
UC Merced
UC Merced Electronic Theses and Dissertations

Title
A Dynamic Cloud with Data Privacy Preservation

Permalink
https://escholarship.org/uc/item/03g6171c

Author
Bahrami, Mehdi

Publication Date
2016

Copyright Information
This work is made available under the terms of a Creative Commons Attribution License,
availalbe at https://creativecommons.org/licenses/by/4.0/

Peer reviewed|Thesis/dissertation

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/03g6171c
https://creativecommons.org/licenses/by/4.0/
https://escholarship.org
http://www.cdlib.org/

A Dynamic Cloud with Data Privacy Preservation

by

Mehdi Bahrami

A dissertation submitted in partial satisfaction of

the requirements for the degree of

Doctor of Philosophy

in

Electrical Engineering and Computer Science

in the Graduate Division

of the

University of California, Merced

Committee in charge:

Professor Mukesh Singhal, Chair

Professor Florin Rusu

Professor Dong Li

1Professor Hamid R. Arabnia

1(External Committee Member, University of Georgia)

Fall 2016

A Dynamic Cloud with Data Privacy Preservation

Copyright 2017

by

Mehdi Bahrami

The Dissertation of Mehdi Bahrami is approved, and it is acceptable in quality and form

for publication on microfilm and electronically:

Professor Mukesh Singhal

__

Professor Dong Li

__

Professor Florin Rusu

__

Professor Hamid R. Arabnia

(University of Georgia)

__

__

Co-Chair (if applicable)

Professor Mukesh Singhal

__

Chair

University of California, Merced

2016

i

Abstract

A Dynamic Cloud with Data Privacy Preservation

by

Mehdi Bahrami

Doctor of Philosophy in Electrical Engineering and Computer Science

University of California, Merced

Professor Mukesh Singhal

The emerging field of Cloud Computing provides elastic on-demand services over the

Internet or over a network. According to the International Data Corporation (IDC), cloud

computing has two major issues: i) architecture issues, such as a lack of standardization, a

lack of customization; and ii) users’ data privacy. In this study we focus on these issues.

We are facing an increasing demand for migration of varieties of traditional databases

and computation services to cloud computing environments, i.e., database-as-a-service.

Although each service offers a new feature, it escalates standardization and customization

issues due to the lack of standardization between cloud vendors and service customization

because each cloud-based service has its own features, requirements and outputs. In the first

part of this study, we propose a cloud architecture based on a Service-Oriented Architecture

(DCCSOA) that enhances our ability to do standardization and customization in the cloud.

The proposed architecture uses a single layer, which is called Dynamic Template Service

Layer (DTSL), that provides the following operations and advantages:

i) enables a single service layer to interact with all native cloud services (e.g., IaaS,

PaaS, SaaS and any cloud-based services);

ii) provides a standardization for existing services and future services in the cloud;

iii) customizes native cloud services based on users’ group requests.

The second part of this study focuses on users’ data privacy preservation on the

proposed architecture. Users’ data privacy can be violated by the cloud vendor, the vendor’s

authorized users, other cloud users, unauthorized users, or external malicious entities.

Encryption of data on client side is one of the solutions to preserve data privacy in the

cloud; however, encryption methods are complex and expensive for mobile devices to encrypt

and decrypt each file, such as smart phones. We propose a novel light-weight data privacy

method (DPM) by using a chaos system for mobile cloud users to store data on multiple

clouds. The proposed method enables mobile users to store data in the clouds while it

preserves users’ data privacy.

ii

We consider different technologies to deploy our proposed data privacy preservation

method on DCCSOA, including the mobile devices, the Internet-of-things (IoT), and

Graphic Processing Unit (GPU)-based computing. We also consider different use case

scenarios for the proof of concept, including data privacy preservation for users’ photos in

smart phones, sensitive electronic health records protection in the cloud, and data privacy

preservation for cloud-based databases.

We evaluate both the proposed dynamic architecture and the proposed data privacy

preservation method. Our experimental results show that on the one hand DCCSOA

enhances standardization by offering a flexible cloud architecture and minimizing the

modification on the native cloud services; on the other hand, DPM achieves a superior

performance over regular encryption methods in regard to computation time.

iii

To my Mother, Sisters, Brother, and Yuliya

for their endless love, invaluable support, motivation and encouragement

In Memory of My Father

who was a great and kind teacher, and an invaluable supportive person and

who always encouraged me to study, to teach and to complete this work

This work would not have been possible without all your support.

iv

Contents

A Dynamic Cloud with Data Privacy Preservation ... i

Abstract .. i

Contents ... iv

List of Figures .. x

List of Tables .. xii

List of Algorithms ... xiii

List of Codes ..xiv

Acknowledgements .. xv

Organization of this thesis and contributions ... 1

 Chapter 1 ... 3

Introduction .. 3

 Introduction .. 3

 Big Data Definition .. 5

 Opportunities and Challenges ... 6

 Storage Issues .. 7

 Computing Issues .. 8

 Transfer Issues .. 8

 Cloud Computing .. 8

 On-demand Elastic Service ... 9

 Resource pooling... 9

 Service Accessibility ... 9

 Measured Service .. 10

1.4.2 Cloud Architecture .. 10

 The Role of Infrastructure-as-a-Service (IaaS) ... 11

 The Role of Platform-as-a-Service (PaaS) .. 12

 The Role of Software-as-a-Service (SaaS) ... 13

 The Role of Business Intelligence (BI) ... 14

v

 Other Service Layers ... 15

 Big Data Tools ... 15

 Implementation Models of Cloud Computing Systems ... 18

 Cloud Computing Issues .. 19

 Chapter Summary .. 21

 Chapter 2 ... 22

Dynamic Cloud Architecture ... 22

 Introduction .. 22

 Motivation ... 22

 Related Work .. 24

2.3.1 Conceptual Level .. 24

2.3.2 Architecture Level .. 25

2.3.3 Implementation Level.. 26

 The Proposed Architecture ... 26

2.4.1 DCCSOA Components .. 27

 Dynamic Template Service Layer (DTSL): .. 27

 Cloud Client Dashboard (CCD) .. 30

 Cloud Vendor Dashboard (CVD).. 30

 User Governing Services (UGS) ... 31

 Cloud Governing Services (CGS) ... 31

 Virtualization Services (VS) ... 31

 Advantages of the Proposed Architecture ... 31

 Customizable architecture ... 31

 Flexibility and accessibility .. 32

 Dynamic Abstraction .. 32

 Portability of applications and data in cloud ... 32

 Cloud Vendor Devolution ... 33

 Security ... 33

 Standardization.. 33

 A Framework for Comparison of DCCSOA to Related Work 33

 Summary of chapter .. 37

 Chapter 3 ... 39

vi

Data Privacy Preservation in Cloud .. 39

 Introduction .. 39

 Background ... 40

 The Proposed Method ... 41

3.3.1 Disassembly Phase ... 42

3.3.2 Pattern .. 44

3.3.3 Scrambling of the content ... 45

3.3.4 Assembly a file ... 48

 Evaluation of the proposed method .. 48

3.4.1 Implementation .. 49

3.4.2 Experimental Setup .. 49

3.4.3 The result of the experiment ... 49

3.4.4 Statistical Model ... 49

 Security Attack Scenarios .. 51

3.5.1 Scenario 1... 52

3.5.2 Scenario 2... 52

3.5.3 Scenario 3... 52

3.5.4 Scenario 4... 53

 Related Works... 53

 Summary of chapter .. 54

 Acknowledgement ... 55

 Chapter 4 ... 56

Parallel DPM for Mobile Cloud Users ... 56

 Introduction .. 56

4.1.1 Cloud Computing .. 56

4.1.2 Parallel Computing .. 57

 Threat Model... 57

 Motivation ... 58

 Related Work .. 59

 Background of the study ... 59

 The proposed method ... 61

vii

4.6.1 Generating 𝝃 .. 61

4.6.2 Appling 𝝃 to 𝓜... 63

 Evaluation of Proposed Method .. 64

4.7.1 Experimental setup .. 64

4.7.2 Experimental Results ... 65

 Security Analysis .. 68

 Summary of Chapter ... 70

 Chapter 5 ... 72

Cloud-Assisted IoT based on DCCSOA .. 72

 Introduction .. 72

5.1.1 Cloud Computing Paradigm .. 72

5.1.2 Internet-of-Things (IoT) Paradigm .. 73

5.1.3 Convergence of IoT and the Cloud (Cloud-Assisted IoT) .. 73

 Challenges in Cloud-Assisted IoT ... 74

 A DCCSOA-based Architecture for Cloud-Assisted IoT ... 75

 Big data processing on DCCSOA for cloud-assisted IoT ... 78

5.4.1 Volume .. 79

5.4.2 Velocity .. 79

5.4.3 Variety ... 79

5.4.4 Veracity .. 80

 Advantages of DCCSOA for cloud-assisted IoT .. 80

5.5.1 Standardization .. 80

5.5.2 Customization of architecture .. 82

5.5.3 Data Security ... 83

 Summary of Chapter ... 83

 Chapter 6 ... 85

DPM for Cloud-Assisted IoT .. 85

 Introduction .. 85

6.1.1 Resource Limitation ... 86

6.1.2 Data Privacy .. 86

 Data Privacy for IoT Devices .. 87

viii

 Motivation ... 87

 IoT devices and their limitation ... 89

 Related Works... 90

 The Proposed data privacy Scheme for IoT Devices ... 91

 Experimental Setup .. 95

 Experimental Results ... 95

 Summary of Chapter ... 96

 Chapter 7 ... 98

An EHR Platform based on DCCSOA... 98

 Introduction .. 98

7.1.1 Migration of EHR systems .. 98

7.1.2 Data Security of EHR systems .. 98

7.1.3 Data Privacy of EHR systems ... 99

 Background ... 99

 The proposed EHR platform .. 100

 Experimental Setup .. 102

 Experimental Results ... 103

 Related Work .. 104

 Summary of chapter .. 105

 Chapter 8 ... 107

Data Privacy Preservation for Cloud-based Databases .. 107

 Introduction .. 107

 Background ... 108

8.2.1 Security parameters of DPM .. 109

 The size of chunks... 109

 The number of repeated initial parameters .. 109

 The proposed DPM-based Schema for cloud databases .. 109

 Security Analysis .. 112

 Experimental Setup .. 114

 Experimental Results ... 114

 Related Works... 115

ix

 Chapter summary .. 116

 Chapter 9 ... 118

Summary and Conclusions ... 118

Bibliography .. 121

x

List of Figures

Figure 1.1. Cloud services ... 11

Figure 2.1. Customization levels in cloud computing .. 25

Figure 2.2. The Architecture of DCCSOA .. 27

Figure 2.3. One snapshot of DTSL layer and connection to cloud value-added services 28

Figure 2.4. An example of a template (IaaSx template) with two different back-ends for two

different platforms ... 29

Figure 2.5. One snapshot of the dynamic BTaaS layer ... 30

Figure 3.1. A general view of the proposed Method .. 43

Figure 3.2. Split the header of files and substitute header of file #1 with file #2 44

Figure 3.3. Two different patterns to store chunks in three files .. 46

Figure 3.4. Chaos behavior of {𝑃𝑘}𝑘 = 0300 ... 45

Figure 3.5. A comparison between 𝑃𝑜𝑠𝑘 and its relocation (𝑃𝑜𝑠𝑘) 48

Figure 3.6. Experimental results .. 50

Figure 3.8. A statistical deviation of position in original file and scramble files 51

Figure 3.7. A deviation of chunks positions in scramble file with different parameter

values ... 51

Figure 3.9. (a) the original image; (b) a scrambled image based on the proposed method;

... 55

(c) a cipher image based on JPEG encoder; (d) cipher image based on AES encryption 55

Figure 4.1. An example of mapping and exchanging process memory 62

Figure 4.2. The evaluation results of one and six sets of 𝜉 with different initial values . 66

Figure 4.3. Uniform distributions of 𝜉 .. 67

Figure 5.1. The Proposed Architecture of DCCSOA for Cloud-Assisted IoT....................... 76

Figure 5.2. One snapshot of DTSL and its interaction with two heterogeneous cloud

platforms ... 81

Figure 6.1. A comparison of algorithm time complexity ... 88

file:///C:/Users/Mehdi/Google%20Drive/My%20Research/Thesis/7.0.docx%23_Toc473500975
file:///C:/Users/Mehdi/Google%20Drive/My%20Research/Thesis/7.0.docx%23_Toc473500977
file:///C:/Users/Mehdi/Google%20Drive/My%20Research/Thesis/7.0.docx%23_Toc473500978
file:///C:/Users/Mehdi/Google%20Drive/My%20Research/Thesis/7.0.docx%23_Toc473500979
file:///C:/Users/Mehdi/Google%20Drive/My%20Research/Thesis/7.0.docx%23_Toc473500980
file:///C:/Users/Mehdi/Google%20Drive/My%20Research/Thesis/7.0.docx%23_Toc473500982
file:///C:/Users/Mehdi/Google%20Drive/My%20Research/Thesis/7.0.docx%23_Toc473500983
file:///C:/Users/Mehdi/Google%20Drive/My%20Research/Thesis/7.0.docx%23_Toc473500984
file:///C:/Users/Mehdi/Google%20Drive/My%20Research/Thesis/7.0.docx%23_Toc473500985
file:///C:/Users/Mehdi/Google%20Drive/My%20Research/Thesis/7.0.docx%23_Toc473500985
file:///C:/Users/Mehdi/Google%20Drive/My%20Research/Thesis/7.0.docx%23_Toc473500986
file:///C:/Users/Mehdi/Google%20Drive/My%20Research/Thesis/7.0.docx%23_Toc473500986
file:///C:/Users/Mehdi/Google%20Drive/My%20Research/Thesis/7.0.docx%23_Toc473500987
file:///C:/Users/Mehdi/Google%20Drive/My%20Research/Thesis/7.0.docx%23_Toc473500988
file:///C:/Users/Mehdi/Google%20Drive/My%20Research/Thesis/7.0.docx%23_Toc473500989
file:///C:/Users/Mehdi/Google%20Drive/My%20Research/Thesis/7.0.docx%23_Toc473500990
file:///C:/Users/Mehdi/Google%20Drive/My%20Research/Thesis/7.0.docx%23_Toc473500991
file:///C:/Users/Mehdi/Google%20Drive/My%20Research/Thesis/7.0.docx%23_Toc473500993

xi

Figure 6.2. A comparison of resource capability of 6LoWPAN modules 89

Figure 6.3. A General view of the proposed data privacy method for MIoT 91

Figure 6.4. An example of submitting 8-bit generated data from IoT device with 128KB

buffer, and 64 KB stream data to cloud .. 94

Figure 6.6. An experimental result for 8 Sky-mote nodes ... 97

Figure 6.5. The repetition rate for the first 152 values of 𝜖𝑖 in 𝜓𝑖 97

Figure 7.1. A view of EHR template with implementation of DPM and its connection to

cloud value-added services .. 100

Figure 7.2. Experimental Results: a comparision between the performance of DPM and

AES on the proposed platform... 105

Figure 8.1. The proposed DPM-based Schema for cloud databases 110

Figure 8.2. The difference between the original address and the scrambled address ... 114

Figure 8.3. A comparison between AES encryption and DPM on NoSQL databases ... 117

Figure 8.4. The response time difference between AES and DPM 117

Figure 8.5. A comparison of data binding latency between AES encryption and DPM 117

file:///C:/Users/Mehdi/Google%20Drive/My%20Research/Thesis/7.0.docx%23_Toc473500994
file:///C:/Users/Mehdi/Google%20Drive/My%20Research/Thesis/7.0.docx%23_Toc473500995
file:///C:/Users/Mehdi/Google%20Drive/My%20Research/Thesis/7.0.docx%23_Toc473500997
file:///C:/Users/Mehdi/Google%20Drive/My%20Research/Thesis/7.0.docx%23_Toc473500998
file:///C:/Users/Mehdi/Google%20Drive/My%20Research/Thesis/7.0.docx%23_Toc473500999
file:///C:/Users/Mehdi/Google%20Drive/My%20Research/Thesis/7.0.docx%23_Toc473500999
file:///C:/Users/Mehdi/Google%20Drive/My%20Research/Thesis/7.0.docx%23_Toc473501000
file:///C:/Users/Mehdi/Google%20Drive/My%20Research/Thesis/7.0.docx%23_Toc473501000
file:///C:/Users/Mehdi/Google%20Drive/My%20Research/Thesis/7.0.docx%23_Toc473501001
file:///C:/Users/Mehdi/Google%20Drive/My%20Research/Thesis/7.0.docx%23_Toc473501002
file:///C:/Users/Mehdi/Google%20Drive/My%20Research/Thesis/7.0.docx%23_Toc473501003
file:///C:/Users/Mehdi/Google%20Drive/My%20Research/Thesis/7.0.docx%23_Toc473501004
file:///C:/Users/Mehdi/Google%20Drive/My%20Research/Thesis/7.0.docx%23_Toc473501005

xii

List of Tables

Table 1.1. Other service layers in Cloud Architecture ... 16

Table 1.2. Cloud-based big data open-source tools .. 17

Table 2.1 A comparison between different cloud architectures and cloud platforms 35

Table 2.2. Evaluation parameters for each topic ... 38

Table 3.1. JPEG file format ... 41

Table 4.1. The summarize of exchange process .. 63

Table 8.1. The definition of a customer dataset .. 111

file:///C:/Users/Mehdi/Google%20Drive/My%20Research/Thesis/7.2.docx%23_Toc473512715

xiii

List of Algorithms

Algorithm 6.1. Distribution Algorithm for Scrambling {𝐷} .. 92

Algorithm 8.1. Insert procedure .. 112

file:///C:/Users/Mehdi/Google%20Drive/My%20Research/Thesis/7.0.docx%23_Toc473497376

xiv

List of Codes

Code 4.1. The config function for initialization of a thread ...62

Code 4.2. Main function for Calling the PRP generator ...62

Code 7.1. Data Access at client side through FTaaS ...101

file:///C:/Users/Mehdi/Google%20Drive/My%20Research/Thesis/5.0.docx%23_Toc469265665
file:///C:/Users/Mehdi/Google%20Drive/My%20Research/Thesis/5.0.docx%23_Toc469265666

xv

Acknowledgements

A Ph.D. program is a long journey and this work would not be completed without

receiving support from numerous people. It has been a privilege to work and collaborate

with faculties, students, communities and staffs at University of California, Merced.

First, all that has been completed was advised by Professor Mukesh Singhal, who is

a bright professor, leader, friend and an incredible supervisor. His patience, constructive

feedback, and inspiration has encouraged me to complete this work. His invaluable

support and encouragement allows me to successfully move forward in the cutting-edge

areas of cloud computing, data security and data privacy preservation. I learned from

Professor Singhal, how to do a research, and how to transfer my research from the lab to

the real world.

I received valuable support and direction from Professor Florin Rusu, Professor Dong

Li, Professor Arabnia in the fields of database, parallel computing, and distributed

computing respectively.

I have been delighted to work with Ms. Kathleen Cadden and Dr. Kelvin Lwin as a

teaching assistant. Ms. Kathleen Cadden helped me to deliver a set of high-tech software

tools to students with diverse computer science backgrounds. Dr. Kelvin Lwin helped

me to prepare a set of software engineering projects.

I would like to thank the Margo F. Souza Leadership Center, which prepared me to

be a leader in my field. I have been awarded several honors, generous leadership awards,

and fellowship awards from the center, including the Margo Souza Entrepreneur in

Training Award and the Distinguished Leadership Award.

I would like to thank Mr. Akira Itoh, Dr. Wei-Peng Chen, and Mr. Takaki Kamiya

from Fujitsu Laboratory of America, Inc. for their direction in the field of security of

Information-Centric Networking and Natural Language Processing. My collaboration

with these incredible scientists resulted in the best demo award at ACM ICN 2016, two

United States patents pending, and three technical papers.

I would also like to thank Dr. Liguang Xie from Virginia Tech, Dr. Arshia Khan from

University of Minnesota, and Dr. Ashish Kundu from IBM Thomas J. Watson for their

collaboration and their constructive feedback.

I had a chance to meet several people from different departments who helped me

with their support. First, I would like to thank Ms. Belinda Braunstein from the Center

for Engaged Teaching and Learning for her kindness, giving valuable time and

supportive direction in teaching. She was one of the most valuable people I met during

orientation day and I would be happy to working with her in the future. Second, she

xvi

introduced me several supportive people from different departments including Ms.

Leanna Peralta, Ms. Letha Goger, and Mr. Ian Hill.

I would like to thank my colleagues at UC Merced Cloud Lab, Dr. Santosh

Chandrasekhar, Ms. Mina Naghshnejad, Ms. Chandrayee Basu, and Mr. Kai Sun.

I would like to thank the UC Merced Graduate Division, School of Engineering and

their staff for their invaluable support as several research and teaching fellowship

awards. These awards have always encouraged me to enhance my services to both

communities of UC Merced and the fields of computer science.

I am deeply grateful for receiving all of this invaluable support at the University of

California, Merced.

1

Organization of this thesis and contributions

This thesis is organized based on several published peer-reviewed technical papers. We

organized chapters in this thesis along with correlation to each other. In each chapter, we

introduce the related work, challenges and motivation of the study as well as our solution

for the challenges. We also investigate each proposed solution from different perspectives

including software engineering evaluations, proof of data security, the performance of

the proposed solution for different workloads.

In the first chapter, we review the concept of cloud computing and big data tools

(Bahrami and Singhal 2015a). This chapter introduces key points of cloud computing, the

architecture of cloud computing, and available big data tools in the cloud computing

environment.

The second chapter introduces a novel dynamic cloud architecture (DCCSOA)

(Bahrami and Singhal 2015b and Bahrami et al. 2015d). The architecture offers several

advantages to both cloud vendors and mobile users. The dynamic feature of the

architecture allows cloud vendor to modify their own architecture based on users’

request. Therefore, users are able to freely move their data and applications from one

vendor to another vendor without modifications.

Another challenge in cloud computing is users’ data privacy which is the second goal

of this study. In Chapter 3, we introduce a novel light-weight data privacy method for

mobile cloud users (Bahrami and Singhal 2015c and Bahrami 2015f). By end of this

chapter, the reader understands the current data privacy issue in mobile cloud computing

as well as our proposed privacy preservation method.

In Chapter 4, we introduce a parallel implementation of DPM when the method is

securely processed on multiple GPU-cores and the result of this study appeared in

(Bahrami et al. 2016a). This chapter allows the reader to understand the concept of DPM

parallelization and the computation overheads for processing different numbers of GPU-

cores.

Recently, use of cloud-assisted IoT devices has become popular around the world.

Due to storage and computation limitation on IoT devices, cloud computing provides an

opportunity to these tiny computing machines to outsource their data and computation

to cloud environments; however, there is two challenges:

First, how to use heterogeneous cloud computing architectures for interacting with variety of

IoT devices; and second, how a user may maintain own data privacy on IoT devices.

Chapter 5 answers the first question, regarding to cloud-assisted IoT paradigm, by

providing a DCCSOA-based architecture for interacting IoT devices with heterogeneous

2

cloud computing systems. The results of these study will appear in (Bahrami and Singhal

2016d).

Chapter 6 answers the second question regarding users’ data privacy preservation

by introducing a novel DPM-based solution for Cloud-assisted IoT devices (Bahrami et

al. 2016b).

Chapter 7 introduces a use case of DPM and DCCSOA for electronic healthcare

systems. A novel platform has been described in this chapter which is presented in

(Bahrami et al. 2016b). The platform preserves patients’ data privacy in cloud-based

electronic health record systems.

Chapter 8 introduces a new cloud-based database schema which uses DPM to

maintain data privacy of a database. The proposed schema works well on both SQL and

NoSQL databases. By end of this chapter, the reader understands the key point of the

proposed schema and its advantages, as well as the performance evaluation on both SQL

and NoSQL databases. The result of this chapter appeared in (Bahrami et al. 2016c).

Finally, Chapter 9 concludes this study and provides future research directions on

cloud computing architecture and data privacy preservation for mobile cloud users and

cloud-assisted IoT devices.

3

 Chapter 1

Introduction

In this chapter, we describe the definition of cloud computing architecture, different

levels of the cloud architectures and the role of big data in each level. This introduction

prepares the reader for the next chapter which describes our novel dynamic cloud

computing architecture.

 Introduction

Capturing data from different sources allows a business to use Business Intelligence

(BI) (Matheson 1998) capabilities. These sources could be consumer information, service

information, products, advertising logs, and related information such as the history of

product sales or customer transactions. When an organization uses BI technology to

improve services, we characterize it as a “smart organization” (Matheson 1998). The

smart features of these organizations have different levels which depend on the accuracy

of decisions; greater accuracy of data analysis provides “smarter” organizations. For this

reason, we are collecting a massive amount of data from people, actions, sensors,

algorithms, and the web which forms “Big Data.” This digital data collection grows

exponentially each year. According to (Manyika 2011), big data refers to datasets whose

size is beyond the ability of typical database software tools and applications to capture,

store, manage and analyze.

An important task of any organization is data analysis which is able to change a large

volume of data to a smaller amount of valuable data but still it requires to collect a

massive amount of data.

Big data has become a complex issue in all disciplines of science. In scientific big data,

several solutions have been proposed to overcoming big data issues in the field of life

sciences (Buscema et al. 2008 and Howe at al. 2008), education systems (Hanna 2004),

material sciences (Wilson 2013), social networks (Tan 2013) and.

Some examples of the significance of big data for generating, collecting and

computing are listed as follows:

4 | CHAPTER 1.

Producing and collecting Big Data:

● It is predicated that data production will be 44 times greater in 2020 than it was

in 2009. This data could be collected from variety resources, such as traditional

databases, videos, images, binary files (applications) and text files;

● It is estimated 235 Terabytes of data were collected by the U.S. Library of

Congress in April 2011;

● Facebook stores, accesses, and analyzes 30+ Petabytes of user generated data

which includes a variety of data, such as images, videos and texts.

Computing big data:

● In 2008, Google was processing 20,000 Terabytes of data (20 petabytes) per

day (Schonfeld 2014).

● Decoding the human genome originally took 10 years to process; now it can be

achieved in one week with distributing computing on big data.

● IDC1 estimates that by 2020, business-to-business and business-to-consumer

transactions on the Internet will reach 450 billion per day.

● Big data is a top business priority and drives enormous opportunities for

business improvement. Wikibon’s own study projects that big data will be

a $50 billion business by 2017 (Rigsby 2014).

● Macy's Inc. provides a real-time pricing. The retailer adjusts pricing in near

real-time for 73 million items for sale based on demand and inventory

(Davenport 2013).

● The major VISA process more than 172,800,000 card transactions each day

(Fairhurst 2017).

The most public resource data are available on the Internet, such as multimedia steam

data, social media data and text. This variety of data shows we are not facing only

structured data, but also unstructured data, such as multimedia files (including video,

audio and images), and Twitter and Facebook comments. Unstructured data causes

complexity and difficulty in analyzing big data. For example, a corporation analyzes user

comments and user shared data on social media that could recognize customer favorites

and provide best offers.

1 International Data Corporation (IDC) is an American market research, analysis and advisory firm specializing in

information technology, telecommunications, and consumer technology.

INTRODUCTION | 5

To collect and process big data, we can use Cloud Computing Technology. Cloud

computing is a new paradigm for hosting clusters of data and delivering different

services over a network or the Internet. Hosting clusters of data allows customers to store

and compute a massive amount of data on the cloud. This paradigm allows customers to

pay on pay-per-use basis and enables them to grow (or shrink) their computing and

storage needs on demand. These features allow customers to pay the infrastructure for

storing and computing based on their current capacity of big data and transactions.

Capturing and processing big data are related to improving the global economy,

science, social affair, education and national security; processing of big data allows us to

propose accurate decisions and acquire knowledge from raw data.

This chapter aims to show the role of cloud computing in dealing with big data and

intelligent computing. This chapter is organized as follows: Section 1.2 discusses a

definition and characteristics of big data. In Section 1.3, we discuss important

opportunities and challenges in handling big data. In Section 1.4, we discuss cloud

computing and key architectural components for dealing with big data. In this section,

we review how each service layer of a cloud computing system could handle big data

issues. In Section 1.5, we provide a list of cloud-based services and tools for dealing with

big data. A summary of implementation cloud computing models is described in Section

1.6. We review some major cloud computing issues in Section 1.7. We summary the

chapter in Section 1.8.

 Big Data Definition

Often big data is characterized by “4 V’s” (McAfee 2012) which stand for:

● “Volume” which indicates a very large volume of data;

● “Velocity” which indicates the speed for data processing in terms of response

time. This response time could be a batch, real-time or stream response-time;

● “Variety” which indicates heterogeneity in data that we have collected for

processing and analysis this data variety includes structured, unstructured and

semi-structured data;

● “Veracity” which indicates level of accuracy in the data. For example, a sensor

that generates data can have a wrong value rather than provides an accurate

data.

Big data could have one or multiple of the above characteristics. For example, storing

and computing on social data could have a very large volume of data (volume) and

specific response-time for computing (velocity) but it may not have variety and veracity

characteristics.

6 | CHAPTER 1.

Another example, analyzing public social media data regarding the purchase history

of a customer could provide a future favorite purchase list when she searches for a new

product. In this case, big data have all characteristics: volume of data, because collecting a

massive amount of data from public social media networks; velocity, because response-

time limited to near real-time when a customer search a product; variety, because big data

may come from different sources (social media and purchase history); lack of veracity,

because data from customers in social media networks may have uncertainty. For

instance, a customer could like a product in a social media network, not because this is

the product of her choice, but because of this product is used by her friend.

Another important question in big data is, “How large is big data?” We can answer this

question based on our current technology. For example, (Jacobs 2009) states that in the

late 1980s at Columbia University that they stored 100 GB of data as big data via an IBM

3850 MSS (Mass Storage System), which costs $40K per GB. In 2010, the Large Hadron

Collider (LHC) facility at CERN produced 13 petabytes of data (Gewin 2008). So what we

call big data depends on the cost, speed and capacity of existing computing and storage

technologies. For example, in the 1980s, 100 GB was big data because the storage

technology was expensive at that time and it had low performance. However, by 2010,

the LHC processed 13 Petabyte as a big data which has 1.363*105 times more volume than

IBM 3850 MSS big data in 1980s.

 Opportunities and Challenges

On one hand, when we collect big data, we have an opportunity to make an accurate

decision through BI. BI is a set of theories and technologies that aim to transfer data from

raw-data into meaningful and useful information for business processes (BP). BI became

popular in the 1990s, and Business Analytics (BA), which is an analytical component in

BI, became popular in the 2000s. In the traditional model, the queries are pre-defined to

confirm or refuse a query’s hypotheses, but Online Analytical Processing (OLAP)

analysis emerges as an approach to answer complex analytical queries. For example, in a

car accident we can make a decision about the incident based on driver information.

However, when we collect GPS information, engine information and driver information,

we can make a more accurate decision about an accident. Also, if we collect more

information, we can trust our decision more (veracity). In a second example, Volvo

provided performance and fault monitoring for predictive warranty analysis (Young

2014). In another example, sensor data from a cross-country flight (New York to Los

Angeles) generate 2.499 billion Terabyte per year (Kelly 2014) (volume) from different

sensors (variety), which could be provided from reliable sensors (veracity) or unreliable

sensors (lack of veracity). Often the processing of this data is real-time (velocity) and this

computing could be processed by an aircraft’s server or by a ground’s servers.

INTRODUCTION | 7

Collection of information cannot only help us to avoid car accidents but also could

help us to make an accurate decision in any systems, such as business financial systems

(Rigsby 2014), education systems (Siegel 2000), and treatment systems, e.g. Clinical

Decision Support Systems (Berner 2007).

Some important opportunities are provided by big data. They are listed as follows:

● Analyze big data to improve business processes and business plans, and to

achieve business plan goals for a target organization (The target organization

could be a corporation, industry, education system, financial system,

government system or global system.)

● Reduce bulk data to a valuable smaller amount of data

● Provide more accurate decisions by analyzing big data

● Prevent future system failures by predicting big data

On the other hand, we have several issues with big data. The challenges of big data

happened in various domains including storing of big data, computing on big data and

transferring of big data. We discuss these issues below:

 Storage Issues

A database is a structured collection of data. In the late 1960s, flat-file models which were

expensive and slow, used for storing data. For these reasons, relational databases

emerged in the 1970s. Relational Database Management Systems (RDBMS) employ

Structured Query Language (SQL) to store, edit and retrieve data.

Lack of support for unstructured data led to the emergence of new technologies, such

as BLOB (Binary Large Object) in the 2000s. Unstructured data may refer to multimedia

data. Also unstructured data may refer to irregularly or randomly repeated column

patterns that vary from row to row within each file or document. BLOB could store all

data types in most RDBMS.

In addition, a massive amount of data could not use SQL databases because

retrieving data and analyzing data takes more time for processing. So “NoSQL”, which

stands for “Not Only SQL” and “Not Relational”, was designed to overcome this issue.

NoSQL is a scalable partitioned table that could distribute data over many servers.

NoSQL is implemented for cloud computing because in the cloud, a data storage server

could be added or removed anytime. This capability allows for the addition of unlimited

data storage servers to the cloud.

8 | CHAPTER 1.

This technology allows organizations to collect a variety of data but still increasing

the volume of data increases cost investment. For this reason, capturing high-quality data

that could be more useful for an organization rather than collecting a bulk of data.

 Computing Issues

When we store big data, we need to retrieve, analyze and modify it. The important

part of collecting data is analyzing big data and converting raw data into valuable

information that could improve a business process or decision making. This challenge

can be addressed by employing a cluster of CPUs and RAMs in cloud computing

technology.

High-Performance Computing (HPC) is another technology that provides a

distributed solution by different computing models, such as traditional (e.g. Grid

Computing) or cloud computing for scientific and engineering problems. Most of these

problems could not process data in a polynomial time-complexity.

 Transfer Issues

Transfer of big data is another issue. In this challenge, we are faced with several sub-

issues: Transfer Speed, which indicates how fast we can transfer data from one

location/site to another location/site. For example, transferring of DNA, which is a type

of big data, from China to the United States has some delay in the backbone of the

Internet, which causes a problem when they receive data in the United States (Marx 2013).

BGI (one of the largest producers of genomic data, Beijing Genomics Institute in Shenzen,

China) could transfer 50 DNAs with an average size of 0.4 terabyte through the Internet

in 20 days, which is not an acceptable performance (Marx 2013).

Traffic Jam: transfer of big data could happened between two local sites, cities or

worldwide via the Internet but between any locations this transfer will result in a very

large traffic jam.

Accuracy and Privacy: Often we transfer big data through unsecured networks, such

as the Internet. Data transfers through the Internet must be kept secure from

unauthorized access. Accuracy aims to transfer data without missing any bits.

 Cloud Computing

Several traditional solutions have been emerged for dealing with big data such as

Supercomputing, Distributed Computing, Parallel Computing, and Grid Computing.

However, elastic scalability is important in big data which could be supported by cloud

computing services. Cloud computing has several capabilities for supporting big data

which are related to handling of big data. Cloud computing supports two major issues of

INTRODUCTION | 9

big data, which are described in the following sections including storing of big data and

computing of big data. Cloud computing provides a cluster of resources (storage and

computing) that could be added anytime. These features allow cloud computing to

become an emerging technology for dealing with big data.

In this section, we first review important features of cloud computing systems and a

correlation of each of them to big data. Second, we discuss a cloud architecture and the

role of each service layer in handling big data.

The next section, we review implementation models of cloud computing systems as

they are related for handling big data.

The major characteristics of cloud computing as defined by the U.S. National Institute

of Standards and Technology (NIST) (Liu et al. 2011) are as follows:

 On-demand Elastic Service

This characteristic shows the following features: (i) an economical model of cloud

computing which enables consumers to order required services (computing machines

and/or storage devices). The service requested service could scale rapidly upward or

downward on demand; (ii) it is a machine responsibility that does not require any human

to control the requested services. The cloud architecture manages on-demand requests

(increase or decrease in service requests), availability, allocation, subscription and the

customer’s bill.

This feature is interesting for a start-up business, because this feature of cloud

computing systems allows a business to start with traditional data or normal datasets (in

particular start-up business) and increase their datasets to big data as they receive

requests from customers or their data grows during the business progress.

 Resource pooling

A cloud vendor provides a pool of resources (e.g., computing machines, storage devices

and network) to customers. The cloud architecture manages all available resources via

global and local managers for different sites and local sites, respectively.

This feature allows big data to be distributed on different servers which is not

possible by traditional models, such as supercomputing systems.

 Service Accessibility

A cloud vendor provides all services through broadband networks (often via the

Internet). The offered services are available via web-based model or heterogeneous client

applications (Singhal 2013). The web-based model could be an Application Programming

10 | CHAPTER 1.

Interface (API), web-services, such as Web Service Description Language (WSDL). Also

heterogeneous client applications are provided by the vendors. Customers could run

applications on heterogeneous client systems, such as Windows, Android and Linux.

This feature enables partners to contribute to big data. These partners could provide

cloud software applications, infrastructure or data. For example, several applications

from different sites could connect to a single-data or transparent multiple-data

warehouse for capturing, analyzing or processing of big data.

 Measured Service

Cloud vendors charge customers by a metering capability that provides billing for a

subscriber, based on pay-per-use model. This service of cloud architecture manages all

cloud service pricing, subscriptions and metering of used services. This capability of

cloud computing system allows an organization to pay for the current size of datasets

and then pay more when dataset size increases. This service allows customers to start

with a low investment.

1.4.2 Cloud Architecture

Cloud computing technology could provide by a vendor that enables IT departments to

focus on their software development rather than hardware maintenance, security

maintenance, recovery maintenance, operating systems and software upgrades. Also, if

an IT department establishes a cloud computing system in their organization, could help

them to handle big data.

The Architecture of a cloud computing system is specific to the overall system and

requirements of each component and sub-components. Cloud architecture allows cloud

vendors to analyze, design, develop and implement big data.

Cloud vendors provide services through service layers in cloud computing systems.

The major categories are divided into four service layers: Infrastructure-as-a-Service

(IaaS), Platform-as-a-Service (PaaS), Software-as-a-Service (SaaS) and Business

Intelligence (BI) and other service layers assigned to the major service layers as shown in

Figure 1.1, such as Data-as-a-Service(DaaS) assigned to IaaS layer. Description of each

service discussed in Section 1.5.

INTRODUCTION | 11

Figure 1.1. Cloud services

 The Role of Infrastructure-as-a-Service (IaaS)

The IaaS model offers storage, processors and fundamental hardware to the cloud

customers. This model covers several services, such as firmware, hardware, utilities, data,

databases, resources and infrastructure. This model allows clients to install operating

systems, receive quoted infrastructure, and develop and deploy required software

applications. This model is often implemented via Virtualization, which enables multi

users/tenants work on share machines with his own privacy.

The IaaS model provides several opportunities for big data:

 storage data: this feature allows customers to store big data. Storage on the cloud

computing system enables customers to store, retrieve and edit big data by

employing a cluster of storage devices. These clusters could be added or removed

dynamically;

 hardware: this feature enables customers have an access to a resource pool of

hardware for big data. This feature could be used for capture data, such as through

sensors, Radio-Frequency Identifications (RFIDs) or Communication-as-a-Service

(CaaS). The CaaS is responsible for the required hardware and software for delivering

Voice-over-IP (VoIP), audio and video conferencing. The hardware feature also

provides network access and network traffic control that could to transfer big data.

Amazon Elastic Compute Cloud (Amazon EC2) provides virtual and scalable

computing systems at the IaaS. Amazon EC2 customers could define instances of a

variety of operating systems (OSs). Each OS and required hardware, such as CPUs and

RAMs could be customized by a customer on the fly. Customers should create an

Amazon Machine Image (AMI) in order to use Amazon EC2. The AMI contains the

PaaS

SaaS

BI

Testing aaS Simulation Software aaS

Data aaS

Business Process aaS

Privacy aaS

DBaaS

IaaS
Firmware aaS

Robot aaS

Business Intelligence aaS

IT aaS

12 | CHAPTER 1.

required applications, operating systems (the customer could select various operating

systems such as Windows or Linux versions), libraries, data and system configuration.

Amazon EC2 uses Amazon S3, which is a cloud storage service and stores data and

uploads AMI into S3.

The impact of big data in this service layer is higher than other service models in

cloud computing systems, because IaaS users could access and define the required data

framework, computing framework and network framework.

In a data framework, users could define structured data, unstructured data and semi-

structured data. Structured and semi-structured data could be defined via traditional

databases, such as RDBMS and OODBMS. In these models, structured data stored which

has a schema before adding data to the databases. All of data frameworks and in

particular unstructured data could be defined by cloud databases, such as Hadoop which

is based on MapReduce programming model. MapReduce programming language

technique allows storing data on a cluster of resources. The implementation model of

MapReduce is provided by Hadoop which is provided a category of open-source

database, applications and analytics tools.

In computing framework, users have full-permission for developing, installing and

running new application for computing purposes. Each application could reserve a

cluster of CPUs and RAMs. Several tools and databases with analysis tools emerge to

provide computing framework on big data. For example, Hive is an open-access “SQL-

like” BI tools that allows BI applications to run query on Hadoop data. Other example,

Pig is another open-source platform that allows analyzing on big data by a “Perl-

language-like” feature.

In network framework, users have a significant benefit, because they have access to

required network control, such as network cards and the Internet connectivity. For

example, they could access to regular network transfer infrastructure such as Optical

Carrier (OC) 768 backbone (Cartier 2014), which is capable of transferring 39,813.12

Mbit/s.

This accessibility to data, computing and network framework allows the users to

control require hardware like an administrator in IT department. However, these users

could handle infrastructure without worrying about maintenance.

 The Role of Platform-as-a-Service (PaaS)

PaaS is a platform that provided by cloud vendor. The PaaS model does not require users

to setup of any software, programming language, environment application, designer,

tools or application. Developers use vendor’s platform, library and programming

language for developing their applications. This model provides a software application

INTRODUCTION | 13

for outgrowth of the cloud applications delivery. PaaS allows developer to focus on

software application development, without worrying about operating system

maintenance like in IaaS. The PaaS provides services for software programmers to

develop and deploy their applications with an abstraction on the hardware layer.

The role of PaaS in handling big data is less than IaaS, because some restrictions and

limitations are applied to PaaS users in order to work on the data framework, computing

framework and transfer frameworks. In this service layer, users are limited to cloud

vendor frameworks. For example, Google App Engine provides a platform which

supports Python, Java, PHP, Go and MySQL compatible Cloud SQL to develop

applications. So, in this service layer, users could not access other languages, such as C#

or C++ and server hardware. However, developers still could build, deploy and run their

scalable applications on the cloud computing systems. These applications could capture

a massive amount of data from anywhere and use a cluster of CPUs for computing and

analytics of big data.

 The Role of Software-as-a-Service (SaaS)

The traditional model of software is to purchase software applications and install them

on the local computer. However, SaaS model provides applications in the cloud though

a network and does not require customers to install applications on their local computers.

According to Microsoft, SaaS model could be divided to the following categories

(lower-level to higher-level) (Rittinghouse 2009):

 Ad-hoc/Custom, which supports by minimum requirement to migrate traditional

and client/server application to this level. Ad-hoc/Custom models allow developer

to build their application based on ad-hoc or peer-to-peer technology;

 Configurability, which provides more flexibility through configuration metadata

and supports peer-to-peer technology;

 Multi-tenancy, which adds multi-tenancy to the configuration level, and a single

instance of application allows serving all the vendor’s consumers;

 and Scalability, which supports all other lower-levels. In addition, this level

supports scalability through architectural design that adds a capability of dynamic

load-balancing for growing or shrinking cloud servers. Most applications in the

cloud are developed at this level.

The impact of SaaS is less than PaaS, because in this service layer, users could use

provided applications and resources. This service layer is limited to developers.

However, users still could work on big data that could be added before or captured by

provided infrastructure. For example, Google Apps, such as Gmail, provides services on

14 | CHAPTER 1.

the web and users could not add or manipulate capturing data from server. Users are

limited to web-based interface for email processes such as sending an email.

 The Role of Business Intelligence (BI)

The BIaaS layer sits on the top of cloud architecture service layers and aims to provide

the required analytic models for cloud customers.

Information granularity as (Pedrycz 2013) defined, it is a structure which plays a key

role in human cognitive and decision-making computing. The BI service layer could

provide a platform for information granularity on the cloud computing and in particular

granular computing, which is a processing of complex information entities. Unlike the

traditional computing, cloud computing by granular computing on big data may provide

a significant result. For example, (Bessis at al. 2010) propose a big picture by collecting

big data and using cloud computing for managing disasters.

Cloud computing could provide the following information granularity and granular

computing infrastructures (Pedrycz 2013):

● A granular description of data and pattern classification by non-SQL

databases, such as SciDB (Cudré-Mauroux 2009);

● A representation of information granules by migrating traditional applications

to the cloud;

● Different granular architecture and development by collecting information

from different sources and computing with high quality rather than traditional

models which were working with a limited computing resource;

● Collaborative and linguistic models of decision-making by collecting

information from different sources at the cloud storages.

The information-processing level (Bargiela 2003), which is encountering a number of

conceptual and algorithmic layers indexed by the size of information granular, could be

high if a cloud application provides a computing model. However, if a cloud application

provides only a storage model, this impact and granular computing will be low. For

example, when an application provides a service for collecting data from financial

consumers and running an analytical model on this data to make a decision about

investment, cost and profit, this application has a high-level BIaaS impact. For instance,

(Xu et al. 2009) present “Big Cloud based Parallel Data miner (BC-PDM)” which is a

framework for integrating data mining applications on MapReduce and HDFS (Hadoop

File System) platforms.

INTRODUCTION | 15

Cloud based BI could reduce the total development cost, because cloud computing

systems provide environment for agile development and reduce the maintenance cost.

Also, the BI could not be implemented on a traditional system, because the current

volume of data for analysis is massive. BI-as-a-Service (Zorrilla et al. 2013) is other

example that shows how the BI could migrate to the cloud computing systems as a

software application in the SaaS layer.

One of the major challenges with traditional computing is analysis of big data. Cloud

computing at BIaaS layer could handle this issue by employing a cluster of computing

resources. For example, SciDB (Cudré-Mauroux 2009) is an open-source and cloud-based

database management system (NoSQL DBMS) for scientific application with several

functions for analyzing of big data, such as astronomy, remote sensing and climate

modeling.

 Other Service Layers

The major service models of cloud computing are BIaaS, IaaS, PaaS and SaaS. As shown

in Table 1.1, we assigned each service to the major service models.

 Big Data Tools

The Table 1.2 shows a summary of big data open-source tools which are provided

through cloud computing infrastructures. Most of the tools are provided by Apache2 and

released under the Apache License. We categorized each tool based on those applications

of big data.

2 http://apache.org/

16 | CHAPTER 1.

Table 1.1. Other service layers in Cloud Architecture

Service name Related to Service Description
Role of Service in

Big Data

Business-Process-as-a-Service (BPaaS)

(Accorsi 2011)

BIaaS Automated tool support Analysis of big data

Business-Intelligence-as-a-Service (BIaaS)

(Hunger 2010)

BIaaS Integrated approaches to management support Analysis of big data

Simulation Software-as-a-Service (SimSaaS)

(Tsai 2011)

SaaS Simulation service with a MTA configuration model Analysis of big data

Testing-as-a-Service (TaaS)

(Candea et al. 2010)

SaaS Software testing environments Test big data tools

Robot-as-a-Service (RaaS) (Chen et al. 2010) PaaS Service-oriented robotics computing Action on big data

Privacy-as-a-Service (PaaS)

(Itani et al. 2009)

PaaS A framework for privacy preserving data sharing

with a view of practical application

Big data privacy

IT-as-a-Service (ITaaS)

(Foster et al. 2005)

IaaS Outsource IT department’s resource (on Grid

infrastructure that time)

Maintaining of big

data

Hardware-as- a Service (HaaS)

(Stanik et al 2012)

IaaS A transparent integration of remote hardware that

is distributed over multiple geographical locations

into an operating system.

Capturing and

maintaining of big

data

Database-as-a-Service (DBaaS)

(Curino et al. 2011)

IaaS

(1) a workload-aware approach to multi-tenancy

(2) a graph-based data partitioning algorithm

(3) an adjustable security scheme

Storing big data

Data-as-a-Service (Daas)

(Truong et al. 2009)

IaaS Analyzing major concerns for data as a service Storing big data

Big-Data-as-a-Service (Zheng 2014) All layers Service-generate for big data Generate big data

INTRODUCTION | 17

Table 1.2. Cloud-based big data open-source tools

Big Data

Tools

Description3

Data Analysis Tools

Ambari4 A web-based tool for provisioning, managing, and monitoring Apache Hadoop

clusters.

Avro5 A data serialization system.

Chukwa6 A data collection system for managing large distributed systems.

Hive7 A data warehouse infrastructure that provides data summarization and ad hoc

querying.

Pig8 A high-level data-flow language and execution framework for parallel computation.

Spark9 A fast and general compute engine for Hadoop data. Spark provides a simple and

expressive programming model that supports a wide range of applications, including

ETL, machine learning, stream processing, and graph computation.

ZooKeeper10 A high-performance coordination service for distributed applications

Actian11 An Analytics Platform which accelerates the analytics value chain from connecting to

massive amounts of raw big data all the way to delivering actionable business value.

HPCC12 Provide high-performance, data-parallel processing for applications utilizing big

data.

Data Mining Tools

Orange13 A data visualization and analysis for novice and experts.

Mahout14 A scalable machine learning and data mining library.

KEEL15 An assess-evolutionary algorithm for data mining problems.

Social Network Tools

Apache Kafka A unified, high-throughput, low-latency platform for handling real-time data feeds.

BI Tools

Talend16 A data integration, data management, enterprise application integration and big data

software tools and services.

Jedox17 An analyzing, reporting and planning functions.

3 The description retrieved from each tools’ official website
4 http://ambari.apache.org/
5 http://avro.apache.org/
6 http://incubator.apache.org/chukwa/
7 http://hive.apache.org/
8 http://pig.apache.org/
9 http://spark.incubator.apache.org/
10 http://zookeeper.apache.org/
11 http://www.actian.com/about-us/#overview
12 http://hpccsystems.com/
13 http://orange.biolab.si/
14 http://mahout.apache.org/
15 http://keel.es/
16 http://www.talend.com/
17 http://www.jedox.com/en/

http://hive.apache.org/
http://mahout.apache.org/

18 | CHAPTER 1.

Table 1.2. Cloud-based big data open-source tools (Cont.)

Big Data Tools Description18

Data Analysis Tools

BI Tools (Cont.)

Pentaho19 A data integration, business analytics, data visualization and predictive analytics.

rasdaman20 A multi-dimensional raster data (arrays) of unlimited size through SQL-style query

language.

Search Tools

Apache

Lucene21

An application for full text indexing and searching capabilities.

Apache Solr22 A full-text search, hit highlighting, faceted search, near real-time indexing, dynamic

clustering, database integration, rich document (e.g., Word, PDF) handling, and

geospatial search.

Elasticsearch23

A distributed, multitenant-capable full-text search engine with a RESTful web

interface and schema-free JSON documents.

MarkLogic24 A NOSQL and XML database.

mongoDB25 A cross-platform document-oriented database system, JSON-like documents with

dynamic schemas.

Cassandra26 A scalable multi-master database with no single point of failure.

HBase27 A scalable, distributed database that supports structured data storage for large

tables.

InfiniteGraph28 A distributed graph database.

 Implementation Models of Cloud Computing Systems

A Cloud computing system based on infrastructure location could be implemented as

Private, Public or Hybrid cloud.

The private model is a local implementation of cloud computing system. In this

model, hardware is located in local data centers and uses cloud software applications to

provide service to local users. This model is the best option for consumers who needs

cloud computing capabilities with low-risk in IT departments because this model allows

18 The description retrieved from each tools’ official website
19 http://www.pentaho.com/
20 http://rasdaman.eecs.jacobs-university.de/
21 http://lucene.apache.org/
22 http://lucene.apache.org/solr/
23 http://www.elasticsearch.org/
24 http://developer.marklogic.com/
25 http://www.mongodb.org/
26 http://cassandra.apache.org/
27 http://hbase.apache.org/
28 http://www.objectivity.com/

http://en.wikipedia.org/wiki/Sql
http://en.wikipedia.org/wiki/Representational_state_transfer
http://en.wikipedia.org/wiki/JSON
http://hbase.apache.org/

INTRODUCTION | 19

an IT department to migrate from the traditional model to the cloud computing system

and does not require data to be migrated to another location (such as cloud vendor

location). This model is implemented for local trusted users. This model still allows

scalability, on-demanded self-service, and elastic service. However, this model requires

high investment in maintenance, recovery, disaster control, security control, and

monitoring.

In addition, the private cloud computing model enables an IT department to handle

a local organization’s big data by its own infrastructure, such as the storage of big data

and computing big data. This model provides a flexible resource assignment and could

enhance the resource availability.

Several open source applications have been developed for establishing private cloud

computing based on IaaS and SaaS service layers. For example, CloudIA is a private cloud

computing system at HFU (Doelitzscher et al. 2011). The targeted users of the CloudIA

project are HFU staff and students running e-Learning applications, and external people

for collaboration purposes.

The public model is a regular model of cloud computing system. This model is

provided by cloud vendor who supports billing and a subscription system for public

users. This model, unlike a private model, does not require high investment, because

consumers could pay on pay-per-use basis for cloud storage or cloud computing services

on demand.

The hybrid model composes private and public clouds. This model could connect a

private cloud to public cloud through network connection, such as the Internet.

This model has several advantages, which are listed below:

 Collaboration between cloud computing systems: Often collaboration between two

clouds led to emergence of hybrid cloud model. An organization could keep their

own cloud security and maintenance, and simultaneously have collaboration with

other clouds. This collaboration could be permanent or temporary.

 Scalability: This model also is useful for extending the scalability of a private cloud

computing system, because in case of limited resources at a peak time, a cluster of

new resources could be added temporary from another cloud.

 Cloud Computing Issues

The cloud computing technology is the best option for dealing with big data. However,

cloud computing is still nascent state and we still needed to address some major issues.

In this section, we review the major cloud computing issues based on (IDC Enterprise

Panel 2013).

20 | CHAPTER 1.

When big data costs customers, and a system disaster could cause organizational

destruction in the digital age, migration applications and databases from traditional

model are difficult to cloud, because:

● migration to the cloud computing system is difficult; Migration requires to

redevelop applications, data and sometimes requires to use efficient

programming models to save resources as well as resource costs;

● returning data to the IT department is difficult;

● connection is via an unsecured network, such as the Internet;

● cloud vendor administrator users could have an access to users’ data;

● data warehouse location is transparent to consumers;

● We do not have a cloud computing standard and standard cloud architecture.

It causes some big issues, such as different architectures, difficulty with

migration data and application to another cloud vendor;

● We do not have any customization in cloud computing systems;

● We do not have a strong Service Layer Agreement (SLA) for customer

satisfaction.

Cloud customers need to have a contract with one or more cloud vendor(s) -often one

cloud vendor- and they should use the provided operating systems, middleware, APIs

and/or interfaces. Data and application are dependent on the platforms or are provided

by cloud vendor infrastructure. This dependency in cloud services has several issues. For

example, “Security” is the major concern in cloud computing systems. Cloud features,

such as a shared resource pool and multi-user/tenancy causes security issue because the

resourced pool are shared through users and we could expose users’ data and users’

privacy to others.

Unsecured connection to the vendor, network access security, Internet access security

and cloud vendors’ user security emerged as other major security concerns based on

accessibility to the cloud via the Internet.

“Bringing back in-house may be difficult” with 79.8% issue rate and “Hard to integrate

with in-house IT” with 76.8% issue rate indicates customers are afraid of data and software

application migration to the cloud computing systems, because the migration is difficult

to integrate with IT departments and it is difficult to return data back to the IT

department; “Lack of interoperability standards” with 80.2% is another cloud issue. This

issue shows that cloud computing requires higher interoperability with other cloud

computing systems; also as indicated in this report, “Not enough ability to customize” with

INTRODUCTION | 21

a 76.0% issue rates show, the cloud computing system requires dynamic architecture and

customization.

Some studies, such as (Juve 2009) show existing cloud computing systems (Amazon

EC2 in this case) could not be responsible with a cost-effective performance for HPC

applications over using tightly-couple hardware, such as Grid Computing or Parallel

Computing systems.

 Chapter Summary

In this chapter, we discussed a definition of big data, the importance of big data, and

major big data challenges and issues. We understand that, if we analyze big data with

business intelligence tools, we may provide a catalyst to change an organization to a

smart organization. We discussed the importance of cloud computing technology as a

solution to handle big data for both computing and storage. We reviewed the capabilities

of cloud computing systems that are important for big data, such as resource scalability,

resource shrink-ability, resource pool sharing, on-demanded servicing, elastic servicing,

and collaboration with other cloud computing systems. We explained cloud architecture

service layers and role of each service layer to handle big data. We discussed how

business intelligence could change big data to smaller valuable data by using cloud

computing services and tools. Finally, we discussed major cloud computing system

issues that need to be addressed for cloud computing to become a viable solution for

handling big data.

22

 Chapter 2

Dynamic Cloud Architecture

In the previous chapter, we describe the definition of big data. We introduce a set of

cloud-based tools for collecting and analyzing big data. We also define the architecture

of cloud computing which is divided into multiple layers. This chapter summarizes some

critical challenges of cloud architecture as well as our proposed dynamic architecture to

overcome the issues.

 Introduction

Cloud computing is based on a distributed and parallel computing systems that provide

elastic storage resources and computing resources over the Internet. As described in the

previous chapter, the cloud computing paradigm allows customers to pay for their

resource usage based on pay-per-use model, and enables customers to scale their storage

and computing resources up or down on- demand.

An important aspect of cloud computing is cloud architecture that refers to the

components (e.g., service layers), subcomponents (e.g., security or message passing in

service layers), and overall system organization of cloud computing. Moving

successfully into cloud computing requires an architecture that will support new

capabilities for migrating different traditional services and applications to cloud

computing systems. Such an architecture should support all user domains of a cloud

computing system which includes cloud vendors, cloud developers, cloud customers or

cloud vendors’ partners, and end-users.

 Motivation

Cloud computing services relies on the vendor infrastructure. This dependency causes

several issues which are described in (IDC Enterprise Pnael 2009; Moreno-Vozmediano

et al. 2013; Sasikala et al. 2013). For example, according to the IDC Survey (IDC Enterprise

Pnael 2009) 79.8% people say “Bringing back in-house may be difficult” is another issue and

DYNAMIC CLOUD ARCHITECTURE | 23

76.8% people say “Hard to integrate with in-house IT” is an issue. These issues indicate

consumers are afraid of migrating to cloud computing systems because the migration is

difficult to integrate with IT department services and it is difficult to return the data back

to the IT department. The survey shows 80.2% of people say “Lack of interoperability

standards” is another concern. Thus, cloud computing requires interoperability with other

cloud computing systems; also as indicated in this report, 76.0% of respondents answer

that “Not enough ability to customize” is an issue. Similar significant concerns around cloud

computing are reported recently in other studies (Moreno-Vozmediano et al. 2013;

Sasikala et al. 2013, Shayan 2013). Furthermore, all of these concerns show that cloud

computing systems require flexibility in defining a variety of services that meet specific

cloud users’ requirements. The flexibility in defining services can be implemented by a

customizable architecture that allows a vendor to define a service for each group of users.

Cloud vendors provide several services to their customers through a general multi-tier

architecture (IaaS, PaaS and SaaS). Although this architecture is useful for several

customers’ requests, customers may have own specific request. Customers should adapt

his request based on offered services, because each offered service intends to satisfy

unique user requests. For example, when a customer requests a service in PaaS for

developing an image processing application, the customer has the same accessibility to

Application Programming Interfaces (API)) as other customers who develop a web

mining application on a cloud. However, an image processing application requires

specific functions (e.g., spatial transformations) that are different in type and not useful

for a web mining application that requires more specific network functionality (e.g.,

spatial indices). This example shows that the customization of a service by a cloud vendor

allows a cloud vendor to provide unique service to each customer. A customized service

allows customers to have a simple system or API rather than a complex system or a

complex API that intends to satisfy different users’ demands. For example, a cloud

vendor could define a customized service that only satisfies a small group of partners or

users, such as a group of users who only need Voice-over-IP service (VoIP) in a cloud

computing system.

Another concern in cloud computing is an increasing demand for the introduction and

migration of a variety of services to cloud computing systems. Although each service

provides a new feature, such as Simulation-as-a-Service (Tsai et al. 2011) or Robot-as-

a-Service (Chen et al. 2010), it aggravates migration issues and complexity issues due to

the lack of standardization and customization, respectively because each cloud-based

service has its own features, requirements and output. For example, Robot-as-a-Service

provides a platform to control robot devices through a cloud computing system. This

24 | CHAPTER 2.

service requires different resources and it provides different outputs. A dynamic

architecture allows vendors to add/edit their services and future *-as-a-services to their

cloud computing systems with ease.

In this chapter, we propose a dynamic and customizable architecture that targets

mentioned concerns, such as providing customizable and dynamical services, a

standardization for different cloud vendors with different solutions, supporting different

services in a cloud computing system, and a solution for cloud vendor lock-in issue.

 Related Work

Currently, we do not have a generally accepted standard for cloud computing. Unlike the

Internet which was developed by the U.S. government agencies (Kaufman 2012), such as

ARPA (Leiner 2009), cloud computing has been developed by several open-source groups

and leading business companies, such as Microsoft and Amazon. Therefore, several

independent cloud architectures have been developed.

To the best of our knowledge, no effective architecture exists that supports dynamic

customization. As previously discussed, the lack of ability for customization is one of the

major issues in existing cloud architectures. This drawback of existing cloud architecture

creates other issues, which are discussed in Section 2.2, such as migration issues. We have

several solutions to overcome this drawback by implementing customization at different

level of cloud computing systems. As shown in Figure 2.1, we divided customization of

cloud computing systems into conceptual level, architecture level and implementation

level. In the following section, we review related work in each level of customization.

2.3.1 Conceptual Level

Conceptual level provides a high-level definition of a customized system. Based on

customization at the conceptual level, we can define an architecture and its

implementation. For example, one of the conceptual customization is Mass

Customization (MC) (Pine 1999) which is based on marketing and manufacturing. MC

focuses on developing one product with different features. For instance, (Hu et al. 2013)

proposed a mass customization for their proposed cloud architecture (CCRA), which

enables a cloud vendor to define a cloud architecture requirements and its

implementation. In their architecture, different models of one object could be defined by

a conceptual model. Each object has different features. Their concept provides different

services through a dynamic domain with different abstractions which is called a model.

Although Hu et al. provide a customization model in cloud computing, the model is not

DYNAMIC CLOUD ARCHITECTURE | 25

adoptable because authors did not provide the specific detail of implementation methods

for a diverse environments.

Figure 2.1. Customization levels in cloud computing

2.3.2 Architecture Level

Existing cloud architectures are static, and are divided into the following categories:

(i) Service-Oriented Architectural (SOA)-based (Perrey et al 2003): (Tsai et al. 2010) provided

SOCCA which is a combination of Enterprise SOA style and cloud style and Zhang et al.

provide CCOA (Zhang et al. 2009) architecture based on SOA with a scalable service

feature, but these cloud architectures do not provide customization on each service layer;

(ii) Cloud Reference Architecture (CRA) (Liu et al. 2011)which is developed by NIST. This

architecture has five primary actors: Cloud Service, Consumer, Cloud Service Provider,

Cloud Broker, Cloud, Auditor and Cloud Carrier;

(iii) Open forums, such as OGF Open Cloud Computing Interface (Metsch et al. 2010),

Cloud Computing Interoperability Forum (CCIF)29, Deltacloud (Bist et al. 2013), DMTF30,

Open Stack (Bist et al. 2013), Open Cloud Consortium31 and Open Cloud Computing

Interface (OCCI)32 (Grossman et al. 2010).

The idea behind most of these open source clouds is to provide a common interface that

includes major cloud platforms. However, in this chapter, we propose an architecture

that allows vendors to define and implement their own specific service through a

29 Available from: http://www.cloudforum.org/
30 Available from: http://dmtf.org/standards/cloud
31 Available from: http://opencloudconsortium.org
32 Available from: http://occi-wg.org/about

http://www.cloudforum.org/
http://dmtf.org/standards/cloud
http://opencloudconsortium.org/
http://occi-wg.org/about/

26 | CHAPTER 2.

standardized layer cross all other vendors’ platforms. In the proposed architecture, the

vendor uses a layer to provide standard services to their customers. The vendors are not

required to modify their platform and they can provide an extension layer on the top of

their cloud platform.

Existing cloud architectures do not provide any solution for facilitating different services.

In addition, existing cloud architectures are static and could not easily provide a

customization on services.

2.3.3 Implementation Level

Customization at implementation level allows a vendor to define several separate

services and applications. Customization at this level is often tied to a vendor’s platforms

and infrastructures.

Major customization at implementation level has been developed by using Object-

Oriented (OO) paradigm. The concept of OO enables developer to implement an

application based on different objects which are closely linked. For customization

reasons, several implementation models have been developed for cloud computing

systems. For example, (Bahga et al. 2013) provide a Cloud Computing Model (CCM) which

is a component-based model for cloud computing systems. The CCM allows a developer

to provide multiple components which are connected via Uniform resource identifier (URI)

and uses message passing. Although, the model provides a customization for cloud

applications, CCM is relied on cloud architecture.

The CCM has several drawbacks. For example, if an architecture is non-functional, then

the implementation model cannot provide an efficient model. For example, limitation on

network access at PaaS layer it causes limitation on CCM application (i.e., the lack of

accessibility to a protocol). Implementation of CCM also has some drawbacks because the

model depends on the architecture with specific requirements, such as type of

programming language. These issues show disadvantages of a cloud architecture could

be caused issue in the implementation.

 The Proposed Architecture

This section presents a Dynamic Cloud Computing Service-Oriented Architecture (DCCSOA)

that allows cloud vendors to analyze, design, develop and implement a cloud computing

system. The DCCSOA provides a dynamic service layer that allows a vendor to add new

customized services on-demand.

DYNAMIC CLOUD ARCHITECTURE | 27

A dynamic architecture for cloud computing allows cloud vendors to customize their

services. As shown in Figure 2.2, the architecture is based on SOA. The SOA features

enable an architecture to provide several independent services that work together as a

system and can be run on different cloud computing systems. The proposed architecture

can customize value-added cloud services (offered resources on a cloud computing

system). In the proposed architecture, a dynamic layer represents all heterogeneous

services, and it can customize services on-demand.

Figure 2.2. The Architecture of DCCSOA

2.4.1 DCCSOA Components

The DCCSOA has several service layers that are discuss as follows:

 Dynamic Template Service Layer (DTSL):

The DTSL provides a dynamic and customizable bridge between all value-added services

in a cloud computing system and all cloud user groups, such as cloud vendor users, cloud

customers (partner of cloud vendors), cloud developers and cloud end-users. The DTSL

is a primary component of the proposed architecture and it provides a service layer which

we call “Template-as-a-Service (TaaS)”. The TaaS provides a dynamic customization on

value-added services. The DTSL is divided into two sub-layers as follows: “Front-end of

28 | CHAPTER 2.

Template-as-a-Service (FTaaS)” and “Back-end of Template-as-a-Service (BTaaS)”. The FTaaS

provides customized value-added cloud services to cloud clients by Cloud Client

Dashboard. The BTaaS is only available to cloud vendors and it interacts with all cloud

services, such as all traditional service (IaaS, PaaS and SaaS), other service layers (e.g.,

Firmware-as-a-Service, Robot-as-a-Service). The classification of DTSL into BTaaS and

FTaaS, makes a cloud architecture progressively deployable alongside existing cloud

technologies without significant barriers or overhead because the BTaaS defines a

dynamic layer which can be modified and customized by a cloud vendor. The BTaaS can

be developed alongside of existing cloud service layers. The FTaaS forms the customer

interface and subscriber audits.

A cloud vendor defines several different services on-demand at DTSL. Each defined

service is a Template which is integrated with one or multiple value-added cloud services.

Cloud vendors can set up, configure and provide different templates to their customers

based on different value-added service layers in a cloud computing system. As

illustrated in Figure 2.3, a template at the back-end of DTSL is dynamic, and it interacts

with one or multiple value-added cloud services.

A cloud vendor can define several templates at FTaaS where each template provides

cloud services to end-users. The FTaaS allows different vendors to define the same

template to their customers. This feature provides independent value-added service to

customers who need data and applications migration from one cloud to another cloud.

Cloud vendor are able to define their own service layer with a BTaaS. The BTaaSs differ

from vendor to vendor and they provide a transfer from heterogeneous services to general

templates. For example, in Figure 2.4, if two vendors (V1 and V2) provide different IaaSs

IaaS

PaaS

SaaS

F
ro

n
t-

en
d

End-user

Cloud Developer

Cloud Customer (Partner)

B
ac

k
-e

n
d

Cloud Vendor

DTSL

(T Figure 2.3. One snapshot of DTSL layer and connection to cloud value-added services

Any Cloud service

DYNAMIC CLOUD ARCHITECTURE | 29

(IaaS1 and IaaS2), each vendor can provide a template as IaaSx at FTaaS. BTaaS in V1 is

different from BTaaS in V2. Both vendors should use his own BTaaS to configure the back-

end of his IaaSx.

The dynamic customization feature of the BTaaS layer enables a cloud vendor to

customize their own services and it provides standard services through the templates.

A cloud vendor can edit a layer by adding, editing or removing a template as shown

in Figure 2.5. In this figure, rows represent cloud-value added services (traditional

services layers) are static, such as IaaS, PaaS and SaaS or other service layers, such as

future services. In this figure, columns represent templates and are dynamic that can be

defined by a cloud vendor on-demand. Four templates are defined in Figure 2.5. For

example, a user who has access to T1 can use SaaS layer, or a user has access to T3 can

access to SaaS and PaaS layers.

Figure 2.4. An example of a template (IaaSx template) with two

different back-ends for two different platforms

The templates can be implemented for any kind of cloud services and traditional services.

For instance, a cloud vendor can define several services as a template, such as Business-

Intelligence-as-a-Service (BIaaS) and IaaS. In this case, Figure 2.5 will be changed and

rows represent IaaS and BIaaS layers, and columns can be defined by a vendor.

The number of columns is dynamic, and is defined by a vendor. Each column stands for

a template. The vendor defines several templates which make use of resources in one or

multiple layers in a cloud computing system. For example, in Figure 2.5, T1, T2, T3 and T4

are cloud templates (orange colors). T1 interacts with SaaS value-added service layer, T2

interacts with all value-added service layers in a cloud computing system, T3 interacts

with two value-added service layers (SaaS and PaaS) and finally T4 interacts with two

lower-level value-added service layers (PaaS and IaaS).

The customer groups include end-users, developers and third-party users (with end-user,

or developer role). They use Cloud Client Dashboard for interacting with FTaaS to use cloud

30 | CHAPTER 2.

resources. Each user has an option for working on several cloud value-added services

simultaneously by interacting with a template. For instance, a developer who uses T4

template in Figure 2.5, can work on PaaS and IaaS simultaneously. The developer can work

on IaaS to install a new application (App1) on the server and she has access to PaaS

simultaneously for developing a Mashups application which is required App1.

 Cloud Client Dashboard (CCD)

This component provides an interface to a group of end-users, developer and third-party

users. Although the third-party users are collaborating with a cloud vendor to develop

or provide cloud services or applications, they may use resources as regular cloud users.

Each user can subscribe to a template rather than a service in traditional cloud computing

systems. The dashboard provides a list of templates that each group of users can subscribe

for billing tools to provide billing on resource usage of a template, and monitoring tools

to provide monitoring on all subscribed templates. The CCD interacts with FTaaS to

provide cloud services based on defined templates.

 Cloud Vendor Dashboard (CVD)

The CVD component provides an interface to high-level users, such as system

administrators and third-party users (with an administrator role). The CVD is isolated

from regular users to provide a secure layer to cloud administrators who work on

configuring, adding and editing cloud templates.

Figure 2.5. One snapshot of the dynamic BTaaS layer

DYNAMIC CLOUD ARCHITECTURE | 31

 User Governing Services (UGS)

This service provides control and configuration of the DTSL for Pricing, Billing and

Subscription services for each defined template. This layer sits on the DTSL because this

service requires a list of users who are subscribed to templates. This service also interacts

with the Cloud Governing Services (CGS) to enable high-level users to configure and control

a cloud ecosystem.

 Cloud Governing Services (CGS)

This service is accessible through Cloud Vendor Dashboard for administrative users. This

service includes the following services: Template Management Service (TMS) which

controls the DTSL to develop FTaaS and BTaaS. The TMS interacts with BTaaS and Cloud

Value-Added Services layer to provide cloud services through a template. Cloud Subscription

Service provides a management service for defining a different type of subscriptions as

well as billing and pricing methods for each template. Cloud Provisioning Service provides

a management service for resources and it provision elastic services based on Cloud

Subscription Service. Cloud Ecosystem Management Service provides an integrated model of

cloud interdependent components. Quality of Services (QoS) service provides a control

management on overall performance of cloud services. Monitoring Service monitors cloud

templates and the customer applications which run on the cloud. Metering and Billing

Services provide a payment structure and access to one or multiple templates.

 Virtualization Services (VS)

This service layer provides a virtualization tools for storage, computing, and other

resources. This service includes Dispatcher, Storage and Programming API Tools, and Virtual

Machine (VM) Services, such as Virtual Machine Monitors.

 Advantages of the Proposed Architecture

The DCCSOA has several advantages which are described as follows:

 Customizable architecture

The dynamic component of the proposed architecture (DTSL) allows cloud vendors to

modify and customize their cloud architecture on demand. This customization improves

cloud architectural issues, such as lack of usability of cloud computing because a cloud

vendor defines a new template that covers several services for enabling customers to have

an integrated service. This offer will be more attractive for a variety group of users

because a vendor is able to provide different customized services via different templates.

For example, in traditional cloud computing systems, a telecom (Pal et al. 2011) user who

32 | CHAPTER 2.

needs one or more network functions should find a cloud vendor who provides IaaS and

subscribe to this service. However, a cloud vendor can define multiple services (e.g., a

VPN service and a storage service) in a template for a group of users, such the telecom

user.

 Flexibility and accessibility

The DTSL gives more flexibility and accessibility to customers through a template that

provides several services at the back-end of templates (BTaaS). As a result, cloud vendors

are able to offer different cloud templates to their customers. Each template could be an

integration of one or more services. For example, in Figure 2.5, a cloud vendor provides

four different templates, and cloud users who work on template T3 can interact with PaaS

and SaaS layers simultaneously.

 Dynamic Abstraction

The proposed architecture abstracts and encapsulates higher-level service layers from

lower-level service layers by defining a template in DTSL that exposes lower-level services

to advanced customers, and expose higher-level services to regular users or a customized

service from both levels to a group of users. For example, in Figure 2.5, a vendor offers

template T4 to advanced customers who need service in PaaS and IaaS service layers. The

reason for this exposure is to improve flexibility and accessibility for some customers

who need access to different and multiple services.

The DTSL facilitates the customers’ migration to the cloud and return back to the in-house

IT department because a cloud vendor can provide a template at DTSL that has the similar

features to in-house IT or other cloud vendors. For example, in Figure 2.5, customers who

interact with T4 can access to IaaS to setup an operating system, and use a cloud platform

simultaneously.

 Portability of applications and data in cloud

The portability of both applications and data in cloud computing is another advantage of

DTSL which is divided into FTaaS as front-end and BTaaS as back-end. As previously

described, a lack of portability in cloud for both applications and data, that causes vendor

lock-in issues, is a major issue in cloud computing systems. The DCCSOA enables

different cloud vendors with heterogeneous infrastructures provide the similar FTaaS to

their customers. The similar FTaaS allows customers to migrate data and applications to

other vendors. The vendors can configure different BTaaS based on their specific

infrastructures, such as hardware or platforms.

DYNAMIC CLOUD ARCHITECTURE | 33

 Cloud Vendor Devolution

Current existing cloud architectures do not support cloud vendor devolution that allows

a partner of a cloud vendor to develop cloud configurations. The DCCSOA enables a

cloud vendor to define a template, such as T2 in Figure 2.5. The cloud vendors can provide

full access, and give a devolution role to their partners who uses a template (e.g., T4). The

partners can provide new templates which are derived from the main templates (e.g., T4.1

from T4), to their customers. For security reasons, DTSL manager, DTSL monitor and

security monitor control this group of users. The best advantage of this permission is that

a cloud partner is able to develop the cloud computing system like a cloud vendor. For

instance, a cloud vendor provides a PaaS as a template in DTSL to her partner. Cloud

partners can offer a new service to their customers based on an integrated service of PaaS

and other services.

 Security

The DTSL divided into FTaaS and BTaaS. This segmentation improves cloud security

because customers have access to the FTaaS services layer and this layer is isolated from

other value-added cloud services. This isolation makes the DTSL more secure. In

addition, any data security and privacy methods can be implemented as a template in the

DTSL. For instance, Chapter 7 describes a new template for electronic healthcare systems

along with its implementation for maintaining data privacy.

 Standardization

One of the major issues in cloud computing is a lack of standardization because this

problem causes vendor lock-in issue. However, DCCSOA provides a dynamic service

layer (DTSL) to enable different vendors to offer the same front-end (FTaaS) service layer.

When different cloud vendors provide the same FTaaS to their customers, the customers

could transfer their data and applications to other vendors, or they can transfer data and

applications to their private clouds through defining a similar FTaaS.

 A Framework for Comparison of DCCSOA to Related Work

Several parameters are important to evaluate software architecture, such as quality

attributes (Bianco et al. 2007) i.e., modifiability and system independent. We consider the

quality attribute to provide a framework to compare the proposed architecture against

related works.

In Table 2.1, we present a comparison of the proposed architecture (DCCSOA) to

existing architectures, methods, and cloud tools. In this table, ‘×’ denotes that the

34 | CHAPTER 2.

literature did not provide information related to a feature of their platform, or they did

not consider the feature. We use the following features in our comparison:

 customization and standardization with minimal modification to the architecture and

services;

 the capability of supporting interoperability;

 support new cloud-based services. In Table 2.1, each row represents a study or a

product of a conceptual model, a cloud architecture, a cloud platform or a tool. Each

column represents the following items: the level of customization that indicates the

ease of customization with which vendors could customize their own architectures;

the level of standardization indicates the level of modifications is needed to provide

a standardized cloud computing system; and the last column represents different

service capabilities that show which architecture, platform or tools could support

future services with ease.

Low level Customization indicates customization at the Implementation Level because each

application or product requires to be modified. For example, MC provides a solution to

modify each service to provide a customize cloud computing system. Medium Level

indicates customization at the Conceptual Level and Architecture Level (unadoptable)

because both architecture and the existing applications are required to be modified. For

example, CRA provides a new architecture without adopting new features with the

existing architecture. High Level indicates customization at the Architecture Level with

adopting new features with the existing architecture. For example, CCIF provides

adoptable services through a uniform cloud interface. This level requires minimal

modifications to achieve customization with standard model. The solutions of interest

are high level customization because they provide customized services with minimal

modifications to the existing architectures (conceptual level) and existing services

(implementation level). DCCSOA provides an independent service (TaaS) to provide

customization on existing services. DCCSOA is not required to modify the existing

architecture or the existing services to achieve customization with minimal modifications.

DCCSOA is only required to modify and adopt the templates of each service.

 Low Level standardization represents the maximal modifications to major cloud services

to provide a standard service between different cloud computing systems. For example,

all components are required to be modified in CCM to provide a standardized cloud

computing system. High Level indicates standardization with less modifications. For

example, CCIF provides a solution for standardization through a uniform cloud interface.

The solutions of interest are high level standardization because it does not require

modifying the existing architecture or existing services to achieve standard cloud

DYNAMIC CLOUD ARCHITECTURE | 35

computing. DCCSOA provides different templates at the FTaaS to provide a uniform Table 2.1 A comparison between different cloud architectures and cloud platforms

Cloud Architecture
Level of

Customization

Level of

Standardization
Level of Interoperability

*aaS

Suppo

rt

C
o

n
ce

p
tu

a
l

L
ev

el

MC [12]

Low

(at Product line

level)

× × ×

A
rc

h
it

ec
tu

re
 L

ev
el

CCM [21]

Low (in

Implementation

Level)

Low (if all vendors

implement standard

components)

Medium (via OO

paradigm)
×

SOCCA [15] × (Medium) × × ×

CCOA [16] × (Medium) × × ×

CRA [17] Medium

Low (if all vendors

implemented based

on CRA)

× ×

DCCSOA

High (via different

Templates at Arch.

level)

High (via TaaS)
High (via connection

between services)
Yes

A
p

p
li

ca
ti

o
n

s
a
n

d
 O

p
en

 S
o
u

rc
e

T
o
o
ls

OGF Open

Cloud

Computing

Interface [18]

×

Low (if all vendors

modify their services

based on OCCI

specifications)

× ×

Cloud

Computing

Interoperabilit

y Forum

(CCIF)1

High

High (if all vendors

implement Unified

Cloud Interface)

Low (via Unified Cloud

Interface)
×

Deltacloud

[19]

Medium (at API

level)

High (via REST-

based API)
× ×

DMTF 2

Medium (via

Common

Information Model)

High (via message

exchange)

Medium (via message

exchange)
×

Open Cloud

Consortium3

Medium (at API

level)

High (via REST-

based API)

Low (via Unified Cloud

Interface)
×

Open Cloud

Computing

Interface

(OCCI) [20]

Medium (at API

level)

High (via REST-

based API)

Low (via Unified Cloud

Interface)
×

P
la

tf
o
rm

Open Stack

[19]

×

(private cloud)

×

(private cloud)
Medium ×

36 | CHAPTER 2.

interface for different types of the existing services that cloud be implemented in different

cloud vendor’s systems with different architectures.

Low Level Interoperability indicates interoperability via an external interface that

causes high traffic connection to external entity without an ability to control or modify

the interface. For example, CCIF provides an external uniform interface that is disabled

independently of a service and each service is required to connect to the interface to

provide interoperability feature. Medium Level indicates interoperability through

implementation because each component does not rely on an external interface but the

correspondence method requires to modify major services. For example, CCM provides

interoperability through object-oriented paradigm that does not require to connecting to

an external interface and in this method each object requires to be modified to achieve

interoperability. High level indicates interoperability with independent services and

minimal modifications. The solutions of interest are high level interoperability solution

that minimizes the modifications of the architecture and services to achieve

interoperability. DCCSOA provides an independent service which is not relied on

external interface or required modification of service.

The last column shows the capability of cloud-based services. Other related work

(methods, platforms and architectures) did not consider this feature as a part of their

proposed solution. DCCSOA allows a cloud vendor to define, deploy, customize and

standardize new services via FTaaS and BTaaS. DCCSOA enables a cloud vendor to add

new services by implement a heterogeneous service and adopt the service at the front-

end layer (FTaaS) to provide a customizable and standardized service with minimal

modifications and with ease. This comparison shows our proposed architecture

(DCCSOA) allows vendors to define a dynamic, standardized and customizable cloud

architecture with the capability of supporting interoperability. DCCSOA requires

minimal modifications to the architecture and services with maximal the customization.

In addition to the framework in Table 2.1, we evaluate the proposed architecture

based on SOA evaluation (Bianco et al. 2007). The evaluation is divided into the following

topics: (1) Target Platform; (2) Synchronous versus Asynchronous Services;

(3) Granularity of services; (4) Exception Handling and Fault Recovery; (5) HTTPS or

Message-Level Security; (6) XML optimization; (7) Use of a registry of services; (8) Legacy

Systems Integration; (9) Service Orchestration.

These major topics are divided into minor evaluation items as shown in Table 2.2.

Icon “☺” in Table 2.2 shows the advantage of the selected parameter topic in DCCSOA.

For instance, the proposed method in fine-grained services topic provides advantage in

flexibility feature. More details about each parameter can be found in (Bianco et al. 2007).

We consider the following general scenario to evaluate the proposed method:

DYNAMIC CLOUD ARCHITECTURE | 37

Scenario SC1: “User U1 uses a platform as follow: P1 runs on the top of Cloud1 to

provide service S1, and U1 is willing to transfer data and application to P2 which is running

on the top of Cloud2 for the same service. When U1 needs to transfer data and applications

from P1 to P2, administrator of P2 needs to define the same service on P2. Both platforms

(P1 and P2) are bound to the target cloud vendor services (S1 and S2).”

 Summary of chapter

In this chapter, we proposed a new Dynamic Cloud Computing Service-Oriented Architecture

(DCCSOA). The proposed architecture addresses the most existing cloud computing

issues, such as data and applications migration between different clouds, transfer to

cloud, or return back to in-house IT, data and applications lock-in issues, and a lack of

standardization and customization. DCCSOA provides a dynamic and customizable

service layer (DTSL). The DTSL provides simplicity these issues by defining a layer,

template, with the same feature in DTSL. A template is divided into front-end (FTaaS) and

back-end (BTaaS) layers. The defined templates can be customized by a cloud vendor for

different groups of users. DCCSOA also allows different cloud vendors to provide the

similar cloud services through a template that meets a standardization between different

cloud computing systems. We discussed how the proposed architecture supports existing

and future services by using the DTSL at BTaaS that can be configured to a specific cloud

services. We evaluated the proposed method based on SOA evaluation. The result shows

that the proposed architecture, DCCSOA, provides several advantages over existing

cloud architectures and platforms, such as minimal modifications for providing

standardization and customization. Chapter 7 describes a new template for electronic

healthcare systems along with its implementation for maintaining data privacy.

38 | CHAPTER 2.

Table 2.2. Evaluation parameters for each topic

39

 Chapter 3

Data Privacy Preservation in Cloud

As we described in Chapter 1 and Chapter 2, there are several challenges in cloud

computing environment. One of them is “Data Privacy”. The question is “how we can

protect users’ data privacy?” when users use cloud technology. This chapter focuses on

developing a method to protect users’ data privacy. We also consider mobile cloud

computing. The next chapter describes how the proposed method in this chapter can be

parallelized on GPU to provide better performance.

 Introduction

Cloud computing paradigm refers to a set of virtual machines (VM) that provide

computing and storage services through the Internet. Cloud computing uses

virtualization technology to provide VMs on the top of distributed computing systems.

Cloud computing provides several advantages over traditional in-house IT (Singhal et al.

2013), such as on-demand services, pay-per-use basis and elastic resources which have

rapidly made cloud computing a popular technology in different fields, such as IT

business, mobile computing systems and health systems (Adibi 2013, Rodrigues 2012).

(Huang et al. 2011) defines Mobile Cloud Computing (MCC) is rooted from mobile

computing and cloud computing paradigm that allows mobile users offload their data

and process data on cloud computing. MCC provides a big data storage for mobile users

with a lower cost and more ease of use. As of today, some popular MCC cloud vendors

for storage service, such as Google and Dropbox, provide a free standard storage service

with 2 GByte and 15 GByte capacity, respectively33.

MCC provides an online massive storage for mobile users, but it aggravates the user

data privacy issues because users have to trust third-parties (cloud vendors and their

partners). For instance, in a recent study, (Landau 2014) reports some challenges toward

privacy issues when users trust cloud vendors, and the vendor shares data with a third-

33 Recorded on November 13, 2014 from https://drive.google.com and https://www.dropbox.com

40 | CHAPTER 3.

party or other unauthorized users could have access to these data. In another study,

(Kumar et al. 2010) suggest that not all MCC applications can save energy on mobile

devices by offloading data. Finally, in an earlier study on cloud computing, (Ristenpart

et al. 2009) show a VM can be a vulnerable component when users use cloud shared

resources.

These examples of challenges in MCC show a mobile user requires an encryption

method to protect their data privacy. One of encryption methods that can be considered

as a secure method is Advanced Encryption Standard (AES) (Daemen 2002, Osvik 2010,

Yoshikawa 2013). However, mobile devices have limited resources, such as limited

power energy, low speed CPU and small capacity of RAM, and it is impossible to use

AES encryption method for each file when offload/download is required for each file.

Another solution for this challenge is light-weight security methods that provide a

balance between maintaining energy efficiency and security. A light-weight security

method is based on simple operations, such as permutation, rather than using expensive

operations, such as secret key or public-key encryptions,

In this chapter, we propose a light-weight encryption method for mobile devices,

such as smart phones, that uses permutation operation to protect data privacy. We

investigate one of the popular image file formats as a case study, JPEG file formats

because it is most world’s widely used by smart phones for capturing pictures. We show

that the proposed light-weight method provides a secure data privacy model based on

chaos systems for JPEG file format in mobile devices. In addition, we evaluate the

performance of the proposed method against other encryption methods, such as AES,

and encryption on JPEG encoders, such as pixel and color encryptions. We investigate

several attack scenarios against the proposed method.

The rest of the chapter is organized as follows: in Section 3.2, we briefly review

background materials for this study. In Section 3.3, we present the proposed method and

its requirements. In Section 3.4, we implement the proposed method and present its

experimental results. We also present a statistical security model of the proposed method

to show the level of the security. In Section 3.5, we investigate different scenario attacks

against the proposed method. In Section 3.6, we review a comparison between the

proposed method and existing methods. Finally, in Section 3.7, we conclude the proposed

method which is described in this chapter.

 Background

In the proposed method, we use JPEG file format as a case study. In this section, we

briefly review the background of JPEG file format and its encoder/decoder requirements.

DATA PRIVACY PRESERVATION IN CLOUD | 41

Each JPEG file has a header file that defines metadata, such as the canvas of a JPEG

file with a specific dimension (width and height), resolution, camera information, GPS

information, and compression information.

Each JPEG file (including the header and the content) consists of several segments

and each segments beginning with a marker. A raw data of a JPEG file includes several

markers (ITU 1993). For example, each JPEG file begins with “0xFF0xD8” marker that

represents this binary is a type to image and it allows an image viewer application to

decode the binary file and show the image. Each marker begins with ‘0xFF’. Table 3.1

describes some important markers.

We use these markers in our proposed method to retrieve different segments of a

JPEG files.

A JPEG image encoder uses a lossy form of compression which is based on the

discrete cosine transform (DCT) method (ITU 1993) to compress an image. A sequence

byte of raw JPEG image file contains a multiple chunk of Minimum Codded Unit

(MCU) as described in (ITU 1993). Each MCU block stores 4*4 pixels of an image.

Table 3.1. JPEG file format

Short Name The description of marker Bytes

SOI Start of Image 0xFF, 0xD8

SOF0 Start of Frame (Baseline DCT) 0xFF, 0xC0

SOF1 Extended sequential DCT 0xFF, 0xC1

SOF2 Start of Frame (Progressive DCT) 0xFF, 0xC2

DHT Define Huffman Table(s) 0xFF, 0xC4

DQT Define Quantization Table(s) 0xFF, 0xDB

DRI Define Restart Interval 0xFF, 0xDD

SOS Start of Scan 0xFF, 0xDA

EOI End of Image 0xFF, 0xD9

 The Proposed Method

In this section, we present the proposed method to protect the privacy of data on MCC.

As described in Section 3.1, since mobile devices have limited resources, we have to

provide a method with minimum overhead to protect data privacy that runs on a mobile

device to store and retrieve image files on MCC. In this chapter, we consider JPEG files

as a case study because this format of photography by smart phones is popular at this

time.

We assume the following requirements for the proposed method:

42 | CHAPTER 3.

● The privacy model must satisfy a balance between computation overheads and

maintaining the security.

● Unlike default MCC offloading methods that submit original files to MCC for

encryption, the proposed method can be ran on mobile devices to provide data

privacy, and then, the protected result will be stored on MCC.

The proposed method splits files into multiple files and uses a pseudo-random

permutation to scramble chunks in each split file. The proposed method reads a JPEG file

as a binary file rather than using a JPEG encoder/decoder to protect each pixel or the color

of each pixel.

In this method, we have two phases to split files into multiple files and to recombine

the files as follows:

● Disassembling of an image that splits an image file into multiple binary files,

divide the original file into: (i) one file that contains the header of the original

file, and (ii) multiple files that contain the content of the original file. The

content of each split file consists of multiple chunks of original file. Chunks

distribute through multiple files based on a Pattern, chunks in each file

randomly scramble by using the chaos system. The output of this phase (split

files) will be stored in MCC(s).

● Assembly of split files that recombine all split files to reorganize the original file.

In this phase the following steps will be proceed: (i) read all scramble files from

MCC(s); (ii) using the chaos system random arrays (which are used at the first

phase) to reorder the chunks in each split file; and (iii) use the Pattern to

reorganize the original files.

3.3.1 Disassembly Phase

We assume the proposed method requires to disassemble a series of images at the same

time. The method divides each original file (𝐹𝑖𝑙𝑒𝑖) into: (i) the header of the original file

(𝐻𝑒𝑎𝑑𝑒𝑟𝑖), where 𝑖 is the sequence number of original file in the file series that requires to

be disassembled; (ii) the content of file that is divided into several chunks (𝐶ℎ𝑢𝑛𝑘𝑖,𝑗)

where 𝑗 is the sequence number of the chunks of the original content file.

We divide the original JPEG file into header and the content because the header of

the original file carries some important privacy information. This division also provides

a complex method for recombining split files because it removes important JPEG markers

from the original image file.

A split file is defined as follows:

DATA PRIVACY PRESERVATION IN CLOUD | 43

𝐹𝑖𝑙𝑒𝑖 = 𝐻𝑒𝑎𝑑𝑒𝑟𝑖 + (∑ 𝐶ℎ𝑢𝑛𝑘𝑖,𝑗

𝑗=𝑐𝑚𝑎𝑥

𝑗=1

) (1.)

where 𝑐𝑚𝑎𝑥 represents the maximum number of chunks in 𝐹𝑖𝑙𝑒𝑖 and is defined as

follows:

𝑐𝑚𝑎𝑥 = ⌈
𝑆𝑖𝑧𝑒𝑖

𝐵𝑢𝑓𝑓𝑒𝑟
− 𝐻𝑆𝑖𝑧𝑒𝑖⌉

(2.)

where 𝑆𝑖𝑧𝑒𝑖represents the size of 𝐹𝑖𝑙𝑒𝑖 (Byte), 𝐵𝑢𝑓𝑓𝑒𝑟 represents the size of chunks (Byte),

and 𝐻𝑆𝑖𝑧𝑒𝑖 represent the size of the header of the original 𝐹𝑖𝑙𝑒𝑖 (Byte).

Figure 3.1, illustrates a general view of the proposed method that allows a mobile

device to split an original JPEG file into header file and three multiple files. The split files

are submitted to two MCCs. A user can configure his/her application to set: (i) the number

of split files, (ii) the size of chunks, and (iii) the cloud user account(s) information to

upload files on MCC(s).

We use the JPEG markers to split the header of the original file from the content and

to find important JPEG markers. If someone has an access to split files to assemble

Cloud Vendor 1

Cloud Vendor 2

Mobile Device

Original Image File

C
ip

h
e

r
Im

a
ge

 (
C

h
u

n
k

3
)

Cipher Header (Chunk 1)

C
ip

h
e

r
Im

a
ge

 (
C

h
u

n
k

3
)

C
ip

h
e

r
Im

a
ge

 (
C

h
u

n
k

2
)

C
h

u
n

k
1

C
h

u
n

k
3

C
h

u
n

k
4

C
h

u
n

k
2

Figure 3.1. A general view of the proposed Method

44 | CHAPTER 3.

different files without accessing to the header, or if the person creates a new header for a

JPEG file, still he/she cannot simply retrieve the file. For example, Figure 3.2 shows two

pictures (a) and (b), with the same size and the same resolution that took by a smart

phone. The last right frame (c) shows the result of assembling the header of the first file

and the content of the second file. As shown in this Figure 3.2, only the size and the

resolution can be retrieved and still the assembler cannot retrieve the content of the

image. To protect an image from a person who attempt to assemble a part of image by

assembling files, first, we use a pattern to distribute chunks of the image to different files.

The pattern can be defined as an input by a user to indicate, how to distribute a sequence

of bytes in a split file. Second, we use chaos theory to randomly distribute each chunk in

each split file.

 The proposed method uses two steps to disassemble an original JPEG file to a

number of chunks, and to scramble randomly each chunk in each split file as follows:

3.3.2 Pattern

The proposed method divides each file into 𝑐𝑚𝑎𝑥 chunks (binary codes) and it distributes

chunks to multiple split files in different order as will be discussed in the next phase. In

this phase, the method use pattern that aims to distribute chunks to multiple split files. A

pattern can be defined as a key by a user or it can be selected randomly as a predefined

method. A user can define different patterns to provide different strategy for distribution.

For example, Figure 3.3 shows two different patterns for disassembling a JPEG file. In

this figure, the original file includes a header, and nine chunks of content. In 𝑃𝑎𝑡𝑡𝑒𝑟𝑛𝐴,

the proposed method reads two consecutive chunks from the original file and stores each

chunk in one of two files. The first chunk stores in 𝐹𝑖𝑙𝑒1,2 and the second chunk stores in

𝐹𝑖𝑙𝑒1,3. At the end of reading 𝑆𝑜𝑢𝑟𝑐𝑒 𝐹𝑖𝑙𝑒1, 𝐹𝑖𝑙𝑒1,2 contains {𝐵1, 𝐵3, 𝐵5, 𝐵7} and 𝐹𝑖𝑙𝑒1,3

contains {𝐵2, 𝐵4, 𝐵6, 𝐵8}. In Figure 3.4, 𝑃𝑎𝑡𝑡𝑒𝑟𝑛𝐵 shows another pattern to store chunks. In

this pattern, each four consecutive chunks of original file store in two files. The first and

(a) Source File #1

(b) Source File #2
(c)Header of file #1 with

the content of file #2

Figure 3.2. Split the header of files and substitute header of file #1 with file #2

DATA PRIVACY PRESERVATION IN CLOUD | 45

the forth chunks store in 𝐹𝑖𝑙𝑒2,2 ; the second and the third chunks store in 𝐹𝑖𝑙𝑒2,3. At the

end of reading 𝑆𝑜𝑢𝑟𝑐𝑒 𝐹𝑖𝑙𝑒2, 𝐹𝑖𝑙𝑒2,2 contains{𝐵1, 𝐵4, 𝐵5, 𝐵8, 𝐵9} and 𝐹𝑖𝑙𝑒2,3 contains

{𝐵2, 𝐵3, 𝐵6, 𝐵7}. If someone has an access to all contents, still he/she cannot assemble files

because he/she needs an access to the pattern as a key to assemble split files.

3.3.3 Scrambling of the content

We use the pseudo-random permutation (PRP) (Chakraborty 2006) with chaos theory

(Stojanovski 2001) to scramble chunks in each split file. PRP uses chaos system which is

defined as follows:

𝑃𝑘+1 = 𝜇𝑃𝑘(1 − 𝑃𝐾) (3.)

where 𝑃 ∈ {0,1} and 𝜇 is a parameter of this equation.

Figure 3.4. Chaos behavior of {𝑃𝑘}𝑘=0
300

In the classic problem of the chaos system if selected 𝜇 is to be selected

between 3.569945 ≤ 𝜇 ≤ 4, 𝑃 can provide a complex chaos model. Figure 3.4, shows 300

iterations of a chaos behavior that describes in Equation (2) when 𝜇 = 3.684.

The proposed method uses the following set to provide a non-convergent, non-

periodic pseudo random numbers:

{𝑃𝑘}𝑘=0
𝜔 (4.)

where 𝜔 = 𝑐𝑚𝑎𝑥 by an initial value of 𝑃0 = 0.9999

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

1

1
1

2
1

3
1

4
1

5
1

6
1

7
1

8
1

9
1

1
0

1

1
1

1

1
2

1

1
3

1

1
4

1

1
5

1

1
6

1

1
7

1

1
8

1

1
9

1

2
0

1

2
1

1

2
2

1

2
3

1

2
4

1

2
5

1

2
6

1

2
7

1

2
8

1

2
9

1

3
0

1

Iteration

𝑷
𝒌

46 | CHAPTER 3.

The proposed method uses the following equation to find the location of 𝐶ℎ𝑢𝑛𝑘𝑘 in

a split file:

𝑃𝑜𝑠𝑘 = 𝑃𝑘 ∗ 𝑐𝑚𝑎𝑥 (5.)

where 𝑃𝑜𝑠𝑘 represents the position of 𝐶ℎ𝑢𝑛𝑘𝑘in each file.

Reading and writing a JPEG file as a binary adds more complexity to retrieve the

image by unauthorized users. For example, let’s assume that the original file has two

consecutive bytes (i.e., ‘FFD8’ that indicates start of an image). First, we split these two

consecutive bytes into two chunks (i.e., ‘FF’ and ‘D8’). Second, distribute chunks in

different location in a file (i.e., at 0 position and 2047 position); then a JPEG decoder

cannot retrieve this file because the decoder cannot find JPEG makers. In this case, the

Figure 3.3. Two different patterns to store chunks in three files

DATA PRIVACY PRESERVATION IN CLOUD | 47

JPEG decoder or an operating system cannot understand this binary file is a type of JPEG

format.

The best option for selecting the buffer is: when Buffer 𝑚𝑜𝑑 2 = 1 that splits two

consecutive bytes into two chunks.

In the case of a collision between 𝑃𝑜𝑠𝑘and 𝑃𝑜𝑠𝑙in Equation 5, we develop a

framework to find a new address. We use the following equations (6-11) to relocate a

𝐶ℎ𝑢𝑛𝑐𝑘 from 𝑃𝑜𝑠𝑘to 𝑃𝑜𝑠𝑙 in a file, which is called conflict remover. In these equations

{𝐴𝑣𝑎𝑖𝑙} represents positions that are not used in {𝑃𝑘}.

𝑃𝑜𝑠𝑙 = 𝐴𝑣𝑎𝑖𝑙𝑚

𝐼𝑓(𝑘 = max) ⇒ ∃k ∈ max[{𝐴𝑣𝑎𝑖𝑙𝑘}] 𝑤ℎ𝑒𝑟𝑒 𝑚 < 𝑘

(6.)

𝑃𝑜𝑠𝑙 = 𝐴𝑣𝑎𝑖𝑙𝑛

𝐼𝑓(𝑘 = min) ⇒ ∃n ∈ min[{𝐴𝑣𝑎𝑖𝑙𝑛}] 𝑤ℎ𝑒𝑟𝑒 𝑛 > 𝑘

(7.)

𝑃𝑜𝑠𝑙 = 𝐴𝑣𝑎𝑖𝑙𝑜

𝐼𝑓(𝑘 ≠ 𝑚𝑖𝑛) ∧ ∃o ∈ min[{𝐴𝑣𝑎𝑖𝑙𝑜}] where o < k

⇒ ∃n ∈ min[{𝐴𝑣𝑎𝑖𝑙𝑛}] 𝑤ℎ𝑒𝑟𝑒 𝑜 < 𝑘

(8.)

𝑃𝑜𝑠𝑙 = 𝐴𝑣𝑎𝑖𝑙𝑝

𝐼𝑓(𝑘 ≠ min)∧ ∄p ∈ min[{𝐴𝑣𝑎𝑖𝑙𝑝}] 𝑤ℎ𝑒𝑟𝑒 𝑝 < 𝑘

⇒ ∃p ∈ min[{𝐴𝑣𝑎𝑖𝑙𝑝}] 𝑤ℎ𝑒𝑟𝑒 𝑝 > 𝑘

(9.)

𝑃𝑜𝑠𝑙 = 𝐴𝑣𝑎𝑖𝑙𝑞

𝐼𝑓(𝑘 ≠ max) ∧ ∃q ∈ max[{𝐴𝑣𝑎𝑖𝑙𝑞}] where q > k

⇒ ∃q ∈ max[{𝐴𝑣𝑎𝑖𝑙𝑞}] where q > k

(10.)

𝑃𝑜𝑠𝑙 = 𝐴𝑣𝑎𝑖𝑙𝑟

𝐼𝑓(𝑘 ≠ max)∧ ∄p ∈ max[{𝐴𝑣𝑎𝑖𝑙𝑟}] 𝑤ℎ𝑒𝑟𝑒 𝑟 > 𝑘

⇒ ∃r ∈ max[{𝐴𝑣𝑎𝑖𝑙𝑟}] 𝑤ℎ𝑒𝑟𝑒 𝑟 < 𝑘

(11.)

48 | CHAPTER 3.

The procedure (Equations 6-11) extends the upper bound collisions and the lower

bound collisions to upper and lower available addresses, respectively. If 𝑃𝑜𝑠𝑘−1 < 𝑃𝑜𝑠𝑘

then, the procedure finds an upper level available position. If 𝑃𝑜𝑠𝑘−1 > 𝑃𝑜𝑠𝑘 then, the

procedure finds a lower level available position. Some exceptions are listed as follows: (i)

k is the maximum address number: the procedure finds a maximum position of l where

k>l; (ii) k is the minimum address number: the procedure finds a minimum position of l

where k<l; (iii) there is no any available upper bound position: the procedure finds the

maximum number of l where k<l; (iv) there is no any available lower bound position: the

procedure finds the minimum number of l where k>l. Figure 3.5, shows the result of

equations (6-11) when 𝜇 = 3.684 and 𝑃0 = 0.9999.

3.3.4 Assembly a file

At the first step, the method reads each chunk from each split file based on selected

pattern in Section 3.3.1, and then the proposed method uses the chaos model in Section

3.3.2 to relocate each chunk to the original location of JPEG file. At this phase the

proposed method retrieves the address of each chunk by one the following procedure:

(i) use an array of PRP numbers which is used in assembling phase;

(ii) use 𝜇 and 𝑃0to build the array of PRP numbers. The array can be defined by finding

each 𝑃𝑘 and its relocation (𝑃𝑙), if there is a collision between 𝑃𝑘 and 𝑃𝑙.

 Evaluation of the proposed method

One of the approaches to evaluate the proposed method is implementation that

represents experimental results, such as the response time in a load and performance

Figure 3.5. A comparison between 𝑃𝑜𝑠𝑘 and its relocation (𝑃𝑜𝑠𝑘)

𝑃𝑜𝑠𝑘 𝑃𝑜𝑠𝑙

DATA PRIVACY PRESERVATION IN CLOUD | 49

testing. Another approach is statistical model that describes a deviation between the

original and the output. This section presents these two approaches to evaluate the

proposed method.

3.4.1 Implementation

We use the proposed method to disassemble and store 21 JPEG files with different sizes

that were taken from a smart phone. We compare the result of assembly phase against

encryption methods and disassembly phase against decryption method.

3.4.2 Experimental Setup

In this experiment, we used 21 pictures with different qualities that were taken by a

Samsung Galaxy III smart phone. The total size of our dataset was 24.9 Mbyte. We select

different size of files to benchmark the proposed method with different input rates.

Selected pictures’ sizes are varying from 21 Kbyte to 2.86Mbyte with different dimensions

(180*320 to 2448*3264 with 72dpi). In this experiment, the proposed method uses a buffer

with the size of 4096 Byte. We use Rijndael cryptography with a key of 32 bit (minimum

regular key size) and a buffer size of 4096 Byte, Initialization Vector (IV) of 16 Byte. The

proposed method is implemented by Visual Studio 2013 in C#.Net programming

language, with .Net framework 4.5. We used a well-known JPEG library, LibJPEG.Net

package which is developed by BitMiracle, to evaluate the encryption on JPEG encoder

in C#.Net programming language.

We assume our application have an access to a pre-defined {𝑃𝑖} to avoid the

computation overhead.

3.4.3 The result of the experiment

We implemented the proposed method with pattern A (according to the Figure 3.3)

and AES encryption method to compare the response times. As shown in Figure 3.6, the

size of files increases, the proposed method provides a flat response time but the response

time for AES encryption increases linearly. As shown in this figure, encryption on JPEG

encoder has more computation overhead over two other methods because it is required

to read each pixel by a JPEG decoder, encrypt each pixel and use the JPEG encoder to

write the result.

3.4.4 Statistical Model

Another approach to evaluate the proposed method is statistical model that presents a

deviation of each chunk position between the position in original file and the position in

scramble file.

50 | CHAPTER 3.

To evaluate the proposed method, we select three different values of 𝜇 and we select

the same other initial values as follows: 𝑃0 = .9999, the maximum size of input file is 3057

Kbyte (the maximum size of our dataset images is described in the Section 3.4.2) and the

size of each chunk (buffer size) is 10 Kbyte. Figure 3.7 shows a deviation of the original

chunk position and the same chunk position in scrambled file with different parameters

of (𝜇) values.

In Figure 3.7, X-axis represents eight selected 𝑃𝑜𝑠𝑘and 𝑃𝑜𝑠𝑘+1 and the Y-axis

represents the deviation of position of 𝑃𝑜𝑠𝑘 and 𝑃𝑜𝑠𝑘+1 in scrambled file. As shown in

this diagram, each two consecutive positions in a scramble file has different deviations.

A. a comparison of disassembling files with pattern A

and encryption methods for 21 JPEG pictures

B. a comparison of assembling files with pattern A and

Decryption method for 21 JPEG pictures

Figure 3.6. Experimental results

0

200

400

600

800

1000

2
1

.7
9

9
7

.0
4

1
5

8
.8

7

1
9

5
.0

3

3
6

0
.4

3

4
0

9
.8

4

4
6

9
.7

9

5
8

4
.5

2

6
3

1
.4

5

6
7

3
.0

2

6
9

9
.1

4

8
5

9
.1

0

1
2

2
3

.4
3

1
2

3
3

.3
4

2
1

9
2

.8
0

2
1

9
9

.4
1

2
5

2
2

.7
0

2
6

4
1

.9
2

2
6

4
9

.0
0

2
7

9
7

.7
4

2
9

3
5

.0
9

R
es

p
o

n
se

 T
im

e
(m

s)

Size of file (KB)

The proposed Method Rijndael Encyption Encryption on JPEG encoder

0
20
40
60
80

100

2
1

.8
0

9
7

.0
5

1
5

8
.8

8

1
9

5
.0

5

3
6

0
.4

4

4
0

9
.8

4

4
6

9
.8

0

5
8

4
.5

3

6
3

1
.4

5

6
7

3
.0

3

6
9

9
.1

4

8
5

9
.1

1

1
2

2
3

.4
4

1
2

3
3

.3
4

2
1

9
2

.8
1

2
1

9
9

.4
2

2
5

2
2

.7
0

2
6

4
1

.9
2

2
6

4
9

.0
0

2
7

9
7

.7
5

2
9

3
5

.0
9

R
es

p
o

n
se

 T
im

e
(m

s)

Size of file (KB)

The proposed Method Rijndael Encyption

DATA PRIVACY PRESERVATION IN CLOUD | 51

The different values of 𝜇 provide different models of file scrambling. As shown in this

figure, the deviation of each curve are different for different initial values of 𝜇.

We also compare the position of each chunk in the original file and in the scrambled

file. We use the configuration of Figure 3.7 and we assume the original file is scrambled

in one file that includes the header and the content of the original file. Figure 3.8, shows

the deviation of a chunk position from the original file to the new position in the

scrambled file. As shown in this figure, each chunk is relocated to different locations in

scrambled file and the value of each chunk is vary chunk to chunk, randomly.

 Security Attack Scenarios

In this section, we present different security attack scenarios that an attacker can

implement against the proposed method.

Figure 3.7. A deviation of chunks positions in scramble file with different parameter values

0

50

100

150

200

250

300

350

0-1 35-36 76-77 114-115 150-151 188-189 229-230 305-306

𝜇=3.684 𝜇=3.67 𝜇=3.88

𝐷
𝑒𝑣
𝑖𝑎
𝑡𝑖
𝑜
𝑛

Figure 3.8. A statistical deviation of position in original file and scramble files

0

50

100

150

200

250

300

0 25 50 75 100 125 150 175 200 225 250 275 300

𝐷
𝑒𝑣
𝑖𝑎
𝑡𝑖
𝑜
𝑛

𝑇ℎ𝑒 𝐶ℎ𝑢𝑛𝑘 Number

52 | CHAPTER 3.

An attacker requires assembling all split files and all chunks in each split file to

retrieve an image. The proposed method provides a scrambled binary file that provides

an obstacle for JPEG encoders to retrieve images because a JPEG encoder requires specific

markers which are scrambled through split files.

We assume that the attacker wants to retrieve a JPEG file with a 2 MByte size and the

attacker uses an Intel CPU i7 4770K with 127273 MIPS at 3.9 GHZ. The following

scenarios can be implemented against the proposed method:

3.5.1 Scenario 1

Assumptions: the attacker who has access to all split files but dos not know {𝑃𝑖} and the

size of each chunk

In this scenario, since the attacker does not have information of {𝑃𝑖}, the attacker must

run a brute-force attack to assemble split files and reorganize the scrambled chunks in

split files. It requires minimum 𝑂((𝑛! − 1) − 𝜕), where 𝜕 is the number of similar bytes in

all files and 𝑛 is the size of file (byte). In this case, the attacker needs to try2.229077716E +

9381 permutation combinations to reconstruct the image (𝜕 ≈ 0).

Using this scenario with this CPU configuration to retrieve an image is impossible

and it is required 2.027100061111045012201E+9371 years for processing the computations.

3.5.2 Scenario 2

Assumptions: The attacker has access to all split files, knows the size of each chunks

(10Kbyte) but does not know {𝑃𝑖}.

In this scenario, the attacker needs to run a brute-force attack but the computation on size

of the scrambled files (3070 Kbyte) is divided to the size of each chunk (10Kbyte). In this

case, the attacker needs to try a minimum of 307! − 1 permutation combinations to

reconstruct scrambled file, needs an impossible computation

(6.677321883507716595116E+621 years) to compute all permutation combinations.

3.5.3 Scenario 3

Assumptions: The attacker has access to all split files, knows the size of chunks

(10Kbyte) but does not know the method is based on chaos system.

In this scenario, the attacker needs to use a brute-force attack against the proposed

method that requires a computation with 𝑂(
𝑛

10
! − 1) − 𝜕), where 𝜕 is the number of

DATA PRIVACY PRESERVATION IN CLOUD | 53

similar bytes in all files and 𝑛 is the size of the original file (3070 Kbyte). In this case, the

attacker needs 𝑂(307!) computation.

3.5.4 Scenario 4

Assumptions: The attacker has access to one file of the multiple split files.

In this scenario, since each two consecutives chunks stores in different clouds (i.e., using

Pattern A in Figure 3.3), the attacker only could retrieve a part of an image by using a

brute- force attack. We can estimate the probability of finding the size of each chunks as

follows:

𝑇 = ∑
𝑆𝑖𝑧𝑒!

𝑗

𝑗=𝑠𝑖𝑧𝑒
𝑗=1 (12.)

where 𝑠𝑖𝑧𝑒 represents the size of file (byte).

The worst case of this scenario is described as follows:

𝑇 = ∑
𝑆𝑖𝑧𝑒!

𝑗

𝑗=𝑐𝑚𝑎𝑥
𝑗=1 (13.)

The attacker needs to try all 𝑇! permutation combination to reconstruct a partial of

an image.

 Related Works

Several studies (Lian et al. 2004, Podesser et al. 2002, Choo et al. 2007, Ye et al. 2010, Ra et

al. 2013) have been conducted to image encryption. Unlike these studies that address

encryption methods based on JPEG encoders, our proposed method provides a light-

weight data privacy based on binary file. As described in Section 3.3, using JPEG encoders

has computation overhead for mobile devices, such as smart phones. Our proposed

method uses the binary file rather than using encrypt method on image pixels or color of

a pixel.

(Podesser et al. 2002) proposed a selective encryption method for mobile devices to

cipher a partial of an image. However, in this method, still a partial of image is visible to

everyone. (Choo et al. 2007) proposed a light-weight method for real-time multimedia

transmission. Although this method provides an efficient performance over AES

encryption, the method still needs heavy computation on a smart phone to cipher an

average 3 Mbyte JPEG image file in a real-time (see Section 3.5 for the comparison).

54 | CHAPTER 3.

 Unlike existing studies, our proposed method provides three steps to reconstruct a

JPEG image file as follows:

i) Recognizing the type of the scrambled files: It is difficult to understand the type of

file because the header of file (includes JPEG marker) splits from the content of file

and all the chunks are scrambled in each file.

ii) Finding and assembling the scrambled files: Since the split files distributed through

two or multiple clouds, it is impossible to reconstruct an image file completely.

iii) Reconstructing the original file from split scrambled files: Reconstructing split

scrambled files requires heavy computations to retrieve partial or full image.

The proposed method hides JPEG markers from image decoders that does not allow

JPEG encoders to retrieve the metadata of a scramble image. For example, Figure 3.9

shows: (a) an original image; (b) a scrambled JPEG file based on the proposed method (if

we save the file with a JPG extension); (c) a cipher image based on JPEG encoder; (d) a

cipher image based on AES. As shown in this figure, the proposed method and AES

cannot retrieve the information of an image and the size of an image. However, metadata

of an image can be retrieved for a cipher image based on a JPEG encoder. As described

in Section 3.4, our proposed method provides a better performance over existing

methods. The proposed method can be implemented for different applications in cloud

computing systems such as (Bahrami et al. 2013) to collect information by a web crawler

and maintain the privacy of the information in a cloud computing system. The method

can be applied to eHealth systems (Rodrigues et al. 2013) to maintain data privacy.

 Summary of chapter

In this chapter, we proposed a new data privacy method to store JPEG files on multi cloud

computing systems. Since the method uses less complexity, we have shown, the

implemented method provided a cost effective solution for mobile devices that do not

have enough energy for resources, such as CPU and RAM. The proposed method splits

each file to multiple chunks, distribute each chunk to multiple split files, and scramble

chunks based on chaos system. The proposed method provides low computation

overheads and it can efficiently run on a smart phone. It restricts unauthorized users

including cloud vendors and their partners to reconstruct a JPEG image file. We

compared our proposed method against other encryption methods to demonstrate its

performance superiority over existing methods. Furthermore, we investigated some

important security attack scenarios against the proposed method to evaluate the level of

security.

DATA PRIVACY PRESERVATION IN CLOUD | 55

 Acknowledgement

The implementation work of the application was supported by Microsoft Windows

Azure through Windows Azure Educator Award.

(a)

(b)

(c)

(d)

Figure 3.9. (a) the original image; (b) a scrambled image based on the proposed method;

(c) a cipher image based on JPEG encoder; (d) cipher image based on AES encryption

56

 Chapter 4

Parallel DPM for Mobile Cloud Users

The previous chapter describes DPM for mobile cloud users. In this chapter we extend

the method by parallelizing it on GPU. Next chapters present different use case scenarios

for deploying DPM on the top of DCCSOA.

 Introduction

Cloud Computing and parallel computing paradigms introduce several advantages for

processing heavy computation methods. Our study in this chapter is based on these two

paradigms which are described in the following.

4.1.1 Cloud Computing

Cloud computing is an emerging technology that combines of distributed systems,

and virtualization technology to offer new computing concepts. A cloud computing

system shares all available resources with multiple users, and each user is billed base on

pay-per-use model or similar payment model. The cloud enables users to increase or

decrease their resources on-the-fly Cloud computing has been used in different

disciplines, such as mobile computing, robotics when data is outsourced on the cloud.

Mobile Cloud Computing (MCC) paradigm allows mobile users to outsource their data and

applications to the cloud and MCC enables mobile users to run complex application on

server-side. However, there is a tradeoff in MCC between processing faster of data and

saving power resources, which is critical for mobile devices. In particular, using cloud

computing on mobile devices is a challenge because not all applications are able to

efficiently outsource data to the cloud as described in Chapter 3. For instance, if a user

outsources data to the cloud by using an application but the application drains the battery

due to periodically download/upload files, the application is not efficient to be used. The

trade-off between power resource and computation speed are critical in MCC. Data

privacy is another parameter when users outsource their data to MCC. Data security and

network security methods can be used in order to protect user privacy in cloud

PARALLEL DPM FOR MOBILE CLOUD USERS | 57

computing systems. However, using complex security methods on mobile devices raise

resource limitation challenge. Therefore, not all complex security methods are able to

protect user data privacy by providing a balance between resource power and

computation speed.

4.1.2 Parallel Computing

Parallel computing has been popular since computing machine introduced. Parallel

computing allows complex algorithms to be run in parallel in order to increase the

computation speed.

Recently, the implementation of parallel computing algorithms has been transferring

from massive server machines to small personal computers when open-forums and

corporations have introduced new platforms that allows users to have efficient parallel

computing on personal computers. For instance, CUDA platform uses Graphics Processing

Unit (GPU) and it was introduced by NVIDIA. This platform enables a user or even a

mobile user to process a procedure in parallel that needs intensive computation. The

GPU-based computing paradigm of parallel computing allows a device to use one or

multiple GPUs to perform heavy computations where each GPU consist of thousands of

small and low speed cores. Regularly, each submitted task to a core is a repeated

computing process that each instruction does not need heavy computation. GPU-based

computation improves the performance of processing of complex methods by

parallelizing small tasks of a complex method on each GPU core. In previous chapter, we

developed a light-weight data privacy method (DPM) that uses a chaos system (Han et

al. 2003) based on Pseudo Random Permutation (PRP) to scramble data. DPM uses pre-

generated arrays that contain random addresses of chunks of data. The DPM provides a

superior performance over other existing data security methods that needs heavy

computation, such as Advanced Encryption Standard (AES). We also developed several

experiments on both traditional implementation of AES and DPM in Chapter 3. This

chapter focuses on parallelization of DPM on GPU.

 Threat Model

In this section, we are describing the specific threats that our proposed technique

shall protect the privacy against.

If a mobile cloud user wishes to outsource her photos to a cloud, such as Google

Drive, Dropbox, but she would not like to share the original content with the cloud

vendor, she may encrypt the content and submit the encrypted photos to the cloud.

However, encrypting each file may drain the battery power in short period time. Another

option, she might use a PRP method to scramble the content of all photos based on bits.

Then, submit the scramble data of the photos to the cloud. In this case, the PRP generator

58 | CHAPTER 4.

should be secure and use a lengthy chunk of data (e.g., using a lengthy size of bits) to

permute the original content and then submit it to the cloud. As another example, if a

user submits a text file or a database file, she might use PRP to scramble the original

content in order to submit a confusion content to the cloud. In the case of a database, a

query also can be performed on a scrambled data without reconstructing the original

content. The detail of implementation of DPM for cloud-based datasets is described in

Chapter 8. Generally, our proposed method shall use available resources on a mobile

device (e.g., cell phone) to scramble the original content. Our proposed method uses GPU

on mobile device to parallelize the method in order to save device’s power resources and

process the method faster than device CPU. In addition, public analysis tools for data

analysis from cloud vendors, or their third-party applications are not able to simply

access the original user’s photo, text file, or database. For instance, third-party application

and bulk data analysis tools are not able to process users’ data without reconstructing the

original data from scrambled data. If users use a complex model of PRP, then

reconstructing the original file would be more difficult for cloud vendors or their-third

party partners.

In the previous chapters, we describe how a mobile device access to the shuffle

addresses for different chunk sizes of an original file. However, in this chapter, we

consider implementation of DPM on GPU to generate PRP numbers to permute the

original content and outsource scrambled content to a cloud that does not allow bulk data

analysis review user’s content. The GPU-based DPM enables the process to be run on GPU

core instead of CPU in order to improve DPM performance.

The rest of this chapter is organized as follows: the next section presents the

motivation of the study and the major challenges to maintain data privacy while using

cloud computing. Section 4.4 presents the related work. Section 4.5 presents the

background of this study. Section 4.6 presents the proposed method on GPU. The

experimental setup and its results are described in Section 4.7. The security analysis of

DPM presents in Section 4.8 which shows the security assumptions and the level of

security for the proposed method. Finally, Section 4.9 concludes the study.

 Motivation

The following two options can be considered for shuffling data:

i) using an online PRP generator to produce shuffle addresses;

ii) using a set of pre-generated arrays of PRP (offline mode) as described in Chapter 3.

The first option causes an issue on a mobile device because the computation time of

generating PRP is expensive on mobile devices. The second option is preferred

because it removes additional costs for generating PRP. However, it uses mobile

PARALLEL DPM FOR MOBILE CLOUD USERS | 59

device storage that could cause indirect issue. In this chapter, we consider the first

option but we generate arrays of PRPs on-the-fly and the process distributes to

multiple cores of a GPU in order to reduce computation time.

The important challenge which is our focus is data privacy for mobile users because

when a user outsources data to the cloud, data privacy can be violated by the cloud

vendor, the vendor’s partners, hackers, malicious entities or even by other cloud users.

 Related Work

To the best of our knowledge, no research has been published in the area of

implementation of PRP on GPU because its nature of sequential when it stands against

parallelism concept. However, some studies have been published for implementation of

other random number generators on GPU or FPGA. For instance, (Thomas et al. 2009)

compare the performance of three types of random number generators on CPU, GPU and

FPGA. In this study, authors use an appropriate algorithm, such as the uniform,

Gaussian, and exponential distribution for each hardware platform in order to have

efficient power peaks and computations. This study shows that the performance of the

different random-number generators relies on their platform. In this chapter, we consider

CUDA platform on GPU in order to optimize the performance and power consumption

which is not investigated in (Thomas et al. 2009). In another study, (Tsoi et al. 2003)

implemented two different random number generators for embedded cryptographic

applications on FPGA. The first is a true random number generator (TRNG) which is

described by (Killmann et al. 2001) and it is based on oscillator phase noise, and the

second is a bit serial implementation of a Blum Shub (BBS) which is described in (Blum et

al. 1986). The study shows that TRNG is recommended for low-frequency-clock

processors. Since GPU often consists of thousands of cores and with low speed and

smaller than CPU cores, we consider this fact for designing small-scale generators in our

study which is described in Section 4.5. This consideration makes PRP to be highly suited

to the target platform. In the similar study by (Manssen et al. 2012), the authors evaluate

different random number generators with different granularity. There are some studies

on processing AES on GPU (Manavski et al 2007, Shao et al. 2010 and Li at al. 2012) or

using the similar method for the security processing (Wang et al. 2009) on a GPU.

 Background of the study

As described in Chapter 3, DPM splits an original file into several chunks. The

method uses a pattern to split original file into multiple files when each file consists of

random part of the original file. Then, DPM selects a set of bits (chunk) of each split file

and finally it scrambles the content of each chunks by using a chaos system. The DPM

60 | CHAPTER 4.

saves 72% battery power over AES encryption method because DPM can be run in O(1)

time complexity for each chunks and it requires O(n) for n chunks.

Pseudorandom Permutation (PRP) is the key module of many methods, such as

encryption and simulations as well as DPM. As previously described, PRP is defined as

follows:

𝐹 𝑖𝑠 𝑚𝑎𝑝𝑝𝑖𝑛𝑔 {0,1}𝑛 × {0,1}𝑠 → {0,1}𝑛 (1)

𝐹 𝑖𝑠 𝑎 𝑃𝑅𝑃 𝑖𝑓:

 (i) ∀𝐾 𝑤ℎ𝑒𝑟𝑒 𝐾 ∈ {0,1}𝑠, 𝐹 is a bijection of {0,1}𝑛 → {0,1}𝑛 (2)

 (𝑖𝑖) ∀𝐾 𝑤ℎ𝑒𝑟𝑒 𝐾 ∈ {0,1}𝑠 𝐹𝐾(𝑥) is an efficient algorithm. (3)

 (𝑖𝑖𝑖) 𝐷: Pr(𝐷𝐹𝐾(1𝑛) = 1) − Pr (𝐷𝑓𝑛(1𝑛) = 1)| < 𝜀(𝑠) , 𝑤ℎ𝑒𝑟𝑒 𝐾 ← {0,1}𝑠 (4)

where Pr (.) is the probability of raising the input event.

As discussed in Equation (4), the PRP provides a uniform distribution between all

generated elements of F. This property of PRP passes the important perfect secrecy

parameter which was introduced on Shannon’s theory (Shannon 1949) for encryption

functions.

The main function for generating pseudo number is defined as follows:

𝐹𝑘+1 = 𝜇𝐹𝑘(1 − 𝐹𝐾) (5)

where 𝑃 ∈ {0,1} and 𝜇 is a parameter of this equation.

In the classic chaos system problem, if 𝜇 is selected between 3.569945 ≤ 𝜇 ≤ 4, and

with an initial value of 𝐹0 = [0,1], 𝐹 provides a complex chaos model. F uses a set 𝜉 to

provide a non-convergent, non-periodic pseudo random numbers (See Chapter 3 for

detail):

𝜉 = {𝑃𝑘}𝑘=0
𝜔 (6)

where 𝜔 is maximum number of an original content.

The DPM splits the content of an original content to 𝜔 number of chunks. Then, it

uses 𝜉 to shuffle the content of chunks. We employed conflict-remover algorithm which

file:///C:/Users/Mehdi/AppData/Roaming/Microsoft/Word/Communication%23_C.E._Shannon,_

PARALLEL DPM FOR MOBILE CLOUD USERS | 61

is described in Chapter 3 to provide a set of unique addresses for each chunks based on

input parameter (𝜇) and selected pattern by a user.

 The proposed method

The main challenges of DPM are:

(i) generating 𝜉 (a set of addresses which is used to permute an original input chunk

(ii) Applying 𝜉 to the original chunk in order to have permutated data.

Both processes need heavy computation and we can accelerate DPM by processing

both on GPU. However, we face several challenges on both processes when we

implement DPM in parallel. The following sub-sections explain these challenges as well

as a possible solution for each.

4.6.1 Generating 𝝃

The original content which is an input to DPM comes from different sources and it

depends on the type of application where DPM is employed. For instance, In Chapter 8,

we employed DPM for a database system management system where the input is a set of

database queries; in Chapter 3 employed DPM for protecting data privacy of JPEG files

and each chunks is composed of one or multiple Minimum Coded Unit (MCU) blocks;

and for healthcare electronic systems which is descried in Chapter 7 where data privacy

plays a key role.

The nature of generating a set of 𝜉 is a sequential process that stands against data

parallelism. We consider ℳ as a 2D-array for generating PRP addresses in parallel that

allows us to use each GPU core to generate different sets of 𝜉. Each GPU core is

corresponding to partial part of 𝜉. We map the original input (𝒟) to a 2D-array (ℳ) to

maximize the usage of GPU cores. Then, we apply 𝜉 to ℳ in the next step. Figure 4.1

shows an example of mapping from the original input (𝒟) to a 2D-array (ℳ). In this

figure, ℳ = ⋃ 𝐷𝜅𝛿
𝑖=0 where 𝛿 is the maximum number of chunks for the original

content/file and 𝜅 is the size of each chunk. 𝜉 generates 𝑛 set of 𝜉s for 𝑚 chunks.

Code 4.1 shows how each thread get same seed with different sequence numbers.

RowCell and ColCell represent the number of rows and columns of ℳ𝑚,𝑛, respectively.

This configuration provides the best performance because each block of threads receives

a unique initial seed and each block provides a unique set of 𝜉. During the initialization

(config function) ColCell is considered as a parameter of application. Let’s RowCell and

ColCell be different size of ℳ. In our experiment (Section 4.7.1), we describe different

configurations for the application in order to implement different size of ℳ.

62 | CHAPTER 4.

Code 4.2 shows an implementation of generating of RowCell and ColCell of the PRP

generator function in the main() function. In this code, Line 1 allocates space for results on

host. Space allocation for results on device is defined in Line 2-4. The 𝜉 set is configured

in Line 4 and PRP generator is called in Line 6.

// two parameters of the size of Sai (M: RowCell * ColCell)

const int RowCell = 128;

const int ColCell = 128;

__global__ void config (curandState *state)

{

 int id = threadIdx.x + blockIdx.x * ColCell;

 curand_init(1234, id, 0, &state[id]);

}

Code 4.1. The config function for initialization of a thread

Figure 4.1. An example of mapping and exchanging process memory

1: hostResults = (unsigned int *)calloc(RowCell * ColCell, sizeof(int));

2: cudaMalloc((void **)&devResults, RowCell * ColCell *sizeof(unsigned int));

3: cudaMemset(devResults, 0, RowCell * ColCell *sizeof(unsigned int));

4: cudaMalloc((void **)&devStates, RowCell * ColCell * sizeof(curandState));

5: config << <RowCell, ColCell >> >(devStates);

6: DPM_PRP << <RowCell , ColCell >> >(devStates, Count, devResults);

Code 4.2. Main function for Calling the PRP generator

PARALLEL DPM FOR MOBILE CLOUD USERS | 63

4.6.2 Appling 𝝃 to 𝓜

When random addresses have been generated in the previous section and it is stored in

𝜉, then different solutions are available for applying 𝜉 to ℳ as follows:

● The first option is transferring 𝜉 to the host-memory and shuffle ℳ on host-

memory: This process needs 𝑂(𝑛) where 𝑛 is the length of 𝜉. However, the

computation on shuffling process of data on host-memory cannot be

implemented in parallel on device.

● The second option, is transferring ℳ to device memory, and shuffle ℳ based

on 𝜉on device memory. Although this process still needs 𝑂(𝑛) computation

time where 𝑛 is the length of 𝜉. This process can be implemented in parallel on

device that accelerate shuffling process of data.

The second option is the implementation of applying 𝜉 to ℳ. In this case, there are

two elements of ℳ that needs to be exchanged when the PRP shows that an exchange is

required between two 𝜅-bits, ℳ𝑖where it is the original address and ℳ𝑗 where it is the

destination address for the exchange. If we consider each element of ℳ as a 𝜅 bit element,

then minimum memory requirement for the implementation is 𝜅. When DPM needs to

exchange the content of two bits of ℳ (ℳ𝑖 and ℳ𝑗) based on 𝜉, one of the following

possibilities can raise: (𝑖) ℳ𝑖 = ℳ𝑗 : In this case, if we assume that 𝜅 = 1 then no exchange

is required because the content of both bits are the same and we can save the computation

overhead of exchanging the content. If 𝜅 > 1 then the 𝜅-bits of the content from ℳ𝑖

should be equal to all 𝜅-bits of ℳ𝑗 . (𝑖𝑖) ℳ𝑖 ≠ ℳ𝑗 : The exchange is required. In this case

ℳ𝑖
′ and ℳ𝑗′ are the final value of the exchange process on ℳ𝑖 and ℳ𝑗 after exchange

process, respectively. Table 4.1. summarizes these two different conditions.

Table 4.1. The summarize of exchange process

𝓜𝒊 𝓜𝒋 𝓜𝒊′ 𝓜𝒋′ Exchange is required

0 0 0 0 N

0 1 1 0 Y

1 0 0 1 Y

1 1 1 1 N

 We also optimize the implementation of shuffling process of the two different

condition. The following rules are used in order to avoid additional host memory

exchange computation:

64 | CHAPTER 4.

ℳ𝑖
′ = (ℳ𝑖⨁ℳ𝑗)⨁ℳ𝑖

= (ℳ𝑖⨁ℳ𝑖)⨁ℳ𝑗

= 0 ⨁ℳ𝑗

(7)

ℳ𝑗
′ = (ℳ𝑖⨁ℳ𝑗)⨁ℳ𝑗

= (ℳ𝑗⨁ℳ𝑗)⨁ℳ𝑖

= 0 ⨁ℳ𝑖

(8)

 Therefore, by using Equation 7 and 8, we do not need to run the exchange function

in order to optimize the exchange function.

 Evaluation of Proposed Method

4.7.1 Experimental setup

We implemented the proposed method on a PC with CPU i7-4790, x64 based

processor, device memory of 12 GB and a GeForce GT 720 GPU with 1,001,000 memory

clock rate (kHz), 64 bits Memory Bus, 16.016000 GB/s Peak Memory Bandwidth (GB/s),

and 16GB memory. We used NVIDIA GPU Computing Toolkit v7.0 and we profiled

(logging of NVIDIA functions) the executions of the proposed method with NVIDIA

profile v7.0.

In order to record each step of execution, we used NVIDIA profiler in the

implementation code where it requires to be started or stopped by the following code:

// start profiling of part of code

cudaProfilerStart();

// stop profiling of part of code

cudaProfilerStop();

By default, the first call of CUDA API starts the profiler (in this case cudaGetDevice

initializes the profiler). An example of output of the profiler is shown in the List 4.1. In

this example, the profiler shows that 10384 API calls (CUDA API) where 98.27% of time

is taken in execution of cudaMemcpy which includes the following functions:

 cudaMemcpyHostToHost,

 cudaMemcpyHostToDevice,

PARALLEL DPM FOR MOBILE CLOUD USERS | 65

 cudaMemcpyDeviceToHost, or cudaMemcpyDeviceToDevice.

4.7.2 Experimental Results

First, we consider the generator of 𝜉 sets, and the distribution values for each set over

different iterations. These analysis allows us to evaluate the security of the method when

the values have been generated with different GPU-cores. If there is a conflict between

values of different sets, then it shows security issue in the proposed method. In the future,

we plan to evaluate the generator with other statistical models, such as chi-square test of

independence (McHugh et al. 2013).

Figure 4.2.a shows a set of 𝜉 and Figure 4.2.b shows six sets of 𝜉 with different initial

values. In these figures, each point represents a value of 𝜉, X-axis represents the iteration

number and Y-axis represents the value of PRP function. These figures illustrate the

proposed method generates different sets of 𝜉 when each one does not introduce any

conflict to other values of other 𝜉 sets. Figure 4.3 shows the distribution variances of 𝜉

where each set of 𝜉 values is illustrated in Figure 4.2. As shown in Figure 4.3, the values

of each set is uniformly distributed through the range of 𝜉 values. As clearly shown in

Figure 4.2.b and 4.3.b there is not any spot pattern or a cluster pattern that helps an

attacker to estimate values by knowing values (partial values) of one or different 𝜉 sets.

==10384== NVPROF is profiling process 10384, command: calltester

==10384== Profiling application: calltester

==10384== Profiling result:

==10384== API calls:

Time(%) Time Calls Avg. Min. Max. Name

 98.27% 7.18901s 3 2.39s 1.39s 4.12s cudaMemcpy

 1.54% 112.41ms 2 56.20ms 435.92us 111.97ms cudaMalloc

 0.18% 13.240ms 385 34.38us 2.85us 11.74ms cudaLaunch

 0.00% 313.33us 83 3.77us 0ns 147.11us cuDeviceGetAttribute
List 4.1. The result of “nvprof calltester”

66 | CHAPTER 4.

Overlap of different values from different sets of 𝜉 is one of the security challenge for

the proposed method. Each 𝜉 provides a permutation model. An overlap between

different value of 𝜉 sets, allows an attacker to understand a permutation model by

knowing one or multiple permutation models. Another challenge is finding a pattern

between different subsets of 𝜉. As shown in Figure 4.3, different curves do not show

similar patterns in any curves even for one set of 𝜉.

(a) The result of a set of 𝜉

(b) The result of six sets of 𝜉 with different initial values

Figure 4.2. The evaluation results of one and six sets of 𝜉 with different initial values

0

20

40

60

80

100

120

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64

PARALLEL DPM FOR MOBILE CLOUD USERS | 67

Second, we considered the performance of the proposed method by profiling the

behavior of DPM for: (i) generating different sets of 𝜉 on different size of a 2D-array; and

(ii) permutation process. As shown in Figure 4.4, we assessed the performance of

generating 𝜉 values with the following sizes: 32*64, 64*64, 64*128, 128*128. X-axis

represents the size of input. Y-axis in Figure 4.4.an illustrates the number of calls. Y-axis

in Figures 4.4.b-d represent the computation time (milliseconds). Figure 4.4.e shows the

behavior of CudaMemcpy where it is responsible for transferring data from CPU to GPU.

As shown in this evaluation, the blue curve indicates that it is increased linearly. As a

(a) A set of 𝜉

(b) Six sets of 𝜉

Figure 4.3. Uniform distributions of 𝜉

0

20

40

60

80

100

120

140

0 10 20 30 40 50 60 70

0

20

40

60

80

100

120

0 10 20 30 40 50 60

68 | CHAPTER 4.

result, the proposed method is capable to increase the size of input data with minimal

transferring cost between CPU and GPU.

The evaluation results show that the 2D-array with the size of 128*128 provides better

performance over other input sizes. However, the energy consumption is another

parameter that can be assessed in order to provide an overall result for this performance

evaluation. This evaluation also provides an overall view of the performance of the

proposed method.

 Security Analysis

In this section, we describe the security assumption and the level of security for the

proposed method.

Let 𝑆𝐶(ℳ) be the scramble function of DPM on n-core GPU. Perfect secrecy as

described in Shannon theory is the probability of two different encrypted messages and

in our study, 𝑆𝐶(ℳ𝑖) and 𝑆𝐶(ℳ𝑗), which is defined as follows:

∀𝑚0, 𝑚1 ∈ 𝑀 |𝑚0| = |𝑚1| 𝑎𝑛𝑑 𝑐 ∈ 𝐶 (9)

(Pr[𝑆𝐶(𝜉𝑖, 𝑚0) = 𝑐]) = (Pr[𝑆𝐶(𝜉𝑗, 𝑚1) = 𝑐]) (10)

where 𝜉𝑖 and 𝜉𝑗 are defined as different sets of PRP with different initial values, 𝜇 and

𝑃0 is defined in Equation 5. 𝑀 is a set of all original messages and 𝐶 consists of permutated

messages based on a set of 𝜉 values.

Lemma 1: DPM has perfect secrecy.

To proof Lemma 1, we must proof the following sub-lemmas, Lemma 1.1 and Lemma 1.2

as follows:

Lemma 1.1: By a given c (scrambled data), the adversary cannot learn about 𝑚𝑖 and

𝑚𝑗 (two different original messages). Therefore, we must generate different outputs for

all different inputs.

Proof: Each separate original content in DPM should be scrambled with different sets

of 𝜉 to avoid similarity between 𝑆𝐶(𝜉, 𝑚𝑖) and 𝑆𝐶(𝜉, 𝑚𝑗). Each set of 𝜉 is generated by

ℂ𝑚GPU-core independently. Each core uses different initial values to generates different

𝜉 sets without any conflict with other 𝜉 sets, or with minimal partial conflict to other sets.

∀𝐹𝑖𝑙𝑒𝑖, 𝑐: 𝑃𝑟𝜁[𝑆𝐶(𝜁, 𝐶𝑜𝑛𝑡𝑒𝑛𝑡𝑖) = 𝑐] =
#𝜁 ∈ Ζ such that SC(𝜁, 𝐶𝑜𝑛𝑡𝑒𝑛𝑡𝑖) = 𝑐

|Ζ|

PARALLEL DPM FOR MOBILE CLOUD USERS | 69

 Since the initialization value of each 𝜉 is different for each GPU-core (the security

(a)

(b)

(c) (d)

(e)

Figure 4.4. Evaluation Results for different size of 𝜉

0

5

10

15

20

32*64 64*64 64*128 128*64 128*128

o

f
Th

o
u

sa
n

d
s

C
al

ls

Input Size

API Calls

0

50

100

150

32*64 64*64 64*128 128*64 128*128C
o

m
p

u
ta

ti
o

n
 T

im
e

(m
s)

Input Size

cudaMalloc

12.2

12.4

12.6

12.8

13

13.2

13.4

32*64 64*64 64*128 128*64 128*128

C
o

m
p

u
ta

ti
o

n
 T

im
e

(m
s)

Input Size

cudaLaunch

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

32*64 64*64 64*128 128*64 128*128

C
o

m
p

u
ta

ti
o

n
 T

im
e

(m
s)

Input Size

cuDeviceGetAttribute cudaGetDeviceProperties

Figure 5. Performance of CudaMemcpy

70 | CHAPTER 4.

assumption), then an attacker by accessing to the scrambled content is not able to learn

about 𝑚𝑖and 𝑚𝑗, if and only if the attacker cannot learn about sequence of 𝜉 values which

means the attacker should not have knowledge of parameters of 𝜉 generator. As our

evaluation of generated PRP shows in Figure 4.2 and 4.3, then the attacker is not able to

learn about 𝑚𝑖 and 𝑚𝑗 by accessing to 𝑐. ∎

Lemma 1.2: The 𝜉 generator has perfect secrecy for all GPU cores.

Proof: The PRP must provide a uniform distribution for all entries of n bits as follows:

𝑃: 𝑈 → [0,1] 𝑠𝑢𝑐ℎ 𝑡ℎ𝑎𝑡 ∑ 𝑃(𝑥) = 1
𝑥∈𝑈

where 𝑈 = {0,1}𝑛.

∀ 𝑥 ∈ 𝑈: 𝑃(𝑥) =
1

|𝑈|

Since each GPU-core generates a unique set of 𝜉 values, then the probability of all 𝜉

sets are equal and 𝑃(𝑥) =
1

|𝑈|
 for each GPU-cores satisfied the generator condition of

perfect secrecy.

∎

 Summary of Chapter

Cloud computing offers new opportunities to users to efficiently outsource data and

applications. Data privacy is one of the major issues in cloud computing systems. In

Chapter 3, we introduced a light-weight data privacy method (DPM) that allows users to

protect their data before submitting original file to the cloud. Graphic Process Units (GPU)

allows parallel processes to be run efficiently. GPU kernel is able to process

computationally intensive tasks on client side by using a GPU platform, such as NVIDIA

CUDA Toolkit.

In this chapter, we introduced a solution to mobile cloud users to accelerate DPM on

multicore GPUs. This study shows that DPM can be implemented securely and efficiently

on multiple independent GPU-cores. The proposed method protects users’ data privacy

by processing independent pseudo-random number generator on each core when it is

complying with perfect secrecy requirements. We evaluated the proposed method by

performing rigorous assessments on performance and the security. On performance side,

we ran different number of parallel processes in order to assess the computation time on

each input size. We implemented the proposed method when it is being parallelized on

a 2D-array of parallel processes where each thread block assigned by different initial

values to generate different and unique pseudo-random numbers. The generated

PARALLEL DPM FOR MOBILE CLOUD USERS | 71

numbered are used for permutation of an original file. On security side, we considered

the security assumption of the method and we assessed the result of pseudo-random

numbers, distribution of this random numbers and perfect security assessments to

analysis the security of the proposed method on multiple GPU cores.

72

 Chapter 5

Cloud-Assisted IoT based on DCCSOA

This chapter extends DCCSOA which is describe in Chapter 2 for supporting Internet-of-

Things (IoT). The next chapter describes how DPM can be implemented on the proposed

architecture in this chapter.

 Introduction

This chapter describes a convergence of two recent and popular paradigms that include

cloud computing and the Internet-of-Things (IoT). These two paradigm defines a new cost-

effective model for a network of devices that are connected through the Internet. In this

section, we define these two paradigms, and advantages of each as follows when we plan

to collect a large amount of data and process the big data. The processing big data

efficiently on the cloud environment is an opportunity to use a variety of IoT devices to

transfer raw data to intelligent data.

5.1.1 Cloud Computing Paradigm

As we described in Chapter 1, cloud computing uses virtualization technology to provide

virtual services to users. Virtualization technology introduced since operating systems

were introduced in 1960s. Although the virtualization technology is not a new paradigm,

the method of using the virtualization technology is new, and it provides virtual services

to multitenant users in order to offer cost-effective IT services to cloud users. The virtual

services include storage, and processing units on the cloud. The virtual services are

shared among all cloud users.

The cloud enables users to increase or decrease the capacity of virtual storages, and

the number of virtual processing machines on-demand. The cloud vendor bills cloud

users based on a pay-per-use basis model. This dynamic resource allocation allows users

to support any number of user’s requests without paying additional cost to maintain a

large number of processing machines, and a massive amount of data. Cloud computing

has become popular to both startup businesses, and corporations because startup

CLOUD-ASSISTED IOT BASED ON DCCSOA | 73

businesses could start their businesses with low investment, and the corporations could

save maintenance costs when the number of user’s requests is decreased.

Since cloud vendors maintain all storages and processing units, the cloud users do

not need to pay for additional maintenance costs, or even recovery costs in a disaster

situation. The cloud vendors also deploy global backup servers to prevent users’ data

loss.

5.1.2 Internet-of-Things (IoT) Paradigm

The Internet-of-Things (IoT) (Gubbi 2013) paradigm is another opportunity for businesses

to have a network of small computing sensor devices for sensing the environment, such

as reading current temperature of the environment, predicating maintenance, and

recently self-driving car’s IoT sensors. Usually IoT devices use Internet-Protocol (IP) for

connecting to the Internet, and it allows IoT devices to send data to the servers directly.

IP allows each device to connect to the Internet without any local server, or a complicated

IT infrastructure. The IoT devices are able to send their sensors results to any server

around the world. The IoT devices use IPsec protocol (Doraswamy 2003) in order to

transfer securely their data to the server(s). However, IoT devices have limited resources,

such as limited power resource, low-speed CPU, and the small size of storage.

5.1.3 Convergence of IoT and the Cloud (Cloud-Assisted IoT)

The convergence of cloud and IoT devices, cloud-assisted IoT, enables IoT devices to

outsource their data to a cloud computing systems. The cloud allows users to process the

outsourced data with multiple virtual CPUs. Currently, several cloud vendors offer

particular platforms, and cloud services for IoT devices. For instance, recently Microsoft

introduced the Azure IoT Suite which provides a platform for developing IoT devices on

Microsoft Cloud Azure.

Another advantages of cloud-assisted IoT is providing a hub between all IoT devices

from around the world to collaborate with each other while using the cloud as the main

connection.

Finally, big data analytic tools, as summarized in Chapter 1, is another advantages of

the cloud that offers analytics services on collected raw data from IoT devices. Some of

these tools are open-source, and are freely available to users to process complex queries

on raw big data which are collected from IoT devices. Some of these analytic tools and

services have been summarized in Chapter 1.

The rest of the chapter is organized as follows: the next section describes the

architecture issue of cloud-assisted IoT as one of the major challenge that faces users when

they want to use different cloud platforms. Section 5.3 describes a cloud architecture

74 | CHAPTER 5.

based on Service-Oriented Architecture (SOA) (Perrey 2003) and DCCSOA that allows

different cloud vendors to define a generic and dynamic platform in order to facilitate

user’s transformation for data, applications and IoT devices. Section 5.4 explains some

big data characterization and how DCCSOA can support these characterization of big

data. Section 5.5 describes advantages of the proposed architecture, such as

standardization between heterogeneous cloud platforms by using the proposed

architecture, security of the proposed architecture and it reviews a case study of

implementation of data security on the proposed architecture. Section 5.5 reviews related

works, and finally, Section 5.6 concludes this chapter.

 Challenges in Cloud-Assisted IoT

Currently, we do not have an acceptable standard between cloud computing systems

as we describe in Chapter 2, and even between major key cloud vendors, such as

Microsoft, and Amazon. So, each cloud vendor offers its own platform to the users. The

provided services differ from a vendor to another because each of them uses their unique

set of inputs, outputs and processes to provide cloud services. These different services

from different cloud vendors, offer heterogeneous cloud services to users. Although the

heterogeneous cloud vendors accept major programming languages, transferring data

and applications from one vendor to another, or returning back applications and data to

the user’s in-house IT department is difficult because each cloud vendor uses its own

platform, or uses its own Application Programming Interface (API). If a user wishes to

transfer data and applications to another platform, he/she needs to modify the codes, and

sometimes the user needs to redevelop the applications, or databases. The dependency

of IoT devices to a particular cloud platform causes several sub-issues as follows:

i) flexibility issue that does not allow IoT devices to properly use all functions when the

devices are moved to another platform;

ii) customization issue that happens when a vendor is not able to customize a cloud

platform for supporting different users’ requests;

iii) Security issue: if a cloud platform provides specific security protocols to IoT devices,

the security of IoT devices can be compromised when the devices are transferred to

another platform. This issue originates when the security of an IoT device relies on

the particular cloud platform. In this case, the application on the cloud-side (server-

side) needs to be redeveloped in order to protect the IoT device. For instance, if an IoT

devices uses a handshake protocol in order to submit its data to the cloud and it is

transferred to another vendor, the handshake protocol needs to be redesign for the

new cloud vendor.

CLOUD-ASSISTED IOT BASED ON DCCSOA | 75

 A DCCSOA-based Architecture for Cloud-Assisted IoT

As a result of lack of standardization between cloud vendors, each cloud vendor

offers their own cloud architecture which means we have heterogeneous systems for IoT

devices. For instance, if a user uses an IoT device that relies on IBM cloud, it is difficult,

or even impossible to use the device with other cloud vendors, such as Microsoft Azure.

Sometimes, it requires a redevelopment of database and applications in order to transfer

IoT devices from one vendor to another.

Since we have heterogeneous cloud platforms, it is not cost-effective to modify all

cloud platforms to provide standard services between different cloud platforms. We

proposed a dynamic cloud computing architecture (DCCSOA) in Chapter 2 based on

Service-Oriented Architecture (SOA). Figure 5.1 illustrates how the DCCSOA facilitate

deployment of multiple IoT devices on the top of a cloud vendor. In this figure, each

component is connected to others as a service. The SOA’s feature allows the architecture

to implement on the top of heterogeneous cloud platforms without requiring additional

modification on each cloud platform. Each cloud vendor with different platforms is able

to define different Templates on the top of their cloud services. A template is an interface

that interacts with one or more cloud services. A cloud vendor is able to define different

templates in order to customize their services to a variety of users. DCCSOA provides a

flexible cloud architecture that supports both the cloud vendor, and the vendor’ users.

On the user’s side, the users can freely transfer data, and applications from one vendor

to another with minimal modification costs while a network of IoT devices uses DCCSOA’

unique interface on the top of heterogeneous cloud computing systems. On the vendor’s

side, cloud vendors are able to customize their platforms based on DCCSOA with

minimal modifications in order to provide a unique and standard service to the users.

On both sides (client’s side and vendor’s side), the level of modification is a key

parameter of the provided architecture.

On one hand, less modification on user’s side (IoT) device means more

standardization between heterogeneous cloud platforms and more independent cloud

services, and on the other hand, less modification on the architecture means offering a

cost effective model that supports a variety of user’s requests with minimal costs for

customization.

The proposed architecture for cloud-assisted IoT is divided into three layers as follows:

i. Cloud vendor: This layer shows the implementation of a cloud vendor. Different

cloud vendors offer heterogeneous cloud architecture in this level. Each cloud

vendor offers a variety of cloud services which are called value-added services.

For instance, Infrastructure-as-a-Service (IaaS) provides virtual infrastructures, such

as virtual storage and virtual CPU to users, Platform-as-a-Service (PaaS) offers a

76 | CHAPTER 5.

development and deployment environment to implement applications, and

Software-as-a-Service (SaaS) that provides preinstalled applications on the cloud.

Recently, a variety of cloud services also have been deployed on the cloud

computing (see Chapter 2). A summary of different cloud services can be found in

Chapter 1.

In this level, DCCSOA allows any type of cloud services with heterogeneous

platforms with different interfaces to be offered by a cloud vendor.

ii. Cloud-assisted IoT: This layer provides a generic interface on the top of

heterogeneous cloud platforms to client-side. The Dynamic Template Service Layer

(DTSL) is divided into two sub-layer as follows:

Figure 5.1. The Proposed Architecture of DCCSOA for Cloud-Assisted IoT

CLOUD-ASSISTED IOT BASED ON DCCSOA | 77

 Front-end-Template-as-a-Service (FTaaS) that provide a generic interface for

cloud services. Clients are able to access this layer though a platform, or even

as a preinstalled application on the cloud;

 Back-end-Template-as-a-Service (BTaaS) that binds each service at FTaaS as a

generic interface to a particular cloud-value added service. A template (T)

defines a generic interface for a service s (𝐾𝑠) based on the required

input/output of the given service s as follows:

𝑇(𝐾𝑠) = ∑ 𝑖𝑛𝑝𝑢𝑡𝑘,𝑖

𝑚

𝑖=1

+ ∑ 𝑜𝑢𝑡𝑝𝑢𝑡𝑘,𝑗

𝑛

𝑗=1

(1)

where 𝐾 ∈ {𝑃} and 𝑃 is a set of different cloud platforms which are heterogeneous, and

each given service, 𝑠 has 𝑚 number of input parameters and 𝑛 number of output

parameters.

A cloud vendor defines dynamically several different template on-demand at DTSL.

Each template integrates with one or multiple value-added cloud services. Cloud vendors

can set up, configure and provide different templates to their customers based on different

value-added service layers in a cloud computing system.

iii. Client: end-users’ applications that include software and IoT devices are located

in this layer. If an IoT vendor offers cloud-assisted storages, and computing units,

the vendor can use the dashboard component (as illustrated in Figure 5.1) to have

collaboration/interacts with cloud vendor on one side, and their customer on the

other side. An IoT vendor who uses cloud vendor infrastructure to provide IoT

services, can use heterogeneous cloud vendors while using a generic interface (a

defined template) at the top of each cloud vendor.

The following equation defines a service at 𝐹𝑇𝑎𝑎𝑆 which is required to pass a

satisfaction function 𝒮 to propose a generic service on the top of heterogeneous cloud

vendors. The detail of the services is described in Chapter 7.

∃ 𝑠 ∈ 𝐹𝑇𝑎𝑎𝑆 | 𝒮𝑎𝑡(𝑠) (2)

where s is a service at 𝐹𝑇𝑎𝑎𝑆 and 𝒮𝑎𝑡 is a satisfaction function which is defined as follows:

𝑆𝑎𝑡(𝑠): ℛ → 𝒪 (3)

where ℛ is a finite set of requirements of r, and 𝒪 is a finite set of corresponding output

for each requirement in ℛ.

78 | CHAPTER 5.

The generic service (𝑈𝐼) can be defined as follows:

𝑈𝐼(𝑠) → 𝑆𝑎𝑡(𝑠1)^𝑆𝑎𝑡(𝑠1)^𝑆𝑎𝑡(𝑠𝑘) (4)

A client is able access to a template without concerning about the location of the data

source and other related configuration. The client accesses to the data source in this

example through 𝐹𝑇𝑎𝑎𝑆 which is defined as a web service.

DCCSOA allows users to interact with a template at FTaaS that provides cloud

services. The user does not need to have any knowledge of cloud-value-added services

because they are implemented at BTaaS. This independency would be a great opportunity

for IoT users who use different IoT devices and it allows them to freely transfer their data

and applications from one vendor to another.

 Big data processing on DCCSOA for cloud-assisted IoT

IoT offers a new set of tools, sensors and devices that can be controlled through the

Internet. In the era of big data, collecting data, processing and analysis on data are the

key points. Moving to IoT in the cloud environment allows us to achieve all these key

points when each small tiny computing machine (IoT devices) generates daily reports of

human activities. Collecting a large amount of data can be accomplished in the cloud

environment by employing cloud-based databases (i.e., NoSQL databases) when users

only pay per usage. In addition, there are several analysis tools that provides analysis

service on big data by using a pool of computing machines in the cloud environment. In

order to transfer bulk raw data of IoT devices to valuable data, we can process the content

by using a large number of processor where the number of machines can be

increased/decreased on demand. Using intelligent computation tools also raises interest

for cloud-based systems because computation on big data causes several limitations on

traditional computing machines. The question is how a variety of heterogeneous IoT

devices able to use a unique cloud computing environment to efficiently collect big data

and intelligently process the big data.

In this study, we consider each IoT device sends data to cloud vendors. The data is

processed through FTaaS and the corresponding BTaaS, and then it is submitted to the

cloud. Big data is defined by four characteristics - volume, velocity, variety and veracity

which are described in Chapter 1. We describe the requirements of each of these

characteristics as well as our recommended solutions to maintain these characteristics

based on the proposed cloud-assisted IoT architecture.

CLOUD-ASSISTED IOT BASED ON DCCSOA | 79

5.4.1 Volume

Big data is characterized by extremely high volume data which is indicated the by the

size of data. Regularly, each IoT device generates a small portion of big data; however,

periodically generating small data and collecting all data from a large number of devices,

we will have a large volume of data.

Processing big data on cloud computing server might be a challenge; however,

different tools allow a cloud vendor to store and process this big data. For instance,

different NoSQL cloud-based databases allows users to store structured and

unstructured data on the cloud without concerning about speed of data retrieval.

5.4.2 Velocity

Velocity indicates the speed of data processing in term of response time. The response

time could be a batch, real-time or stream response-time. When we consider the velocity

only for a portion of data which is generated by an IoT device in a short period of time,

it is not a challenge but if we consider a long-term data collection from a large number of

IoT devices, it is a challenge for response time of processing data in a timely manner. In

this case, sometimes it requires a cloud computing system to support real-time response.

The real-time response is required a High-Performance Computing (HPC) system. In

Chapter 4, we discuss a similar challenge for mobile users who need data privacy. We

use Graphics Processing Unit (GPU) rather than CPU that allows 1000s of threads run a

portion of the task when each thread is processed on a GPU-core. In this case, the

proposed architecture is able to efficiently process a request by parallelizing the task and

splitting the task among to multiple GPU-cores. In order to offer this type of service (i.e.,

a real-time system), we may bind a BTaaS to a set of GPUs and provide a function as an

interface at FTaaS. Therefore, any task is submitted to the function at FTaaS will be able

to processed in real-time at its corresponding BTaaS when the task actually runs on

thousands of GPU-cores. Some similar studies for implementing parallel tasks on the

cloud can be found in (Suttisirikul 2012 and Oikawa 2012). These systems can be

connected to BTaaS to perform HPC on cloud computing.

5.4.3 Variety

Variety represents heterogeneity/diversity in data which is collected from different IoT

devices. Another challenge is analyzing of the variety of data including structured,

unstructured and semi-structured data. We have a variety of IoT devices and they might

generate a set of video files, text files, JSON-based output files that includes structured

data such as database, semi-structured data such as text and even unstructured data, such

as multimedia (e.g., voices, images, videos). When we are using a cloud computing, it is

capable of processing of a variety of formats. Some cloud-based tools that allow users to

80 | CHAPTER 5.

analyze a variety of data, such as Talend (see Chapter 1) which is a data integration, data

management, enterprise application integration and big data software tool. The similar

cloud-based tools are available to solve the variety issue when each tool can be bound to

BTaaS and the functionalities of each application can be exposed to the users at FTaaS.

For instance, if Talend is bound to BTaaS, it can provide data integration at DTSL layer

but each function or multiple functions of data integration can be implemented in FTaaS

layer. Flexibility in defining services through defining multiple FTaaS allows cloud

vendor to support a variety of data type for IoT devices.

5.4.4 Veracity

Veracity is the level of accuracy of data. For example, a sensor that generates data may

provide a wrong value (e.g., an IoT device which reports inaccurate temperature). The

proposed architecture is able to verify the accuracy of collected data when minimum of

two similar IoT devices are located in the same environment and they are connected to

an FTaaS (e.g., two IoT devices that measure the temperature are connected to FTaaS).

The architecture allows the veracity of data to be reviewed on the edge (which is also the

purpose of Fog Computing (Bonomi 2014) at FTaaS. In this scenario, if the value of

collected data from two sensors are not the same, then an intelligent application might

review the history of each device to see which device provided the correct result, or we

can cross check the received data at FTaaS. Reviewing data at FTaaS allows us to remove

additional overheads on the back-end of cloud computing system. Therefore, the veracity

of data can be accomplished without entering to the back-end (BTaaS). In this example,

the accurate data can be collected at BTaaS and can be stored in the cloud.

 Advantages of DCCSOA for cloud-assisted IoT

The proposed architecture provides several advantages to the cloud vendor, IoT

vendors and their end-users that include standardization, customization and security

which are described as follows.

5.5.1 Standardization

One of the major issues in cloud computing is a lack of standardization between

different cloud platforms and as we discussed it causes vendor lock-in issue that does not

allows IoT devices, and their data and applications freely transfer to another cloud

vendor. DCCSOA provides a dynamic service layer (DTSL) to enable different vendors to

offer a generic platform through defining the same FTaaS in different cloud platforms.

When different cloud vendors provide the same FTaaS to their customers, the customers

are able to transfer their data and applications from one vendor to another, or even they

can transfer data and applications to their own IT department. It also allows IoT devices

to use all functions while transferring from one vendor to another.

CLOUD-ASSISTED IOT BASED ON DCCSOA | 81

In addition, the standardization between different cloud platforms in DCCSOA can

be extended to heterogeneous IoT devices by using a generic template that enables a cloud

platform to interact with different IoT devices where each IoT device has specific I/O

features.

Adding standardization between cloud platforms enables portability features for

users’ applications and data in the cloud. For example, Figure 5.2 illustrates how three

different group of IoT users use two heterogeneous clouds. Users are able to subscribe

for different templates (𝑇1, 𝑇2, and/or 𝑇3). Users interact with templates from FTaaS layer

of DTSL, and each template binds to one or more cloud service layers in any cloud

platform. For instance, IoT Customer Group 1 uses template 𝑇1 to access SaaS layer which is

provided by the first cloud vendor, 𝑆𝑎𝑎𝑆𝑎. As illustrated in Figure 5.2, 𝑇3 provides

different PaaSs from both vendors, PaaSa and PaaSb.

The templates enable the vendor to have flexibility for offering a generic cloud service.

Although defined templates in Figure 5.2 bind to the similar cloud services from both

vendors, each template can be bound to different services from different cloud vendors.

For instance, 𝑇1 can be bound to SaaSa and PaaSb.

 In addition, the number of templates can be added/reduced on-demand. If a cloud

vendor has an attractive service that brings more users, then the vendor can define a new

template that covers the new user group needs for the new service.

Figure 5.2. One snapshot of DTSL and its interaction with two heterogeneous cloud platforms

82 | CHAPTER 5.

5.5.2 Customization of architecture

The customization is one of the major issue of cloud architectures which is described in

Chapter 2. For instance, a third-party who design services for cloud vendor could not

customize defined services. This issue causes other related issues such as the lack of

usability of cloud computing (IDC Enterprise Panel 2013) that emphasizes integration issue

in cloud computing systems.

The proposed architecture includes a dynamic layer (DTSL) that allows cloud

vendors to customize their cloud architecture on-demand because a vendor is able to

define a template for a particular service. Although the template binds to a particular

service at BTaaS layer, it provides a generic and customized service at FTaaS layer. When

a cloud vendor defines a new template that interacts with several cloud services, it enables

users to have an integrated-service from different cloud services. This integrated-service

cannot be only customized by cloud vendors or their partners, it also can be provided as

a generic service on the top of heterogeneous cloud platforms. In addition, offering an

integrated-service could attract a variety group of users. For instance, if a cloud vendor

offers a message service that allows different applications to contact each other, and a

virtual private network (VPN), the cloud vendor can integrate these services and customize

them into a template. In this case, a user is able to subscribe to the template and only

subscribe to the template.

Customization of cloud services can be completed at different levels as follows:

 Low level Customization that customize services at the Implementation Level where

cloud developer implements a system. This level of customization is not a cost-

effective practical method for both cloud vendors and users because each

individual application needs to be modified.

 High Level Customization customizes the cloud services at the Architecture Level

that adopts new and customizes existing cloud services. If the architecture

implements on the top of existing architecture, it allows a cloud vendor to

customize the service with minimal modifications. It also allows existing

applications to be used without any modifications. Since DCCSOA allows a

cloud vendor to modify a template, the existing applications can be run without

modification and a cloud vendor only needs to modify the template.

As a result, the customization of cloud services is a practical model if both cloud

vendors and users do not need to have extensive modifications. DTSL removes the

additional modification costs by using templates.

CLOUD-ASSISTED IOT BASED ON DCCSOA | 83

5.5.3 Data Security

Data security emphasizes authentication for accessing to data and applications and it

protects data against an adversary from internal/external access to data. Data privacy is

another challenge in cloud computing that emphasizes who are authorized to use the

outsourced data in the cloud. Both data security and privacy schemes can be

implemented as a FTaaS. More details on data privacy is described in the following

section. The implementation of the security schemes as a FTaaS allows vendors, or users

to use standard security schemes on the top of heterogeneous cloud computing platforms

without additional computation overhead.

 Summary of Chapter

In the era of big data, using cloud computing gives several advantages to users to not

only collect a large volume of data from Internet-of-Things (IoT) but also process data

efficiently through a variety of tools. The combination of cloud computing and the

Internet-of-Things (IoT) paradigms allows users: to sense environment through IoT

devices, to outsource data directly from IoT devices to the cloud, and compute a massive

amount of raw data on the cloud.

Although the cloud-assisted IoT are providing a cost effective model for users, we do

not have an acceptable standard among cloud vendors for supporting different IoT

devices that causes heterogeneous cloud platforms. This cause lock-in issue for users that

does not allow users to freely transfer their data and applications from one vendor to

another, or even returning back to their IT department. In this chapter, we proposed a

dynamic cloud computing architecture which is designed based on Service-Oriented

Architecture (SOA) that allows cloud vendors to offer a generic interface (FTaaS) to their

users that supports heterogeneous cloud platforms at its corresponding BTaaS. The SOA-

based feature of the architecture allows cloud vendor to define a generic interface with

minimal modifications on their platforms in order to avoid additional costs.

The proposed architecture uses a dynamic layer (DTSL) to offer vendor services and

it is divided into front-end layer (FTaaS), and the back-end layer (BTaaS) which binds each

generic service to a particular service in a cloud computing system. The proposed

architecture allows heterogeneous platforms to provide generic and standard services to

the users with minimal modifications on the vendor side.

The proposed architecture provides independency and customization ability to cloud

vendors as well as for the users. The proposed architecture can protect data users’ data

privacy through a light-weight data privacy method. We also describe the definition of

big data and what are the key requirements for supporting big data including collecting

a massive volume of data, and velocity of processing of the big data in the cloud.

84 | CHAPTER 5.

To the best of our knowledge, we could not find standardization and customization

on the cloud for IoT devices. However, a limited study has been conducted on cloud

architecture, service customization and standardization between clouds. In this section,

we review the most major studies.

85

 Chapter 6

DPM for Cloud-Assisted IoT

In the previous chapter, we describe how Cloud-assisted IoT may use DCCSOA (see

Chapter 2) to provide flexible services, dynamic feature to the users. As we described, the

second goal of our study is maintaining users’ data privacy. The questions that aims to

answer in this chapter is: “How the DCCSOA-based architecture for cloud-assisted IoT can

maintain users’ data privacy?” This chapter described a convergence of DPM (Chapter 3)

and Cloud-assisted IoT architecture based on DCCSOA (Chapter 5) to answer the

question.

 Introduction

The Internet of Things (IoT) (Gubbi 2013) paradigm provides a connected network of

smart devices through the Internet. The devices include sensors, actuators, cameras and

Radio Frequency IDentification (RFID) devices to record current environmental

condition. The goal of the IoT is making smart decisions based on archived sensed data

and the current situation of the environment. IoT is used for different environments, such

as healthcare systems, smart homes, smart cities, smart cars and more recently, self-

driving cars. The network of these smart devices that comprise of sensors and other smart

technologies working in tandem and communicating efficiently are creating a new world

of operation called the IoTs.

Massive amounts of data need to be collected from IoT objects to achieve smart

decision making, but IoT objects are not capable of collecting massive amounts of data in

their storage and hence they have to outsource their data. As described in Chapter 3,

Mobile Cloud Computing (MCC) (Dinh 2013) provides an efficient platform for IoT

devices to outsource their data directly through the Internet. MCC allows IoT objects:

(i) to read data from sensors and archive data in MCC;

86 | CHAPTER 6.

(ii) to process data on cloud computing systems; and (iii) to retrieve or download data

by other devices from everywhere. In addition, MCC paradigm allows users to use

pay-per-use basis and offers the ability to upgrade the size of resources on-demand.

Tiny computing machines, IoT devices, have two challenges- resource limitation and

data privacy issue, which are described, in the following sub-sections.

6.1.1 Resource Limitation

First, all mobile devices have limited resources, such as battery power, CPU speed and

storage capacity. When IoT devices outsource their data to MCC, they must monitor MCC

network transactions for tracking the battery usage. According to (Kumar et al. 2010) not

all mobile applications are useful when the applications use MCC. For example, an

application that reads/writes content from/to MCC uses more battery than an application

that uses MCC to only process data on MCC. The second application which only processes

data on MCC, does not have additional network traffic costs.

The IoT devices are smart compact devices designed for efficiency and portability

and ease of use. All these features lead the designer of these devices to think smaller and

compact devices, which in turn leads to limited resources to accomplish full blown

operations. In addition, IoT devices have limited storage capacity, generally less than 256

KByte. This size of storage adds an obstacle for most of the encryption methods to run

efficiently on IoT devices.

6.1.2 Data Privacy

The second challenge with respect to the IoTs is data privacy because when an IoT device

outsources its data to the MCC, data privacy can be violated by the cloud vendor, the

vendor’s partners, hackers, malicious entities or even by other cloud users.

IoT devices require a light-weight data privacy method while using MCC to save

their resources, such as power consumption, and to maintain data privacy. In Chapter 3,

we presented a Data Privacy Method (DPM) for MCC applications on mobile devices

with respect to limited battery power. DPM splits a file into several files, and each file is

divided into several chunks. The method scrambles chunk of each split file randomly by

using a chaos system (Kocarev 2001). The encryption/decryption method saves 72%

battery power over AES encryption method because DPM can be run in O(1) time

complexity and it does not add a significant overhead to the mobile device.

This chapter introduces the customization of DPM for IoT devices. However, as

discussed previously, the biggest challenge to customizing DPM for IoT devices is their

limitation of storage capacity because scrambling a small size of data is not secure. We

DPM FOR CLOUD-ASSISTED IOT | 87

propose a data privacy scheme in Section 6.6 that provides a secure method based on

DPM for IoT devices.

The rest of the chapter is organized as follows: the next section reviews motivation of

the study and the major challenges IoT devices face to maintain data privacy while using

MCC. Section 6.3 presents the motivation of this study. Section 6.4 explains some

limitation for IoT devices. Section 6.5 describes the related work for this chapter. Section

6.6 presents the proposed data privacy scheme DPS for IoT devices. Section 6.7 presents

the experimental setup. Its results in Contiki simulation tools is described in Section 6.8.

Finally, Section 6.9 presents a summary of this chapter.

 Data Privacy for IoT Devices

On one hand, we need a method to protect data privacy for IoT devices before

outsourcing the original data to MCC, and on the other hand, IoT devices need a simple

and efficient method to avoid battery drainage in a short period of time. Traditional

security methods can be run on regular computing machines, such as a laptop to protect

data privacy. However, running traditional encryption methods on IoT devices is not

efficient because it causes the battery drainage in a short period of time. Sometimes, it is

impossible to run a heavy encryption method on IoT devices (Bogdanov 2007) because

the devices have limited storage capacity and the encryption methods need several

rounds to encrypt a plaintext. For instance, AES encryption needs 10 rounds to encrypt a

plaintext (Bogdanov 2007), and each round needs a heavy CPU computation and a

storage capacity to buffer data to complete the encryption process.

In addition, an encryption method needs to be run in preemptive mode because of

CPU speed limitation of an IoT device. However, the device must read its sensors in a

short period of time regularly, and it cannot stop sensor reading in order to process an

encryption method.

 Motivation

With the advancements in technology and communication the use of IoT devices to

enhance and improve living has created a plethora of devices. The major issue for mobile

and IoT devices to run an encryption method is the time complexity of the method. The

advantage of DPM for IoT devices is its time complexity for both running fast on IoT

device with limited resources, and heavy computations against attacker.

The DPM disassembles a file in O(1) time complexity but in an attack scenario, an

adversary needs O(n!) time complexity to assemble a file. In Chapter 3 we explain by

increasing the size of n, the complexity will be increased exponentially. As illustrated in

Figure 6.1, the worst case of time complexity is O(n!), and the next order is O(2n). When

88 | CHAPTER 6.

a heavy computation is required to retrieve the original data, it creates an obstacle against

an adversary to use unauthorized data. Practically, a method with O(2n) can provide more

than 100 years of computation when the size of n increases to more than 256.

Another advantage of DPM is the simplicity of the scrambling method that needs

O(1) time complexity when we have an array of pseudo-random numbers. This

advantage allows the method to run on a low-speed CPU. In DPM, a set of random

numbers based on a chaos system can be generated, and the method uses this set to

scramble chunks of original data.

This chapter describes a method with minimum time complexity to maintain data

privacy and to provide maximum time complexity (i.e., O(2n)) against an adversary to

retrieve an original file.

 Cloud computing paradigm provides a cost effective storage for connected IoT

devices and it allows each device to outsource its data to the cloud computing servers. In

addition, the data can be accessible by any device from everywhere.

Some of IoT devices may carry sensitive data that requires privacy protection, such

as health care systems or the department of defense systems. In addition, there are legal

regulations to consider, such as the U.S. Health Insurance Portability and Accounting

Act (HIPPA) that does not allow a mobile device to outsource the original data to a third-

party.

Figure 6.1. A comparison of algorithm time complexity

0

1,000

2,000

3,000

4,000

5,000

6,000

7,000

8,000

9,000

10,000

1 6

1
1

1
6

2
1

2
6

3
1

3
6

4
1

4
6

5
1

5
6

6
1

6
6

7
1

7
6

8
1

8
6

9
1

9
6

t(
n
)

Input Size: n

DPM FOR CLOUD-ASSISTED IOT | 89

 IoT devices and their limitation

Currently, most of the IoT devices use Wireless Sensor Networks (WSNs). Internet

Engineering Task Force (IETF) 34 developed IPv6 in WSN through 6LoWPAN protocol that

provides Routing Protocols for Low power and Lossy networks (RPL) (Zhang 2014). The

6LoWPAN protocol allows millions of smart objects using IPv6 to connect directly to the

Internet. IoT devices generate small amount of data but during a lengthy period of time,

a set of smart devices produce a large data set. We assume each smart devices uses IPv6

for connecting to a mobile cloud computing to outsource its data.

One of the advantages of IoT technology is a network of sensors that uses the

6LoWPAN protocol. Although the protocol provides secure communications through

IPSec, the protocol is defined for devices with limited resources and it is almost

impossible to encrypt generated data in an efficient way (Bogdanov et al. 2007) on IoT

device. Figure 6.2 summarizes major 6LoWPAN modules’ specifications. X-axis

represents the name of IoT modules and their manufacturers. Y-axis represents modules’

resources (RAM, Flash and CPU core bits) and Z-axis represents the name of modules’

resources that includes RAM, Flash and CPU core bits. As shown in this Figure 6.2, the

34 https://www.ietf.org/

Figure 6.2. A comparison of resource capability of 6LoWPAN modules

0

5

10

15

20

25

30

35

0

50

100

150

200

250

300

M
C

U
 (

b
it

)

Si
ze

 (
K

B
)

RAM (KB) FLASH (KB) MCU Core (bit)

90 | CHAPTER 6.

maximum size of RAM and Flash is less than 96KByte and 512Kbyte, respectively. It is

not efficient and it is sometimes impossible to run traditional encryption methods on

these tiny computing machines with these capacities. AES encryption method is a round-

based method that needs to run for each plaintext with a key length of 128 bits to 256 bits.

Practically, the module cannot pass the requirements to run AES encryption (Bogdanov

et al. 2007).

 Related Works

(Ayuso et al. 2009) presents an encryption method that splits the plain text to encrypt

data but most of our target devices as shown in Figure 6.2 have a low-speed CPU with 8-

bit core. (Marin 2013) also represents a method for IoT devices to run AES encryption by

splitting the blocks. This method requires processing time to finish the encryption

process. It needs to stop reading other processes from sensors, and it is almost impossible

for an IoT device to stop sensing the target environment or to stop transferring the

generated data while their CPU is busy to run encryption method. Several other studies

such as (Ayuso et al. 2009 and Marin 2013) have been developed for encryption on IoT

devices but each method can be run on a specific device, i.e., (Marin 2013) is developed

for 16-bits devices on 6LoWPAN. However, the proposed scheme in this chapter can be

run on any IoT device with considering how to extend the size of n.

As related works indicate, we need cloud computing to outsource data to use the

cloud’s benefits while also considering that encrypting the generated data with

traditional security methods, such as AES, is not efficient. We are interested in submitting

to the cloud is not efficient for IoT devices because the target devices have limited

resources as shown in Figure 6.2.

In addition, as previously discussed, some devices must not submit original

(unencrypted) data to a cloud computing system when they need to maintain HIPPA

privacy act requirement. This requirement forces all IoT devices in e-health care systems

to encrypt data before submitting their data to a cloud computing system as a third-party.

As we describe in Chapter 3, a light-weight Data Privacy Method (DPM) can be run

on mobile devices. The method splits an original file to several chunks and the method

employs chaos system to generate random numbers based on pseudo-random

permutation (PRP) to scramble chunks in a file. A set of PRP numbers, P, is used to

scramble chunks of original data. An attacker needs a heavy computation to retrieve the

original file. For instance, if an attacker uses a brute-force algorithm to retrieve the

original data from 256 chunks, the time complexity will be 𝑂(2256). In theory, it requires

3 × 1051 years of computation with a supercomputer that can run 1018 combinations per

second.

DPM FOR CLOUD-ASSISTED IOT | 91

 The Proposed data privacy Scheme for IoT Devices

A general view of the proposed Data Privacy Scheme (DPS) for IoT devices is illustrated

in Figure 6.3. The scheme allows a smart object to submit its scrambled data to MCC

without exposing its original data to the cloud vendor. In Figure 6.2, DPS runs on an IoT

device. DPS uses µ and P0 as keys to generate or to retrieve an array of PRP numbers.

These initial values can be stored in a local server, KeyDB because needs not be stored in

the cloud to ensure data privacy. The size of KeyDB is small and it can also be encrypted

in the local server.

As described in Figure 6.2, our IoT target devices have limited Flash and RAM

capacity and each device generates a small data size. If we scramble generated data each

time, the number of n will be too small and an attacker can retrieve the original data in a

short period of time. For example, if we only scramble 16 chunks and submit it to the

cloud, an attacker can retrieve the original data in 𝑂(216) time complexity. In this case,

the attacker needs to try 65,536 permutation combinations to retrieve the original data

that takes only several minutes to compute it on a PC. We can increase n by submitting

partial data to the cloud and buffering the rest in the buffer. We scramble a full-buffer

before submitting the content of buffer to the MCC.

In addition, we consider each bit as a chunk of the original data that allows us to

increase the size of n rather than considering Bytes or Kbytes as a chunk.

Figure 6.3. A General view of the proposed data privacy

method for MIoT

92 | CHAPTER 6.

 Algorithm 6.1. shows the distribution of generated data from a sensor where Di is a

bit of each generated sequence bytes from the module’s sensor. The algorithm decides

where Di must be stored based on {𝜓𝑖} where 𝜓𝑖is a set of PRP numbers. If 𝜀𝑖=1, Di will

be buffered in B. Otherwise, Di will be stored in the next available slot of S. The algorithm

scrambles S based on 𝜓𝑗 where 𝜓𝑗is another set of PRP numbers. Finally, the algorithm

submits the scrambled data to the MCC.

In Algorithm 6.1, we consider two sets, 𝐵 and 𝑆, to split generated sequence of bits.

These two sets add complexity by increasing the size of n. 𝑆 represents the selected bits

that must be submitted to the MCC and 𝐵 represents the selected bits that must be

buffered in RAM. If the size of RAM and buffer defines as ℂ𝑅𝐴𝑀 and ℂ𝐷, respectively, the

buffer will be full when ℂ𝐷 = ℂ𝑅𝐴𝑀.

 Generated data by an IoT device, D, defines a set of bits for each clock-cycle in which

the device reads its sensors. After a time period, 𝑇, the device reads the sensors and it

generates a new sequence of bits, 𝐷. We assume that the device generates k set of n-bits

and it defines as follows:

𝐷 = ⋃ {0,1}𝑛
𝑘

𝑖=0

(2)

As previously described, DPS splits D into two sections as follows:

Algorithm 6.1. Distribution Algorithm for Scrambling {𝐷}

01 While (1)

02 {

03 While (ℂ𝐷 ! = ℂ𝑅𝐴𝑀)

04 If (𝜀𝑖==1)

05 {𝑩} ⟵ 𝑫𝒊

06 Else

07 {𝑺} ⟵ 𝑫𝒊

08 If (ℂ𝐷 == ℂ𝑅𝐴𝑀)

09 {

10 {𝑆} ⟵ 𝑆𝐶𝜓𝑖
{𝐵}

11 𝑺𝑻𝑹𝑬𝑨𝑴{𝑺}

12 {𝑩} ⟵ {}

13 }

14 }

DPM FOR CLOUD-ASSISTED IOT | 93

𝐷 = ∑ 𝐵𝑖

𝑘

𝑖=0

+ ∑ 𝑆𝑖

𝑘

𝑖=0

(3)

where 𝐵𝑖 stores in buffer and 𝑆𝑖 submits to the MCC.

DPS define two PRP based on Equation 1, 𝜓𝑖 and 𝜓𝑗 as shown in Equation 4 and 6.

𝜓𝑖 generates decision bits for 𝐷𝑖 whether 𝐷𝑖 must be stored in buffer, B or 𝐷𝑖 must be

stored in S to submit to the MCC. 𝜓𝑗 is used for scrambling the buffer when B is full.

 𝜓𝑖 = {𝜀0, 𝜀1, … , 𝜀ℂ𝑅𝐴𝑀
} (4)

where 𝜀𝑖 ∈ {0,1} and it is defined as follows:

𝜀𝑖 = {
0 𝑖𝑓 𝑃𝑘 𝑚𝑜𝑑 2 = 0
1 𝑖𝑓 𝑃𝐾 𝑚𝑜𝑑 2 ≠ 0

(5)

where 𝑃𝑘 can be generated from Equation 1 with the initial values of 𝜇𝑖 and 𝑃𝑗.

DPS uses 𝐵 to buffer partial bits based on 𝜓𝑖, then, DPS scrambles S based on 𝜓𝑗 ,

and finally, the scrambled data, 𝑆𝐶𝜓𝑖
{𝐵} is submitted to the MCC.

DPS adds a set of bits (Di) to S, if (𝜀𝑖=1) until ℂ𝐷 < ℂ𝑅𝐴𝑀. If (ℂ𝐷 = ℂ𝑅𝐴𝑀) DPS uses 𝜓𝑗

to scramble B where 𝜓𝑗 is defined as follows:

𝜓𝑗 = {𝜀0, 𝜀1, … , 𝜀ℂ𝑅𝐴𝑀
} (6)

where 𝜀𝑖 = 𝑃𝑙 for i=0.. ℂ𝑅𝐴𝑀. 𝑃𝑙 can be generated from Equation 1 with initial values of 𝜇𝑗

and 𝑃𝑗.

Finally, scrambled data, 𝑆𝐶𝜓𝑗
{𝑆}, is transferred to S for submitting to the cloud.

The algorithm increases the complexity of retrieving the original data from scrambled

data, 𝔼𝐷by using 𝐵 and 𝑆. The complexity of the algorithm for retrieving the original data

is defined as follows:

 𝑂(𝔇(𝔼𝐷)) = 𝑂(2ℂ𝑅𝐴𝑀
2
) (7)

where 𝔇(𝔼𝐷) is the complexity of retrieving the original data from scrambled data, 𝔼𝐷.

If we consider maximum size of RAM in Figure 6.1, the time complexity of retrieving

an original data from its scrambled data is 𝑂(296). However, we increase the size of n

94 | CHAPTER 6.

from 96 to 962 that increases the complexity of retrieving the original data from the

scrambled data by 𝑂(29216) when we consider 1Kbyte as an input.

Moreover, the complexity can be increased to 𝑂(29437184) when we consider each bit

as a chunk. In this case, the scheme scrambles an array of 9,437,184 bits which requires

several hundred years of computation to retrieve the original data.

An example of the transferring of a generated 8-bit length data from the sensors to

MCC is shown in Figure 6.4. In this example, 8 bits generated from the sensors as follows:

D = {D0, D1, …, D8}. (8)

The scheme uses 𝜓𝑖 in Equation 6 to generate 𝜀𝑖 and uses 𝜀𝑖 to decide the location of

Di. The scheme scrambles B based on 𝜓𝑗 when 1024th-bit added to B and then it clears the

buffer. In this case, if we assume 𝜓𝑖 decides each two consecutive bits to be stored in B

and S, randomly, B can be completed after 256th reading data from the sensors (k=256).

In this case, an attacker needs to run a brute-force algorithm with O(22048) time complexity

to retrieve an original data from scrambled data.

Figure 6.4. An example of submitting 8-bit generated data from IoT device with 128KB

buffer, and 64 KB stream data to cloud

DPM FOR CLOUD-ASSISTED IOT | 95

 Experimental Setup

We conducted an experiment for the proposed method by a network of sensors on Cooja

simulator with Contiki Ver. 2.7 operating system (Dunkels 2004), which is developed in

Java. In this experiment, we use Sky Mote to emulate Tmote Sky mote (a wireless sensor

module) in UDP Sink and UDP Sender. An UDP Sink is able to read sensors, to transfer

its data, and to transfer data from one node to another node (works as a router).

An UDP Sender is able only to read the sensors and to transfer its data to the UPD

Sink.

Each node is connected to the Internet and obtained an IPv6 address by using

6LoWPAN protocol. All nodes are able to transfer their data to the MCC. We ran the

experiment with 12 nodes for two hours.

 Experimental Results

In this experiment, we were interested in the result of the differential of power

consumption when a node runs the proposed data privacy scheme and when it does not.

We ran the first-half of the experiment (the first hour) without the proposed scheme and

then we ran the proposed scheme for the second–half of the experiment (the second

hour). As we previously discussed in Section 6.2, we expected the proposed scheme to

run the algorithm in O(1) which means the algorithms must not introduce additional

power consumption during the experiment.

We assume the following initial values for 𝜓𝑖:

𝑃0 = 0.999 𝜇 = 3.67

Figure 6.5 shows the repetition rate of 𝜖𝑖 in 𝜓𝑖. X-axis represents the value of 𝜖𝑖 and

Y-axis represents the number of consecutive bits with the same value. Each “×” shows the

value of 𝜖𝑖 where i=0 to i=151. As discussed previously, the scheme based on 𝜖𝑖 decides

whether 𝐷𝑖must be stored in B or S. The figure shows that the repetition curve does not

follow any pattern and an attacker cannot predicate the next decision bit. For instance,

𝜖0 = 1 but the value of 𝜖1to 𝜖9 is 0. We consider the following initial values for 𝜓𝑗:

𝑃0 = 0.999 𝜇 =3.684 |B|=306 bits

Figure 6.6 shows the experimental results. Figure 6.6.a shows power consumption

during the two-hour experiment and the result indicates that the power consumption of

the nodes does not change dramatically. Figure 6.6.a shows the experimental result for 8

different nodes. Nodes 2, 3, 4 and 8 did not use the proposed scheme during the

experiment and nodes 12, 13, 18 and 23 use the proposed scheme during the second-hour

96 | CHAPTER 6.

of experiment. Figure 6.6.b shows that the average power consumption which is not

changed when we run the proposed scheme.

 Summary of Chapter

In this chapter, we considered Mobile Cloud Computing (MCC) as a solution for

outsourcing the generated data from IoT devices. There are two obstacles for IoT devices

to use MCC. First, submitting the original data to the MCC, exposes users’ data privacy

to the cloud vendor and the vendor’s partners. Second, data encryption for mobile users,

in particular for tiny mobile devices, such as IoT, is not practical because they have limited

resources, such as storage capacity less than 256 Kbyte. In this chapter, we presented a

scheme that allows IoT devices to maintain their data privacy while each device

outsources its data to MCC directly. We implemented the proposed scheme on one of the

popular simulation tools by simulating Tmote Sky which uses IPv6 and 6LoWPAN

protocol. We simulated a network of Tmote Sky on Contiki for two hours. The

experimental results show that process of the proposed scheme on these modules does

not introduce additional power consumption overhead.

DPM FOR CLOUD-ASSISTED IOT | 97

(a) Historical Power Consumption for one node

(b) Average power consumption for 8 nodes in one partition

Figure 6.6. An experimental result for 8 Sky-mote nodes

Figure 6.5. The repetition rate for the first 152 values of 𝜖𝑖 in 𝜓𝑖

1

2

3

4

5

6

7

8

9

10

1 0 1 0

T
h

e
 n

u
m

b
e

r
o

f
re

p
it

a
ti

o
n

The value (decision bit) of

98

 Chapter 7

An EHR Platform based on DCCSOA

Electronic Health Record (EHR) systems collect and process sensitive patients’ health

data. In order to allows an EHR system to be deployable on heterogeneous cloud vendors

and protect patients’ data, we describe a novel EHR cloud-based platform.

The proposed platform is composed of two components: i) DCCSOA which is

explained in Chapter 2 that allows cloud vendors to define a variety of services. ii) DPM

which is described in Chapter 3 and it allows the proposed platform to protect data

privacy of patients.

 Introduction

Cloud computing provides a cost effective model through pay-per-use that allows each

individual or healthcare business (Rodrigues 2009) to start a cloud based service with

minimum investment. The cloud has several major issues which are described in Chapter

2. Let us describe these issue for EHR systems as follows.

7.1.1 Migration of EHR systems

Data and application migration is one of the major issues when users decide to transfer

their data and applications from an IT department to a cloud computing system or from

one cloud computing to another. Migration may cause several sub-issues, such as data

security issue. For instance, a user who used a regular application based on a specific

Application Programming Interface (API) could have some issue when the application

transfers to a cloud computing system that needs to redefine or modify the security

functions of the API in order to use the cloud. Each cloud computing system offer own

services to

7.1.2 Data Security of EHR systems

Data security refers to accessibility of stored data to only authorized users, and network

security refers to accessibility of transfer of data between two authorized users through

AN EHR PLATFORM BASED ON DCCSOA | 99

a network. Since cloud computing uses the Internet as part of its infrastructure, stored

data on a cloud is vulnerable to both a breach in data and network security.

7.1.3 Data Privacy of EHR systems

Users have to outsource their data to an untrusted cloud vendor (e.g., public cloud

vendors) in order to use the cloud computing benefits. In addition of data and network

hack issues in cloud computing, data privacy could be violated by other users, malicious

applications or even the cloud vendor when users share their data with a cloud vendor.

Data privacy becomes one of the major challenges in outsourcing data to the cloud. Data

encryption methods allow users to avoid exposing the original data to the cloud vendors.

However, encryption for each single original data is not cost effective or feasible for some

machines, such as mobile devices. For example, some mobile devices in EHR systems

have limited resources, such as CPU, RAM and battery power.

 Background

In Chapter 2, we proposed a dynamic cloud computing architecture based on Service-

Oriented Architecture (DCCSOA). The architecture provides a new layer, Template-as-a-

Service (TaaS), on the top of a cloud computing system that allows a cloud vendor to

standardize its cloud services by defining TaaS services. TaaS is divided into two sub-

layers: front-end (FTaaS) that allows different cloud vendors to define a generic and

standard cloud service, and back-end (BTaaS) that allows a cloud vendor to bind a defined

generic cloud service, FTaaS, to its cloud computing system. In other words, DCCSOA

enables different cloud vendors to standardize their services through a uniform interface

at FTaaS that allows users to transfer their data and applications from one vendor to

another.

In this chapter, we use DCCSOA to provide a template, TaaS, for EHR system. A

template allows an EHR system to use heterogeneous cloud computing systems. It

provides flexibility, customizability and standardization for EHR services that needs to

be run on the cloud computing.

As previously discussed, the data security and data privacy are two major issues in

cloud computing system for EHR systems. We use a light-weight data privacy method

(DPM) which is described in Chapter 3 that allows clients to scramble the original data

on the client side before submitting to the cloud, and AES encryption method on the

proposed platform. We evaluate the performance of implemented platform while clients

use the methods. Our contribution in this chapter are as follows:

● Propose a platform for EHR system based on DCCSOA.

100 | CHAPTER 7.

● Introduce an eHealth template for the proposed platform that provides a

uniform interface for EHR systems to interact with heterogeneous cloud

computing systems.

● Conduct an experiment through DPM and AES on the proposed platform to

evaluate the performance and scalability of the proposed platform.

The rest of the chapter is organized as follows: In the next section, we introduce the

proposed platform based on DCCSOA and the implementation of the proposed platform.

We compare the behavior of DPM against AES on the proposed platform for a massive

healthcare dataset in Section 7.5. We review related work in Section 7.6, and finally, we

conclude our study in Section 7.7.

 The proposed EHR platform

We consider DCCSOA as the main architecture for the proposed cloud platform. We

define an eHealth Template, (TeH), for EHR systems which is divided into the front-end,

FTaaSeH, and the back-end, BTaaSeH.

FTaaSeH provides a generic and a uniform interface with standard services. BTaaSeH

binds specific cloud value-added services to the uniform service interfaces at FTaaSeH.

Figure 7.1 illustrates a general view of cloud stacks for the proposed platform. A

client (end-user) accesses a generic and a uniform cloud service interfaces through an

Figure 7.1. A view of EHR template with implementation of DPM

and its connection to cloud value-added services

AN EHR PLATFORM BASED ON DCCSOA | 101

eHealth Client Application. The proposed platform can be simply transferred from a vendor

V1 to another V2 by using the same FTaaSeH in another cloud but with different BTaaSeH.

FTaaSeH is a dynamic layer, and it allows cloud vendors to customize their cloud

services as a template. First, cloud vendors bind defined generic and uniform services at

FTaaSeH to their value-added services through BTaaSeH. As shown in Equation 1 each

service at 𝐹𝑇𝑎𝑎𝑆𝑒𝐻 must pass a satisfaction function 𝒮 to propose a uniform service

interface.

∃ 𝑠 ∈ 𝐹𝑇𝑎𝑎𝑆𝑒𝐻 | 𝒮𝑎𝑡(𝑠) (1)

where s is a service at 𝐹𝑇𝑎𝑎𝑆𝑒𝐻 and 𝒮𝑎𝑡 is a satisfaction function which is defined as

follows:

𝑆𝑎𝑡(𝑠): ℛ → 𝒪 (2)

where ℛ is a finite set of requirements of r, and 𝒪 is a finite set of corresponding output

for each requirement in ℛ.

The uniform service interface, 𝑈𝐼, can be defined as follows:

𝑈𝐼(𝑠) → 𝑆𝑎𝑡(𝑠1)^𝑆𝑎𝑡(𝑠1)^𝑆𝑎𝑡(𝑠𝑘) (3)

Code 7.1 which is described also in Chapter 5 shows an example of how a client

accesses FTaaS through a uniform data access layer with an abstraction on a cloud service

(database access in this case). In this code, a client loads a web service, FTaaS_Service_Ref,

for accessing services on the proposed platform. Then, the client requests a data access

by calling GetDataList procedure from the web service, and finally, it retrieves the result

on an object, DataGridView.

FTaaS_Service_Ref.Service1Client FTS =new TaaS_Service_Ref.Service1Client();

DataSet ds = FTS.GetDataList();

DataGridView.DataSource = ds.Tables[0];

DataGridView.DataBind();

On one hand, defined services at FTaaS are dynamic, and the services can be

customized by a cloud vendor to provide different type of services to the clients. Cloud

Code 7.1. Data Access at client side through FTaaS

102 | CHAPTER 7.

vendors bind services from BTaaS to their value-added cloud services that facilitates a

service accessibility on heterogeneous cloud services for an EHR system. On the other

hand, an EHR application, and its data can be transferred to another cloud vendor with

minimal modifications at the client side. In addition, providing a generic and a uniform

service is important for mobile health care devices because software modification for

these devices can be expensive, and sometime requires hardware modifications.

 Experimental Setup

We implemented the proposed platform through a case study based on a defined template

for an EHR system. The proposed platform provides a generic data access at FTaaS to

end-users for accessing to an Electronic Medical Record (EMR). We implemented two

methods on the proposed platform to protect patients’ data privacy - one is a light-weight

data privacy method (DPM) which is described in Chapter 3 and another method is AES

encryption (Harrison 2008). These methods allow us to assess the performance of the

proposed platform.

We consider the following scenario for the implementation of the proposed platform.

“A client requests a data access to an Electronic Medical Record (EMR) which is implemented

as a web service at FTaaS. FTaaS provides a generic, and a uniform function to the client. The

request will be submitted from FTaaS to the BTaaS. Each retrieved response is processed through

two user-data protection methods, DPM and AES encryption. BTaaS is implemented by Windows

Communication Foundation (WCF) (Resnick 2008), and it is bounded to a SQL database. We ran

different queries at this level, and uses data protection methods to evaluate the performance of the

proposed platform. BTaaS’ responses sent to the client at FTaaS by a web service.”

We implemented the proposed platform that includes an eHealth template. The

template at the FTaaS enables end-users to interact with data access layer without

considering the source of data. In the proposed platform is FTaaS and BTaaS are

implemented as a web service, a Windows Communication Foundation (WCF) service,

respectively. The services can be easily customized at BTaaS to adapt with heterogeneous

cloud computing systems or traditional IT systems.

We used an Artificial Large Medical Dataset35 as our EMR database that contains

records of 100,000 patients, 361,760 admissions, 107,535,387 lab observations, and with the

size of 12,494,912 KB (~12.2 GB). We ran 31 different queries on the largest table, lab

observations. Each query retrieved different numbers of fields with different size. We ran

DPM and AES Encryption at BTaaS to protect patients’ data privacy on each retrieved

35 http://www.emrbots.org retrieved on July 12, 2015

AN EHR PLATFORM BASED ON DCCSOA | 103

field. It allows us to assess the performance of the methods on the proposed platform by

monitoring the computation time of the methods for each retrieved field from database.

The processed queries in this experiment are based on Select Distinct Top in TSQL

language that retrieves data from 6 fields to 30,000 fields with the total queries’ result size

from 180 Byte to 911 Mbyte.

In this chapter, we are interested in evaluation of both quantity parameters and quality

parameters in the proposed platform.

The quantity parameters include the following parameters:

Performance: We consider different workloads to evaluate the performance of a given

method on the proposed platform and its performance when the size of workload is

increased.

Scalability: A scalable service allows the service to provide the same performance

when the number of transactions is increased.

The quality parameters include the following parameters:

Customization: The higher level of this parameter allows a cloud vendor to customize

provided services with minimum modifications.

Independence of services: The higher level of this parameter allows the administrator to

freely transfer an EHR system to another cloud vendor or bring it back to a traditional IT

department with minimal service modifications.

Standardization of service: The higher level of this parameter allows an EHR system to

interact with heterogeneous cloud services with minimal modifications.

 Experimental Results

Figure 7.2 illustrates the experimental results for the evaluation of the quantity

parameters on the proposed platform for an EHR system. We ran 31 different queries on

the EMR database. Each submitted query from FTaaS is processed on the proposed

platform to retrieve data from database at BTaaS. The platform is retrieved the response

of each query and ran DPM and AES encryption on each retrieved field (result) from

BTaaS. Figure 7.2.a shows the performance of the implemented methods on the proposed

platform.

We expect that DPM provide a better performance over AES as described in

(Harrison 2007) as well as on the proposed platform. Figure 7.2.a compares the

performance of DPM and AES encryption on the proposed platform. This figure shows

104 | CHAPTER 7.

that DPM provides a better performance over AES encryption for all query results as we

expected.

Figure 7.2.b illustrates the performance of DPM and AES encryption for different size

of an input string while the methods are not performed on the proposed platform. We

considered each input string as a Unicode character with a size of 16 bits each. X-axis

represents the size of input string, and Y-axis represents its response time (millisecond).

In our experiment, we assumed that DPM does not need to generate a set of PRP by

accessing to predefined arrays that described in Chapter 3.

Figures 7.2.a and 7.2.b show that the performance of processing of DPM and AES on

the proposed platform (Figure 7.2.a) is not different from a single string (in Figure 7.2.b).

Another parameter which can be evaluated is quality parameters that includes service

independency and a service standardization.

As described in Code 7.1, a client can access the platform by using the provided

generic service. Since the service is independent of the cloud value-added services at the

BTaaS, it allows users to interact with the cloud services without concerning about its

requirements or type of output of a service. For instance, an application at client side in

Scenario 1 retrieves data without understanding the type of database, and the location of

the database. The service at FTaaS can be bind to any kind of services at BTaaS.

Different cloud vendors are able to define the similar services at FTaaS in Scenario I

that allows an EHR system use different cloud standardized services.

 Related Work

Several cloud-based services and platforms have been developed for EHR systems.

For instance, (Fan et al. 2011) developed a platform which is used from capturing health

care data for processing on the cloud computing. The platform relies on its architecture,

and the authors did not describe how the proposed platform can be implemented for

different architectures or how it can customize services for heterogeneous clouds. As

discussed previously, a dynamic and a customizable cloud platform allows

administrators to implement, and to transfer an EHR system to different cloud computing

systems. There is also a vendor lock-in issue as described in Chapter 2, if a platform’s

services rely on a specific cloud architecture. In another study, (Lounis et al. 2012)

developed a secure cloud architecture which is only focused on wireless sensor networks,

and the study has limited work on the architecture. The study does not discuss the

architecture features, such as service modifications or dynamic services. (Magableh et al.

2013) proposed a dynamic rule-based approach without considering the cloud

environment. Finally, (Hoang et al. 2010) focus on mobile users features in their proposed

AN EHR PLATFORM BASED ON DCCSOA | 105

architecture, and the study does not discuss the overall of the architecture. In our study

in this chapter, we proposed a dynamic platform for EHR system, and we showed how

the proposed platform implements a dynamic service at FTaaS.

 Summary of chapter

In this chapter, we proposed a dynamic cloud platform for an EHR system based on a

cloud SOA architecture, DCCSOA. The proposed platform can be run on the top of

heterogeneous cloud computing systems that allows a cloud vendor to customize and

(a) a comparision between the performance of DPM and AES

for a single Unicode string with different sizes

(b) a comparision between the performance of DPM

and AES on the proposed platform

Figure 7.2. Experimental Results: a comparision between the performance of DPM and AES on the

proposed platform

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

4.5

5.0

5.5

6.0

6.5

7 8 9 10 11 12 13 14 15 16 17 18 19 20 25 30 40 50 60 120180240300

Re
sp

on
se

 T
im

e
(m

s)

The size of input (bits)

AES Encryption DPM

0

0.01

0.02

0.03

0.04

0.05

0.06

A
vg

.
R

e
sp

o
n

se
 T

im
e

 (
m

s)

The number of request fields in query

Enc DPM

106 | CHAPTER 7.

standardize services with minimal modifications. The platform uses a template layer

which is divided into FTaaS that allows cloud vendors to define a standard, generic, and

uniform service, and BTaaS that allows defined services at BTaaS to bind to the cloud

vendor value-added services. In addition, we implemented a data access scenario on the

proposed platform with two different methods to evaluate its performance. The first

method is a light-weight data privacy method (DPM), and the second is AES encryption

method. The evaluation shows that the platform is scalable and the methods which are

ran on the platform have not introduce additional overheads.

107

 Chapter 8

Data Privacy Preservation for Cloud-based Databases

This chapter aims to use DPM which is described in Chapter 3, to provide users’ data

privacy in cloud-based databases. Although the proposed method can be deployed on

traditional SQL databases, we focus only on NoSQL databases in this chapter.

 Introduction

As we described in Chapter 3, most of the time, cloud vendors are not fully trusted by

the users, and are vulnerable to users’ data privacy violation by the cloud vendor. Users

have several options to use the cloud. First, the users may employ a hybrid-cloud (Li et

al. 2013) that allows them to outsource sensitive data to their private storage, and uses a

public cloud for their non-sensitive data. This option may not be a practical solution due

to the complexity of the system integration (Li et al. 2013) and network security issues.

Another option is to encrypt user data before outsourcing it to an untrusted cloud vendor.

However, most well-known encryption methods, such as AES (Daemen et al. 2013) are

expensive because they increase computation time due to encryption/decryption of data

during query processing. The third option is light-weight data security methods that

secure data based on some conditions which are discussed in Section 8.2. In this chapter,

we are interested in this option that allows users to protect their outsourced data with

minimal computation overheads. The final option, is outsourcing data without

considering users’ data privacy.

Several studies (Denning et al. 1986, Popa et al. 2011, Osborn 2011 and Laur et al.

2013) have been conducted to secure a database with different encryption schemas.

Although an encrypted database causes additional computation overheads to run

queries, it enables users to protect their outsourced data, in particular sensitive

information. In this chapter, we assume that users are willing to protect their outsourced

database on an untrusted cloud vendor. We assume that the vendor must not be able to

108 | CONCLUSION

access the database, and users may be able to access the database with minimal

computation overheads.

Our primary contributions in this chapter are as follows:

● We propose an efficient light-weight schema that includes several components

and algorithm, to securely outsource data to an untrusted cloud;

● We implement, and assess the performance of the proposed schema, and

compares the performance of the light-weight data privacy method to a well-

known encryption method, AES (Daemen et al. 2013);

● We analyze the security level of the proposed schema.

The rest of the chapter is organized as follows. The next section introduces some

background related this study. Section 8.3, introduces the proposed schema, and its

various components. Section 8.4 presents a security analysis of the proposed schema. The

experimental setup of the implementation of the proposed schema, and the experimental

results are discussed in Section 8.5, and Section 8.6, respectively. The related work is

discussed in Section 8.7, and finally, Section 8.8 concludes this chapter.

 Background

In Chapter 3, we proposed a light-weight data privacy method (DPM) that scrambles

chunk of data based on a chaos system. The DPM uses the following equation in a chaos

system that generates sets of distributed random numbers.

𝜓𝑖: 𝑃𝑘+1 = 𝜇𝑃𝑘(1 − 𝑃𝐾) (1)

where 𝑃 ∈ {0,1} and 𝜇 are two initial parameters of this equation, and 𝑖 is the index of

each set of 𝜓.

In another words, 𝜓 provides a set of numbers that does not allow an adversary who

knows 𝑃𝑙 to predict the future numbers, 𝑃𝑚 where 𝑚 > 𝑙. The content of each chunk (a set

of bits or bytes) of an original data (input message) can be scrambled based on 𝑖th set of

scrambled addresses in 𝜓𝑖 which relocates the content of the original data. 𝜓𝑖 generates

repeated numbers, and DPM uses an algorithm to remove collision in addresses (see

Chapter 3), and to cover all addresses of a given chunk of data.

The advantage of DPM is its time complexity. On one hand, a user scrambles a chunk of

data with 𝑂(1) time complexity, and on the other hand, an adversary needs 𝑂(2𝑛)

109 | CONCLUSION

computation time to retrieve the original data from scrambled data when he does not

know the initial parameters, where 𝑛 is the size of each chunk.

8.2.1 Security parameters of DPM

DPM scramble the content of an original bit to avoid adding computation overhead, and

it has the following two important security parameters.

 The size of chunks

The size of each chunk, n is important to DPM to provide a sufficient level of security.

For instance, DPM can be secured with 𝑛 > 120 based on current computational

capabilities. If an adversary runs an exhaustive search on the scrambled data, he needs to

perform 𝑂(2120) computational steps to retrieve the original data. In implementation

work of the proposed schema which is described in Section 8.5, we consider each bit as

an input that allows us to increases the size of 𝑛. If we consider a field of a record as an

input, it could be small enough to retrieve the original data fast. We can combine multiple

field(s) of a record as a chunk of the original data, and we can consider bits of the chunks

as an input of DPM in order to increase the size of n. For instance, a Unicode character in

Microsoft SQL Server has 2 Bytes, and for an adversary to perform an exhaustive search

over a truly scrambled field (see the next parameter) with 20 characters’ length requires

𝑂(2𝑛) computation steps, where 𝑛 = 10 𝑐ℎ𝑎𝑟𝑠 ∗ 2 𝐵𝑦𝑡𝑒𝑠 ∗ 8 𝑏𝑖𝑡𝑠.

 The number of repeated initial parameters

DPM needs to run with different initial parameters for each chunk of data (message) in

order to be secure. The proof of this claim is given in Section 8.4.

We can generate different set of 𝜓 for each original data but it adds additional

computation overheads. We can precompute 𝜓 offline, and store them on a database in

order to eliminate online computation overheads. A detail of implementation of these

parameters is discussed in the next section.

 The proposed DPM-based Schema for cloud databases

The proposed schema stores scrambled data with minimal computation overheads in the

database. The database is accessible only by the owner of the database, who has a key. In

case of database compromise as whole, or access to database by authorize or

unauthorized users without a key, the data on the database cannot be retrieved. The

cloud vendors also cannot access the database because only the owner has the key that

can reconstruct the scrambled data.

110 | CONCLUSION

The proposed schema for a cloud-based database is illustrated in Figure 8.1. Each

submitted query from a user will go through the proxy server in order to scramble data

prior to running the query operation (insert, update or select) on the database (SecureDB).

The scrambled data is stored in SecureDB. The proxy server uses MapDB to access different

set of 𝜓 which is defined in Equation 1. We can remove MapDB by adding a 𝜓 generator

function that produces several sets of 𝜓. The proxy server uses KeyDB to store a user’s keys

for a record in SecureDB.

The main components of the schema are as follows.

SecureDB: This database stores scrambled data. Authorized and unauthorized users

including cloud vendor administrators are not able to retrieve the original data from this

database without knowing the keys that are stored in KeyDB. Only submitted

transactions from Proxy Server which has access to KeyDB, is able to retrieve the original

data. Even if this database is compromised on the cloud, an internal and an external

adversary cannot retrieve the original data.

KeyDB: This database stores an index to 𝜓 which is located in MapDB, for each record in

SecureDB. This database is updated with an insert/update operation, and it is used for

reconstructing a record of SecureDB by providing 𝜓 for the corresponding record. The

KeyDB can be used locally in order to protect SecureDB from an untrusted cloud vendor.

MapDB: This is an optional database that collects a set of predefined 𝜓 in order to avoid

adding runtime computation overhead for generating 𝜓 with different initial parameters.

For instance, Table 7.1 shows a definition of Customer’s dataset with 5 fields, fields’ types,

and the size of each field (Bytes). If we consider the combination of all fields as an input

KeyDB
SecureDB MapDB

i

Query
Query ResultUpdate

User

Adversary

Figure 8.1. The proposed DPM-based Schema for cloud databases

111 | CONCLUSION

to the scramble process, we need 2,272 bits (284 Bytes) to be scrambled for this table. The

join of all fields as an input increases computation time against an adversary to retrieve

the original data from scrambled data. In this example, MapDB stores different shuffle

addresses from the first bit to 2,272 by defining different initial values of 𝜇 and 𝑃0 which

is discussed previously in Equation 1. The proxy server uses one record of MapDB (shuffle

addresses) to scramble and insert data to SecureDB. Then, the proxy server stores the

record number of inserted data and its correspondence shuffle addresses from MapDB

into KeyDB, that allows the proxy server to retrieve data later by using this information.

MapDB can be used for several SecureDBs, on multiple clouds because this database can

protect each SecureDB against an adversary from each cloud.

Table 8.1. The definition of a customer dataset

Customer Key Name Address National Key Phone

Integer nchar(10) nchar(64) Integer nchar(64)

4 Bytes 20 Bytes 128 Bytes 4 Bytes 128 Bytes

MapDB can be updated periodically in an offline mode (similar to database indexing) in

order to remove online computation overheads. For instance, the database can be

updated with adding sets of 𝜓 based on the number of used 𝜓𝑠 as a threshold parameter.

Proxy Server: This server allows a user to retrieve, update, or insert data to SecureDB. It

runs DPM on each submitted user’s query. Each user’s operation, such as Insert, Update

or Select, needs to be submitted to the Proxy Server. If a new record needs to be added to

the database, proxy server assigns an index of a 𝜓 to the record, and then, it scrambles the

record based on the assigned 𝜓, and finally the index is stored in KeyDB for future record

retrieval.

Algorithm 8.1, shows the insert procedure in the proposed schema that uses a user’s key

and the input record to insert data into SecureDB.

112 | CONCLUSION

1: i = NewKey (Key)

2: 𝜓𝑖 =Map(i)

3: NewScrambledRec =𝑺𝒄𝝍𝒊
(𝑖𝑛𝑝𝑢𝑡)

4: Rec# = Insert(NewScrambledRec)

5: UpdateKeyDB(i, Table, Rec#)

First, the procedure stores an index of 𝜓 in 𝑖, and it stores 𝑖th set of shuffle addresses

from MapDB in 𝜓𝑖 (step 2). Second, it scrambles the user’s input record (step 3), and it

inserts the scrambled data into SecureDB (step 4), and stores the record number in Rec#.

Finally, it updates KeyDB with 𝑖 (the corresponding 𝜓 of the record), the record number,

and the name of table.

The proxy server uses the record number, and its corresponding 𝜓 from MapDB to

reconstruct a record when it needs to retrieve or update a record.

 Security Analysis

A schema has a perfect secrecy, if it can pass the following conditions.

i) The adversary cannot learn about two scrambled records, 𝑟𝑖 and 𝑟𝑗 when he knows a

scrambled data, 𝔰;

ii) The chaos system generator has perfect secrecy.

For the first condition, each record of a table of SecureDB in the proposed schema needs

to be scrambled with different initial parameters, in order to avoid similarity between

scrambled records as follows.

∃𝑖 ∈ 𝜓𝑖 𝑎𝑛𝑑 ∃𝑘 ∈ 𝑆𝑒𝑐𝑢𝑟𝑒𝐷𝐵 | 𝑆𝐶(𝜓𝑖, 𝑟𝑘) = 𝔰𝑖 (2)

∃𝑗 ∈ 𝜓𝑗 𝑎𝑛𝑑 ∃𝑙 ∈ 𝑆𝑒𝑐𝑢𝑟𝑒𝐷𝐵 | 𝑆𝐶(𝜓𝑗 , 𝑟𝑙) = 𝔰𝑗 (3)

∀𝑖, 𝑗 ∈ 𝜓 𝑠𝑢𝑐ℎ 𝑡ℎ𝑎𝑡 𝔰𝑖 ≠ 𝔰𝑗 𝑤ℎ𝑒𝑟𝑒 𝑖 ≠ 𝑗 (4)

where SC is the scramble function, 𝜓𝑖 and 𝜓𝑗 are two different sets of shuffle addresses,

and 𝑟𝑘 and 𝑟𝑙 are two different 𝑘th and 𝑙th records of SecureDB.

Algorithm 8.1. Insert procedure

113 | CONCLUSION

∀i, 𝔰: Pr[𝑆𝐶(𝜓𝑖, 𝑟𝑘) = 𝔰] =
#𝑟 ∈ Ζ such that SC(𝜓𝑖, 𝑟𝑘) = 𝔰

|Ζ|

(5)

 where 𝑟 is a record in SecureDB.

In other words, the proposed schema uses different 𝜓′𝑠 which are defined with

different initial parameters to prevent an adversary from learning about two original

records by knowing their scrambled data.

∎

For the second condition, 𝜓 must provide a uniform distribution of addresses in 𝜓𝑖

for all entries of n bits as follows:

𝑃: 𝑈 → [0,1] 𝑠𝑢𝑐ℎ 𝑡ℎ𝑎𝑡 ∑ 𝑃(𝑥) = 1
𝑥∈𝑈

 (6)

where 𝑈 = {0,1}𝑛.

∀ 𝑥 ∈ 𝑈: 𝑃(𝑥) =
1

|𝑈|

(7)

In this case, the generator must produce different addresses with a uniform

probability. As previously discussed in Section 8.2, the generator provides scrambled

addresses in each 𝜓, which is stored in MapDB. DPM uses a set of shuffle addresses in 𝜓

to scramble data. If DPM provides the same probability for each scrambled address in 𝜓,

it must show the difference between the original addresses, and the scrambled addresses

are not the same, and DPM must not show any relation between addresses. The Figure

8.2 illustrates a statistical model of the first 100 differences between the original addresses

and the scrambled addresses in Equation 1 with the initial parameters of 𝑃0 = 0.999, 𝜇 =

3.684 for the length of 921 bits (𝑛). I Figure 8.2, X-axis represents the address of the

original bit and Y-axis represents the difference between the original address and the final

address in the scrambled bits. The result shows that DPM scrambles data with a uniform

distribution with different differences that does not allow an adversary to find a pattern

between scrambled addresses.

∎

114 | CONCLUSION

In addition, more security analysis has been conducted against DPM which is

discussed in evaluation section of Chapter 3.

As shown in Figure 8.2, there is no pattern between scrambled addresses that allows

an adversary to predict the addresses. For instance, if an adversary knows the first bit

moves to 13th bit when it is scrambled, still he cannot predict that the second bit moves to

48th address, or 3rd bit moves to 180th bit.

 Experimental Setup

We conducted an experiment based on the proposed schema. We used TPC-H (Council

2008) which is a standard database benchmark with the scale of 1 GB. We ran different

queries on Customer dataset. Each submitted query went through the proxy server that ran

DPM and AES encryption separately in order to compare the performance of both

methods on the proposed schema. We use ADO.Net (Lerman 2010) at client side to

retrieve and bind data from the database. DPM and AES encryption were implemented

as a class (Lerman 2010) and written in C#.Net version 4.5, and executed on a PC with

CPU Intel Core i7 with 8 GB RAM.

 Experimental Results

Figures 8.3 and Figure 8.4 show the experimental results for the performance of the

security methods (AES and DPM) on the proposed schema, and Figure 8.5 shows the data

binding latency for different range of queries’ responses.

In Figure 8.3, X-axis represents the number of the fields which were requested by a

user’s query, and Y-axis represents the total response time (millisecond) of AES

encryption, and DPM on the proposed schema. Figure 8.3.a shows the total response time

for 22 queries with a small query range from 9 fields to 9,000 fields with the increase rate

Figure 8.2. The difference between the original address and the scrambled address

115 | CONCLUSION

of 450 fields for each next query. Figure 8.3.b shows the total response time for 9 queries

with a larger query range from 9 fields to 81,000 fields with the increase rate of 9,000 fields

for the next query. As shown in these figures, DPM provides superior performance over

AES encryption. In particular, the response time difference between AES and DPM

increases for the larger queries. Figure 8.4 shows the response time difference between

AES and DPM for the query range of 9 fields to 81,000 fields. In this figure, X-axis

represents the number of requested fields for a given query, and Y-axis represents the

performance difference between AES and DPM. For instance, as shown in this figure,

DPM saves 2,909 milliseconds (~3 seconds) computation time for a database management

system (DBMS) over AES for a query with a request of 54,000 fields.

In another evaluation, we considered data binding latency which assesses the

response time of data binding (retrieving data from the query’s results to the client

objects). Figure 8.5 shows a comparison of data binding latency with different range of

queries. In this figure, the client’s objects need additional computation to fetch data that

causes an additional computation overhead for the first query. The results show that

DPM not only provides better performance on computation time as described in Figure

8.3, it also provides an efficient computation time for data binding.

In addition, some studies on databases, such as CryptDB (Popa et al. 2011) show that

queries can be executed over encrypted database without decryption. Our proposed

method in this study can be used in CryptDB in order to reduce AES encryption

overheads.

 Related Works

To the best of our knowledge, early a limited number of studies have been conducted on

data privacy for cloud-based databases. Most of the studies consider encryption methods,

or role-based data access methods on DBMS side, but any database security method that

runs on a server side cannot protect users’ data privacy.

In an early study, (Denning at al. 1986) proposed a theoretical multilevel database

security which provides the basic idea of role-based access (RBAC) control in database.

Later, (Jonscher et al. 1994) focus on the security of individual queries which cannot be

implemented for all queries. (Osborn et al. 2001) developed an integration of systems

where access control is represented by role graphs. The Osborn’s security system needs

several computation overheads that includes collecting the role of each user, the relation

of roles based on a graph, the integration of the graphs, and an algorithm that needs to

be run on all transactions. In addition, a graph-based algorithm needs heavy

computation, which is not practical for large databases. One of the popular recent study

is by (Popa et al. 2011) CryptDB which considers users’ data privacy, but the database is

116 | CONCLUSION

implemented based on RSA and AES encryption. CryptDB uses a proxy server to encrypt

or decrypt each user’s query. Database likes CryptDB can be extended by using DPM in

order to remove additional computation overheads of AES.

 Chapter summary

Users are facing several challenges when they must outsource their data to a cloud

computing system. First challenge in cloud computing is data privacy because any entity

from the cloud vendor’s side can violate users’ data privacy. Second challenge is data

security because cloud computing is a form of the Internet-based services that need users

to access their data through an untrusted and public network. A cloud-based database

can be compromised by authorized cloud vendor users, or unauthorized users. In this

chapter, we introduced a schema that consists of several components for cloud-based

databases that protect users’ data privacy. In the case of a compromised database, the

data can be only accessible to users who have the key. Although the schema can be

implemented by any encryption method, it uses a light-weight data privacy method

(DPM) that allows users to efficiently protect each record inserted into the database. We

conducted several experiments to evaluate the performance of the proposed schema

while using DPM and AES encryption. The experimental results show that the proposed

schema provides efficient response when DPM is employed. In addition, we analyze the

security of DPM and the level of users’ data protection.

117 | CONCLUSION

(a)

(b)

Figure 8.5. A comparison of data binding latency between AES encryption and DPM

0

25

50

75

100

125

150

175

200

225

250

9 900 1800 2700 3600 4500 5400 6300 7200 8100

R
e

sp
o

n
se

 T
im

e
 (

m
s)

Number of requested fields in query

AES

DPM

0

50

100

150

200

250

300

350

400

450 900 1350 1800 2250 2700 3150

R
es

p
o

n
se

 T
im

e
(m

s)

Number of requested fields in query

AES

DPM

 (a)

 (b)
Figure 8.3. A comparison between AES encryption and DPM on NoSQL databases

 .

Figure 8.4. The response time difference between AES and DPM

0

500

1000

1500

2000

2500

3000

9 900 1800 2700 3600 4950 5850 6750 7650 8550 9000 27000 45000 63000D
iff

er
en

ce
 R

es
po

ns
e

Ti
m

e
of

 A
ES

an
d
D
PM

(m
s)

Number of requested fields in query

118 | CONCLUSION

 Chapter 9

Summary and Conclusions

Cloud computing is a trending technology now. In order to use the advantages of the

cloud, users need to outsource their data and applications to a cloud vendor which plays

as a third-party. Outsourcing data to a third-party adds several challenges to the users,

such as transferring data and application from one vendor to another, transferring data

and application from a vendor to the in-house IT department, and users’ data privacy.

This thesis answers these questions.

Chapter 1 introduces cloud computing architecture, and its services. We explained

different layers of a cloud computing system. We summarized a variety of cloud-based

tools based on the service layer for handling big data.

In Chapter 2, we proposed a Dynamic Cloud Computing Service-Oriented

Architecture (DCCSOA). In this chapter, we explained the most existing issues in the

cloud, such as migration issue between different clouds and in house IT department,

return back data from cloud to in-house IT, data and vendor lock-in issues, a lack of

standardization and customization, and data privacy preservation.

The first goal of this study was to improve the architecture-level issues of the cloud.

The second was to preserve users’ data privacy, and the third goal deal with different use

cases of the two improvements.

First, we introduced DCCSOA in Chapter 2 which yields a dynamic and customizable

service layer (DTSL). The DTSL mitigates the architecture issues by defining a template

which is divided into front-end (FTaaS) and back-end (BTaaS) layers. The defined templates

can be customized by a cloud vendor for different groups of users. DCCSOA also allows

different cloud vendors to offer unified cloud services through a template. Two cloud

vendors are able to define the same FTaaS because each template at FTaaS is independent

119 | CONCLUSION

of native cloud services. Each template maps FTaaS services to BTaaS and each BTaaS is

bound to native cloud services.

We evaluated the DCCSOA based on a well-known Service-Oriented Architecture

evaluation method. The result showed that DCCSOA provides several advantages over

existing cloud architectures and platforms, such as minimal modifications requirement

for providing standardization and customization.

As a future work, we plan to extend DCCSOA performance evaluation on DTSL, such

as scalability of templates and data security protection at DTSL.

The second goal of this study was data privacy preservation in the cloud computing

environment. Data privacy is one of the key challenges for cloud users because users must

outsource their data to cloud in order to use the advantages of cloud computing.

Outsourcing data to cloud computing or performing computation on the data raises a

challenge for user that how the cloud vendor is preserving users’ data privacy against anyone

from inside the cloud including the third-parties of cloud vendors. In Chapter 3, we presented

a light-weight Data Privacy Method (DPM) that makes an obstacle for an attacker from

inside or outside the cloud to access users’ data. The method is a light-weight that allows

users to deploy it on a mobile device, such as a cellphone. DPM can be deployed on client-

side as discussed in Chapter 3, as a server-side which is explained in Chapter 7, or as a

middle box which is described in Chapter 8.

By considering DCCSOA as the host cloud architecture, DPM can be run at BTaaS

that allows a cloud vendor to preserve users’ data privacy.

We developed different scenarios for the proof of concept and for the third goal of

this study, which are described as follows.

In order to efficiently and securely process DPM for preserving users’ data privacy,

we deployed a parallelization model of DPM which is explained in Chapter 4. We used

CUDA, a GPU-based platform, which was introduced by NVIDIA. The parallel computing

model of DPM allows a device to use one or multiple GPUs to perform heavy

computations where each GPU-core consists of thousands of small and low speed cores.

Each submitted task of DPM to a core is required small computation. In this chapter, we

discussed both security level of parallel DPM and the performance of each GPU function.

Chapter 5 describes an extension of DCCSOA for cloud-assisted IoT devices. In

Chapter 6, we presented a scheme that facilitates IoT devices to maintain their data

privacy while each device outsources its data to mobile cloud computing by using DPM.

We implemented the proposed scheme on an IoT simulation tool to investigate the power

consumption and CPU computation overhead when the method is deployed on an IoT

120 | CONCLUSION

device. The experimental results show that the proposed scheme does not introduce

additional power consumption overhead.

In the future, we plan to extend the result of data privacy preservation of cloud-

assisted IoT in Chapter 5 and Chapter 6, by implementing DPM on different IoT devices.

Chapter 7 describes an eHealth template at BTaaS for preserving data privacy in an

electronic healthcare system on DCCSOA. The defined template allows different cloud

vendors to define the same cloud environment for Electronic Health Record (EHR) systems.

In addition, we performed an evaluation by deploying DPM on the proposed

architecture.

We plan to extend the EHR platform by adding more capabilities, such as computing

DPM on GPU for EHR systems.

Finally, DPM can be used as a proxy server (middle box) as explained in Chapter 8 to

preserve users’ data privacy when user wishes to outsource data to a cloud database.

As a future work for Chapter 8, we plan to extend the schema with a zero knowledge

paradigm that allows users to run queries on scrambled dsata without reconstructing

data from database. It will remove additional overheads on the database management

system, and it will allow users to protect their data privacy efficiently.

121

Bibliography

Accorsi, Rafael. "Business process as a service: Chances for remote auditing."Computer

Software and Applications Conference Workshops (COMPSACW), 2011 IEEE 35th

Annual. IEEE, 2011.

Adibi, S., Nilmini Wickramasinghe, and C. Chan. "CCmH: The Cloud Computing

Paradigm for Mobile Health (mHealth)" The International Journal of Soft Computing and

Software Engineering, 3.3 (2013): 403-410.

Ayuso, Jesús, et al. "Optimization of Public Key Cryptography (RSA and ECC) for 16-bits

Devices based on 6LoWPAN." 1st Int. Workshop on the Security of the Internet of Things,

Tokyo, Japan. 2010.

Bahga, Arshdeep, and Vijay K. Madisetti, "Rapid Prototyping of Multitier Cloud-Based

Services and Systems", Computer 46.11 (2013): 76-83.

Bahrami, Mehdi, and Singhal, Mukesh. "The role of cloud computing architecture in big

data." Information granularity, big data, and computational intelligence. Springer

International Publishing, 2015. 275-295.

Bahrami, Mehdi, and Singhal, Mukesh. "DCCSOA: A Dynamic Cloud Computing

Service-Oriented Architecture." Information Reuse and Integration (IRI), 2015 IEEE

International Conference on. IEEE, 2015.

Bahrami, Mehdi, Singhal, Mukesh, "A Light-Weight Permutation based Method for Data

Privacy in Mobile Cloud Computing." Mobile Cloud Computing, Services, and

Engineering (MobileCloud), 2015 3rd IEEE International Conference on. IEEE, 2015.

Bahrami, Mehdi, Singhal, Mukesh and Zixuan Zhuang, "A Cloud-based Web Crawler

Architecture" in 2015 18th Int. Conf. Intelligence in Next Generation Networks:

Innovations in Services, Networks and Clouds (ICIN 2015), Paris, France, IEEE, 2015.

Bahrami, Mehdi, Mukesh Singhal, "A dynamic cloud computing platform for eHealth

systems." 2015 17th International Conference on E-health Networking, Application &

Services (IEEE HealthCom). IEEE, 2015.

Bahrami, Mehdi. "An Evaluation of Security and Privacy Threats for Cloud-based

Applications." Procedia Computer Science 62 (2015): 17-18.

122 | BIBLIOGRAPHY

Bahrami, Mehdi, Li, Dong, and Singhal, Mukesh, Kundu, Ashish “An Efficient Parallel

Implementation of a Light-weight Data Privacy Method for Mobile Cloud Users”

IEEE/ACM SC’16 – DataCloud Workshop, Utah IEEE, 2016.

Bahrami, Mehdi, Khan, Arshia, & Singhal, M. “An Energy Efficient Data Privacy Scheme

for IoT Devices in Mobile Cloud Computing” (IEEE MS 2016), San Francisco, IEEE 2016.

Bahrami, Mehdi, and Mukesh Singhal. "CloudPDB: A light-weight data privacy schema

for cloud-based databases." 2016 International Conference on Computing, Networking

and Communications (ICNC). IEEE, 2016.

Bahrami, Mehdi, Singhal, Mukesh “A Dynamic Cloud Computing Architecture for

Cloud-Assisted Internet-of-Things in the era of Big Data”, Big Data and Computational

Intelligence in Networking, Taylor & Francis LLC, CRC Press, 2016.

Bargiela, Andrzej, and Witold Pedrycz. Granular computing: an introduction. Springer,

2003.

Barry M. Leiner, et al. “A brief history of the internet”, SIGCOMM Comput. Commun.

Rev. 39, 5 (October 2009), 22-31, 2009.

Berner, Eta S. Clinical Decision Support Systems. Springer Science+ Business Media, LLC,

2007.

Bessis, Nik, et al. "The big picture, from grids and clouds to crowds: a data collective

computational intelligence case proposal for managing disasters." P2P, Parallel, Grid,

Cloud and Internet Computing (3PGCIC), 2010 International Conference on. IEEE, 2010.

Bianco, Philip, Rick Kotermanski, and Paulo F. Merson. "Evaluating a service-oriented

architecture", SEI, Carnegie Mellon University, 2007.

Bist, Meenakshi, Manoj Wariya, and Amit Agarwal. "Comparing delta, open stack and

Xen Cloud Platforms: A survey on open source IaaS", Advance Computing Conference

(IACC), 2013 IEEE 3rd International. IEEE, 2013.

Blum, Lenore, Manuel Blum, and Mike Shub. "A simple unpredictable pseudo-random

number generator." SIAM Journal on computing 15.2 (1986): 364-383.

Bogdanov, Andrey, et al. PRESENT: An ultra-lightweight block cipher. Springer Berlin

Heidelberg, 2007.

Bonomi, Flavio, et al. "Fog computing: A platform for internet of things and analytics."

Big Data and Internet of Things: A Roadmap for Smart Environments. Springer

International Publishing, 2014. 169-186.

123 | BIBLIOGRAPHY

Buscema, Massimo, et al. "Auto-Contractive Maps: an artificial adaptive system for data

mining. An application to Alzheimer disease" Current Alzheimer Research 5.5 (2008):

481-498.

Candea, George, Stefan Bucur, and Cristian Zamfir. "Automated software testing as a

service." Proceedings of the 1st ACM symposium on Cloud computing. ACM, 2010.

Cartier C, Paynetitle T (2001-07-30). "Optical Carrier levels (OCx)". Retrieved 01-24-2014.

Chakraborty, Debrup, and Palash Sarkar. "A new mode of encryption providing a

tweakable strong pseudo-random permutation" Fast Software Encryption. Springer

Berlin Heidelberg, 2006.

Chen, Yinong, Zhihui Du, and Marcos García-Acosta, "Robot as a service in cloud

computing", Service Oriented System Engineering (SOSE), 2010 Fifth IEEE International

Symposium on. IEEE, 2010.

Choo, Euijin, et al. "SRMT: A lightweight encryption scheme for secure real-time

multimedia transmission." Multimedia and Ubiquitous Engineering, 2007. MUE'07.

International Conference on. IEEE, 2007.

Council, Transaction Processing Performance. "TPC-H benchmark specification."

Published at http://www. tcp. org/hspec. html (2008).

Cudré-Mauroux, Philippe, et al. "A demonstration of SciDB: a science-oriented DBMS."

Proceedings of the VLDB Endowment 2.2 (2009): 1534-1537.

Curino, Carlo, et al. "Relational cloud: A database-as-a-service for the cloud", 2011.

Daemen, Joan, and Vincent Rijmen, “The design of Rijndael: AES-the advanced

encryption standard”, Springer, 2002.

Daemen, Joan, and Vincent Rijmen. The design of Rijndael: AES-the advanced encryption

standard. Springer Science & Business Media, 2013.

Davenport T H, Dyche J (2013), Big Data in Big Companies, SAS

Denning, Dorothy E., et al. "Views for multilevel database security." Security and Privacy,

1986 IEEE Symposium on. IEEE, 1986.

Digital Compression and Coding of Continuous-Tone Still- Images Requirements and

Guidelines, T.81, ITU retrived on 11/11/2014 at http://www.w3.org/Graphics/JPEG/itu-

t81.pdf

Dinh, Hoang T., et al. "A survey of mobile cloud computing: architecture, applications,

and approaches." Wireless communications and mobile computing 13.18 (2013): 1587-

1611.

http://searchnetworking.techtarget.com/sDefinition/0,,sid7_gci212685,00.html
http://www.w3.org/Graphics/JPEG/itu-t81.pdf
http://www.w3.org/Graphics/JPEG/itu-t81.pdf

124 | BIBLIOGRAPHY

Doelitzscher, Frank, et al. "Private cloud for collaboration and e-Learning services: from

IaaS to SaaS." Computing 91.1 (2011): 23-42.

Doraswamy, Naganand, and Dan Harkins. IPSec: the new security standard for the

Internet, intranets, and virtual private networks. Prentice Hall Professional, 2003.

Dunkels, Adam, Bjorn Gronvall, and Thiemo Voigt. "Contiki-a lightweight and flexible

operating system for tiny networked sensors" Local Computer Networks, 2004. 29th Annual

IEEE International Conference on. IEEE, 2004

Fairhurst, Paul. "Big data and HR analytics." IES Perspectives on HR 2014 (2014): 7.

Fan, Lu, et al. "DACAR platform for eHealth services cloud." Cloud Computing

(CLOUD), 2011 IEEE International Conference on. IEEE, 2011.

Foster, Ian, and Steven Tuecke. "Describing the elephant: The different faces of IT as

service." Queue 3.6 (2005): 26-29.

Gewin, V. “The New Networking Nexus”, Nature, vol.451, no.7181, pp. 1024-1025, 2008.

Gharajedaghi, Jamshid, “Systems thinking: Managing chaos and complexity: A platform

for designing business architecture”, Elsevier, 2011.

Grossman, Robert L., et al. "An overview of the open science data cloud" Proceedings of

the 19th ACM International Symposium on High Performance Distributed Computing.

ACM, 2010.

Gubbi, Jayavardhana, et al. "Internet of Things (IoT): A vision, architectural elements, and

future directions" Future Generation Computer Systems 29.7 (2013): 1645-1660.

Han, Zhang, et al. "A new image encryption algorithm based on chaos system." Robotics,

intelligent systems and signal processing, 2003. Proceedings. 2003 IEEE international

conference on. Vol. 2. IEEE, 2003.

Hanna, Margo. "Data mining in the e-learning domain" Campus-wide information

systems 21.1 (2004): 29-34.

Harrison, Owen, and John Waldron, “AES encryption implementation and analysis on

commodity graphics processing units”, Springer Berlin Heidelberg, 2007.

Hoang, Doan B., and Lingfeng Chen. "Mobile cloud for assistive healthcare (MoCAsH)"

Services Computing Conference (APSCC), 2010 IEEE Asia-Pacific. IEEE, 2010

Howe, Doug, et al. "Big data: The future of biocuration." Nature 455.7209 (2008): 47-50.

Hu, Bo, et al. "A CCRA Based Mass Customization Development for Cloud Services",

Services Computing (SCC), IEEE International Conference on. 2013.

125 | BIBLIOGRAPHY

Huang, Song, Shucai Xiao, and Wu-chun Feng. "On the energy efficiency of graphics

processing units for scientific computing." Parallel & Distributed Processing, IPDPS 2009.

International Symposium on. IEEE, 2009.

Huang, Dijiang. "Mobile cloud computing" IEEE COMSOC Multimedia Communications

Technical Committee (MMTC) E-Letter 6.10 (2011): 27-31.

Hunger, Jens. Business Intelligence as a Service. GRIN Verlag, 2010.

IDC Enterprise Panel, 3Q09, retrieved on October 13, 2013 at

http://blogs.idc.com/ie/?p=730

Itani, Wassim, Ayman Kayssi, and Ali Chehab. "Privacy as a service: Privacy-aware data

storage and processing in cloud computing architectures." Dependable, Autonomic and

Secure Computing, 2009. DASC'09. Eighth IEEE International Conference on. IEEE, 2009.

Jacob, Adam “The Pathologies of Big Data”, Communication of the ACM, Vol.52, No. 8,

pp.36-44, 2009.

Jonscher, Dirk, and Klaus R. Dittrich. "An approach for building secure database

federations." Proceedings of the 20th International Conference on Very Large Data Bases.

Morgan Kaufmann Publishers Inc., 1994.

Josette Rigsby, Studies Confirm Big Data as Key Business Priority, Growth Driver,

retrieved on Jan 21, 2014 at http://siliconangle.com/blog/2012/07/13/studies-confirm-big-

data-as-key-business-priority-growth-driver

Juve, Gideon, E., Vahi, K., Mehta, G., Berriman, B., Berman, B. P., & Maechling, P.

"Scientific workflow applications on Amazon EC2." E-Science Workshops, 2009 5th IEEE

International Conference on. IEEE, 2009.

Katz, Jonathan; Lindell, Yehuda (2007). Introduction to Modern Cryptography: Principles

and Protocols. Chapman and Hall/CRC.

Kaufman, Cynthia C. “Getting Past Capitalism: History, Vision, Hope”, Rowman &

Littlefield, 2012.

Kelly, Jeff “Big Data in the Aviation Industry”, Wikibon, Sep 16, 203, retrieved on March

18, 2014 at: http://wikibon.org/wiki/v/Big_Data_in_the_Aviation_Industry

Killmann, W., Schindler, W.: AIS 31: Functionality Classes and Evaluation Methodology

for True (Physical) Random Number Generators, version 3.1, Bundesamt für Sicherheit

in der Informationstechnik (BSI), Bonn (2001)

Kocarev, Ljupčo. "Chaos-based cryptography: a brief overview." Circuits and Systems

Magazine, IEEE 1.3 (2001): 6-21.

http://blogs.idc.com/ie/?p=730
http://wikibon.org/wiki/v/Big_Data_in_the_Aviation_Industry

126 | BIBLIOGRAPHY

Kumar, Karthik, and Yung-Hsiang Lu. "Cloud computing for mobile users: Can

offloading computation save energy?" Computer 43.4 (2010): 51-56.

Landau, Susan. "Highlights from Making Sense of Snowden, Part II: What's Significant in

the NSA Revelations" Security & Privacy, IEEE 12.1 (2014): 62-64.

Laur, Sven, Riivo Talviste, and Jan Willemson. "From oblivious AES to efficient and

secure database join in the multiparty setting." Applied Cryptography and Network

Security. Springer Berlin Heidelberg, 2013.

Lerman, J. Programming Entity Framework: Building Data Centric Apps with the ADO.

NET Entity Framework. " O'Reilly Media, 2010.

Li, Qinjian, et al. "Implementation and analysis of AES encryption on GPU." High

Performance Computing and Communication & 2012 IEEE 9th International Conference

on Embedded Software and Systems (HPCC-ICESS), 2012 IEEE 14th International

Conference on. IEEE, 2012.

Li, Qing, et al. "Applications integration in a hybrid cloud computing environment:

modelling and platform." Enterprise Information Systems 7.3 (2013): 237-271.

Lian, Shiguo, Jinsheng Sun, and Zhiquan Wang. "A novel image encryption scheme

based-on JPEG encoding." Information Visualisation, 2004. IV 2004. Proceedings. Eighth

International Conference on. IEEE, 2004.

Liu, Fang, et al. "NIST cloud computing reference architecture." NIST special publication

500 (2011): 292.

Lounis, Ahmed, et al. "Secure and scalable cloud-based architecture for e-health wireless

sensor networks." Computer communications and networks (ICCCN), 2012 21st

international conference on. IEEE, 2012.

Magableh, Basel, and Michela Bertolotto, "A Dynamic Rule-based Approach for Self-

adaptive Map Personalisation Services", International Journal of Soft Computing and

Software Engineering, vol.3. no.3, 104, March 2013.

Manavski, Svetlin. "CUDA compatible GPU as an efficient hardware accelerator for AES

cryptography." Signal Processing and Communications, 2007. ICSPC 2007. IEEE 2007.

Manssen, Markus, Martin Weigel, and Alexander K. Hartmann. "Random number

generators for massively parallel simulations on GPU." The European Physical Journal

Special Topics 210.1 (2012): 53-71.

Manyika, James, et al. "Big data: The next frontier for innovation, competition, and

productivity." (2011).

127 | BIBLIOGRAPHY

Marin, Leandro, Antonio Jara, and Antonio Skarmeta Gomez, "Shifting primes:

Optimizing elliptic curve cryptography for 16-bit devices without hardware multiplier."

Mathematical and Computer Modelling 58.5 (2013): 1155-1174.

Marx, Vivien. "Biology: The big challenges of big data." Nature 498.7453 (2013): 255-260.

Matheson, David, and James E. Matheson, “The Smart Organization: Creating Value

through Strategic”, Rand D. Harvard Business Press, 1998.

McAfee, Andrew, and Erik Brynjolfsson. "Big data: the management revolution."

Harvard business review 90.10 (2012): 60-66.

McHugh, Mary L. "The chi-square test of independence." Biochemia Medica 23.2 (2013):

143-149.

Metsch, Thijs, and Andy Edmonds. "Open Cloud Computing Interface–Infrastructure”,

no. GFD-R in The Open Grid Forum Document Series, Open Cloud Computing Interface

(OCCI) Working Group, Muncie (IN). 2010.

Moreno-Vozmediano, Rafael, et.al. "Key challenges in cloud computing: Enabling the

future internet of services", Internet Computing, IEEE 17.4 (2013): 18-25, 2013.

Oikawa, Minoru, et al. "DS-CUDA: a middleware to use many GPUs in the cloud

environment." High Performance Computing, Networking, Storage and Analysis (SCC),

2012 SC Companion:. IEEE, 2012.

Osborn, Sylvia. "Database security integration using role-based access control." Data and

Application Security. Springer US, 2001.

Osvik, Dag Arne, et al. "Fast software AES encryption" Fast Software Encryption.

Springer Berlin Heidelberg, 2010.

Pal, Subhankar, and Tirthankar Pal. "TSaaS—Customized telecom app hosting on cloud"

Internet Multimedia Systems Architecture and Application (IMSAA), 2011 IEEE 5th

International Conference on. IEEE, 2011.

Pedrycz, W., Granular Computing: Analysis and Design of Intelligent Systems, CRC

Press/Francis Taylor, Boca Raton, 2013

Perrey, Randall, and Mark Lycett. "Service-oriented architecture." Applications and the

Internet Workshops, 2003. Proceedings. 2003 Symposium on. IEEE, 2003.

Pine, B. Joseph., “Mass customization: the new frontier in business competition”,

Harvard Business Press, 1999.

128 | BIBLIOGRAPHY

Podesser, Martina, Hans-Peter Schmidt, and Andreas Uhl. "Selective bitplane encryption

for secure transmission of image data in mobile environments." Proceedings of the 5th

IEEE Nordic Signal Processing Symposium (NORSIG’02). 2002.

Popa, Raluca Ada, et al. "CryptDB: protecting confidentiality with encrypted query

processing." Proceedings of the Twenty-Third ACM Symposium on Operating Systems

Principles. ACM, 2011.

Ra, Moo-Ryong, Ramesh Govindan, and Antonio Ortega. "P3: Toward Privacy-

Preserving Photo Sharing" NSDI. 2013.

Resnick, Steve, Richard Crane, and Chris Bowen, “Essential windows communication

foundation: for .Net framework 3.5”, Addison-Wesley Professional, 2008.

Ristenpart, Thomas, et al. "Hey, you, get off of my cloud: exploring information leakage

in third-party compute clouds" Proceedings of the 16th ACM conference on Computer

and communications security. ACM, 2009

Rittinghouse, John W., and James F. Ransome. Cloud computing: implementation,

management, and security. CRC press, 2009.

Rodrigues, Joel JPC, ed. “Health Information Systems: Concepts, Methodologies, Tools,

and Applications”, Vol. 1. IGI Global, 2009.

Rodrigues, Joel JPC, et al. "Analysis of the security and privacy requirements of cloud-

based Electronic Health Records Systems" Journal of medical Internet research 15.8

(2013).

Rodrigues, Joel JPC, et al. "Distributed media-aware flow scheduling in cloud computing

environment" Computer Communications 35.15 (2012): 1819-1827.

Sasikala, P. "Research challenges and potential green technological applications in cloud

computing", International Journal of Cloud Computing 2.1 (2013).

Schonfeld, Erick, Google Processing 20,000 Terabytes A Day, And Growing, retrieved

on Jan 21, 2014 at http://techcrunch.com/2008/01/09/google-processing-20000-terabytes-

a-day-and-growing/

Shayan, J., Azarnik, A., et al.,"Identifying Benefits and risks associated with utilizing

cloud computing", International Journal of Soft Computing and Software Engineering,

Vol. 3, No. 3, pp. 416-421, 2013.

Shannon, C.E. “Communication Theory of Secrecy Systems", Bell System Tech. J., Vol. 28,

1949, pp. 656-715.

http://techcrunch.com/2008/01/09/google-processing-20000-terabytes-a-day-and-growing/
http://techcrunch.com/2008/01/09/google-processing-20000-terabytes-a-day-and-growing/

129 | BIBLIOGRAPHY

Shao, Fei, Zinan Chang, and Yi Zhang. "AES encryption algorithm based on the high

performance computing of GPU." Communication Software and Networks, 2010.

ICCSN'10. Second International Conference on. IEEE, 2010.

Siegel, Carolyn F. "Introducing marketing students to business intelligence using project-

based learning on the world wide web." Journal of Marketing Education 22.2 (2000): 90-

98.

Singhal, Mukesh, "A Client-centric Approach to Interoperable Clouds", International

Journal of Soft Computing and Software Engineering, Vol. 3, No. 3, pp. 3-4, 2013.

Singhal, Mukesh, Santosh Chandrasekhar, Gail-Joon Ahn, Elisa Bertino, Ram Krishnan,

Ravi Sandhu and Ge Tingjian, “Collaboration in Multi-Cloud Systems: Framework and

Security Issues”, IEEE Computer, Vol 46, No 2, February 2013, pp. 76-84.

Stanik, Alexander, Matthias Hovestadt, and Odej Kao. "Hardware as a Service (HaaS):

The completion of the cloud stack." Computing Technology and Information

Management (ICCM), 2012 8th International Conference on. Vol. 2. IEEE, 2012.

Stojanovski, Toni, and Ljupco Kocarev. "Chaos-based random number generators-part I:

analysis [cryptography]." IEEE Transactions on Circuits and Systems I: Fundamental

Theory and Applications 48.3 (2001): 281-288.

Suttisirikul, Kiatchumpol, and Putchong Uthayopas. "Accelerating the cloud backup

using gpu based data deduplication." Parallel and Distributed Systems (ICPADS), 2012

IEEE 18th International Conference on. IEEE, 2012.

Tan, Wei, et al. "Social-Network-Sourced Big Data Analytics" Internet Computing, IEEE

17.5 (2013): 62-69.

Thomas, David Barrie, Lee Howes, and Wayne Luk. "A comparison of CPUs, GPUs,

FPGAs, and massively parallel processor arrays for random number generation."

Proceedings of the ACM/SIGDA international symposium on Field programmable gate

arrays. ACM, 2009.

Truong, Hong-Linh, and Schahram Dustdar. "On analyzing and specifying concerns for

data as a service." Services Computing Conference, 2009. APSCC 2009. IEEE Asia-Pacific.

IEEE, 2009.

Tsai, Wei-Tek, Xin Sun, and Janaka Balasooriya, "Service-oriented cloud computing

architecture", Information Technology: New Generations (ITNG), 2010 Seventh

International Conference on. IEEE, 2010.

Tsai, Wei-Tek, et al. "SimSaaS: simulation software-as-a-service", Proceedings of the 44th

Annual Simulation Symposium. Society for Computer Simulation International, 2011.

130 | BIBLIOGRAPHY

Tsoi, Kuen Hung, K. H. Leung, and Philip Heng Wai Leong. "Compact FPGA-based true

and pseudo random number generators." Field-Programmable Custom Computing

Machines, FCCM 2003. 11th Annual IEEE Symposium on. IEEE, 2003.

Wang, Wei, et al. "Accelerating fully homomorphic encryption using GPU." High

Performance Extreme Computing (HPEC), 2012 IEEE Conference on. IEEE, 2012.

Wei-Tek Tsai, Wu Li, Hessam Sarjoughian, and Qihong Shao. 2011. SimSaaS: simulation

software-as-a-service. In Proceedings of the 44th Annual Simulation Symposium (ANSS

'11). Society for Computer Simulation International, San Diego, CA, USA, 77-86.

Wilson, Lori A. "Survey on Big Data gathers input from materials community" MRS

Bulletin 38.09 (2013): 751-753.

Xu, Meng, et al. "Cloud computing boosts business intelligence of telecommunication

industry." Cloud Computing. Springer Berlin Heidelberg, 2009. 224-231.

Ye, Guodong. "Image scrambling encryption algorithm of pixel bit based on chaos map."

Pattern Recognition Letters 31.5 (2010): 347-354.

Yoshikawa, Masaya, and Hikaru Goto. "Security Verification Simulator for Fault Analysis

Attacks", International Journal of Soft Computing and Software Engineering, vol.3, no.3,

71, March 2013.

Young, Mark “Automotive innovation: big data driving the changes”, retrieved Jan

26,2014 at http://www.thebigdatainsightgroup.com/site/article/automotive-innovation-

big-data-driving-changes

Zhang, Liang-Jie, and Qun Zhou, "CCOA: Cloud computing open architecture", Web

Services, ICWS 2009. IEEE International Conference on. IEEE, 2009.

Zhang, Tao, and Xianfeng Li. "Evaluating and analyzing the performance of RPL in

contiki." Proc. of the first int. workshop on Mobile sensing, computing and

communication. ACM, 2014.

Zibin Zheng; Jieming Zhu; Lyu, M.R., "Service-Generated Big Data and Big Data-as-a-

Service: An Overview," Big Data (BigData Congress), 2013 IEEE International Congress

on, vol., no., pp.403,410, June 27 2013-July 2 2013

Zorrilla, Marta, and Diego García-Saiz. "A service oriented architecture to provide data

mining services for non-expert data miners." Decision Support Systems 55.1 (2013): 399-

411.

	A Dynamic Cloud with Data Privacy Preservation
	Abstract
	Contents
	List of Figures
	List of Tables
	List of Algorithms
	List of Codes
	Acknowledgements
	Organization of this thesis and contributions
	1. Chapter 1
	Introduction
	1.1 Introduction
	1.2 Big Data Definition
	1.3 Opportunities and Challenges
	I. Storage Issues
	II. Computing Issues
	III. Transfer Issues

	1.4 Cloud Computing
	I. On-demand Elastic Service
	II. Resource pooling
	III. Service Accessibility
	IV. Measured Service
	1.4.2 Cloud Architecture
	I. The Role of Infrastructure-as-a-Service (IaaS)
	II. The Role of Platform-as-a-Service (PaaS)
	III. The Role of Software-as-a-Service (SaaS)
	IV. The Role of Business Intelligence (BI)
	V. Other Service Layers

	1.5 Big Data Tools
	1.6 Implementation Models of Cloud Computing Systems
	1.7 Cloud Computing Issues
	1.8 Chapter Summary
	2. Chapter 2
	Dynamic Cloud Architecture
	2.1 Introduction
	2.2 Motivation
	2.3 Related Work
	2.3.1 Conceptual Level
	2.3.2 Architecture Level
	2.3.3 Implementation Level

	2.4 The Proposed Architecture
	2.4.1 DCCSOA Components
	I. Dynamic Template Service Layer (DTSL):
	II. Cloud Client Dashboard (CCD)
	III. Cloud Vendor Dashboard (CVD)
	IV. User Governing Services (UGS)
	V. Cloud Governing Services (CGS)
	VI. Virtualization Services (VS)

	2.5 Advantages of the Proposed Architecture
	I. Customizable architecture
	II. Flexibility and accessibility
	III. Dynamic Abstraction
	IV. Portability of applications and data in cloud
	V. Cloud Vendor Devolution
	VI. Security
	VII. Standardization

	2.6 A Framework for Comparison of DCCSOA to Related Work
	2.7 Summary of chapter
	3. Chapter 3
	Data Privacy Preservation in Cloud
	3.1 Introduction
	3.2 Background
	3.3 The Proposed Method
	3.3.1 Disassembly Phase
	3.3.2 Pattern
	3.3.3 Scrambling of the content
	3.3.4 Assembly a file

	3.4 Evaluation of the proposed method
	3.4.1 Implementation
	3.4.2 Experimental Setup
	3.4.3 The result of the experiment
	3.4.4 Statistical Model

	3.5 Security Attack Scenarios
	3.5.1 Scenario 1
	3.5.2 Scenario 2
	3.5.3 Scenario 3
	3.5.4 Scenario 4

	3.6 Related Works
	3.7 Summary of chapter
	3.8 Acknowledgement
	4. Chapter 4
	Parallel DPM for Mobile Cloud Users
	4.1 Introduction
	4.1.1 Cloud Computing
	4.1.2 Parallel Computing

	4.2 Threat Model
	4.3 Motivation
	4.4 Related Work
	4.5 Background of the study
	4.6 The proposed method
	4.6.1 Generating 𝝃
	4.6.2 Appling 𝝃 to 𝓜

	4.7 Evaluation of Proposed Method
	4.7.1 Experimental setup
	4.7.2 Experimental Results

	4.8 Security Analysis
	4.9 Summary of Chapter
	5. Chapter 5
	Cloud-Assisted IoT based on DCCSOA
	5.1 Introduction
	5.1.1 Cloud Computing Paradigm
	5.1.2 Internet-of-Things (IoT) Paradigm
	5.1.3 Convergence of IoT and the Cloud (Cloud-Assisted IoT)

	5.2 Challenges in Cloud-Assisted IoT
	5.3 A DCCSOA-based Architecture for Cloud-Assisted IoT
	5.4 Big data processing on DCCSOA for cloud-assisted IoT
	5.4.1 Volume
	5.4.2 Velocity
	5.4.3 Variety
	5.4.4 Veracity

	5.5 Advantages of DCCSOA for cloud-assisted IoT
	5.5.1 Standardization
	5.5.2 Customization of architecture
	5.5.3 Data Security

	5.6 Summary of Chapter
	6. Chapter 6
	DPM for Cloud-Assisted IoT
	6.1 Introduction
	6.1.1 Resource Limitation
	6.1.2 Data Privacy

	6.2 Data Privacy for IoT Devices
	6.3 Motivation
	6.4 IoT devices and their limitation
	6.5 Related Works
	6.6 The Proposed data privacy Scheme for IoT Devices
	6.7 Experimental Setup
	6.8 Experimental Results
	6.9 Summary of Chapter
	7. Chapter 7
	An EHR Platform based on DCCSOA
	7.1 Introduction
	7.1.1 Migration of EHR systems
	7.1.2 Data Security of EHR systems
	7.1.3 Data Privacy of EHR systems

	7.2 Background
	7.3 The proposed EHR platform
	7.4 Experimental Setup
	7.5 Experimental Results
	7.6 Related Work
	7.7 Summary of chapter
	8. Chapter 8
	Data Privacy Preservation for Cloud-based Databases
	8.1 Introduction
	8.2 Background
	8.2.1 Security parameters of DPM
	I. The size of chunks
	II. The number of repeated initial parameters

	8.3 The proposed DPM-based Schema for cloud databases
	8.4 Security Analysis
	8.5 Experimental Setup
	8.6 Experimental Results
	8.7 Related Works
	8.8 Chapter summary
	9. Chapter 9
	Summary and Conclusions
	Bibliography
	Accorsi, Rafael. "Business process as a service: Chances for remote auditing."Computer Software and Applications Conference Workshops (COMPSACW), 2011 IEEE 35th Annual. IEEE, 2011.
	Adibi, S., Nilmini Wickramasinghe, and C. Chan. "CCmH: The Cloud Computing Paradigm for Mobile Health (mHealth)" The International Journal of Soft Computing and Software Engineering, 3.3 (2013): 403-410.
	Ayuso, Jesús, et al. "Optimization of Public Key Cryptography (RSA and ECC) for 16-bits Devices based on 6LoWPAN." 1st Int. Workshop on the Security of the Internet of Things, Tokyo, Japan. 2010.
	Bahga, Arshdeep, and Vijay K. Madisetti, "Rapid Prototyping of Multitier Cloud-Based Services and Systems", Computer 46.11 (2013): 76-83.
	Bahrami, Mehdi, and Singhal, Mukesh. "The role of cloud computing architecture in big data." Information granularity, big data, and computational intelligence. Springer International Publishing, 2015. 275-295.
	Bahrami, Mehdi, and Singhal, Mukesh. "DCCSOA: A Dynamic Cloud Computing Service-Oriented Architecture." Information Reuse and Integration (IRI), 2015 IEEE International Conference on. IEEE, 2015.
	Bahrami, Mehdi, Singhal, Mukesh, "A Light-Weight Permutation based Method for Data Privacy in Mobile Cloud Computing." Mobile Cloud Computing, Services, and Engineering (MobileCloud), 2015 3rd IEEE International Conference on. IEEE, 2015.
	Bahrami, Mehdi, Singhal, Mukesh and Zixuan Zhuang, "A Cloud-based Web Crawler Architecture" in 2015 18th Int. Conf. Intelligence in Next Generation Networks: Innovations in Services, Networks and Clouds (ICIN 2015), Paris, France, IEEE, 2015.
	Bahrami, Mehdi, Mukesh Singhal, "A dynamic cloud computing platform for eHealth systems." 2015 17th International Conference on E-health Networking, Application & Services (IEEE HealthCom). IEEE, 2015.
	Bahrami, Mehdi. "An Evaluation of Security and Privacy Threats for Cloud-based Applications." Procedia Computer Science 62 (2015): 17-18.
	Bahrami, Mehdi, Li, Dong, and Singhal, Mukesh, Kundu, Ashish “An Efficient Parallel Implementation of a Light-weight Data Privacy Method for Mobile Cloud Users” IEEE/ACM SC’16 – DataCloud Workshop, Utah IEEE, 2016.
	Bahrami, Mehdi, Khan, Arshia, & Singhal, M. “An Energy Efficient Data Privacy Scheme for IoT Devices in Mobile Cloud Computing” (IEEE MS 2016), San Francisco, IEEE 2016.
	Bahrami, Mehdi, and Mukesh Singhal. "CloudPDB: A light-weight data privacy schema for cloud-based databases." 2016 International Conference on Computing, Networking and Communications (ICNC). IEEE, 2016.
	Bahrami, Mehdi, Singhal, Mukesh “A Dynamic Cloud Computing Architecture for Cloud-Assisted Internet-of-Things in the era of Big Data”, Big Data and Computational Intelligence in Networking, Taylor & Francis LLC, CRC Press, 2016.
	Bargiela, Andrzej, and Witold Pedrycz. Granular computing: an introduction. Springer, 2003.
	Barry M. Leiner, et al. “A brief history of the internet”, SIGCOMM Comput. Commun. Rev. 39, 5 (October 2009), 22-31, 2009.
	Berner, Eta S. Clinical Decision Support Systems. Springer Science+ Business Media, LLC, 2007.
	Bessis, Nik, et al. "The big picture, from grids and clouds to crowds: a data collective computational intelligence case proposal for managing disasters." P2P, Parallel, Grid, Cloud and Internet Computing (3PGCIC), 2010 International Conference on. IE...
	Bianco, Philip, Rick Kotermanski, and Paulo F. Merson. "Evaluating a service-oriented architecture", SEI, Carnegie Mellon University, 2007.
	Bist, Meenakshi, Manoj Wariya, and Amit Agarwal. "Comparing delta, open stack and Xen Cloud Platforms: A survey on open source IaaS", Advance Computing Conference (IACC), 2013 IEEE 3rd International. IEEE, 2013.
	Blum, Lenore, Manuel Blum, and Mike Shub. "A simple unpredictable pseudo-random number generator." SIAM Journal on computing 15.2 (1986): 364-383.
	Bogdanov, Andrey, et al. PRESENT: An ultra-lightweight block cipher. Springer Berlin Heidelberg, 2007.
	Bonomi, Flavio, et al. "Fog computing: A platform for internet of things and analytics." Big Data and Internet of Things: A Roadmap for Smart Environments. Springer International Publishing, 2014. 169-186.
	Buscema, Massimo, et al. "Auto-Contractive Maps: an artificial adaptive system for data mining. An application to Alzheimer disease" Current Alzheimer Research 5.5 (2008): 481-498.
	Candea, George, Stefan Bucur, and Cristian Zamfir. "Automated software testing as a service." Proceedings of the 1st ACM symposium on Cloud computing. ACM, 2010.
	Cartier C, Paynetitle T (2001-07-30). "Optical Carrier levels (OCx)". Retrieved 01-24-2014.
	Chakraborty, Debrup, and Palash Sarkar. "A new mode of encryption providing a tweakable strong pseudo-random permutation" Fast Software Encryption. Springer Berlin Heidelberg, 2006.
	Chen, Yinong, Zhihui Du, and Marcos García-Acosta, "Robot as a service in cloud computing", Service Oriented System Engineering (SOSE), 2010 Fifth IEEE International Symposium on. IEEE, 2010.
	Choo, Euijin, et al. "SRMT: A lightweight encryption scheme for secure real-time multimedia transmission." Multimedia and Ubiquitous Engineering, 2007. MUE'07. International Conference on. IEEE, 2007.
	Council, Transaction Processing Performance. "TPC-H benchmark specification." Published at http://www. tcp. org/hspec. html (2008).
	Cudré-Mauroux, Philippe, et al. "A demonstration of SciDB: a science-oriented DBMS." Proceedings of the VLDB Endowment 2.2 (2009): 1534-1537.
	Curino, Carlo, et al. "Relational cloud: A database-as-a-service for the cloud", 2011.
	Daemen, Joan, and Vincent Rijmen, “The design of Rijndael: AES-the advanced encryption standard”, Springer, 2002.
	Daemen, Joan, and Vincent Rijmen. The design of Rijndael: AES-the advanced encryption standard. Springer Science & Business Media, 2013.
	Davenport T H, Dyche J (2013), Big Data in Big Companies, SAS
	Denning, Dorothy E., et al. "Views for multilevel database security." Security and Privacy, 1986 IEEE Symposium on. IEEE, 1986.
	Digital Compression and Coding of Continuous-Tone Still- Images Requirements and Guidelines, T.81, ITU retrived on 11/11/2014 at http://www.w3.org/Graphics/JPEG/itu-t81.pdf
	Dinh, Hoang T., et al. "A survey of mobile cloud computing: architecture, applications, and approaches." Wireless communications and mobile computing 13.18 (2013): 1587-1611.
	Doelitzscher, Frank, et al. "Private cloud for collaboration and e-Learning services: from IaaS to SaaS." Computing 91.1 (2011): 23-42.
	Doraswamy, Naganand, and Dan Harkins. IPSec: the new security standard for the Internet, intranets, and virtual private networks. Prentice Hall Professional, 2003.
	Dunkels, Adam, Bjorn Gronvall, and Thiemo Voigt. "Contiki-a lightweight and flexible operating system for tiny networked sensors" Local Computer Networks, 2004. 29th Annual IEEE International Conference on. IEEE, 2004
	Fairhurst, Paul. "Big data and HR analytics." IES Perspectives on HR 2014 (2014): 7.
	Fan, Lu, et al. "DACAR platform for eHealth services cloud." Cloud Computing (CLOUD), 2011 IEEE International Conference on. IEEE, 2011.
	Foster, Ian, and Steven Tuecke. "Describing the elephant: The different faces of IT as service." Queue 3.6 (2005): 26-29.
	Gewin, V. “The New Networking Nexus”, Nature, vol.451, no.7181, pp. 1024-1025, 2008.
	Gharajedaghi, Jamshid, “Systems thinking: Managing chaos and complexity: A platform for designing business architecture”, Elsevier, 2011.
	Grossman, Robert L., et al. "An overview of the open science data cloud" Proceedings of the 19th ACM International Symposium on High Performance Distributed Computing. ACM, 2010.
	Gubbi, Jayavardhana, et al. "Internet of Things (IoT): A vision, architectural elements, and future directions" Future Generation Computer Systems 29.7 (2013): 1645-1660.
	Han, Zhang, et al. "A new image encryption algorithm based on chaos system." Robotics, intelligent systems and signal processing, 2003. Proceedings. 2003 IEEE international conference on. Vol. 2. IEEE, 2003.
	Hanna, Margo. "Data mining in the e-learning domain" Campus-wide information systems 21.1 (2004): 29-34.
	Harrison, Owen, and John Waldron, “AES encryption implementation and analysis on commodity graphics processing units”, Springer Berlin Heidelberg, 2007.
	Hoang, Doan B., and Lingfeng Chen. "Mobile cloud for assistive healthcare (MoCAsH)" Services Computing Conference (APSCC), 2010 IEEE Asia-Pacific. IEEE, 2010
	Howe, Doug, et al. "Big data: The future of biocuration." Nature 455.7209 (2008): 47-50.
	Hu, Bo, et al. "A CCRA Based Mass Customization Development for Cloud Services", Services Computing (SCC), IEEE International Conference on. 2013.
	Huang, Song, Shucai Xiao, and Wu-chun Feng. "On the energy efficiency of graphics processing units for scientific computing." Parallel & Distributed Processing, IPDPS 2009. International Symposium on. IEEE, 2009.
	Huang, Dijiang. "Mobile cloud computing" IEEE COMSOC Multimedia Communications Technical Committee (MMTC) E-Letter 6.10 (2011): 27-31.
	Hunger, Jens. Business Intelligence as a Service. GRIN Verlag, 2010.
	IDC Enterprise Panel, 3Q09, retrieved on October 13, 2013 at http://blogs.idc.com/ie/?p=730
	Itani, Wassim, Ayman Kayssi, and Ali Chehab. "Privacy as a service: Privacy-aware data storage and processing in cloud computing architectures." Dependable, Autonomic and Secure Computing, 2009. DASC'09. Eighth IEEE International Conference on. IEEE, ...
	Jacob, Adam “The Pathologies of Big Data”, Communication of the ACM, Vol.52, No. 8, pp.36-44, 2009.
	Jonscher, Dirk, and Klaus R. Dittrich. "An approach for building secure database federations." Proceedings of the 20th International Conference on Very Large Data Bases. Morgan Kaufmann Publishers Inc., 1994.
	Josette Rigsby, Studies Confirm Big Data as Key Business Priority, Growth Driver, retrieved on Jan 21, 2014 at http://siliconangle.com/blog/2012/07/13/studies-confirm-big-data-as-key-business-priority-growth-driver
	Juve, Gideon, E., Vahi, K., Mehta, G., Berriman, B., Berman, B. P., & Maechling, P. "Scientific workflow applications on Amazon EC2." E-Science Workshops, 2009 5th IEEE International Conference on. IEEE, 2009.
	Katz, Jonathan; Lindell, Yehuda (2007). Introduction to Modern Cryptography: Principles and Protocols. Chapman and Hall/CRC.
	Kaufman, Cynthia C. “Getting Past Capitalism: History, Vision, Hope”, Rowman & Littlefield, 2012.
	Kelly, Jeff “Big Data in the Aviation Industry”, Wikibon, Sep 16, 203, retrieved on March 18, 2014 at: http://wikibon.org/wiki/v/Big_Data_in_the_Aviation_Industry
	Killmann, W., Schindler, W.: AIS 31: Functionality Classes and Evaluation Methodology for True (Physical) Random Number Generators, version 3.1, Bundesamt für Sicherheit in der Informationstechnik (BSI), Bonn (2001)
	Kocarev, Ljupčo. "Chaos-based cryptography: a brief overview." Circuits and Systems Magazine, IEEE 1.3 (2001): 6-21.
	Kumar, Karthik, and Yung-Hsiang Lu. "Cloud computing for mobile users: Can offloading computation save energy?" Computer 43.4 (2010): 51-56.
	Landau, Susan. "Highlights from Making Sense of Snowden, Part II: What's Significant in the NSA Revelations" Security & Privacy, IEEE 12.1 (2014): 62-64.
	Laur, Sven, Riivo Talviste, and Jan Willemson. "From oblivious AES to efficient and secure database join in the multiparty setting." Applied Cryptography and Network Security. Springer Berlin Heidelberg, 2013.
	Lerman, J. Programming Entity Framework: Building Data Centric Apps with the ADO. NET Entity Framework. " O'Reilly Media, 2010.
	Li, Qinjian, et al. "Implementation and analysis of AES encryption on GPU." High Performance Computing and Communication & 2012 IEEE 9th International Conference on Embedded Software and Systems (HPCC-ICESS), 2012 IEEE 14th International Conference on...
	Li, Qing, et al. "Applications integration in a hybrid cloud computing environment: modelling and platform." Enterprise Information Systems 7.3 (2013): 237-271.
	Lian, Shiguo, Jinsheng Sun, and Zhiquan Wang. "A novel image encryption scheme based-on JPEG encoding." Information Visualisation, 2004. IV 2004. Proceedings. Eighth International Conference on. IEEE, 2004.
	Liu, Fang, et al. "NIST cloud computing reference architecture." NIST special publication 500 (2011): 292.
	Lounis, Ahmed, et al. "Secure and scalable cloud-based architecture for e-health wireless sensor networks." Computer communications and networks (ICCCN), 2012 21st international conference on. IEEE, 2012.
	Magableh, Basel, and Michela Bertolotto, "A Dynamic Rule-based Approach for Self-adaptive Map Personalisation Services", International Journal of Soft Computing and Software Engineering, vol.3. no.3, 104, March 2013.
	Manavski, Svetlin. "CUDA compatible GPU as an efficient hardware accelerator for AES cryptography." Signal Processing and Communications, 2007. ICSPC 2007. IEEE 2007.
	Manssen, Markus, Martin Weigel, and Alexander K. Hartmann. "Random number generators for massively parallel simulations on GPU." The European Physical Journal Special Topics 210.1 (2012): 53-71.
	Manyika, James, et al. "Big data: The next frontier for innovation, competition, and productivity." (2011).
	Marin, Leandro, Antonio Jara, and Antonio Skarmeta Gomez, "Shifting primes: Optimizing elliptic curve cryptography for 16-bit devices without hardware multiplier." Mathematical and Computer Modelling 58.5 (2013): 1155-1174.
	Marx, Vivien. "Biology: The big challenges of big data." Nature 498.7453 (2013): 255-260.
	Matheson, David, and James E. Matheson, “The Smart Organization: Creating Value through Strategic”, Rand D. Harvard Business Press, 1998.
	McAfee, Andrew, and Erik Brynjolfsson. "Big data: the management revolution." Harvard business review 90.10 (2012): 60-66.
	McHugh, Mary L. "The chi-square test of independence." Biochemia Medica 23.2 (2013): 143-149.
	Metsch, Thijs, and Andy Edmonds. "Open Cloud Computing Interface–Infrastructure”, no. GFD-R in The Open Grid Forum Document Series, Open Cloud Computing Interface (OCCI) Working Group, Muncie (IN). 2010.
	Moreno-Vozmediano, Rafael, et.al. "Key challenges in cloud computing: Enabling the future internet of services", Internet Computing, IEEE 17.4 (2013): 18-25, 2013.
	Oikawa, Minoru, et al. "DS-CUDA: a middleware to use many GPUs in the cloud environment." High Performance Computing, Networking, Storage and Analysis (SCC), 2012 SC Companion:. IEEE, 2012.
	Osborn, Sylvia. "Database security integration using role-based access control." Data and Application Security. Springer US, 2001.
	Osvik, Dag Arne, et al. "Fast software AES encryption" Fast Software Encryption. Springer Berlin Heidelberg, 2010.
	Pal, Subhankar, and Tirthankar Pal. "TSaaS—Customized telecom app hosting on cloud" Internet Multimedia Systems Architecture and Application (IMSAA), 2011 IEEE 5th International Conference on. IEEE, 2011.
	Pedrycz, W., Granular Computing: Analysis and Design of Intelligent Systems, CRC Press/Francis Taylor, Boca Raton, 2013
	Perrey, Randall, and Mark Lycett. "Service-oriented architecture." Applications and the Internet Workshops, 2003. Proceedings. 2003 Symposium on. IEEE, 2003.
	Pine, B. Joseph., “Mass customization: the new frontier in business competition”, Harvard Business Press, 1999.
	Podesser, Martina, Hans-Peter Schmidt, and Andreas Uhl. "Selective bitplane encryption for secure transmission of image data in mobile environments." Proceedings of the 5th IEEE Nordic Signal Processing Symposium (NORSIG’02). 2002.
	Popa, Raluca Ada, et al. "CryptDB: protecting confidentiality with encrypted query processing." Proceedings of the Twenty-Third ACM Symposium on Operating Systems Principles. ACM, 2011.
	Ra, Moo-Ryong, Ramesh Govindan, and Antonio Ortega. "P3: Toward Privacy-Preserving Photo Sharing" NSDI. 2013.
	Resnick, Steve, Richard Crane, and Chris Bowen, “Essential windows communication foundation: for .Net framework 3.5”, Addison-Wesley Professional, 2008.
	Ristenpart, Thomas, et al. "Hey, you, get off of my cloud: exploring information leakage in third-party compute clouds" Proceedings of the 16th ACM conference on Computer and communications security. ACM, 2009
	Rittinghouse, John W., and James F. Ransome. Cloud computing: implementation, management, and security. CRC press, 2009.
	Rodrigues, Joel JPC, ed. “Health Information Systems: Concepts, Methodologies, Tools, and Applications”, Vol. 1. IGI Global, 2009.
	Rodrigues, Joel JPC, et al. "Analysis of the security and privacy requirements of cloud-based Electronic Health Records Systems" Journal of medical Internet research 15.8 (2013).
	Rodrigues, Joel JPC, et al. "Distributed media-aware flow scheduling in cloud computing environment" Computer Communications 35.15 (2012): 1819-1827.
	Sasikala, P. "Research challenges and potential green technological applications in cloud computing", International Journal of Cloud Computing 2.1 (2013).
	Schonfeld, Erick, Google Processing 20,000 Terabytes A Day, And Growing, retrieved on Jan 21, 2014 at http://techcrunch.com/2008/01/09/google-processing-20000-terabytes-a-day-and-growing/
	Shayan, J., Azarnik, A., et al.,"Identifying Benefits and risks associated with utilizing cloud computing", International Journal of Soft Computing and Software Engineering, Vol. 3, No. 3, pp. 416-421, 2013.
	Shannon, C.E. “Communication Theory of Secrecy Systems", Bell System Tech. J., Vol. 28, 1949, pp. 656-715.
	Shao, Fei, Zinan Chang, and Yi Zhang. "AES encryption algorithm based on the high performance computing of GPU." Communication Software and Networks, 2010. ICCSN'10. Second International Conference on. IEEE, 2010.
	Siegel, Carolyn F. "Introducing marketing students to business intelligence using project-based learning on the world wide web." Journal of Marketing Education 22.2 (2000): 90-98.
	Singhal, Mukesh, "A Client-centric Approach to Interoperable Clouds", International Journal of Soft Computing and Software Engineering, Vol. 3, No. 3, pp. 3-4, 2013.
	Singhal, Mukesh, Santosh Chandrasekhar, Gail-Joon Ahn, Elisa Bertino, Ram Krishnan, Ravi Sandhu and Ge Tingjian, “Collaboration in Multi-Cloud Systems: Framework and Security Issues”, IEEE Computer, Vol 46, No 2, February 2013, pp. 76-84.
	Stanik, Alexander, Matthias Hovestadt, and Odej Kao. "Hardware as a Service (HaaS): The completion of the cloud stack." Computing Technology and Information Management (ICCM), 2012 8th International Conference on. Vol. 2. IEEE, 2012.
	Stojanovski, Toni, and Ljupco Kocarev. "Chaos-based random number generators-part I: analysis [cryptography]." IEEE Transactions on Circuits and Systems I: Fundamental Theory and Applications 48.3 (2001): 281-288.
	Suttisirikul, Kiatchumpol, and Putchong Uthayopas. "Accelerating the cloud backup using gpu based data deduplication." Parallel and Distributed Systems (ICPADS), 2012 IEEE 18th International Conference on. IEEE, 2012.
	Tan, Wei, et al. "Social-Network-Sourced Big Data Analytics" Internet Computing, IEEE 17.5 (2013): 62-69.
	Thomas, David Barrie, Lee Howes, and Wayne Luk. "A comparison of CPUs, GPUs, FPGAs, and massively parallel processor arrays for random number generation." Proceedings of the ACM/SIGDA international symposium on Field programmable gate arrays. ACM, 2009.
	Truong, Hong-Linh, and Schahram Dustdar. "On analyzing and specifying concerns for data as a service." Services Computing Conference, 2009. APSCC 2009. IEEE Asia-Pacific. IEEE, 2009.
	Tsai, Wei-Tek, Xin Sun, and Janaka Balasooriya, "Service-oriented cloud computing architecture", Information Technology: New Generations (ITNG), 2010 Seventh International Conference on. IEEE, 2010.
	Tsai, Wei-Tek, et al. "SimSaaS: simulation software-as-a-service", Proceedings of the 44th Annual Simulation Symposium. Society for Computer Simulation International, 2011.
	Tsoi, Kuen Hung, K. H. Leung, and Philip Heng Wai Leong. "Compact FPGA-based true and pseudo random number generators." Field-Programmable Custom Computing Machines, FCCM 2003. 11th Annual IEEE Symposium on. IEEE, 2003.
	Wang, Wei, et al. "Accelerating fully homomorphic encryption using GPU." High Performance Extreme Computing (HPEC), 2012 IEEE Conference on. IEEE, 2012.
	Wei-Tek Tsai, Wu Li, Hessam Sarjoughian, and Qihong Shao. 2011. SimSaaS: simulation software-as-a-service. In Proceedings of the 44th Annual Simulation Symposium (ANSS '11). Society for Computer Simulation International, San Diego, CA, USA, 77-86.
	Wilson, Lori A. "Survey on Big Data gathers input from materials community" MRS Bulletin 38.09 (2013): 751-753.
	Xu, Meng, et al. "Cloud computing boosts business intelligence of telecommunication industry." Cloud Computing. Springer Berlin Heidelberg, 2009. 224-231.
	Ye, Guodong. "Image scrambling encryption algorithm of pixel bit based on chaos map." Pattern Recognition Letters 31.5 (2010): 347-354.
	Yoshikawa, Masaya, and Hikaru Goto. "Security Verification Simulator for Fault Analysis Attacks", International Journal of Soft Computing and Software Engineering, vol.3, no.3, 71, March 2013.
	Young, Mark “Automotive innovation: big data driving the changes”, retrieved Jan 26,2014 at http://www.thebigdatainsightgroup.com/site/article/automotive-innovation-big-data-driving-changes
	Zhang, Liang-Jie, and Qun Zhou, "CCOA: Cloud computing open architecture", Web Services, ICWS 2009. IEEE International Conference on. IEEE, 2009.
	Zhang, Tao, and Xianfeng Li. "Evaluating and analyzing the performance of RPL in contiki." Proc. of the first int. workshop on Mobile sensing, computing and communication. ACM, 2014.
	Zibin Zheng; Jieming Zhu; Lyu, M.R., "Service-Generated Big Data and Big Data-as-a-Service: An Overview," Big Data (BigData Congress), 2013 IEEE International Congress on, vol., no., pp.403,410, June 27 2013-July 2 2013
	Zorrilla, Marta, and Diego García-Saiz. "A service oriented architecture to provide data mining services for non-expert data miners." Decision Support Systems 55.1 (2013): 399-411.

