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Abstract	
Novel methods are desired to harvest and store power in harsh environments, like those found at the 
bottom of production wells, to power commercially available monitoring devices.  These systems must 
not only be mechanically robust but also operationally resilient, capable of sufficient power output 
under the widely varying conditions expected over the service life of a well.  Since energy harvesting 
systems are heavily dependent on natural frequency, this broad range of conditions and/or well 
configurations makes the design of a suitable energy harvester challenging.  Although the American 
Petroleum Institute (API) has set standards on some of the system variables, other variables are less well 
defined and may be time dependent.  A first step towards the design of an energy harvesting system, 
then, is to investigate the changes in the natural frequency of a well by varying those inputs possessing 
moderate to high uncertainty. 

An analytical model is formed using Euler-Bernoulli beam theory to model the coupled fluid-structural 
system found in a producing well.  A hydrodynamic function is included in the formulation to model the 
effects of the viscous fluid filled annulus.  Due to the form of the hydrodynamic function, the systems 
natural frequency is solved in the frequency domain using the spectral element method; a method for 
calculating the displacement response to an external force is also provided.  A parametric study is 
performed to determine the effect various inputs have on a systems first natural frequency.  The key 
inputs considered are the axial force in the production tube, the conveyed fluid velocity, and the 
hydrodynamic function, itself a function of the annulus fluid viscosity and geometry. 

The study’s results are in-line with expectations based on previous publications investigating component 
wise analogous systems.  The inclusion of an axial force shifts the natural frequency of the system and 
the conveyed fluid velocity at which divergence occurs.  The added mass introduced by the real part of 
the hydrodynamic function causes a shift in natural frequency but not in the bifurcation point.  Viscous 
effects generated by the imaginary part of the hydrodynamic function act to shift the natural frequency 
of the system and the bifurcation point.  Approved for publication, LA-UR-14-27597. 
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Highlights	
• A production tube confined in a viscous fluid was modeled. 
• A parametric study investigating axial and annulus fluid effects was performed. 
• Axial compression decreases the critical velocity at which divergence occurs. 
• Added mass does not change the velocity at which bifurcation occurs. 
• Viscous effects change the velocity at which bifurcation occurs. 
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1. Introduction	
Engineers are often interested in the dynamic behavior of systems.  In the case of production strings, 
engineers may be concerned with the accumulation of cyclic fatigue damage, dynamic effects on in-line 
components, or vibration induced impacts (all of which may result in well downtime).  Engineers may 
also be interested in the dynamic behavior of a production string for a more beneficial purpose: a source 
of power for downhole equipment. 

Well monitoring systems are often deployed on production strings to facilitate optimal hydrocarbon 
extraction.  Ideally, these systems would be powered locally by energy harvested from and stored 
adjacent to the system.  This, in combination with commercially available acoustic telemetry systems, 
may reduce or eliminate the need for running conductor cable within the annulus from surface to 
reservoir.  Of the types of energy available for harvesting, mechanical vibration stemming from the 
kinetic energy of the produced fluid appears to be the most convenient.  However, a wide range of 
environmental and production conditions could exist over the service life of a given well, making the 
task of estimating the frequency and amplitude of vibrations, and indirectly the harvestable energy, 
difficult.  If the harvesting system is to be commercially viable and thus deployable on a wide variety of 
wells, the range of values taken on by the variables of interest increases, making the task more 
challenging. 

Since energy harvesting systems are frequency-dependent with production generally optimized when 
operating at a fundamental frequency, it is pertinent to investigate the effects specific variables have on 
the natural frequency of the coupled fluid-structural system.  Of particular interest are those variables 
whose values may appreciably change during the wells service life (i.e., axial force) or whose effects are 
not transparent (i.e., annulus fluid effects).  While axial force effects in a structural system are well 
understood (Bokaian, 1990, 1988), there is less literature available on the effects that a viscous annulus 
fluid has on the natural frequency of a fluid-conveying pipe. 

Significant work has been done investigating the behavior of pipes conveying fluid (Dodds and Runyan, 
1965; Housner, 1952; Long, 1955; Naguleswaran and Williams, 1968), with special interest in cantilever 
pipes (Gregory and Paidoussis, 1966a, 1966b) due to their non-conservative nature.  Other work 
investigating the effects of nonlinear terms (Lee and Chung, 2002) and unsteady flow (Lee et al., 1995; 
Lee and Park, 2006; Paidoussis and Issid, 1974; Seo et al., 2005) in similar systems can also be found.  
However, these research efforts do not account for the possibility of a medium external to the pipe, 
such as a surrounding fluid or viscoelastic foundation, which may affect the dynamics of the system.  
When a viscoelastic foundation is included in the system model (Hosseini et al., 2014; Lee et al., 2009; 
Lottati and Kornecki, 1968; Soltani et al., 2010), some of the resulting behavior may be extrapolated to 
the configuration of interest; however, the problem formulation is fundamentally different with the 
clearest manifestation being the viscoelastic foundation models failure to account for changing inertial 
effects.  Such shortcomings become relevant since the dynamic behavior of beams vibrating in a viscous 
fluid is known to be altered due to both added mass and viscous effects (Sinyavskii et al., 1980; Tuck, 
1969; Yeh and Chen, 1978).   



The problem has been approached using a shell formulation where the treatment of inviscid fluid 
(Paidoussis et al., 1984), viscous fluid flow (Paidoussis et al., 1985), and the determination of added 
mass and damping terms (Yeh and Chen, 1977) can be found in the literature.  These formulations tend 
to be more complicated due to the use of the shell equation of motion which permits the inclusion of 
additional modes beyond those produced by a beam formulation.  Conveniently, for typical production 
tube geometries where the effective pipe length is much larger than the pipe radius, the dynamic 
behavior of the two formulations converge (Paidoussis, 1975).  Thus, for the application of interest, a 
beam formulation is not only plausible but preferred as its use allows further simplification of the 
problem since the effects of viscous friction from the conveyed fluid vanish from the equation of motion 
in a beam formulation (Paidoussis, 1998). 

This paper investigates the axial force effects and the effect a confined viscous fluid has on the first 
natural frequency of a pipe conveying fluid.  Specifically, a parametric study is performed exploring the 
effects of axial force, annulus geometry, annulus fluid density, and annulus fluid viscosity as the 
conveyed fluid velocity is increased.  This investigation is accomplished by forming an equation of 
motion based on Euler-Bernoulli beam theory that incorporates a hydrodynamic forcing term that 
includes both inertial and viscous effects from the annulus fluid.  The problem is solved using the 
spectral element method (SEM), which provides a convenient approach for determining the frequency 
response of a given system and, if desired, its displacement response to an arbitrary forcing function.  
This task is undertaken so that those variables affecting the natural frequency of a subsurface length of 
pipe can be better understood.  The presented results will be of interest to engineers working to 
develop an energy harvesting system for downhole deployment, as well as practicing engineers 
concerned with damage stemming from system dynamics. 

Section 2 describes the condensation of a producing well into an analytical model.  Section 3 will 
introduce the equation of motion, frame the problem using the spectral element method, and discuss 
the solution methodology while Section 4 will present the findings from the parametric study and 
notable observations. 

2. Mapping	downhole	configurations	to	an	analytical	model	
There is no standard configuration for a hydrocarbon well.  For each producing well, a specific 
configuration is selected by a petroleum engineer based on the particular site and reservoir 
characteristics.  The initial production string configuration may even vary over time as ambient 
temperature, fluid properties, or production string components can change over the wells service life.  It 
is not computationally feasible to account for the broad variability or address all of the resulting effects 
on the dynamics of the system in a meaningful way.  Accounting for the possible non-linear boundary 
conditions (stemming from inherent multi-axis well deviations) alone could fill a textbook.  To produce 
meaningful results that can be generally interpreted by engineers, the wide range of possible conditions 
must be limited and then idealized in order to permit a reasonably sized analytical model.  

The general structure of a vertical well is shown in Figure 1 (deviated wells are not investigated here). 
The region of interest is above and adjacent to the in-line components (monitoring systems, control 



valves, etc.) that would require power generated by a deployed energy harvester.  In this region, the 
coaxial casing and grout provide a rigid boundary which encases the annulus fluid and production string; 
the production string will generally consist of lengths of API standardized tubing and couplings which 
may vary in form.  Analytically, the annulus fluid is incorporated into the model as a stagnant single-
phase fluid requiring a density and viscosity input; the casing is modeled as a fixed boundary.  Assuming 
the coupling joints result in only slight stiffness anomalies, the production tube is modeled as a constant 
cross section.  The tubes mass can be modified in the spectral element model (described in Section 3) to 
account for arbitrary mass distributions caused by the joints, as desired.  

The conveyed fluid produced by an operating well may range from single-phase to a multiphase flow 
consisting of bubble, slug, transition, or mist flow.  Although multiphase fluid flow is common in oil 
wells, predicting its behavior is complicated due to complex heat and mass transfer through the system 
(Brill, 2010).  Since the primary interest of this paper is the effects the annulus (annulus geometry, 
annulus fluid density, and annulus fluid viscosity) has on the system, the inclusion of multiphase flow in 
the analytical model is unnecessarily burdensome; the produced fluid, which is expected to be 
turbulent, is modeled as a plug flow with either average viscous or inviscid characteristics. 

The last simplification made is to the boundary conditions of the production tube.  In operating wells, 
the production tube is not likely to be centered in the well: inherent multi-axis deviation is common in 
the wellbore resulting in randomly located points of contact between the production tube and the 
production casing.  This makes a neat boundary condition impossible to implement.  However, the 
purpose of this paper is to investigate the frequency response of the system with an eye towards 
deploying an energy harvester and storage element along the production string.  To maximize the 
energy that could be harvested, resonant transverse displacement of the system is desired.  This 
resonance can be achieved through internal pressure oscillations controlled mechanically along the 
production string resulting in amplified translational pipe displacements.  To protect the in-line 
components typically deployed (see Figure 1) from excessive vibrations and impacts, leading to 
premature fatigue failure or other damage, the length of pipe vibrating in resonance should be isolated.  
It is expected that the length of pipe containing the yet to be designed energy harvester will have two 
spaced bracing elements (see Figure 2) to prevent translation of the pipe and dampen any amplified 
vibrations from being transmitted to adjacent equipment.  This would result in a real-world boundary 
condition somewhere between pinned-pinned and fixed-fixed (with the production tube itself acting to 
prevent rotation).  Since many variables go into determining the rotational stiffness of the system (the 
distance between pipe/casing contact points for instance) it is best to take a bounded approach and use 
the neat boundary conditions available.  Although the spectral element method provides a simple way 
to deploy various boundary conditions, this paper only focuses on the fixed-fixed condition for simplicity 
with the expectation that trends in the systems natural frequency found in the parametric study will be 
similar for the pinned-pinned case, or any elastic boundary condition case in between these extremes. 

It is worth re-mentioning that the goal of this paper is to investigate the axial force effects and the effect 
a confined viscous fluid has on the first natural frequency of a pipe conveying fluid through a parametric 
study.  The above assumptions are made to permit a reasonably sized analytical model while still 
representing the fundamental physics of the system.  By capturing the fundamental physics in the model 



formulation, the modeling approach and solution technique proposed in the following section can be 
used by petroleum engineers on specific wells of interest, thereby generating specific, rather than 
parametric, results. 

3. Theory	
Assuming small lateral motions, the linearized equation of motion for a pipe conveying fluid was derived 
(Paidoussis and Issid, 1974) as 
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with the general configuration given in Figure 3.   The forces represented, starting with the first term, 
are the flexural restoring force incorporating a Kelvin-Voigt type internal dissipation effect, centrifugal 
force, externally applied tension force, pressure induced tension, gravity induced tension, unsteady fluid 
effects, Coriolis force, gravity, external viscous damping, and inertia.  This equation is valid for inviscid as 
well as viscous conveyed fluid as explained by Paidoussis (1998).   

The governing equation (1) can be generalized by including thermal and annulus fluid effects.  For 

simplicity, the gravity-induced tension effect is dropped, and the fluid flow is taken as steady (i.e., ()
(#
=

0).  The governing equation is then re-written as 

	
𝐸∗𝐼�̇�**** + 𝐸𝐼𝑤**** + B𝑀&𝑈' − 𝑇, + �̅�𝐴&(1 − 2𝜈) + 𝐸𝐴+𝛼𝛥𝑇E𝑤** + 2𝑀&𝑈�̇�* +
(𝑀& +𝑚)𝑔𝑤* + 𝑐�̇� + (𝑀& +𝑚)�̈� − 𝑓,-(./ = 0, 

(2) 

where prime indicates a derivative with respect to x, dot indicates a derivative with respect to time and 
𝑓,-(./ is the hydrodynamic force generated by the annulus fluid effects.  The general form of the 
hydrodynamic forcing was derived by Wamsganss et al. (1974) with similar derivations given by Stokes 
(1851) and Rosenhead (1963); it can be written as  

 𝑓,-(./ = −𝑖𝜌0𝜋𝑑'𝜔𝛤𝑈1𝑒&2#, (3) 

where the hydrodynamic function, 𝛤, is provided in Appendix A and is generally complex.  If the 
hydrodynamic function is rewritten as 𝛤 = 𝛤. − 𝑖𝛤&, 𝛤.  acts to increase the effective mass of the system 
by contributing an added mass of 𝜌0𝜋𝑑'𝛤.  while 𝛤&  contributes a viscous drag term that is proportional 
to the pipe velocity (Cranch et al., 2013). 

Noting the hydrodynamic forcing’s dependence on 𝜔 both through the hydrodynamic function and the 
direct forcing itself, it is convenient to operate in the frequency domain where the hydrodynamic forcing 
is written as 



	 𝐹P,(𝑥|𝜔) = 𝜌0𝜋𝑑'𝜔'𝛤𝑊S (𝑥|𝜔). (4) 

Sader (1998) solved a significantly simplified version of Eq. (1) by using a Green’s Function approach in 
the frequency domain.  However, for the expanded equation of interest here, a Green’s Function 
approach was found to be computationally expensive.  Instead, a spectral element formulation 
approach is used.  The spectral element method (SEM) solves the continuous governing equation of 
motion in the frequency domain as outlined in the following steps. Additional discussion of the SEM can 
be found in the works of Doyle (1989) and Lee (2009). 

To implement the SEM, the governing equation of motion is transformed into the Fourier domain by 
taking the Fourier transform of Eq. (2) 

	 {(𝑖𝜔𝐸∗ + 𝐸)𝐼}𝑊+ """" + ,𝑀#𝑈$ − 𝑇1 + �̅�𝐴#(1 − 2𝜈) + 𝐸𝐴%𝛼𝛥𝑇:𝑊+ "" +
																																						{2𝑖𝜔𝑀#𝑈 + (𝑀# +𝑚)𝑔}𝑊+ " + {𝑖𝜔𝑐 − (𝑀# +𝑚)𝜔$ − 𝜌&𝜋𝑑$𝜔$𝛤}𝑊+ = 0.	

(5) 

Assuming the general solution of Eq. (5) to be 

	 𝑊S = 𝐶𝑒&3% ,	 (6) 

where C is constant and k is the wavenumber, and substituting Eq. (6) into Eq. (5) results in the following 
dispersion relation 

	
{(𝑖𝜔𝐸∗ + 𝐸)𝐼}𝑘4 − B𝑀&𝑈' − 𝑇, + �̅�𝐴&(1 − 2𝜈) + 𝐸𝐴+𝛼𝛥𝑇E𝑘'

+ {2𝑖𝜔𝑀&𝑈 + (𝑀& +𝑚)𝑔}𝑖𝑘 + {𝑖𝜔𝑐 − (𝑀& +𝑚)𝜔' − 𝜌0𝜋𝑑'𝜔'𝛤} = 0.	
(7) 

Equation (7) may be solved for the four wavenumbers (𝑘., r=1…4), each a function of 𝜔, allowing for Eq. 
(6) to be rewritten as 

	 𝑊S = ∑ 𝐶.𝑒&3#%4
.56 = 𝒆𝑪,	 (8) 

where 

	
𝒆 = B𝑒&3$%	𝑒&3"%	𝑒&3%%	𝑒&3!%E,	

𝑪 = {𝐶6, 𝐶', 𝐶7, 𝐶4}.	

(9) 

Considering a single spectral element, the nodal degrees of freedom and force vectors can be written as 

	
𝒅 = {𝑊6, 𝛩6,𝑊', 𝛩'} = B𝑊S (0),𝑊S *(0),𝑊S (𝐿0),𝑊S *(𝐿0)E,	

𝒇 = {𝑄6, 𝑀6, 𝑄', 𝑀'} = {𝑄(0), −𝑀(0), −𝑄(𝐿0),𝑀(𝐿0)},	
(10) 



corresponding to the convention given in Figure 4. 

Plugging Eqs. (8) and (9) into Eq. (10), a relation between the nodal degrees of freedom vector and 
constants vector can be established as 

	 𝒅 = B𝑊S (0),𝑊S *(0),𝑊S (𝐿0),𝑊S *(𝐿0)E = {𝒆(0), 𝒆*(0), 𝒆(𝐿0), 𝒆*(𝐿0)}𝑪 = 𝑯𝑪,	 (11) 

where H can be written as  

	 𝑯 =
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1 1 1 1
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⎥
⎥
⎤
.	 (12) 

Considering the force vector f in Eq. (10) and noting the force relations in the spectral domain (Lee and 
Oh, 2003) to be  

	
𝑄 = (𝑖𝜔𝐸∗ + 𝐸)𝐼𝑊S *** − 𝑇,𝑊S *,	

𝑀 = (𝑖𝜔𝐸∗ + 𝐸)𝐼𝑊S **,	
(13) 

Eqs. (8), (9), and (13) may be inserted into the force vector in Eq. (10), arriving at 

	 𝒇 = {𝑄(0), −𝑀(0), −𝑄(𝐿0),𝑀(𝐿0)} = 𝑿𝑪,	 (14) 

where X may be written as 
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where 

	 𝑔. = −𝑖𝑘.7(𝑖𝜔𝐸∗ + 𝐸)𝐼 − 𝑖𝑘.𝑇,,	

ℎ. = −𝑘.'(𝑖𝜔𝐸∗ + 𝐸)𝐼.	
(16) 

The H matrix of Eqs. (11) and (12) may be inverted and substituted into Eq. (14) as 

	 𝒇 = 𝑿𝑪 = 𝑿(𝑯96𝒅) = 𝑺𝒅,	 (17) 

where the spectral element matrix S can be defined as 



	 𝑺 = 𝑿𝑯96.	 (18) 

The global spectral matrix (𝑺𝒈) can be assembled from the spectral element matrices in a manner similar 
to a finite element formulation.  Boundary conditions can be incorporated at this point.  For instance, for 
a two-element fixed-fixed model (two elements are required to have a non-zero rank matrix) as shown 
in Figure 5, the global spectral matrix can be assembled as 

	 𝑺𝒈 = 𝑨𝟏𝑻𝑺𝑨𝟏 + 𝑨𝟐𝑻𝑺𝑨𝟐,	 (19) 

with 

	 𝑨𝟏𝑻 = 60 0 1 0
0 0 0 19,					𝑨𝟐

𝑻 = 61 0 0 0
0 1 0 09.	

(20) 

The physical construction of the assembly process described by Eq. (19) is shown in Figure 6. 

For a pinned-pinned beam, 𝑨𝟏 and 𝑨𝟐 are written as  

	 𝑨𝟏 = l

0 0 0 0
1 0 0 0
0 1 0 0
0 0 1 0

m,					𝑨𝟐 = l

0 1 0 0
0 0 1 0
0 0 0 0
0 0 0 1

m.	 (21) 

Having applied the relevant boundary conditions, the equation of interest is then 

	 𝒇𝒈 = 𝑺𝒈𝒅𝒈.	 (22) 

The natural frequencies can be solved by setting the determinant of 𝑺𝒈 to zero and solving for 𝜔>.  For a 
forced dynamic response, the displacement at the free nodes can be determined by: 

1. For loads applied to free DOFs, transform the nodal force into the frequency domain and 
assemble 𝒇𝒈. 

2. Invert 𝑺𝒈 and solve for 𝒅𝒈 using Eq. (22). 
3. Disassemble the global response into the element response (i.e. 𝒅𝒈 � d). 
4. Calculate the C vector using Eqs. (11) and (12). 
5. Calculate the frequency response 𝑊S  using Eq. (8). 
6. Apply an inverse Fourier transform to determine the displacement response in the time domain. 

The inverse Fourier transform is done discretely to reduce computation time.  The tradeoff, when 
compared to the continuous inverse transform, is the user must specify which frequencies to include 
from 𝑊S  and the frequency domain sampling rate (Narayanan and Beskos, 1978).   



4. Results	and	discussion	
It is desirable to understand and characterize the effects fluid velocity, axial force, annulus geometry, 
and annulus fluid properties have on the systems natural frequency.  A parametric study is undertaken 
in which the systems first natural frequency is plotted for specific variables of interest over a range of 
fluid velocities.  Where possible, calculations are simplified by setting irrelevant variables to 0 or ∞ as 
appropriate.  The input values used for each case are tabulated in Appendix B.  The numeric values used 
as inputs were selected as they fall within a reasonable range for what might be found during 
hydrocarbon production.   As the results presented are from a parametric study, the input values used 
are not intended to coincide with any specific value found in practice.  However, a practicing engineer 
may generate similar results using the model outlined in the Theory section and their own numeric 
inputs stemming from a specific well configuration of interest. 

For plotting purposes, the flow velocity and natural frequency are normalized as 

	 𝑢 = p?'
@A
𝑈𝐿					,				𝛺 = p?'BC

@A
𝜔𝐿'.	 (23) 

4.1 Axial	force	effects	
A system is subjected to three levels of axial force 𝑇, = 100 kN, 0 kN and -200 kN (cases I, II and III 
respectively) with negative values implying compression; results are presented in Figure 7.  For case II 
(the unloaded case) the natural frequency for zero fluid flow (22.37) and at the critical flow velocity (-
6.28) match published data (Paidoussis, 1998; Rao, 2007).   

Using case III (the compression case) as an illustrative example, the vertical shift in the real part of the 
natural frequency under zero flow compares favorably with documented results; Bolotin (1964) suggests 
the relation 

	 𝛺D = 𝛺r1 + 𝑇, 𝑃@EF0.⁄ 	.	 (24) 

Noting 𝑃@EF0. = 550	𝑘𝑁 for the system presented, Bolotin’s equation results in 𝛺D = 17.84 versus a 
calculated value of 𝛺D = 17.96 using the SEM method (error =0.7%).  The lateral shift in the critical flow 
velocity relates to the applied axial force as 𝑇,~𝑀&𝑈': the fluid velocity has the effect of inducing 
compression in the system.  This relationship is apparent when looking at the equation of motion (1) and 
has been documented by Housner (1952).  The critical velocity can then be calculated as 𝑈D. =
r(𝑃@EF0. + 𝑇,) 𝑀&⁄ .  In nondimensional form 𝑢D. = −5.01, agreeing with the results presented in Figure 
7. 

Bifurcation of the imaginary natural frequency occurs when the real part of the natural frequency 
reaches zero (𝑅𝑒[𝛺] = 0).  Divergence instability occurs when both the real and imaginary parts of the 
natural frequency reach zero (𝑅𝑒[𝛺] = 𝐼𝑚[𝛺] = 0).   Due to the Coriolis effect (2𝑖𝜔𝑀&𝑈𝑊S *) and the 
fixed-fixed boundary condition, a small imaginary part of the natural frequency exists prior to 



bifurcation (on the order of 𝐼𝑚[𝛺]~0.005).  Because of this, the bifurcation point and divergence point 
do not exactly coincide, although the difference in this case is almost undiscernible. 

4.2 Annulus	fluid	density	effects	
The annulus fluid density manifests itself in the equation of motion as a multiplier of—but does not play 
a direct role in defining—the hydrodynamic function.  It is, however, used to define the hydrodynamic 
force (see Eq. (3)).  The annulus fluid density could then be thought of as a sort of scaling factor applied 
to the effects of the hydrodynamic function where for 𝜌0 = 0 the hydrodynamic function plays no role 
while for 𝜌0 ≠ 0 hydrodynamic effects will be included.   

Consider the cases presented in Table 1.  The zero flow case provides a useful illustration if the 
discussion is restricted to inviscid systems: the effects of the annulus fluid density can be directly 
observed through the added mass contributed by the hydrodynamic function.  For case IV, where 𝜌0 =
0, the natural frequency of the system can be calculated as 𝛺 = 22.37 (𝜔> = 48.95 𝑟𝑎𝑑 𝑠⁄ ) where the 
system mass includes both the conveyed fluid and pipe mass and can be written as 𝑀& +𝑚 =
35.98 𝑘𝑔 𝑚⁄  (i.e. there is no added mass).  The system stiffness can then be determined as 𝐾 =
𝜔>'(𝑀& +𝑚) = 86225𝑘𝑔 𝑚𝑠'⁄ .  By selecting various fluid densities and hydrodynamic functions, the 
shift in natural frequency due to the added mass (𝜌0𝜋𝑑'𝛤.) can be calculated and compared with the 
SEM output.  Table 1 shows excellent agreement between the SEM results and the simplified method 
presented here.   

4.3 Annulus	viscosity	and	geometry	effects	
The annulus viscosity and geometry act to shape the hydrodynamic function in a complicated way (see 
Appendix A).  Rather than trying to understand the complex link between these three variables (𝜐0, D, d) 
and the natural frequency, it is easier to first examine the relationship between these variables and the 
hydrodynamic function and later observe how the hydrodynamic function effects the natural frequency. 

4.3.1 Hydrodynamic	Function	
The hydrodynamic functions for different combinations of viscosity and geometry (see Table 2) are 
plotted in Figure 8 where w is taken as purely real. 

Noting Figure 8, for the range of inputs considered the real part of the hydrodynamic function is 
dominated by effects stemming from the D/d ratio while changes in the annulus viscosity result in only a 
small offset.  In general: 

• 𝑅𝑒[𝛤] and |𝐼𝑚[𝛤]| decrease with an increasing D/d ratio. 
• 𝑅𝑒[𝛤] and |𝐼𝑚[𝛤]| increase with increasing 𝜐0. 

4.3.2 An	Inviscid	System	
Taking 𝜐0 = 0 results in an inviscid system and a purely real hydrodynamic function with the reduced 
form (Wambsganss et al., 1974) 



	 𝛤&>G&HD&( =
6B(( J⁄ )"

69(( J⁄ )"	.	
(25) 

As previously discussed, the real part of the hydrodynamic function results in an increased system mass 
by generating an added mass term (𝜌&𝜋𝑑$𝛤').  Rewriting the inertial and hydrodynamic forcing terms 
from Eq. (5) makes the contribution apparent: 

	 {−(𝑀# +𝑚)𝜔$ − 𝜌&𝜋𝑑$𝜔$𝛤'}𝑊+ = {−(𝑀# +𝑚 + 𝜌&𝜋𝑑$𝛤')𝜔$}𝑊+ .	 (26) 

 

To illustrate the effect of added mass, three cases (VIII-X) are investigated with the SEM results plotted 
in Figure 9.  As was done in Section 3.2, the shifts in natural frequency for zero flow velocity can be 
predicted analytically and compared to the SEM results.  This is done in Table 3 with the results 
exhibiting excellent agreement between the two methods. 

Lastly, since divergence is a static phenomenon its occurrence is not dependent on inertial effects 
meaning the addition of added mass does nothing to change the critical flow velocity, as illustrated in 
Figure 9 which shows all three cases converging to the same critical flow velocity (𝑢 = −6.28).  The 
added mass, however, does effect post-divergence frequencies as is apparent in the plot of imaginary 
natural frequencies. 

4.3.3 A	Viscous	System	
Four cases (XI-XIV) are analyzed to observe the effects the full hydrodynamic function has on the system 
(i.e.,	𝜐0 ≠ 0).  The resulting normalized fluid velocity vs. normalized frequency curves are shown in 
Figure 10. 

Unlike the inviscid case, the vertical shift in 𝑅𝑒[𝛺] is now due to both added mass (contributed by the 
real part of the hydrodynamic function) and viscous drag (contributed by the imaginary part of the 
hydrodynamic function).  Figure 10 indicates that the real part of the natural frequencies for cases XII 
and XIII at zero flow velocity nearly coincide (10.10 vs. 9.90).  However, the added mass generated by 
the specific configuration of case XII is nearly 65% greater than that in case XIII.  If viscous effects were 
not acting to shift the natural frequencies one would expect 𝑅𝑒[𝛺] for case XII to be lower than that of 
case XIII (recalling that an increase in added mass acts to lower 𝑅𝑒[𝛺]).  However, case XIII has 
significantly more viscous drag (Γ&;	DOH0	PAAA Γ&;	DOH0	PAA = 3.7⁄ ) which acts to decrease the natural 
frequency, a characteristic of damping that is widely known, and results in the closely spaced natural 
frequencies shown.  

To confirm the results of Figure 10 and to illustrate the SEMs capability in producing displacement 
results the free vibration response for case XII was determined using the method outlined in Section 2.  
While taking 𝑈 = 0, a point force was applied at midspan and then removed at t = 15 sec.  The midspan 
free vibration response was then plotted as shown in Figure 11.  A Laplace Transform was taken of the 
time history output to confirm the real and imaginary parts of the natural frequency given in Figure 10.  
If the form of the response is assumed to be defined by a decaying exponential (i.e., 𝑤(𝑡) =



𝐵𝐶𝑜𝑠[𝜔.𝑡]𝑒92'#), then it is clear that the real part of the natural frequency (𝜔. = 𝑅𝑒[𝜔]) corresponds 
to the frequency of vibration while the imaginary part (𝜔& = 𝐼𝑚[𝜔]) to the decay rate.  

As the flow rate increases, 𝑅𝑒[𝛺] approaches zero.  Using the just defined decaying exponential 
equation, the log decrement can be calculated as 

	 𝛿 = 𝑙𝑛 " Q

Q0(")*+' +#⁄ -% = 2𝜋 2'
2#
		 (27) 

so that as 𝑅𝑒[𝛺]  approaches zero (and noting that 𝐼𝑚[𝛺] is relatively constant prior to bifurcation) the 
equivalent viscous damping increases from its case specific initial value to critical damping at bifurcation 
(a trend noted by Dodds and Runyan (1965)).  After bifurcation but prior to divergence, the system acts 
in an overdamped fashion in which oscillation does not occur (𝑅𝑒[𝛺] = 0) but the system remains 
stable (𝐼𝑚[𝛺] > 0).  Once divergence has occurred (i.e., 𝑅𝑒[𝛺] = 𝐼𝑚[𝛺] = 0) the system becomes 
unstable, and since divergence is a static phenomenon that is independent of damping, the critical 
velocities for all four cases converge to 𝑢D. = −6.28. 

Although the point of divergence has not changed, the velocity at which bifurcation occurs has shifted 
between the four cases.  Understanding that this shift is not due to added mass (as laid out in Section 
3.3.2) it must be due to the inclusion of viscous drag effects.  Graphically, turning to the 𝐼𝑚[𝛺] plot of 
Figure 10, the necessity of this shift stems from the existence of a positive imaginary component of the 
natural frequency prior to bifurcation and the requirement that the point of divergence for all four cases 
coincide.  This shift of the bifurcation point due to viscous effects has been previously demonstrated in 
the literature (Hosseini et al., 2014; Soltani et al., 2010). 

Lastly, it should be noted that once the system becomes unstable the results presented here may 
become questionable, as the linearization assumptions used to define the hydrodynamic function may 
no longer be valid. 

5. Conclusions	
Using Euler-Bernoulli beam theory, the spectral element method was used to determine the frequency 
response of a pipe conveying fluid, confined by an external viscous fluid.  The formulation permits any 
number of variables to be parametrically investigated, allowing practicing engineers the opportunity to 
re-create the current study with their own specific inputs from a specific well configuration of interest.  
For the current study, the variables of interest were the axial force in the system, conveyed fluid 
velocity, annulus fluid properties, and annulus geometry.  The following results were found: Shifts in the 
natural frequencies due to axial load match previously published findings.  The annulus fluid density acts 
to scale the effect of the hydrodynamic function, in turn defining the hydrodynamic force.  The effects of 
the hydrodynamic function are driven by the annulus fluid viscosity and annulus geometry.  The real part 
of the hydrodynamic function contributes additional mass to the system, which causes a shift in the 
systems natural frequency but not in the velocity at which bifurcation occurs.  The imaginary part of the 
hydrodynamic function acts to both shift the natural frequency of the system and the velocity at which 



bifurcation occurs.  These findings give insight into the dynamic behavior of a submerged pipe conveying 
fluid, like what might be found in a hydrocarbon producing well, and would be of interest to engineers 
developing a mechanically based downhole energy harvesting system or those concerned by damage 
stemming from system vibration.   

6. Acknowledgments	
Funding was provided by Los Alamos National Laboratory through the Engineering Institute under Task 5 
(Subcontract No. 77137-001-11).  The funding source was not involved with study design; collection, 
analysis or interpretation of data; in the writing of the report; or in the decision to submit the article for 
publication. 

 

Appendix	A	
The hydrodynamic force is written as 

	 𝑓,-(./ = −𝑖𝜌0𝜋𝑑'𝜔𝛤𝑈1𝑒&2# , (A.1) 

where the hydrodynamic function can be written as 

	 𝛤 =
𝛤>EC
𝛤(0>

− 1 = 𝑅𝑒[𝛤] − 𝑖𝐼𝑚[𝛤], (A.2) 

with 

	
𝛤>EC = 2𝛼'[𝐼1(𝛼)𝐾1(𝛽) − 𝐼1(𝛽)𝐾1(𝛼)] − 4𝛼[𝐼6(𝛼)𝐾1(𝛽) + 𝐼1(𝛽)𝐾6(𝛼)]

+ 4𝛼𝛾[𝐼1(𝛼)𝐾6(𝛽) + 𝐼6(𝛽)𝐾1(𝛼)] − 8𝛾[𝐼6(𝛼)𝐾6(𝛽) − 𝐼6(𝛽)𝐾6(𝛼)], 

𝛤(0> = 𝛼'(1 − 𝛾')[𝐼1(𝛼)𝐾1(𝛽) − 𝐼1(𝛽)𝐾1(𝛼)]
+ 2𝛼𝛾[𝐼1(𝛼)𝐾6(𝛽) − 𝐼6(𝛽)𝐾1(𝛽) + 𝐼6(𝛽)𝐾1(𝛼) − 𝐼1(𝛽)𝐾6(𝛽)]
+ 2𝛼𝛾'[𝐼1(𝛽)𝐾6(𝛼) − 𝐼1(𝛼)𝐾6(𝛼) + 𝐼6(𝛼)𝐾1(𝛽) − 𝐼6(𝛼)𝐾1(𝛼)]. 

(A.3) 

The arguments to the hydrodynamic function are 

	 𝑘, = p&2
R&

;     𝛼 = 𝑘,𝑑; 					𝛽 = 𝑘,𝐷;     𝛾 = (
J
. (A.4) 

Assumptions used in the derivation of the hydrodynamic function are included in Table A.1. 

 

 

 



Appendix	B	
The inputs used in the various cases are provided in Table B.1. 
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Figures	

 

Figure 1. General Well Configuration 

 

Figure 2. Modified Region of Interest 



 

Figure 3. Model of a Pipe Conveying Internal Flow 

 

Figure 4. Element Convention: Displacement (Left) and Force (Right) 

 

Figure 5. Two-Element Fixed-Fixed Beam Model 



 

Figure 6. Global Spectral Matrix Assembly 

 

Figure 7. First Natural Frequency vs. Flow Velocity - Axial Force Effects 

 

 



 

Figure 8. Hydrodynamic Functions: Left - Real Part, Right – Imaginary Part 

 

Figure 9. First Natural Frequency vs. Flow Velocity – Added Mass Effects 



 

Figure 10. First Natural Frequency vs. Flow Velocity – Viscous System 

 

Figure 11. Free Vibration Response of Case XII 



Tables	

 

Table 1. The Role of Annulus Fluid Density 

 

Table 2. Hydrodynamic Function Matrix 

 

Table 3. Added Mass Effects at u=0 

1 The beam is vibrating in a viscous fluid enclosed by a rigid, concentric cylindrical shell. 

2 The beam is cylindrical with a uniform cross section over its entire length. 

3 The fluid boundary conditions are zero velocity at the outer shell and that the fluid velocity matches the beam 
velocity on the beam surface. 

4 The length of the beam greatly exceeds its nominal diameter. 

5 The beam is an isotropic linearly elastic solid. 

6 Flow from the reservoir to the annulus does not disturb the annulus fluid at the location of interest. 

7 The amplitude of vibration of the beam is far smaller than any length scale in the beam geometry. 

8 The annulus fluid is assumed homogeneous, Newtonian, and incompressible. 

Table A.1. Assumptions Used in Derivations 



 

Table B.1. Inputs Used in the Various Cases 

 




