 1, J/mol

Gibbs energy for reaction m, J/mol
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standard Gibbs energy for reaction m, J/mol
current density, A/ cm?

Faradaic current density of reaction !, A/ cm?

normal current density at electrode surface used in
equation 3—-48, A/ cm?

current density in the y direction, A/ cm?
exchange current density, A/ cm?

corrosion current density, A/ cm?

average current density, A/ cm?

net current, A

molar ionic strength, mol/l

dimensionless linear polarization parameter

anodic and cathodic rate constant for charge
transfer reaction,

forward and back kinetic rate constant for zinc
complexing chemical reaction, ecm®/mol-s, s’}

forward and back kinetic rate constant for zinc
complexing chemical reaction, 1/mol-s, s}

thermodynamic equilibrium constant for an
electrochemical reaction

thermodynamic equilibrium constant for zinc
complexing chemical reaction, cm3/mol

thermodynamic equilibrium constant for zinc
complexing chemical reaction, kg/mol

molality of species i, mol/kg

symbol for the chemical formula of species i
number of electrons involved in electrode reaction j
number of moles of species 1, mol

number of moles of the solvent, mol



L)

[Ve]

S{rG

7]

9w v

156

flux of species i, mol/ cm?-s

dimensionless rotation speed

partial pressure of species !, atm

pressure, atm

Péclet number, Pe = vr/ D,

charge at électrode. C

zinc complexing parameter givgn by equation 5-~39
rate of an electrochemical reaction, mol/cm?2-s
radial direction of disk

radius of disk, cm

universal gas constant, 8.3143 J/mol-K

homogeneous chemical reaction production term,
mol/cm3-s

primary solution resistance, ohrn
uniform solution resistance, ohm
polarization resistance, ohm
charge—transfer resistance, ohm
Reynolds number, r§(}/ v

stoichiometric coefficient of species i1 in electrode
reaction j

stoichiometric coefficient of species 1 in reference
electrode reaction RG

mol/ cm3

solubility of a gas in a liquid, atm

polarization scan rate, mV/s
surface site for adsorption

Schmidt number, S¢ = v/ D

time, s
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Us
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transference number of species p with respect to the
velocity of species 0

absolute temperature, K

2—mol/J-s

mobility of species i, cm
theoretical thermodynamic potential difference
between reaction j and the reference electrode
reaction RG, V

thermodynamic potential difference between
reaction j and the reference electrode reaction RG
corrected for any liquid junctions, V

potential difference across a junction region, V

standard thermodynamic potential difference
between reaction j and the reference electrode
reaction RG,V

standard thermodynamic electrode potential of
reaction j in water relative to the hydrogen
electrode, V ,

theoretical corrosion potential relative to a given
reference electrode, V

fluid velocity, cm/s

theoretical electrode potential relative to given
reference electrode placed just outside the diffuse
double layer, V

theoretical equilibrium potential relative to given
reference electrode placed just outside the diffuse
double layer, V

potential of a moveable reference electrode relative
to a fixed reference electrode, V

a not so well—defined potential driving force
simulated experimental electrode potential relative
to given reference electrode placed in the bulk
solution, V

simulated experimental open-circuit cell potential
relative to given reference electrode placed in the
bulk solution, V

actual experimentally measured cell potential, V

peak—to—peak amplitude of voltage perturbation, V
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normal direction from electrode, cm

charge number of species i

transfer coeflicients

Debye-Hickel constant, {1/ mol)#

symmetry factor

coefficient for ion-ion specific interactions, 1/mol
molal activity coefficient of species i

molal activity coefficient of species 1 relative to
species n

molal activity coefficient of species 1 which is
independent of the electrical state of the phase

thickness of stagnant diffusion layer for species i, cm
homogeneous reaction penetration depth, em
dimensionless averaged current

current distribution parameter, equation 4-5

surface overpotential for reaction 5, V

concentration overpotential, V

surface coverage of adsorbed hydrogen atoms
conductivity, mho/cm

bulk solution conductivity, mho/cm

absolute activity of species i

property expressing secondary reference state,

kg/mol

property expressing secondary reference state
relative to species n, kg/mol

ionic equivalent conductances,mho-cm?2/ equiv

equivalent  conductance of a single salt,
mho~cm&/ equiv
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see equation B-11

chemical or electrochemical potential of species 1,
J/mol

number of ions into which a molecule of electrolyte
dissociates

number of cations or anions into which a molecule of
electrolyte dissociates '

stoichiometric coefficient of species © in chemical
reaction m

kinematic viécosity, cm?/s

density of pure solvent, g/cm®

density of pure solvent, kg/cm?

see equation D-30

fugacity coefficient of gaseous species {
potential, V

potential of metal disk electrode, V

potential of an imaginary reference electrode of the
same type as the reaction of interest

potential of an imaginary reference electrode of a
given kind

potential of an actual reference electrode of a real
kind placed in the bulk solution

a not so well-defined potential of the solution just
outside the diffuse double layer, V

potential difference across the 4diffusion layer and
bulk solution as measured by reference electrodes of
the same type as the reaction of interest occurring
at the electrode, V

potential difference across the difflusion layer and
bulk solution as measured by reference electrodes of
a given kind, V

ohmic potential drop across the diffusion layer and
bulk solution, V
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subscripts:

o

RG
RS

superscripts:
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ohmic potential drop across the difflusion layer and
bulk solution as if there are no concentration
gradients, V

perturbation parameter

rotation speed of disk electrode, rad/s

at the metal electrode surface
solvent
reference electrode of a given kind

reference electrode of the same tpye as the reaction of
interest occurring at the electrode

at the electrode surface just outside of the double layer
in the bulk solution
saturated conditions

equilibrium conditions

pure state
secondary reference state at infinite dilution

ideal-gas secondary reference state
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Appendix A. Chemical and Electrochemical Potentials

The absolute activity A; of an ionic or neutral species :is defined by!1}i8€]

K = RTIn XN . (A-1)

For a solute species in a solution of a given solvent at a given temperature
and pressure, the chemical potential is given by

W =ul + RTInmyy;, . . - (A-2)

The electrochemical potential of an ionic species is given by the same

equation. For aqueous solutions, the molality m; is the number of moles of

solute per kilogram of solvent and 7; is the dimensionless activity coefficient

of component i. The principal composition dependence of the chemical

potential is given by the molality m; in equation A-2, and the activity

coefficient 9; is required to describe any departures from this simple

composition dependence. The standard state chemical potential is given by

u? = RT In AP, where A? is a property expressing the secondary reference

state given in kg/mol. Each is independent of composition and electrical

state, but characteristic of the solute species and the solvent and dependent

on temperature and pressure.

The value of the chemical or electrochemical potential yu; is set by the
primary reference state for component i. The tables!'®) of the National
‘Bureau of Standards are based on zero values for the elements in their
stable forms at 25°C and one atmosphere (or on the ideal gas state if the
element is a gas under these conditions). A secondary reference state, also
known as a standard state, is defined in terms of an extrapolation of actual
data to infinite dilution. Therefore, A? and u? are values related to this
secondary reference state. For a solute in aqueous solution, the standard

state is taken as the hypothetical ideal solution of unit molality.

169



170

Many electrochemical engineering applications of thermodynamics use
molar concentrations of expressing the composition. The chemical potential
of a solute in terms of the molar concentration c; is written

#; = RT In (a%cif) (A-3)
where f; is a dimensionless activity coefficient and a? characterizes the
secondary reference state expressed in 1/mol, again taken to be infinite
dilution. Equating the two expressions for the chemical potential yields

ANmyy = afcifs (A-4)

Since A; depends on electrical state for an ionic species, the activity
coefficients 9; and f; must also depend on this_state because m;, A? and c;,
a? are taken to be independent of electrical state. The following definition of
the secondary reference states for ionic species specifies that certain
combinations of activity coefficients approach unity in infinitely dilute

solutions; namely,

[TGu"=+1 as Ym0 (A-5)
{ i{»0
[T +1 es ‘g ¢+ 0 (A-6)

where v; is the number of ions into which a molecule of electrolyte

dissociates and for a neutral species, 2 v;2; = 0. From these definitions, A?
<

and a? are related by A? = pga;?, where pg is the density of the pure solvent

with units of g/cm? if A2 is in kg/mol and o is in 1/mol.

The chemical potential of a real gas in a multicomponent system is
given by

ki =1 (T) + RTIn (pigs) (A-7)

where p; = y;p is the partial pressure of species i. The secondary reference

state quantity u’(7) is the temperature dependent part of the chemical

potential of pure component 1 in the ideal—gas state. It is an integral of the

ideal—gas limit of the heat capacity of 1, and its numerical value depends on
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the primary reference states chosen for both the enthalpy and the entropy
of the pure component 1.198] The fugacity coefficient ¢; describes departures

from the ideal state and approaches one in low—pressure mixtures.

The chemical potential of an alloy, amalgam, or solvent is given by
W =u+RTIna; , (A-8)
where the activity a; describes departures from the standard state of
species 1. For a pure phase, the activity is one, and the chemical potential

becomes

M= pd (A-9)
Table A~1 summarizes the results in this appendix giving an expression

for up for species p as a pure phase, as an alloy, amalgam, or solvent, as a

gas, and as a solute species in solution.

Table A—1. Thermodynamic definitions of absolute activities and
electrochemical potentials.

species p Ap Hp = RT In A,
pure phase k AL uf
amalgam, alloy, solvent k a, Af U+ RT ina,
ges ! PoN u'+ RT Inpg,
solute i my AP u? + RT In my,

solute 1 e, fia? wuP+RTIncfi/po




Appendix B. General Expression for the Thermodynamic Cell
Potential without a Liquid Junction

An expression may be derived for the finite thermodynamic potential
difference between the electrode undergoing reaction j and an ideal
reference electrode of a given kind (saturated calomel electrode)

Ui/ re = $rs—%rc (B-1)
by mentally constructing an electrochemical cell. A schematic

representation of this hypothetical cell is as follows:

a ] £ A 6 <] a’
Pt | Hg(s) { HgaCla(s) | 4.1 MKCl —=~ solution | electrode | Pt
saturated
in Hgo

The cell consists of two imaginary reference electrodés so that the dashed
line does not denote a junction region. It must be assumed that the
electrical states o; phases A and § are equal if a thermodynamic treatment
of the cell is going to be applied. The two reference electrodes are also
assumed to be placed adjacent to each other at a given position in the
solution being measured so that there is no ohmic drop between the two.
Defining the imaginary reference electrodes in this way implies that there

are no junction' regions in this fictitious cell.

If true chemical equilibrium were to exist in the cell, then the cell
potential would be zero. However, this is not the case for the cell potential
Uj, re, because of the potential difference of electrons in the two different
reactions. In order to calculate finite cell potentials, thermodynamic

arguments may be used for the chemical nonequilibrium situations by
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applying the concept of local equilibrium. An expression for the cell
potential may be derived if the following assumptions are madel!7l:

(1) Equilibrium exists between the reacting species and the metal.

(2) 'I'ﬁe molecular and ionic forms of the reacting species are known.
Thus, the first step in making a calculation of the cell potential is to
establish a unique, well-defined reaction for each electrode. They are in

generalized form as follows:

g SVM:‘ = n, e” (B-Z)

for the working electrode reaction at the right and

Y swo Mt = npge” (B-3)

for the reference electrode reaction at the left. The electrochemical

potentials of reactants and products at the right and left electrodes are

related by
Z‘} Syki = MyHg- (B-4)
and
2 SwrcHi = NRCH - g (B-5)
1
respectively.

The cell potential is the difference in potential of electrons between the
a’ and a phases. The cell potential U in this work will denote the potential of

the right electrode relative to the left electrode given by

U= - | : (B-86)

Substitution of the electrochemical potential of the electrons,

M=z, F (B-7)

for the electrical potential of electrons in equation B-6 results in

FU=p2 —po . (B-8)



174

The cell potential can be rewritten using the local equilibrium conditions

expressed by equations B-4 and B-5 as

FUj,pc = ;'-1;0__21: Sirchy — ;ll,-E‘: Siiki - (B-9)

This bypothetical cell with no junction region can be treated by
thermodynamics alone. To express the electrochemical potential in terms of
concentrations, it is necessary to use the definitions given in table 1 in
appendix A for the chemical and electrochernical potential of species p.

Equation B-9 for the cell potential becomes

) 1
FUj g = Z‘, SpRHP = 7- L Shiks
P
- [ c:f. ]
* m Z Sppc lna, + 2 Sirc InPros + 2 Swrg In [ ;0‘“ (B-10)
|
RT

cifs 1
Ysylna, +) s Inpe “'Zst’j In ]
- : T Pc

This expression can be rewritten

. _RT
L”'/RC U/RG"' IZSPRC 1n ] th ;SPJ' In AP} . (B-ll)
where
U pe = - Uk

—

o | Tt + Bonl 1 FT Tom |
+ -;;—Figs,jy3+z‘:s‘jp,’+ }?T;s‘,~ In )\‘”}

A, is used simply as an abbreviation for writing a,, p;¥;. or c;f:/ pc

depending on whether species p is an alloy, gas, or solute. A, should not be

thought of as the activity for a solute since the individual activity

coeflicients of each solute would have ambiguous meaning. A more general

expression with well-defined activity coefficients is derived in appendix C
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where a reference species must be chosen. Nevertheless, equation B~11is a
useful expression for the cell potential of a hypothetical cell that contains no
‘liquid junction. Once equation B-11 is written for specific electrode
reactions, it can then be rewritten in terms of the neutral combination of
activity coeflicients given by

Sin =1/ f0m (B-13)
where species n is the chosen reference ion.

When activity coefficients are ignored, equation B—11 is a form of the
so—called Nernst equation, relating cell potentials to the logarithms of ionic
concentration. The Nernst equation can be used when there is an excess of
inert electrolyte of nearly uniform concentration and the reactant species
are present at much smaller concentrations. In writing the Nernst equation,
both the liquid—junction potential and the ionic activity coefficient are
discarded. It would be somewhat inconsistent to retain one but not the other

in view of their dependence upon the choice of species n.



Appendix C. General Expression for the Cell Potential
with a Liquid Junction Using the Quasi-Electrostatic Potential

An expression may be derived fof the potential difference,
[]):./RR=¢RS-¢RR ’ (C’l)
by mentally constructing an electrochemical cell. A schematic

representation of this cell is as follows:

a ¥ £ K ] g a'

Pt | Hg(s) | HgaCly(s) 4.1 MKCl junction | solution | electrode | Pt
saturated region
in Hzo

The hypothetical cell consists of an imaginary reference electrode of the
same type as the reaction of interest §j occurring at the working electrode
and an actual reference electrode of potential $zz shown on the left. The two
reference electrodes are assumed to be placed adjacent to each other at
some given position so that there is no ohmic drop between the two.
However, the actual reference electrode is different in composition from the
solution in which the two reference electrodes are placed. The result is a
transition region in which concentration gradients exist between the 6 and «
phases. The treatment of the potential of cells of this nature involves first
the description of phase equilibria between the electrodes and the solutions
or solids adjacent to them, followed by a consideration of the junction region

that is likely to exist between the solutions adjacent to the electrodes.

Just as in appendix B, thermodynamic arguments may be used to start
this analysis, if the reactants and products in the immediate vicinity of an

electrode are assumed to be in local equilibrium. Next the molecular and
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ionic forms of the reacting species must be known.
The reactions at the right and left electrodes are given by the following

generalized expressions:

2 sy Mt =nje- (C-2)
3
and
Y srMt = nppe” (C-3)
3 .
respectively. The local equilibrium relationship for each reaction is as
follows:
L Sy =ik, (C-4)
and
2 SiRRMN = MRRE - pp - (C-5)
]

The thgrmodynamic cell potential, Uj, gp = $ps — ®pr. taken to denote the
potential of the right electrode relative to the left becomes

FUjy pR = ME g = HE (C-6)
with the substitution of the electrochemical potential of the electrons,

u,_=z, Fd (C-7)
for the electrical potential of electrons in equation C-1. Substitution of the

phase equilibrium equations C-4 and C-5 into equation C-8 gives

FUj pr = ;{; 2:,‘ SiRRMG — ‘,:T Z‘: Sy kn (C-8)
for the cell potential. However, unlike the cell given in appendix B, the cell
potential given by equation C—8 can not be written in terms of neutral
species because of the region of changing composition. Also,
thermodynamics alone does not provide the means for evaluating this
difference since the junction region basically involves the irreversible

process of diflusion and must be treated by the laws of transport in

electrolytic solutions.
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It is appropriate to assess conditions in this junction region of non-
uniform composition by means of electrochemical potentials rather than by
the usual concept of an electric potential. The electrochemical potential y;
can be related to the electrical state of a phase by using the
quasi—electrostatic potential ¢ introduced by Newman.[!}{15] By selecting an
ionic spe'cies n, the potential can be defined as

Un = RTInc'p + 2, Fd (C-9)

Then, the electrochemical potential of any other species can be expressed as

M= RT In (ci'fi.nat?n) + zin) (C'IO)
where
Sin=to/ IR™ (C-11)
and
a’, =a?/ a_"‘ﬂ"/." . v (C-12)

Next, it is necessary to express equation C—10 in terms of A? so that the
tables of standard potentials given by Newman!!] may be used. By our
definition of the secondary reference states, a;® = A2/ p;. Therefore,

afy =M / pg T (C-13)

where

A, = AP/ AV (C-14)

Now the electrochemical potential of solute 1 is given by

b= RTIn el oM / 0875 4 2 Fe (C-15)
Because the activity is defined as a; = A; / A2, it is useful to rewrite equation
C-1as

¢ Jin
Ax‘(/"n pél -8/ 3,)

J+ziF¢ . (C-18)

and this implies
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= i ci' f(.n

oo (27 por*""J * l r 1 i

The activity of species 1 is dependent on the choice of the reference species

n and the quasi-electrostatic potential of the phase. The activities and

electrochemical potentials of all other species are summarized in table C-1.

These results for the solute are somewhat different from those given in table

A-1 for the absolute activities and electrochemical potentials of species p.

Substitution of the electrochemical potential y; for species i given in
table C—1 directly into equation C-8 allows an expression for the potential
difference Uj, gg to be obtained. Also, one may use y; = RT In A; in equation

C-B to give

; RT RT «
FUjs rr = 4 Zsmln)\‘-—nj ;su In N (C-18)
%

where A\; = o;A? . Hence equation C-18 may be rewritten resulting in

Table C—1. Definitions of relative activities and electrochemical potentials.

species i ay i = pl + RTln o
pure solid phase 1 ul
amalgam, alloy, solvent a; uf + RTin g

gas YiP ¥ &(T) + RT In y,p¢,

solute:
. Cn z, F .
reference species n E exp | &7 4>] RTInc'y, + 2, F¢

solute i equationC=17 RTIn (c,fin a.;?,,) + 2, Fd

or
equation C-186
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. RT | ] T | ]
: = e —_— L X -
(jJ/RR J/RR+ Fhm l%:spmlna.pj ; lgsm lnG?J (C 19)
where
1 1
U pe = UP - Ugr = P, & SRRUY — Frn PR (C-20)
1 3 1

and a; and u? are given in table C-1 for all species i.

The academic exercise presented in this appendix is for the purpose of
demonstrating that the electrochemical potentiél and the activity of a solute
are neither independent of the other species in solution nor the electrical
state of the phase. Even though the electrochemical potential is quite often
separated into an electrical term and a chemical term for computational
purposes, it has been shown here that the quasi—electrostatic potential is
related unambiguously to the electrochemical potentials conforming to our
usual concept of electrostatic potential. The arbitrariness of the definition
of  is apparent from the need to select a particular ionic species n. This is
evident in equation C—17 where the activity of solute is expressed relative to

species n.



Appendix D. Reaction Equilibrium Constants

The purpose of this appendix is to develop general expressions for the
‘equilibrium constants of a chemical and an electrochemical reaction. The
fundamental definitions of the chemical and electrochemical potentials

introduced in appendix A will be used.

1. Chemical Reaction Equilibrium Constant

Symbolic representation of a chemical reaction m may be made as

follows:

0=2‘:va:‘ : (D-1)
where M, represents a chemical formula, vy, are stoichiometric coefficients,
and 2; are the charge numbers for species i. If a species is neutral, z; is
zero. The stoichiometric coeflicients are negative for a reactant and positive
for a product. The change in the total Gibbs energy of a system at constant

temperature and pressure due to a chemical reaction m is given by

AG,, = z‘: Vimbi (D-2)
where 4 is the chemical potential of species 1. A criterion of chemical-

reaction equilibrium is

2; Vimks =0 . (D-3)
implying 4G,, must equal zero at equilibrium. Also at equilibrium, all driving
forces due to concentration, temperature, and pressurc diflerences must
equal zero. This means at constant temperature and pressure, the surface
and bulk concentrations are the same. This is written ¢;5 = ¢; . = ¢; «, Where

* represents the equilibrium state.
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1.1. Standard Gibbs Energy

The chemical or electrochemical potentials u; of species i are given in
table A-1 and may be substituted into the chemical reaction equilibrium
equation D-3. If equation A-2

ki = uf + RT In (myy,) (D-4)
for L of a solute in solution is substituted into equation D-3, then
Y Vimp? = =RT 3 In (myy;)"m (D-5)
¢ 1
is obtained. The left side of equation D-5 is the standard Gibbs-functicon

char.ge for reaction m

AGR =Y vimt? = L Vim & (D-6)
%
and Gf is the Gibbs energy of formation of species i in the secondary
reference state. Equation D-5 may be rewritten as

AGR =-RT Kp, (D-7)

where K, is the equilibrium constant for the chemical reaction m given by

H (myy)em = H l L] }vm (D-8)

Of course if species other than solutes are part. of the chemical reaction,
then a; or y;py; may be substituted for m;y; if the species is an alloy,
amalgam, or solvent, or a gas, respectively. Another expression for the

equilibrium constant is
= I:I (Ap) e . (D-9)

1.2. Standard Electrode Potentials

Electrochemical Reactions

The fundamental equations for chemical reaction equilibria have been
reviewed. However, it is of interest to express the results of the chemical

equilibrium analysis in terms of electrochemical reactions and the
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. corresponding electrode potentials. The géneral form of an electrochemical

reaction may be given by

Z‘,:svﬂf‘ =nje” (D-10)
~ where sy is the stoichiometric coefficient of species i in the electrochemical
reaction j. The coefﬁcient is positive for the reactants in the oxidation
reaction, reducing agents, and is negative for the oxidation products. The
number of electrons e transferred in the reaction is n;. The equilibrium

expression for reaction j is

D sgi =yl (D-11)
where Heo-j is the electrochemical potential of the electrons participating in
reaction j.

A chemical reaction equation may be obtained by subtracting

electrochemical reaction! from j'

;suM‘-"—Z‘:suM,-" =nje”-me =0 . (D-12)
Since the stoichiometric coefficients in the electrochemical reactions are

related to the coefficients in the chemical reaction by

S‘j - Sy = "Vm R (D-13)

equation D-2 for the Gibbs energy for reaction m may be rewritten

AGm=-2‘3(s‘-,--Su)m=—n(/x,-1—#,-,,) . (D-14)
From equation D-3, we know that AG,, is zero at equilibrium implying that

the electrochemical potential of electrons is equivalent in the two reactions.

Flectrode Potentials

Next, it is necessary to relate the electrode potentials U; and U, of the

electrochemical reactions that make up chemical reaction m to AG,. The

1 In order to obtain a chemical reaction, the stoichiometry coefficients of the electrochem-
jca! reactions must be multiplied by a constant so that the number of electrons in each reaction
will be the same.
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electrode potential Uj,, will denote the potential of the electrode reaction j
minus the potential of electrode reaction 1. Substitution of the
electrochemical potential of the electrons,
H,-=2 FU; | (D-15)
for the electrode potential results in
F(Jj/‘=F([jj—[',l)=-0‘e—."_#e-'l)' (D-lB)
The cell potential given by equation D-16 can be rewritten using the

equilibrium condition expressed by equation D-11 as

FUj = - %2:: (sy —sudn - (D-17)
The stoichiometric coefficients of the electrochemical reactions j and ! are
relatéd to those of a chemical reaction by equation D-13, and it should be
pointed out again that v, is positive for products and negative for

reactants. Therefore,

1
FUii = 3 Z Vamba (D-18)
implying

AG, =nFU;,, (D-19)
when equation D-2 is substituted into D-18. At chemical equilibrium,

AGm = nFU)-,;.. =0 . (D‘ZO)
AG,, equals zero so that the equilibrium cell potential will always be zero

when two electrochemical reactions are equilibrated on one electrode.

Since we know that each electrochemical reaction has with it an
associated standard electrode potential, we would like to relate the chemical
reaction equilibrium constant to the standard potentials of the
electrochemical reaction that go into making up the chemical reaction. The
equilibrium expression D-11 for an electrochemical reactions can be written

for its standard states as
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Z‘: syMmd =mud .. (D-21)

From arguments similar to those going into equation D-15,

/J.:_J. =-FU? , (D-22)

therety, allowing D-21 to yield
2; syud = —n FUP . (D-23)
When the electrochemical reaction l is subtracted from reaction j to obtain

chemical reaction m, the following expression may be obtained
AGR =nF(UP = U#) = ¥ vinis? (D-24)
Using equation D-7 that relates the equilibrium constant to AG2 , we obtain

[—nF(Up - U?)]

= D-25
Km expl =T . ( )
where the equilibrium constant K, is for the chemical reaction
2 sy Mt - 2 syMt = 0. (D-286)
L] 3 .

The standard potential for reaction j, U,"’. is given by equation D-23
where u? = RT In A? and may be found in standard chemical thermodynamic
tables. The standard electrode potentials Uj" found in Newman!(!] are relative

to the normal hydrogen electrode given by'

FUP = ~(ud ; = 1)y, (D-27)
or rewritten to be
. 1
FUP = Y3, = RT In A3, - ;)— z‘: syud (D-28)
Hence,
| 4 - ? 8 = ' 1 ° 1 o‘
FU,-,,—F(U,- ‘M)-‘lnfzsvk‘;‘zsuﬁj . (D-29)
¢ I [

which is the same as equation D-24 if n; = n;, and v, is substituted for

—(sy = su).

! For consistency, we should write U7 g instead of U, but since we will always use sian-
dard states .o be referenced to the hydrogen reaction, the / Hj is dropped for brevity.
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2. Electrochemical Reaction Equilibrium Constant

We now want to determine a general expression for the equilibrium
constant of an electrochemical reaction. This can be done by starting with a
general expression for the potential U),RR of an electrode reactioun j relative
to a real reference electrode. Such an equation was developed in appendix C
using the electrochemical potentials and activities in table C-1. We Qill
begin this development with a similar equation given by

FU 5= FUS e + s T sign In T

i{»n

D-30;

- fjl(}; sy In Ty + (3¢ - 8) (030
The last term on the right is the liquid—junction potential, A%y Ti, is
similar to A, used in appendix B. It is simply an abbreviation for writing a,.
P.#:. or €ifin/ Po- The activity a; of any alloy or amalgam, and the partial
_ pressure of any gas and its fugacity coefficient p;¢; are accounted for in
reactions j and KRR, as well as the concentration of solute 1 and its activity
coefficient relative to species n, ¢’y fi o/ pg. Again, T;, should not be thought
of as the activity for a solute, since it does not contain the
quasi—electrostatic potential . The true activities of species i are given in
table C—1. If species m is chosen so that it participates in the reference

electrode reaction, then f;, =1 for species n in the reference electrode

term of equation (D-30). This equation may be rewritten

: If
Cif\'.n] +(¢6_¢@-31)

. [
k
FUj, pg = RT In [—"—l - fl Y sg InTipln aip;-sm[ o

ku‘ ] ien

where

(D-32)

For a reference electrode reaction such as the calomel electrode, there is



187

but one solute species participating in the reaction. If it is the chosen
reference species n, the last term in equation D=32 would not appear. Again
it should be noted, the expression for the equilibrium constant for reaction J
depends on the choice of the reference species n, but is independent of the

concentration of species that participate in reaction j.

The equilibrium ratio given by equation D-32 is not generally

dimensionless. Equation D-31 may be rewritten as

( kc. ]
% | . ]
l i.n]
{

The right side of this equation is dimensionless, making the equilibrium
constant have reciprocal units of the activities of species i participating in

reaction j raised to their stoichiometric coefficient power.



Appendix E. Curve Fitting

1. Regression Fit

We should like to determine the kinetic parameters that may be used to
best fit the experimental polarization curves. The first method is simply to
apply linear regression to the linear or Tafel region of the polarization curve.
The second approach is a routine based on the Stern—Geary equation to best
fit the the experimental curves over the entire polarization range. This

method will be discussed in the next section.

The Tafel slope of the anodic zinc dissolution curve in figure 4-7 is
determined by linear regression to be 1.715 V! or b, = 583 mV/ decade. The

anodic transfer coefficient is given by

o= 2.33;RT . (E-1)
which yields 0.102. The anodic Tafel expression 4—21 allows the anodic rate
constant to be determined for the zinc dissolution reaction from the
y—intercept of figure 4-7. The anodic rate constant k; gz, for the zinc
dissolution is 4.450 x 1078 mol/ cm?~s. Because the proper rate constant is
very sensitive to slight changes in the Tafel slope, round—off errors must be

considered. When the transfer coefficient is rounded to 0.10, a corrected

value of the rate constant is determined using

i)

kan =

a,z,..F (E—Z)
RT

where (V,, 1,) is a selected pivot point in the anodic zinc Tafel region of the

2F exp [ v,

experimental polarization curve. When a, =0.10, the new kg;3z, is
4.272 x 107® mol/ cm?-s using -0.75 V for V, in equation E-2. This adjusted

value of the rate constant provides good agreement between the theoretical
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and experimental curves. These kinetic parameters obtained by modifying
the regression fit of the Tafel region of figure 4—7 are summarized in table

E-1 for the zinc reaction.

Table E~1. Kinetic parameters for the zinc reaction from the anodic
polarization curve for the zinc corrosion process in 1 M

HClL.
2.303RT
ba = G F Qazn log(2F%, zp) kg
0.592V 0.100 —B8.387 x 10-2 4.272 x 108 mol/ cm?2-s

The kinetic parameters reaction may be determined in a similar fashion
for the hydrogen evolution reaction. The Tafel slope of the cathodic
hydrogen curve in figure 4—7 is 843 mV/decade, which yields a cathodic
transfer coeflicient of 0.092. The regression best fit gives 2.814 x 1078 cm /s
for the cathodic rate' constant of the hydrogen reaction assuming the
surface concentration of the hydrogen ions is the same as the bulk
concentration of 0.001 mol/cm’.'When the transfer coefficient is rounded up
to 0.1 and the same rate constant is used from the regression analysis, a 10
7% diflerence results between the predicted and experimental

current—densities. The following equation

iz
k = .
cHe - (E-3)
Fey, exp |- 7T Vs _

is used to adjust the rate constant using a V; of -1.4 V. The kinetic

parameters obtained from rounding off the transfer coefficient and making
the adjustment for the rate constant in figure 4—7 are summarized in table

E-2 for hydrogen evolution.
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Table E-2. Kinetic parameters for the hydrogen reaction from the
cathodic polarization curve for the zinc corrosion process

in 1 M HCL
_ 2.303RT
b, = e acH, log( k. 1,C y.0) k.
0.592 V 0.10 -3.755 x 10° 1.823x 108 cm /s

2. Stern—Geary Program FIT

In the previous section, kinetic parameters were determined for a first
approximation using only the Tafel equations E~2 and E-3 for the zinc and
hydrogen reactions, respectively. The anodic transfer coefficient and the
rate consteant for the zinc reaction were found by neglecting the effects of
the hydrogen reaction as well as not considering the zinc cathodic back
reaction, the second term on the right of equation 4—11. The cathodic
kinetic parameters for the hydrogen reaction were in turn determined by
neglecting the zinc reaction altogether and by neglecting the hydrogen
anodic reaction, the first term on the right of equation 4-16. The procedure
described there assures one of obtaining a reasonable fit of about 5% in the
Tafel regions of the respective reactions, but as shown in figure 4-7 this
method is not successful in obtaining parameters that when used to
generate the polarization curve match the experimental data over the entire

potential range.

A curve fitting program, FIT, based on tﬁe Stern—-Gearyl®! equation is
used to obtain new parameters that will predict the entire polarization
curve. Stern and Geary in 1938 showed that to a good approximation the net
current density in de—aerated solutions is the sum of the Tafel term of the
anodic metal dissolution reaction and the Tafel term of the cathodic

evolution of hydrogen reaction. Equations E-2 and E~4 are summed giving
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[ a. F ] [ acw,F ]
1‘,”.‘=2Fk°.znexpl ‘;?z;, VJ—HCC.HZCH“Oexpl- = VJ, (E-4)

for the net current density when the transfer coefficients are used in place
of symmetry factors. We are interested in the using this equation té
determine the kinetic parameters for the entire curve. Three experimental
data points may be incorporated into this equation by using i—V points of the
zinc and hydrogen Tafel regions and zero current at the corrosion potential.
Three equations result in terms of the transfer coefficients and rate
constants of the zinc and hydrogen reactions. A trial and error procedure is
used by initially assuming a value for the anodic zinc transfer coefficient.
The anodic and cathodic rate constants for the zinc and hydrogen reactions
then may be determined iteratively. An assumed value for the cathodic
hydrogen transfer coefficient enables k; and k. to be calculated using the
data from the Tafel regions. The value of a. is iterated upon using

RT [ 2k z, ]
In

[o4 = -, -
( c)calc a FV”,-,. kHzCH*_-

(E-5)
until the guessed value is within 107° of the calculated value. Equation E-5
is obtained by using equation E—4, zero current, and the corrosion potential.
For the given a,, we have the best set of parameters that match the
experimental data at the given points. A range of anodic transfer
coefficients are used, and the above iterative procedure is repeated each
time to determine the other three parameters. The polarization curves
generated using the FIT routine are plotted in figure 4—8 and are compared
to the experimental curves to determine the best set of kinetic parameters.
The set of parameters obtained from the FIT routine used to generate the

curves in figure 4-7 are given in table E-3.
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Table E~3. Kinetic parameters obtained from FIT.

Case Number
1 2 3
o k (e k o ) k

Zn 0.05 1.596 x 10~ 0.10 4.856 x 10~¢ 0.15 1.913 x 10°5

Hp 0.032 1.095x 10~* 0.079 6.264 x 1078 0.124 4.931 x 1077

A reasonable fit for the entire polarization curve is obtained from set 2,
which is determined based on a transfer coefficient of 0.10. This set of
parameters should be compared to the set of parameters obtained directly
from the regression fit and adjusting for roundoff which were given in tables
E-1 and E-2 for the zinc and hydrogen reactions, respectively. The curve
generated by the latter set with an anodic transfer coefficient of 0.10 was
shown in figure 4—6 and is not shown again in figure 4~7. However, it does
not fit the experimental data as well as set 2 in figure 4—7. The FIT routine is
also used to determine the best set of kinetic parameters based on transfer
coefficients of 0.15 and 0.05. The larger a4 implies a larger Tafel slope and -
yields poor agreement with the experimental data. An anodic transfer
coeflicient of 0.05 surprisingly gives the best fit. Therefore, set 1 should be

used in the model that is developed in chapter 5.



Appendix F. Corhput.er Pr:ograms

1. Program FIT

Program FIT determines the best kinetic parameters that match the
experimental polarization curve based on a given value of the zinc transfer
coefficient. The cathodic hydrogen transfer coefficient, and anodic and
cathodic rate constants for the zinc and hydrogen reactions, respectively
are iteratively calculated and then used to generate the polarization curve

for the corrosion process.

The input required by FIT is:

ALFAM = anodic transfer coeflicient of zinc, agz,

ALFCH = initial guess for cathodic hydrogen transfer coefficient, a.y,

Vi 11 = experimental potential, current data point in anodic Tafel
region of polarization curve ' '

Ve, 12 = experimental potential, current data point in cathodic Tafel
region of polarization curve

VCOR = experimental open—circuit potential

The subroutine necessary to run FIT is:
Subroutine FTN - Computes the net current density using the Tafel equations

for the zinc and hydrogen reactions.

2. Program FIRST

Program FIRST calculates the the corrosion potential and current
density, generates the polarization curves for the corrosion process, and
compares the results of the kinetic—diflusion model to the corrosion rates as
predicted by conventional corrosion analysis techniques: linear

approximation, Tafel approximation, and polarization resistance methods.
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The input required by FIRST are:

1. Kinetic parameters determineed by FIT including ALFAM, RKAM,
ALFCH2, and RKCH2 for the transfer coeflicient and rate constant of the

metal dissolution and hydrogen evolution reactions, respectively.

2. Zinc complexing equilibrium constants given by RK1P, RK2P, RK3P,
and RK4P.

3. Bulk concentrations of metal ions, hydrogen ions, and hydrogen
partial pressure given by CMTB, CHB, and PH2B, respectively.

4. Diflusion coefficients of metal ions, hydrogen ions, and hydrogen
given by DM, DH, DH2, respectively, and the solubility of hydrogen, SH2.

5. Rotation sbeed of the disk electrode RPM, kinematic viscosity RNU,
and the density of the pure solvent water RHO.

6. Polarization resistance RP.

The subroutines necessary to run FIRST are:

1. Subroutine NRM - Calculates the corrosion current and potential
using a Newton—Raphson iterative technique.

2. Subroutine FTNY - Generates the polarization curves for the
corrosion process based on the kinetic—diffusion model that is presented in

chapter 5.

3. Subroutine FTNMBV - Generates the polarization curves for the
corrosion process based on modified Butler—Volmer equations assuming

constant concentrations at the surface over the entire polarization range.

4. Subroutine FTNBV - Generates the polarization curves for the
corrosion process based on Butler—Volmer equations assuming constant

exchange—current densities with polarization.
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5. Functions CM, CH, PH2 - Computes the surface concentrations of the
divalent metal ions, hydrogen ions, and hydrogen assuming a stagnant

Nernstl diffusion—layer thickness with no migration.

8. Subroutine ACTIVC - Calculates activity coefficients.

7. Subroutine KS - Calculates the thermodynamic equilibrium constant
of an electrochemical reaction and.the kinetic rate constant of the back
reaction.

8. Subroutine UJGO - Calculates the thermodynamic reversible cell

potential of an electrochemical reaction relative to the saturated calomel

reference electrode.

9. Subroutine 10 - Evaluates the exchange—current density of an
electrochemical reaction as a function of the kinetic parameters and

concentration.

10. Subroutine RKAPA - Calculates the conductivity of an electrolytic
solution.

11. Subroutine POTLJ - Calculates the liquid—junction potential.

12. Subroutine DIFPOT - Calculates the diffusion potential.

13. Subroutines CHMR, .OHMPOT - Calculates the ohmic resistance and
potential, respectively.

14. Subroutines VSQFN, VSQXFN - Calculates the simulated measured
cell potential relative to an actual saturated calomel electrode with and

without concentration variations, respectively.

15. Subroutine CORR - Calculates the corrosion—current density and
potential using linear and Tafel approximations as a function of the

reversible potentials and exchange current densities.

16. Subroutine SGPM - Calculates the corrosion—current density using

the Stern—Geary polarization method and Mansfeld's modifications of it as a
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function of the Tafel slopes and polarization resistance.

17. Subroutine IRSCAN - Calculates the relative error of the scan rate

due to ohmic resistance of the solution.

3. Program Listings



OO0O0O0O0O00O00O00O0O000 0

OO0O0O0n

197

PROGRAM FIT(INPUT,OUTPUT)
REAL KAM,KCH

REAL I1,I2
COMMON/IN/F,R,T,FF
COMMON/PARAMM/ALFAM , KAM
COMMON/PARAMH/ALFCH,KCH, CHB
READ 130, IAP,ICP

READ 100, NI,NA,NC

READ 115, DELVA,DELVC
READ 115, ALFAM,ALFCH
READ 115, V1,11l

READ 115, V2,12

READ 115, VCOR,VO

READ 105, F,R,T

READ 120, CHB

DETERMINE THE KINETIC PARAMETERS THAT BEST FIT THE DATA

1. ASSUME A VALUE FOR ALFAM AND LET IT REMAIN CONSTANT

2. MAKE AN INITIAL GUESS FOR ALFCH

3. CALCULATE KAM AND KCH ASSUMING THE BACK REACTION IS NEGLIBLE
4. USE EXPERIMENTAL POINTS (V1,I1) & (V2,I2) FROM TAFEL REGION
5. THIS FORCES THE CURVE THROUGH BOTH POINTS

6. CALCULATE ALFCH SO THAT CURVE IS FORCED THROUGH (VCOR,0)

7. GENERATE I-V CURVE FOR THE SET OF CALCULATED PARAMETERS

8. CONFIRM THE CHOICE FOR ALFAM, PICK A NEW VALUE IF NECESSARY
9. RERUN PROGRAM -

FF=F/(R*T)

VAl=ALFAM*FF*V1

VA2=ALFAM*FF*V2

Al=2.0*F*EXP(VAl)

A2=2.0%F*EXP(VA2)

AD=A2/A1

CURVE FITTING METHOD FOR DETERMINATION OF ALFCH
1. X VALUES REPRESENT ALFCH
2. Y VALUES REPRESENT THE ERROR ASSOCIATED WITH A GIVEN X

XB=0.0
YB=0.0
XHI=0.0
YHI=1.0E+5
XL0=0.0
YLO=-1.0E+5

PRINT 200

PRINT 202, NI,IAP,ICP
PRINT 204, NA,NC
PRINT 180

DO 50 I=1,NI.
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30

35
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VCl=-ALFCH*FF*V1
VC2=-ALFCH*FF*V2
Bl=-F*CHB*EXP(VC1)
B2=-F*CHB*EXP(VC2)

KCH=(I2-AD*I1)/(B2~AD*B1)
KAM=(I11-B1*KCH)/Al

ACCALC=-ALFAM-(1.0/(FF*VCOR) )*ALOG(2.0*KAM/ (KCH*CHB))
Y=ACCALC-ALFCH

IF (I1.EQ.1) XB=ALFCH
IF (I.EQ.1) YB=Y
XSAVE=ALFCH
YSAVE=Y
IF (ABS(Y).GT.ABS(YB)) GO TO 25
XSAVE=XB
YSAVE=YB
~ XB=ALFCH
YB=Y
IF (Y.LT.0.0) GO TO 30
IF (Y.GT.YHI) GO TO 30
XHI=ALFCH
YHI=Y
IF (Y.GT.0.0 .OR. Y.LT.YLO) GO TO 35
XLO=ALFCH
YLO=Y
IF (I.EQ.1) GO TO 40
ALFCH=XB-(XSAVE-XB)*YB/(YSAVE-YB)
IF (ABS(Y).LT.1.0E-10) GO TO 55
IF (XHI*XLO.EQ.0.0) GO TO 50
IF ((ALFCH-XHI)*(ALFCH-XL0).LT.0.0) GO TO 50
ALFCH=0.5*% (XHI+XLO)
GO TO 50
ALFCH=ALFCH+0.05
PRINT 185, XB,YB,XSAVE,6YSAVE,ALFCH,Y
PRINT 195,I,NI
PRINT 190
PRINT 193, KCH,KAM,ALFAM,ALFCH,XB,Y,YB

THE BEST SET OF PARAMETERS HAS BEEN DETERMINED FOR THE GIVEN ALFAM
GENERATE THE THEORETICAL I-V CURVE USING “BEST~ PARAMETERS

PRINT 400
PRINT 410

IF (IAP.EQ.1) GO TO 2
VA=V0
DO 60 I=1,NA

IF (I.EQ.1) GO TO 61
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60

OO0

71

[e e N

100
105
115
120

130

180
185
190

193
195

200

202

204

199

VA=VA+DELVA
X=FF*VA

CALL FTN(X,YMAA,YH2A,KYA)
PRINT 430,VA,YA,YMAA,YH2A
CONTINUE

IF(ICP.EQ.1) GO TO 3

GENERATE KINETIC-DIFFUSION POLARIZATION CURVE
CATHODIC SWEEP

PRINT 500
PRINT 410

VC=Vv0

DO 70 I=1,NC

IF (I.EQ.1) GO TO 71
VC=VC-DELVC

X=FF*VC

CALL FTN(X,YMCC,YH2C,YC)
PRINT 430,VC,YC,YMCC,YH2C
CONTINUE

CONTINUE

READ FORMATS

FORMAT(313)
FORMAT(3(1PE10.3))
FORMAT(2(1PE10.3))
FORMAT(1(1PE10.3))
FORMAT(212)

PRINT FORMATS

FORMAT(1H ,/* XB  YB XSAVE  YSAVE ALFCH Y */)

FORMAT(1H ,6(1PE10.3))

FORMAT(1H , * THE BEST SET OF PARAMETERS *,
1 /% KCH KAM ALFAM ALFCH XB Y YB *)

FORMAT(1H ,7(1PE10.3))

FORMAT(1H ,/* NOT CONVERGED, I=* I4,* NI=* I4)

FORMAT(1H ,*PROGRAM FIT IS FOR */(3X,*1. THE DETERMINATION OF
1THE BEST KINETIC PARAMETERS*)/(3X,*2. THE GENERATION OF A METAL
2DISSOLUTION/HYDROGEN EVOLUTION POLARIZATION CURVE*))

FORMAT(1H ,/*I-V CURVE PARAMETERS*/(1X,* NI= * 12)/(10X,*
1 IAP, ICP= 0 OR 1%)
2/(10X,*IAP= * 12, 3X,*ICP= * 12)/
3/(1X,10X,*{1 IMPLIES THAT SECTION OF PROGRAM IS BYPASSED]*))

FORMAT(1H ,/*NUMBER OF POLARIZATION POINTS, NA= * I2, * NC=



o000

400

410
430
500

200

112)
FORMAT(1H ,/*GENERATION OF ANODIC KINETIC-DIFFUSION POLARIZATION
1 CURVE * )
FORMAT(1H ,* V  INET IMTA IH2TC*)

FORMAT(1H , F6.3,3(1lPE10.3))
FORMAT(1H ,///*GENERATION OF KINETIC-DIFF POLARIZATION CURVE*/
1 * CATHODIC SWEEP * )

STOP
END

SUBROUTINE FTN(X,YM,YH2,Y)
REAL KAM,KCH

REAL I1,I2
COMMON/IN/F,R,T,FF
COMMON/PARAMM/ALFAM,KAM
COMMON/PARAMH/ALFCH,KCH, CHB
ALFAM=0.1 :

ALFCH=0.1

KAM=4.272E-6

KCH=1.823E-6
YM=2.0*F*KAM*EXP(ALFAM*X)
YH2=-F*KCH*CHB*EXP (~ALFCH*X)
Y=YM+YH2

RETURN

END
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PROGRAM FIRST(INPUT,OUTPUT)
COMMON/I1/ ITAF,INRM,IAP,ICP,IXPR
COMMON/IN/ NLIM,V1,F,R,T,FF,RHO
COMMON/PARAMM/ ALFAM,ALFCM,RKAM, RKCMF,DM,CMTB,DELM
COMMON/PARAMH/ALFAH2 ,ALFCH2 ,RKAH2F ,RKCH2,DH,DH2, SH2,CHB,PH2B,
DELH,DELH2
COMMON/H2/B1,Cl1,BC,EP,QUAD
COMMON/M/YMA , YMC , YMCD
COMMON/U/UMTH,UHTH,URGTH,UMGTH, UHGTH
COMMON/CONC/CCLB,CCLSAT
COMMON/CC/CMC,CHC,PH2C
COMMON/FIN/FMCL,FHCL
COMMON/ETA/ETASM,ETASH2
COMMON/RII/RIOM,RIMA,RIMC,RIM,RI
COMMON/RIH/RIOH2,RIH2A,RIH2C,RIH2
COMMON/RILOG/RIMALG,RIMCLG,RIMLG,RIHALG,RIHCLG,RIHLG,RILG
COMMON/YLG/YMLG,YHLG, YLG
COMMON/OHM/RO, RKAPAB ,ROHM , ROHMU
COMMON/POT/VCOR,DPHDIF ,DPHLJ
COMMON/B/BAM,BCH, A
COMMON/KK/RKKPM , RKKM , RKKPH , RKKH
COMMON/X/XX ,XXX,COMPLX 4
COMMON/CMCPLX/CM2,CM3,CM4 ,CM5
COMMON/RKKP/RK1P,RK2P ,RK3P,RK4P

READ 100, NLIM,NA,NC

READ 105, HH,DELVA,DELVC

READ 105, F,R,T

READ 115, ALFAM,RKAM

READ 115, CMTB,DM

READ 115, ALFCH2,RKCH2

READ 120, CHB,PH2B,DH,DH2,SH2

READ 105, RPM,RNU,RHO

READ 105, vO0,V1,V1BV

READ 135, INRM,IAP,ICP,IBVPC,IMBVPC,IRSR
READ 130, ITAF

READ 130, IXPR

READ 130, M

READ 125, COMPLX

READ 105, UMTH,UHTH,URGTH

READ 115, CCLB,CCLSAT

READ 140, RK1P,RK2P,RK3P,RK4P

RKAPAB=RKAPA(M,CHB)

FF=F/(R*T)
DELM=DEL(DM,RNU,RPM)
DELH2=DEL(DH2,RNU,RPM)
DELH=DEL(DH,RNU,RPM)

CALL OHMR
CALL ACTIVC(0.001,CHB,0.002)
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CALL ACTIVC(0.0005,0.0001,0.0006)
CALL ACTIVC(CMTB,CHB,CCLB)
CALL KS

ALFCM=2.0-ALFAM
ALFAH2=1.0-ALFCH2

PRINT 202, NLIM,INRM,IAP,ICP

PRINT 204, NA,NC

PRINT 203, COMPLX

PRINT 206, DELVA,DELVC

PRINT 208

PRINT 210, VO

PRINT 212, R,F,T

PRINT 214, M, ALFAM,ALFCM,ALFAH2,ALFCH2
PRINT 216, RKAM,RKCMF,RKAH2F,KRKCH2
PRINT 218, DM,DH

PRINT 220, CMTB,DH2

PRINT 222, SH2

PRINT 224, CHB

PRINT 226, PH2B

PRINT 228, RPM,RNU,RKAPAB

PRINT 230, DELM

PRINT 232, DELH

PRINT 234, DELH2

PRINT 236, RKKPM,RKKM

PRINT 238, RKKPH,RKKH

PRINT 240, ROHM,ROHMU

PRINT 242, RO,A

PRINT 250

PRINT 255, 0.001,CHB,0.002,FMCL,FHCL
PRINT 255, 0.0005,0.0001,0.0006,FMCL,FHCL
PRINT 255, CMTB,CHB,CCLB,FMCL,FHCL

CALL POTLJ(DPHLJ)
X1=VO*FF

IF(INRM.EQ.1) GO TO 1
IF(ITAF.EQ.1) GO TO 10

IBV=1
X=X1

CALL NRM(IBV,X,YTCORM,YTCORH,YTO,DYT)

VTCOR=X/FF
YTOLG=ALOG10(ABS(YTO))
YTCORML=ALOG10(ABS(YTCORM))
YTCORHL=ALOG10(ABS(YTCORH))
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CMCORT=CM(YTCORM)
CHCORT=CH(YTCORH)
PHCORT=PH2 (YTCORH)

CONTINUE
IBV=0
X=X1

CALL NRM(IBV,X,YCORM,YCORH,YO,DY)

VCOR=X/FF
PDIFT=PDIF(YTCORM,YCORM)
YOLG=ALOG10(ABS(Y0))
YCORML=ALOG10(ABS(YCORM))
YCORHL=ALOG10(ABS(YCORH) )
CMC=CM(YCORM)
CHC=CH(YCORH)

PH2C=PH2 (YCORH)

PRINT 300

PRINT 302

PRINT 305, VCOR,VTCOR

PRINT 310, YO,YOLG,YTO,YTOLG

PRINT 320, YCORM,YCORML,YTCORM,YTCORML,PDIFT
PRINT 330, YCORH,YCORHL,YTCORH,YTCORHL

PRINT 340, CMC,CMCORT

PRINT 350, CHC,CHCORT

PRINT 360, PH2C,PHCORT

CALL UJGO(CMC,CHC,PH2C,UMGO,UHGO)
CALL IO

PRINT 600

PRINT 610

PRINT 615, CMC,CHC,PH2C,CCLB,CCLSAT
PRINT 620

PRINT 630, UMTH,URGTH,UMGTH,UMGO, FMCL
PRINT 630, UHTH,URGTH,UHGTH,UHGO,FHCL
PRINT 640

PRINT 645, RIOM,RIOH2

CALL CORR(UMGO,UHGO,UCOR,UCORL,RICOR,RICORL)

CALL SGPM(UMGO,UHGO,RK1,RKP,EXM,EXH,EXM1,EXH1,DELPM)
PDIFL=PDIF(RICORL,YCORM)

PDIFT=PDIF(RICOR,YCORM)

PRINT 510

PRINT 512, UCORL,RICORL,PDIFL

PRINT 514, UCOR,RICOR,PDIFT

PRINT 516

PRINT 518, BAM,BCH,RK1,RKP

PRINT 615, EXM,EXH,EXM1,EXH1,DELPM
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READ 130, NRP
DO 25 K=1,NRP
READ 125, RP

RICSG=1.0/(RP*A*RK1)
RICSGM=1.0/ (RP*A*RKP)
PDIFSG=PDIF(RICSG,YCORM)
PDIFM=PDIF(RICSGM,YCORM)

PRINT 520, RP

PRINT 522, RICSG,PDIFSG
PRINT 524, RICSGM,PDIFM
CONTINUE

IF(IAP.EQ.1) GO TO 2

GENERATE KINETIC-DIFFUSION POLARIZATION CURVE
ANODIC SWEEP

PRINT 400
PRINT 402
PRINT 404
PRINT 410
PRINT 416
PRINT 411
PRINT 412
PRINT 414
PRINT 413
PRINT 415

IDUM=1
VA=V1

DO 50 I=1,NA

IF (I.EQ.1) GO TO 15
IBV=0

VA=VA+DELVA
X=FF*VA

CALL FTNY(IBV,IDUM,X,YMAA,YH2A,YA,DY)
YLGAS=YLG
YMLGAS=YMLG
YHLGAS=YHLG

CMAS=CM(YMAA)

CHAS=CH(YH2A)

PH2AS=PH2 (YH2A)

CALL FTNMBV(VA,CMAS,CHAS,PH2AS)

DPHDIF=DIFPOT(CMAS, CHAS ,PH2AS)
CALL OHMPOT(YA,YRA,YRUA)

CALL UJGO(CMAS,CHAS,PH2AS,UMGO, UHGO)
ETASM=VA-UMGO

204



aon

aOOO0

(@]

20
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35
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ETASH=VA-UHGO

CALL VSQXFN(VA,VMA,YRA,VSQXA,VSQXMA)
CALL VSQXFN(VA,VMA,YRUA,VSQXUA,VSQXUMA)
CALL VSQFN(VA,VMA,YRA,VSQA,VSQMA)

CALL VSQFN(VA,VMA,YRUA,VSQUA,VSQUMA)

IF(ITAF.EQ.1) GO TO 20

IBV=1

CALL FTNY(IBV,IDUM,X,YMT,YH2T,YT,DYT)
YTAMLG=YMLG

YTCHLG=YHLG

PRINT 450,VA,RI,RIM,RIMA,RIMC

PRINT 450,VA,RI,RIH2,RIH2A,RIH2C

PRINT 420,VA,YA,YMAA,YMT,YH2A,YH2T

PRINT 420,VA,YLGAS,YMLGAS,YTAMLG,YHLGAS ,YTCHLG
PRINT 430,VA,CMAS,CHAS,PH2AS

PRINT 420,VA,CMAS,CM2,CM3,CM4,CM5

PRINT 420,VA,YA,YRA,YRUA,DPHDIF,DPHLJ
PRINT 440,VA,ETASM,ETASH,UMGO,UHGO

PRINT 450,VA,VSQXA,VSQXUA,VSQA,VSQUA
PRINT 460,VMA,VSQXMA,VSQXUMA,VSQMA,VSQUMA
CONTINUE

IF(ICP.EQ.1) GO TO 3

GENERATE KINETIC-DIFFUSION POLARIZATION CURVE
CATHODIC SWEEP

IDUM=1

PRINT 500
PRINT 402
PRINT 404
PRINT 410
PRINT 416
PRINT 411
PRINT 412
PRINT 414
PRINT 413
PRINT 415

VC=v1
DO 75 I=1,NC

IF (I.EQ.1) GO TO 35

IBV=0

VC=VC-DELVC

X=FF*VC

CALL FTNY(IBV,IDUM,X,YMCC,YH2C,YC,DY)
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YMLGCS=YMLG

YHLGCS=YHLG

YLGCS=YLG

CMCS=CM(YMCC)

CHCS=CH(YH2C)

PH2CS=PH2(YH2C)

CALL FTNMBV(VC,CMCS,CHCS,PH2CS)
DPHDIF=DIFPOT(CMCS,CHCS,PH2CS)

CALL OHMPOT(YC,YRC,YRUC)

CALL UJGO(CMCS,CHCS,PH2CS,UMGO,UHGO)
ETASM=VC-UMGO

ETASH=VC~UHGO

CALL VSQXFN(VC,VMC,YRC,VSQXC,VSQXMC)
CALL VSQXFN(VC,VMC,YRUC,VSQXUC,VSQXUMC)
CALL VSQFN(VC,VMC,YRC,VSQC,VSQMC)
CALL VSQFN(VC,VMC,YRUC,VSQUC,VSQUMC)

IF(ITAF.EQ.1) GO TO 30

IBV=1

CALL FTNY(IBV,IDUM,X,YMT,YH2T,YT,DY)
YTAMLG=YMLG

YTCHLG=YHLG

PRINT 450, VC,RI,RIM,RIMA,RIMC

PRINT 450, VC,RI,RIH2,RIH2A,RIH2C

PRINT 420,VC,YC,YMCC,YMT,YH2C,YH2T

PRINT 420,VC,YLGCS,YMLGCS,YTAMLG,YHLGCS, YTCHLG
PRINT 430,VC,CMCS,CHCS,PH2CS

PRINT 420,VC,CMCS,CM2,CM3,CM4,CM5

PRINT 420,VC,YC,YRC,YRUC,DPHDIF,DPHLJ
PRINT 440,VC,ETASM,ETASH, UMGO,UHGO

PRINT 450,VC,VSQXC,VSQXUC,VSQC,VSQUC
PRINT 460,VMC,VSQXMC,VSQXUMC,VSQMC,VSQUMC
CONTINUE

CONTINUE

READ 130, NCONC

NN=NCONC+1

DO 4000 II=1,NN

IF (INRM.EQ.0) GO TO 1000
READ 105, CMC,CHC,PH2C
CONTINUE

INRM=1

IF (IBVPC.EQ.1) GO TO 2000

GENERATE B~V POLARIZATION CURVE

CALL UJGO(CMC,CHC,PH2C,UMGO,UHGO)
CALL IO
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PRINT 600

PRINT 610

PRINT 615, CMC,CHC,PH2C,CCLB,CCLSAT
PRINT 620

PRINT 630, UMTH,URGTH,UMGTH,UMGO,FMCL
PRINT 630, UHTH,URGTH,UHGTH,UHGO,FHCL
PRINT 640

PRINT 645, RIOM,RIOH2

ANODIC SWEEP FROM THE CORROSION POTENTIAL

PRINT 650

PRINT 710

PRINT 655

V=V1BV

CALL FINBV(V)

PRINT 660, V,RI,RIM,RIMA,RIMC,ETASM

PRINT 660, V,RILG,RIMLG,RIMALG,RIMCLG,ETASM
PRINT 680, V,RI,RIH2,RIH2A,RIH2C,ETASH2
PRINT 680, V,RILG,RIHLG,RIHALG,RIHCLG,ETASH2
DO 80 I=2,NA

V=V+DELVA

CALL FTNBV(V)

PRINT 660, V,RI,RIM,RIMA,RIMC,ETASM

PRINT 660, V,RILG,RIMLG,RIMALG,RIMCLG,ETASM
PRINT 680, V,RI,RIH2,RIH2A,RIH2C,ETASH2
PRINT 680, V,RILG,RIHLG,RIHALG,RIHCLG,ETASH2
CONTINUE

CATHODIC SWEEP FROM THE CORROSION POTENTIAL

PRINT 650

PRINT 720

PRINT 655

V=V1BV

CALL FTNBV(V)

PRINT 660, V,RI,RIM,RIMA,RIMC,ETASM

PRINT 660, V,RILG,RIMLG,RIMALG,RIMCLG,ETASM
PRINT 680, V,RI,RIH2,RIH2A,RIH2C,ETASH2
PRINT 680, V,RILG,RIHLG,RIHALG,RIHCLG,ETASH2
DO 85 I=2,NC

V=V-DELVC

CALL FTNBV(V)

PRINT 660, V,RI,RIM,RIMA,RIMC,ETASM

PRINT 660, V,RILG,RIMLG,RIMALG,RIMCLG,ETASM
PRINT 680, V,RI,RIH2,RIH2A,RIH2C,ETASH2
PRINT 680, V,RILG,RIHLG,RIHALG,RIHCLG,ETASH2
CONTINUE

IF (IMBVPC.EQ.1) GO TO 3000

GENERATE MODIFIED B-V POLARIZATION CURVES
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CALL UJGO(CMC,CHC,PH2C,UMGO,UHGO)
CALL I0

PRINT 600

PRINT 610

PRINT 615, CMC,CHC,PH2C,CCLB,CCLSAT
PRINT 620

PRINT 630, UMTH,URGTH,UMGTH,UMGO,FMCL
PRINT 630, UHTH,URGTH,UHGTH,UHGO,FHCL
PRINT 640

PRINT 645, RIOM,RIOH2

ANODIC SWEEP FROM THE CORROSION POTENTIAL

PRINT 700

PRINT 710

PRINT 655

V=V1BV

CALL FTNMBV(V,CMC,CHC,PH2C)

PRINT 660, V,RI,RIM,RIMA,RIMC,ETASM

PRINT 660, V,RILG,RIMLG,RIMALG,RIMCLG,ETASM
PRINT 680, V,RI,RIH2,RIH2A,RIH2C,ETASH2
PRINT 680, V,RILG,RIHLG,RIHALG,RIHCLG,ETASH2
DO 90 I=2,NA

V=V+DELVA

CALL FTNMBV(V,CMC,CHC,PH2C)

PRINT 660, V,RI,RIM,RIMA,RIMC,ETASM

PRINT 660, V,RILG,RIMLG,RIMALG,RIMCLG,ETASM
PRINT 680, V,RI,RIH2,RIH2A,RIH2C,ETASH2
PRINT 680, V,RILG,RIHLG,RIHALG,RIHCLG,ETASH2
CONTINUE

CATHODIC SWEEP FROM THE CORROSION POTENTIAL

PRINT 700

PRINT 720

PRINT 655

V=V1BV

CALL FTNMBV(V,CMC,CHC,PH2C)

PRINT 660, V,RI,RIM,RIMA,RIMC,ETASM

PRINT 660, V,RILG,RIMLG,RIMALG,RIMCLG,ETASM
PRINT 680, V,RI,RIH2,RIH2A,RIH2C,ETASH2
PRINT 680, V,RILG,RIHLG,RIHALG,RIHCLG,ETASH2
DO 95 I=2,NC

V=V-DELVC

CALL FTNMBV(V,CMC,CHC,PH2C)

PRINT 660, V,RI,RIM,RIMA,RIMC,ETASM

PRINT 660, V,RILG,RIMLG,RIMALG,RIMCLG,ETASM
PRINT 680, V,RI,RIH2,RIH2A,RIH2C,ETASH2
PRINT 680, V,RILG,RIHLG,RIHALG,RIHCLG,ETASH2
CONTINUE
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3000 CONTINUE
4000 CONTINUE

IF (IRSR.EQ.1) GO TO 4

PRINT 750

PRINT 240, ROHM,ROHMU

PRINT 752

VDIF=-0.60

DO 40 I=1,40

VDIF=VDIF+0.04

CALL IRSCAN(YCORM,VDIF,ROHM,ROHMU,RPP,ERROR,ERRORU)

PRINT 755, VDIF,RPP,ERROR,ERRORU
40 CONTINUE
4 CONTINUE

READ FORMATS

100 FORMAT(313)

105 FORMAT(6(1PE10.3))
110 FORMAT(7(1PE10.3))
115 FORMAT(2(1PE10.3))
120 FORMAT(5(1PE10.3))
125 FORMAT(1PE10.3)
130 FORMAT(I2)

135 FORMAT(612)

140 FORMAT(4(1PE10.3))

PRINT FORMATS

200 FORMAT(1H ,*PROGRAM FIRST IS FOR */(3X,*1. THE DETERMINATION
10F THE CORROSION POTENTIAL*)/(3X,*2. THE GENERATION OF A METAL
2DISSOLUTION/HYDROGEN EVOLUTION POLARIZATION CURVE*))

202 FORMAT(1H ,/*PROGRAM PARAMETERS*/(1X, *NRM- NLIM= * ,12)/(10%,*
1INRM, IAP, ICP= O OR 1%)
2/(10X,*INRM= * 12 3X,*IAP= * 12 3X,*ICP= * 12)/
3/(1X,*FINY- IDUM= O OR 1 [1 IMPLIES THAT SECTION OF PROGRAM
4 IS BYPASSED]*))

203 FORMAT(1H ,/*COMPLX=*,F3.1,/* [0.0 IMPLIES CALCULATIONS WITH
1 COMPLEXING ARE NOT MADE]*)

204 FORMAT(1H ,/*NUMBER OF POLARIZATION POINTS, NA= * I2, % NC= *
112)

206 FORMAT(1H ,/*POLARIZATION MESH SIZE, DELVA= * F6.3,* DELVC= *
1,F6.3)

208 FORMAT(1H ,/*RATE CONSTANTS FOR BACK RXNS, RKCM=0, RKAH2=0,
1 FOR TAFEL APPROXIMATION*)

210 FORMAT(1H ,/*CORROSION POTENTIAL INTIAL GUESS, V0= * F6.3)



212

214

216

218
220
222
224
226
228
230
232
234
236
238
240
242
249
250

255

300
302
305
310
320
330
340
350
360
400

402
404
410
411
412

413
414
415
416

1 *)

210

FORMAT(1H ,/*PHYSICAL PARAMETERS*/(1X,*R= * 1PE10.3,4X, *F= *
1E10.3,4X,*T= * E10.3))
FORMAT(1H ,/*M.DATA M= 1, 2, OR 3*/(12X,*1. CU IN H2S04%*)
1/(12X,*%2. ZN IN HCL*)//
2(20X,*M= * 12 ,20X,*H2*)//(1X,*ALF A&C= *
3,4F10.4))
FORMAT(1H ,*RK  A&C= * 4(1PE10.3))
FORMAT(17H DM= ,1PE10.3,6X,*DH= *,E10.3)
FORMAT(17H : CMTB= ,1PE10.3,6X,*DH2= * E10.3)
FORMAT (33X, *SH2= * 1PE10.3)
FORMAT(33X,*CHB= *,1PE10.3)
FORMAT(33X,*PH2B= *,1PE10.3)
FORMAT(1H ,/*RPM= * F8.2,2X,*RNU= * 1PE10.3,2X,*RKAPAB= * ,E10.3)
FORMAT(1H ,/*CALCULATIONS*,//7H DELM= ,1PE15.6)
FORMAT(7H DELH= ,1PE15.6)
FORMAT(8H DELH2= ,1PE15.6/)
FORMAT(1H ,/*RKKPM= * 1PE10.3,2X,*RKKM= * E10.3)
FORMAT(1H ,/*RKKPH= * 1PE10.3,2X,*RKKH= * E10.3)
FORMAT(1H ,/*ROHM=*,1PE10.3,2X,*ROHMU=* E10.3)
FORMAT(1H ,/*RO=*,1PE10.3,2X,*A=% E10.3)
FORMAT(1H ,/* ACTIVITY COEFFICIENTS *)
FORMAT(1H ,/* CM CH CCL FMCL
1 FHCL *)
FORMAT(1H ,5(1PE10.3))
FORMAT(1H ,//*CORROSION POTENTIAL, CURRENT AND CONCENTRATIONS*)
FORMAT(1H ,/10X,*BUTLER-VOLMER*, 20X ,*TAFEL*)
FORMAT(7H VCOR= ,F10.8,F20.8)
FORMAT(7H ITOT= ,4(lPE15.6))
FORMAT(8H ICORM= ,S5(lPE15.6))
FORMAT(8H ICORH= ,4(lPE15.6)/)
FORMAT(8H CMCOR= ,2(1PE15.6))
FORMAT(8H CHCOR= ,2(1PE15.6))
FORMAT(9H PH2COR= ,2(1PE15.6)//)
FORMAT(1H ,/*GENERATION OF ANODIC KINETIC-DIFFUSION POLARIZATION
1 CURVE * ) . ‘
FORMAT(1H ,/* V RI RIM RIMA RIMC *)
FORMAT(1H ,* V RI RIH2 RIH2A RIH2C *)
FORMAT(1H ,* V INET M IMTA 1H2 TH2TC*)
FORMAT(1H ,* V CM CH PH2 *)
FORMAT(1H ,* V INET IR IRU DPHDIF
1DPHLJ *)
FORMAT(1H ,* V VSQXx VSQXU vsQ VSQU *)
FORMAT(1H ,* V ETASM ETASH UMGO UHGO *)
FORMAT(1H ,* VM  VSQXM VSQXUM VSQM VSQUM *)
FORMAT(1H ,* V YLG YMLG YTAMLG YHLG YTCHLG
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430
440
450
460
500

510

512

514

516
518

520
522

524

600
610

615
620

630
640
645
650

655

660
680
700

710
720
750
752
755
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FORMAT(1H , F6.3,5(1PE10.3))
FORMAT(1H , F6.3,3(1PE10.3))
FORMAT(1H , 3F6.3,2(1PE10.3))
FORMAT(1H , F6.3,4(1PE10.3))
FORMAT(1H , F6.3,4(1PE10.3)/)
FORMAT(1H ,///*GENERATION OF KINETIC-DIFF POLARIZATION CURVE*/
1 * CATHODIC SWEEP * )
FORMAT(1H ,/* CORROSION-CURRENT CALCULATIONS*//

1 * LINEAR APPROXIMATION*)

FORMAT(1H ,* UCORL=*,1PE10.3,5X,*RICORL=*,61PE10.3,5X,*PDIFL=*,

1 1PE10.3)

FORMAT(1H ,/* TAFEL APPROXIMATION*/

1 * UCOR=*,1PE10.3,5X,*RICOR=*,1PE10.3,5X,*PDIFT=*,1PE10.3)
FORMAT(1H ,/* STERN-GEARY POLARIZATION METHODS*)
FORMAT(1H ,/*BAM=* 1PE10.3,5X,*BCH=*,1PE10.3,//

1 *RK1=* 1PE10.3,5X,*RKP=* 1PE10.3)

FORMAT(1H ,/*RP OR RT=*,61PE10.3)
FORMAT(1H ,/*S-G; RICSG=*,1PE10.3,5X,*PDIFSG=*%,

1 1PE10.3)

FORMAT(1H ,*S-G, MODIFICATION; RICSGM=* 61PE10.3,5X,*PDIFM=%,

1 1PE10.3)

FORMAT(1H ,/1H ,*DATA FOR BUTLER-VOLMER AND MODIFIED B-V KINETIC

1 POLARIZATION CURVES*)

FORMAT(1H ,/1H ,* cMC CHC PH2C CCLB
1CCLSAT*,/) '

FORMAT(1H ,5(1PE10.3))

FORMAT(1H ,/1H ,* UJTH URGTH UJGTH UJGO

LFIN*,/)

FORMAT(1H ,5(1PE10.3))

FORMAT(1H ,/1H ,* RIOM RIOH2*)

FORMAT(1H ,2(1PE10.3 ))

FORMAT(1H1,/1H ,* GENERATION OF THE B-V KINETIC POLARIZATION
1CURVE*)

FORMAT(1H ,/* v INET 1 1A
11C ETA*) '

FORMAT(1H ,*ZINC * F6.3,4(1PE10.3),0PF6.3)

FORMAT(1H ,*HYDROGEN*,F6.3, 4(1PE10.3),0PF6.3)

FORMAT(1H1,/1H ,*GENERATION OF MODIFIED BUTLER-VOLMER KINETIC
1POLARIZATION CURVES*)

FORMAT(1H ,* ANODIC SWEEP*)

FORMAT(1H ,* CATHODIC SWEEP*)

FORMAT(1H ,/*EFFECT OF IR ON SCAN RATE%*)

FORMAT(1H ,//* VDIF RPP ERROR ERRORU */)

FORMAT(1H ,4(1PE10.3))

STOP

END

SUBROUTINE NRM(IBV,X,YM,YH2,Y,DY)

COMMON/1/

ITAF, INRM, IAP,ICP,IXPR



50

800

805

810
820
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COMMON/IN/ NLIM,V1,F,R,T,FF,RHO
COMMON/H2/B1,C1,BC,EP,QUAD
COMMON/M/YMA ,YMC,YMCD

N=1

PRINT 800, IBV
PRINT 805

PRINT 810, N,Vl

DO 50 N=2,NLIM

IDUM=0

CALL FTNY(IBV,IDUM,X,YM,YH2,Y,DY)
X=X-(Y/DY)

V=X/FF

PRINT 820, N,V,Y,YM,YH2,DY
CONTINUE

FORMAT(1H ,/*CORROSION POTENTIAL DETERMIVATION*/(lX *NRM

ITERATIONS IBV= * 12))

FORMAT(1H ,//* N v INET M
1H2 DI*)

FORMAT(1H ,I2,F14.10)

FORMAT(1H ,I2,F14.10,4(1PE18.10))

RETURN
END

SUBROUTINE FTNY(IBV,IDUM,X,YM,YH2,Y,DY)

COMMON/I/ ITAF,INRM,IAP,ICP,IXPR

COMMON/IN/ NLIM,V1,F,R,T,FF,RHO

COMMON/PARAMM/ ALFAM,ALFCM,RKAM,RKCMF,DM,CMTB,DELM

COMMON/PARAMH/ALFAH2 ,ALFCH2 ,RKAH2F ,RKCH2,DH,DH2, SH2 ,CHB,PH2B
,DELH,DELH2

COMMON/H2/B1,C1,BC,EP,QUAD

COMMON/M/YMA ,YMC, YMCD

COMMON/YLG/YMLG,YHLG, YLG

COMMON/CONC/CCLB, CCLSAT

COMMON/X/XX ,XXX,COMPLX

COMMON/CMCPLX/CM2 ,CM3, CM4 , CM5

COMMON/RKKP/RK1P,RK2P ,RK3P,RK4P

RKCM=RKCMF
RKAH2=RKAH2F

IF (IBV.EQ.0) GO TO 10

RKCM=0.0
RKAH2=0.0
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CONTINUE
FTIN YM(IBV,X)
COMPLX=0.0 FOR NO COMPLEXING, COMPLEX=1.0 FOR COMPLEXING

RK1P=RK1P*COMPLX

CCLBP=CCLB*1000.0

CCL=CCLBP/RHO

XX=CCL*(RK1P+RK1P*RK2P*CCL+RK1P*RK2P*RK3P*CCL**2
+RK1P*RK2P*RK3P*RK4P*CCL**3)

XXX=1.0/(XX+1.0)

CMB=CMTB* XXX

YMA=2.0*F*RKAM*EXP( ALFAM*X)
YMC=-2.0*F*CMB*RKCM*EXP (~ALFCM*X)
YMCD=(DELM/DM ) *RKCM*EXP(~ALFCM*X)

YMCD= XXX *(DELM/DM)*RKCM*EXP(—ALFCM*X)

YM=(YMA+YMC)/(1.0+YMCD)

FIN YH2(IBV,X)

DD=DELH2/DH2
AlH2=2.0*RKCH2*DD*EXP(-ALFCH2*X)
A2H2=(RKCH2*DD)**2*EXP(-2.0%ALFCH2*X)
A2=1,0+A1H2+A2H2

B1H2C=2.0*F*RKCH2*CHB*EXP(-ALFCH2*X)

B1H2A=( (F*(RKAH2**2))*DELH2/(2.0*DH2*SH2) )*EXP(2.0*ALFAH2*X)
B2H2C=2,0*F*(RKCH2**2 ) *CHB*DD*EXP(-2.0*ALFCH2*X)
B1=B1H2A+B1H2C

B2=B1H2A+B1H2C+B2H2C

ClH2A=-PH2B* ( (FARKAH2)**2)*EXP(2.0*ALFAH2*X)
C1H2C=( (F*RKCH2*CHB)**2)*EXP(-2.0*ALFCH2*X)
C1=C1H2A+C1H2C

BC=B1*Bl-4.0*Cl

QUAD=0.0

QUAD2=0.0

IF (IBV.EQ.1) GO TO 20

EP=2.0*B1H2C*Bl1H2A+B1H2A**2+4. 0% (~C1H2A)

EP2=B1H2A**2+2.0*B1H2C*B1H2A
+2.0*B1H2A*B2H2C-4. 0% (C1H2A+A1H2*C1H2A
+A2H2*C1H2A)

QUAD=SQRT(EP)

QUAD2=SQRT(EP2)
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C
20 CONTINUE

C

C YH2=(-2.0*C1)/(B1+QUAD)
YH2=(-2.0*C1)/(B2+QUAD2)

c

c FTN Y(IBV,X,)

C
Y=YM+YH2

C
YMLG=ALOG10(ABS(YM))
YHLG=ALOG1O0(ABS(YH2))
YLG=ALOG10(ABS(Y))

C
IF(IXPR.EQ.1) GO TO 40

C
PRINT 900, Bl,Cl,BC,QUAD,YH2
PRINT 910, YMA,YMC,YMCD,YM

C

900 FORMAT(1H ,*Bl=* 1PE20.12,3X,*Cl=* E20.12,3X,*BC=*,E20.12,3X,
1 *QUAD=* E15.6,3X,*YH2=* E15.6)

910 FORMAT(1H ,*YMA=*,1PE15.6,3X,*YMC=*,E15.6,3X,*YMCD=* ,E15.6,3X,
1 *YM=* E15.6)

C
40 IF(IDUM.EQ.1) RETURN

c

C FTN DY(IBV,X,)

c ,
DYMA=ALFAM*YMA
DYMC=ALFCM*YMC
DYMCD=~ALFCM*YMCD

c
DYM=( (1.0+YMCD)*(DYMA+DYMC)~( YMA+YMC)*DYMCD)/(1.0+YMCD)**2

C

DCl1=-2.0*ALFCH2*C1H2C~2.0*ALFAH2*C1H2A

C DB1=-ALFCH2*B1H2C+2 .0*ALFAH2*B1H2A
DB2=-ALFCH2*B1H2C+2.0*ALFAH2*B1H2A-2.0*ALFCH2*B2H2C
DA2=-ALFCH2*A1H2-2.0*ALFCH2*A2H2

DA2C1=A2*DC1+C1*DA2
C
C DQUAD=0.0
DQUAD2=0.0
IF (IBV.EQ.1) GO TO 30
C DQUAD=0. 5% (QUAD** (-0.5) )*(2.0*B1*DB1~4.0%*DC1)

DQUAD2=0.5* (QUAD2**(~-1.0))*(2.0*B2*DB2-4.0*DA2C1)
30 CONTINUE

C .

C DYH2=(=(B1+QUAD)*2.0*DC1+2.0*C1*(DB1+DQUAD) )/ (B1+QUAD)**2
DYH2=(~-(B2+QUAD2)*2.0*DC1+2.0*C1*(DB2+DQUAD2) )/ (B2+QUAD2) **2

C

DY=DYM+DYH2
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RETURN
END

SUBROUTINE FTNBV(V)

COMMON/I/ ITAF,INRM,IAP,ICP,IXPR

COMMON/IN/ NLIM,V1,F,R,T,FF,RHO

COMMON/PARAMM/ ALFAM,ALFCM,RKAM,RKCMF ,DM,CMTB,DELM

COMMON/PARAMH/ALFAH2 , ALFCH2 ,RKAH2F ,RKCH2,DH,DH2,SH2, CHB,PH2B
,DELH,DELH2

COMMON/H2/B1,Cl1,BC,EP,QUAD

COMMON/M/YMA , YMC, YMCD

COMMON/U/UMTH,UHTH,URGTH, UMGTH, UHGTH

COMMON/CONC/CCLB,CCLSAT.

COMMON/CC/CMC, CHC ,PH2C

COMMON/FIN/FMCL,FHCL

COMMON/ETA/ETASM,ETASH2

COMMON/RII/RIOM,RIMA,RIMC,RIM,RI

COMMON/RIH/RIOH2,RIH2A,RIH2C,RIH2

COMMON/RILOG/RIMALG, RIMCLG,RIMLG,RIHALG,RIHCLG, RIHLG,RILG

RKCM=RKCMF
RKAH2=RKAH2F

CALL UJGO(CMC,CHC,PH2C,UMGO,UHGO)
ETASM=V-UMGO
RIMA=RIOM*EXP(ALFAMXFF*ETASM)
RIMC=-RIOM*EXP (~ALFCM*FF*ETASM)
RIM=RIMA+RIMC

ETASH2=V-UHGO
RIH2A=RIOH2*EXP(ALFAH2*FF*ETASH2)
RIH2C=~RIOH2*EXP(-ALFCH2*FF*ETASH2)
RIH2=RIH2A+RIH2C

RI=RIM+RIH2

RIMALG=ALOG1O(ABS(RIMA))
RIMCLG=ALOG10(ABS(RIMC))
RIMLG=ALOG10(ABS(RIM))
RIHALG=ALOG10(ABS(RIH2A))
RIHCLG=ALOG10(ABS(RIH2C))
RIHLG=ALOG10(ABS(RIH2))
RILG=ALOG10(ABS(RI))
RETURN

END

SUBROUTINE FTNMBV(V,CMC,CHC,PH2C)
COMMON/I/ ITAF,INRM,IAP,ICP,IXPR
COMMON/IN/ NLIM,V1,F,R,T,FF,RHO
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COMMON/PARAMM/ ALFAM,ALFCM,RKAM,RKCMF,DM, CMTB,DELM

COMMON/PARAMH/ALFAH2 ,ALFCH2 ,RKAH2F ,RKCH2 ,DH,DH2,SH2,CHB,PH2B
,DELH,DELH2

COMMON/H2/B1,C1,BC,EP,QUAD

COMMON/M/YMA , YMC, YMCD

COMMON/U/UMTH,UHTH,URGTH, UMGTH,UHGTH

COMMON/CONC/CCLB,CCLSAT

COMMON/FIN/FMCL,FHCL

COMMON/ETA/ETASM,ETASH2

COMMON/RII/RIOM,RIMA,RIMC,RIM,RI

COMMON/RIH/RIOH2,RIH2A,RIH2C,RIH2

COMMON/RILOG/RIMALG, RIMCLG,RIMLG,RIHALG,RIHCLG,RIHLG,RILG

CONTINUE

RKCM=RKCMF
RKAH2=RKAH2F

CALL UJGO(CMC,CHC,PH2C,UMGO,UHGO)
ETASM=V-UMGO :
RIMA=2.0*F*RKAM*EXP(ALFAMXFF*V)
RIMC=-2.0*F*RKCM*CMC*EXP (~ALFCM*FF*V)
RIM=RIMA+RIMC

ETASH2=V-UHGO
RIH2A=F*RKAH2*PH2C**(1.0/2.0)*EXP(ALFAH2*FF*V)
RIH2C=-F*RKCH2*CHC*EXP(-ALFCH2*FF*V)
RIH2=RIH2A+RIH2C

RI=RIM+RIH2

RIMALG=ALOGLlO(ABS(RIMA))
RIMCLG=ALOG10O(ABS(RIMC))
RIMLG=ALOG10(ABS(RIM))
RIHALG=ALOG10(ABS(RIHZ2A))
RIHCLG=ALOGlO(ABS(RIH2C))
RIHLG=ALOGLO(ABS(RIH2))
RILG=ALOG10(ABS(RI))
RETURN

END

FUNCTION CM(YM)

COMMON/IN/ NLIM,V1,F,R,T,FF,RHO

COMMON/PARAMM/ ALFAM,ALFCM,RKAM,RKCMF,DM, CMTB,DELM
COMMON/CONC/CCLB, CCLSAT

COMMON/X/XX,XXX,COMPLX
COMMON/CMCPLX/CM2,CM3,CM4 ,CMS
COMMON/RKKP/RK1P,RK2P ,RK3P,RK4P

CM IS ZINC ++ ION CONCENTRATION AT THE SURFACE
CMTB IS TOTAL ZINC CONCENTRATION IN THE BULK
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CMB IS ZINC ++ ION CONCENTRATION IN THE BULK

CCLBP=1000.0*CCLB
RK1P=RK1P*COMPLX

CM= XXX *(CMTB+(YM*DELM)/(2.0*F*DM))
CM2=RK1P*CM*CCLBP/RHO
CM3=RK1P*RK2P*CM*(CCLBP/RHO)**2
CM4=RK1P*RK2P*RK3P*CM* (CCLBP/RHO)**3
CM5=RK1P*RK2P*RK3P*RK4P*CM* (CCLBP/RHO) **4

RETURN
END

FUNCTION CH(YH2)

COMMON/IN/ NLIM,V1,F,R,T,FF,RHO
COMMON/PARAMH/ALFAH2 ,ALFCH2 ,RKAH2F ,RKCH2 ,DH,DH2, SH2,CHB, PH2B
,DELH, DELH2

USE LATER WHEN CH DOES NOT EQUAL CHB
CH=CHB+YH2*DELH/ (F*DH) .

CH=CHB
RETURN
END

FUNCTION PH2(YH2)

COMMON/IN/ NLIM,V1,F,R,T,FF,RHO
COMMON/PARAMH/ALFAH2 ,ALFCH2 ,RKAH2F ,RKCH2,DH,DH2,SH2, CHB,PH2B ,DEL
,DELH2

PH2=PH2B-YH2*DELH2/(2.0*F*DH2*SH2)

RETURN
END

FUNCTION DEL(D,RNU,RPM)

ROT=RPM*2.0%*3.14159/60.0
DEL=1.6117*(D**(1.0/3.0))*(RNU**(1.0/6.0))/SQRT(ROT)

RETURN
END
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SUBROUTINE KS
COMMON/IN/ NLIM,V1,F,R,T,FF,RHO

COMMON/PARAMM/ ALFAM,ALFCM,RKAM,RKCMF,DM,CMTB,DELM
COMMON/PARAMH/ALFAH2 , ALFCH2 , RKAH2F ,RKCH2 ,DH,DH2,SH2, CHB ,PH2B,
DELH,DELH2

COMMON/U/UMTH,UHTH,URGTH,UMGTH, UHGTH |
COMMON/CONC/CCLB,CCLSAT

COMMON/FIN/FMCL,FHCL

COMMON/KK/RKKPM ,RKKM, RKKPH , RKKH

UMGTH=UMTH-URGTH
RLKKPM=2.0*FF*UMGTH+2.0*ALOG(CCLSAT*1000.0/RHO)
RKKPM=EXP(RLKKPM)

RKKM=RKKPM*1000.0*FMCL/RHO

RKCMF=RKAM*RKKM

UHGTH=UHTH-URGTH
RLKKPH=FF*UHGTH+ALOG(CCLSAT*1000.0/RHO)
RKKPH=EXP (RLKKPH)
RKKH=RKKPH*1000.0*FHCL/RHO
RKAH2F=RKCH2/RKKH

. RETURN

END

SUBROUTINE UJGO(CMO,CHO,PH20,UMGO,UHGO)
COMMON/IN/ NLIM,V1,F,R,T,FF,RHO
COMMON/U/UMTH, UHTH, URGTH , UMGTH, UHGTH
COMMON/CONC/CCLB, CCLSAT
COMMON/CC/CMC, CHC, PH2C
COMMON/FIN/FMCL,FHCL

UMGTH=UMTH-URGTH
FMCL=1.0
UMGO=UMGTH + (1.0/(2.0*FF))*
ALOG( (CMO*1000.0%( (CCLSAT*1000.0)**2)*FMCL)/(RHO**3) )

UHGTH=UHTH-URGTH

FHCL=1.0

UHGO=UHGTH+(1.0/FF)
*ALOG ( (CHO*1000.*CCLSAT*1000.*FHCL)/(RHO**2) )
-(1.0/(FF*2.0))*ALOG(PH20)

RETURN
END

SUBROUTINE I0

COMMON/IN/ NLIM,V1,F,R,T,FF,RHO

COMMON/PARAMM/ ALFAM,ALFCM,RKAM,RKCMF ,DM,CMTB,DELM
COMMON/PARAMH/ALFAH2 , ALFCH2 , RKAH2F ,RKCH2 , DH,DH2, SH2, CHB, PH2B
DELH,DELH2

COMMON/CC/CMC, CHC , PH2C
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COMMON/FIN/FINM,FINH2
COMMON/RII/RIOM,RIMA,RIMC,RIM,RI
COMMON/RIH/RIOH2,RIH2A,RIH2C,RIH2

RKCM=RKCMF

RKAH2=RKAH2F

RIOM=2.0*F*RKAM** (ALFCM/2.0)*RKCM**(ALFAM/2.0)
*CMC**(ALFAM/2.0)

RIOH2=1.0*F*RKAH2**(ALFCH2/1.0)*RKCH2** (ALFAH2/1.0)
*PH2C** (ALFCH2/(2.0%*1.0))
*CHC**(ALFAH2/1.0)

RETURN
END

FUNCTION RKAPA(M,CHB)
RLAMH=349.8

RLAMCL=76.34

RLAMS0=80.0

RKAPA=CHB* (RLAMH+RLAMCL)

IF (M.EQ.2) GO TO 20
RKAPA=2.0%*CHB* (RLAMH+RLAMSO)
CONTINUE

RETURN

END

SUBROUTINE POTLJ(DPHLJ)

COMMON/CONC/CCLB,CCLSAT

COMMON/IN/ NLIM,V1,F,R,T,FF,RHO

COMMON/PARAMM/ ALFAM,ALFCM,RKAM,RKCMF ,DM,CMTB,DELM
COMMON/PARAMH/ALFAH2 , ALFCH2 ,RKAH2F ,RKCH2 ,DH,DH2, SH2, CHB,PH2B,
DELH,DELH2 :
DK=0.00001957

DCL=0.00002032

CM1=CMTB

CM2=0.0

CH1=CHB

CH2=0.001

CCL1=CCLB

CCL2=CCLSAT

CK1=0.0

CK2=CCLSAT

A=2.0*DM* (CM1-CM2 )+DH* (CH1~CH2)-DCL*(CCL1~CCL2)+DK* (CK1-CK2)
Bl=4 .0*DM*CM1+DH*CH1+DCL*CCL14DK*CK1
B2=4.0*DM*CM2+DH*CH2+DCL*CCL2+DK*CK2
DPHLJ=~(R*T/F)*A*ALOG(B1/B2)/(B1-B2)

RETURN
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END

FUNCTION DIFPOT(CMO,CHO,PH20)
COMMON/OHM/RO , RKAPAB , ROHM, ROHMU

COMMON/CONC/CCLB, CCLSAT

COMMON/IN/ NLIM,V1,F,R,T,FF,RHO

COMMON/PARAMM/ ALFAM,ALFCM,RKAM,RKCMF,DM,CMTB,DELM
COMMON/PARAMH/ALFAH2 ,ALFCH2 , RKAH2F ,RKCH2 , DH, DH2 , SH2 , CHB, PH2B,
DELH,DELH2

COMMON/RKKP/RK1P,RK2P,RK3P, RK4P

COMMON/X /XX, XXX , COMPLX

CCLO=CCLB
DCL=0.00002032

DIFPOT=(F/RKAPAB)*(2.0*DM* (CMB-CMO)+DH* (CHB-CHO)-DCL
*(CCLB-CCLO))

COMPLX=0.0 FOR NO COMPLEXING

RK1P= COMPLX *RK1P
CMB=CMTB*XXX
CCLBP=CCLB*1000.0
DIFPOT=(F/RKAPAB)*DM* (CMB-CMO)*
(2 .0+RK1P*CCLBP/RHO
-RK1P*RK2P*RK3P* (CCLBP/RHO)**3
-2 .0*RK1P*RK2P*RK3P*RK4P* (CCLBP/RHO) **4)
+(F/RKAPAB ) * (DH* (CHB-CHO ) -DCL* ( CCLB-CCLO) )
RETURN
END

SUBROUTINE VSQFN(V,VM,YR,VSQ,VSQM)
COMMON/POT/VCOR ,DPHDIF ,DPHLJ
VM=V-VCOR

VS Q=V+YR+DPHDIF+DPHLJ
VSQM=VSQ-VCOR

RETURN

END

SUBROUTINE VSQXFN(V,VM,YR,VSQX,VSQXM)
COMMON/POT/VCOR ,DPHDIF ,DPHLJ
VM=V-VCOR

VSQX=V+YR

VSQXM=VSQX-VCOR

RETURN

END

SUBROUTINE OHMR
COMMON/B/BAM,BCH,A
COMMON/OHM/RO,RKAPAB ,ROHM, ROHMU
RO=0.25
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PI=3.141069

A=PI*RO**2
ROHM=1.0/ (4 .0*RKAPAB*RO)
ROHMU=ROHM*4 .0/P1
RETURN

END

SUBROUTINE OHMPOT(Y,DPHOHM,DPHOMU)
COMMON/B/BAM,BCH, A
COMMON/OHM/RO, RKAPAB , ROHM, ROHMU
DPHOHM=Y*A*ROHM

DPHOMU=Y* A*ROHMU

RETURN

END

SUBROUTINE CORR(UMGO,UHGO,UCOR,UCORL,RICOR,RICORL)
COMMON/PARAMM/ ALFAM, ALFCM,RKAM,RKCMF ,DM,CMTB,DELM
COMMON/PARAMH/ALFAH2 ,ALFCH2 , RKAH2F ,RKCH2,DH,DH2,SH2,CHB,PH2B,
DELH,DELH2
COMMON/IN/ NLIM,V1,F,R,T,FF,RHO
COMMON/RII/RIOM,RIMA,RIMC,RIM,RI
COMMON/RIH/RIOH2,RIH2A,RIH2C,RIH2
UCOR=(ALFAM*UMGO+ALFCH2*UHGO+(1.0/FF)*ALOG(RIOH2/RIOM))/

(ALFAM+ALFCH2)
UCORL=(RIOM*ALFAM*UMGO-RIOH2*ALFCH2*UHGO) / (ALFAM+ALFCH2)
RICOR=RIOM** (ALFCH2/(ALFAM+ALFCH2))

*RIOH2**(ALFAM/ (ALFAM+ALFCH2))

*EXP(ALFAM*ALFCH2/ (ALFAM+ALFCH2)*FF* (UHGO-UMGO) )
RICORL=(ALFAM*RIOM*ALFCH2*RIOH2/(ALFAM*RIOM-ALFCH2*RIOH2))

*FF* (UMGO-UHGO)

RETURN
END

SUBROUTINE SGPM(UMGO,UHGO,RK1,RKP,EXM,EXH,EXM1,EXH1,DELPM)
COMMON/PARAMM/ ALFAM,ALFCM,RKAM,RKCMF,DM,CMTB,DELM
COMMON/PARAMH/ALFAH2 , ALFCH2, RKAH2F ,RKCH2,DH,DH2,SH2,CHB,PH2B,
DELH,DELH2

COMMON/IN/ NLIM,V1,F,R,T,FF,RHO
COMMON/OHM/RO,RKAPAB ,ROHM, ROHMU
COMMON/POT/VCOR,DPHDIF ,DPHLJ

COMMON/B/BAM,BCH, A

BAM=2.303/(ALFAM*FF)

BCH=2.303/(ALFCH2*FF)

RK=BAM*BCH/(2.303*(BAM+BCH))

RK1=1.0/RK

DELPM=VCOR-UMGO

DELPH=UHGO-VCOR

EXM=(EXP(2.0*FF*DELPM)-1.0)

EXM1=2.0*FF*(1.0/EXM)

EXH=(EXP(FF*DELPH)-1.0)

EXH1=FF*(1.0/EXH)
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RKP=RK1+EXM1+EXH]1
RICSG=RK/(A*RP)
RICSGM=1.0/ (RP*A*RKP)
RETURN

END

FUNCTION PDIF(Y,YCORM)
PDIF=(Y~-YCORM)*100.0/YCORM
RETURN

END

SUBROUTINE ACTIVC(CMO,CHO,CCLO)
COMMON/FIN/FMCL,FHCL
CMP=1000.0*CMO

CHP=1000.0*CHO
CCLP=1000.0*CCLO

ALPHAP=1.1779

BPA=1.0

BETPH=0.27

BETPM=0.2
SQRTIP=0.5%(CHP+4.0*CMP+CCLP)
FM1=-6.0*ALPHAP*SQRTIP/(1.0+BPA*SQRTIP)
FM2=4 .0*BETPH*CHP
FM3=2.0*BETPM* (2.0*CMP+CCLP)
ALNFM=FM1+FM2+FM3
FMCL=EXP(ALNFM)

FH1=-ALPHAP*SQRTIP/(1.0+BPA*SQRTIP)
FH2=FM2

FH3=FM3

ALNFH=FH1+FH2+FH3

FHCL=EXP(ALNFH)

RETURN
END

SUBROUTINE IRSCAN(YCORM,VDIF,ROHM,ROHMU,RPP,ERROR,ERRORU)
COMMON/PARAMM/ ALFAM,ALFCM,RKAM,RKCMF,DM,CMTB,DELM
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COMMON/ PARAMH/ALFAH2 , ALFCH2 ,RKAH2F ,RKCH2 , DH,DH2, SH2,, CHB ,PH2B,

DELH,DELH2

COMMON/IN/ NLIM,V1,F,R,T,FF,RHO
COMMON/B/BAM, BCH, A
FFM=ALFAM*FF

FFH=ALFCH2*FF

ARP1=YCORM*FFM*EXP(FFM*VDIF )+YCORM*FFH*EXP(~FFH*VDIF)

RPP=1.0/(ARP1*A)
ERROR=ROHM*100.0/ (RPP+ROHM)
ERRORU=ROHMU*100.0/ (RPP+ROHMU)
RETURN

END
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