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O P T I C S

Functional interferometric diffusing wave spectroscopy 
of the human brain
Wenjun Zhou1, Oybek Kholiqov1, Jun Zhu1, Mingjun Zhao1, Lara L. Zimmermann2,  
Ryan M. Martin2, Bruce G. Lyeth2, Vivek J. Srinivasan1,3,4,5,6*

Cerebral blood flow (CBF) is essential for brain function, and CBF-related signals can inform us about brain activity. 
Yet currently, high-end medical instrumentation is needed to perform a CBF measurement in adult humans. Here, 
we describe functional interferometric diffusing wave spectroscopy (fiDWS), which introduces and collects near- 
infrared light via the scalp, using inexpensive detector arrays to rapidly monitor coherent light fluctuations that 
encode brain blood flow index (BFI), a surrogate for CBF. Compared to other functional optical approaches, fiDWS 
measures BFI faster and deeper while also providing continuous wave absorption signals. Achieving clear pulsatile 
BFI waveforms at source-collector separations of 3.5 cm, we confirm that optical BFI, not absorption, shows a 
graded hypercapnic response consistent with human cerebrovascular physiology, and that BFI has a better 
contrast-to-noise ratio than absorption during brain activation. By providing high-throughput measurements of 
optical BFI at low cost, fiDWS will expand access to CBF.

INTRODUCTION
Comprising 2% of the body weight in adults, the human brain com-
mands around 15 to 20% of the basal cardiac output as cerebral blood 
flow (CBF) (1). Deficiencies of CBF and resulting ischemia are causes 
of primary or secondary injury in numerous neurological disorders, 
including acute stroke (2), intraparenchymal hemorrhage (3), trau-
matic brain injury (4), and subarachnoid hemorrhage (5). In addition, 
because CBF is routed to active brain regions through neurovascular 
coupling (6), signals related to CBF increments can also indirectly 
monitor brain activity (7). The most well-known such signal is blood 
oxygenation level-dependent (BOLD) functional magnetic resonance 
imaging (fMRI) (8, 9), a cornerstone of functional neuroimaging, 
and the basis for high-performance, noninvasive, brain computer 
interfaces (10).

Although neuroimaging of CBF (11, 12) is used to assess brain 
injury and recovery in neurointensive care, the role of CBF monitor-
ing is limited as it is usually not continuous and acquired by expensive 
MRI (13) and computed tomography scanners (14). Transcranial 
Doppler ultrasound (15) is quasi-continuous but measures macrovessel 
velocity, not microvascular flow, and can be position-dependent and 
challenging in many subjects, even with a skilled operator. Fortunately, 
near-infrared (NIR) light, when introduced via the scalp, propagates 
diffusively into the adult human brain (16, 17) before reemerging 
from the scalp, where it can be collected and measured. Conventional 
NIR spectroscopy (NIRS) assesses absorption of this light to deter-
mine hemoglobin concentrations or their changes (18). In a related 
physical process, temporal fluctuations of scattered coherent light 
encode red blood cell dynamics in the tissue traversed by the NIR 
light (19). Diffusing wave spectroscopy (DWS) and diffuse correlation 
spectroscopy (DCS) quantify intensity fluctuations (20, 21), deriving 

a blood flow index (BFI) that serves as a surrogate for conventional 
blood flow (22–27).

The ability to introduce and collect light noninvasively via the 
scalp is a strength of optical techniques. However, it is also the source 
of an important limitation, namely, that extracerebral “clutter” from 
tissue traversed by NIR light can contaminate the desired brain signals 
(28). Extracerebral contamination can confound results in neuro-
surgery, if weakly regulated scalp blood flow is mistaken for dys-
regulated CBF (29), or in a brain-computer interface, where an 
incorrect decision is made in response to a systemic, corrupting 
physiological change. Thus, approaches to mitigate this contamination 
have been proposed, including probe pressure (30, 31), superficial 
regression (32), time-of-flight discrimination (33, 34), depth dis-
crimination (35–37), and increased source-collector (S-C) separa-
tion (38), each with limitations.

Studies have concluded that if extracerebral contamination is the 
main concern, then BFI, not hemoglobin, is, at least theoretically, 
a better signal. Specifically, optical fluctuations (i.e., DWS/DCS) 
achieve 3 to 5× better brain sensitivity than optical absorption (i.e., 
NIRS) (38, 39), primarily because brain BFI exceeds extracerebral 
BFI by 6 to 10×, while the corresponding ratio for hemoglobin is only 
about 2.5× (38). Thus, another approach to mitigate extracerebral 
contamination is to measure BFI rather than hemoglobin (Fig. 1).

However, despite the theoretical intrinsic advantages of BFI, 
hemoglobin absorption signals are far more widely used in practice 
(40). This is because DWS/DCS can only effectively measure a small 
number of spatial modes, or speckle grains, per detector (41), while 
NIRS can effectively measure many spatial modes. Since the surface 
flux of returning light that penetrates to the brain through the skull 
and scalp is weak, DWS/DCS needs either long integration times or 
many expensive, single photon counting channels with single mode 
collectors. As shown in Fig. 1, increasing S-C separation by 1 cm 
asymptotically reduces collected light by roughly an order of mag-
nitude. Thus, compared to conventional NIRS (40), which can use 
large light collectors, in DWS/DCS, S-C separations are restricted 
(42), in turn, reducing brain specificity. Parallelization is possible 
but prohibitively expensive (43). Thus, the theoretical advantages 
of BFI (38, 39) as a brain signal have not been fully realized. By 
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comparison, NIRS can compare short and long S-C channels to 
mitigate the problem of superficial contamination through signal 
processing (44) and remains the optical method of choice for func-
tional brain measurements.

Here, we present functional interferometric DWS (fiDWS), which 
assesses BFI changes specific to brain physiology via the in-phase 
field fluctuations of NIR light. Leveraging multimode fiber collec-
tion and interferometry with single-mode reference light shaping 
while optimizing the inherently parallel detection of a complementary 
metal-oxide semiconductor (CMOS) sensor (45) through design 
and postprocessing, our method eliminates photon counting, which 
is associated with high cost (46), while also boosting performance. 
We engineer and optimize an fiDWS system (comprising a source, 
interferometer, optodes, data streaming, and software for real-time 
display and postprocessing) with >50× higher light throughput-to-
cost ratio than DWS/DCS, enabling measurement of autocorrelations 
at S-C separations of up to 5.0 cm in the adult human head with a 
10-s integration time. We proceed to investigate BFI pulsatility, changes 
during brain activation, and carbon dioxide (CO2) reactivity at S-C 
separations of 3.5 cm, with a 0.1-s integration time, in multiple sub-
jects. We demonstrate that with advances in throughput, fiDWS can 
perform continuous-wave (CW) intensity measurements, which 
serve as both a gold standard for comparison and a tool to improve 
accuracy of estimated BFI changes. The results support that fiDWS 

achieves record brain specificity, providing an approach that exper-
imentally realizes the advantages, heretofore theoretical, of the 
functional BFI signal.

RESULTS
Characterization of fiDWS system performance
Noninvasive optical technologies to measure fluctuation signals in 
adult humans must sense coherent, very weak light fluxes that re-
turn from the cerebral cortex or subcortical white matter, approxi-
mately 1.5 to 2 cm below the scalp. Because of the limited light 
budget, S-C separations of conventional optical flowmetry are re-
stricted to the regime where brain-to-scalp sensitivity is less than 
unity (Fig. 1).

In fiDWS (Fig. 2A), we use interferometry, which boosts the weak 
optical field returning from the brain by a strong reference field (see 
Materials and Methods). Therefore, a CMOS sensor can replace 
photon counting and parallelize measurements of weak diffuse light 
fluctuations that reveal CBF while still achieving the shot noise limit 
(section S1). Previous optical BFI systems, including DCS/DWS 
(42, 43) and a preliminary iDWS proof of concept (45), performed 
high-speed (pulsatile) monitoring at S-C separations of 2.5 to 2.9 cm. 
For this study, we designed and built a multimode fiDWS system to 
measure pulsatile BFI at S-C separations up to 3.5 to 4.0 cm (depend-
ing on the subject), where the remitted light is an order of magni-
tude smaller. Innovations needed to achieve these results included a 
bulk interferometer (Fig. 2A) that enabled a single-mode reference 
arm with a Powell lens for nearly uniform heterodyne gain (Fig. 2B), 
a sample collection fiber with a larger core and higher numerical 
aperture (NA) for more sample modes, optimized processing (in-
cluding binning and rolling reference subtraction) (see Materials 
and Methods and fig. S2), and software for real-time processing, 
display, and streaming (section S3). Theoretical considerations 
needed for these experiments, including a simple expression for 
brain-to-scalp sensitivity (section S4), a method to estimate the zero 
lag autocorrelation derivative that is specific for brain BFI (see 
Materials and Methods and section S4) and the effect of the finite 
camera exposure time on the autocorrelation function (section S5), 
are also described here.

Coherent detection systems are affected by both speckle noise and 
additive noise. Thus, two important metrics determine iDWS per-
formance: speckle number (NSpeckle) and signal–to–additive noise 
ratio (SANR) (45), where additive noise is ideally dominated by shot 
noise from the reference arm (section S1). In the limit of short S-C 
separation, signal levels are high, and it is beneficial to minimize 
speckle noise; hence, a large NSpeckle is required. However, for fiDWS 
of the human brain, large S-C separations are required, where shot 
noise from the reference arm, not speckle noise, is the dominant 
noise source. In addition, since adjacent pixels measure partially 
correlated signals, binning can reduce noise in autocorrelation 
estimates by coherently adding correlated signals, while uncor-
related noise adds incoherently. Here, we target maximization of 
signal-to-noise ratio (SNR) of the autocorrelation estimate as 
the ultimate goal. In contrast to our prior work that used ad hoc 
rectangular window pixel binning (45), here, we derived both the 
optimal binning function and the optimal autocorrelation SNR 
(sections S6 and S7).

Using a prior, suboptimal, nonoverlapping, rectangular window 
pixel binning method (45), our new system markedly outperforms 

Fig. 1. Brain-to-scalp sensitivity of optical BFI (DCS/DWS) exceeds that of 
absorption (CW-NIRS). The brain-to-scalp sensitivities of optical BFI and optical 
absorption (a) measurements were simulated (section S5) with a double-layer model 
(inset), with extracerebral and cerebral layers designated as “scalp” and “brain” for 
short. Optical BFI is intrinsically more brain specific than absorption, achieving a 
higher brain-to-scalp sensitivity at a given S-C separation. However, the remitted 
light flux and detected power (right y axis) decrease approximately exponentially 
with increasing S-C separation, which is needed for high brain-to-scalp sensitivity. 
Because of the expense of single or few mode photon-counting channels, required 
for coherence, DCS/DWS uses relatively short S-C separations (black shading). On 
the other hand, CW-NIRS can collect many modes that sum incoherently and there-
fore can use larger S-C separations (red shading). We assume that PCW − NIRS is 104 × 
PDCS/DWS, based on a hypothetical CW-NIRS system that collects 104 modes for every 
single DCS/DWS mode. Blue dashed ovals with arrows point to corresponding y axes. 
Inset:  (S-C separation), L1 (extracerebral layer), and L2 (cerebral layer). Note that 
in practice, effective brain-to-scalp sensitivity can be further improved by considering 
additional superficial short S-C channels in signal analysis.
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the previous system (45) both in terms of speckle number (corrected 
for additive noise as described in Materials and Methods and sec-
tion S8) and SANR (Fig. 2C). As expected, with varying degrees of 
binning, a strong trade-off between NSpeckle and SANR is evident. 
Here, we draw a distinction between the raw measurement SANR of 
the heterodyne signals and the SNR of the autocorrelation from 
which blood flow dynamics are derived. As might be expected, 
the autocorrelation SNR depends on the raw measurement SANR; 
precisely, the autocorrelation SNR is proportional to the product of 
SANR2 and the number of noise speckles (NNoise speckle; section S6). 
We take this quantity as a metric of fiDWS performance. Pixel 
binning increases the SANR while reducing NNoise speckle relative to 
its maximal value (fig. S5). Here, we show that the optimal sliding 
pixel binning function, which maximizes the SANR2 × NNoise speckle 
metric and hence the autocorrelation SNR, has a spatial correla-
tion equal to the raw spatial correlation of heterodyne signals across 
camera pixels (Fig. 2D and fig. S5). This optimal binning function, 
which is approximately Gaussian with a 2.5-pixel width (∆pPBF; 
eq. S32), enables a further autocorrelation SNR improvement of 
~1.5 relative to the prior nonoverlapping rectangular binning 
approach. With this multitude of experimental and theoretical 
advances, the autocorrelation SNR is enhanced by ~23.3 times 
(Fig. 2E), relative to the best prior results (45). This results from 
improvements in both NNoise speckle (from ~29 to ~96) and SANR 
(~2.65×), propelling fiDWS performance beyond that of existing 
optical BFI methodologies.

We next proceeded to investigate how BFI, from a semi-infinite 
homogenous model, and SANR (proportional to collected sample 
power in the shot noise limit) change with S-C separation (Fig. 3A). 
Clear pulsatile BFI traces are obtained up to 3.5-cm S-C separations 
(Fig. 3B). The quality of the pulsatile waveform appears comparable 
to state-of-the-art DCS/DWS at 2.9-cm S-C separation, which used 
many (14) expensive photon-counting channels (43). Even at 3.5-cm 
S-C separation, the quality of the pulsatile waveform is sufficient to 
enable self-alignment of BFI traces with respect to the cardiac cycle. 
At 4.0-cm S-C separation, heart rate (HR) is resolvable in the fast 
Fourier transform (Fig. 3F). For one subject, an S-C separation of 
5.0 cm was tested, where field autocorrelations were measurable with 
a 10-s integration time (Fig. 3C). At such large S-C separations, 
decorrelation during the exposure time must be accounted for in 
quantitative analysis (section S5), and the early portion of the auto-
correlation decay was undersampled (although this issue could be 
solved with megahertz cameras). Given these issues, extreme S-C 
separations beyond 4.0 cm were not pursued further. BFIs, from 
fitting G1(d) with a semi-infinite DCS model (see Materials and 
Methods), and SANRs, from noise-corrected G1(0), were averaged 
across forehead locations in four subjects at S-C separations from 
1.0 to 4.0 cm (Fig. 3, D and E). Overall, BFI increased and SANR 
decreased with increasing S-C separation. Moreover, the coefficient 
of variation of BFI, across subjects and locations, decreased with in-
creasing S-C separation, while the coefficient of variation of SANR 
(collected sample power), similarly defined, increased with increasing 
S-C separation. More consistent BFI values at large S-C separations 
may be due to the larger volume probed and lower susceptibility to 
heterogeneous scalp flow and differences in applied pressure. Last, 
larger variability in collected sample power at larger S-C separations 
may relate to differences in optical properties across measured sub-
jects and locations, which affect the collected light levels more at 
larger path lengths.
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Fig. 2. fiDWS for optical BFI in the human brain. (A) Schematic of fiDWS. The inter-
ferometer detection path is shown in both horizontal (H) and vertical (V) views. 
Transverse intensity distributions of sample and reference light, at positions indicated 
by red and blue dotted lines, are shown (insets) with correspondingly colored 
dotted frames. SMF, single-mode fiber; MMF, multimode fiber; L1 to L4, lenses; 
VOA, variable fiber-optic attenuator; PL, Powell lens; BS, beamsplitter; CL, cylindrical 
lens. (B) Intensity patterns of reference light used in this work (black) and previous 
work (45) (red). DN, digital number. (C) Comparisons of estimated NSpeckle (squares 
and circles) and SANR (triangles) versus width of rectangular window used for pixel 
binning. Corresponding SANR (for this work), based on optimized pixel binning 
(fig. S5), is indicated by the spherical symbol. Blue dashed ovals with arrows point 
to corresponding y axes. (D) Spatial correlation of heterodyne signals across pixels 
(scatters) and corresponding Gaussian fits (solid curves). Inset shows the correla-
tion matrix of the current system within the gray shaded region in (B). HWHM, 
half width at half maximum. (E) Comparison of SANR2 × NNoise speckle, a metric for 
fiDWS system performance that is proportional to the autocorrelation SNR. The 
spherical symbol shows the fiDWS results with optimized data processing (see also 
section S6 and fig. S5), achieving a ~23.3 times improvement compared to (45). 
Note that comparisons in (C) to (E) are based on phantom measurements with the 
same S-C separation.
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Validation of fiDWS for CW intensity measurements
DCS/DWS and NIRS provide complementary and synergistic infor-
mation on optical blood flow and absorption. Although DCS/DWS 
can measure intensity (47, 48), the brain specificity of optical ab-
sorption is limited at the typical DCS S-C separations of 2.5 cm used 

for the human head (49, 50) (Fig. 1), and this signal is typically 
discarded, although it is sometimes useful in phantoms (51). Instead, 
for the human brain, researchers have investigated multimodal de-
vices with separate NIRS and DCS systems (38). While such an ap-
proach affords larger S-C separations to enable more brain-specific 

A C

D

E

F

B

Fig. 3. fiDWS monitors pulsatile BFI at 3.5-cm S-C separation and autocorrelations at up to 5-cm S-C separation from the adult human forehead. (A) Schematic 
of human brain measurements. (B) Pulsatile BFI traces from a single subject with S-C separations from 1 to 4 cm. Temporal sampling and integration time are 0.01 and 
0.1 s, respectively. Vertical dashes show estimated boundaries of BFI pulses corresponding to heartbeats. The heartbeat-averaged BFI waveforms [standard deviations 
(SDs) shaded] follow the BFI traces. (C) Normalized field autocorrelations [g1(d)] at multiple S-C separations from 1 to 5 cm for the same subject in (B) (open symbols), with 
an integration time of 10 s. Solid curves show semi-infinite DCS model fits. (D and E) Averaged BFI (D) and SANR (E) versus S-C separation from multiple forehead locations 
across multiple subjects. Error bars indicate SDs. Corresponding coefficients of variation (CV; right y axes) are shown for averaged BFI (D) and SANR (E). Blue dashed ovals 
around symbols with arrows point to corresponding y axes. (F) Fast Fourier transform (FFT) spectrum of pulsatile BFI trace at 4-cm S-C separation (B) shows a peak (dashed 
line) at the HR of 78 min−1. a.u., arbitrary units.
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Fig. 4. fiDWS monitors CW light intensity. (A) Schematic of simultaneous fiDWS and CW-NIRS measurements during voluntary apnea (VA). (B) BFI and absorption can 
be determined from the noise-corrected field autocorrelation function, G1(d). (C) CO2 waveform measured by capnometer and estimated respiration rate (RR) during a 
single VA trial. Oxygen saturation (SpO2) was measured by a fingertip pulse oximeter. (D) BFI traces with (gray) and without (black) pulsatility, fitted from G1(d) with inte-
gration times of 0.1 and 2 s, respectively, were derived from a semi-infinite DCS model. Corresponding absorption changes (a − fiDWS) were estimated from changes in 
noise-corrected G1(0) with a 2-s integration time. HR, estimated from pulsatile BFI (blue), agrees with HR measured by the oximeter (light blue). Green bar on x axis indi-
cates the VA period. (E) Rescaled BFI and a − fiDWS (each normalized to [0, 1]), along with a − CW − NIRS traces (also normalized), from simultaneous measurements during 
six VA trials. The resumption of breathing is indicated by the gray shaded area [(D) and (E)], where a clear relative delay of a relative to BFI is consistently observed. The 
falling edge lag between BFI and a − fiDWS, estimated as the maximum of the unbiased cross-correlation of rescaled waveforms within the gray shaded area, was 
3.8 ± 1.6 s. This time lag is consistent with a delayed cerebrovascular “washout” effect (54). Note that the last 15 s of CW-NIRS data was unavailable in trial 3. (F) Scatter plot 
of a − fiDWS and a − CW − NIRS extracted from (E). Solid and dashed blue lines represent proportional fitting (slope of 1.04) and equality, respectively.  and c are Pearson 
and concordance correlation coefficients, respectively. (G) Bland-Altman plot shows the average (x axis) and difference (y axis) of a measured by the two techniques.
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NIRS, two modalities incur added cost and complexity. Here, we 
introduce the capability of fiDWS to perform optical absorption 
measurements and directly validate against CW-NIRS at a NIRS S-C 
separation of 3.5 cm that is commonly used for the adult brain 
(Fig. 4A). For validation against CW-NIRS, an MMF was positioned 
adjacent to the fiDWS collection fiber to collect diffuse light from a 
similar location. Collected CW intensity was directly monitored by 
an optical power meter (1936-R, Newport). Briefly, the CW intensity 
of fiDWS is extracted from the zero lag of the field autocorrelation 
[i.e., G1(0)] (Fig. 4B) after noise correction (see Materials and Methods). 
This enables fiDWS to measure BFI and CW light intensity from a 
single S-C pair, using the same photons and optical path (Fig. 4B).

To validate the intrinsic multimodal capability of fiDWS, we in-
vestigated optical BFI and absorption responses of the human brain 
to voluntary apnea (VA), which can be considered as a simple and 
coarse method of assessing cerebrovascular reactivity (52). Respira-
tory CO2 waveforms and oxygen saturation (SpO2) were monitored 
by a capnometer and oximeter, respectively, during VA (Fig. 4C). 
For the example shown in Fig. 4C, a breath-holding period of ~55 s 
was determined from the duration of absence of the respiratory CO2 
waveform, where a higher end-tidal CO2 (etCO2) (~10 mmHg above 
baseline level) after resumption of breathing suggested an increase 
in the partial pressure of arterial CO2 (PaCO2). A large BFI increase 
of ~56% was measured by fiDWS in the VA trial (Fig. 4D). In general, 
absorption changes (from the differential modified Beer-Lambert law 
with a mean path length of ~25.7 cm) tracked BFI changes. Absorp-
tion changes from fiDWS (a − fiDWS) and CW-NIRS (a − CW − NIRS) 
are shown alongside rescaled BFI traces for six additional trials 
(Fig. 4E), where close correspondence between a − fiDWS and 
a − CW − NIRS is evident. Moreover, we found that absorption 
[which is 1.5 times higher for oxyhemoglobin than deoxyhemoglobin 
at the source wavelength of 852 nm; (53)] falling edges were generally 
delayed by a few seconds with respect to BFI falling edges (Fig. 4, 
D and E), consistent with the transit time of the cerebral vasculature 
(54). The agreement between a − fiDWS and a − CW − NIRS supports 
the ability of fiDWS to measure absorption changes (Fig. 4, F and G) 
in addition to BFI, without complex additional instrumentation.

Validation of fiDWS for CBF measurements
CBF is mediated by arterial blood pressure, intracranial pressure, and 
cerebrovascular resistance. CO2 reactivity describes the relationship 
between the PaCO2 and cerebrovascular tone (52). Intact CO2 reac-
tivity is a marker of cerebrovascular health and was applied here 
in healthy individuals to validate fiDWS as a measurement of CBF.  
Hypocapnia results in increased vascular tone and a decrease in CBF, 
whereas hypercapnia results in decreased vascular tone and an 
increase in CBF. To assess cerebrovascular reactivity more precisely 
than VA, we investigated BFI responses of the human brain to mild 
hypercapnia (Fig. 5A). A 3.5-cm S-C separation was chosen to 
afford high speed and brain specificity. Hypercapnia was achieved by 
inhaling medical air mixed with a low concentration of CO2 (<5%), 
and fiDWS was synchronized with a capnometer and oximeter (see 
Materials and Methods). In healthy subjects, etCO2 is an accurate 
estimate of PaCO2 and is thus considered to be a suitable surrogate 
of PaCO2 in blood (55), which regulates CBF. EtCO2 traces were ex-
tracted from the upper envelope of the respiratory CO2 waveform 
(Fig. 5B). Periods of hypercapnia lasted 60 s, with different inhaled 
CO2 concentrations (i.e., lower envelope of the CO2 waveform in 
Fig. 5B). Although the pulsatile BFI trace appears noisy, a clear BFI 

increase during hypercapnia is observed from the trace with a 10-s 
integration time (Fig. 5C).

Building on theoretical and experimental arguments supporting 
higher brain sensitivity of BFI fitted over earlier time lags (39), 
we assessed the ability of the zero lag autocorrelation derivative 
[i.e.,   g  1  ′  ( 0   + ) ] to isolate brain BFI changes. As argued in section S4, 
even though g1(0) = 1, the initial rate of decrease in g1 provides BFI 
values that are specific to the brain. Rather than calculate the deriv-
ative of the raw data directly, we first performed a biexponential fit 
of the raw field autocorrelation [i.e., G1(d)] and subsequently took 
a derivative analytically (see Materials and Methods). The biex-
ponential fit provided an accurate empirical description of the early 
autocorrelation decay, and the analytical derivative strategy was less 
susceptible to noise than a direct numerical derivative. We found 
that the zero lag derivative could be described by a simple theoretical 
expression, enabling us to apply a double-layer model (section S4), 
along with reasonable assumptions of baseline anatomy and optical 
properties, to improve accuracy of BFI change estimates. The 
double-layer model served as a tool to roughly correct for the partial 
volume effect.

BFI measurements are known to be affected by both absorption 
and scattering (56). For simplicity, we assume constant scattering 
during hypercapnia. To estimate absorption changes related to hemo-
dynamics, we used the previously validated CW intensity measure-
ments of fiDWS (Fig. 5F), to account for absorption changes when 
fitting BFI and ultimately improve accuracy of relative blood flow 
changes. Initially, we assumed a mean path length of ~25.7 cm for a 
single-layer model. A delay in absorption with respect to BFI was 
observed during recovery from hypercapnia (Fig. 5F), as noted after 
VA (Fig. 4E), underscoring the complex temporal relationship be-
tween absorption and BFI changes.

A current standard practice is to use a semi-infinite DCS model 
to fit the “early” time lags (here, 0 to 42 s) and recover BFI assum-
ing a constant absorption. Relative to this standard practice, we 
found that three modifications measurably increased the recovered 
hyperemic BFI response during hypercapnia (Fig. 5E): (i) assessing 
the zero time lag derivative as opposed to fitting early time lags; (ii) 
using a double-layer model, instead of a semi-infinite model, to 
account for scalp BFI; and (iii) accounting for absorption changes 
during hypercapnia in the double-layer model. Graded BFI responses 
to etCO2 changes, for 26 hypercapnic segments in three subjects 
(Fig. 5G), confirmed these observations. Accordingly, the double- 
layer zero lag derivative model, which provides highest brain speci-
ficity, with the inclusion of absorption compensation, shows a graded 
response of 3.2%/mmHg, ~2.5 times larger than the 1.3%/mmHg 
estimated by the semi-infinite DCS model. These results approach 
the 4 to 6% increase in CBF per mmHg (PaCO2) reported by positron 
emission tomography (57, 58). Furthermore, as shown in Fig. 5H, 
BFI changes from the semi-infinite DCS model correlate better with 
etCO2 changes (R2 = 0.53) than absorption changes (R2 = 0.09), 
where R2 is derived from a linear (slope and constant) fit. The zero 
lag derivative BFI models yield even higher correlations with etCO2 
changes, with R2 ranging from 0.74 to 0.76.

As suggested by others (59, 60), the shape of the pulsatile BFI 
waveform contains information about cerebrovascular tone and 
intracranial pressure. High-speed monitoring at 3.5-cm S-C separa-
tion provides a unique opportunity for analysis of a pulsatile wave-
form with intrinsically high-brain specificity. To assess pulsatility 
index (PI), we aligned BFI via a simultaneous pulse oximeter trace 
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Fig. 5. Validation of fiDWS during mild hypercapnia at 3.5-cm S-C separation. (A) Experimental setup. (B) CO2 waveform (black) and etCO2 (orange upper envelope) 
during two periods of hypercapnia (orange bars along x axis). RR (gray) was estimated from the CO2 waveform. (C) A single-layer (SL) DCS model with integration times 
of 0.1 and 10 s, respectively, yielded BFI traces with (black) and without (light gray) pulsatility. HR estimated from pulsatile BFI (black) and oximeter (purple) agrees. 
(D) Synchronized pulsatile BFI and oximeter traces. (E) Comparison of etCO2 (right y axis) and BFI, estimated by one of five fitting models: a SL-DCS model, a single-layer 
  g  1  ′  ( 0   + )  (-SL) model without or with (−a) absorption compensation, and a double-layer   g  1  ′  ( 0   + )  (-DL) model without or with (−a) absorption compensation (see Materials 
and Methods and section S4). (F) Comparison of absorption and BFI determined by single-layer models. (G) Comparison of graded BFI responses to etCO2 for all five 
models, across multiple trials and subjects, with proportional fit slopes and 95% confidence intervals in legend. (H) Comparison of graded absorption (SL) and BFI (SL-DCS) 
responses. Error bars in (G) and (H) indicate SDs within estimation windows (typically, 20 s around falling edge of etCO2 trace). Solid lines indicate proportional fits (Y = X) 
[(G) and (H)]. Note that R2 values were estimated from linear fits (Y = X + ). (I) Heartbeat-averaged BFI at baseline (black) and during hypercapnia (blue), indicated by 
shaded regions in (C) (SD, shaded SDs). (J) Hypercapnia-induced pulsatility index (PI) changes versus BFI changes from (H). The slope of a proportional fit was −0.52, with 
a 95% confidence interval of (−0.2 to −0.84). Error bars indicate SDs of BFI/BFI0 and PI/PI0.
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(Fig. 5D), enabling separation of the pulsatile BFI trace into individual 
pulses (self-alignment is accurate for most pulsatile BFI traces at 
3.5-cm S-C separation). Exemplary heartbeat-averaged BFI wave-
forms during baseline and hypercapnia (shaded regions in Fig. 5C) 
illustrate an increase in the mean BFI (Fig. 5I), with preservation of 
the waveform shape, pointing to a reduction in pulsatility. Changes 
in PI, assessed between the same baseline and hypercapnia regions, 
correlate negatively with changes in BFI [slope of −0.52 with 95% 
confidence intervals of (−0.2 to −0.84); Fig. 5J], consistent with pre-
vious work (59, 60).

fiDWS for brain activation
CBF changes underlie numerous functional neuroimaging signals, 
including BOLD fMRI and functional CW-NIRS. We performed 

high-speed fiDWS monitoring of brain BFI during prefrontal cortex 
activation, achieved by a mental arithmetic (MA) task (61). An S-C 
separation of 3.5 cm was used to monitor pulsatile BFI (Fig. 6A). 
Consistent with previous reports (62, 63), fiDWS shows an increase 
in BFI during brain activation. For the BFI trace with a 2-s integration 
time, activation is evident in single trials (Fig. 6B). On the basis of 
an averaged BFI trace from multiple trials for one subject (Fig. 6C), 
a rapid BFI increase of >10% occurred in first 5 s, followed by a slow 
decay and return to baseline level around 5 s after MA cessation. 
Corresponding averaged absorption changes, which are more sus-
ceptible to superficial and systemic contamination, show a weak 
correspondence with the stimulus (Fig. 6D). HR, directly estimated 
from pulsatile BFI traces, increased during MA (Fig. 6E), suggest-
ing potential systemic physiological changes during the task. Yet, 
fiDWS of motor cortical activation (fig. S7) showed that BFI re-
sponses during finger tapping were not correlated to HR changes. 
Altogether, fiDWS achieved higher contrast-to-noise ratio (CNR) 
than CW-NIRS for all four subjects who performed MA (Fig. 6F). 
Thus, fiDWS can detect brain activation via optical BFI, measured 
at 3.5-cm S-C separation, providing both brain specificity and speed 
to observe cardiac pulsatility.

DISCUSSION
The field of optical BFI monitoring has long struggled with the 
trade-off between S-C separation, required for brain specificity, and 
light throughout required for SNR. In fiDWS, which detects the 
product of a weak sample field and a strong reference field, each 
pixel of the CMOS sensor approaches the shot noise–limited perfor-
mance of a photon-counting channel (section S1). Since pixels 
are plentiful, a unique combination of S-C separation and speed is 
achieved, and cost per pixel (channel) is contained.

Incorporating a multitude of engineering advances needed for 
real-time monitoring, our fiDWS system continuously measures 
pulsatile BFI from the human forehead at S-C separations of 3.5 cm. 
For optical BFI monitoring, these results represent an unparalleled 
combination of speed and brain-to-scalp sensitivity. In one set of 
experiments, we assess cerebrovascular reactivity, showing a clear 
graded response of ~3.2 ± 0.5% BFI change per mmHg etCO2. In 
another set of experiments, we show the time course of functional 
hyperemia, with pulsatility, during a MA task.

Using fiDWS to measure sample CW light intensity interfero-
metrically, we compared simultaneous and coregistered absorption 
and BFI signals. Hypercapnia experiments revealed that etCO2 changes 
were more correlated with BFI changes than with absorption changes, 
while MA experiments showed a higher CNR for BFI than absorp-
tion. These data lend experimental support to the theoretical pre-
dictions (38, 39) that BFI is, inherently, a more brain-specific signal 
than absorption. Future studies will incorporate multiple wavelengths 
and compare optical BFI to hemoglobin concentrations.

The potential broader impact of optical brain monitoring tech-
nology is determined by performance-to-cost ratio. As a benchmark, 
avalanche photodiodes and correlator boards cost >$4000 per channel 
in DCS/DWS (46) [while recent work has shown the potential to 
parallelize photon counting with single-photon avalanche diode 
arrays, S-C separations of this approach remain relatively limited at 
the moment (64)]. By comparison, we estimate that the fiDWS ap-
proach, as implemented here, costs just ~$69 per speckle (two channels), 
based on ~$6600 for the camera and frame grabber (see Materials 

A B

C D

E F

Fig. 6. fiDWS during prefrontal cortex activation. (A) Schematic of MA experi-
ments. (B) Single trial changes in BFI with a 0.1-s integration time (light gray), BFI 
with a 2-s integration time (black), absorption (red), and HR (blue), the latter estimated 
from a short-time FFT of pulsatile BFI within a 5-s sliding window. The green bar on 
the x axis indicates the stimulus duration. (C to E) Averaged BFI (C), absorption (D), 
and HR (E) responses from multiple MA trials for one subject. Shading indicates SDs 
across trials. (F) The contrast-to-noise ratio (CNR) of BFI exceeds that of absorption 
for four subjects. Error bars indicate standard errors across trials. All BFIs in this 
figure were estimated by the SL-DCS model, with no absorption compensation.
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and Methods), and NNoise speckle of ~96. Moreover, given the SNR 
benefits of field autocorrelations compared to intensity autocorrela-
tions (65, 66), the performance-to-cost advantage of fiDWS may be 
even higher. Such a reduction in the channel cost means that optical 
BFI is now a viable brain signal for studies of functional activation. 
Will fiDWS eventually be a serious competitor for functional CW-
NIRS (or fNIRS) (17)? While the CMOS sensor in this work has a 
frame rate of several hundred kilohertz and hundreds of pixels, lower 
costs could be achieved by two-dimensional megapixel sensors with 
frame rates of several hundred hertz. The global CMOS sensor market, 
mainly based on such sensors, grew 14% in 2018 to reach $14.2 billion 
and is expected to exceed $20 billion by 2023 (67, 68). With this in 
mind, on the same setup, we also investigated a multiexposure 
approach, which can be implemented on a camera with more pixels 
and a lower frame rate. The multiexposure approach yielded com-
parable results to the direct approach (section S10). Thus, our inter-
ferometric brain-sensing technology can potentially benefit from the 
robustness, low cost, and high performance driven by the growing 
worldwide market for detectors.

One possible concern about fiDWS is the stability of the MMF-
based sample arm, which is sensitive to motion and vibrations. 
However, we find that fiDWS measurements are not susceptible 
to moderate motion of the MMF (movie S1), provided that the 
motional decorrelation dynamics are much slower than the intrinsic 
sample decorrelation dynamics.

In summary, fiDWS can assess optical BFI signals, driven either 
by neural activity or cerebrovascular reactivity, with an unmatched 
combination of speed and brain specificity. The methodology and 
its variants are projected to achieve increasingly competitive cost. 
Beyond monitoring in cardiac surgery, neurotrauma, ischemic stroke, 
and neonatal intensive care, fiDWS promises to facilitate assessing 
CBF at the point of care, in athletes or soldiers after head injury (69), 
and possibly even in portable devices that monitor brain activity.

MATERIALS AND METHODS
Experimental fiDWS setup
In our fiDWS system (Fig. 2A), the light source is an 852-nm dis-
tributed Bragg reflector laser with <1-MHz linewidth and >180-mW 
output power (D2-100-DBR-852-HP1, Vescent Photonics), driven 
by a 500-mA laser controller (D2-105-500, Vescent Photonics) with 
a power supply (D2-005, Vescent Photonics). The fiDWS system is 
based on a Mach-Zehnder interferometer, built from two fiber optic 
splitters. The first splitter, a fused SMF coupler (TW850R2A1, 
Thorlabs), splits 90 and 10% coupled laser power into sample and 
reference arms, respectively. In the sample arm, a collimated beam 
with a power of 50 mW over a spot size of >4 mm (i.e., 1/e2 beam 
diameter, adhering to the American National Standards Institute 
(ANSI) maximum permissible exposure of 4 mW/mm2 at 852 nm) 
illuminates the scalp surface through a contact probe. Note that the 
maximum illumination power scales with the illumination spot area. 
Diffusively reflected light from the human forehead is collected 
by a contact MMF probe (QMMJ-3A2.5A-IRVIS-400/440-3PCBK-2, 
OZ Optics) at a distance  (S-C separation) away, where the MMF 
has a 400-m core diameter and a 440-m cladding diameter and 
a 0.22 NA. In the reference arm, a variable fiber-optic attenuator 
(BB-500-11-850-5/125-S-50-3A3A-1-1-ND-LL, OZ Optics) was used 
to adjust the mean reference light level to achieve the shot noise limit 
(section S1) while avoiding camera saturation (Fig. 2B). Before 

combining with sample light, the Gaussian intensity distribution of 
the collimated reference beam is converted into a uniform pattern 
in the horizontal direction using a Powell lens (#43-473, Edmund 
Optics). The horizontal dimension of the output beam is further 
truncated by an adjustable slit (VA100C, Thorlabs). Then, the 
reference beam is combined with the sample beam at second 90:10 
free-space beam splitter (BS029, Thorlabs), where the sample arm 
has the larger output splitting ratio. Last, the combined light is 
focused onto a line-scan CMOS camera (spL4096-140km, Basler) 
with a quantum efficiency of >35% at 852 nm, via a cylindrical lens 
(AYL3026-B, Thorlabs) in the vertical direction. The camera is 
operated with a 333-kHz line rate for a region of interest of 512 hori-
zontal pixels, with vertical pixel binning, and 4-tap/12-bit data 
acquisition. The cost breakdown of the fiDWS system can be found 
in table S1.

Estimation of field autocorrelation in fiDWS
In general, data processing can be divided into three steps (fig. S2): 
(i) Rolling mean subtraction: The raw signal of each pixel contains 
reference, sample, and heterodyne signals (i.e., PTot = PRef + PSam + 
PAC). The sample light (PSam) is too weak for the CMOS sensor to 
detect, so this mean-subtracted signal, calculated using a 0.1-s rolling 
window, can be considered as equivalent to the heterodyne signal 
(PAC), assuming the reference power (PRef) is stable over the window 
(note that the term “heterodyne” is used for PAC owing to the large 
amplitudes difference between the sample and reference fields). 
(ii) Sliding pixel binning: Heterodyne signals over camera pixels are 
convolved with a Gaussian pixel binning function, which is approx-
imately optimal (section S6). Binning coherently sums partially 
correlated pixels to improve the SNR. Where applicable, unless other-
wise stated, we assume that the number of total binned pixels is 
equal to the number of camera pixels. (iii) Autocorrelation: Auto-
correlation functions of individual binned pixels are calculated and 
summed (incoherent averaging).

Additive noise correction in NSpeckle estimation
In experiments, measured heterodyne signals consist of pure signal 
(Sp) and additive noise (Np), where Np is assumed to be a real, zero- 
mean, and independent Gaussian random variable for each pixel, 
typically resulting mostly from shot noise. To accurately quantify 
NSpeckle of the fiDWS system, a method to correct for overestimation 
of NSpeckle caused by additive noise is developed and used. The final 
equation for corrected NSpeckle is described as (see detailed deriva-
tion in section S8)

   

N  Speckle   =    (〈  I  S+N   〉 − 〈  I  N   〉)   2    ──────────────────────────────    
var( I  S+N   ) − var( I  N   ) − 4  ∑ 

p=1
  

P
    [ (〈  I  S+N,p   〉 − 〈  I  N,p   〉 ) 〈  I  N,p   〉]

    (1)

where 〈IS + N〉 and 〈IN〉 are time-averaged intensity sums of noise- 
added (i.e., measured) heterodyne signal (Sp + Np) and additive noise 
(Np) of pixels, respectively, 〈IS + N, p〉 and 〈IN, p〉 are corresponding 
time-averaged intensity for each pixel, P is total number of (binned) 
pixels, and var(∙) indicates variance. Note that 〈IN〉,  〈IN, p〉, and 
var(IN) can be either estimated from separate reference background 
measurements or the DC term (i.e., mean photon number), assum-
ing that the shot noise limit has been achieved.
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Models for fitting the field autocorrelation function
To extract BFI information from fiDWS estimates of the field auto-
correlation function [i.e., G1(d)], two models were used: (i) a DCS 
model and (ii) an empirical biexponential fitting model.

1) The DCS model, for fitting experimental G1(d), is expressed as

   G  1  (   d   ) =  A  1    g 1  DCS (   d   ) +  A  2   (   d  )  (2)

where the fitting coefficients A1 and A2 account for the amplitude of 
G1(d) and zero lag offset, respectively. Note that   g 1  DCS (   d  )  is the nor-
malized DCS autocorrelation model. On the basis of the CW cor-
relation diffusion equation, the normalized solution (i.e., normalized 
field autocorrelation),   g 1  DCS (   d  ) , for a semi-infinite homogenous 
turbid medium with an S-C separation of  is given by (70)

   g 1  DCS (   d   ) =   
 r  2   exp [ − K(   d   )  r  1   ] −  r  1   exp [ − K(   d   )  r  2  ]

   ─────────────────────    r  2   exp [ − K(0 )  r  1   ] −  r  1   exp [ − K(0 )  r  2  ]    (3)

where  K(   d   ) =  √ 
_________________________

   3    a  (   s  ′  +    a   ) (1 + 2    s  ′   k   2    D  B      d   /    a  )   ,   r  1   =  √ 
_

     2  +  z 0  2    , 

  r  2   =  √ 
_____________

      2  +  ( z  0   + 2  z  b  )   2    ,   z  0   = 1 / (   s  ′  +    a  ) ,   z  b   = 2(1 +  R  eff   ) / [3(   s  ′  +  

  a   ) (1 −  R  eff   ) ] , Reff = − 1.44n−2 + 0.71n−1 + 0.668 + 0.064n, n is the 
ratio of refractive indices between the medium and air, k is the wave 
number of the light propagating in the medium,     s  ′   is the reduced 
scattering coefficient, and a is the absorption coefficient. For liquid 
phantoms, DB is the Brownian diffusion coefficient of moving scatters 
and  = 1, while for biological tissues, the term of DB is referred to 
as BFI, where the unitless factor  accounts for static scatters in the 
tissue. Empirically, BFI correlates with blood flow (21, 71).

2) The empirical biexponential model (72), used for estimating 
the zero time lag derivative [i.e.,   g  1  ′  ( 0   + ) ], is

    G  1  (   d   ) =  B  1   exp (   −      d   ─    c1     )   +  B  2   exp (   −      d   ─    c2     )   +  B  3   (   d  )   (4)

where the fitting coefficients B1, B2, and B3 account for amplitudes 
of two decay components and zero lag offset, respectively, and c1 
and c2 are decay times of two exponential components. Note that 
inclusion of a delta function at zero lag (d = 0) is equivalent to ex-
cluding the zero lag from the fit. The analytical expression for   g  1  ′  ( 0   + )  
can be written as

   g  1  ′  ( 0   +  ) = −    B  1      c2   +  B  2      c1    ─  ( B  1   +  B  2   )    c1      c2      (5)

On the basis of the double-layer derivative model (section S4), 
expressed as

   g  1  ′  ( 0   +  ) = − 2  k   2  [    1    D  B1      s1  ′    ̄   l  1    +    2    D  B2      s2  ′    ̄   l  2   ]  (6)

where k is the medium wave number, and    ̄   l  1     and    ̄   l  2     are the partial 
path lengths of extracerebral and cerebral layers, respectively, the brain 
BFI (2DB2) can be estimated. We assume that 1DB1 = 10−9 cm2/s, 
    s1  ′    = 12 cm−1, and     s2  ′    = 12 cm−1 for the human head (38). More-
over,    ̄   l  1     and    ̄   l  2     are obtained from Monte Carlo simulation, where    ̄   l  2     
can be further corrected for absorption changes (absorption com-
pensation). For the single-layer derivative model, expressed as

   g  1  ′  ( 0   +  ) = − 2  k   2    D  B      s  ′   ̄  l    (7)

BFI can be simply estimated (see more details in section S4). For 
this model, relative BFI changes are equal to relative   g  1  ′  ( 0   + )  changes 
if optical properties do not change.

Noise correction of G1(0)
The raw experimental G1(d) includes a zero lag offset, consisting of 
noise variances from the camera (   Cam  2   ) and reference light (   Shot  

2   ). 
This offset must be corrected to accurately estimate CW intensity. 
The constant    Cam  2    can be directly estimated from separate camera 
background measurements. However, since the reference intensity 
tends to drift over time (possibly due to polarization drift in the 
reference fiber), the shot noise variance must be estimated from the 
contemporaneously estimated reference intensity (IRef). Specifically,   
 Shot  

2   =  I  Ref   / (FWC / 4096) , where FWC is the calibrated full well 
capacity (section S1) of the 4096 level CMOS camera. G1(0) is cor-
rected by subtracting both    Shot  

2    and    Cam  2   .

Human subjects
For this study, five healthy adult human subjects (aged 25 to 66 years) 
were recruited for VA, hypercapnia, MA, and finger-tapping mea-
surements. Informed consent was obtained from all subjects. All 
experimental procedures and protocols involving human subject 
research were reviewed and approved by the University of California 
Davis Institutional Review Board, and safety precautions (e.g., laser 
safety goggles, beam blocks, and protective screens) were implemented 
to avoid accidental eye exposure from laser.

Breathing circuit and gas delivery for hypercapnia
The gas delivery apparatus, used for modulating CO2 content of in-
spired air to induce hypercapnia, consists of a gas blender, breathing 
circuit, and CO2 monitor. A clinical air-oxygen blender (PM5200, 
Precision Medical) is used to blend adjustable amounts of pure 
medical air and a 5% CO2–medical air mixture (i.e., 5% CO2, 20% O2, 
and 75% N2). The output gas mixture, with an adjustable CO2 con-
centration (0 to 5%), is then delivered to a breathing circuit. Details of 
the breathing circuit are described in (73). A capnograph (9004051, 
Smiths Medical) with oximeter capabilities was used to monitor CO2 
concentration of respiratory gas. Analog output signals of the capno-
graph, including respiratory CO2 waveform, etCO2 trace, and pulse 
oximetry, were acquired by a Data Acquisition (DAQ) card (PCIe-6363, 
National Instruments). Last, the frame grabber (PCIe-1433, National 
Instruments) used for the fiDWS camera was synchronized with DAQ 
card to achieve multiparameter monitoring during hypercapnia.

MA protocol
Each subject was instructed to sit still and think about nothing for a 
resting period of 10 min before multiple (≥5) trials of MA. The fiDWS 
optical probe was secured over left prefrontal cortex region on fore-
head. In each trial, subjects were asked to solve math problems as 
fast as they could (but without a time limit for each question) for a 
total duration of 30 s, followed by a few minutes of rest. All math 
problems were based on subtraction of a two-digit number from a 
three-digit number with borrowing (e.g., 123 − 45 = ?).

SUPPLEMENTARY MATERIALS
Supplementary material for this article is available at http://advances.sciencemag.org/cgi/
content/full/7/20/eabe0150/DC1

http://advances.sciencemag.org/cgi/content/full/7/20/eabe0150/DC1
http://advances.sciencemag.org/cgi/content/full/7/20/eabe0150/DC1
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