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SUMMARY – Post-treatment radiation and chemotherapy of malignant primary glial neoplasms 
present a wide spectrum of tumor appearances and treatment-related entities. Radiologic findings 
of these post-treatment effects overlap, making it difficult to distinguish treatment response and 
failure. The purposes of this article are to illustrate and contrast the imaging appearances of recur-
rent tumor from necrosis and to discuss other radiologic effects of cancer treatments. It is critical for 
radiologists to recognize these treatment-related effects to help direct clinical management.

Neuroimaging Findings of the Post-Treatment	
Effects of Radiation and Chemotherapy	
of Malignant Primary Glial Neoplasms

M.D. Mamlouk, J. Handwerker, J. Ospina, A.N. Hasso
Department of Radiology, University of California; Irvine, Orange, CA, USA
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Introduction

Imaging malignant primary glial neoplasms 
after cancer treatment poses a diagnostic di-
lemma due to the heterogeneity of treatment-
related effects. To compound matters, the 
distinction between typical effects related to 
therapy and those of worsening or recurrent 
neoplasm is blurred. This results in a diagnos-
tic conundrum that may delay diagnosis and 
subsequent management.

This article presents a spectrum of the neu-
roimaging findings related to radiation and 
chemotherapy of malignant primary glial neo-
plasms. The discussion will be limited to the 
intracranial findings—head and neck patholo-
gies will not be addressed. Specific topics in-
clude (a) radiation necrosis versus recurrent 
tumor, (b) pseudoprogression and pseudore-
sponse, (c) nonenhancing tumor, (d) radiation-
induced neoplasia, (e) white matter injury and 
leukoencephalopathy, and (f) vascular-related 
pathologies. This collage of entities will be de-
picted through computed tomography (CT) and 
magnetic resonance (MR) imaging, including 
advanced MR techniques such as perfusion, 
spectroscopy, and diffusion.

Radiation Necrosis, Tumor Recurrence, 
Radiation-Induced Neoplasia

Radiation Necrosis

The incidence of radiation necrosis after radi-
otherapy for brain tumors ranges from 3-24% 1. 
Radiation necrosis usually occurs approximately 
two to 32 months after radiotherapy, with 85% 
of cases occurring within two years 2. Earlier 
presentations of necrosis can be seen when 
there is combined radiation and chemotherapy 

3. The likelihood of radiation necrosis is related 
to both the volume of irradiated brain and the 
total radiation dose administered. With a total 
dose <45 Gy, 5% of patients may develop necro-
sis 4, whereas the likelihood of necrosis markedly 
increases with a total dose >64.8 Gy 5. Fraction-
ated radiation, the administration of smaller 
doses over multiple attempts, is more commonly 
used to allow non-cancerous cells to recover 2,6.

Knowledge of the radiation technique and 
field are other important factors when evalu-
ating patients with radiation necrosis. The 
modern intensity-modulated radiation ther-
apy technique is commonly used because it 
provides the best tradeoff of tumor dose with 
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altering the fibrinolytic enzyme and immune 
systems 7. Radiation-induced endothelial cell 
apoptosis is a common pathway that leads to 
disruption of the blood-brain barrier—the hall-
mark explanation for enhancement and sur-
rounding edema in radiation necrosis 8,9.

Radiation necrosis most commonly appears 
at the original tumor location—the site of 
maximum radiation delivery. Radiation necro-
sis usually consists of a single lesion; however, 
multiple lesions can arise, albeit less commonly. 
Periventricular white matter is the most com-
mon site of radiation injury, possibly due to a 
poor blood supply that produces ischemia 10,11. 

relative sparing of normal tissues. Stereotactic 
radiation therapy delivers radiation with the 
guidance of fiducial markers. Radiosurgery, 
a type of stereotactic therapy performed with 
gamma knife, delivers a single fraction of radi-
ation. While a complete overview of the various 
radiotherapy techniques is beyond the scope of 
this article, acknowledging the specific type of 
radiotherapy used in each patient is essential 
to characterize radiation necrosis on imaging.

The exact pathogenesis of radiation-induced 
toxicity is not fully understood, but includes a 
combination of proposed mechanisms: vascu-
lar injury, glial and white matter damage, and 

Sequence

Entity T1C T2 DSC MR 
Perfusion

MR 
Spectroscopy

DWI Notable comments

Radiation Necrosis ↑ ↑ ↓ rCBV Variable
Cho/Cr
↓ Cho/NAA
↑ Lipids

Variable/↓ “Swiss cheese-like” enhancement

Recurrent Tumor ↑ ↑ ↑ rCBV ↑ Cho/Cr
↑ Cho/NAA

Variable/↑ Multiple lesions, cross midline

Pseudoprogression ↑→↓ ↑→↓ ↓ rCBV/
Variable

Variable Variable Follow-up imaging important

Pseudoresponse ↓→↑ ↓→↑ ↓ rCBV/
Variable

Variable Variable Follow-up imaging important; 
occurs with anti-angiogenic drugs 

Table 1  MR characteristics of post-treatment radiation necrosis and tumor.

Figure 1  Radiation necrosis in a 73-year-old woman after ra-
diation therapy for astrocytoma. Axial contrast-enhanced fat-
saturated T1-weighted MR image shows an enhancing periv-
entricular lesion with a “Swiss cheese” configuration (arrows).

➔

➔
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A B

C D

Figure 2  Recurrent glioblastoma multiforme in a 51-year-old man after radiation therapy. A) Axial contrast-enhanced fat-saturat-
ed T1-weighted MR image shows a large enhancing necrotic mass centered in the right parietal lobe. B) DSC perfusion MR image 
shows increased rCBV in the anteromedial aspect of the lesion compatible with recurrent tumor (arrows). C,D) MR multi-voxel 
spectroscopy maps (TE=144 milliseconds) show a Cho/Cr peak ratio of 3.32 (C) and a Cho/NAA peak ratio of 1.94 (D) in the same 
anteromedial region compatible with recurrent tumor.

➔
➔
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The classic MR appearance of radiation 
necrosis is depicted as an enhancing periven-
tricular mass with a “soap bubble” or “Swiss 
cheese-like” necrotic interior 7; (Figure 1). Swiss 
cheese lesions are more diffuse, larger, and more 
variable in size than the soap bubble pattern.

Tumor Recurrence

High-grade gliomas have a tendency to recur 
despite advances in treatment. Based on the Re-
sponse Assessment in Neuro-Oncology (RANO) 
Working Group criteria, new enhancement out-
side of the radiation field is one of the criteria 
indicative of tumor progression 12. Enhancing 
lesions that cross the midline or involve the cor-
pus callosum are more likely to represent recur-
rent tumor than radiation necrosis. Multiplic-
ity of lesions and new ependymal disease are 
other signs that suggest neoplastic spread 13,14. 

Despite these useful tips and criteria, non-
specific enhancement in a single lesion within 
the radiation field is more common and this 
poses a diagnostic dilemma—nonspecific en-
hancement may represent recurrent tumor, ra-
diation necrosis, or the combination. Moreover, 
even the aforementioned classic appearances of 
radiation necrosis do not reliably differentiate 

➔

A B

Figure 3  Radiation necrosis in an 86-year-old man after radia-
tion therapy for high-grade glioma. A) Axial contrast-enhanced 
fat-saturated T1-weighted MR image shows an irregular en-
hancing mass in the left parietal lobe. B) DSC perfusion MR 
image shows low rCBV in the lesion (arrow). C) Fused PET-
CT with 2-[fluorine-18] fluoro-2-deoxy-D-glucose shows focal 
decreased glucose metabolism in the lesion (arrow). PET-CT 
is an additional imaging modality in the radiologist’s arma-
mentarium, but the definitiveness of differentiating necrosis 
or recurrent tumor is not always straightforward.

C

➔
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necrosis from tumor 15. Positron emission to-
mography (PET) has been used as an adjunct 
to help answer this clinical question, but with 
mixed results 16,17. Because of these equivocal 
conventional MR and PET findings, advanced 
MR techniques such as perfusion, spectros-
copy, and diffusion have been researched in ef-
forts to lessen this diagnostic dilemma. These 
advanced MR techniques will be discussed in 
detail henceforth (Table 1).

Dynamic Susceptibility Contrast MR Perfusion

Dynamic susceptibility contrast (DSC) MR 
perfusion has played a significant role in differ-
entiating recurrent tumor and radiation necro-
sis 14,18-23. The rationale for DSC MR perfusion is 
that recurrent tumors have a greater blood sup-
ply secondary to neo-angiogenesis compared to 
radiation-induced necrotic brain. Relative cer-
ebral blood volume (rCBV) is the primary DSC 
MR perfusion parameter and is measured by 
placing a region of interest over the enhanc-
ing lesion. A second region of interest is placed 
in the contralateral white matter, at approxi-
mately the same location, to establish a con-
trol cerebral blood volume. Attention is made 
to avoid susceptibility artifacts, partial volume 
effects, and vasculature when drawing the re-
gions of interest. DSC MR perfusion shows that 
tumors have a higher rCBV than the control 
cerebral blood volume 20; (Figure 2). This is in 
contrast to a smaller rCBV between radiation 
necrosis and the control (Figure 3). Absolute 
rCBV cutoffs between tumor and necrosis have 
not been established, but an rCBV greater than 
2.6 and an rCBV less than 0.6 were suggestive 
of recurrent tumor and nonneoplastic contrast-
enhancing tissue, respectively 22. rCBV is use-
ful to distinguish tumor and necrosis; however, 
overlapping rCBV values can occur 20. T2*-
weighted relative peak height and percentage 
of signal intensity recovery, the latter being a 
marker of capillary permeability, are two other 
MR perfusion parameters that also have been 
shown to be accurate indicators of recurrent 
tumor, and may be less prone to measurement 
overlap between the two entities 20. Lastly, 
arterial spin labeling is another alternative 
in MR perfusion analysis instead of DSC 24.

MR Spectroscopy

MR spectroscopy attempts to identify tumor 
recurrence on a biochemical level. Tumor recur-
rence is characterized by high ratios of choline/

creatine (Cho/Cr) and choline/N-acetylaspar-
tate (Cho/NAA) (Figure 2). Radiation necrosis 
shows elevated lactate and lipid peaks. Despite 
these characteristics, there has been conflicting 
literature on the success of MR spectroscopy 
to distinguish recurrent tumor from radiation 
injury 25. A major problem in comparing differ-
ent studies on MR spectroscopy is the use of 
various methods to calculate metabolite ratios 

25. Another pitfall is due to similar metabolite 
peaks with radiation-injured brain, such as de-
creased NAA 25. Lesions close to the ventricu-
lar system or skull yield unreliable measure-
ments due to magnetic susceptibility artifact 20. 
Lastly, the use of single versus multiple voxel 
spectroscopy has produced conflicting data.

Fink et al. showed multiple voxel spectros-
copy to be superior to the single voxel technique. 
Single voxel spectroscopy suffers from volume 
averaging, the uncertainty of ideal voxel loca-
tion, and the possibility of selection bias 19. This 
group showed that multi-voxel techniques were 
statistically reliable to detect recurrent tumor. 
A multi-voxel Cho/Cr peak-area >1.54 and Cho/
NAA peak height >1.05 had 93.1% and 89.7% 
accuracies for recurrent tumor, respectively. 
Similar findings were seen in another study 
that also used multiple voxel spectroscopy 26. 
While more research is needed to validate re-
sults, initial data on multiple voxel spectros-
copy are promising to differentiate recurrent 
tumor from radiation-related changes.

Diffusion-Weighted Imaging 

Diffusion-weighted imaging (DWI) has been 
studied to differentiate recurrent tumor and 
necrosis. Originally, the two premises of DWI 
concerning tumor were: (a) highly cellular tu-
mors show reduced diffusion, and (b) apparent 
diffusion coefficient (ADC) values are lower 
in recurrent tumor than radiation necrosis 

27. However, these observations have pitfalls. 
DWI and ADC show heterogeneous signal in-
tensities due to variable tumor cellularity, as 
well as regions of mixed tumor and necrosis. 
ADC values in recurrent tumor are not con-
sistent—low or high ADC values may be seen 

28. In addition, inflammatory processes, such 
as radiation-induced inflammation, are often 
present and may cause altering signal effects. 
Thus, ADC does not always provide definitive 
information with regard to the presence of re-
current tumor, but recent research shows ADC 
may provide a more adjunctive role. Pope et al. 
found that ADC histogram analysis of MR im-
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C D

Figure 4  Pseudoprogression in a 68-year-old woman with glioblastoma multiforme. A-D) Axial contrast-enhanced fat-saturated 
T1-weighted MR images show a large enhancing mass centered in the right thalamus prior to treatment (A), immediately postop-
erative (B), two months later with increased contrast enhancing tumor after temozolomide chemoradiotherapy (C), and one month 
later with decreased tumor enhancement (D). T2-weighted images (not shown) demonstrated peri-tumoral vasogenic edema that 
followed the same patterns as contrast enhancement.
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fact, pseudoprogression has been shown to re-
sult in improved overall survival 33, thus correct 
diagnosis is important.

The mechanism of pseudoprogression has not 
been fully elucidated, but it is likely that chem-
oradiotherapy damages tumor and endothelial 
cells. This results in increased edema and ab-
normal vessel permeability, which mimic tu-
mor progression 34. 

Conventional MR findings show increased 
tumor enhancement and edema due to an al-
tered blood-brain barrier. On subsequent im-
aging, without additional chemoradiotherapy 
cycles, if the tumor enhancement decreases or 
stabilizes, this is a sign of pseudoprogression 
and a favorable marker of treatment response 
(Table 1; Figure 4). In contrast, if the majority 
of new enhancement is outside the radiation 
field, either within or after the first 12 weeks of 
chemoradiotherapy, the RANO criteria classify 
this enhancement as true tumor progression 12. 
Additional criteria defining progressive disease 
before and after 12 weeks of chemoradiother-
apy are mentioned in the RANO criteria 12. 

DSC MR perfusion may show decreased 
rCBV in cases of pseudoprogression 35. MR 
spectroscopy and DWI characteristics are vari-
able to differentiate pseudoprogression from 
true progression 35.

Pseudoresponse

Pseudoresponse is virtually the opposite of 
pseudoprogression. Pseudoresponse is char-
acterized by interval-reduced tumor enhance-
ment after anti-angiogenic chemotherapy. This 
would suggest treatment response by the Mac-
Donald criteria, but this reduced enhancement 
may not always indicate a favorable response.

Anti-angiogenic agents such as bevacizu-
mab inhibit vascular endothelial growth factor 
(anti-VEGF) via the tyrosine kinase pathway. 
This vascular inhibition results in decreased 
contrast enhancement due to a “normalization” 
of the abnormally permeable blood-brain bar-
rier. Results may occur as early as hours after 
therapy 34. Pseudoresponse has also been seen 
in patients that restarted anti-angiogenic ther-
apy after taking a “drug holiday” due to symp-
tomatic effects from drug toxicity 33. 

MR findings show progressive reduction in 
tumor enhancement and edema soon after anti-
angiogenic chemotherapy (Table 1; Figure 5). If 
the reduction in tumor enhancement is not main-
tained for four weeks, this is compatible with 

ages prior to bevacizumab treatment (Avastin 
[Genentech, South San Francisco, CA, USA]) 
for glioblastoma was 72.5% accurate in strati-
fying six-month progression-free survival 29.

Comparing the efficacy of these advanced 
MR techniques for discerning recurrent tu-
mor between post-treatment changes, Fink et 
al. compared the use of 3T MR spectroscopy, 
perfusion, and diffusion in 40 intracranial le-
sions (38 patients). The reference standard 
was both surgical biopsy (14/40) and extensive 
follow-up imaging (26/40). They concluded that 
MR perfusion and multiple voxel spectroscopy 
outperformed DWI for distinguishing recurrent 
glioma from post-treatment effects 19. Despite 
this study, there are currently no absolute 
noninvasive parameters to distinguish recur-
rent tumor from radiation necrosis. It is also 
important to mention that the answer to this 
conundrum may not always simply be a dichot-
omy of tumor or radiation necrosis, but often 
a combination is present. As detailed, many of 
the conventional and advanced MR techniques 
have relative strengths and weaknesses. How-
ever, the combination of these MR techniques 
will likely provide the best noninvasive accu-
rate diagnosis currently available 2. 

Pseudoprogression

Pseudoprogression is characterized by tran-
sient increased tumor enhancement followed by 
a subsequent decrease or stabilization without 
any further treatment. Pseudoprogression may 
be misinterpreted as tumor progression based 
on the classic MacDonald criteria that specify 
that tumor progression is likely to have oc-
curred when the contrast-enhancing lesion has 
increased by >25% 30. With the advent of novel 
oncologic treatments, the presence or lack of 
contrast enhancement has not been shown to 
be a reliable marker of progression or response, 
respectively, but rather a sign of a disrupted 
blood-brain barrier seen with pseudoprogres-
sion and pseudoresponse. 

Pseudoprogression has occurred most nota-
bly with the addition of temozolomide to radio-
therapy in the management of glioblastoma. It 
can occur in up to 30% of patients treated with 
temozolomide chemoradiotherapy, and may oc-
cur two to six months after chemoradiotherapy 

1,14,31,32. This treatment-related effect has impor-
tant implications for patient management and 
may result in cessation of effective therapy if 
misconstrued as true tumor progression. In 
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pseudoresponse. In contrast, if there is complete 
disappearance of all enhancing measurable and 
nonmeasurable disease for at least four weeks, 
there are no new lesions, and there are stable 
or improved nonenhancing lesions, the RANO 
criteria classify this as complete response 12.

High B-value DWI (B=4000) has proved use-
ful for the differentiation between pseudo- and 
true responses to treatment with bevacizumab 
by reflecting cell density more accurately than 
regular B-value DWI 36. DSC MR perfusion is 
reported to show decreased rCBV in cases of 
pseudoresponse 37, but this parameter will not 
differentiate decreased rCBV from true re-
sponse. As in the case of pseudoprogression, 
follow-up imaging is important to correctly 
characterize tumor evolution.

Figure 5  Pseudoresponse in a 31-year-old man with anaplastic 
astrocytoma after bevacizumab therapy. A,B) Axial contrast-
enhanced fat-saturated T1-weighted MR images show an 
enhancing mass in the right deep parietal white matter (ar-
row) that is medial to the surgical resection cavity and demon-
strates tumor extension across the splenium of the corpus cal-
losum (A). Three weeks after bevacizumab therapy (B), there 
is significant decreased enhancement of the mass (arrow); 
however, three months later (C), there is significant tumor 
progression. This case highlights pseudoresponse after anti-
angiogenic therapy.

A B

C

➔ ➔
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Figure 6  Nonenhancing tumor progression in a 74-year-old man with glioblastoma multiforme after bevacizumab therapy. A) Axial 
contrast-enhanced T1-weighted MR image shows a peripherally enhancing mass in the right medial frontal gyrus (arrow). B) Axial 
contrast-enhanced fat-saturated T1-weighted MR image shows a cavity after surgical resection. C) Axial contrast-enhanced fat-
saturated T1-weighted MR image one year later after surgical resection does not show any enhancing lesion to suggest recurrence; 
however, (D) axial FLAIR MR imaging shows new high signal (arrows) in the right gyrus rectus (more inferior than the original 
tumor site) compatible with nonenhancing tumor.

A B

C D

➔

➔

➔
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Nonenhancing Tumor

High-grade gliomas may not always disrupt 
the blood-brain barrier and cause enhancement 
due to their infiltrative nature. In addition, as 
mentioned, anti-angiogenic chemotherapy may 
cause decreased tumoral enhancement without 
true tumor reduction, making careful analysis 
of nonenhancing tumor essential 12. Increased 
nonenhancing tumor burden on T2-weighted 
imaging after anti-angiogenic therapy has 
been theorized to occur via the “vessel co-op-

A B

C

Figure 7  Radiation-induced sarcoma in a 36-year-old man six 
years after radiation therapy for oligodendroglioma. A,B) Ax-
ial contrast-enhanced T1-weighted MR image (A) and coronal 
contrast-enhanced fat-saturated T1-weighted MR image (B) 
show an enhancing mass involving the right frontal lobe and 
scalp. A resection cavity is seen in the anterior aspect of the 
right superior frontal gyrus. C) Axial FLAIR MR image shows 
a vast amount of edema in the right frontal lobe.

tion” route, in which tumor dissemination is 
re-routed to another pathway secondary to the 
angiogenesis inhibition from chemotherapy 38. 
The RANO criteria define progression of non-
enhancing tumor when a lesion shows a signifi-
cant increase in T2/FLAIR signal while on sta-
ble or increasing doses of corticosteroids com-
pared with the baseline scan 12; (Figure 6). It 
is important to differentiate T2/FLAIR signal 
related to tumor from treatment-related affects 
such as demyelination, leukoencephalopathy, 
and ischemic injury.
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Figure 8  Diffuse white matter injury in a 29-year-old man 20 years after chemoradiotherapy for childhood optic glioma. A,B) Coro-
nal FLAIR MR images at the levels of the frontal (A) and temporal horns (B) show periventricular high signal (arrows).

Figure 9  Temporal lobe injury after gamma knife radiosurgery for nasopharyngeal carcinoma. A) Axial FLAIR MR image shows a 
large amount of high signal in the left temporal lobe (arrows). B) Axial contrast-enhanced T1-weighted MR image more inferiorly 
shows enhancement (arrow) of the left temporal lobe in a smaller area relative to the high signal in (A). Both of these findings can 
spontaneously resolve.

A B

➔
➔

➔

➔ ➔

A B

➔ ➔

➔ ➔
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➔

➔

➤

➤

Radiation-Induced Neoplasia

Radiation-induced tumors are a dreaded com-
plication from radiotherapy. Cahan et al. de-
scribed the criteria for this entity in 1948. The 
criteria specify: (a) the tumor must arise from 
the irradiated field, (b) a sufficient latent period 
is required, (c) the tumor differs from the origi-
nal neoplasm, and (d) the new tumor is rare in 
patients without radiation exposure 39. Yang et 
al. emphasized the need for histologic confirma-
tion and that patients should not have genetic 
predispositions to secondary malignancy 40. 

The latency period of new tumors ranges 
from one to greater than 30 years 41. Meningi-
omas are the most common radiation-induced 
intracranial neoplasm overall 42. In a study that 
analyzed radiation-induced neoplasms more 
than 20 years after radiation therapy for pitui-
tary adenomas, sarcomas had the highest inci-
dence, followed by gliomas and meningiomas 41. 

Figure 11  Disseminated necrotizing leukoencephalopathy in 
a 23-year-old woman after chemoradiotherapy. Sagittal con-
trast-enhanced T1-weighted MR image shows avid “tumor-
like” enhancement of the craniocervical junction and upper 
cervical spinal cord (arrows). The spinal cord is edematous and 
shows low signal (arrowheads) inferior to the leukoencepha-
lopathy that was compatible with a syrinx on T2-weighted im-
aging (not shown).

Figure 10  White matter injury in a 7-year-old boy after methotrexate. A) Axial FLAIR image shows high signal in the right cen-
trum semiovale (arrow). B) Axial ADC MR image shows low signal (arrow) compatible with reduced diffusion.

A B

➔
➔
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Figure 12  PRES in a 55-year-old woman after chemotherapy. 
A) Axial FLAIR MR image shows symmetric high signal (ar-
rows) in the occipital lobes, thalami, and bilateral basal gan-
glia. B) Axial FLAIR MR image more superiorly shows sym-
metric high signal (arrows) in the bilateral frontal and parietal 
lobes. It is important to remember that PRES is not unique to 
brain supplied by the posterior circulation.

➔

➔

➔
➔

➔➔

➔

➔

A

B

The reported median latency of glioma appear-
ance is 7.0 years, 9.7 years for sarcoma, and 
13.8 years for meningioma 43. Imaging findings 
of radiation-induced neoplasms are similar to 
native tumors (Figure 7).

White Matter Injury and 
Leukoencephalopathy

Radiation

Diffuse white matter injury occurs in 38-
50% of patients after whole-brain radiation 
therapy 42. The risk of pure radiation leukoen-
cephalopathy is less encountered today due to 
increased use of localized radiation as opposed 
to whole-brain radiation 44. The pathogenesis of 
radiation-induced white matter injury varies 
from demyelination, gliosis, edema, to coagu-
lation necrosis 45. Vascular injury to small and 
medium-sized vessels may also occur. In whole-
brain or large field radiation, MR imaging dem-
onstrates T2 hyperintense foci in the periven-
tricular white matter that are usually symmet-
ric. Initially, involvement is typically localized 
adjacent to the frontal, temporal, or occipital 
horns (Figure 8). As the process evolves, a con-
fluent pattern may develop that extends to the 
corticomedullary junction. Focal white matter 
injury can also occur with radiosurgery, most 
commonly seen in treatment for nasopharyn-
geal carcinoma. MR imaging shows T2 hyperin-
tense white matter lesions in either unilateral 
or bilateral temporal lobes (Figure 9). White 
matter lesions eventually may become contrast-
enhanced lesions, in which there is interval 
enhancement, decrease in size, and necrosis. 
Complete resolution of both white matter and 
contrast-enhanced lesions is possible. Less fre-
quently, cysts develop in the latest stage of tem-
poral lobe injury and always arise from the con-
trast-enhanced lesions that became necrotic 46. 

Chemotherapy

White matter disease can be seen with chem-
otherapy alone, or more often, in combination 
with radiation. In many cases, a mild or revers-
ible form or leukoencephalopathy can occur 
acutely 44. More severe or permanent damage 
can be seen with methotrexate in the absence 
of radiation by intrathecal or intravenous ad-
ministration. The mechanism of chemotherapy-
induced white matter injury is poorly under-
stood, but likely involves toxic effects on axons, 
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idly deteriorating clinical course that is usually 
fatal. The pathogenesis is similar to radiation 
and chemotherapy-induced leukoencephalopa-
thy, but there is a relative increase in vascu-
lar injury leading to disseminated coagulation 
necrosis 48. Imaging findings depict dissemi-
nated or confluent white matter lesions. “Tu-
mor-like” enhancement and involvement of the 
brainstem may occur and help differentiate it 
from reversible milder forms of leukoencepha-
lopathy 48; (Figure 11). Hemorrhage may be an 
additional finding.

Vascular-Related Pathology

Posterior Reversible Encephalopathy Syndrome

Chemotherapeutic agents such as bevacizu-
mab and methotrexate can result in posterior 
reversible encephalopathy syndrome (PRES). 

oligodendrocytes, progenitor cells, secondary 
immunologic reactions, oxidative stress, and 
microvascular injury 44. Imaging findings are 
similar to those of radiation-induced white mat-
ter injury with typical periventricular involve-
ment. Cerebral volume loss may develop on a 
long-term basis. Reduced diffusion compatible 
with infarct is another characteristic that may 
be seen with acute white matter lesions (Figure 
10). Infarcts may also occur with anti-angiogenic 
therapy. In one study, 1.9% of patients treated 
with bevacizumab developed ischemic infarcts 47. 

Necrotizing Leukoencephalopathy

Necrotizing leukoencephalopathy is the most 
severe form of leukoencephalopathy. It typically 
occurs due to combined use of radiation and 
chemotherapy. Clinically, there is a shorter la-
tency period than the other treatment-related 
leukoencephalopathies characterized by a rap-

Figure 13  Mineralizing microangiopathy in a 21-year-old man with a combination of temozolomide, bevacizumab, and irradiation 
for anaplastic astrocytoma. A, B) Axial unenhanced CT images at the level of the centrum semiovale (A) and lateral ventricles (B) 
show punctate calcifications in the left frontal lobe white matter and left frontal operculum (arrows).

A B

➔

➔ ➔
➔
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Figure 14  Radiation-induced telangiectasias in a 21-year-old 
man post irradiation for medulloblastoma. A) Susceptibility-
weighted MR image shows numerous hypointense subcentim-
eter foci throughout the bilateral frontal and parietal lobes. B) 
Coronal gradient echo MR image shows the parietal microhe-
morrhages to a lesser degree. In our experience, susceptibility-
weighted imaging is more sensitive than gradient echo imag-
ing in the detection of microhemorrhages from telangiectasias.

A

B

The etiology of PRES is not completely under-
stood, but is likely related to the lack of au-
toregulation of cerebral blood flow 49. Failed au-
toregulation leads to vasogenic edema, which is 
usually reversible with cessation or decrease of 
the chemotherapeutic dose. PRES can progress 
from vasogenic to cytotoxic edema and result 
in infarction. 

Typically, PRES is bilateral, symmetric, 
and involves the cortical and subcortical pari-
etal and occipital lobes. While not uncommon, 
asymmetric lesions may occur. Other common 
locations of PRES in decreasing frequency in-
clude: the posterior frontal lobe, temporal lobe, 
cerebellum, brainstem, thalamus, and basal 
ganglia 50. Given the common involvement of 
regions supplied by the anterior circulation, it 
has been suggested to remove “posterior” from 
the disease name 50. CT and MR imaging show 
low attenuation and hyperintense T2 signal in 
the affected areas, respectively (Figure 12). Re-
duced diffusion will be seen if cytotoxic edema 
occurs. 

Mineralizing Microangiopathy

Mineralizing microangiopathy occurs most 
commonly with combined radiation and chemo-
therapy. Children are more susceptible to this 
entity than adults 51. Histologically, mineraliz-
ing microangiopathy is characterized by calcium 
deposition in small vessels due to fibrinoid necro-
sis. On CT, there are multiple punctate calcifica-
tions in the basal ganglia, and between the ba-
sal ganglia and cortical perforating vessels (Fig-
ure 13). Cortical calcification may also be seen 52. 

Radiation-Induced Telangiectasias

Telangiectasias are another therapy-related 
vascular manifestation, but are unique to ra-
diotherapy and are not seen with chemother-
apy. The pathology relates to the development 
of telangiectasias of small capillary-sized ves-
sels within the white matter. Radiation injury 
may also lead to cavernomas, which may be a 
variation of the same pathologic process 53,54. In 
one study of 90 children who received cranial 
irradiation, the frequency of radiation-induced 
telangiectasias was 20% 55. The latency period 
has been reported to range from five months 
to 22 years 56, with most lesions occurring after 
five years 55. Telangiectasias are more likely to 
occur in the immature brain compared to the 
mature brain 56,57. Telangiectasias may form 
microhemorrhages, but patients are usually 
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