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: X ORIGINAL
ARTICLES
Derivation and Validation of a Simplified Clinical
Prediction Rule for Identifying Children at Increased

Risk for Clinically Important Traumatic Brain Injuries Following
Minor Blunt Head Trauma

Callum Rowe, MD1, Kathryn Wiesendanger, BS1, Conner Polet, MD2, Nathan Kuppermann, MD, MPH1,

and Stephen Aronoff, MD, MBA3

Objective To develop a simplified clinical prediction tool for identifying children with clinically important traumatic
brain injuries (ciTBIs) after minor blunt head trauma by applying machine learning to the previously reported
Pediatric Emergency Care Applied Research Network dataset.
Study design The deidentified dataset consisted of 43 399 patients <18 years old who presented with blunt head
trauma to 1 of 25 pediatric emergency departments between June 2004 and September 2006. We divided the data-
set into derivation (training) and validation (testing) subsets; 4machine learning algorithmswere optimized using the
training set. Fitted models used the test set to predict ciTBI and these predictions were compared statistically with
the a priori (no information) rate.
Results None of the 4 machine learning models was superior to the no information rate. Children without clinical
evidence of a skull fracture and with Glasgow Coma Scale scores of 15 were at the lowest risk for ciTBIs (0.48%;
95% CI 0.42%-0.55%).
Conclusions Machine learning algorithms were unable to produce a more accurate prediction tool for ciTBI
among children with minor blunt head trauma beyond the absence of clinical evidence of skull fractures and having
Glasgow Coma Scale scores of 15. (J Pediatr: X 2020;3:100026).

P
ediatric blunt head trauma accounts for approximately 52 000 deaths, 275 000 hospital admissions, andmore than 650 000
emergency department visits each year in theUS.1 Although cranial computed tomography (CT) remains the standard im-
aging modality used to diagnose intracranial injury in acute settings,2,3 radiation-induced malignancy remains an impor-

tant risk from CT-associated ionizing radiation.4-9 Children with apparently minor blunt head trauma (ie, those with Glasgow
Coma Scale [GCS] scores ³14) frequently are assessed using CT scans in the US. However, it is rare that neurosurgical intervention
is needed in children who are neurologically normal.10 The concept of CT minimization has been widely studied and is the basis
behind the development of clinical prediction rules for intracranial injury in children who have sustained blunt head trauma.11

In 2007, the Pediatric Emergency Care Applied Research Network (PECARN) conducted a study of �42 000 children with
minor blunt head trauma to develop a clinical prediction rule to identify children at low-risk of clinically important traumatic
brain injuries (ciTBIs).10 Two age-dependent rules were derived: one for children younger than age 2 years and another for
those 2 years and older (Table I).

Although previous studies including but not limited to PECARN have relied on traditional multivariable statistical methods
and single recursive computer algorithms,10-13 more recent research regarding prediction rules has focused on the use of arti-
ficial intelligence (AI).14-19 Machine learning, a subset of AI, is a vital part of the digital revolution, with potential to influence
clinical prediction rules and medicine.20,21 Although a previous study used one machine learning algorithm with the intention
of improving on the PECARN ciTBI prediction rules, no study to date has applied multiple algorithms or defined experimental
methodologies.22 The objective of this study was to determine whether the application of multiple machine learning algorithms
evaluated by an a priori, defined, experimental study design could produce a predictive model of ciTBI in children with

blunt head trauma that added information to a no information, majority class
predictor.
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Table I. PECARN head injury prediction variables

Age <2 years Age ‡2 years

1. GCS <15 or AMS GCS <15 or AMS
2. Palpable/suspected skull fracture Signs of basilar skull fracture
3. History of LOC ³5 s History of any LOC
4. Severe MOI* Severe MOI*
5. Acting abnormally per parent Severe headache
6. Tempero/parietal/occipital scalp

hematoma
History of emesis

AMS, altered mental status; LOC, loss of consciousness; MOI, mechanism of injury.
*Severe mechanism defined by motor vehicle crash with patient ejection, death of another
passenger, or rollover; pedestrian or bicyclist without helmet struck by a motorized vehicle;
fall >3 feet for those <2 years or fall >5 feet for patients ³2 years; or head struck by a
high-impact object.
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Methods

With this idea in mind, we trained Logistic Regression, Clas-
sification and Regression Tree, Random Forest, and General-
ized BoostedMachine algorithms with low-risk subsets of the
PECARN head trauma dataset (defined as those with no clin-
ical evidence of skull fracture on initial physical examination
and a GCS score of 14 or 15) and statistically compared each
model’s predictions with the majority outcome to matched
hold out test subsets.

This study followed the STROBE (STrengthening the Re-
porting of OBservational studies in Epidemiology) guidelines
for the reporting of observational studies.

The dataset used in this study was compiled by PECARN
and included patients £18 years of age who presented with
head trauma to 1 of 25 network pediatric emergency depart-
ments between June 2004 to September 2006. The details of
data collection, predictive parameters (features), inclusion/
exclusion criteria, and outcome (presence of ciTBI), were
previously reported.10 The deidentified dataset was available
to the public and was downloaded from the PECARN Web
site (www.pecarn.org).

All data-related operations were performed in the R envi-
ronment using the RStudio IDE.23 Datasets were downloaded
in .csv format. Number of subjects, data types, missing data,
descriptive statistics and configuration of predictive vari-
ables, configuration of the response variable, and final selec-
tion of predictive variables were performed before graphical
and data analysis.24-26

Missing data were handled in several ways. Children whose
outcome (presence or absence of ciTBI) was missing in the
original dataset were excluded from the analysis. Features
missing in 10% or more of patients were assessed for clinical
relevance: features with near-zero variation and general de-
mographic descriptions were dropped. Parental assessment
of the child’s behavior following the incident was removed
because 36% of the responses were missing. Important fea-
tures were identified by univariable analysis using the c2

test (categorical features) and t test (continuous features)
to detect significantly different distributions (P < .05)
between children with ciTBI and those without. In those
cases in which patients were missing entries for statistically
significant features, the missing data points were imputed.27
2

The final, complete, dataset of patients with GCS scores
³14 and no clinical evidence of skull fractures (removed
because of known high association with ciTBI) was randomly
divided 2:1 into derivation (training) and validation (testing)
sets.28 The distribution of predictive variables and ciTBI rates
in these sets was compared by c2 and t test.

Model Development
General Conditions. All models were constructed using 5-fold
cross-validation with the holdout fold used to measure the
performance of each model. Comparisons between predicted
and actual outcomes were determined from receiver
operating characteristic curves with algorithms optimized
to maximize the rate for the absence of ciTBI which, by
definition, minimized false-positive predictions.
Algorithm Selection. The classical algorithms from the 2

broad classes of machine learning models were selected for
this study: parametric and nonparametric. Parametric algo-
rithms make strong assumptions about the shape of the deci-
sion boundary. The classical parametric models assume a
linear boundary and produce slopes and intercepts. The ad-
vantages of these models include simplicity, speed, and the
need for less training data than nonparametric models. The
accuracy of these models is influenced by collinearity among
the predictive features, the number of features included in the
model, missing data, and the requirement that the decision
boundary must be linear.
Logistic regression was selected because it is the classic

parametric classifier.29 This algorithm generates a linear deci-
sion boundary by computing slopes for each parameter as
well as an intercept. Nonparametric algorithms make no
assumption about the structure of the decision boundary.
Decision trees are the most widely employed nonparametric
models for classification. These models consist of parent no-
des (the initial distribution of outcomes), child nodes (the re-
sulting subsets of data after a split), and leaves (the end points
where no additional splits occur). Decision trees can be
divided into 2 groups: single-decision trees and tree ensem-
bles. Single-decision trees provide one complete tree. These
models are visually simple and are not affected by collin-
earity, missing data, or boundary configuration. Accuracy
of single tree models is affected by small variations in data-
sets, which lead to model instability and the need for strong
predictors. The most widely used single tree algorithm is the
Classification and Regression Tree (RPART), which provides
an optimized, single decision tree.30 This model is tuned by
determining the optimum depth of the tree. Ensemble tree
methods produce a large number of decision trees. The trees
are “polled” and the resulting votes determine the class
assignment for an unknown patient. The random forest algo-
rithm produces a large number of trees. The model is tuned
by determining how many randomly selected variables are
used for determining the split of each node of each tree
and how many trees the model will contain.31 This algorithm
has the same advantages as the single decision tree. In addi-
tion, it is not as unstable as a single tree and works well
with datasets where strong predictors are lacking. Unlike
Rowe et al
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the random forest algorithm, in which each tree is developed
independently of the other trees, the generalized boosted ma-
chine is an ensemble tree algorithm in which the misclassified
subjects from the previous tree are overweighted in the next
successive tree.32 This model has many tuning parameters,
including the node size for each tree and the number of trees
in the ensemble.

Model Comparisons
The fitted model of each algorithm was used to classify the
patients in the validation set. The no information model
was defined by the ciTBI rate in the validation set. Classifying
those patients predicted to not have ciTBI as the low-risk
population, the false-negative rates were compared among
the models including the no information model by c2 test.
Models significantly different from the no information
model, defined by P values <.05, were considered for further
evaluation.

Results

Details of the development of the complete dataset are shown
in Figure 1. The complete dataset contained 43 399
observations, 125 variables, and 763 patients with ciTBIs;
20 patients were missing outcome data. After we removed
those patients with missing outcome data, the prevalence
rate of ciTBI in the complete dataset was 1.76%.

Patients were grouped by outcome, and missing data were
evaluated. At least 10% of those patients with ciTBIs were
missing a response to 1 or more of the following clinical vari-
Figure 1. Overview of original dataset and data subsets used
in the study.

Derivation and Validation of a Simplified Clinical Predic
Risk for Clinically Important Traumatic Brain Injuries Following M
ables: acting normally to parent (36%), duration of loss of
consciousness (30%), neurologic deficit (22%), history of
seizure (19%), amnesia (18%), history of loss of conscious-
ness (17%), headache in the emergency department (15%),
history of emesis (14%), and race (10%). Three clinical vari-
ables were removed: acting abnormally to parent, duration of
loss of consciousness, and race. A bivariate comparison of the
rates of occurrence for each of the remaining variables was
significantly different between children with and without
ciTBIs (Table II). Because removal of patients with missing
data reduced the prevalence rate of ciTBI in the resulting
dataset to 0.88%, missing values for these variables were
imputed by random sampling using the probability
distribution for each variable in either the ciTBI present or
ciTBI absent groups. For each variable–group dyad, 5
datasets were imputed, assessed for comparability, and
pooled into a single complete dataset that was used to
replace the missing values. A final list of all the variables
used for model development is shown in Table III.
Rates of ciTBI in Patients with GCS Scores ‡14
Of the 381 patients with GCS scores ³14 and clinical evidence
of skull fractures, 67 (14.9%) had ciTBIs. Of the 1230 patients
with GCS scores of 14 and no clinical evidence of skull frac-
tures, 77 (6.2%) had ciTBIs. Of the 39 876 patients without
clinical evidence of skull fractures and GCS scores of 15,
192 (0.48%) had ciTBIs. For those patients without clinical
evidence of skull fractures, the rates of ciTBI for the group
with GCS scores of 14 and the group with GCS scores of 15
were significantly different (c2 = 604.02, P < .0001). As a
result of this difference, patients without clinical evidence
of skull fractures and GCS scores of 14 or 15 were modeled
separately.
No Clinical Evidence of Skull Fracture and GCS
Scores of 14
Derivation and Validation Subsets. To avoid overfitting the
predictive models, those patients with no clinical evidence
of skull fracture and a GCS score of 14 were randomly divided
into a derivation subset, used to train the models, and a vali-
dation subset, used to compare the quality of the models. The
derivation subset contained 812 patients and the validation
subset contained 418 patients. The rate of ciTBI was 6.3%
in the derivation subset and 6.2% in the validation subset.
There were no significant differences in the rates or mean
values of the 18 variables contained in the derivation and
validation subsets.
Model Development and Evaluation. The algorithms were

trained using the derivation subset and the fitted models
were used to predict a low-risk group for ciTBI from the vali-
dation subset. The no information model was defined by the
majority classifier in the validation subset. The results are
shown in Table IV. None of the machine learning models
were superior to the no information model.
tion Rule for Identifying Children at Increased
inor Blunt Head Trauma
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Table II. Bivariate comparison of clinical variables
missing from more than 10% of responses for patients
with and without ciTBI*

Rates of ciTBI present (n = 763) ciTBI absent (n = 42 616)

Amnesia 0.559 0.169
History of emesis 0.332 0.132
Headache in the ED 0.72 0.444
History of LOC 0.639 0.115
Neurologic deficit 0.194 0.0136
History of seizure 0.0984 0.0129

ED, emergency department.
*All rates are significantly different (P < .0001 by c2 test).

Table III. Predictive variables used in model
development

GCS score
Injury mechanism
Amnesia of event
History of loss of consciousness
History of seizure
When seizure occurred
Seizure duration
Headache
History of emesis
Intubated during examination
Paralyzed during examination
Pharmacologically sedated during examination
Altered mental status: agitated
Altered mental status: sleepy
Altered mental status: slow to respond
Altered mental status: repetitive questioning in ED
Altered mental status: other signs
Bulging fontanelle
Scalp hematoma
Size of hematoma
Injury above clavicle
Neurologic deficit
Sensory deficit
Cranial nerve deficit
Reflex abnormality
Non-head injury
Suspicion for intoxication
Sex
Observed in ED
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No Clinical Evidence of Skull Fracture and GCS
Scores of 15
Derivation and Validation Subsets. A similar approach was
taken with those children who had a GCS score of 15 and
no clinical evidence of skull fracture. The randomly assigned
derivation subset contained 26 319 patients and the valida-
tion subset contained 13 557 patients. The rates of ciTBI in
the derivation subset and validation subset were both
0.48%. There were no significant differences in the rates or
mean values of the 18 clinical variables contained in the deri-
vation and validation subsets.

Model Development and Evaluation. As with the previous
group, algorithms were trained to predict a low-risk group
for ciTBI with the derivation subset and were tested using
the validation subset. The results are shown in Table IV.
None of the machine learning models were superior to the
no information model.

GCS Score as a Predictor of ciTBI
None of the features listed in Table III produced a model that
surpassed the GCS score as a predictor of ciTBI in this
population of children with minor blunt head trauma and
no clinical evidence of skull fracture. The removal of all
patients with clinically evident skull fractures produced a
subset of 41 852 patients, 486 (1.2%) of whom had ciTBIs.
The distribution of patients by GCS scores, the ciTBI rates,
the associated CIs, and the strong inverse relationship
between GCS and ciTBI are shown in Figure 2. For those
patients without clinical evidence of skull fractures and GCS
scores of 15, the rate of ciTBI was 0.48% (95% CI 0.42%-
0.55%). Using these criteria, 39 876 children (91.9%) of
those patients in the PECARN dataset with known
outcomes were classified as low-risk.

Discussion

In this study, we were unable to produce a machine learning
model that was superior to a no information model based on
the absence of clinically evident skull fracture on physical ex-
amination and a GCS score of 14 or 15. Previous studies have
reported low-risk predictive models for ciTBI using the
PECARN head injury data and single classification tree algo-
rithms.10,22 Unlike the current study, each of the previous
4

studies explored the use of only a single modeling technique.
The original study used the greedy algorithm of Breiman
et al, a top-down method that optimizes one node at a
time, to develop a single decision tree.33 Bertsmias and
Dunn trained a single-decision tree using an algorithm that
fits all the nodes simultaneously.34 Although both studies
used sensitivity and specificity as measures of model effi-
ciency, neither compared overall false-negative predicted
rates with the no information rate of ciTBI or calculated
the area under receiver operating characteristic curves.
The present study treated all children with GCS scores £13

or clinical evidence of a skull fracture as high-risk. Several
features make the current study unique: patients with GCS
scores of 14 and 15 were treated as separate groups; 4
different machine learning algorithms, including the original
single-tree model, were tested; and the predicted ciTBI rates
in the low-risk groups of each model were compared with the
no information rate using the validation set. By these
methods, no algorithm produced a superior model to the
clinical evidence of skull fracture/GCS score alone. When
the GCS score was used as the only predictor, the predicted
ciTBI rate in the GCS score of 14 group without clinical
evidence of skull fracture was significantly greater than the
rate in children with GCS scores of 15 (6.26% vs 0.48%,
P < .001). Moreover, >90% of the children included in the
entire dataset fell into the low-risk category defined as those
children without clinical evidence of a skull fracture and a
GCS score of 15.
As tree-based algorithms were used in the previous studies,

the fitted models produced multiple terminal nodes with
Rowe et al



Table IV. Comparison of the no information model and machine learning algorithms as predictors of ciTBI in
children with no clinical evidence of skull fractures and GCS scores of 14 or 15

Models

GCS score of 14 GCS score of 15

True negative False negative ciTBI rate P value True negative False negative ciTBI rate P value

No information 392 26 0.062 1 13 492 65 0.00479 1
Logistic regression 389 26 0.063 1 13 492 65 0.00479 1
Classification and regression tree 389 26 0.063 1 13 492 65 0.00479 1
Random forest 389 26 0.063 1 13 492 65 0.00479 1
Generalized boosted model 392 26 0.062 1 13 492 65 0.00479 1

Summer 2020 ORIGINAL ARTICLES
differing predicted rates of ciTBI. Many of the nodes with the
lowest rates of ciTBI contained <0.1% of the sample and were
derived from nodal splits of <1% of the total sample, limiting
the utility of the model.10 Because the area under the receiver
operating characteristic curve was not calculated for either
model, overall performance is difficult to compare. The cur-
rent study identifies the risk of ciTBI in all children, regard-
less of GCS score, with clinical evidence of skull fractures
(17.6%; 95% CI 13.9%-21.6%) and it identifies a low-risk
group with GCS scores of 15 and no clinical evidence of skull
fractures (0.48%, 95% CI 0.42%-0.55%).
Figure 2. Relationship between ciTBI rates andGCS scores in 41
skull fracture.

Derivation and Validation of a Simplified Clinical Predic
Risk for Clinically Important Traumatic Brain Injuries Following M
All predictive models are subject to 2 major limitations.
Overfitting occurs when the model is overly complex and
predicts the derivation data nearly perfectly. Overfit models
perform poorly when given new data. The risk of overfitting
can be reduced by cross-validation during training and by
holding out a validation set for the final determination of
model error. Both techniques were employed in the present
study.
The second limitation of predictive models is generaliz-

ability. Applying models in a clinical situation implies that
new patients resemble the sample group and that the clinical
852 childrenwith blunt head trauma and no clinical evidence of

tion Rule for Identifying Children at Increased
inor Blunt Head Trauma
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factors of new patients would be identically distributed as the
predictors in the derivation set. This second requirement be-
comes increasingly hard to fulfill as the number of predictors
increases and as the interobserver error increases for subjec-
tively based predictors. The model presented here relies on 2
predictors: clinical evidence of skull fractures and GCS score.
Although both factors are subject to interobserver differences
among clinicians, at least one study suggests that there is a
high level of interobserver agreement of clinical variables
among children with blunt head trauma.35

In conclusion, within a population of children with blunt
head trauma seen in pediatric emergency departments, those
without clinical evidence of skull fractures and with GCS
scores of 15 were at low-risk for ciTBI. The rate is sufficiently
low that routine imaging may be avoided after a period of
observation, if access to follow-up and other clinical factors
support this approach. Although AI research and machine
learning algorithms have the potential to transform many as-
pects of medicine, the resulting models are only as good as
the data inputs. Future studies need to surpass statistically
the false-negative rates of ciTBI achieved with the predictive
variables of a normal GCS score and no clinical evidence of
skull fracture, as a rule-based predictive model. n

This manuscript was prepared using the Identification of Children at
Very Low Risk of Clinically Important Brain Injuries After Head
Trauma: A Prospective Cohort Study data set obtained from the
Data Coordinating Center, University of Utah School of Medicine,
and does not necessarily reflect the opinions or views of the study inves-
tigators, the Health Resources Services Administration (HRSA),
Maternal Child Health Bureau (MCHB), or Emergency Medical Ser-
vices for Children (EMSC).
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