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Abstract

Targeted maximum likelihood estimation of treatment effects in randomized controlled trials and
drug safety analysis

by

Kelly L. Moore
Doctor of Philosophy in Biostatistics

University of California, Berkeley

Professor Mark J. van der Laan, Chair

In most randomized controlled trials (RCTs), investigators typically rely on estimators of causal effects
that do not exploit the information in the many baseline covariates that are routinely collected in
addition to treatment and the outcome. Ignoring these covariates can lead to a significant loss is
estimation efficiency and thus power. Statisticians have underscored the gain in efficiency that can be
achieved from covariate adjustment in RCTs with a focus on problems involving linear models. Despite
recent theoretical advances, there has been a reluctance to adjust for covariates based on two primary
reasons; 1) covariate-adjusted estimates based on non-linear regression models have been shown to
be less precise than unadjusted methods, and, 2) concern over the opportunity to manipulate the
model selection process for covariate adjustment in order to obtain favorable results. This dissertation
describes statistical approaches for covariate adjustment in RCTs using targeted maximum likelihood
methodology for estimation of causal effects with binary and right-censored survival outcomes.

Chapter 2 provides the targeted maximum likelihood approach to covariate adjustment in RCTs
with binary outcomes, focusing on the estimation of the risk difference, relative risk and odds ratio.
In such trials, investigators generally rely on the unadjusted estimate as the literature indicates that
covariate-adjusted estimates based on logistic regression models are less efficient. The crucial step
that has been missing when adjusting for covariates is that one must integrate/average the adjusted
estimate over those covariates in order to obtain the population-level effect. Chapter 2 shows that
covariate adjustment in RCTs using logistic regression models can be mapped, by averaging over
the covariate(s), to obtain a fully robust and efficient estimator of the marginal effect, which equals
a targeted maximum likelihood estimator. Simulation studies are provided that demonstrate that
this targeted maximum likelihood method increases efficiency and power over the unadjusted method,
particularly for smaller sample sizes, even when the regression model is misspecified.

Chapter 3 applies the methodology presented in Chapter 2 to a sampled RCT dataset with a binary
outcome to further explore the origin of the gains in efficiency and provide a criterion for determining
whether a gain in efficiency can be achieved with covariate adjustment over the unadjusted method.
This chapter demonstrates through simulation studies and the data analysis that not only is the relation
between R2 and efficiency gain important, but also the presence of empirical confounding. Based on
the results of these studies, a complete strategy for analyzing these type of data is formalized that
provides a robust method for covariate adjustment while protecting investigators from misuse of these
methods for obtaining favorable inference.

Chapters 4 and 5 focus on estimation of causal effects with right-censored survival outcomes. Time-
to-event outcomes are naturally subject to right-censoring due to early patient withdrawals. In chapter
4, the targeted maximum likelihood methodology is applied to the estimation of treatment specific
survival at a fixed end-point in time. In chapter 5, the same methodology is applied to provide a
competitor to the logrank test. The proposed covariate adjusted estimators, under no or uninformative
censoring, do not require any additional parametric modeling assumptions, and under informative
censoring, are consistent under consistent estimation of the censoring mechanism or the conditional
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hazard for survival. These targeted maximum likelihood estimators have two important advantages
over the Kaplan-Meier and logrank approaches; 1) they exploit covariates to improve efficiency, and
2) they are consistent in the presence of informative censoring. These properties are demonstrated
through simulation studies.

Chapter 6 concludes with a summary of the preceding chapters and a discussion of future research
directions.
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Chapter 1

Introduction

In many randomized controlled trials (RCTs), the primary goal is to evaluate the causal effect of a
treatment (e.g., new drug versus current standard of care) on an health outcome. For example, with
binary outcomes, investigators are often interested in estimating the difference in the probability of
an event, e.g. death, between the treated and untreated arms, referred to as the risk difference. This
is typically estimated as the observed difference in the proportion of subjects with the event in the
treated and untreated arms.

This estimator, which we refer to as the unadjusted estimator, is efficient when no other information
is collected besides the data on the treatment, A, and the outcome, Y , of interest. Since the likelihood
of the observed data is P (A)P (Y |A) when the data only contain information on the treatment and
outcome, the unadjusted estimator thus corresponds to the maximum likelihood estimator. From
estimation theory, it is known that the nonparametric maximum likelihood estimator is the efficient
estimator of the effect of interest [64].

In most RCTs, data are also collected on baseline (pre-treatment) covariates, W , in addition to the
treatment and outcome of interest. In such cases, the unadjusted estimator of the risk difference is no
longer equivalent to the maximum likelihood estimator since the likelihood of the observed data is now
P (W )P (A|W )P (Y |A,W ), and the unadjusted estimator ignores the information from the covariates
W . The unadjusted estimator can be viewed instead as a reduced data maximum likelihood estimator.
It follows that ignoring covariate information by using the unadjusted estimator can lead to a loss in
estimation efficiency (precision) in practice.

Causal effects are generally defined on the basis of counterfactual outcomes, i.e., outcomes that would
have been observed on a subject had the treatment variable, possibly contrary to fact, been set at
a particular level. However, in an actual study, we only observe a single counterfactual outcome for
each subject, Y = YA corresponding to the treatment that the subject actually received. For example,
the outcome Y1 is not observed for subjects that received treatment A = 0. Since the counterfactual
outcome is missing for these subjects, we cannot directly estimate E(Y1). From the observed data,
E(Y1 | A = 1) can be estimated, that is the mean of the counterfactual outcome for treated subjects
(a = 1) among those subjects who were actually observed at that treatment level (A = 1). In an RCT,
when treatment is randomized, E(Y1 | A = 1) is equal to E(Y1) since the group of subjects in the
observed sample with A = 1 is indeed representative of the entire study population.

Now, suppose we the outcome Y is continuous. Let the parameter of interest be the marginal effect
of A on Y , ψ = E(Y1) − E(Y0). Since we know that E(Y1 | A = 1) is equal to E(Y1) in an RCT,
investigators typically rely on the unadjusted estimate given by,

ψ̂1 = µ̂1 − µ̂0
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where µ̂1 = 1
n1

∑n
i=1 I(Ai = 1)Yi and µ̂0 = 1

n0

∑n
i=1 I(Ai = 0)Yi, where n1 is the number of subjects

in the treated arm, n0 is the number of subjects in untreated arm, and n = n1 + n0.. Consider
the conditional expectation of the outcome given treatment and covariates, denoted by Q(A,W ) =
E(Y |A,W ). This function can be estimated with a linear regression model such as,

Q̂(A,W ) = β̂0 + β̂1A + β̂2W.

In this setting, β̂1 coincides with and has been shown to be at least as precise as the unadjusted estimate
ψ̂1 [43]. However, when Q(A,W ) is estimated as

Q̂(A,W ) = β̂0 + β̂1A + β̂2W + β̂3AW,

then β̂1 no longer coincides with ψ̂1. In this case, to obtain the marginal effect, one must integrate
out or average over the covariate(s) W . The G-computation estimator, introduced in Robins [46] and
Robins [47] is an estimator that does indeed average over W and thus give a marginal effect,

ψ̂Gcomp =
1

n

n∑
i=1

[
Q̂(1,Wi)− Q̂(0,Wi)

]
.

When Q̂(A,W ) is estimated with a linear model, and it does not contain any interaction terms, then
ψ̂Gcomp = β̂1. The G-computation estimator is not limited to a linear model for Q(A,W ) when estimat-
ing the treatment effect, for example, when the outcome is binary, one could use a logistic regression
model to estimate Q(A,W ) and use the G-computation formula to obtain the estimated risk difference.
With binary outcomes, the exponentiated coefficient for treatment from a logistic regression model
provides an estimate of the odds ratio. The G-computation estimate in this case is given by,

ψ̂OR−Gcomp =

[
1
n

∑n
i=1 Q̂(1,Wi)

]
/
[
1− 1

n

∑n
i=1 Q̂(1,Wi)

]
[

1
n

∑n
i=1 Q̂(0,Wi)

]
/
[
1− 1

n

∑n
i=1 Q̂(0,Wi)

] .

Even in the absence of interaction terms in the logistic regression model, ψ̂OR−Gcomp is not necessarily
equivalent to the estimate obtained from the logistic regression model. In fact, the logistic regression
approach, which actually provides conditional effect estimates, has been shown to actually reduce the
precision as compared to the unadjusted approach [2, 22, 53]. In these references, it has also been
shown that the odds ratio point estimates (i.e., exponentiated coefficient for treatment), are typically
further away from the null than the unadjusted estimates.

Because of this lack of correspondence between the linear and logistic settings with respect to consis-
tency and precision, investigators are still resistant to adjusting for covariates and often rely on the
unadjusted estimate. Furthermore, when the outcome is binary, investigators often wish to estimate
not only the odds ratio, but the risk difference or relative risk.

Chapters 2 and 3 of this dissertation aim at clarifying the issue of efficiency gain with baseline covariates
in RCTs with binary outcomes based on the recently developed framework of targeted maximum
likelihood estimation, originally introduced in van der Laan and Rubin [65], and unify the different
analytical protocols for covariate adjustment that have been proposed. We demonstrate the complete
generality of the potential gain in efficiency that can be achieved from covariate adjustment in both
the linear and logistic case and reconcile this result with the apparent contradictions in the literature.
In short, reconciliation can be attained by noting that the typical adjusted estimator described above
is not the maximum likelihood estimator of the marginal effect of interest in general but instead the
maximum likelihood estimator of the conditional effect (given all covariates W ). Only in the linear
case is there correspondence between the estimands of the adjusted and unadjusted estimators. In
other words, the adjusted estimator above does not correspond to the maximum likelihood estimator
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in general and in particular not in the binary case. This explains the apparent loss in efficiency in
comparison to the unadjusted estimator since one cannot in fact compare the efficiency performance
of both approaches since they do not aim at evaluating the same effect in the logistic case. Rather,
the maximum likelihood estimator of the marginal causal effect of A on Y is the weighted average of
the conditional effect of A on Y given W , according to the distribution of W . For instance, when the
marginal effect of interest is measured by the risk difference then its maximum likelihood estimator is
the average of the stratum specific risk differences across all strata defined by categories of W , assuming
W is discrete. Chapters 2 and 3 further explore this estimation issue and show that gains in efficiency
can be achieved even when W is continuous and high dimensional. We hope that such clarifications
will allow the broad application of these new techniques in RCTs.

In addition, we explore the origin of the gain in efficiency and criteria that can be used to anticipate
whether the study design and the covariates collected can actually lead to increased estimation precision
in practice. We illustrate how empirical confounding, i.e., an imbalance between the treated and
untreated arms in the distribution of a covariate that also affects the outcome, explains the gain in
efficiency that can be achieved from an adjusted analysis. Empirical confounding can occur due to
bad luck in the randomization process, e.g., a higher percentage of older patients are assigned to the
placebo arm and age has an effect on the outcome. Some RCT designs insure perfect covariate balance
for some of the baseline covariates; however, there are typically many other covariates collected that
do not have a perfect balance. Empirical confounding can introduce estimation error (sample bias)
for which the unadjusted estimator cannot correct since it ignores covariate information. The method
for covariate adjustment presented in this dissertation can account for such a covariate imbalance and
thus improve over the poor finite sample performance of the unadjusted estimator due to empirical
confounding.

In addition to the perceived discrepancy of the results for linear and non-linear settings, another issue
that has obstructed the broad application of methodologies for covariate adjustment has been concerns
about the selection of the parametric covariate adjustment. Incorrect covariate adjustment can indeed
typically lead to estimation bias. However, we show, that in RCTs, the maximum likelihood estimator
is doubly robust and describe its practical implication. Despite this double robust property, which
ensures the estimator’s consistency independent of the covariate adjustment, unease arises over the
fact that investigators could still select the covariate adjustment that provides the most favorable
inference without accounting for multiple testing. We provide a procedure, that would be outlined
in an a priori analysis protocol, that protects investigators from guiding causal inferences based on
selection of favorable covariates and their functional forms in a parametric model.

The reliance on these unadjusted estimators that ignore covariate information extend beyond RCTs with
binary outcomes. In safety analysis in RCTs, patient reporting of adverse event (AE) occurrence usually
occurs at many intervals throughout the study, often collected at follow-up interviews rather than only
at a single fixed end-point. Similarly, efficacy studies are often constructed in such a manner. As such,
time-to-event methods that exploit these data structures may provide further insight into the safety
profile of the drug. In estimation of treatment specific survival at a fixed end point for right-censored
survival outcomes, the standard approach is to apply the Kaplan-Meier (KM) estimator. Exploitation
of covariate information can also improve the efficiency over the KM estimator. In addition, informative
censoring is often present for such outcomes and in this case the KM will be biased and thus is not even
reliable. Informative censoring occurs when the probability of censoring depends on the outcome the
subject would have had in the absence of censoring. In particular, this arises if covariates affect both
outcome and probability of being censored. Chapter 4 focuses on this common problem of estimation
of treatment specific survival, using covariate adjustment to improve precision. The motivation for
the methodology is based on safety analysis, and the specific issues therein, including multiple testing
considerations due to the multivariate nature of AE, are discussed. Extensions to the methodology,
including the adjustment for time-dependent covariates, and post-market safety analysis are discussed.
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In both efficacy and safety analysis, even more common than estimation of the causal effect of treat-
ment on survival at a fixed time, is the logrank test for testing for a treatment effect on survival, or
asymptotically equivalently the test, H0 : ψ = 0 where ψ is the coefficient for treatment in the Cox
proportional hazards model that includes only a main term for treatment. Again, as in the previous
examples, this unadjusted approach ignores the covariates and thus its efficiency can be improved upon.
Such efficiency gains can directly translate in practice into smaller sample size requirements and even
shorter trials [26].

The key principle in developing covariate adjusted estimators is to not require any additional assump-
tions beyond those required for the unadjusted method. This dissertation abides by this principle by
proposing methods for covariate adjustment in RCTs using targeted maximum likelihood estimation
[65]. This estimation procedure is a new approach to statistical learning that can be applied to any
estimation problem. In short, targeted maximum likelihood estimation is an estimation procedure
that carries out a bias reduction specifically targeted for the parameter of interest. This is in contrast
to traditional maximum likelihood estimation which aims for a bias-variance trade-off for the whole
density of the observed data, rather than a specific parameter of it. The targeted maximum likelihood
estimator (TMLE) is a familiar type of likelihood based estimator and it solves the efficient influence
curve estimating equation. Due to this latter fact, it thereby inherits the properties of the solution
of the efficient influence curve estimating equation, including asymptotic linearity and local efficiency
[64]. These properties are of particular consequence in RCTs. Since the treatment mechanism is al-
ways known, when there is no censoring, our estimator is always consistent. The advantages of this
methodology over other methodologies are provided for each of the specific problems discussed in each
chapter.

In summary, this dissertation provides a new approach to covariate adjustment in RCTs through the
application of targeted maximum likelihood estimation. Chapter 2 provides an approach to estimation
of the risk difference, relative risk and odds ratio, in the context of RCTs with binary outcomes, both
with and without censoring. Chapter 3 further elucidates the methodology through an application to
a dataset, obtained by random sampling from a real RCT dataset. The origination of the efficiency
gain and its relation to empirical confounding is explored. Chapter 4 applies the targeted maximum
likelihood estimation approach to the estimation of treatment specific survival at a fixed end point for
right-censored survival outcomes. Chapter 5 provides a covariate-adjusted competitor to the logrank
test. Included in each chapter are extensive simulation studies to illustrate and explore the methodology
presented. The dissertation concludes with a summary of the preceding chapters and a discussion of
future research directions in chapter 6.
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Chapter 2

Covariate adjustment in randomized
controlled trials with binary outcomes

2.1 Introduction

Suppose we observe n independent and identically distributed observations of the random vector O =
(W,A, Y ) ∼ p0, where W is a vector of baseline covariates, A is the treatment of interest and Y = {0, 1}
is the binary outcome of interest, and p0 denotes the density of O. Causal effects are based on a
hypothetical full data structure X = ((Ya : a ∈ A),W ) containing the entire collection of counterfactual
or potential outcomes Ya for a ranging over the set of all possible treatments A. The observed data
structure O only contains a single counterfactual outcome Y = YA corresponding to the treatment
that the subject received. The observed data O = (W,A, Y ≡ YA) is thus a missing data structure
on X with missingness variable A. We denote the conditional probability distribution of treatment
A by g0(a|X) ≡ P (A = a|X). The randomization assumption or coarsening at random assumption
states that A is conditionally independent of the full data X given W , g0(A|X) = g0(A|W ). In a
randomized controlled trial (RCT) in which treatment is assigned completely at random, we have
g0(A|X) = g0(A). For the sake of presentation, we assume the treatment A is binary and that A is
completely randomized as in a typical RCT, but our methods are presented so that it is clear how our
estimators generalize to observational studies or RCTs in which g0(A|W ) is unknown. In the binary
treatment case, g0(1) = p(A = 1) = θ0 and g0(0) = p(A = 0) = 1 − θ0 and n1 the number of subjects
in treatment group 1, n0 the number of subjects in treatment group 0, and n = n1 + n0. The quantity
of interest is causal effect of treatment A on Y , for example the risk difference ψ = E(Y1) − E(Y0),
where Y1 and Y0 are the counterfactual outcomes under treatments 1 and 0, respectively. We note
that, as an alternative to the counterfactual presentation, we can write the parameter of interest as
ψ = EW [E(Y |A = 1,W )− E(Y |A = 0,W )]. This quantity is typically estimated in RCTs with the
unadjusted estimate

ψ̂1 = µ̂1 − µ̂0

where µ̂1 = 1
n1

∑n
i=1 I(Ai = 1)Yi and µ̂0 = 1

n0

∑n
i=1 I(Ai = 0)Yi. An adjusted effect is also sometimes

obtained,
ψ̂W = P̂ (Y = 1|A = 1,W )− P̂ (Y = 1|A = 0,W ).

Adjusting for baseline covariates and the issues involved has been discussed in Pocock et al. [43].
Although it has been recognized, at least for linear models, i.e., continuous outcomes, that adjusting for
covariates increases the precision of the estimate of the marginal causal effect of treatment, investigators
are still resistant to adjusting in logistic models and often rely on the unadjusted estimate. This
generally appears to be due to confusion as to how to select the covariates and how to adjust for them
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[43]. In addition, there is a concern that if data-adaptive procedures are used to select the model for
P (Y = 1|A,W ) that investigators will be tempted to select the model that provides the most favorable
results. However, we recommend that as long as the procedure is determined a priori then we can
avoid this latter issue. Thus, a black box type data-adaptive procedure, e.g., forward selection, can
still be applied as long as the algorithm and candidate covariates are specified a priori.

Adjusting for covariates with main terms in linear models, referred to as analysis of covariance (AN-
COVA) in RCT literature, for the purpose of estimation of the marginal causal effect has been limited
to no interaction terms with treatment. When there is such an interaction term, it is often not clear in
the literature on analysis of RCT data how one uses this conditional model to obtain a marginal effect
estimate. However, even in the absence of the interaction term, the increase in precision has not been
observed for non-linear models such as the logistic model. In fact, it has actually been reported that the
estimates are not more precise for logistic models [22, 53]. The crucial step that has been missing when
the parameter of interest is the marginal causal effect of A on Y , is that when adjusting for covariates
W , one must integrate/average the adjusted estimate over those W in order to obtain a marginal effect
estimate that is comparable to the unadjusted effect estimate ψ̂1. This method of averaging over W
has been referred to as the G-computation formula and is often applied in observational studies when
the treatment or exposure has not been assigned randomly [46, 47]. We show that with this addi-
tional step of averaging over W , even when the outcome is binary, and even if the regression model
is mis-specified, we obtain a more efficient estimate in the RCT setting. Such an approach allows for
interactions between A and W in the model for P (Y = 1|A,W ) while still obtaining a marginal effect.
We note that the conditional effect may be the parameter of interest in some studies, for example the
effect of a drug conditional on age, and, thus, the investigator does not want to average over age.

In this chapter, we focus only on the marginal effect and using the covariates W to obtain the most
efficient (precise) estimate of this marginal causal effect in a nonparametric model under the framework
of targeted maximum likelihood estimation. This estimation procedure is a new approach to statistical
learning introduced by van der Laan and Rubin [65]. This general targeted MLE methodology applies
to any estimation problem, however, here it is applied to the estimation of the risk difference, relative
risk and odds ratio, in the context of an RCT with and without censoring. This framework provides a
new approach to covariate adjustment in RCTs. In a few special cases the targeted maximum likelihood
estimator (TMLE) is equivalent to the double robust inverse probability of treatment weighted (DR-
IPTW) based on plug-in maximum likelihood estimates of the nuisance parameters. The DR-IPTW
estimator is defined as the solution to the efficient influence curve estimating equation [64, 38, 48, 50].
In Tsiatis et al. [59], the DR-IPTW estimator was applied to the estimation of the average difference
in outcomes between treatment in RCTs with no censoring. This is an example where the efficient
influence curve and TMLEs coincide. However, this is not generally true as demonstrated in examples
provided in this chapter.

In summary, the goals of this chapter are threefold. First, we apply targeted maximum likelihood
estimation as a method of covariate adjustment to the estimation of marginal effects of treatment in
RCTs with binary outcomes. The second is to demonstrate the improved performance of this locally
efficient estimator relative to the unadjusted method. The third goal is to compare different strategies
of covariate adjustment, e.g., data-adaptive model selection algorithms, using simulation studies. The
chapter is structured as follows. In section 2.2 we provide a brief overview of methods for covariate
adjustment that have been proposed in literature. In section 2.4 we present the TMLEs for three
marginal variable importance parameters: the risk difference, relative risk and odds ratio. We address
missing data on the outcome and covariates, and estimation of the treatment mechanism. In section 2.6
we provide a formal relation between R2 and efficiency gain. Section 2.5 provides testing and inference
for the TMLE. In section 2.7 we present simulation studies that demonstrate the performance of the
TMLE. Finally we conclude with a discussion in section 2.7.5.
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2.2 Targeted maximum likelihood estimation

Traditional maximum likelihood estimation aims for a trade-off between bias and variance for the whole
density of the observed data. Investigators however are typically not interested in the whole density
of the data O, but rather a specific parameter of it. Targeted maximum likelihood estimation was
purposefully named in that it carries out a bias reduction specifically tailored for the parameter of
interest. For technical details about this general estimation approach we refer the reader to its seminal
article [65].

Consider a model M which is a collection of possible probability distributions of the data, where the
true distribution of the data is p0. Consider an initial estimator p̂. We are interested in a particular
feature of the data, ψ0 = ψ(p0). The goals of targeted maximum likelihood estimation are twofold.
First, it aims to find a density p̂∗ ∈M that solves the efficient influence curve for estimating equation for
the parameter of interest resulting in a bias reduction as compared to the maximum likelihood estimate
ψ(p̂). Second, the algorithm requires that p̂∗ also achieves a small increase in the log-likelihood relative
to p̂. The algorithm achieves these goals by identifying a “stretching” of the initial p̂ so that yields a
maximal change in ψ. This is done by constructing a path denoted by p̂(ε) through p̂ where ε is a free
parameter. The score of this path at ε = 0 equals the efficient influence curve. The optimal amount of
“stretch” is obtained by maximizing the likelihood of the data over ε. Applying this optimal stretch to p̂
yields p̂1 which is the first step of the targeted maximum likelihood algorithm. This process is iterated
until the ”stretch” is essentially zero. The final step of the algorithm gives the targeted maximum
likelihood estimate p̂∗ which solves the efficient influence curve estimating equation thereby achieving
the desired bias reduction with a small increase in the likelihood. The resulting substitution estimator
ψ(p̂∗) is a familiar type of likelihood based estimator and due to the fact that it solves the efficient
influence curve estimating equation it thereby inherits its properties including asymptotic linearity,
and local efficiency [64]. Thus, targeted maximum likelihood estimation provides a fusion between
likelihood and estimating function based methodologies.

However, targeted maximum likelihood has various important advantages relative to estimating equa-
tion methodology. Firstly, by just solving the efficient influence curve equation in p itself, it does not
rely on the assumption that the efficient influence curve can be represented as an estimating function
and/or the particular representation of this estimating function. Secondly, estimating equations pro-
vide no criterion to select among multiple solutions in the parameter of interest for a given estimate
of the nuisance parameters in the estimating equation, while targeted maximum likelihood can simply
use the likelihood criterion to select among various targeted maximum likelihood estimates indexed by
different initial density estimators. Thirdly, in estimating equation methodology the parameter estima-
tor is typically not compatible with the nuisance parameter estimates, while in the targeted maximum
likelihood procedure, the estimator of the parameter of interest and the nuisance parameters in the
efficient influence curve are all compatible with a single density estimator.

The targeted maximum likelihood estimators of the parameters studied in this chapter are double
robust (DR) under uninformative censoring (missing at random) in the sense that they rely on either a
consistent estimator of the treatment mechanism g or a consistent estimator of Q(A,W ) = E(Y |A, W ).
When the treatment is assigned completely at random, the treatment mechanism, P (A|W ) = P (A), is
always known and thus the targeted maximum likelihood estimator is always consistent whatever the
estimator for Q on which it relies. That is, even when the estimator Q̂(A,W ) of Q(A,W ) is inconsistent
(e.g., if it relies on a mis-specified model), the TMLE remains consistent and one should hence not
be concerned with estimation bias with this method in RCTs. More specifically, if Q̂(A,W ) converges
to Q∗(A,W ) 6= Q(A,W ) then targeted maximum likelihood estimators remain asymptotically linear
and consistent in RCTs. In practice, this means that the investigator is protected even when the
a priori specified model selection algorithm selects a mis-specified model for Q(A,W ). Note that if
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Q̂(A,W ) is a consistent estimator of Q(A,W ), then the TMLE is consistent but also efficient. In the
special case that we use the true P (A|W ) = P (A) or a marginal estimate θ̂ in the targeting step of
the algorithm, convergence is achieved in zero steps. Thus, in this case the TMLE coincides with
the standard G-computation maximum likelihood estimator, thereby demonstrating that this latter
estimator is already locally efficient. In appendix section A.3, in one of our settings, we provide a
relation between the DR-IPTW, TMLE and G-computation estimator and the circumstances in which
they coincide.

When censoring depends on baseline covariates, consistency of the TMLE relies on consistent estimation
of the censoring mechanism or Q(A, W ). Even in this setting, for many causal parameters such as the
causal risk difference, the targeted maximum likelihood algorithm converges in a single step.

The TMLE is a very practically attractive estimator since it can be achieved by simply adding a
covariate to an initial estimate of the regression Q(A,W ). The corresponding coefficient ε for this new
covariate can be estimated with standard software and thus has a straightforward implementation.

It was shown in Scharfstein et al. [54] (p. 1140− 1141) that to obtain a DR estimate of the difference
in two mean outcomes, one can extend a parametric model for Q(A,W ) by adding the 2-dimensional

covariate ( I(A=1)
g(1|W )

, I(A=0)
g(0|W )

) where in the RCT setting, g(1|W ) = θ and g(0|W ) = 1 − θ, and estimate
the combined parameter by solving the maximum likelihood estimating equation. In section 2.4.1 we
show that for this same additive effect the targeted maximum likelihood algorithm that targets both
parameters (P (Y0 = 1), P (Y1 = 1)) also adds these two covariates, the first for P (Y1 = 1) and one
for P (Y0 = 1), so that any function of these two parameters is estimated in a targeted manner. This
TMLE still differs from the proposal in Scharfstein et al. [54] by fixing the initial regression, which
can thus also represent a data adaptive machine learning fit, and simply estimating the coefficients for
the additional covariates. The proposed estimator of [54] does not fix the initial regression but fits all
coefficients for the parametric regression and the additional covariates simultaneously. This distinction
in fixing the initial regression is important in that it allows one to apply data adaptive algorithms
for the initial estimate and simply update the estimate with the targeting step. This is in contrast
to the procedure proposed in Bang and Robins [3] and Scharfstein et al. [54] which appears to rely
on a parametric estimate for the regression. In Bang and Robins [3] it is stated that when the initial
model for Q(A,W ) is correct, one can obtain a more efficient DR estimate by adding the 1-dimensional

(rather than 2-dimensional) covariate I(A=1)
g(1|W )

− I(A=0)
g(0|W )

. The covariate is equivalent to the TMLE covariate
I(A=1)
g(1|W )

− I(A=0)
g(0|W )

, targeting the risk difference effect P (Y1 = 1)− P (Y0 = 1). This covariate satisfies the

condition of the targeting fluctuation that the score of the initial density p̂0 at ε = 0 must include
the efficient influence curve at p̂0. Again, the targeted maximum likelihood procedure fixes the initial
regression and then estimates the coefficient for the additional covariate as opposed to the proposal in
Bang and Robins [3] where all coefficients for the parametric regression and the additional covariate
are fit simultaneously. We note that the covariate that is added in the targeted maximum likelihood
algorithm is specific to the parameter one is estimating and thus differs when the parameter of interest
is the relative risk or odds ratio as shown in section 2.4.

2.3 Current methods for obtaining covariate adjusted esti-

mates

Suppose we observe O = (W,A, Y ) as above except the outcome Y is now continuous. Let the parameter
of interest be the marginal effect of A on Y , ψ = E(Y1) − E(Y0). For a continuous outcome Y ,
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Q(A,W ) = E(Y |A,W ) is typically obtained using a linear regression model such as,

Q̂(A,W ) = β̂0 + β̂1A + β̂2W.

In this setting, β̂1 coincides with and has been shown to be at least as precise as the unadjusted estimate
ψ̂1. In particular, the increase in precision occurs when the correlation between the covariate(s) and
outcome is strong [2]. However, when Q(A,W ) is estimated as

Q̂(A,W ) = β̂0 + β̂1A + β̂2W + β̂3AW,

then β̂1 no longer coincides with ψ̂1. In this case, to obtain the marginal effect, one must integrate
out or average over the covariate(s) W . The G-computation estimator introduced in Robins [46] and
Robins [47] is an estimator that does indeed average over W and thus give a marginal effect,

ψ̂Gcomp =
1

n

n∑
i=1

[
Q̂(1,Wi)− Q̂(0,Wi)

]
.

When Q̂(A,W ) is estimated with a linear model, and it does not contain any interaction terms, then
ψ̂Gcomp = β̂1. The G-computation estimator is not limited to a linear model for Q(A,W ) when estimat-
ing the treatment effect, for example, when the outcome is binary, one could use a logistic regression
model to estimate Q(A,W ) and use the G-computation formula to obtain the estimated risk difference.
However, even in the absence of interaction terms, ψ̂Gcomp is not necessarily equivalent to the estimate
obtained from the logistic regression model.

In Tsiatis et al. [59], the DR estimator is applied to estimate the marginal effect where the authors
recommend estimating two regression models separately: Q1(1,W ) = E(Y |A = 1,W ) is obtained using
only the subpopulation of individuals for whom A = 1 and Q2(0,W ) = E(Y |A = 0,W ) is obtained
using only the subpopulation of individuals for whom A = 0. This was proposed so that two different
analysts could independently select these models to prevent the analysts from selecting the model
providing the most favorable results. Another possibility is to select one model Q(A,W ) = E(Y |A, W )
using the whole sample pooled together. When the procedure for selecting Q(A,W ) is specified a priori
this additional step of estimating Q1(1,W ) and Q2(0,W ) is not necessary.

The method for estimating the marginal difference E(Y0) − E(Y1) is provided in Tsiatis et al. [59].
However, when the outcome is binary, investigators are often also interested in not only the risk
difference E(Y0) − E(Y1) = P (Y1 = 1) − P (Y0 = 1), but the relative risk and odds ratios. In Zhang
et al. [73], the approach in Tsiatis et al. [59] is expanded upon by applying the estimating function
approach to the estimation of general parameters in RCTs. The corresponding covariate adjusted
estimators are shown to provide an increase in precision over the unadjusted method. This general
approach for constructing locally efficient double robust estimators that are guaranteed to improve on
the unadjusted estimator can be found in van der Laan and Robins [64]. The approach provided in
this chapter does not deviate from the line of research in Tsiatis et al. [59] and Zhang et al. [73], but
instead applies the relatively new targeted maximum likelihood methodology to RCTs. A particular
advantage of targeted maximum likelihood estimation over the estimating function approach is that
for various effect parameters the efficient influence curve cannot even be represented as an estimating
function in a parameter of interest and nuisance parameters, while the TMLE does not require such a
representation. This is illustrated with the causal relative risk in a nonparametric model in section 2.4.

Covariate adjustment in logistic regression models for binary outcomes in RCTs has been studied in
literature. These models provide conditional effect estimates and have been shown to actually reduce
the precision as compared to unadjusted methods. In Robinson and Jewell [53], it was observed that
adjusting for covariates in logistic regression models leads to an increase in power due to the fact that
estimates of the treatment effect in the conditional logistic models are further away from the null even
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though standard errors are larger for the adjusted effects. Hernández et al. [22] also demonstrated this
fact using simulation studies and observed that the increase in power was related to the correlation
between the covariate and the outcome. The simulations included only a single covariate and no
interactions between the covariate and treatment. Similar results were indicated in Assmann et al. [2]
with logistic regression models in that odds ratios were generally further away from the null but the
standard errors were larger than the unadjusted estimates. It appears that in general, when adjusting
for covariates in a logistic regression model, the standard error provided by the software, i.e., standard
maximum likelihood procedures, is the standard error used by the investigator although it is often not
explicitly stated [5, 15, 60, 44]. When adjusting for covariates in RCTs using logistic regression, often
the investigator is interested in a conditional effect identified by continuous covariates in which case this
may be an appropriate approach. We focus on the targeted maximum likelihood method for covariate
adjustment that provides inference for the marginal (unconditional) effect. However, note that this
method can be applied to different subgroups defined by categorical or discrete valued covariates by
simple stratification.

2.4 Targeted maximum likelihood estimation of the risk dif-

ference, relative risk and odds ratio

In this section we present the targeted maximum likelihood method for adjusting for covariates in
estimating the marginal effect of a binary treatment on a binary outcome with the following three
parameters: risk difference, relative risk and odds ratio. We provide an overview of the derivation of
the covariate that is added to an initial regression estimate. The covariate is derived in such a way that
the update of the regression targets the specific parameter one is estimating and thus differs for each
of the three we focus on in this chapter. For technical details we refer the reader to appendix sections
A.1 through A.7.

Let O = (W,A, Y ) ∼ p0 and M be the class of all densities of O with respect to an appropriate
dominating measure: so M is nonparametric up to possible smoothness conditions. Let the parameter
of interest be represented by Ψ(p0). The first step of the algorithm involves finding an initial density
estimator p̂0 of the density p0 of O, identified by Q̂0(A,W ), marginal distribution of A identified by
θ̂ = 1

n

∑n
i=1 Ai, the marginal distribution of W being the empirical probability distribution of W1, ..., Wn,

and A being independent of W .

An initial fit Q̂0(A,W ) may be obtained in a number of ways. For example, we may fit a data-adaptive
logistic regression model for the outcome Y fixing treatment A in the model and including covariates
W as candidates. Since Y is binary, the density is given by,

p̂0(Y |A,W ) =
[
Q̂0(A,W )

]Y [
1− Q̂0(A,W )

]1−Y

.

We could choose a logistic regression model for Q̂0(A,W ),

Q̂0(A,W ) =
1

1 + exp−m̂0(A,W )

for some function m̂0.

The targeted maximum likelihood estimation procedure updates the initial density by creating a para-
metric submodel through p̂0 indexed by parameter ε,

p̂0(ε)(Y |A, W ) =
[
Q̂0(ε)(A,W )

]Y [
1− Q̂0(ε)(A,W )

]1−Y

.
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In the case that the initial choice Q̂0(A,W ) is given by a logistic regression fit, then Q̂0(ε)(A, W ) is
given by the logistic regression model,

Q̂0(ε)(A,W ) =
1

1 + exp− [m̂0(A,W ) + εh(A,W )]
.

The targeted maximum likelihood algorithm finds this covariate h(A,W ) by requiring that the score of
p̂0 at ε = 0 is equal to the efficient influence curve at p̂0. In van der Laan and Rubin [65], it was shown
that the efficient influence curve D(p0) can be decomposed into three components corresponding with
scores for p(Y |A,W ), g0(A|W ) and the marginal probability distribution p(W ) of W which we refer to as
D1(p0), D2(p0) and D3(p0) respectively (see appendix A.1). Since the score for p̂0 at ε = 0 corresponds
with a zero score for ĝ0, and the empirical distribution of W is a nonparametric maximum likelihood
estimator, we only need to choose h(A,W ) so that the score of p̂0(Y |A,W ) at ε = 0 includes the
efficient influence curve component for p(Y |A,W ), i.e., D1(p0). The next step of the algorithm involves
estimating ε with maximum likelihood. The initial Q̂0(A,W ) is thus updated to obtain Q̂1(A,W ) and
the algorithm is iterated by replacing Q̂0(A,W ) with Q̂1(A,W ).

It is a fortunate result that in RCTs, the covariate h(A,W ) is none other than a linear combination of
A and an intercept only. It follows that if m̂0(A,W ) includes the main term A and the intercept, then
ε̂ = 0, and the TMLE for Q0(A,W ) is given by Q̂0(A,W ) itself. Specifically, consider the following risk
difference (RD), relative risk (RR) and odds ratio (OR) parameters,

P0 → ΨRD(p0) = Ep0 [E(Y |A = 1,W )− E(Y |A = 0, W )] , (2.1)

P0 → ΨRR(p0) =
Ep0 [E(Y |A = 1,W )]

Ep0 [E(Y |A = 0,W )])
=

µ1

µ0

, (2.2)

and

P0 → Ψ(p0) =
Ep0 [E(Y |A = 1, W )] / [1− Ep0 {E(Y |A = 1,W )}]
Ep0 [E(Y |A = 0, W )] / [1− Ep0 {E(Y |A = 0,W )}] =

µ1/(1− µ1)

µ0/(1− µ0)
. (2.3)

Now consider the initial logistic regression fit Q̂0(A,W ). It is straightforward to demonstrate (see
appendix A.2, A.4 and A.6) that the corresponding covariates that update the initial fit for each of the
above parameters are given by,

hRD(A,W ) =
I(A = 1)

θ̂
− I(A = 0)

(1− θ̂)
,

hRR(A,W ) =
1

µ1

I(A = 1)

θ̂
− 1

µ0

I(A = 0)

(1− θ̂)
,

and

hOR(A,W ) =

(
1

µ1

+
1

1− µ1

)
I(A = 1)

θ̂
−

(
1

µ0

+
1

1− µ0

)
I(A = 0)

(1− θ̂)

Each of these covariates is simply a linear combination of A and an intercept. Thus if m̂0(A,W ) includes
the main term A and the intercept, then ε̂ = 0, and the TMLE for Q0(A,W ) is given by Q̂0(A, W )
itself. In other words, the TMLE for ψRD, ψRR and ψOR are given by the standard maximum likelihood
estimators,

ψ̂RD−TMLE =
1

n

n∑
i=1

[
Q̂0(1,Wi)− Q̂0(0,Wi)

]
,
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ψ̂RR−TMLE =
1
n

∑n
i=1 Q̂0(1,Wi)

1
n

∑n
i=1 Q̂0(0,Wi)

,

and

ψ̂OR−TMLE =

[
1
n

∑n
i=1 Q̂0(1,Wi)

]
/
[
1− 1

n

∑n
i=1 Q̂0(1,Wi)

]
[

1
n

∑n
i=1 Q̂0(0,Wi)

]
/
[
1− 1

n

∑n
i=1 Q̂0(0,Wi)

] .

It is interesting to note that in estimating the risk difference, in addition to the equivalence between the
TMLE and G-computation (MLE), the TMLE solves the efficient influence curve estimating equation
by definition and thus the DR-IPTW, MLE and TMLE all reduce to the same estimator in this general
setting, for details see appendix A.3.

As an alternative to using a logistic fit for the initial Q0(A,W ), we can instead choose a relative risk
regression fit,

log(Q̂0)(ε)(A,W ) = m̂0(A,W ) + εh(A, W ).

In estimation of the relative risk parameter, the corresponding covariate added to the initial regression
model to obtain the TMLE is given by (see appendix A.5 for details),

h(A,W ) =

{
1

µ1

I(A = 1)

θ̂
− 1

µ0

I(A = 0)

1− θ̂

} [
1− Q̂0(A,W )

]
.

The maximum likelihood estimate,

ε̂ = arg max
ε

n∑
i=1

log Q̂0(ε)(Ai,Wi),

can be estimated in practice by fitting a relative risk regression in m̂0(A, W ) and h(A,W ), fixing the
coefficient in front of m̂0(A,W ) to 1 and the intercept to 0. The resulting coefficient for h(A,W ) is ε̂. In
this case, the covariate is no longer simply a function of A and thus ε̂ does not necessarily equal 0 and
the convergence is no longer achieved in zero steps but rather iteratively. Now Q̂k(A,W ) is updated
as,

log
[
Q̂k+1(A,W )

]
= m̂k(A,W ) + ε̂hk(A, W ),

setting k = k + 1 and one iterates this updating step. One may also derive the updating covariate for
targeting estimation of the risk difference or odds ratio as well using this initial regression in addition
to the logistic initial choice.

2.4.1 Targeted maximum likelihood estimation of the two treatment spe-
cific means, and thereby for all parameters

Consider the odds ratio, as an example. An alternative for targeting the odds ratio is to simultaneously
target both µ1 and µ0 and simply evaluate the odds ratio from the TMLEs of µ1 and µ0. This is a
straightforward approach where two covariate extensions are added to the logistic fit Q̂0,

h1(A,W ) = ε1
I(A = 1)

θ̂
,

and,

h2(A,W ) = ε2
I(A = 0)

(1− θ̂)
.

Again, if the initial logistic regression fit already includes an intercept and main term A, then ε̂ =
(ε̂1, ε̂2) = 0 so that this TMLE Q̂ = Q̂0(ε̂) = Q̂0 is not updated. This TMLE can now be used to map
into a locally efficient estimator of any parameter of µ0 and µ1 such as the risk difference µ1 − µ0, the
relative risk µ1/µ0 and the odds ratio µ1(1− µ0)/ [(1− µ1)µ0].
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2.4.2 Estimating the treatment mechanism as well

Even when the treatment mechanism (the way treatment was assigned) is known as it is in an RCT,
it has been shown that efficiency is increased when estimating it from the data if Q(A,W ) is not
correctly specified [64]. Estimating the treatment mechanism does not add any benefit to the G-
computation estimator since it does not use this information. The TMLE can however leverage this
information to obtain a more precise estimate of the treatment effect. This can be particularly beneficial
when the model for Q(A,W ) is mis-specified. The TMLE is still consistent when Q(A,W ) is mis-
specified, however, we can gain efficiency when estimating the treatment mechanism in such a case. The
treatment mechanism can be estimated from the data using a logistic regression model, for example,
ĝ0(1|W ) = 1

1+exp[−(α1W1+α2W2)]
, but one can also augment an initial fit ĝ0 with a targeted direction

aiming for a maximal gain in efficiency [65]. We present the targeted maximum likelihood estimation
procedure for the risk difference, however, this can be immediately extended to the relative risk and
odds ratio as well.

The covariate that is added to the logistic regression Q̂0(A, W ) is given by,

h(A,W ) =
I(A = 1)

ĝ0(1|W )
− I(A = 0)

ĝ0(0|W )
,

where, ε̂ = arg maxε

∑n
i=1 log Q̂0(ε)(Ai,Wi) can be estimated in practice by fitting a logistic regression

in m̂0(A,W ) and h(A,W ), fixing the coefficient in front of m̂0(A,W ) to 1 and the intercept to 0. The
resulting coefficient ε̂ for h(A,W ) is no longer necessarily (and not typically) equal to 0. Let the TMLE
for Q0(A,W ) be given by Q̂∗(A,W ) = Q̂0(ε̂)(A,W ). The TMLE for ψ0 is then,

ψ̂RD−TMLE2 =
1

n

n∑
i=1

[
Q̂∗(1,Wi)− Q̂∗(0,Wi)

]
.

Note that Q̂0(A,W ) is now updated, contrary to the case when we were not estimating the treatment
mechanism as in previous subsections.

2.4.3 Missing data

Here we provide the TMLE for the case that the outcome Y is subject to missingness that can be
informed by the baseline covariates W . In such a case the missingness cannot be ignored as it can
lead to biased estimates since treatment groups are no longer balanced with respect to the covariates.
Let ∆ represent the indicator whether or not the outcome was observed. The observed data can be
represented as O = (W,A, ∆, ∆Y ) ∼ p0 and the full data is given by X = ((Ya : a ∈ A),W ). We assume
that the conditional distribution of the joint censoring variable (A, ∆) given X satisfies coarsening at
random (CAR), i.e., g0(A, ∆|X) = g0(A, ∆|W ). Let

P0 → Ψ(p0) = Ep0 [E(Y |A = 1,W )− E(Y |A = 0,W )]

be the parameter of interest. We wish to estimate the risk difference with targeted maximum likelihood.
In choosing an initial logistic regression fit Q̂0(A,W ), it can be shown (see appendix A.7) that the
updating covariate is given by,

h(A, ∆ = 1,W ) =
I(A = 1)

ĝ(1, 1|W )
− I(A = 0)

ĝ(0, 1|W )
.

The estimate of ε given by ε̂ = arg maxε

∑n
i=1 I(∆i = 1) log Q̂0(ε)(Ai,Wi). Now the logistic regression

fit Q̂0(Y |A, ∆ = 1,W ) can be updated by adding as covariate h(A, ∆ = 1,W ) to obtain the TMLE,



14

Q̂∗(Y |A, ∆ = 1,W ) for Q0(A, ∆ = 1,W ) based on all observations with ∆i = 1. The estimate for
P (∆ = 1|A = 0,W ) as required to calculate the extra covariate h(A,W ) can be obtained by using
a logistic regression model selected either data-adaptively or using a fixed pre-specified model for ∆
conditional on W,A = 0. The TMLE for ψ0 is given by,

ψ̂RD−TMLE =
1

n

n∑
i=1

[
Q̂∗(1, 1,Wi)− Q̂∗(0, 1,Wi)

]
.

We note that the TMLE for missing covariate values is derived in exactly the same manner.

2.5 Testing and inference

Let p̂∗ represent the TMLE of p0. One can construct a Wald-type 0.95-confidence interval based on the
estimate of the efficient influence curve, ˆIC(O) = D(p̂∗). The influence curves for the risk difference,
relative risk, and odds ratio are provided in appendix A.2, A.4 and A.6 respectively. An estimate of
the asymptotic variance of

√
n(ψ̂ − ψ0) can be estimated with,

σ̂2 =
1

n

n∑
i=1

ˆIC
2
(Oi).

The corresponding asymptotically conservative Wald-type 0.95-confidence interval is defined as ψ̂ ±
1.96 σ̂√

n
. The null hypothesis H0 : ψ0 = 0 can be tested with the test statistic,

T̂ =
ψ̂
σ̂√
n

,

whose asymptotic distribution is N(0, 1) under the null hypothesis. To establish the asymptotics of
the TMLE, we apply Theorem 2.4 as provided in van der Laan and Robins [64] and also noted in
van der Laan and Rubin [65]. If Q̂0(A,W ) converges to a mis-specified Q̂∗(A,W ), then the TMLE
ψ̂ is aymptotically linear and consistent. Furthermore, if Q̂0(A,W ) is consistent, then TMLE ψn is
aymptotically linear, consistent and efficient. For further details, see [65].

We note that if the true treatment mechanism is used, inference based on the corresponding influence
curve is not conservative whereas with an estimated treatment mechanism the corresponding influence
curve is conservative. One can improve the variance estimator by either applying the bootstrap pro-
cedure or by deriving the true analytical form of the influence curve. The latter can be achieved by
projecting the influence curve (based on the estimated treatment mechanism) on the tangent space of
the model for the treatment mechanism.

First order efficiency improves by using a larger model for the regression Q(A,W ) which can be achieved
by applying machine learning algorithms (e.g., D/S/A). However, the asymptotic results on which the
IC-based inference rely can break down in that the second order terms generated by data adaptive
approaches can be an issue. Fortunately in the case that the treatment mechanism is known we have
found that both the estimator and inference are not affected by the second order terms suggesting
that fairly data adaptive regression approaches can be used. Based on our experience model selection
algorithms based on cross-validation (e.g., D/S/A) generally result in similar estimates of the standard
error using the influence curve or bootstrap procedure which does take into account model selection.
Thus, if such a methodology is used in the model selection algorithm or if the model for Q(A,W ) is
specified a priori, then one can rely on the IC-based standard error estimates.
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2.6 Relation between R2 and efficiency gain with targeted

maximum likelihood estimation

An analytical relationship exists between the relative efficiency (RE) of the targeted maximum likeli-
hood and unadjusted estimators and the predictive power of the baseline covariates W as expressed in
the following formula,

RE =
σ2(TMLE(Q(A)))

σ2(TMLE(Q(A,W )))

= 1− σ2(TMLE(Q(A)))

σ2(TMLE(Q(A)))− 4[E(Y − EY )2 − E(Y −Q(W ))2]
,

where Q(A) = E(Y | A), Q(W ) = E(Y |W ), σ2(TMLE(Q(A,W ))) is the variance of the influence
curve at Q(A,W ) and σ2(TMLE(Q(A))) is the variance of the influence curve at Q(A) (i.e., the
variance associated with the unadjusted estimator). The RE can also be expressed with respect to

R2
Q(W ) = 1− E(Y−Q(W ))2

E(Y−E(Y ))2
as,

RE = 1− σ2(TMLE(Q(A)))

σ2(TMLE(Q(A)))− 4E(Y − E(Y ))2R2
Q̄(W )

. (2.4)

Thus, as the R2
Q(W ) increases, so does the gain in efficiency, i.e., the ratio of the variances of the influence

curves increases. This formula clearly shows that whenever R2
Q(W ) > 0, i.e., when outcome prediction

with W through the model Q(W ) outperforms outcome prediction through the simple intercept model
(E(Y )) then one achieves a gain efficiency by adjusting for the covariates W with the targeted maximum
likelihood estimation approach relative to the unadjusted estimation approach. Note that this formula
is based on the assumption that P (A = 1) = P (A = 0) = 0.5 and thus is consistent with the result
in [16], which states that “adjustment is either neutral or helps” when P (A = 1) = P (A = 0) = 0.5.
This is also in agreement with published work that demonstrated an increase in estimation precision
with the maximum likelihood estimator when the correlation between the covariate(s) and the outcome
(e.g., as measured by R2

Q(W )) is strong [43, 2].

2.7 Simulation studies

2.7.1 Simulation 1: Strong and weak treatment effects

In this simulation, the treatment A and outcome Y are binary and W is a 2-dimensional covariate,
W = (W1,W2). The simulated data were generated according to the following laws:

1. W1 ∼ N(2, 2)

2. W2 ∼ U(3, 8)

3. P (A = 1) = θ0 = 0.5

4. Q0(A,W ) = P (Y = 1|A,W ) = 1

1+exp[−(kA−5W 2
1 +2W2)]

We simulated the data for 2 scenarios based on the value for k in P (Y = 1|A,W ). In the first scenario,
k = 1.2 and there is a small treatment effect and in the second k = 20, and there is a larger treatment
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effect. The risk difference, relative risk and odds ratio were estimated. The true values were given
by P (Y1 = 1) = 0.372, P (Y0 = 1) = 0.352 and (RD, RR, OR) = (0.019, 1.055, 1.087) for k = 1.2,
P (Y1 = 1) = 0.583, P (Y0 = 1) = 0.352 and (RD, RR, OR) = (0.231, 1.654, 2.570) for k = 20. The
parameters were estimated using 4 methods. The first method “Unadjusted” is the unadjusted method
of regressing Y on A using a logistic regression model. The second method “Correct” is the targeted
maximum likelihood method which is equivalent to the standard G-computation (maximum likelihood)
estimator with,

Q̂(A,W ) = 1/
{
1 + exp

[−(α̂0 + α̂1A + α̂2W
2
1 + α̂3W2)

]}
.

The third method “Mis-spec” used a mis-specified fit given by,

Q̂(A,W ) = 1/ {1 + exp [−(α̂0 + α̂1A + α̂2W1)]} .

For the fourth method ,“DSA”, the estimate Q̂(A,W ) was obtained using the Deletion/ Substitu-
tion/Addition algorithm (D/S/A). The D/S/A algorithm is a data-adaptive model selection procedure
based on cross-validation that relies on deletion, substitution, and addition moves to search through
a large space of possible functional forms, and is publicly available at http://www.stat.berkeley.

edu/~laan/Software/ [56]. The variable A was forced into the model and the D/S/A then selected
from the remaining covariates. The maximum power for any term in the D/S/A algorithm was set to
2, meaning square terms and 2-way interactions were allowed. Standard errors for the TMLE were es-
timated using the estimated influence curve. For the odds ratio simulations, the estimator obtained by
extracting the coefficient for A and the corresponding standard error from the logistic regression model
fit is labelled “Adjusted”. The simulation was run 5000 times for each sample size: n = 250, 500, 1000.
For k = 1.2, W strongly predicts Y and thus the TMLE, which adjusts for W results in a large increase
in efficiency over the unadjusted method as observed by the RE provided in Tables 2.1 for each of the
risk difference, relative risk and odds ratio parameters. The largest gain in efficiency occurs as expected
when Q̂(A,W ) is correctly specified followed closely by the D/S/A method, which in general shows a
slightly higher variability than the correctly specified model due to possible overfitting of Q̂(A,W ). In
the scenario where k = 20 (Tables 2.2), A is more strongly predictive of Y as compared to W and thus
the increase in efficiency is not as marked as when k = 1.2. The largest increase in efficiency for both
values of k occurs for the estimates of the odds ratio (Table 2.2). When Q̂(A,W ) is mis-specified, there
is still a noticeable increase in efficiency showing that it is advised to always adjust for covariates. This
is a result of the double robustness of the estimator as discussed in section 2.4 and appendix A.3. A
significant result is the increase in power of the TMLE as evidenced by the proportion of rejected tests.
In particular when k = 1.2, that is when the effect of A is weaker and more difficult to detect, the
increase in power is quite significant. When k = 20, the performance of the unadjusted estimator is
similar to the targeted maximum likelihood estimator with respect to power. In the strong treatment
effect case, the conditional logistic regression method for estimating the odds ratio (see “Adjusted”
in Table 2.2) demonstrates the issue that the point estimates are further from the null value which is
consistent with the findings in literature as discussed in section 2.3. This is reflected in the coverage
probabilities for the 95% confidence intervals, ranging from 0% to 22%.

Another notable result is that the TMLE circumvents the issue of singularity, i.e., Y is perfectly pre-
dicted by A and W , that occurs when using the adjusted estimate. In this situation the adjusted
estimate is drastically inflated and for this reason, the adjusted results were not included in the consis-
tency plots. However, this is not an issue for the TMLE. The efficiency gain of the TMLE increases as
the covariate becomes more predictive. This becomes even more drastic when the covariate is perfectly
predictive, whereas the adjusted estimate completely breaks down. For example, in a single run of
the simulation for the odds ratio with k = 1.2, with n = 250, the coefficient for the treatment term
in the conditional logistic fit was 25.4 and thus an estimate odds ratio of approximately 1011. The
corresponding TMLE using this same model gives an estimate of 1.083, noting that the true value is
1.087. This is of particular importance for small sample sizes but still occurs even for large sample
sizes as shown in the RE estimates for the “Adjusted” estimate in Tables 2.1 and 2.2.
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We also note that the consistency plots provided in Figure 2.1 show a small positive bias for all methods
for the odds ratio and relative risk for smaller sample sizes. The targeted maximum likelihood methods
however are less biased than the unadjusted method for all sample sizes.

The relative risk regression initial model Q0(A,W ) was also applied. The G-computation estimate
based on Q0(A,W ) was computed in addition to the targeted maximum likelihood estimate for which
the update covariate was required as discussed in section 2.4. The G-computation estimate based on
this relative risk regression model resulted in a small gain in efficiency of approximately 3% with an
additional 1% gain achieved with the TMLE with the appropriate update.

Table 2.1: Simulation 1: k=1.2, Mean squared error (MSE) and power comparison by sample size.
This table summarizes the MSE for the unadjusted estimator, and compares it to the TMLE as an RE
measure. The TMLE are based on three methods for selecting Q(A,W), correctly specified (Correct),
mis-specified (Mis-spec), and D/S/A algorithm (DSA). For the odds ratio parameter, the exponentiated
coefficient from the conditional logistic regression model is also provided (Adjusted). The power for each
of the estimators is provided next to which in parentheses is the coverage probability of the 95 percent
confidence interval.

n = 250 n = 500 n = 1000
Risk Difference

Unadjusted MSE 3.8e-03 1.9e-03 9.5e-04
TMLE Correct RE 10.46 13.70 13.67
TMLE Mis-spec RE 2.14 2.19 2.18
TMLE DSA RE 11.72 13.31 13.49
Unadjusted Power 0.07 (0.94) 0.08 (0.95) 0.10 (0.95)
TMLE Correct Power 0.26 (0.94) 0.42 (0.94) 0.67 (0.95)
TMLE Mis-spec Power 0.08 (0.94) 0.10 (0.95) 0.16 (0.95)
TMLE DSA Power 0.26 (0.94) 0.43 (0.93) 0.67 (0.94)

Relative Risk
Unadjusted MSE 3.6e-02 1.7e-02 8.2e-03
TMLE Correct RE 9.70 13.97 13.70
TMLE Mis-spec RE 2.22 2.27 2.25
TMLE DSA RE 12.50 13.59 13.53
Unadjusted Power 0.05 (0.95) 0.07 (0.95) 0.10 (0.95)
TMLE Correct Power 0.25 (0.94) 0.41 (0.94) 0.67 (0.95)
TMLE Mis-spec Power 0.05 (0.95) 0.05 (0.96) 0.10 (0.96)
TMLE DSA Power 0.19 (0.94) 0.37 (0.94) 0.64 (0.96)

Odds Ratio
Unadjusted MSE 1.0e-01 4.6e-02 2.2e-02
Adjusted RE 0.46 0.51 0.48
TMLE Correct RE 2.83 14.60 14.04
TMLE Mis-spec RE 2.24 2.28 2.21
TMLE DSA RE 13.46 14.19 13.86
Unadjusted Power 0.06 (0.95) 0.08 (0.95) 0.10 (0.95)
Adjusted Power 0.05 (0.97) 0.07 (0.96) 0.11 (0.96)
TMLE Correct Power 0.26 (0.94) 0.42 (0.94) 0.67 (0.95)
TMLE Mis-spec Power 0.08 (0.94) 0.10 (0.95) 0.15 (0.95)
TMLE DSA Power 0.26 (0.94) 0.43 (0.93) 0.67 (0.95)
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Figure 2.1: Simulation 1: Consistency graphs. a) risk difference, k=1.2; (b) risk difference, k=20; (c)
relative risk, k=1.2; (d) relative risk, k=20; (e) odds ratio, k=1.2; and (f) odds ratio, k=20. These plots
show the bias as a percent of the true value for the average of the 5000 estimates for the unadjusted
estimator and the TMLE with Q(A,W ) correctly specified (Correct), mis-specified (Mis-spec), and
selected by the D/S/A algorithm (DSA).
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Table 2.2: Simulation 1: k=20, MSE and power comparison by sample size. This table summarizes
the MSE for the unadjusted estimator, and compares it to the TMLE as an RE measure. The TMLE
are based on three methods for selecting Q(A,W), correctly specified (Correct), mis-specified (Mis-spec),
and D/S/A algorithm (DSA). For the odds ratio parameter, the exponentiated coefficient from the
conditional logistic regression model is also provided (Adjusted). The power for each of the estimators
is provided next to which in parentheses is the coverage probability of the 95 percent confidence interval.

n = 250 n = 500 n = 1000
Risk Difference

Unadjusted MSE 3.9e-03 2.0e-03 9.5e-04
TMLE Correct RE 3.58 4.70 4.60
TMLE Mis-spec RE 2.51 2.55 2.51
TMLE DSA RE 4.40 4.65 4.59
Unadjusted Power 0.96 (0.94) 1.00 (0.94) 1.00 (0.95)
TMLE Correct Power 1.00 (0.94) 1.00 (0.94) 1.00 (0.95)
TMLE Mis-spec Power 1.00 (0.95) 1.00 (0.94) 1.00 (0.95)
TMLE DSA Power 1.00 (0.94) 1.00 (0.94) 1.00 (0.94)

Relative Risk
Unadjusted MSE 6.5e-02 3.1e-02 1.4e-02
TMLE Correct RE 2.14 4.13 3.97
TMLE Mis-spec RE 2.23 2.30 2.28
TMLE DSA RE 4.01 4.06 3.96
Unadjusted Power 0.95 (0.95) 1.00 (0.95) 1.00 (0.95)
TMLE Correct Power 1.00 (0.94) 1.00 (0.94) 1.00 (0.95)
TMLE Mis-spec Power 1.00 (0.99) 1.00 (0.99) 1.00 (1.00)
TMLE DSA Power 1.00 (0.99) 1.00 (0.99) 1.00 (1.00)

Odds Ratio
Unadjusted MSE 5.7e-01 2.6e-01 1.2e-01
Adjusted RE 0.00 0.01 0.00
TMLE Correct RE 2.89 5.05 4.67
TMLE Mis-spec RE 2.63 2.65 2.52
TMLE DSA RE 5.01 4.97 4.67
Unadjusted Power 0.96 (0.95) 1.00 (0.94) 1.00 (0.95)
Adjusted Power 1.00 (0.22) 1.00 (0.03) 1.00 (0.00)
TMLE Correct Power 1.00 (0.94) 1.00 (0.94) 1.00 (0.95)
TMLE Mis-spec Power 1.00 (0.95) 1.00 (0.95) 1.00 (0.95)
TMLE DSA Power 1.00 (0.94) 1.00 (0.94) 1.00 (0.95)
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2.7.2 Simulation 2: Odds ratio with interaction term

In this simulation, the treatment A and outcome Y are binary and W is a 2-dimensional covariate,
W = (W1,W2). The simulated data were generated according to the following laws:

1. W1 ∼ N(2, 2)

2. W2 ∼ U(3, 8)

3. P (A = 1) = θ0 = 0.5

4. Q0(A,W ) = P (Y = 1|A,W ) = 1

1+exp[−(1.2A−5W 2
1 +2W2−5AW1)]

The true values were given by P (Y1 = 1) = 0.312, P (Y0 = 1) = 0.352 and OR = 0.833. The same
methods used in simulation 1 were used here to estimate the odds ratio. The simulation was run 5000
times for each sample size: n = 250, 500, 1000. For the “Mis-spec” TMLE, the mis-specified fit was
given by,

Q̂(A,W ) = 1/ {1 + exp [−(α̂0 + α̂1A + α̂2W1)]} .

Figure 2.2 provides the consistency plot for each of the estimators. The results are similar to odds ratio
for simulation 1 in that there is a small positive bias for all methods. The TMLE methods are again
less biased than the unadjusted method for all sample sizes. Even when Q̂(A,W ) is mis-specified the
MSE is reduced as compared to the unadjusted estimate (Table 2.3). The D/S/A algorithm, which
allows for interactions, shows a significant improvement in terms of the MSE. A notable increase in
power is again observed for the TMLE over the unadjusted method.

Table 2.3: Simulation 2: MSE and power comparison by sample size where the true Q(A,W ) contains an
interaction term between treatment and a covariate. This table summarizes the MSE for the unadjusted
estimator, and compares it to the TMLE as an RE measure. The TMLE are based on three methods for
selecting Q(A,W), correctly specified (Correct), mis-specified (Mis-spec), and D/S/A algorithm (DSA).
The exponentiated coefficient from the conditional logistic regression model is also provided (Adjusted).
The power for each of the estimators is provided next to which in parentheses is the coverage probability
of the 95 percent confidence interval.

n = 250 n = 500 n = 1000
Unadjusted MSE 6.1e-02 2.7e-02 1.3e-02
Adjusted RE 0.68 0.55 0.39
TMLE Correct RE 6.59 6.12 5.89
TMLE Mis-spec RE 2.58 2.52 2.46
TMLE DSA RE 7.47 7.87 7.40
Unadjusted Power 0.10 (0.95) 0.16 (0.95) 0.27 (0.96)
Adjusted Power 0.13 (0.94) 0.26 (0.92) 0.48 (0.87)
TMLE Correct Power 0.40 (0.94) 0.66 (0.94) 0.91 (0.95)
TMLE Mis-spec Power 0.20 (0.95) 0.34 (0.95) 0.57 (0.95)
TMLE DSA Power 0.50 (0.92) 0.78 (0.94) 0.97 (0.94)
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Figure 2.2: Simulation 2: Consistency graph where the true Q(A,W ) contains an interaction term
between treatment and a covariate. This plot shows the bias as a percent of the true value for the
average of the 5000 estimates for the unadjusted estimator and the TMLE with Q(A,W ) correctly
specified (Correct), mis-specified (Mis-spec), and selected by the D/S/A algorithm (DSA).



22

2.7.3 Simulation 3: Estimating the treatment mechanism as well

In this simulation, the treatment mechanism, P̂ (A|W ) is estimated from the data using a logistic
regression model with covariates that are predictive of the outcome Y . The simulated data were
generated according to the following laws:

1. W1 ∼ N(1, 2)

2. W2 ∼ U(1, 4)

3. W3 ∼ U(0, 20)

4. P (A = 1) = θ0 = 0.5

5. Q0(A,W ) = P (Y = 1|A,W ) = 1

1+exp[−(3A−2W 2
1−log(W2)+0.5W3)]

The true values were given by P (Y1 = 1) = 0.569, P (Y0 = 1) = 0.419 and RD = 0.150. The treatment
mechanism was estimated with the logistic regression model given by,

g(A|W ) = 1/ {1 + exp [−(γ0 + γ1W1 + γ2W2 + γ3W3)]} .

The TMLE, represented as “Est tx” in Table 2.4 and Figure 2.3, with the estimated treatment mech-
anism is no longer equivalent to the G-computation estimator. The mis-specified fit for,

Q(A,W ) = 1/ {1 + exp [−(α0 + α1A + α2W1)]}

is used as the initial fit and the covariate h(A,W ) provided in section 2.4.2 is then added to this
logistic regression. The TMLE is then estimated as usual. Thus, we are interested in comparing
the mis-specified TMLE to the estimated treatment mechanism TMLE. Table 2.4 the efficiency is
increased when estimating the treatment mechanism, from approximately 1.0 to 1.5. The power was
approximately equal for the mis-specified and estimated treatment mechanism TMLE. The TMLE
method using the D/S/A again shows a large improvement in efficiency and power over the unadjusted
method.
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Figure 2.3: Simulation 3: Consistency graph where the treatment mechanism is also estimated. This
plot shows the bias as a percent of the true value for the average of the 5000 estimates for the unadjusted
estimator and the TMLE with Q(A,W ) correctly specified (Correct), mis-specified (Mis-spec), and
selected by the D/S/A algorithm (DSA). In addition the TMLE was also estimated with the correctly
specified Q(A,W ) and the estimated treatment mechanism (Est Tx).
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Table 2.4: Simulation 3: MSE and power comparison by sample size where the treatment mechanism
is also estimated This table summarizes the MSE for the unadjusted estimator, and compares it to the
TMLE as an RE measure. The TMLE are based on three methods for selecting Q(A,W ), correctly
specified (Correct), mis-specified (Mis-spec), and D/S/A algorithm (DSA). In addition the TMLE was
also estimated with the correctly specified Q(A,W ) and the estimated treatment mechanism (Est Tx).
The power for each of the estimators is provided next to which in parentheses is the coverage probability
of the 95 percent confidence interval.

n = 250 n = 500 n = 1000
Unadjusted MSE 2.6e-03 1.3e-03 6.5e-04
TMLE Correct RE 4.34 4.41 4.54
TMLE Mis-spec RE 1.01 1.03 1.01
TMLE DSA RE 4.17 4.35 4.51
TMLE Est tx RE 1.42 1.47 1.46
Unadjusted Power 0.25 (0.94) 0.42 (0.95) 0.69 (0.94)
TMLE Correct Power 0.79 (0.94) 0.97 (0.94) 1.00 (0.94)
TMLE Mis-spec Power 0.25 (0.94) 0.42 (0.95) 0.70 (0.95)
TMLE DSA Power 0.80 (0.94) 0.97 (0.93) 1.00 (0.94)
TMLE Est tx Power 0.21 (0.98) 0.40 (0.98) 0.73 (0.98)
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2.7.4 Efficiency gain and R2

To demonstrate the relation between efficiency gain and R2, a simulation was run according to the
following laws:

1.
√

W ∼ N(2, 2)

2. P (A = 1) = θ0 = 0.5

3. Q0(A,W ) = P (Y = 1|A,W ) = 1
1+exp[−(1.2A−cW )]

The data were sampled 5000 times with a sample size n = 1000 for each c = {0, 0.25, 2, 10}. That is
covariate W is increasingly predictive. The R2 was estimated in the ordinary least squares sense,

R2 = 1−
∑n

i=1

[
Yi − Q̂(A,W )

]2

∑n
i=1

[
Yi − Ȳ

]2 .

A gain in R2 was computed as the difference between R2 in the covariate adjusted model and the
covariate unadjusted model. Figure 2.4 depicts the RE to the unadjusted model for the TMLE for the
risk difference and odds ratio against the gain in R2. Clearly a gain in RE comparing the TMLE with
the unadjusted corresponds with a gain in R2.
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Figure 2.4: Efficiency Gain and R2 for (a) risk difference; and (b) odds ratio. These plots show the
relationship between R2 and the gains in relative MSE (RE) between the unadjusted and TMLE with
correctly specified Q(A,W )
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2.7.5 Simulation discussion

The simulations were based on relatively simple data generating distributions but were useful in demon-
strating the following results:

• The TMLE shows a clear increase in both efficiency and power over the unadjusted method, even
when Q(A,W ) is not correctly specified.

• The D/S/A method for selecting Q(A,W ) provides a significant increase in efficiency and power
over the mis-specified fixed Q(A,W ) method. The highest RE of approximately 13 was observed
for the weak effect case with a sample size of n = 1000 in our simulations.

• The targeted maximum likelihood method circumvents the singularity issue that occurs when
using the adjusted method of extracting the coefficient from the logistic regression model Q(A, W ).

• Interaction terms in the model for Q(A,W ) fit entirely into the framework of the targeted maxi-
mum likelihood.

• Estimating the treatment mechanism provides a further small increase in efficiency over targeting
only Q(A,W )

• There is a clear relation between increasing R2 and efficiency gain.

• The method of covariate adjustment that extracts the coefficient for treatment from the condi-
tional logistic model demonstrated a loss in efficiency with a gain in power due to the inflated
point estimates which corresponds with previous findings in the literature.

2.8 Discussion

Targeted maximum likelihood estimation provides a general framework that we applied to estimation
of the marginal (unadjusted) effect of treatment in RCTs. We observed that the traditional method of
covariate adjustment in RCTs using logistic regression models can be mapped, by averaging over the
covariate(s), to obtain a fully robust and efficient estimator of the marginal effect, which equals the
TMLE. We demonstrated that the TMLE does just this and results in an increase in efficiency and
power over the unadjusted method, contrary to what has been reported in the literature for covariate
adjustment for logistic regression. The simulation results demonstrated that data-adaptive model
selection algorithms such as the D/S/A, which we used in this chapter, or forward selection, should be
applied if the algorithm is specified a priori. However, we showed that even adjusting by a mis-specified
regression model results in gain in efficiency and power. Thus, using an a priori specified model, even if
it is mis-specified, can increase the power, and thus reduce the sample size requirements for the study.
This is particularly important for trials with smaller sample sizes. The targeted maximum likelihood
framework can also address missing data, either in the outcome as we demonstrated in section 2.4.3 for
the risk difference, but also missingness in covariates and treatment as well for any of the parameters of
interest. In these scenarios, derivation of the TMLE covariate may not be as straightforward as those
that were presented in this chapter, but its derivation is analogous. We focused on logistic and relative
risk regression, but the methodology can be extended to any other regression models for Q(A,W ). The
targeted maximum likelihood framework can also be applied to other parameters of interest in RCTs
such as an adjusted effect, for example by age or biomarker, and can also handle survival times as
outcomes [65].
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Chapter 3

Illustration of covariate adjustment with
randomized controlled trial data and a
recommended strategy for adjustment

3.1 Introduction

In an RCT, the effect of a treatment on a binary outcome is typically estimated as the observed difference
in the proportion of subjects with the event in the treated and untreated arms. This unadjusted
estimator is efficient when no other information is collected besides the data on the treatment, A,
and outcome, Y , of interest. Indeed, from estimation theory [64], it is known that the nonparametric
maximum likelihood estimator is the efficient estimator of the effect of interest. Since the likelihood
of the observed data is P (A)P (Y |A) when the data only contain information on the treatment and
outcome, the unadjusted estimator does thus correspond to the maximum likelihood estimator.

When baseline covariates W are also collected, the likelihood of the observed data becomes

P (W )P (A|W )P (Y |A,W )

. Since the unadjusted estimator ignores the covariates, it can be viewed instead as a reduced data
maximum likelihood estimator. It follows that ignoring covariate information by using the unadjusted
estimator can lead to a loss in estimation efficiency (precision) in practice.

The targeted maximum likelihood estimation methodology presented in chapter 2 provided an estima-
tion approach that, 1) incorporates the information of covariates W to improve estimation efficiency,
and 2) does not require any additional parametric modeling assumptions to maintain their consistency
property. This chapter aims at clarifying the issue of efficiency gain with baseline covariates in RCTs
based on the framework of targeted maximum likelihood estimation and unify the different analytical
protocols for covariate adjustment that have been proposed through an application to an RCT.

In addition, in this chapter, through application of this methodology to a sampled RCT dataset, we
explore the origin of the gain in efficiency and criteria that can be used to anticipate whether the study
design and the covariates collected can actually lead to increased estimation precision in practice.
It is important to note that the criteria presented in this chapter rely on the assumption that the
probability of receiving treatment is 0.5. Our recommendations for adjustment rely on this assumption
and therefore do not deviate from the work of Freedman [16] where it is found that if the probability
of receiving treatment is 0.5, that adjustment at worst simply does not result in a gain in efficiency.
We illustrate how empirical confounding explains the gain in efficiency that can be achieved from an
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adjusted analysis. Empirical confounding can occur due to bad luck in the randomization process, e.g. a
higher percentage of older patients are assigned to the placebo arm and age has an effect on the outcome.
Some RCT designs insure perfect covariate balance for some of the baseline covariates, however there
are typically many other covariates collected that do not have a perfect balance. Empirical confounding,
which occurs by chance for a given dataset, can introduce a large estimation error (sample bias), for
which the unadjusted estimator cannot correct since it ignores covariate information. If the experiment
were repeated many times, one would not expect this imbalance to occur in each sample and this
estimation phenomenon can thus not be qualified as bias. We refer to it as sample bias or sample
imbalance. The targeted maximum likelihood approach to covariate adjustment can account for such
a covariate imbalance and thus improve over the poor finite sample performance of the unadjusted
estimator due to empirical confounding.

Another issue that has obstructed the broad application of methodologies for covariate adjustment, in
both the linear and logistic settings, has been concerns about the selection of the parametric covariate
adjustment. Incorrect covariate adjustment can indeed typically lead to estimation bias. However,
in chapter 2, the maximum likelihood estimator was shown to be doubly robust in RCTs. Despite
this double robust property which ensures MLE consistency independent of the covariate adjustment,
unease arises over the fact that investigators could still select the covariate adjustment that provides
the most favorable inference without accounting for multiple testing. However, this is not an issue if
one uses an a priori specified algorithm for model selection. When the model selection procedure is
specified in the analysis protocol, the analysis is protected from investigators guiding causal inferences
based on selection of favorable covariates and their functional forms in a parametric model.

It is important to note that the logistic models applied in this chapter are used for the purpose of
improving efficiency in estimation of a marginal effect. They are not meant to infer information about
subgroup (conditional) effects of treatment. The methodology can be extended to the estimation of
subgroup specific effects but in this chapter we focus only on marginal treatment effects.

Throughout this chapter, we illustrate the proposed general methodology for covariate adjustment using
a sampled dataset from an actual RCT. We outline and review all the aforementioned issues involved
in covariate adjustment and suggest a concrete analytical protocol for covariate adjustment to improve
estimation efficiency by accounting for empirical confounding. In section 3.2 we introduce the study
and the data that are analyzed for illustration purposes throughout the chapter. We also outline the
hypothesis tests of interest and their implementation. In section 3.3 using the data analysis, we provide
an example of the apparent failure of conditional logistic models to improve estimation efficiency for
the treatment effect of interest. In section 3.3.1, TMLE implementation and the selection of covariates
are discussed based on the relation between R2 and efficiency gain. In section 3.4 we illustrate how the
performance and resulting inferences from the unadjusted and targeted maximum likelihood estimators
compare based on the study and data presented in section 3.2. Section 3.4.1 explores the concept of
empirical confounding and its relation to the origin of efficiency gain with the TMLE. Section 3.5
provides a recommended strategy for analyzing randomized trial data using covariates with the TMLE.
Finally we conclude with a discussion in section 3.6.

3.2 Study and data example

The study of interest in this chapter is an international, multicenter, double-blind, parallel, placebo
controlled randomized clinical trial which aims to evaluate safety based on mortality due to drug-to-drug
interaction. The patients were randomized to receive either Drug1 or a placebo. All patients received
Drug2 concomitantly as a background therapy. The primary objective was to determine whether the
mortality rate between patients receiving Drug1 and placebo remained within a 1% margin or less.
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We note that this is an exploratory safety analysis and an example to illustrate the methodology to
evaluate whether there exists a drug-to-drug interaction that could result in higher mortality in the
treated patients as compared to those that received the placebo.

The data consist of n independent and identically distributed observations of O = (W,A, Y ) where W
is a vector of 40 baseline covariates, A is the treatment variable where A = 1 for the treated group
and A = 0 for the placebo group, the outcome Y is all-cause mortality (0=Survived, 1=Died) at 28
days. The data available for this chapter were obtained from the original data by random sampling
with replacement such that the distribution of the patient characteristics in the original study were
maintained. The new subjects sampled were given a unique but different patient ID to protect the
confidentiality of the original data. Therefore, the number of subjects, mortality and other crude rates
may not be similar to that of the original clinical study. We treat each of the 2135 observations in
the available data as independent realizations of O. Nine observations had missing outcomes and were
deleted from the dataset leaving n = 2126 observations. Five of the 40 variables had proportions of
missing values over 90%. The remaining 35 variables had proportions of missing values less than 1.3%.
For the continuous variables, the missing values were imputed at the median for the given variable and
the categorical variables were imputed at the category with the highest proportion of observed values.
Corresponding indicator variables of whether or not the value was imputed were created, resulting in
80 baseline covariates. Dummy variables for each of the categorical outcomes were created resulting in
162 variables. The distribution of mortality by treatment is provided in Table 3.1. The proportion of
subjects in the treated group is θ̂ = 1

n

∑n
i=1 I(A = 1) = 0.504 and the proportion in the placebo group

is 1− θ̂ = 0.496.

Table 3.1: Mortality by Treatment. This table is the 2x2 contingency table for mortality and treatment.

Mortality
Survived (0) Died (1)

Treatment
PLACEBO 717 337
TEST DRUG 766 306

Since the primary research question of interest is whether the treated group has a mortality rate no
worse than the placebo group within a 1% arbitrarily selected margin for equivalence, the hypothesis
test for the risk difference is expressed as,

H0 : P (Y = 1 | A = 1)− P (Y = 1 | A = 0) ≥ 0.01

H1 : P (Y = 1 | A = 1)− P (Y = 1 | A = 0) < 0.01.

In words,

H0 : Test inferior to placebo

H1 : Test not much inferior to placebo.

If the upper limit of the 100(1 − 2α)% confidence interval for E(Y1) − E(Y0) is less than 0.01, then
the null is rejected and conclusion is that the mortality rate of the test group is similar to that of
placebo using a 1% equivalence margin. This is equivalent to testing the above hypothesis test at a
level of α. The ICH guidelines state “The approach of setting Type I errors for one-sided tests at half
the conventional Type I error used in two-sided tests is preferable in regulatory settings” [14]. Since
the generally accepted level for a 2-sided hypothesis test is 0.05, we set the Type I error level for this
1-sided test to 0.025.
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We note that a second test for superiority is expressed as,

H0 : P (Y = 1 | A = 1)− P (Y = 1 | A = 0) ≥ 0 (Test drug not superior)

H1 : P (Y = 1 | A = 1)− P (Y = 1 | A = 0) < 0 (Test drug superior).

This test can be similarly performed at the 0.025 level as above by observing whether 95% upper
confidence limit is less than 0.

To illustrate the proposed general methodology for extraction of covariate information to improve
estimation efficiency over the standard unadjusted estimation approach used in RCTs, we compare
results from both approaches for this latter test in addition to results from the noninferiority test
described above.

3.3 Covariate adjustment with logistic models

To illustrate the decrease in estimation efficiency from conditional logistic models relative to unadjusted
logistic models, we fit a conditional logistic model to the dataset and compare the corresponding
estimate of the odds ratio to the unadjusted odds ratio. An estimate of the conditional odds ratio
is easily obtained from a logistic model by simply exponentiating the coefficient for A. Note that
this applies when there are no interaction terms between the treatment A and covariates W in the
parametric model used. In this section, focus is placed on the odds ratio representation of the effect
of interest versus the aforementioned risk difference measure because it is not clear how one typically
derives a marginal risk difference from a model conditioning on W . We do provide a method in later
sections based on averaging over the covariates W to obtain a marginal risk difference estimate from
a conditional logistic model, however here we focus on the comparison of odds ratios to replicate and
further illustrate published results [22, 53].

For clarity, covariate adjustment is based on a single covariate BULTRA, the indicator variable that a
bilateral compression ultrasound was performed. This covariate was chosen since it is most correlated
with the outcome. We later explain this selection criterion in section 3.3.1. The following logistic model
was thus fit,

logit(P (Y = 1|A,W )) = β0 + β1A + β2W,

where W = BULTRA.

The estimate β̂1 and the corresponding standard error for β̂1, in addition to the unadjusted estimates
are provided in Table 3.2. Note that the odds ratio estimate is given by exp(β̂1) and that the standard
error for β̂1 is indeed larger for the conditional estimate from the logistic model with BULTRA than the
unadjusted standard error. The upper limit of the 95% confidence interval includes 0 for the unadjusted
estimate but does not for the conditional estimate. Thus, with the unadjusted method, one would not
reject the null hypothesis at the 0.025 level for the following test,

H0 : log(OR) = 0 (OR ≥ 1)

H1 : log(OR) < 0 (OR < 1).

However, one would in fact reject the null based on the conditional method. Even though the standard
error is higher for the conditional estimate, the upper confidence limit is lower than the unadjusted
due to the fact that the point estimate is further from the null as compared to the unadjusted, −0.217
and −0.163 respectively. The increased standard error is reflected in the width of the confidence
interval which is wider for the conditional than the unadjusted. These results are consistent with those
previously demonstrated in literature [22, 53].
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Furthermore, note that these results are based on conditional models with no interaction terms between
the treatment variable and covariates. With the presence of an interaction term, the logistic models
becomes

logit(P (Y = 1|A,W )) = β0 + β1A + β2W + β3AW,

and similar to the risk difference it is not clear what one should report as the estimate of the marginal
causal odds ratio of interest. We note that this issue also applies in the linear model setting and thus
no interaction terms are typically included in linear models.

Table 3.2: Conditional and unadjusted log odds ratio estimates. This table provides the log odds
ratio (log(OR)), standard error (SE) and 95 percent confidence interval (95% CI) for the unadjusted
estimate that is based on the extraction of the coefficient for treatment from the logistic regression fit that
includes only treatment as a main term and the conditional estimate that is based on the extraction of
the coefficient for treatment from the logistic regression fit that includes both treatment and the covariate
BULTRA as main terms.

log(OR) SE 95% CI
Unadjusted -0.163 0.095 (-0.348,0.023)
Conditional -0.217 0.108 (-0.428,-0.006)

3.3.1 Implementation of the TMLE and the selection of covariates for
adjustment

The example in the previous section illustrated the results in RCT literature regarding the failure of
covariate adjustment with logistic models. However, as demonstrated in chapter 2, proper covariate ad-
justment can improve estimation efficiency even with logistic models with targeted maximum likelihood
estimation which provides an estimate of the marginal effect of interest rather than a conditional effect.
We now continue with estimation of such a marginal effect in our data analysis using the methodology
presented in chapter 2 and explore TMLE implementation issues and the selection of covariates for
adjustment. The primary causal parameter of interest is the causal risk difference which is defined
as Ep0(Y1) − Ep0(Y0), which in words is the average difference over all subjects in the counterfactual
outcomes corresponding with each treatment.

The implementation of the TMLE relies on estimating the nuisance parameter Q(A,W ) which will
typically be based on a parametric model in practice (e.g. logistic model). Given the relation between
R2 and efficiency gain provided in section 2.6, one may be tempted to include as many covariates
as possible in the model for Q(A,W ) since the corresponding R2

Q(W ) increases as one increases the
set of covariates W to predict Y . However, the correctness of inference based on the IC relies on
the assumption that the model for Q used to derive Q̂(A,W ) is not an overfit of the true nuisance
parameter Q(A,W ). In an overfit situation, the asymptotic results on which the correctness of the
IC-based inference rely do break down and one may run the risk of underestimating the variance with
the IC, i.e. artificially attributing the gain in precision to covariate adjustments. This is due to the fact
that IC-based inference is based on first order asymptotics whereas in finite samples second order terms
can affect the inference (see [70], Chapter 3). Thus, we caution that the approach of including as many
covariates as possible may result in overfitting Q(W ) which in turn can lead to incorrect (optimistic)
inference from the influence curve associated with the TMLE, and more seriously, also result in loss in
estimation efficiency.

To demonstrate this issue with the data analysis, we fit a model for Q(A,W ) including all 162 covariates
as main terms. The standard error computed based on the influence curve was 0.016, whereas the
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corresponding standard error based on the bootstrap procedure was 0.0229, a 43.4% increase. We note
that as a comparison, the unadjusted influence curve and bootstrap standard errors were equivalent
(within 0.3%). It thus appears that the bootstrap estimate of the TMLE variance is thus picking
up second order terms contributing to the variability of the TMLE estimator that are ignored by the
first order asymptotic approximation of the TMLE variance with the influence curve. In fact the
bootstrap-based estimate of the TMLE standard error associated with the overfit model for Q(A, W )
is even higher than that of the unadjusted estimate and thus overfitting Q(A,W ) can result in a loss
of efficiency.

The phenomenon illustrated above does not contradict the results from the relation between R2 and
relative efficiency provided in chapter 2, but instead can be explained by noting that the observed
R2

Q(W ) calculated on the same sample as the one on which Q(W ) is fit is not a good estimate of the

true R2
Q(W ). To obtain an appropriate estimate of the R2

Q(W ), cross-validation is typically applied [67].

This cross-validated R2
Q(W ) can subsequently be used as a model selection criterion for Q(A, W ) to

avoid overfitting the nuisance parameter which results in incorrect inference from the influence curve
and more importantly in a loss in estimation efficiency. As noted above, if the standard (non cross-
validated) R2

Q(W ) was used in practice to select a model for Q(A,W ), one would always use a model

for Q(A,W ) that includes the maximum number of covariates since the associated R2
Q(W ) would be

largest. This is not necessarily the case if the cross-validated R2
Q(W ) (cv-R2

Q(W )) is applied instead.

In V -fold cross-validation, the data are divided into V subsets of equal size. In turn, each of the V
data subsets are referred to as training set and the remaining subset of data is referred to as validation
set. To compute cv-R2

Q(W ) for a given model for Q(W ) with a V -fold cross-validation splitting scheme,

one fits the model for Q(W ) on each of the V training sets and compute the associated R2
Q(W ) with

the observations from the corresponding validation sets. The mean of the V estimates for R2
Q(W ) from

each validation set is the cv-R2
Q(W ).

Returning to our example with the overfitting of Q(A,W ), the corresponding observed R2
Q(W ) was 0.36

as compared to the 5-fold (V = 5) cv-R2
Q(W ) of 0.23. When the model for Q(A,W ) only involves one

single covariate, the observed R2
Q(W ) is 0.23 and the cv-R2

Q(W ) is 0.22. These results clearly demonstrate

that the model for Q(A,W ) based on a single covariate does not overfit Q(A,W ) and thus the near
equivalence between the cross-validated and standard R2

Q(W ), whereas the very large model for Q(A, W )
shows a large difference in the two estimates signaling an overfitting problem.

Applying a cross-validated model selection criterion, one can avoid such overfitting issues when the
algorithm is not overly agressive. There exist algorithms that use cross-validated criterion such as
the Deletion/Substitution/Addition (DSA) algorithm which searches through a large space of possible
polynomial models using the cross-validated risk as the selection criterion [56]. This algorithm can be
computationally intensive. Other model selection algorithms that are based on a likelihood criterion,
such as stepwise based on AIC, do not ensure an increase in cv-R2

Q(W ) (decrease in risk) and thus do
not guarantee a gain in efficiency.

We propose a more practical, simple and fast variant of the backward deletion algorithm for the selection
of Q(W ) and thus Q(A,W ) (obtained by adding A to Q(W )) based on the maximum 5-fold cv-R2

Q(W ).
The algorithm is as follows:

1. Find all marginally associated covariates with False Discovery Rate (FDR) adjusted p-values less
than 0.01. Let there be M such covariates.

2. Fit multivariate logistic regression including all M covariates and compute cv-R2
Q(W ).

3. Delete covariate with largest p-value based on multivariate fit from previous step.
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4. Fit new model with deleted covariate and compute new cv-R2
Q(W ).

5. Repeat steps 3 and 4 until only 1 covariate remains in model.

6. Select the model among the M models with the largest cv-R2
Q(W ) and add the treatment A to

this model to obtain the model for Q(A,W ).

Note that the FDR procedure was applied in the first step due to the multiple tests performed to assess
the univariate association of each covariate with the outcome [7].

We provide results from the application of the method described above to select the model for Q(A, W )
but also include results from the more simple approach that consists of selecting the model for Q(A, W )
based on the identification of the covariate most associated with the outcome. The single covariate
selected and used to derive the model for Q(A,W ) in this second approach was the BULTRA covariate
discussed earlier. Confidence intervals corresponding with the tests, discussed in section 3.2, were
based on the bootstrap procedure. For each bootstrap sample, the entire model selection process was
run, including the ranking of the covariates by their FDR-adjusted p-values and the model selection
procedure. Thus, the honest bootstrap procedure accounts for all sources of variability, including the
second order terms discussed above. For each of these two methods for estimating Q(A,W ), the risk
difference was estimated based on the targeted maximum likelihood method. Standard Errors were
computed using 3 methods: the influence curve (IC) cross-validated IC (cv-IC) and the bootstrap
procedure based on 20000 bootstrap samples. The cv-IC, as opposed to the standard IC was applied
based on the same reasoning for using the cv-R2

Q(W ) as opposed to the R2
Q(W ). Using the cv-IC protects

one from incorrectly claiming a significant result based on an overfit of Q(A,W ). However, if the model
selection algorithm is based on cv-R2

Q(W ), the standard IC can be used for inference since the use of

cross-validation avoids the issue of overfit for Q(A,W ). We note that the cross-validated variance of
the IC itself could also be used as a criterion for model selection, however, in this chapter we present
results based on the cv-R2

Q(W ) criterion only.

3.4 Results

The single most associated covariate had a strong univariate association with the outcome (p-value=5.4e−
78). This covariate was used as a main term (with intercept) only model for the first method of se-
lecting Q(A,W ). The backwards deletion method selected a model with 15 covariates, not including
treatment. The plot of the cross-validated R2

Q(W ) is provided in Figure 3.1 with the solid circle high-

lighting the maximum cross-validated R2
Q(W ) corresponding with a model with 15 covariates. This plot

shows there is little change in the cross-validated cv-R2
Q(W ) for models with 15 covariates through 22

covariates. The largest gain results from the addition of a single covariate.

Table 3.3 provides all estimates including the unadjusted and targeted maximum likelihood methods.
We first note that the upper confidence limit of the unadjusted test is greater than 0, and thus we
would conclude that there is no evidence that the test drug is superior to the placebo at the 0.025
level. However, when we adjust for covariates using targeted maximum likelihood, using only the single
most associated covariate, upper confidence limit is reduced to 0 with a relative efficiency of 1.14.

The relative efficiency is calculated as ŜEun

ŜEajd
where ŜEun is the unadjusted standard error and ŜEadj

is the adjusted standard error. Furthermore, applying the backwards deletion algorithm, the upper
confidence limit is reduced even further, and the relative efficiency increases to 1.211. Thus, applying
the backwards deletion method we now have evidence to reject the null hypothesis and conclude that
the mortality is lower is the test group as compared to the placebo. We note that the single most
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Figure 3.1: Cross-validated R2
Q(W ) by number of covariates in model.
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associated covariate method is right on the border of rejecting or accepting the null. However, we
note that the research hypothesis was that the mortality for the test drug could be tolerated up to
an increase of 1% in comparison to placebo. In this case, all of the upper confidence limits fall below
0.01 and the conclusion of noninferiority is the same using both the unadjusted or targeted maximum
likelihood methods. It would still be of interest to the investigator that while the mortality falls within
the pre-specified margin, that the observed reduction in mortality in the treated group is statistically
significant.

Figure 3.2 shows that as the 5-fold cv-R2
Q(W ) increases, so does the relative efficiency. Since this dataset

contains highly predictive covariates of the outcome, and the study design did not balance treatment
on covariates, the large gain in cv-R2

Q(W ) also translates into a gain in estimation efficiency.
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Figure 3.2: Relative Efficiency (RE) against cross-validated R2
Q(W ) and R2

Q(W ); a) cross-validated R2
Q(W ),

and b) R2
Q(W ).

The results outlined above are based on standard errors computed based on the bootstrap procedure
(20000 bootstrap samples). Table 3.4 provides a comparison of the IC, cv-IC and bootstrap standard
errors. The standard errors for the unadjusted, single covariate and backwards deletion estimates are
almost identical using the bootstrap as compared to the IC and cv-IC. The bootstrap standard error
for the overfit method is 43.4% higher than the IC based standard error. However, the cv-IC method
accounts for some of the overfit in that it is significantly higher than IC method. We again note that
IC-based inference is valid in first order. However, with serious overfits, second order terms can play
a role and the bootstrap procedure is indeed picking up these second order effects. We include this
example as an extreme case to demonstrate when the methodology breaks down. It is our experience
that using a cross-validated criterion in the model selection algorithm would avoid such a scenario. In
our example based on the cv-R2

Q(W ), the overfit would not have been selected.

It important to note that the error in the bootstrap based method is on the order of 1/
√

(20000) = 0.007
where 20000 is the number of bootstrap samples. The difference in the standard errors are within this
margin. Second, we note that the standard errors for the IC and the other 2 methods differ quite
significantly (although still within this margin) for the overfit method. These results indicate that the
cross-validated criterion is performing well with respect to not overfitting the data. They also indicate
that when cross-validation is not used in the model fitting procedure, as in the overfit method, then
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the cv-IC and IC based estimates differ. Thus one should always rely on the cv-IC or bootstrap based
standard errors in such situations.

The results also show that the point estimates for the targeted maximum likelihood and the unadjusted
methods differ. This difference can largely be attributed to the empirical confounder AGE. The
probability of being treated among those patients over 75 years of age is 0.55 as compared to 0.49
for those under 75 years of age. The p-value for the univariate association between this discretized
age covariate and treatment is 0.03. We note that this covariate is also associated with the outcome.
The TMLE using the backward deletion method for selecting Q(A,W ) includes the covariate AGE.
Thus, this estimate has adjusted for this small amount of empirical confounding and changes the point
estimate from −0.034 to −0.042. The gains in efficiency are reflected in the standard error estimate as
well as the point estimate. When the covariate AGE is removed from the backward deletion selected
model and the TMLE is computed, the estimate becomes −0.038. The relative efficiency however is
1.196 and thus a gain is still achieved. The remaining difference in the point estimate and precision
from the unadjusted after removing AGE indicates that there remains some empirical confounding due
to other variables other than AGE.

Table 3.3: Comparison of unadjusted and targeted maximum likelihood estimates. This table pro-
vides the unadjusted and targeted maximum likelihood estimates based on two methods for esti-
mation of Q(A,W ); 1) The single most associated covariate (1 Cov), and 2) backwards deletion
(BD). The 95 percent confidence interval (95 % CI) and Relative Efficiency (RE), computed as
SE(TMLE)/SE(Unadjusted), are also provided.

Estimate 95% CI RE
Unadjusted -0.034 (-0.073,0.005) 1.000
TMLE 1 Cov -0.035 (-0.07,-0.00) 1.140
TMLE BD -0.041 (-0.074,-0.009) 1.210

Table 3.4: Comparison of influence curve (IC), cross-validated influence curve (cvIC) and bootstrap
(Boot) based standard errors (SE). This table summarizes the estimated standard errors for the TMLE
based on 3 methods for fitting Q(A,W ): the single most associated covariate (1 Cov), backwards deletion
(BD) and all covariates as main terms (Overfit). The comparison of SE IC and SE Boot is provided
as the percent increase of SE Boot from SE IC (% Diff IC)

SE IC SE cvIC SE Boot % Diff IC
Unadjusted 0.0199 0.0199 0.0200 0.3%
1 Cov 0.0175 0.0175 0.0175 0.1%
BD 0.0166 0.0167 0.0165 -0.4%
Overfit 0.0160 0.0175 0.0229 43.4%

3.4.1 Empirical confounding and the origin of efficiency gain with the
TMLE

In this section, we conjecture that, for a given sample, the gain in efficiency from the TMLE is not only
a function of the correlation between the covariates and the outcome (R2

Q(W ) > 0 as described above)
but also a function of imbalances in these covariates with respect to treatment. More specifically, we
conjecture that the origin of efficiency gain through covariate adjustment is empirical confounding,
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i.e., if one had perfect balance in all covariates affecting the outcome, the adjusted estimate should
not be more precise than the unadjusted estimate even though the covariates used for adjustment
could be predictive of the outcome, i.e., R2

Q(W ) > 0. More specifically, let us hypothesize a RCT in
which treatment is balanced perfectly in males and females and it is known that gender affects the
outcome. In this case, R2

Q(W ) (where W represents gender) is greater than 0, which would imply, based
on the relation provided in chapter 2, that gender adjustment through TMLE would result in increased
estimation efficiency. However, based on simulation results described below, we have found that the
standard error of the adjusted estimate based on gender would be equivalent to the standard error of
the unadjusted estimate. As is the case in most RCT, other covariates beyond gender would also be
collected that have an effect on the outcome. Based on our simulation results again, we conjecture that
adjusting for these other covariates in addition to gender lead however to an increase in precision and
furthermore, adjusting jointly for gender and these other covariates appears to increase the precision
even further, even though adjusting for gender only results in no gain. We note that ongoing work
involves formalizing these hypotheses that relate efficiency gain in practice to empirical confounding.

To support our conjecture and illustrate the efficiency gains with the TMLE in the presence and absence
of empirical confounding, 10,000 datasets of size n = 1000 were simulated with a binary treatment A,
such that P (A = 1) = P (A = 0) = 0.5, two binary covariates, W = (W1,W2), such that P (W1 = 1) =
0.4 and P (W2 = 1) = 0.6 and an outcome Y with logit(P (Y = 1|A,W )) = 5A − 3W1 − 3W2. The
true risk difference is 0.616 with E(Y1) = 0.761 and E(Y0) = 0.145. In the first setting, the treatment
arms were balanced (matched) perfectly on W1 and W2, in the second setting, the treatment arms
were balanced on W1 only and in the third setting the treatment arms were not balanced perfectly on
either covariate. The unadjusted estimate and three adjusted estimates (TMLE) were computed under
each of these three settings, where the three adjusted estimates correspond to adjusting for W1 and W2

(Q̂(A,W ) = Q̂(A,W1,W2)), W1 only (Q̂(A,W ) = Q̂(A,W1)) and W2 only (Q̂(A,W ) = Q̂(A,W2)).

The mean squared error (MSE) results for each simulation setting and TMLE estimate are provided in
Table 3.5. In the first setting where there is perfect balance of treatment on both covariates, no gain
in MSE is achieved through covariate adjustment with any of the three TMLE estimates, even though
both covariates have an effect on the outcome Y . In the second setting where treatment is perfectly
balanced on W1 only, a small amount of empirical confounding by W2 is present and a precision gain
is achieved by adjusting for W2. Note that even though no gain is achieved by adjusting for W1 only,
adjusting for W1 and W2 results in a slightly lower MSE than adjusting for W2 only. This may at first
seem counterintuitive, however, although W1 and W2 are independent, for any given sample, a small
amount of correlation exists between the two variables. Since W1 is not perfectly balanced on W2,
adjusting for it as well as W2 is akin to adjusting for empirical confounding. Therefore, even if there is
a perfect balance of treatment on a covariate, adjusting for it when there exists another covariate on
which there is not a perfect balance will provide a further gain in efficiency.

These results supports the conjecture that in the extreme scenario of a perfectly balanced trial in
all covariates, one could not obtain a increase in precision through covariate adjustment, even if the
covariates are strongly predictive of the outcome. The TMLE method of adjustment can then be viewed
as an attempt to mimic this ideal setting in which perfect balance is present in all covariates. This is
evidenced by comparing the MSE of the adjusted estimate in the third setting where treatment was not
perfectly balanced on either covariate, and the MSE of the unadjusted estimate with perfect balancing
on W in the first setting. The MSE are almost equivalent, indicating possibly an efficiency bound for
the adjusted estimate.

These results support our claim that the gain in efficiency in RCT by adjusting for covariates is a
result of adjusting for empirical confounding. We note that empirical confounding results in covariate
imbalances that are typically quite small. In our dataset, only 4 covariates had significant associations
with treatment (p-values < 0.05). For example, the probability of receiving treatment among those
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patients over 75 years of age is 0.55 as compared to 0.49 for those under 75 years of age and adjusting
for age results in a change in the point estimate. Note however that adjustment for variables not
significantly associated with treatment but affecting the outcome, i.e., whose imbalances are very small
with respect to the treatment, can still result in a gain in precision. Thus, testing for a significant
imbalance is not a valid strategy since one could miss a covariate that is strongly associated with the
outcome with only a small imbalance. Furthermore, it has been pointed out that tests for covariate
imbalance do not make sense in RCT because by definition, all imbalances are due to chance. Thus,
such a test is a test of a null hypothesis that is by definition true [55, 4, 42]. Since a perfect balance is
very unlikely, it is a better strategy to included those covariates in the adjustment that are predictive
of the outcome, based on the relation provided in chapter 2, as recommended in [43, 2, 55, 42].

Table 3.5: MSE comparison. This table summarizes the mean MSE for the TMLE for the simulations
scenarios that balance treatment on both covariates, one covariate and neither covariate.

Balanced on Adjusted For MSE
W1 and W2 None 4.31e-04
W1 and W2 W1 and W2 4.31e-04
W1 only None 5.19e-04
W1 only W1 and W2 4.34e-04
W1 only W1 only 5.19e-04
W1 only W2 only 4.35e-04
None None 6.12e-04
None W1 and W2 4.36e-04

3.5 Recommended strategy for analyzing RCT Data

A clear strategy needs to be outlined in the study protocol detailing the analysis of clinical trials. We
provide an approach based on our theoretical and simulation results presented in this chapter. The
strategy is as follows.

1. As discussed throughout this chapter, gains in efficiency are related to gains in R2
Q(W ). Thus, one

should attempt to collect covariates known or speculated to be predictive of the outcome, which
are not perfectly balanced on by design, and outline them in the study protocol.

2. Estimate the model for Q(A,W ).

• Based on a model an a priori specified in the study protocol (for example include age only).

OR

• Apply a model selection algorithm, a priori specified in the study protocol and based on
a cross-validated criterion (cv-R2

Q(W ) or cross-validated variance of the IC) such as the
backwards deletion algorithm provided in this chapter.

3. If cv-R2
Q(W ) (or cross-validated variance of the IC) of the model for Q(W ) selected in the previous

step is significantly different than 0 according to a test (work on such a test is in progress, see
discussion) then proceed to step 4. Otherwise, no gain in efficiency can be achieved by covariate
adjustment and the unadjusted estimate must be used (i.e., the next steps are skipped).
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4. Apply TMLE based on the fitted model from the previous step to obtain an estimate of the
parameter of interest.

5. Estimate standard error based on the IC or the bootstrap procedure. For honest bootstrap
estimates, one must perform the entire model selection procedure (if used) on each bootstrap
sample.

Note that steps 2 and 3 could involve a double layer or cross-validation. However, this can be replaced
with a single layer of cross-validation if the algorithm is not overly aggressive. This can be achieved by
specifying a maximum model size, such as 30 observations per term in the model.

3.6 Discussion

In this chapter, we have shown that covariate adjustment for binary outcomes using logistic models can
indeed increase the estimation efficiency (precision) for the marginal effect of treatment. The difference
from convenvional approaches for covariate adjustment using conditional logistic models lies in the fact
that the method presented in this chapter averages over the covariates in the logistic model to obtain
a marginal (unconditional) effect estimate that can be compared to the standard unadjusted effect
estimate. The logistic models presented in this chapter are not meant to describe subgroup effects but
rather have the purpose of increasing efficiency in the estimation of the marginal effect. We note that
the method of targeted maximum likelihood estimation can also be applied to estimation of conditional
or subgroup effects of treatment however we focused on marginal effects only in this chapter.

The gain in efficiency has real implications as was demonstrated with the fact that the test for equiva-
lence would provide different conclusions using either the unadjusted or adjusted estimation approaches.
However, we note that the test for equivalence within the pre-specified margin would result in the same
conclusion using either method even though the confidence intervals were narrowed with the targeted
maximum likelihood method.

Using an a priori specified algorithm for covariate adjustment protects the investigators from guiding
their analyses in the direction that provides the most desirable results. The comparison of the bootstrap
and analytic-based (IC and cv-IC) standard errors demonstrated the need for a cross-validated criterion
for the selection of the covariate adjustment (Q(A, W )) to avoid the problem of overfitting which results
in incorrect inference with the influence curve and a loss in the possible precision gain from covariate
adjustment. We provided a fast and easy to implement algorithm based on the cross-validated R2

Q(W )

that resulted in a relative efficiency of 1.211 as compared to the unadjusted method. Even adjusting for
the single most associated covariate resulted in a significant gain. These results indicate that predictive
covariates of the outcome, that do not have a perfect balance in treatment can significantly increase
efficiency. This gain in efficiency is reflected in the reduction of the standard error and also possibly
a change in the point estimate due to finite sample error. We conjecture that this gain in efficiency is
the sole result of adjustment for empirical confounding.

Ongoing work includes studying and formalizing the relation between efficiency gain and empirical
confounding. A model selection algorithm could be developed using this relation as a basis for the
selection criterion. In addition, future work involves developing a formal test for the hypothesis R2

Q(W ) >
0, either a nonparametric permutation test of independence between W and Y or a model-based test
for the fixed model approach similar to the likelihood ratio test comparing the model for Q(W ) to the
intercept model.
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Chapter 4

Assessment of safety in randomized
controlled trials with time-to-event
outcomes

4.1 Introduction

Safety analysis in RCTs involves estimation of the treatment effect on the numerous adverse events
(AE) that are collected in the study. RCT are typically designed and powered for efficacy rather
than safety. Even when assessment of AE is a major objective of study, the trial size is generally not
increased to improve likelihood of detecting AE [17]. As a result, power is an important concern in the
analysis of the effect of treatment on AE in RCT [41].

Typically in an RCT, crude incidences of each AE are reported at some fixed end point such as the end
of study [18, 20, 32]. These crude estimates often ignore missing observations that frequently occur
in RCT due to early patient withdrawals [35]. A review of published RCT in major medical journals
found that that censored data are often inadequately accounted for in their statistical analyses [72]. A
crude estimator that ignores censoring can be highly biased when the proportion of dropouts differs
between treatment groups (see [18] for examples).

The crude incidence is an important consideration in the evaluation of safety for very rare, severe or
unexpected AE. Such AE require clinical evaluation for each case and are not the focus of this chapter.
Instead, we focus on those AE that are routinely collected in RCT and most often are not associated
with a pre-specified hypothesis. These AE are typically reported as an observed rate with a confidence
interval or p-value.

Patient reporting of AE occurrence usually occurs at many intervals throughout the study often col-
lected at follow-up interviews rather than only at a single fixed end-point. As such, time-to-event
methods that exploit these data structures may provide further insight into the safety profile of the
drug. The importance of considering estimators of AE rates that account for time due to differential
lengths of exposure and follow-up is discussed in O’Neill [40]. Furthermore, in most RCT in oncology,
most if not all patients suffer from some AE [39], and thus investigators may be interested in the proba-
bility of the occurrence of a given AE by a certain time rather than simply the incidence. Time-to-event
analysis techniques may be more sensitive than crude estimates in that they readily handle missing
observations that frequently occur in RCT due to early patient withdrawals. For example, in Davis
et al. [11], AE from the Beta-Blocker Heart Attack Trial were analyzed by comparing distributions of
the time to the first AE in the two treatment arms. The results of this analysis were contrasted to the
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cross-sectional crude percentage analysis and were found to be more sensitive in detecting a difference
by taking into account the withdrawals. A vast amount of literature exists for time-to-event analysis
but these methods are often not applied to the analysis of AE in RCT. A general review of survival
analysis methods in RCT (without a particular focus on AE) is provided in Fleming and Lin [13].

In this chapter we focus on estimation of treatment specific survival at a fixed end point for right-
censored survival outcomes using targeted maximum likelihood estimation [65]. Survival is estimated
based on a hazard fit and thus the time-dependent nature of the data is exploited. There are two main
goals of the methodology presented in this chapter over unadjusted crude proportions and Kaplan-
Meier estimators. The first is to provide an estimator that exploits covariates to improve efficiency in
the estimation of treatment-specific survival at fixed end points. The second is to provide a consistent
estimator in the presence of informative censoring.

4.2 Motivation and outline

Consider the estimation of the effect of treatment on a particular AE at some fixed end point in the
study. From estimation theory, it is known that the nonparametric maximum likelihood estimator
(MLE) is the efficient estimator of the effect of interest [64]. In most RCT, data are collected on
baseline (pre-treatment) covariates in addition to the treatment and the AE of interest. The unadjusted
or crude estimator is defined as the difference in proportions of the AE between treatment groups. This
estimator ignores the covariates and is thus not equivalent to the full MLE. It follows that application
of the unadjusted estimator can lead to a loss in estimation efficiency (precision) in practice.

Conflicting results in initial applications of covariate adjustment in RCT for estimating the treatment
effect for fixed end-point efficacy studies were found. For continuous outcomes using linear models for
adjustment demonstrated gains in precision over the unadjusted estimate [43]. However adjustment
using logistic models for binary outcomes was shown to actually reduce precision and inflate point
estimates [22, 53].

This apparent contradiction was resolved through the application of estimating function methodology
[59, 73] and targeted maximum likelihood estimation [36]. In these references, consistent estimators
that do not require parametric modeling assumptions were provided and shown to be more efficient
than the unadjusted estimator, even with binary outcomes. It just so happens that the coefficient for
the treatment variable in a linear regression that contains no interactions with treatment coincides with
the efficient estimating function estimator and thus the targeted maximum likelihood estimator. This
fortunate property does not hold for the logistic regression setting, i.e., the exponentiated coefficient for
treatment from the logistic regression model does not equal the unadjusted odds ratio. This conditional
estimator does not correspond to the marginal estimator in general and in particular not in the binary
case. The efficient estimate of the marginal (i.e., unconditional) effect obtained from the conditional
regression is the weighted average of the conditional effect of treatment on the outcome given covariates
according to the distribution of the covariates.

With this principle of developing covariate adjusted estimators that do not require parametric modeling
assumptions for consistency in mind, in this chapter we provide a method for covariate adjustment in
RCT for the estimation of treatment specific survival at a fixed end point for right-censored survival
outcomes. Thereby, we can estimate a comparison of survival between treatment groups at a fixed
end point that is some function of the two treatment specific survival estimates. Examples of such
parameters are provided in section 4.3 such as the marginal additive difference in survival at a fixed
end point. Under no or uninformative censoring, the estimator provided in this chapter does not
require any additional parametric modeling assumptions. Under informative censoring, the estimator
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is consistent under consistent estimation of the censoring mechanism or the conditional hazard for
survival.

It is important to note that the conditional hazard on which the estimate is based is not meant to infer
information about subgroup (conditional) effects of treatment. By averaging over the covariates that
have terms in the hazard model, we obtain a marginal or unconditional estimate. The methodology
presented in this chapter can be extended to the estimation of subgroup specific effects however we
focus only on marginal (unconditional) treatment effects on survival at fixed end point(s).

We also note that the methodology can be extended to provide a competitor test to the ubiquitous
log-rank test. Methods have been proposed for covariate adjustment to improve power over the logrank
test [23, 31, 33]. These are tests for an average effect of treatment over time. Our efficiency results
are not in comparison to these methods but rather to the treatment-specific Kaplan-Meier estimate at
that fixed end point.

In itself treatment specific survival at a fixed end point, and thereby the effect of treatment on survival
at that end point can provide useful information about the given AE of interest. This is a very common
measure to report (see [18, 20, 32, 35]), however most of the currently applied estimation approaches
ignore covariates and censoring and do not usually exploit the time-dependent nature of the data.

We present our method of covariate adjustment under the framework of targeted maximum likelihood
estimation originally introduced in van der Laan and Rubin [65]. Specifically, the chapter is outlined
as follows. We first begin by outlining the data, model and parameter(s) of interest in section 4.3. The
application of targeted maximum likelihood estimation to our parameter of interest with its statistical
properties and inference are presented in section 4.4. In section 4.5 we present a simulation study to
demonstrate the efficiency gains of the proposed method over the current methods in an RCT under no
censoring and uninformative censoring. Furthermore, under informative censoring we demonstrate the
bias that arises with the standard estimator in contrast to the consistency of our proposed estimator.
The TMLE requires estimation of an initial conditional hazard. Methods for fitting this initial hazard
as well as the censoring mechanism are provided in section 4.6. In section 4.7 we outline the inverse
weighting assumption for the censoring mechanism. Alternative estimators and their properties are
briefly outlined in section 4.8. AE data are multivariate in nature in that many AE are collected an
analyzed in any given RCT. In section 4.9 we outline the multiple testing issues involved in the analysis
of such data. Section 4.10 provides extensions to the methodology including time-dependent covariates,
and post-market safety analysis. Finally, we conclude with a discussion in section 4.11.

4.3 Data, model and parameter of interest

We assume that in the study protocol, each patient is monitored at K clinical visits. At each visit,
M AE are evaluated as having occurred or not occurred. We focus on the first occurrence of the
AE and thus let T represent the first visit when the AE reported as occurring and thus can take
values {1, ..., K}. The censoring time C is the first visit when the subject is no longer enrolled in the
study. Let A ∈ {0, 1} represent the treatment assignment at baseline and W represents a vector of
baseline covariates. The observed data are given by O = (T̃ , ∆, A, W ) ∼ p0 where T̃ = min(T,C),
∆ = I(T ≤ C) is the indicator that that subject was not censored and p0 denotes the density of O.
The conditional hazard is given by λ0(· | A,W ) and the corresponding conditional survival is given by
S0(· | A,W ). The censoring mechanism is given by Ḡ(t− | A,W ) = P (C ≥ t | A,W ). We present the
methodology for estimation of the treatment effect for a single AE out of the M total AE collected.
This procedure would be repeated for each of the M AE. For multiplicity considerations see section
4.9.
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Let T1 represent a patient’s time to the occurrence of an AE had she possibly contrary to fact been
assigned to the treatment group and let T0 likewise represent the time to the occurrence of the AE had
the patient been assigned to the control group.

Let M be the class of all densities of O with respect to an appropriate dominating measure where M
is nonparametric up to possible smoothness conditions. Let our parameter of interest be represented
by Ψ(p0). Specifically, we aim to estimate the following treatment specific parameters,

P0 → Ψ1(p0)(t0) = Pr(T1 > t0) = E0(S0(t0|A = 1,W )), (4.1)

and

P0 → Ψ0(p0)(t0) = Pr(T0 > t0) = E0(S0(t0|A = 0,W )), (4.2)

where the subscript for Ψ denotes the treatment group, either 0 or 1. In order to estimate the effect of
treatment A on survival T we can thereby estimate a parameter that is some combination of Pr(T1 > t0)
and Pr(T0 > t0). Examples include the marginal log hazard of survival, the marginal additive difference
in the probability of survival, and the marginal log relative risk of survival at a fixed time t0 given
respectively by,

P0 → ΨHZ(p0)(t0) = log

(
log(Pr(T1 > t0))

log(Pr(T0 > t0))

)
, (4.3)

P0 → ΨAD(p0)(t0) = Pr(T1 > t0)− Pr(T0 > t0), (4.4)

and

P0 → ΨRR(p0)(t0) = log

(
Pr(T1 > t0)

Pr(T0 > t0)

)
. (4.5)

We note that if one averaged ΨHZ(p0)(t0) over t, this would correspond with the Cox proportional
hazards parameter and thus the parameter tested by the log rank test. However, we focus only on the
t0-specific parameter in this chapter.

4.4 Estimation of treatment specific survival at a fixed end

point

Consider an initial fit p̂0 of the density of the observed data O identified by a hazard fit λ̂0(t | A, W ),
the distribution of A identified by g0(A | W ), with ĝ0(1 | W ) and ĝ0(0 | W ) = 1 − ĝ0(1 | W ), the
censoring mechanism Ĝ0(t | A,W ) and the marginal distribution of W being the empirical probability
distribution of W1, ..., Wn. In an RCT, treatment is randomized and ĝ0(1|W ) = 1

n

∑n
i=1 Ai.

Let the survival time be discrete and let the initial hazard fit λ̂(t | A,W ) be given by a logistic regression
model,

logit(λ̂(t | A,W )) = α̂(t) + m(A,W | β̂),

where m is some function of A and W . The targeted maximum likelihood estimation algorithm updates
this initial fit by adding to it the term εh(t, A,W ), i.e.,

logit(λ̂(ε)(t | A,W )) = α̂(t) + m(A,W |β̂) + εh(t, A, W ). (4.6)
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The algorithm selects h(t, A,W ) such that the score for this hazard model at ε = 0 is equal to the
projection of the efficient influence curve on scores generated by the parameter λ(t | A,W )) in the
nonparametric model for the observed data assuming only coarsening at random (CAR).

The general formula for this covariate h(t, A, W ) for updating an initial hazard fit was provided in
van der Laan and Rubin [66] and is given by,

h(t, A, W ) =
DFULL(A,W, t | p̂)− Ep̂[D

FULL(A,W, T | p̂) | A,W, T > t)]

Ḡ(t− | A,W )
, (4.7)

where DFULL is the efficient influence curve of the parameter of interest in the model in which there is
no right censoring. This is also the optimal estimating function in this model. This full data estimating
function for Ψ1(p0)(t0) provided in (4.1) is given by,

DFULL
1 (T, A,W | p)(t0) =

[I(T > t0)− S(t0 | A,W )]
I(A = 1)

g(1|W )
+ S(t0 | 1,W )− ψ1(p), (4.8)

and for Ψ0(p0)(t0) provided in (4.2) it is given by,

DFULL
0 (T, A,W | p)(t0) =

[I(T > t0)− S(t0 | A,W )]
I(A = 0)

g(0|W )
+ S(t0 | 0,W )− ψ0(p), (4.9)

To obtain the specific covariates for targeting the parameters Ψ1(p0)(t0) and Ψ0(p0)(t0), the full data
estimating functions provided in (4.8) and (4.9) at t = t0 are substituted into (4.7). Evaluating these
substitutions gives the covariates,

h1(t, A, W ) = − I(A = 1)

g(1)Ḡ(t− | A,W )

S(t0 | A,W )

S(t | A,W )
I(t ≤ t0), (4.10)

and

h0(t, A, W ) = − I(A = 0)

g(0)Ḡ(t− | A,W )

S(t0 | A,W )

S(t | A,W )
I(t ≤ t0), (4.11)

for the treatment specific parameters Ψ1(p0)(t0) and Ψ0(p0)(t0) respectively.

Finding ε̂ in the updated hazard provided in (4.6) to maximize the likelihood of the observed data can
be done in practice by fitting a logistic regression in the covariates m(A,W | β̂) and h(t, A, W ). The
coefficient for m(A,W | β̂) is fixed at one and the intercept is set to zero and thus the whole regression
is not refit, rather only ε is estimated. These steps for evaluating ε̂ correspond with a single iteration
of the targeted maximum likelihood algorithm. In the second iteration, the updated λ̂1(t | A, W )
now plays the role of the initial fit and the covariate h(t, A, W ) is then re-evaluated with the updated
Ŝ1(t | A,W ) based on λ̂1(t | A,W ). In the third iteration λ̂2(t|A,W ) is fit and the procedure is iterated
until ε̂ is essentially zero. The final hazard fit at the last iteration of the algorithm is denoted by
λ̂∗(t | A, W ) with the corresponding survival fit given by Ŝ∗(t | A, W ).

As we are estimating two treatment specific parameters, we could either carry out the iterative updating
procedure for each parameter separately or update the hazard fit simultaneously. To update the fit
simultaneously, both covariates are added to the initial fit, i.e.,

logit(λ̂(ε)(t | A,W )) = α̂(t) + m(A,W |β̂) + ε1h1(t, A, W ) + ε2h0(t, A, W ).
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The iterative procedure is applied by now estimating two coefficients in each iteration as described
above until both ε1 and ε2 are essentially zero.

Finally, the targeted maximum likelihood estimates of the probability of surviving past time t0 for
subjects in treatment arms 1 and 0 given by Ψ1(p0)(t0) and Ψ0(p0)(t0) are computed by,

ψ̂∗1(t0) =
1

n

n∑
i=1

Ŝ∗(t0 | 1,Wi).

and

ψ̂∗0(t0) =
1

n

n∑
i=1

Ŝ∗(t0 | 0,Wi).

4.4.1 Rationale for updating only initial hazard

The initial fit p̂0 of p0 is identified by λ̂0(t | A,W ), ĝ0(A | W ), Ĝ0(t | A,W ) and the marginal
distribution of W . However the algorithm only updates λ̂0(t | A,W ). Assuming CAR the density
of the observed data p factorizes in to the marginal distribution of W given by pW , the treatment
mechanism g(A | W ), the conditional probability of censoring up to time t given by Ḡ(t | A,W ) and
the product over time of the conditional hazard at T = t given by λ(t | A,W ). This factorization
implies the orthogonal decomposition of functions of O in the Hilbert space L2(p). We can thus apply
this decomposition to the efficient influence curve D(O | p). As shown in van der Laan and Robins
[64], D(O | p) is orthogonal to the tangent space TCAR(p) of the censoring and treatment mechanisms.
Thus the components corresponding with g(A | W ) and Ḡ(t | A,W ) are zero. This leaves the non zero
components pW and λ(t | A,W ). We choose the initial empirical distribution for W to estimate pW

which is the nonparametric maximum likelihood estimate for pW and is therefore not updated. Thus
the only element that does require updating is λ̂0(t | A,W ).

The efficient influence curve for Ψ1(p0)(t0) can be represented as,

D1(p0) =∑
t<=t0

h1(g0, G0, S0)(t, A, W )[I(T̃ = t, ∆ = 1)− I(T̃ >= t)λ0(t | A = 1,W )]

+S0(t0 | A = 1,W )−Ψ1(p0)(t0), (4.12)

where S0(t0 | A = 1,W ) is a transformation of λ0(t | A = 1,W ). This representation demonstrates the
orthogonal decomposition described above. The empirical mean of the second component of D1(p0)
given by S0(t0 | A = 1,W ) − E0S0(t0 | A = 1,W ) is always solved by using empirical distribution to
estimate the marginal distribution of W . Thus, the TMLE solves this second component. The first
component, the covariate times the residuals, is solved by performing the iterative targeted maximum
likelihood algorithm with logistic regression fit of the discrete hazard λ0(t | A,W ). We note that
similarly, the efficient influence curve for Ψ0(p0)(t0) can be represented as,

D0(p0) =∑
t<=t0

h0(g0, G0, S0)(t | A,W )[I(T̃ = t, ∆ = 1)− I(T̃ >= t)λ0(t | A = 0,W )]

+S0(t0 | A = 0,W )−Ψ0(p0)(t0). (4.13)
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4.4.2 Double robustness properties

The targeted maximum likelihood estimate p̂∗ ∈ M of p0 solves the efficient influence curve which
is the optimal estimating equation for the parameter of interest. It can be shown that E0D1(p0) =
E0D1(S, g, G) = 0 if either S = S0(· | A,W ) (and thus λ = λ0(· | A,W )) or g = g0(A | W ) and
G = G0(· | A,W ). When the treatment is assigned completely at random as in an RCT, the treatment
mechanism is known and g(A | W ) = g(A). Thus consistency of ψ̂∗1(t0) in an RCT relies on only
consistent estimation of Ḡ0(· | A,W ) or S(· | A,W ). When there is no censoring or censoring is
missing completely at random (MCAR), ψ̂∗1(t0) is consistent even when the estimator Ŝ(· | A,W ) of
S(· | A,W ) is inconsistent (e.g., if it relies on a mis-specified model). One is hence not concerned
with estimation bias with this method in an RCT. Under informative or missing at random (MAR)
censoring, if Ḡ0(· | A,W ) is consistently estimated then ψ̂∗1(t0) is consistent even if Ŝ(· | A,W ) is
mis-specified. If both are correctly specified then ψ̂∗1(t0) is efficient. These same statistical properties
also hold for ψ̂∗0(t0) .

4.4.3 Inference

Let p̂∗ represent the targeted maximum likelihood estimate of p0. One can construct a Wald-type 0.95-
confidence interval for ψ̂∗1(t0) based on the estimate of the efficient influence curve D1(p̂

∗)(O) where
D1(p) is given by (4.12). The asymptotic variance of

√
n(ψ̂∗1(t0)−Ψ1(p0)(t0)) can be estimated with

σ̂2 =
1

n

n∑
i=1

D2
1(p̂

∗)(Oi).

The corresponding asymptotically conservative Wald-type 0.95-confidence interval is defined as ψ̂∗1(t0)±
1.96 σ̂√

n
. The null hypothesis H0 : Ψ1(p0)(t0) = 0 can be tested with the test statistic

Tn =
ψ̂∗1(t0)

σ̂√
n

,

whose asymptotic distribution is N(0, 1) under the null hypothesis. Similarly, confidence intervals and
test statistics for Ψ0(p0)(t0) can be computed based on the estimate of the efficient influence curve
D0(p̂

∗)(O) where D0(p) is given by (4.13).

If our parameter of interest is some function of the treatment specific survival estimates we can apply
the δ-method to obtain the estimate of its influence curve. Specifically the estimated influence curve
for the log hazard of survival, additive difference in survival, and relative risk of survival at t0 provided
in (4.3), (4.4), and (4.5) are respectively given by,

1. ΨHZ(p0)(t0) : 1

ψ̂∗1(t0) log(ψ̂∗1(t0))
D1(p̂

∗)(O)− 1

ψ̂∗0(t0) log(ψ̂∗0(t0))
D0(p̂

∗)(O)

2. ΨAD(p0)(t0) : D1(p̂
∗)(O)−D0(p̂

∗)(O)

3. ΨRR(p0)(t0) : − 1

1−ψ̂∗1(t0)
D1(p̂

∗)(O) + 1

1−ψ̂∗0(t0)
D0(p̂

∗)(O)

We can again compute confidence intervals and test statistics for these parameters using the estimated
influence curve to estimate the asymptotic variance.

As an alternative to the influence curve based estimates of the asymptotic variance, one can obtain
valid inference using the bootstrap procedure.

The inference provided in this section is for the estimates of the treatment effect for a single AE. For
multiplicity adjustments for the analysis of a set of AE see section 4.9.
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4.5 Simulation studies

The targeted maximum likelihood estimation procedure was applied to simulated data to illustrate the
estimator’s potential gains in efficiency. The conditions under which the greatest gains can be achieved
over the standard unadjusted estimator were explored in addition to the estimators’ performance in
the presence of informative censoring.

4.5.1 Simulation protocol

Data were simulated to mimic an RCT in which the goal is to determine the safety of a new drug
in comparison to the current standard of care on “survival” as measured by the occurrence of an
adverse event at each time t0 ∈ {2, ..., 10}. The probability of receiving the new treatment is 0.5. The
covariate was negatively correlated with survival time, for example, this covariate might represent age
in years (multiplied by 0.1). Specifically, 1000 replicates of sample size 300 were generated based on
the following data generating distribution where time is discrete and takes values t0 ∈ {1, ..., 10}:

• Pr(A = 1) = Pr(A = 0) = 0.5

• W ∼ U(0.2, 1.2)

• λ(t|A,W ) = I(t0<10)I(Y (t0−1)=0)
1+exp(−(−3−A+βW W 2))

+ I(t0 = 10)

• λC(t|A,W ) = I(∆(t0−1)=0)
1+exp(−(−γ0−γ1A−γ2W ))

,

where λ(t|A,W ) is the hazard for survival and λC(t|A,W ) is the hazard for censoring. Two different
data generating hazards for survival were applied corresponding with two values for βW . These two
values were set to βW ∈ {1, 3} corresponding with correlations between W and failure time of -0.22
and -0.63 respectively. We refer to the simulated data with βW = 1 as the weak covariate setting and
βW = 3 as the strong covariate setting.

Three different types of censoring were simulated, no censoring, MCAR and MAR. Each type of cen-
soring was applied to the weak and strong covariate settings for a total of six simulation scenarios. For
both the weak and strong covariate settings, the MCAR an MAR censoring mechanisms were set such
that approximately 33% of the observations were censored. The censoring was generated to ensure
that Ḡ(t|A,W ) > 0 (see section 4.7 for details of this assumption). If censoring and failure time were
tied, the subject was considered uncensored. For a summary of the simulation settings and the specific
parameter values, see Table 4.1.

The difference in treatment-specific survival probabilities given by ψ(t0) = E0(S0(t0|A = 1,W ) −
S0(t0|A = 0,W )) was estimated at each time point t0 = 1 through t0 = 9. The unadjusted estimator
is defined as the difference in the treatment specific Kaplan-Meier estimators at t0. The TMLE was
applied using two different initial hazard fits. The first initial hazard was correctly specified. The
second initial hazard was mis-specified by including A and W as main terms and an interaction term
between A and W . For both initial hazard fits, only time points 1 through 9 were included in the fit as
the AE had occurred for all subjects by time point 10 and thus the hazard was one at t0 = 10. In the
MCAR censoring setting, the censoring mechanism was estimated using Kaplan-Meier. In the MAR
censoring setting, the censoring mechanism was correctly specified. The update of the initial hazard
was performed by adding to it the two covariates h1 and h0 provided in (4.10) and (4.11) respectively.
The corresponding coefficients ε1 and ε2 were simultaneously estimated by fixing the offset from the
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Table 4.1: Summary of simulation settings. This table provides the parameter setting for the 6 simu-
lation scenarios, including the correlation between W and failure time (Corr), the coefficients for the
hazard for censoring (γ = (γ0, γ1, γ2)) and the coefficient for W in the hazard for survival (βW ).

Scenario Censoring γ Corr W and T βW

1 No censoring NA -0.22 (Weak) 1
2 MCAR (-2.7,0,0) -0.22 (Weak) 1
3 MAR (-1.75,1.35,-2.5) -0.22 (Weak) 1
4 No censoring NA -0.65 (Strong) 3
5 MCAR (-2,0,0) -0.65 (Strong) 3
6 MAR (-1.15,0.5,-2) -0.65 (Strong) 3

initial fit and setting the intercept to 0. The procedure was iterated until ε1 and ε2 were sufficiently
close to zero.

The estimators were compared using a relative efficiency measure based on the mean squared error
(MSE) computed as the MSE of the unadjusted estimates divided by the MSE of the targeted maximum
likelihood estimates. Thus a value greater than one indicates a gain in efficiency of the covariate adjusted
TMLE over the unadjusted estimator.

In addition to these six simulation scenarios, to explore the relationship between relative efficiency and
the correlation between the covariate and failure time, we generated data by varying βW in the data
generating distribution above for six values, βW ∈ {0.5, 1, 1.5, 2, 2.5, 3} corresponding with correlations
between W and failure time of {-0.10,-0.22,-0.36,-0.46,-0.56,-0.63} under no censoring. The parameter
ψ(5) was estimated based on 1000 sampled datasets with sample size n = 300.

4.5.2 Simulation results and discussion

Strong covariate setting

In the no censoring and MCAR censoring scenarios, the bias should be approximately zero. Thus, the
relative MSE is essentially comparing the variance of the unadjusted and targeted maximum likelihood
estimates. Any gain in the MSE can therefore be attributed to a reduction in variance due to the
covariate adjustment. In this strong covariate setting, exploiting this covariate by applying the TMLE
should provide a gain precision due to a reduction in the residuals. In the informative censoring setting
(MAR), in addition to the expected gain in efficiency we expect a reduction in bias of the TMLE with
the correctly specified treatment mechanism over the unadjusted estimator. The informative censoring
is accounted for through the covariates h1 and h0 that are inverse weighted by the subjects’ conditional
probability of being observed at time t given their observed history.

Figure 4.1 provides the relative MSE results for ψ̂(t0) for t0 ∈ {1, ...9} for the strong covariate setting
with βW = 3. Based on these results, we observe that indeed the expected gain in efficiency is achieved.
The minimum observed relative MSE was 1.25 for t0 = 1 in the MAR censoring setting with a mis-
specified initial hazard fit. A maximum relative MSE of 1.9 is observed under the no censoring setting
with the correctly specified initial hazard at t0 = 3. The approximate overall average relative MSE
was 1.6 for the no censoring scenario. Consistently across all time points and censoring scenarios, the
TMLE is outperforming the unadjusted estimator.

Figure 4.2 provides the bias as a percent of the truth for the two estimators under the MAR censoring
setting with the correctly specified initial hazard. Clearly as t0 increases, the bias of the unadjusted
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estimates increases whereas the targeted maximum likelihood estimates is relatively close to zero in
comparison. Thus the targeted maximum likelihood approach can not only provide gains in efficiency
through covariate adjustment, but can also account for informative censoring as well.
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Figure 4.1: Comparison of relative MSE for the strong covariate setting (βW = 3). This table provides
the ratio of the MSE of the Kaplan-Meier (KM) to the MSE of the TMLE for the three censoring
scenarios: no censoring, MCAR and MAR.

Weak covariate setting

In this weak covariate setting, again in the no censoring and MCAR censoring scenarios, the bias should
essentially be zero. However, we expect a lesser gain in efficiency if any as compared to the strong
covariate setting since the covariate in this setting is not as useful for hazard prediction. We do again
expect a bias reduction in the MAR censoring setting for the TMLE over the unadjusted estimator.

Figure 4.3 provides the relative MSE results for the weak correlation simulation with βW = 1. As
expected, the relative MSE are all close to one indicating that only small efficiency gains are achieved
when only weak covariates are present in the data. However, as small the gains are they are also
achieved across all time points as in the strong covariate setting. Regardless of the correlation between
the covariate and failure time, in the informative censoring scenario the targeted maximum likelihood
estimate is consistent under consistent estimation of the censoring mechanism as evidenced in the plot
of the % bias in Figure 4.4.
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Figure 4.2: Comparison of bias for the strong covariate setting (βW = 3) under the MAR censoring
scenario. This plot shows the bias of the Kaplan-Meier estimate (Unadjusted) and the TMLE.
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Figure 4.3: Comparison of relative MSE for the weak covariate setting (βW = 1). This table provides
the ratio of the MSE of the Kaplan-Meier (KM) to the MSE of the TMLE for the three censoring
scenarios: no censoring, MCAR and MAR.
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Figure 4.4: Comparison of bias for the weak covariate setting (βW = 1) under the MAR censoring
scenario. This plot shows the bias of the Kaplan-Meier estimate (Unadjusted) and the TMLE.
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4.5.3 Relationship between correlation of covariate(s) and failure time
with efficiency gain

As the correlation between W and failure time increases we expect to observe increasing gains in
efficiency. Selecting an arbitrarily selected time point t0 = 5 for ease of presentation, Figure 4.5 clearly
demonstrates that as the correlation between W and failure time increases so does the relative MSE. In
fact in for this particular data generating distribution, at time t0 = 5 the relationship is nearly linear.
These results reflect similar findings in RCT with fixed end point studies where relations between R2

and efficiency gain have been demonstrated [36, 43]. This relationship indicates that if indeed the
particular dataset contains covariates that are predictive of the failure time of the AE of interest, one
can achieve gains in precision and thus power by using the TMLE.
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Figure 4.5: Relation between efficiency gain and correlation between covariate and failure time.
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4.6 Fitting initial hazard and censoring mechanism

Despite these potential gains in efficiency as demonstrated by theory and simulation results, there has
been concern with covariate adjustment in RCT with respect to investigators selecting covariates to
obtain favorable inference. We conjecture that such cheating can be avoided if one uses an a priori
specified algorithm for model selection. When the model selection procedure is specified in an analysis
protocol, the analysis is protected from investigators guiding causal inferences based on selection of
favorable covariates and their functional forms in a parametric model. In safety analysis, if investigator
(sponsor) bias does indeed exist, it would be reasonable to assume that it would lean towards the
treatment having no effect on the AE and thus the concerns are the reverse from efficacy analysis. The
investigator bias would tend towards the less efficient unadjusted estimator. The analysis of AEs is
often exploratory in nature and the results are meant to flag potential AE of concern which may reduce
the motivation for dishonest inference using covariate adjustment. Regardless of the covariate selection
strategy, it should be explicitly outlined to avoid any such concerns.

There are a number of model selection algorithms that can be applied to data-adaptively select the
initial hazard fit. One such approach is the D/S/A algorithm that searches through a large space of
functional forms using deletion, substitution and addition moves. One can apply this algorithm to
the pooled data (over time) to fit the initial hazard [56]. One can also fit hazards using the hazard
regression (HARE) algorithm developed by Kooperberg et al. [30], which uses piecewise linear regression
splines and adaptively selects the covariates an knots. As another alternative, one could also include
all covariates that have a strong univariate association with failure time in a hazard fit as main terms
in addition to the treatment variable. Since one is often investigating many AE, a fast algorithm such
as the latter may be an appropriate alternative for computational efficiency.

We also note that if weights are required as they are for the inverse probability of censoring weighted
(IPCW) reduced data TMLEs as outlined in section 4.10.1, the D/S/A algorithm can be run with the
corresponding weights.

In addition to the hazard for survival, the hazard for censoring must also be estimated. One of the
algorithms discussed above can also be applied to estimate the censoring mechanism. We note that the
application of the TMLE to a set of M AE requires M hazard fits whereas only one fit for censoring
is required. Thus, the censoring mechanism is estimated once and for all and is used in the analysis of
each of the M AE.

4.7 Inverse weighting assumption

The TMLE, as well as other inverse weighted estimators (see section 4.8) for the parameters presented
in this chapter rely on the assumption that each subject has a positive probability of being observed
(i.e., not censored) at time t, which can be expressed by,

Ḡ(t− | A,W ) > 0, t = t0.

This identifiability assumption has been addressed as an important assumption for right-censored data
[51]. In Neugebauer and van der Laan [38] it was demonstrated that practical violations of this as-
sumption can result in severely variable and biased estimates.

One is alerted of such violations by observing very small probabilities of remaining uncensored based
on the estimated censoring mechanism, i.e., there are patients with a probability of censoring of almost
one given their observed past.
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4.8 Alternative estimators

Prior to the introduction of targeted maximum likelihood estimation, there were two main approaches
to estimating the treatment specific survival at a fixed end point t0: maximum likelihood estimation
and estimating function estimation. In the maximum likelihood approach, one obtains an estimate p̂ for
p identified by perhaps a Cox proportional hazards model for continuous survival or logistic regression
for discrete survival. The parameter of interest is then evaluated via substitution, i.e., ψ̂ = ψ(p̂).
These maximum likelihood substitution estimators involve estimating some hazard fit using an a priori
specified model or a model selection algorithm that is concerned with performing well with respect to
the whole density rather than the actual parameter of interest, e.g., the difference in treatment specific
survival at a specific time t0. These type of estimators often have poor performance and can be heavily
biased whenever the estimated hazard is inconsistent [49]. Furthermore, inference for such maximum
likelihood estimators that rely on parametric models are overly optimistic and thus their corresponding
p-values are particularly unreliable. This is in contrast to the inference for the TMLEs which respects
that no a priori models are required.

An alternative to the likelihood based approach is the extensively studied estimating function based
approach. Recall that the full data estimating functions provided in (4.8) and (4.9) are estimating
functions that could be applied to estimate the treatment specific survival at time t0 if we had access to
the full data, i.e., the uncensored survival time. The full data estimating function can be mapped into
a an estimating function based on the observed data using the IPCW method. The IPCW estimators
based on the IPCW estimating function denoted by DIPCW (T,A, W | ψ1, g, G) have been shown to be
consistent and asymptotically linear if the censoring mechanism G can be well approximated [52, 64].
While the IPCW estimators have advantages such as simple implementation, they are not optimal
in terms of robustness and efficiency. Their consistency relies on correct estimation of the censoring
mechanism whereas maximum likelihood estimators rely on correct estimation of the full likelihood of
the data.

The efficient influence curve can be obtained by subtracting from the IPCW estimation function the
IPCW projection onto the tangent space TCAR of scores of the nuisance parameter G [64]. The efficient
influence curve is the optimal estimating function in terms of efficiency and robustness and the corre-
sponding solution to this equation is the so-called double robust IPCW (DR-IPCW) estimator. The
“double” robust properties of this estimator are equivalent to those of the TMLE as the TMLE solves
the efficient influence curve estimating equation, see section 4.4.2. Despite the advantageous properties
of such efficient estimating function based estimators, maximum likelihood based estimators are much
more common in practice.

The more recently introduced targeted maximum likelihood estimation methodology that was applied
in this chapter can be viewed as a fusion between the likelihood and estimating function based methods.
A notable advantage of the TMLEs is their relative ease of implementation in comparison to estimating
equations which are often difficult to solve.

4.9 Multiple testing considerations

An important consideration in safety analysis is multiple testing in that often as many as hundreds of
AE are collected. The ICH guidelines indicate that it is recommended to adjust for multiplicity when
hypothesis tests are applied [24]. However, the ICH guidelines do not provide any specific methods for
adjustment. The need for adjustment is demonstrated by the following example outlined in Kaplan
et al. [28]. In this study, out of 92 safety comparisons the investigators found a single significant
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result according to unadjusted p-values. A larger hypothesis driven study for this AE that had no
known clinical explanation was carried out and did not result in any significant findings. Such false
positive results for testing the effect of treatment on a series of AE based on unadjusted p-values can
cause undue concern for approval/labeling and can affect post-marketing commitments. On the other
hand, over adjusting could also result in missing potentially relevant AE. Thus appropriate adjustment
requires some balance between no adjustment and a highly stringent procedure such as Bonferroni.

Many advances have been made in the area of multiple testing over the Bonferroni-type methods
including resampling based methods to control the familywise error rate (FWER), for example see
van der Laan et al. [68], and the Benjamini-Hochberg method for controlling the false discovery rate
(FDR) [7]. With FWER approaches, one is concerned with controlling the probability of erroneously
rejecting one or more of the true null hypotheses, whereas the FDR approach controls the expected
proportion of erroneous rejections among all rejections. The resampling based FWER method makes
use of the correlation of test statistics which can provide a gain in power over assuming independence.
However, the Benjamini-Hochberg FDR approach has been shown to be perform well with correlated
test statistics as well [8]. The selection of the appropriate adjustment depends on whether or not a more
conservative approach is reasonable. In safety analysis, one certainly does not want to miss flagging an
important AE and thus might lean towards an FDR approach.

FDR methods have been proposed specifically in the analysis of AE in Mehrotra and Heyse [34].
Their method involves a two-step procedure that groups AE by body system and performs an FDR
adjustment both within and across the body system. Presumably this method attempts to account for
the dependency of the AE by grouping in this manner. Thus the multiple testing considerations and
the dependency of the test statistics in safety analysis has indeed received some attention in literature.

The multiple testing adjustment procedure to be applied in the safety analysis should be provided
in the study protocol to avoid potential for dishonest inference. In addition, the unadjusted p-values
should continue to be reported with the adjusted p-values so all AE can be evaluated to assess their
potential clinical relevance.

4.10 Extensions

4.10.1 Time-dependent covariates

It is not unlikely that many time-dependent measurements are collected at each follow-up visit in
addition to the many AE and efficacy outcome measurements. Such time-dependent covariates are
often predictive of censoring. The efficiency and robustness results presented in this chapter have been
based on data structures with baseline covariates only. The targeted maximum likelihood estimation
procedure for data structures with time-dependent covariates is more complex as demonstrated in
van der Laan [61]. To overcome this issue and avoid modeling the full likelihood, van der Laan [61]
introduced IPCW reduced data TMLEs. We provide only an informal description of this procedure
here, for details we refer readers to the formal presentation provided in van der Laan [61].

In this framework, the targeted maximum likelihood estimation procedure is carried out for a reduced
data structure Xr, which in this case is the data structure that only includes baseline covariates.
The IPCW reduced data procedure differs from the procedure where Xr is the full data in that the
log-likelihoods are weighted by a time-dependent stabilizing weight given by,

sw(t) =
I(C > t)Ḡr(t | Xr)

Ḡ(t | X)
.
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This stabilizing weight is based on Ḡr(t | Xr) which is the censoring mechanism based on the reduced
data structure that includes baseline covariates only and Ḡ(t | X) which is the censoring mechanism
based on the complete data structure that includes time-dependent covariates.

In practice in estimation of the parameter ψ(t0) = E0(S0(t0|A = 1,W ) − S0(t0|A = 0,W )), one must
apply these weights anytime maximum likelihood estimation is performed. Thus, the IPCW reduced
data targeted maximum likelihood estimation procedure differs from the standard targeted maximum
likelihood procedure provided in section 4.4 in that each time the conditional hazard is fit it is weighted
by sw(t). These weights are time-specific and thus each subject receives a different weight at each point
in time. The initial hazard estimate λ̂0(t | A,W ) is weighted by sw(t). The algorithm then updates
λ̂0(t | A,W ) by adding the time-dependent covariates h1(t, A, W and h0(t, A, W ) and estimating their
corresponding coefficients ε1 and ε2. In the IPCW reduced data targeted maximum likelihood estimation
procedure one includes the weights sw(t) in estimation of ε1 and ε2. These weights are applied in each
iteration of the algorithm to obtain the final fit λ̂∗(t | A,W ) that is achieved when ε̂1 and ε̂2 are
sufficiently close to zero. Thus estimation can again be achieved using standard software with the only
additional requirement of weighting each of the regressions by these time-dependent weights.

Estimation of these time-dependent weights requires estimation of Ḡr(t | X) and Ḡ(t | X). Model
selection algorithms that can be applied to estimate Ḡr(t | X) were described in section 4.6. Similarly
the censoring mechanism Ḡ(t | X) can be estimated using a Cox proportional hazards model with time-
dependent covariates for continuous censoring times or logistic regression model with time dependent
covariates for discrete censoring times. Model selection algorithms such as those described in section
4.6 can also be applied by including these time-dependent covariates as candidates.

Let ψ̂r(t0) represent the IPCW reduced data TMLE of ψ(t0). By applying this IPCW weighting in the
reduced data targeted maximum likelihood estimation procedure a particular type of double robustness
is obtained. If there are no time-dependent covariates that are predictive of censoring time, then the
ratio of estimated survival probabilities of censoring in the above weight sw(t) is one. In this case, if
Ḡ(t | X) is consistently estimated or λ(· | A,W ) is consistently estimated then ψ̂r(t0) is consistent;
if both are consistent then it is even more efficient than the estimator that was based on the reduced
data structure. If there are indeed time-dependent covariates that are predictive of censoring time, and
Ḡ(t | A,W ) is well approximated then ψ̂r(t0) is consistent and the desired bias reduction is achieved.

4.10.2 Post market data

As RCT are powered for efficacy, it is often the case that many AE are either not observed at all during
the pre-market phase or so few are observed that statistically conclusive results are often exceptions
[41]. In an RCT of a rotavirus vaccine in which the AE of intussusception among vaccine recipients
compared to controls was not found to be statistically significant. After the vaccine was approved and
had been widely used, an association between this AE and the vaccine was found and it was pulled off
the market. A subsequent analysis demonstrated that to obtain power of 50% to detect a difference as
small as the actual observed Phase III incidence of the AE, a sample size of approximately 90,000 would
be required (6 times the actual sample size) [25]. Due to the high cost and complications involved in
running an RCT, such large sample sizes are not feasible.

It is not only the rarity of many AE that causes issues in detection during RCT, but also the fact
that RCT may have restrictive inclusion criteria whereas the drug is likely applied to a less restrictive
population in post-market. Furthermore, the follow-up time in the pre-market phase may not be
long enough to detect delayed AE. For a discussion regarding the difficulties in “proving” safety of a
compound in general see Bross [10]. Post-market monitoring is therefore an important aspect of safety
analysis.



59

There are a number of types of post-market data (for a thorough description of the various types of
post-market data see Glasser et al. [19]) including spontaneous adverse event reporting systems (e.g.,
“MedWatch”). These data can be useful for detecting potentially new or unexpected adverse drug
reactions that require further analysis however they often suffer from under-reporting by as much as a
factor of 20 [12].

In this section, we focus on observational post-market studies or pharmacoepidemiological studies.
Since patients in these type of studies are not randomized to a drug versus placebo (or competitor),
confounding is typically present. Of particular concern is the fact that sicker patients are often selected
to receive one particular drug versus another. There exists a vast amount of literature for controlling for
confounding in epidemiological studies. Popular methods in pharmacoepidemiology include propensity
score (PS) methods and regression based approaches. However, consistency with these methods rely
on correct specification of the PS or the regression model used. Furthermore, it is not clear how
informative censoring is accounted for with these methods. The TMLEs are double robust and are
thus more advantageous than these commonly applied alternative approaches.

Before we proceed with discussion of estimation of causal effects with observational data, we first outline
the data and assumptions. Suppose we observe n independent and identically distributed copies of
O = (T̃ , ∆, A, W ) ∼ p0 as defined in section 4.3. Causal effects are based on a hypothetical full data
structure X = (T1,1, T1,0, T0,1, T0,0,W ) which is a collection of action specific survival times where this
action is comprised of treatment and censoring. Note that we are only interested in the counterfactuals
under this joint action-mechanism that consists of both censoring and treatment mechanisms where
censoring equals zero, i.e., T1,0 and T0,0. In other words, we aim to investigate what would have
happened under each treatment had censoring not occurred.

The consistency assumption states that the observed data consist of the counterfactual outcome cor-
responding with the joint action actually observed. The coarsening at random (CAR) assumption
implies that the joint action is conditionally independent of the full data X given the observed data.
We denote the conditional probability distribution of treatment A by g0(a | X) ≡ P (A = a | X). In
observational studies, CAR implies g0(A | X) = g0(A | W ), in contrast to RCT in which treatment is
assigned completely at random and g0(A | X) = g0(A).

We aim to estimate ψ(t0) = E0(S0(t0|A = 1,W ) − S0(t0|A = 0,W )) = Pr(T1,0 > t0) − Pr(T0,0 > t0).
Even under no censoring or MCAR, we are can no longer rely on the unadjusted treatment specific
Kaplan-Meier estimates being unbiased due to confounding of treatment.

Under the assumptions above, the TMLE for ψ(t0) is double robust and locally efficient. Thus the
targeted maximum likelihood estimation procedure described in this chapter is theoretically optimal
in terms of robustness and efficiency. In our presentation, we assumed that treatment was assigned at
random. In observational studies, in addition to estimating λ(· | A, W ) and possibly Ḡ(· | A,W ) (when
censoring is present), observational studies require estimation of the treatment mechanism g(A | W )
as well. It has been demonstrated that when censoring is MCAR in an RCT, the targeted maximum
likelihood estimate ψ̂∗(t0) is consistent under mis-specification of λ(· | A,W ) since g(A | W ) is always
correctly specified. However, even under MCAR, in observational studies, consistency of ψ̂∗(t0) relies
on consistent estimation of λ(· | A,W ) or g(A | W ) and is efficient if both are consistently estimated
[65]. When censoring is MAR, then consistency of ψ̂∗(t0) also relies on consistent estimation of the
joint missingness g(A | W ) and Ḡ(· | A,W ) or λ(· | A,W ).

We also note that the TMLEs as well as the commonly applied PS methods rely on the experimental
treatment assignment (ETA) assumption. Under this assumption, each patient must have a positive
probability of receiving each treatment. The inverse weighted PS estimator is known to suffer severely
from violations of this assumption in practice [38, 51, 71]. This poor performance is evident with
inverse weighting, however we note that all other PS methods rely on this assumption as well, but are
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not as sensitive to practical violations. This assumption is essentially about information in the data
and violations of it indicate that for certain strata of the data, a given treatment level is never or rarely
experienced. When the ETA is violated estimation methods rely on extrapolation.

If it is the case that a given treatment level is very rare or non-existent for given strata of the population,
an investigator may want to re-consider the original research question of interest. To this end, van der
Laan and Petersen [63] developed causal effect models for realistic intervention rules. These models
allow estimation of the effect of realistic interventions, that is only intervening on patients for whom
the intervention is reasonably “possible” where “possible” is defined by g(A | W ) greater than some
value, e.g., 0.05. We note that targeted maximum likelihood estimation can be applied to estimate
parameters from such models. For applications of such models see Bembom and van der Laan [6].

The ETA assumption and development of realistic causal models are simply examples of some of the
many considerations that arise with observational data as compared to RCT data. However despite
the many issues the rich field of causal inference provides promising methods for safety analysis in
post-market data. As it is not possible to observe all AE in the pre-market phase, post-market safety
analysis is an important and emerging area of research.

4.11 Discussion

Safety analysis is an important aspect in new drug approvals and has become increasingly evident with
the recent cases of drugs withdrawn from the market (e.g., Vioxx). Increasing estimation efficiency
is one area that can help overcome the issue that RCT are not powered for safety. Using covariate
information is a promising approach to help detect AE that may have remained undetected with the
standard crude analysis. Furthermore, time-to-event methods for AE analysis may be more appropriate
particularly in studies where the AE often occur for all patients, such as oncology studies. Exploiting
the time-dependent nature can further provide more efficient estimates for the effect of treatment on
AE occurrence.

In this chapter we provided a method for covariate adjustment in RCT for estimating the effect of
treatment on the AE failing to occur by a fixed end point. The method does not require any parametric
modeling assumptions under MCAR censoring and thus is robust to mis-specification of the hazard fit.
The methods advantages were twofold. The first is the potential efficiency gains over the unadjusted
estimator. The second is that the TMLE accounts for informative censoring through inverse weighting
of the covariate(s) that is added to an initial hazard fit. The standard unadjusted estimator is biased
in the informative censoring setting.

The estimator has a relatively straightforward implementation. Given an initial hazard fit either logistic
for discrete failure times or Cox proportional hazards for continuous survival times, one updates this
fit by iteratively adding a time dependent covariate(s).

The simulation study demonstrated the potential gains in efficiency that can be achieved in addition
to the relation of the correlation between the covariate(s) and failure time and efficiency gains. When
no predictive covariates were present the relative efficiency was approximately one indicating that one
is protected from actually losing precision from applying this method even when the covariates provide
little information about failure time. The simulations also demonstrated the reduction in bias in the
informative censoring setting.

Considerations for balancing the potential for false positives and the danger of missing possibly signifi-
cant AE are an important aspect of safety analysis. The strategies from the rich field of multiple testing
briefly discussed in this chapter can exploit the correlation of the AE outcomes and thus provide the
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most powerful tests.
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Chapter 5

Covariate adjusted analogue to logrank
test

5.1 Introduction

Covariate adjustment in RCTs has been demonstrated to improve estimation efficiency over standard
unadjusted methods in studies with continuous or binary outcomes at fixed end-points [29, 36, 43, 59,
73]. It is often the case in RCTs that the outcome is time-to-event in nature and subject to right
censoring. The standard approach for testing for a treatment effect on survival is the logrank test, or
asymptotically equivalently the test, H0 : ψ = 0 where ψ is the coefficient for treatment in the Cox
proportional hazards model that includes only a main term for treatment. From estimation theory
[64], it is known under the proportional hazards assumption, that this maximum likelihood estimator
(MLE) is the efficient estimator of the effect of interest, given that the data include only treatment and
survival times. In most RCT, data are additionally collected on baseline (pre-treatment) covariates.
This unadjusted estimator ignores the covariates and is thus not equivalent to the full MLE. It follows
that application of the unadjusted estimator can lead to a loss in estimation efficiency (precision) in
practice.

The key principle in developing covariate adjusted estimators is to not require any additional assump-
tions beyond those required for the unadjusted method. For example, a Cox proportional hazards model
that includes covariates in addition to treatment requires heavy parametric modeling assumptions and
thus is not a suitable method of covariate adjustment. Lu and Tsiatis [33] demonstrated how the
efficiency of the logrank test can be improved with covariate adjustment based on estimating equation
methodology. Their method, which does not make assumptions beyond those of the logrank test, is
more efficient and was shown to increase power over the logrank test. A nonparametric method for a
covariate adjusted method that uses logrank or Wilcoxon scores was proposed in Tangen and Koch [57]
and explored via simulation studies in Jiang et al. [27]. This method attempts to adjust for the random
imbalances that occur in covariate distributions between treatment groups. The authors use a linear
regression model to estimate the difference in vectors between treatment groups, where these vectors
include the average rank score and average value for each covariate within the given treatment group.
This latter method limits the flexibility in adjusting for covariates by only allowing the comparison of
their mean differences between treatment groups. Furthermore, it does not allow for adjustment for
informative censoring. The importance of adjusting for covariates to gain power over the logrank test
is also discussed in Akazawa et al. [1]. However, their stratified approach does not ensure a gain in
power, and, can actually lose power over the logrank test for certain stratification strategies.

With the principle of not making any assumptions beyond those required for the unadjusted test, in
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this paper we develop covariate adjusted analogues to the logrank test in RCT. We present our method-
ology for discrete survival outcomes where the logrank parameter represents an effect of treatment by
comparing the cumulative hazard of treated subjects at time t0, relative to the cumulative hazard of
controls at time t0 , averaged over many time points t0. However, we note that if the time scale is
sufficiently fine, that this methodology is compatible with continuous survival outcomes.

We present our methods for covariate adjustment under the framework of targeted maximum likeli-
hood estimation, originally introduced in van der Laan and Rubin [65]. Targeted maximum likelihood
estimation is an estimation procedure that carries out a bias reduction specifically targeted for the
parameter of interest. This is in contrast to traditional maximum likelihood estimation which aims for
a bias-variance trade-off for the whole density of the observed data, rather than a specific parameter
of it. The targeted maximum likelihood methodology aims to find a density p̂∗ that solves the efficient
influence curve estimating equation for the parameter of interest that results in a bias reduction and
also achieves a small increase in the log-likelihood as compared to the maximum likelihood estimate.
The resulting substitution estimator ψ(p̂∗) is a familiar type of likelihood based estimator and due to
the fact that it solves the efficient influence curve estimating equation it thereby inherits its properties,
including asymptotic linearity and local efficiency [64].

There are several advantages to this methodology over estimating equation methodology as discussed
in chapters 2 and 4. One important advantage is that the methodology does not rely on the assump-
tion that the efficient influence curve can be represented as an estimating equation in the parameter
of interest. This is of particular consequence for the logrank parameter since the efficient influence
curve cannot be represented as an estimating equation in this parameter. Thus, estimating equation
methodology fails for this particular parameter. As a result, the proof of the double robustness consis-
tency properties does not follow in the usual obvious manner. Therefore, in this paper, we provide two
methods for covariate adjustment using the targeted maximum likelihood methodology. The first is a
substitution based approach that targets the time and treatment specific survival parameters for the
treated and untreated arms. The corresponding estimates are used as plug-ins to evaluate the logrank
parameter. Here we can prove the double robustness properties for the time and treatment specific
estimators using the usual estimating equation approach. We then show how we can extend these
properties to the logrank parameter. In the second approach, we target the logrank parameter directly.
However, since we cannot use the estimating equation approach for proof of the double robustness
properties due to the fact that the efficient influence curve cannot be represented as an estimating
equation in this parameter, we rely on empirical validation of these properties. Although we present
the conjecture that the first estimator is less efficient than the second and provide evidence of this
fact through simulation studies, for the first estimator we can prove these double robustness properties
based on theory, contrary to the latter estimator. Therefore, we include both of these covariate adjusted
TMLEs of the logrank parameter.

The likelihood of the observed data (provided in section 5.5) can be expressed in terms of the hazard
of survival, conditional on treatment and covariates. It is important to note that the TMLEs rely on
estimation of the conditional hazard. This initial hazard estimate can be maximum likelihood based,
but can involve sieve based estimation and selection of fine tuning parameters/algorithms/models using
likelihood based cross-validation, since nonparametric maximum likelihood estimation is not possible.
Machine learning algorithms can be applied to obtain an initial hazard estimate, after which, the
targeting step is applied as a means of bias reduction for the parameter of interest. Part of the
targeting step involves averaging over the covariates that have terms in the hazard model to obtain
a marginal or unconditional estimate. In summary, the methods presented in this paper involve two
steps. First, an initial hazard of survival, conditional on treatment and covariates, must be estimated.
Second, the targeting step is applied as a bias reduction step for the parameter of interest. Thus, the
conditional hazard on which the TMLE is based is not meant to infer information about subgroup
(conditional) effects of treatment. The methodology presented in this chapter can be extended to the
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estimation of subgroup specific logrank analogues, however, in this paper we focus only on marginal
(unconditional) treatment effects.

Specifically, the paper is outlined as follows. We first begin with a brief overview of the data, model
and parameter(s) of interest in section 5.2. We then provide the discrete analogue to the logrank test
in section 5.3, to which we compare the targeted maximum likelihood estimation approaches. We then
review the methodology for estimating the treatment specific estimates of survival at a fixed endpoint
t0 as presented in chapter 4. This t0 approach is then extended to provide our first of two analogues
to the logrank test, the substitution based targeted maximum likelihood method (section 5.5). In the
second analogue, we provide the direct targeted maximum likelihood approach which does not require
estimation of the t0-specific survival estimates, but rather directly targets the average (over time) effect
of treatment on survival. Since the TMLE requires estimation of an initial conditional hazard, methods
for fitting it as well as the censoring mechanism are provided in section 5.8. In section 5.9 we present
simulation studies to demonstrate the efficiency gains of the proposed methods over the logrank test in
an RCT under no censoring and uninformative censoring. Furthermore, under informative censoring
we demonstrate the bias that arises with the standard approach in contrast to the consistency of our
proposed estimator. A second simulation study demonstrates the importance of data-adaptive model
selection algorithms in the estimation of the initial hazard used by the targeted maximum likelihood
algorithm in order to obtain maximal power. Finally, we conclude with a discussion.

5.2 Data, model and parameter of interest

We assume that in the study protocol, each patient is monitored at K equally spaced clinical visits.
At each visit, an outcome is evaluated as having occurred or not occurred. Let T represent the first
visit at which the event was reported and thus can take values {1, ..., K}. The censoring time C is the
first visit when the subject is no longer enrolled in the study. Let A ∈ {0, 1} represent the treatment
assignment at baseline and W represent a vector of baseline covariates. The observed data are given
by O = (T̃ , ∆, A, W ) ∼ p0 where T̃ = min(T, C), ∆ = I(T ≤ C) is the indicator that that subject was
not censored and p0 denotes the density of O. The conditional hazard is given by λ0(· | A,W ) and
the corresponding conditional survival is given by S0(· | A,W ). The censoring mechanism is given by
Ḡ(t− | A,W ) = P (C ≥ t | A,W ).

Let T1 represent a patient’s time to the occurrence of an event had she, possibly contrary to fact, been
assigned to the treatment group and let T0 likewise represent the time to the occurrence of the event
had the patient been assigned to the control group.

Chapter 4 presented the targeted maximum likelihood estimation method for the estimation of the t0
and treatment specific parameters,

P0 → Ψ1(p0)(t0) = Pr(T1 > t0) = E0(S0(t0 | A = 1,W )) = S1(t0), (5.1)

and

P0 → Ψ0(p0)(t0) = Pr(T0 > t0) = E0(S0(t0 | A = 0, W )) = S0(t0), . (5.2)

where the subscript for Ψ denotes the treatment group, either 0 or 1. Thereby, any linear combination
of these parameters can be estimated to evaluate the effect of treatment A on survival T , e.g., the
marginal log hazard of survival,

P0 → Ψt0(p0) = log

(
log(Pr(T1 > t0))

log(Pr(T0 > t0))

)
= log

(
log(S1(t0))

log(S0(t0))

)
. (5.3)
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In this paper, we are interested not in a test for the effect of treatment at a fixed end point t0, but rather
the average effect over time. Note that, in the continuous survival case, if one averaged Ψt0(p0) over
all t, this parameter would correspond with the Cox proportional hazards parameter (i.e., coefficient
for treatment in Cox proportional hazards model) and thus the parameter tested by the ubiquitous
logrank test, given by,

λ(t | A) = λ(t) exp(ψCA).

More formally, let M be the class of all densities of O with respect to an appropriate dominating
measure and is nonparametric up to possible smoothness conditions. Let our parameter of interest be
represented by Ψ(p0), where

P0 → Ψ(p0) =
∑
t0

w(t0) log

(
log(S1(t0))

log(S0(t0))

)
, (5.4)

for some weight function w(t0) which we discuss in section 5.7. Thus, the targeted maximum likelihood
test for the effect of treatment on survival is a test for H0 : ψ0 = 0 against HA : ψ0 6= 0, where
ψ0 = Ψ(p0).

We note that we could have chosen a number of other parameters to evaluate the average effect of
treatment on survival over time, such as the difference given by,

ΨD(p0) =
∑
t0

w(t0) (S1(t0)− S0(t0)) ,

or the log of the relative risk of survival, given by

ΨRR(p0) =
∑
t0

w(t0) log

(
S1(t0)

S0(t0)

)
.

However, we focus on Ψ(p0) as defined in (5.4) so that we can compare the power of the targeted
maximum likelihood test to that of the discrete analogue to the logrank test as outlined in the next
section.

5.3 Unadjusted estimation of Ψ(p0)

The discrete extension to the Cox proportional hazards model is a model for the odds of dying at t,
given survival up to time t, given by,

λ(t | A)

1− λ(t | A)
=

λ(t)

1− λ(t)
exp(βAA),

where

log

(
λ(t | A)

1− λ(t | A)

)
= β1I(t = 1) + β2I(t = 2) + ... + βK(t = K) + βAA. (5.5)

Thus, β1, ..., βK capture the logit of the baseline hazard function, and βA is the effect of treatment on
the logit of the hazard. Such a parameterization leaves the baseline hazard unspecified and since A is
a binary variable, βA is the nonparameteric formulation of the effect of treatment on the logit of the
hazard.



66

The likelihood function for the discrete hazard process, where Or = (T̃ , ∆, A), can be expressed as,

L(Or) =
n∏

i=1

Pr(Ti = t̃i)
∆iPr(Ti > t̃i)

(1−∆i) (5.6)

=
n∏

i=1


λi(t̃i)

t̃i−1∏
t=1

(1− λi(t))




∆i



t̃i∏
t=1

(1− λi(t))




1−∆i

, (5.7)

where t̃i = min(ti, ci) is the last time point at which individual i was observed (i.e., either censored or the
event occurred). Let ȳi = (yi1, ..., yit̃i) denote the event history for individual i where (yi1, ..., yit̃i−1) =
(0, ..., 0), and yit̃i = 1 if ∆i = 1 and yit̃i = 0 if ∆i = 0. It can be shown that,

L(Or) =
n∏

i=1

t̃i∏
t=1

λ(t | Ai)
yit(1− λ(t | Ai))

(1−yit).

Note that this likelihood is equivalent to that of a sequence of independent Bernouilli trials and thus
we can use standard logistic regression software to obtain the maximum likelihood estimates for the
coefficients β in (5.5).

In practice, the logistic regression model is fit with the dataset that includes repeated measures for
each subject up until the time that the subject either dies or is censored, e.g., if a given subject dies
or is censored at time point 5, this subject would contribute 5 rows of data to the new dataset. The
outcome variable is zero up until the event occurs, where it is set to 1. If the subject is censored, then
the outcome remains 0, even at the last time point.

An estimate of the effect of treatment on the logit of the hazard can be obtained by extracting the
coefficient for A, however, our parameter of interest is the average of the log of the ratio of log of
survival under the two treatment regimens, as given by Ψ(p0) as defined in (5.4). Thus, we use the
logistic regression fit for the hazard, denoted by λ̂(t | A), to obtain estimates for λ̂1(t) = λ̂(t | A = 1)
and λ̂0(t) = λ̂(t | A = 0). Based on these estimates, we use the relation,

S(t0) =
∏
j≤t0

(1− λ(j)),

to obtain estimates Ŝ1(t0) and Ŝ0(t0). The unadjusted estimate of Ψ(p0) is then computed as the
crude average over time of the log of the ratio of the logs of these t0-specific estimates. We note that,
alternatively, one could estimate S1(t0) and S0(t0) for t0 ∈ 1, ..., K using Kaplan-Meier and use these
estimates as plug-ins into (5.4). The use of Kaplan-Meier would be more nonparametric since the
proportional odds model assumes proportionality of the hazards. However, both provide valid tests of
H0 : ψ0 = 0 in the nonparametric model since under H0, both methods provide consistent estimators
of ψ0. In this paper, we use the proportional odds approach only.
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5.4 General approach to targeted maximum likelihood esti-

mation of Ψ(p0)

The log likelihood for the observed data O, that includes covariates W , for a single observation is given
by,

P (W )g(A | W )


λ(t̃ | A,W )

t̃−1∏
t=1

(1− λ(t | A,W ))




δ 


t̃∏
t=1

(1− λ(t | A, W ))




1−δ

× [
Ḡ(t̃− | A, W )δP (C = t̃ | A,W )1−δ

]
, (5.8)

where δ = 1 if T = t̃ and C ≥ t̃.

Consider an initial fit p̂0 of the density of the observed data O, identified by a hazard fit λ̂0(t | A,W ), the
distribution of A identified by ĝ0(1 | W ) and ĝ0(0 | W ) = 1− ĝ0(1 | W ), the censoring mechanism Ĝ0(t |
A,W ) and the marginal distribution of W being the empirical probability distribution of W1, ..., Wn.
In an RCT, treatment is randomized and ĝ0(1|W ) = 1

n

∑n
i=1 Ai.

Let the initial hazard fit be denoted by λ̂0(t | A,W ). This initial hazard can be represented as,

logit
(
λ̂0(t | A,W )

)
= m(t, A, W ),

where m is any function of t, A and W . We show that representing the initial hazard in this manner
allows us to obtain its update (fluctuation) using standard software (e.g., glm in R). For example, we
could consider the initial hazard,

logit
(
λ̂0(t | A,W )

)
= α̂(t) + k(A,W | β̂),

where k is some function of A and W . The targeted maximum likelihood algorithm updates this initial
fit by adding to it the term εh(t, A, W ), i.e.,

logit(λ̂0(ε)(t | A,W )) = m(t, A,W ) + εh(t, A, W ). (5.9)

Now, ε is estimated by fitting (5.9) with standard logistic regression software and fixing the coefficient
for m(t, A, W ) at one and setting the intercept to zero. The initial hazard fit is then updated by
adding to it ε̂h(t, A,W ). The covariate h(t, A, W ) is then re-evaluated based on this updated hazard
(and thus survival) fit. The newly updated hazard now plays the role of the initial hazard and ε is
then again estimated based on the newly updated covariate h(t, A, W ). The procedure is iterated until
convergence, i.e., ε̂ is essentially zero. The targeted maximum likelihood estimate is based on the
hazard obtained in the final step of the algorithm. The covariate h(t, A, W ), which is defined in the
following sections, is a function of the conditional survival function (S(t | A,W )) and the censoring
mechanism (Ḡ(t− | A,W )). The covariate is re-evaluated at each step of the algorithm based on the
updated hazard estimate for λ(t | A,W ) (and thus S(t | A,W )). The censoring mechanism is not
updated in the algorithm. The rationale for updating only the hazard was provided in chapter 4.

The covariate h(t, A, W ) is selected such the score for this hazard model at ε = 0 is equal to the
projection of the efficient influence curve on scores generated by the parameter λ(t | A,W ) in the
nonparametric model for the observed data, assuming only coarsening at random (CAR). Thus, the
TMLE, that is the estimator based on this iteratively updated hazard fit, solves the efficient influence
curve estimating equation.

We provide two different approaches to the estimation of Ψ(p0) based on the targeted maximum like-
lihood methodology. This specific covariate h(t, A, W ) that updates the hazard is dependent on the
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approach. In the first approach, the targeted maximum likelihood estimates for each t0 specific param-
eter, S1(t0) and S0(t0), at each t0 ∈ 1, ..., K are obtained. The substitution estimate for Ψ(p0) is then
based on these targeted maximum likelihood estimates. In the second method, the estimate for Ψ(p0)
is obtained by directly targeting that parameter.

5.5 Method 1: Substitution TMLE

In this first method, we describe the procedure for targeted maximum likelihood estimation of the
t0 and treatment specific parameters S1(t0) and S0(t0) Thereby, we can estimate any parameter that
is a combination of them, such as the average parameter Ψ(p0) defined in (5.4). We note with this
procedure, one could choose a number of other parameters such as the average difference in survival or
the average ratio of survival. However, here we focus on the substitution targeted maximum likelihood
estimator (S-TMLE) of Ψ(p0) only.

The covariates for targeting the t0 and treatment specific parameters S1(t0) and S0(t0) as defined in
(5.1) and (5.2) respectively, were provided in chapter 4. In short, the algorithm selects the covariates,
h1t0(t, A,W ) and h0t0(t, A,W ), corresponding with targeting parameters S1(t0) and S0(t0) respectively.
For the parameter S1(t0), h1t0(t, A, W ) is defined such that the score for the hazard model at ε1 = 0 is
equal to the projection of the efficient influence curve of S1(t0) on scores generated by the parameter
λ(t | A,W ) in the nonparametric model for the observed data, assuming only CAR. Similarly, for
S0(t0), h0t0(t, A, W ) is defined such that the score for the hazard model at ε2 = 0 is equal to the
projection of the efficient influence curve of S0(t0) on scores generated by the parameter λ(t | A,W ) in
the nonparametric model for the observed data, assuming only CAR. These covariates corresponding
with parameters S1(t0) and S0(t0) are respectively given by,

h1t0(t, A, W ) = − I(A = 1)

g(1)Ḡ(t− | A,W )

S(t0 | A,W )

S(t | A,W )
I(t ≤ t0), (5.10)

and

h0t0(t, A, W ) = − I(A = 0)

g(0)Ḡ(t− | A,W )

S(t0 | A,W )

S(t | A,W )
I(t ≤ t0). (5.11)

The parameters S1(t0) and S0(t0) can be targeted simultaneously by addition of both covariates
h1(t, A, W ) and h0(t, A, W ) as in (5.9), and finding the two-dimensional updating coefficients, ε̂ =
{ε̂1, ε̂2}, i.e.,

logit(λ̂0(ε)(t | A,W )) = m(t, A, W ) + ε1h1t0(t, A, W ) + ε2h0t0(t, A, W ). (5.12)

Finding ε̂ = {ε̂1, ε̂2} in the updated hazard provided in (5.12) that maximizes the likelihood of the
observed data can be done in practice by fitting a logistic regression in the covariates m(t, A,W ) and
h1t0(t, A,W ) and h0t0(t, A,W ). The coefficient for m(t, A,W ) is fixed at one and the intercept is set to
zero and thus the whole regression is not refit, rather only ε is estimated. These steps for evaluating
ε̂, and thus obtaining the updated hazard fit λ̂1(t | A,W ) correspond with a single iteration of the
targeted maximum likelihood algorithm. In the second iteration, the updated λ̂1(t | A,W ) now plays
the role of the initial fit and the covariates h1t0(t, A,W ) and h0t0(t, A,W ) are then re-evaluated with
the updated Ŝ1(t | A,W ) based on λ̂1(t | A,W ) and ε̂ is estimated again. Based on this update,
λ̂2(t | A,W ) is obtained. In the third iteration, λ̂3(t | A,W ) is fit and the procedure is iterated until ε̂
is essentially zero. The final hazard fit at the last iteration of the algorithm is denoted by λ̂∗(t | A, W )
with the corresponding survival fit given by Ŝ∗(t | A,W ).
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The t0-specific parameter Ψt0(p0), defined in (5.3), is estimated by,

ψ̂∗t0 = log

(
log( 1

n

∑n
i=1 Ŝ∗(t0 | 1,Wi))

log( 1
n

∑n
i=1 Ŝ∗(t0 | 0,Wi))

)
.

Finally, the parameter of interest Ψ(p0) can be estimated by plugging in each of the t0-specific estimates
ψ̂t0 for t0 ∈ 1, ..., K. That is,

ψ̂∗ =
∑
t0

w(t0)ψ̂t0 .

5.5.1 Efficient influence curves

The efficient influence curves for the parameters S1(t0) and S0(t0), denoted by IC1t0 and IC0t0 , were
provided in chapter 4, and are respectively given by,

IC1t0(g0, G0, S0) =∑
t≤t0

h1(g0, G0, S0)(t | A,W )[I(T̃ = t, ∆ = 1)− I(T̃ ≥ t)λ0(t | A = 1,W )]

+S0(t0 | A = 1,W )−Ψ1(p0)(t0), (5.13)

and

IC0t0(g0, G0, S0) =∑
t≤t0

h0(g0, G0, S0)(t | A,W )[I(T̃ = t, ∆ = 1)− I(T̃ ≥ t)λ0(t | A = 0,W )]

+S0(t0 | A = 0,W )−Ψ0(p0)(t0). (5.14)

The efficient influence curve, denoted by ICt0 , for the parameter Ψt0(p0), can be obtained by application
of the δ-method to the influence curves IC1t0 and IC0t0 . We have,

ICt0 = a(t0)IC1t0 + b(t0)IC0t0 , (5.15)

which is a linear combination of IC1t0 and IC0t0 , with coefficients only a function of t0. With some
algebra, one can easily show that the coefficients are given by a(t0) = 1

S1(t0) log(S1(t0))
and b(t0) =

−1
S0(t0) log(S0(t0))

.

Our parameter of interest Ψ(p0) is the average (possibly weighted) of the t0-specific log ratios of the
logs of survival, i.e., average over t0 of Ψt0(p0). Therefore, its efficient influence curve is given by,

¯IC =
∑
t0

w(t0)ICt0 (5.16)

5.5.2 Double robustness consistency properties of the
S-TMLE

In chapter 4, the statistical properties of the treatment and t0-specific estimators were provided. Con-
sider the parameter S1(t0). The targeted maximum likelihood estimate p̂∗ ∈M of p0 solves the efficient
influence curve estimating equation, given by

∑n
i=1 IC1t0(g0, Ĝ, Ŝ∗)(Oi) = 0, which is the optimal es-

timating equation for the parameter of interest. It can be shown that E0IC1t0(S, g, G) = 0 if either:
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1) S = S0(· | A,W ) (and thus λ = λ0(· | A,W )) or, 2) g = g0(A | W ) and G = G0(· | A,W ) (see
Appendix B.1). In an RCT, the treatment mechanism is known and g0(A | W ) = g0(A). Therefore,
the consistency of the estimator ψ̂∗1(t0) of S1(t0) in an RCT relies only on consistent estimation of
G0(· | A,W ) or S0(· | A,W ). When there is no censoring or censoring is missing completely at random
(MCAR), ψ̂∗1(t0) is consistent even when the estimator Ŝ(· | A,W ) of S0(· | A,W ) is inconsistent (e.g.,
if it relies on a mis-specified model). Hence, in an RCT, one is not concerned with estimation bias due
to mis-specification of the hazard model. Under informative or missing at random (MAR) censoring, if
G0(· | A, W ) is consistently estimated then ψ̂∗1(t0) is consistent even if S0(· | A,W ) is not consistently
estimated. If both are correctly specified then ψ̂∗1(t0) is efficient. These same properties hold for the
estimator ψ̂∗0(t0) for S0(t0).

Since the S-TMLE ψ̂∗t0 for the t0-specific parameter given by (5.3) is simply a function of these two
treatment specific estimators, it inherits these same double robustness properties. Similarly, since our
parameter of interest, Ψ(p0) is the average (possibly weighted) of the t0-specific log ratios of the logs of
survival, clearly the properties of the t0-specific log ratio estimator directly extend to the estimator of the
average (over time) parameter (i.e., the logrank analogue parameter). That is, if there is no censoring
or censoring is MCAR, this method provides a covariate adjusted estimator that is consistent even
when the hazard is mis-specified. Thus, if one captures only part of the relevant covariate information,
one can still gain in efficiency over the unadjusted method, without the risk of introducing bias.

We note that although the double robustness properties of the S-TMLEs for the parameters Ψt0(p0)
and Ψ(p0) are inherited from the properties of ψ̂∗1(t0) and ψ̂∗0(t0), that ψ̂∗t0 and ψ̂∗ also solve their
corresponding efficient influence curve estimating equations based on (5.15) and (5.16) respectively.

5.5.3 Inference for the S-TMLE

We first consider the parameter S1(t0). Since the TMLE is a solution to the efficient influence curve
estimating equation, then from estimating equation theory (see van der Laan and Robins [64]) if g0

and G0 are known, then the estimator is asymptotically linear with influence curve IC1t0(g0, G0, S).
However, even though g0 is typically known in an RCT, G0 is not. In this case, the influence curve is
given by,

IC1t0(g0, G, S)− Π(IC1t0 | TG),

that is one must subtract from IC1t0 its projection on the tangent space of the model for the censoring
mechanism. Therefore, one can construct an asymptotically conservative Wald-type 0.95-confidence
interval for ψ̂∗1(t0) based on the estimate of the efficient influence curve for S1(t0) ignoring this projection
and using (5.13), i.e., using IC1t0(g0, Ĝ, Ŝ), where this confidence interval is given by ψ̂∗1(t0)± 1.96 σ̂1√

n
,

and,

σ̂2 =
1

n

n∑
i=1

IC2(g0, Ĝ, Ŝ).

The null hypothesis H0 : ψ = 0 can be tested with the test statistic

T̂ =
ψ̂∗
σ̂√
n

,

whose asymptotic distribution is N(0, 1) under the null hypothesis. Inference is derived in the same
manner for the TMLE ψ̂∗0(t0) of S0(t0).

As with the estimators of treatment specific survival, if g0 and G0 are known, then the S-TMLE
of Ψt0(p0) is asymptotically linear with influence curve ICt0(g0, G0, S). Since G0 is not known, the
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influence curve is given by,

ICt0 = a(t0)(IC1t0 − Π(IC1t0 | TG)) + b(t0)(IC0t0 − Π(IC0t0 | Tg))

= a(t0)(IC1t0) + b(t0)IC0t0 − Π ((a(t0)IC1t0 − b(t0)IC0t0) | TG) .

Therefore, one can construct an asymptotically conservative Wald-type 0.95-confidence interval for ψ̂∗t0
based on the estimate of the efficient influence curve for Ψt0(p0) using (5.15), i.e, using ICt0(g0, Ĝ, Ŝ),
as above. Similarly, the test statistic can be constructed as above.

Finally, for our parameter of interest, the average (possibly weighted) of the t0-specific log of the ratio
of logs of survival, the influence curve when G0 is estimated is given by,

¯IC =
∑
t0

w(t0) [a(t0)(IC1t0 − Π(IC1t0 | TG)) + b(t0)(IC0t0 − Π(IC0t0 | Tg))]

=
∑
t0

w(t0) [a(t0)(IC1t0) + b(t0)IC0t0 ]− Π (w(t0)(a(t0)IC1t0 − b(t0)IC0t0) | TG) .

Therefore, one can construct an asymptotically conservative Wald-type 0.95-confidence interval for ψ̂∗

based on the estimate of the efficient influence curve for Ψ(p0) using (5.16), i.e., using ¯IC(g0, Ĝ, Ŝ), as
above. Similarly, the test statistic can be constructed as above.

5.6 Method 2: Directly targeted method

In the previous method, we provided a substitution based procedure based on the t0-specific estimators
of survival. However, we did not directly target the parameter of interest, which is the average of the
log of the ratio of logs of survival in the treatment and control groups, given by Ψ(p0) as defined in
(5.4). In this section we present the targeted maximum likelihood algorithm for targeting this single
parameter. Contrary to the S-TMLE, which requires two covariates to update the hazard at each time
t0 ∈ {1, ..., K}, the algorithm targeting the single parameter only requires a single covariate. This
suggests that application of this direct targeted maximum likelihood estimator (D-TMLE) results in
finite sample improvements in efficiency over the S-TMLE.

The efficient influence curve of our parameter of interest Ψ(p0) is given by (5.16) in section 5.5.1.
We provided the time-dependent covariates h1t0(t, A,W ) and h0t0(t, A, W ) for targeting the t0-specific
survival S1(t0) and S0(t0), required to generate the corresponding components of IC1t0 and IC0t0 of
the form

hj(t, A, W )(dN(t)− E(dN(t) | past(t)), j = 0, 1,

where N(t) is a counting process. Thus, to generate the component ¯ICt of ¯IC for the t-factor of the
likelihood, we now select the single time-dependent covariate,

h̄(t, A, W ) =
∑
t0

w(t0)a(t0)h1t0 +
∑
t0

w(t0)b(t0)h0t0 .

Now, in the targeted maximum likelihood algorithm, the first updating step of the initial hazard,
denoted by λ̂0(t | A,W ), is given by,

logit(λ̂0(ε)(t | A,W )) = m(t, A,W ) + εh̄(t, A, W ). (5.17)

Again, as in the substitution based method, we now find ε̂ by fitting equation (5.17) using standard
logistic regression software by setting the coefficient for m(t, A, W ) to one and setting the intercept to
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zero. The corresponding updated hazard λ̂1(t | A,W ) is obtained. This represents the first step of the
algorithm. The hazard fit λ̂1(t | A,W ) now plays the role of the initial fit and the covariate h̄(t, A, W )
is then re-evaluated based on λ̂1(t | A,W ) (and thus Ŝ1(t | A,W )). Based on ε̂, estimated as described
above, λ̂2(t | A,W ) is obtained. On the third iteration, λ̂3(t | A,W ) is obtained and the process is
iterated until ε̂ is essentially zero. The final hazard fit at the last iteration of the algorithm is denoted
by λ̂∗(t | A,W ) with the corresponding survival fit given by Ŝ∗(t | A,W ).

The procedure for estimation of the parameter of interest, Ψ(p0), now follows exactly that of the S-
TMLE in section 5.5. That is, estimates of the t0-specific parameter are obtained and then averaged
over time to obtain the targeted maximum likelihood estimate ψ̂∗ of Ψ(p0). Note that ψ̂∗ solves
the efficient influence curve estimating equation

∑n
i=1

¯IC(λ̂∗, g0, Ĝ)(Oi), however, it does not solve∑n
i=1 IC1t0(λ̂

∗, g0, Ĝ)(Oi) and
∑n

i=1 IC0t0(λ̂
∗, g0, Ĝ)(Oi) as does the S-TMLE.

5.6.1 Double robustness consistency properties of the
D-TMLE

It can be shown that the efficient influence curve ¯IC cannot be written as an estimating equation in the
parameter of interest Ψ(p0). Therefore, the formal proof of double robustness consistency properties
do not follow in an obvious manner as with the usual estimating function approach.

Let ψ(λ) be a solution to P0( ¯IC(λ, g0, G0)) = 0. Empirically, we have found that solving P0( ¯IC(λ, g0, G0)) =
0 does not imply ψ(λ) = ψ0. In this case, the estimating function method breaks down since there
are multiple solutions to P0(D(λ, g0, G0)) = 0 and they do not all guarantee ψ(λ) = ψ0. Furthermore,
through simulation studies, we have found that if the initial hazard (λ

′
) is mis-specified such that it

solves P0( ¯IC(λ
′
, g0, G0)) = 0, however, ψ(λ

′
) is inconsistent, then the targeted maximum likelihood

algorithm does not update. That is, adding the ε-covariate results in a convex function in ε that should
only have a single maximum in ε. In this very special case, the TMLE is inconsistent. However, through
the simulation study presented in section 5.9, and an extensive study of over 100 data generating dis-
tributions (results provided in Appendix C.1), we have found that if the initial hazard does not solve
P0( ¯IC(λ

′
, g0, G0)) = 0, i.e., the algorithm has a chance to iterate, then the estimator ψ(λ

′∗) (where λ
′∗

is the updated hazard based on the targeting algorithm) is indeed consistent. This was tested for a
number of mis-specified initial hazards including an intercept-only model. Thus, based on the empirical
results, we conjecture that the double robustness properties of the S-TMLE also hold for the D-TMLE
as well.

Another interesting note is that the estimates for S1(t0) and S0(t0) based on λ
′∗ are not necessarily (and

are typically not) consistent. Thus, the following can, and often does occur:
∑

t0
log

(
log(S1(t0)(λ

′∗))
log(S0(t0)(λ′∗))

)
=

∑
t0

log
(

log(S1(t0)(λ0))
log(S0(t0)(λ0))

)
, but S1(t0)(λ

′∗) 6= S1(t0)(λ0) and S0(t0)(λ
′∗) 6= S0(t0)(λ0). Thus, the overall

logrank parameter is consistently estimated, however its components (i.e., S1(t0) and S0(t0)) are not.

5.6.2 Inference for D-TMLE

The theorem provided in Appendix C.2 can be used to derive the influence curve when λ̂∗ converges to
some mis-specified λ∗, solving P0

¯IC(λ∗, g0, G0) = 0 and satisfying ψ(λ∗) = ψ0. When this is the case,
from the preamble to the theorem, we can see that a contribution to the influence curve comes from
P0D

F (λ̂∗), where DF is the is the efficient influence curve for the full data, i.e., if there is no censoring.
Thus, there is a contribution to the influence curve in this situation that would not be accounted for in
(5.16). For correct inference in this situation, one can apply this theorem to derive the formal influence
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curve and use this for inference.

Since deriving formal influence curve is not trivial in this case in which λ∗ does not correctly specify all
unknowns in the full data efficient influence curve, we can consider two straightforward alternatives.
We first note that our empirical results suggest that the D-TMLE is more efficient than the S-TMLE. If
indeed this property holds in general, then as the first alternative, we can use the influence curve of the
S-TMLE to obtain a conservative estimate of the variance of the D-TMLE. The results then apply as
in section 5.5.3. A second alternative is the bootstrap procedure, although we note that this procedure
can be computationally intensive, particularly when K and n are large. The confidence intervals and
t-statistics can be constructed as in section 5.5.3.

5.7 Weight function

The parameter provided in (5.4) is really a whole class of logrank parameters, indexed by a choice of
weight function. Each can be used to provide a valid test for testing that the treatment effect is 0, i.e.,
ψ = 0. Therefore, it is of interest to choose a weight function that is most likely to have more power
at the alternative. A perfectly reasonable choice of weight function is one that equally weights each
of t0-specific log ratios. A weight function that down weights the time points t0 ∈ 1, ..., K in the tail
in which there is heavy censoring, may improve the power over the unit weight function. One such

weight function is one that takes into account the variance of log
(

log(S1(t0))
log(S0(t0))

)
, that is w(t0) = 1

var(ICt0 )
,

where ICt0 is the efficient influence curve of log
(

log(S1(t0))
log(S0(t0))

)
. This weight function puts more emphasis

on those points t0 ∈ 1, ..., K for which there is less censoring, and thus more information, providing a
more stable estimate of the parameter and the variance. In this paper, we apply only unit weights.

5.8 Initial hazard estimation

To avoid the potential for selection of covariates to obtain favorable inference, it is imperative to use
an a priori specified algorithm for the selection of the initial hazard that is specified in an analysis
protocol. Since the hazard can be fit with a logistic regression model, the initial hazard can be estimated
with any model selection algorithm used to estimate logistic regression models with repeated measures.
One such approach is the deletion/subtitution/addition (D/S/A) algorithm [56]. In this algorithm,
the parameter of interest (in this case the conditional hazard for survival) is defined in terms of a
loss function. Candidate estimators are then generated using deletion/substitution/addition moves
that minimize, over subsets of variables (e.g., polynomial basis functions), the empirical risk of subset-
specific estimators of the parameter of interest. Among these candidates, the estimator is selected using
cross-validation. For purposes of this algorithm, the parameter of interest is the conditional hazard of
survival, and we define it as,

λ0(t |, A, W ) = arg minλ E0L(λ),

where the actual repeated measures loss function is given by,

L(λ) =
∑

t

w(t, A, W )
[
I(T̃ = t, ∆ = 1)− I(T̃ ≥ t)λ(t | A,W )

]2

,

where w(t, A, W ) is an arbitrary weight function. Alternatively, we can use the log-likelihood loss
function for λ(t | A,W ), and apply the D/S/A algorithm as a standard logistic regression model
selection with repeated measures for each subject, where candidate estimators are generated also based
on the log-likelihood loss function.
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An even more optimal algorithm for estimation of the initial conditional hazard for survival is the
super-learner algorithm which begins by selecting a set of candidate prediction algorithms (“learners”)
which ideally cover different basis functions [69]. For example, one such learner could be the D/S/A
algorithm. The super-learner algorithm then selects α that minimizes,

EBnP 1
n,Bn

L(
∑

j

α(j)λ̂j(P
0
n,Bn

)),

where Bn ∈ {0, 1} denotes a random binary vector whose realizations define a split of the learning
sample into a training sample {i : Bn(i) = 0} and validation sample {i : Bn(i) = 1}, and P 1

n,Bn
and

P 0
n,Bn

, the empirical probability distributions of the validation and training sample, respectively. This
minimization problem can be solved by formulating it as a least squares regression problem. Thus, the
algorithm finds optimal weighted combinations of the candidate estimators with respect to the squared
error (L2) loss function, with weights defined by α. We note that candidate estimators can be based
on the log-likelihood loss function.

In addition to the hazard for survival, the hazard for censoring must also be estimated. One of the
algorithms discussed above can also be applied to estimate the censoring mechanism. In particular, the
super-learner algorithm can be applied to obtain an estimate for the hazard for censoring in the same
manner as for the hazard for survival. If censoring is uninformative, the one can use Kaplan-Meier to
estimate the censoring mechanism.

5.9 Simulation studies

Data were simulated to mimic an RCT in which the goal is to determine the effectiveness of a new
drug in comparison to the current standard of care on “survival” as measured by a occurrence of an
event (e.g., particular marker falling below a given level) by 9 months into treatment. The probability
of receiving the new treatment is 0.5. Two covariates were negatively correlated with survival time,
for example, these covariates might represent age in years (multiplied by 0.1) and weight gain in the
year prior to baseline. Specifically, the 2500 replicates of sample size 500 were generated based on the
following data generating distribution where time is discrete and takes values tk ∈ {1, ..., 9}:

• Pr(A = 1) = Pr(A = 0) = 0.5

• W1 ∼ U(2, 6)

• W2 ∼ N(10, 10)

• λ(t|A,W ) = I(t0<9)I(Y (t0−1)=0)

1+exp(−(−8−0.75A+0.3W 2
1 +0.25W2))

+ I(t0 = 9)

where λ(t|A,W ) is the hazard for survival and Y (t0) is the indicator that the event has occurred
at or before time t0. The linear correlations between {W1, W2} and failure time were approximately
{−0.62,−0.52}. Three different types of censoring were simulated, no censoring, MCAR and MAR.
The MCAR and MAR censoring mechanisms were set such that approximately 27% and 20% of the
observations were censored respectively. The censoring was generated to ensure that Ḡ(t|A,W ) > 0
(see the discussion section for details of this assumption). If censoring and failure time were tied, the
subject was considered uncensored. Under MCAR, the hazard for censoring was λC(t) = 0.15. Under
MAR censoring, the hazard for censoring depends on A and W1 where the treated subjects (A = 1)
have a much higher hazard for censoring for high levels of W1 than the untreated subjects, whereas the
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untreated subjects have a much higher hazard for censoring than the treated subjects for low levels of
W1. The MAR censoring mechanism is as follows: For t0 ∈ 2, ..., 9

λC(t | A,W1) =





0.25 if W1 > 4.5 and A = 1
0.2 if 4.5 ≤ W1 > 3.5 and A = 1

0.05 if 3.5 ≤ W1 > 2.5 and A = 1
0 if W1 > 3.5 and A = 0

0.25 if 3.5 ≤ W1 > 2.5 and A = 0
0.05 if W1 ≤ 2.5

For t0 = 1, λC(t | A,W1) = 0.

The unadjusted estimator was applied as defined in section 5.3. The two targeted maximum likelihood
methods provided in sections 5.5 and 5.6 were applied using three different initial hazard fits. The
first initial hazard was correctly specified. The second initial hazard was mis-specified by including
only a main term for A and W1. The third initial hazard was mis-specified by including only a main
term for A and W2. In the MCAR censoring setting, the censoring mechanism was correctly estimated
using Kaplan-Meier. In the MAR censoring setting, the censoring mechanism was correctly specified.
Inference for the D-TMLE was based on the variance of the S-TMLE.

The estimators were compared using a relative efficiency (RE) measure based on the mean squared
error (MSE), computed as the MSE of the unadjusted estimates divided by the MSE of the targeted
maximum likelihood estimates. Thus a value greater than one indicates a gain in efficiency of the
covariate adjusted TMLE over the unadjusted estimator.

In addition to these three simulation scenarios, to explore the relationship between RE and the cor-
relation between the covariate and failure time, we generated data with a hazard that is based on A
and a single covariate W . The data were simulated such that the correlation between W and failure
time ranged from -0.1 through -0.8 while the effect of A on survival remained constant. The data were
simulated with these increasing correlations between W and T with both weak effect and strong effects
of treatment.

Lastly, in section 5.9.3, we provide a simulation study to demonstrate the importance of the use of
data-adaptive algorithms in the estimation of the initial hazard with respect to maximal gains in power.

5.9.1 Simulation results and discussion for various censoring scenarios

In the no censoring and MCAR censoring scenarios, the bias should be approximately zero. In this
strong covariate setting, exploiting this covariate by applying the TMLE should provide a gain precision
due to a reduction in the residuals. In the informative censoring setting (MAR), in addition to the
expected gain in efficiency we expect a reduction in bias of the TMLE with the correctly specified treat-
ment mechanism over the unadjusted estimator. The informative censoring is accounted for through
the covariate h that is inverse weighted by the subjects’ conditional probability of being observed at
time t given their observed history.

Tables 5.1, 5.2 and 5.3 provide the bias, relative MSE and power based for the unadjusted and two
targeted maximum likelihood approaches for the no censoring, MCAR censoring and MAR censoring
settings respectively. The results show that indeed the expected gain in efficiency is achieved in the
no censoring and MCAR censoring scenarios. When the initial hazard was correctly specified, the
gain in power for the TMLE was as high as 0.57 in the no censoring scenario over the unadjusted
estimator (Table 5.1). Although the gains are more modest when the initial hazard is mis-specified,
the gain in power was as high as 0.22 for the TMLE over the unadjusted estimator. Under the MCAR
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censoring scenario, the gains under mis-specification were somewhat smaller, with an increases in power
between 0.06 and 0.51 from mis-specified to correctly specified initial hazards (Table 5.2). These results
demonstrate that when the initial hazard fit can be closely approximated, the potential reduction in
standard error and thus increase in power is substantial.

Under the MAR setting, the unadjusted estimate is severely biased (≈ 21%) whereas both the TMLEs
remain consistent. In such a setting, one must account for the informative censoring as the results from
the unadjusted method are completely unreliable. This is a strong advantage of this methodology as it
accounts for this bias-inducing censoring which is often ignored or not correctly handled in RCT [72].

We also note that for all censoring scenarios, the REs are all greater for the D-TMLE. However, the
actual power is slightly lower than the S-TMLE. This is due to the fact at this small sample size,
there happens to be a tiny amount of negative finite sample bias for the D-TMLE (average of the 2500
point estimates is slightly smaller in absolute value than the truth), whereas the S-TMLE is slightly
positively biased. Thus, even though the D-TMLE is more efficient than the S-TMLE, the absolute
values of the point estimates are slightly smaller causing the t-statistics to be smaller as well. Thus,
the power is lower as well. For larger sample sizes, as the finite sample is eliminated, the power for the
D-TMLE will be at least as large as the power for the S-TMLE. Also, as expected, the inference was
slightly conservative as compared to the S-TMLE, although one cannot observe this from the presented
results that are rounded to 10−2. The bootstrap procedure would provide less conservative inference.

Table 5.1: No censoring: power and efficiency comparison. This table compares the two targeted
maximum likelihood approaches to the unadjusted logrank under the no censoring setting. Correctly
specified initial λ(t | A,W ) (COR), mis-specified initial λ(t | A,W ) includes only a main term for
treatment and W1 (MIS1), and mis-specified initial λ(t | A,W ) includes only a main term for treatment
and W2 (MIS2).

Method % Bias Power 95% Coverage RE
Unadjusted -2 0.39 0.96 1.00
S-TMLE COR 0 0.96 0.94 3.99
D-TMLE COR 0 0.96 0.94 4.00
S-TMLE MIS1 2 0.61 0.95 1.50
D-TMLE MIS1 -1 0.60 0.95 1.59
S-TMLE MIS2 1 0.53 0.94 1.21
D-TMLE MIS2 -2 0.51 0.95 1.29

5.9.2 Relationship between correlation of covariate(s) and failure time
with efficiency gain

As the correlation between covariates and failure time increases we expect to observe increasing gains
in efficiency. In this simulation study, we include only a single covariate W with no censoring. For
simplicity, we include the results for the S-TMLE only. Figure 5.1 clearly demonstrates that as the
correlation between W and failure time increases, so does the gain in power of the S-TMLE over the
unadjusted. The gain in power for the strong treatment effect setting has a nearly linear relationship
with increasing correlation between W and failure. The weak treatment effect setting has moderate
gains until the covariate effect is very strong, when the corresponding gain in power of the S-TMLE
is very high. These results reflect similar findings in RCT with fixed-end point studies where relations
between R2 and efficiency gain have been demonstrated [36, 43, 59].
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Table 5.2: MCAR censoring: power and efficiency comparison. This table compares the two targeted
maximum likelihood approaches to the unadjusted logrank, under MCAR censoring. Correctly specified
initial λ(t | A, W ) (COR), mis-specified initial λ(t | A,W ) includes only a main term for treatment
and W1 (MIS1), and mis-specified initial λ(t | A,W ) includes only a main term for treatment and W2

(MIS2).

Method % Bias Power 95% Coverage RE
Unadjusted 1 0.43 0.94 1.00
S-TMLE COR 1 0.94 0.94 3.84
D-TMLE COR 2 0.95 0.95 4.12
S-TMLE MIS1 2 0.58 0.95 1.46
D-TMLE MIS1 0 0.56 0.95 1.60
S-TMLE MIS2 1 0.52 0.95 1.31
D-TMLE MIS2 -2 0.49 0.95 1.40

Table 5.3: MAR censoring: power and efficiency comparison. This table compares the two targeted
maximum likelihood approaches to the unadjusted logrank, under MAR censoring. Correctly specified
initial λ(t | A, W ) (COR), mis-specified initial λ(t | A,W ) includes only a main term for treatment
and W1 (MIS1), and mis-specified initial λ(t | A,W ) includes only a main term for treatment and W2

(MIS2).

Method % Bias Power 95% Coverage RE
Unadjusted 21 0.55 0.88 1.00
S-TMLE COR 2 0.94 0.95 3.89
D-TMLE COR 2 0.94 0.95 4.58
S-TMLE MIS1 1 0.57 0.95 1.50
D-TMLE MIS1 0 0.55 0.96 1.83
S-TMLE MIS2 1 0.51 0.94 1.25
D-TMLE MIS2 -2 0.48 0.95 1.53
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Figure 5.1: Power by increasing correlation between covariate and survival time. This plots show the
relationship between the correlation between covariate and survival time (ρWT ) and the gains in power
between the unadjusted and S-TMLE for both strong and weak treatment (tx) effects on survival.
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5.9.3 Importance of the use of data-adaptive algorithms for initial hazard
estimation

In this section, we provide a simulation example to demonstrate the power that one can obtain by using
an aggressive algorithm for estimation of the initial hazard, in comparison to a simpler main term only
model selection algorithm. These methods are compared to the standard unadjusted approach. This
section is not meant to examine the super-learner algorithm in detail, but rather to demonstrate that its
use with targeted maximum likelihood estimation can result in significant gains in power over targeted
maximum likelihood estimation with less aggressive algorithms. For details on the algorithm as well as
some of the candidate learners, we refer the reader to the original paper [69].

We simulated 500 replicates of sample size 500 from the following data generating distribution where
time is discrete and takes values t0 ∈ {1, ..., 8}:

• Pr(A = 1) = Pr(A = 0) = 0.5

• W1 ∼ U(2, 5)

• W2 ∼ N(−2, 2)

• Pr(W3 = 1) = 0.3 = 1− Pr(W3 = 0)

• W4 ∼ N(1, 1)

• W5 ∼ U(−2, 4)

• λ(t|A,W ) = I(t0<8)I(Y (t0−1)=0)
1+exp(−(−3−0.5A+0.2W1W2+0.2W2W4−0.4W4W5+0.5W5W2))

+ I(t0 = 8)

The data were generated with no censoring.

In the first method, the initial hazard was estimated using the super-learner algorithm (see section 5.8)
which included as candidate learners:

• Simple linear regression with all 5 covariates as main terms.

• Lasso logistic regression [58].

• Random forest [9].

• Generalized additive models [21].

• K-nearest neighbor classification [45].

In the second method, the D/S/A algorithm was applied, allowing only main terms (i.e., no interactions
or terms with powers greater than 1 were considered). The targeted maximum likelihood method was
then applied using these 2 different initial hazard estimates. For brevity, we include only the results
for the S-TMLE. Lastly, for comparison, the unadjusted method was applied.

The percent bias, power, and RE results are provided in Table 5.4. The results demonstrate that
both methods of adjustment result in a gain in power over the unadjusted method. The power for
the S-TMLE with super-learner approach is nearly double that of the unadjusted method, and is 30%
higher than the S-TMLE with the D/S/A using main terms only. Thus, a significant loss in power
would result if an aggressive algorithm for the initial hazard estimation is not utilized. It is of note
that a 50% gain in power over the unadjusted was achieved using S-TMLE with the simple main term
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only approach. It is clear from these results that the targeted maximum likelihood method of covariate
adjustment provides gains in efficiency, even with suboptimal methods for initial hazard estimation.
However, for even larger gains in efficiency and thus power, more aggressive algorithms such as the
super-learner should be used in combination with the targeted maximum likelihood. We note that the
method for selection of the initial hazard should be specified in the analysis protocol.

Table 5.4: Power and initial hazard estimation. This table provides the S-TMLE using the main term
only D/S/A algorithm for the initial hazard estimation (S-TMLEMT ), and S-TMLE using the super-
learner algorithm for the initial hazard estimation (S-TMLESL).

% Bias Power RE
UNADJUSTED −2 0.25 1.00
S-TMLEMT 1 0.37 1.39
S-TMLESL 2 0.48 1.54

5.10 Discussion

The simulation studies provided in this paper clearly demonstrate that significant gains in efficiency
and thus power can be achieved over the unadjusted ubiquitous logrank method through covariate
adjustment using the targeted maximum likelihood approach. Both the targeted maximum likelihood
methods for covariate adjustment presented in this paper do not require additional assumptions beyond
those required for the logrank test. With the S-TMLE, we were able to show the double robustness
consistency properties based on estimating function methodology. With the D-TMLE, the estimating
function methodology could not be applied and therefore we provided extensive empirical evidence that
these properties also held for this estimator.

We note that the methods presented in this paper differ from adjusting through Cox-proportional haz-
ards models as was done in Hernández et al. [23], which requires additional assumptions about the
proportionality of hazards. Furthermore, the method presented in this paper provides a method for
estimation of the marginal or population level effect of treatment, rather than a conditional effect from
a Cox or covariate-adjusted logistic hazard model. We note that the method of targeted maximum like-
lihood estimation can also be applied to the estimation of conditional or subgroup effects of treatment,
however, we focused on marginal effects only in this paper.

The simulation study results also demonstrate the importance of the estimation of the initial hazard in
optimizing gains in power. The ideal approach includes two steps, where in the first the initial hazard
is estimated based on an aggressive data-adaptive approach such as the super-learner algorithm, and in
the second the targeting maximum likelihood step is applied as a bias-reduction step for the parameter
of interest. These two steps combined provide consistent estimates of the treatment effect with large
gains in power over the procedure that ignores covariates.

It is also important to note that the TMLE, like other inverse weighted estimators, relies on the
assumption that each subject has a positive probability of being observed (i.e., not censored) just
before time t. More formally, this assumption is Ḡ(t− | A,W ) > 0, t0 ∈ 1, ..., K. This identifiability
assumption has been addressed as an important assumption for right-censored data [51]. One is alerted
of such violations by observing very small probabilities of remaining uncensored based on the estimated
censoring mechanism, i.e., there are patients with a probability of censoring of almost one given their
observed past. We recommend that one should check that Ḡ(t− | A, W ) > 0.1 in practice. When
violations of this assumption are present, an new advance to the targeted maximum likelihood approach
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presented in this paper, namely collaborative targeted maximum likelihood, can be applied [62]. In
this approach, a sequence of TMLEs are generated with increasing likelihood that correspond with
increasingly nonparametric estimates of the censoring mechanism. The censoring mechanism estimator,
for which the targeted maximum likelihood step results in the most effective bias reduction with respect
to the parameter of interest, is selected using likelihood based cross-validation. Essentially, in this
approach, covariates are only included in the censoring mechanism fit if they improve the targeting of
the parameter of interest while not grossly affecting the MSE.

The methodology presented in this paper can easily be extended to estimation of causal effects in
observational studies, such as post-market safety studies. This includes estimation of the causal pa-
rameters presented in this paper, as well as more complex parameters as defined by marginal structural
models. A further extension, in both RCT and observational studies, is the inclusion of time-dependent
covariates which are often predictive of censoring and/or survival [61, 37]. Future work includes the
application of these methods in observational studies.
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Chapter 6

Conclusions

6.1 Summary

The preceding chapters presented a statistical approach for the robust extraction of covariate infor-
mation in RCTs for gains in efficiency, and thus power, over the standard unadjusted approaches.
The methodology of targeted maximum likelihood was originally proposed in van der Laan and Rubin
[65]. Here we have applied this general statistical approach to the estimation of parameters in the
most common types of RCTs, including those with fixed end point binary outcomes, and those with
right-censored survival outcomes. These applications represent novel contributions to the literature for
analyzing data from RCTs.

Chapter 2 provided the targeted maximum likelihood approach to the estimation of marginal causal
effects of treatment in RCTs. The approach for the estimation of three parameters representing such
effects was provided: the risk difference, relative risk, and odds ratio. It was observed that covariate ad-
justment in RCT using logistic regression models through extraction of the exponentiated coefficient for
treatment represented the conditional treatment effect. The missing step in the estimation of a marginal
causal effect, is that when adjusting for covariates, these covariates must be integrated/averaged over
in order to obtain a marginal effect estimate that is comparable to the unadjusted effect estimate. It
was demonstrated that the TMLE does include this averaging step and is a fully robust and efficient
estimator of the marginal causal effect. An analytical relationship between the relative efficiency of
the targeted maximum likelihood and unadjusted estimators and the R2 was also provided. This rela-
tion showed that when outcome prediction with covariate(s) W through the model Q(W ) outperforms
outcome prediction through the simple intercept model, then a gain in efficiency by adjusting for the
covariates W with the targeted maximum likelihood estimation approach is achieved relative to the
unadjusted estimation approach. Missing data were are shown to be easily addressed by the targeted
maximum likelihood framework.

The simulation studies presented in section 2.7 demonstrated that the TMLE is more efficient than the
unadjusted estimator, with relative efficiencies as high as 13 for the TMLE with the D/S/A algorithm
over the unadjusted estimator. These results suggest that data-adaptive model selection algorithms
should be applied if the algorithm is specified a priori. However, we showed that even adjusting with a
mis-specified regression model results in gain in efficiency and power. Thus, using an a priori specified
model, even if it is mis-specified, can increase the power, and thus reduce the sample size requirements
for the study. In addition, the simulation studies demonstrated the clear relation between increasing
R2 and efficiency gain.

Chapter 3, through application of the methodology presented in Chapter 2 to a sampled RCT dataset
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with a binary outcome, the issue of efficiency gain with baseline covariates in RCT based on the
framework of targeted maximum likelihood estimation was further clarified. The origin of the gains
in efficiency and criteria that can be used to anticipate whether the study design and the covariates
collected can actually lead to increased estimation precision in practice was explored. It was found that
not only is the relation between R2 and efficiency gain important, but also that empirical confounding
can help explain the gain in efficiency that can be achieved by adjusting for covariates. Simulation
studies supported the conjecture that in order to achieve a gain in efficiency through covariate adjust-
ment, some imbalance between the treated and untreated arms in the distribution of a covariate must
be present. The data analysis elucidated these points and demonstrated that with this near real-life
dataset, gains in power are clearly achievable. The 95% confidence interval for the targeted maximum
likelihood estimate of the risk difference was (−0.074,−0.009), which is clearly notably narrower than
the unadjusted estimate’s confidence interval of (−0.073, 0.005), with a relative efficiency of 1.21. Based
on the findings of the data analysis and simulation studies, a complete strategy for analyzing these
type of data was provided that will protect investigators from misuse of these methods for obtaining
favorable inference.

Chapter 4 applied the targeted maximum likelihood methodology to the estimation of treatment specific
survival at a fixed end point in time for right-censored survival outcomes. Particular emphasis was
placed on safety analysis in RCT due to the fact that power is particularly important in such studies
since they are typically powered for efficacy rather than safety. It was demonstrated that the targeted
maximum likelihood method does not require any parametric modeling assumptions under MCAR
censoring and thus is robust to mis-specification of the hazard model. It was shown that informative
censoring can be directly handled by the proposed method, in contrast to the standard unadjusted
Kaplan-Meier estimator which is biased in this censoring setting. Extensions to the methodology for
inclusion of time-dependent covariates and the application to observational data were also provided.

The simulation studies presented in section 4.5 demonstrated the potential gains in efficiency that can
be achieved, with a relative efficiency as high as 1.9, even when the initial hazard was mis-specified.
The relation of the correlation between the covariate(s) and failure time and efficiency gain was also
demonstrated. In the simulation study, as the correlation increased, so did the relative efficiency in
an almost linear pattern. The results also provided evidence refuting an important concern, which is
whether or not one can actually lose in efficiency by applying the covariate adjusted strategy. The
simulation results showed that when no predictive covariates were present, the relative efficiency was
approximately one indicating that investigators are protected from actually losing precision from apply-
ing this method even when the covariates provide little information about failure time. The simulations
also demonstrated the reduction in bias of the TMLE as compared to the Kaplan-Meier estimator in
the informative censoring setting.

Chapter 5 applied the targeted maximum likelihood methodology to provide a covariate adjusted
competitor to the ubiquitous logrank test. Two methods were provided. In the first, the methodology
for estimating treatment specific survival from Chapter 4 was applied to obtain a substitution based
estimator of the logrank parameter. This robust approach requires targeting of each of the time and
treatment specific survival parameters, and thus includes many targeting steps. As an alternative,
in the second approach, the logrank parameter was targeted directly. In contrast to the substitution
estimator, the latter estimator only requires a single targeting step. It was shown through estimating
equation theory that the substitution estimator is doubly robust. Estimating equation theory could
not be applied to the directly targeted estimator. However, empirical evidence was provided to support
the conjecture that these properties also hold for the directly targeted estimator. An important step
in both approaches is the estimation of the initial hazard. A data-adaptive approach for its estimation
was discussed using the super learner methodology [69].

The simulation studies provided in section 5.9 demonstrated that significant gains in efficiency and
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thus power can be achieved over the unadjusted logrank method through covariate adjustment using
targeted maximum likelihood. Relative efficiencies as high as 4 and 1.6 were observed for the targeted
maximum likelihood estimator over the unadjusted estimator with correctly and mis-specified initial
hazards, respectively. With informative censoring, the significant bias (21%) of the unadjusted estima-
tor was eliminated with the TMLE. As with covariate adjustment of the other parameters discussed
in this dissertation, a similar relation between R2 and efficiency gain with the TMLE over the un-
adjusted estimator was demonstrated with the logrank parameter. The simulation study results also
demonstrated the importance of the estimation of the initial hazard in optimizing gains in power. The
gain in power for the TMLE with super-learner was 0.23 as compared 0.12 for the targeted maximum
likelihood estimator with the main-term D/S/A over the unadjusted estimator. These results provide
evidence that the approach for achieving maximum gains in power is a two step procedure, where in
the first, the initial hazard is estimated based on an aggressive data-adaptive approach such as the
super-learner algorithm, and in the second, targeted maximum likelihood is applied as a bias-reduction
step for the parameter of interest.

6.2 Directions for future research

The methods discussed in this dissertation can be extended in a number of useful ways. In many RCT,
time-dependent measurements are collected at each follow-up visit in addition to the many outcome
measurements. Such time-dependent covariates are often predictive of censoring. This dissertation
focused on data structures with baseline covariates only, however, chapter 2 briefly discussed data
structures with time-dependent covariates. Since these latter data structures are not uncommon in
RCT, further investigation through simulation studies into targeted maximum likelihood estimation
with the inclusion of time-dependent covariates would be desirable.

The identifiability assumption, required for the estimators presented in chapters 4 and 5, is that each
subject has a positive probability of being observed at each point in time. When violations of this
assumption are present, an new advance to the targeted maximum likelihood approach presented in
this dissertation, namely collaborative targeted maximum likelihood estimation, can be applied [62].
Essentially, in this latter approach, covariates are only included in the censoring mechanism fit if they
improve the targeting of the parameter of interest while not grossly affecting the MSE. Future work is
needed to examine the application of the collaborative targeted maximum likelihood methodology in
RCT with right-censored survival outcomes.

As post-market studies are becoming a more common tool in assessing and monitoring the overall safety
of drugs. Robust methods for estimating causal effects are required since in such studies unadjusted
methods are no longer consistent due to confounding. The focus is no longer only on efficiency and
power gains, but rather in bias reduction. The targeted maximum likelihood methodology applied in
this dissertation can be extended for the estimation of the causal parameters presented here, as well as
more complex parameters as defined by marginal structural models.

· · ·

In summary, this dissertation presents a novel contribution to the literature for the estimation of causal
effects in RCT by providing methods for the robust extraction of covariate information using targeted
maximum likelihood. The simulation studies presented here suggest that these methods represent useful
additions to the current set of tools available for covariate adjustment.
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Appendix A

Finding the targeted maximum likelihood
covariate and the relation between TMLE,
DR-IPTW and G-computation estimators
of the risk difference

A.1 Decomposition of efficient influence curve

Following the strategy of [65], the efficient influence curve D(p0) can be decomposed as,

D(p0) = D(p0)− E(D(p0)|A,W ) + E(D(p0)|A,W )− E(D(p0)|W ) +

+E(D(p0)|W )− E(D(p0))

Let, D1(p0) = D(p0) − E(D(p0)|A,W ), D2(p0) = E(D(p0)|A,W ) − E(D(p0)|W ) and D3(p0) =
E(D(p0)|W ) − E(D(p0)). Then, D1(p0) is a score for p(Y |A,W ), D2(p0) is a score for g0(A|W ) and
D3(p0) is a score for the marginal probability distribution p(W ) of W . Note that in this RCT setting,
g0(A|W ) = g0(A) = θA

0 (1− θ0)
(1−A).

A.2 Finding covariate for risk difference TMLE based on lo-

gistic regression submodel

The efficient influence curve for the risk difference is given by,

D(p0) =
I(A = 1)

θ0

[Y −Q0(1,W )]

−I(A = 0)

1− θ0

[Y −Q0(0,W )]

+Q0(1,W )−Q0(0,W )−Ψ(p0),

Consider an initial density estimator p̂0 of the density p0 of O identified by a regression fit Q̂0(A, W ),
marginal distribution of A identified by θ̂ = 1

n

∑n
i=1 Ai, the marginal distribution of W being the
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empirical probability distribution of W1, ...,Wn, and A being independent of W . Since Y is binary, we
have the following density,

p̂0(Y |A,W ) = (Q̂0(A,W ))Y (1− Q̂0(A, W ))1−Y

where,

Q̂0(A,W ) =
1

1 + exp−m̂0(A,W )

for some function m̂0. Now, consider the parametric submodel through p̂0 indexed by parameter ε,

p̂0(ε)(Y |A,W ) = (Q̂0(ε)(A,W ))Y (1− Q̂0(ε)(A,W ))1−Y

where Q̂0(ε)(A,W ) is given by the logistic regression model,

Q̂0(ε)(A,W ) =
1

1 + exp−(m̂0(A,W ) + εh(A,W ))

with an extra covariate h(A, W ), which needs to be chosen so that the score of ε at ε = 0 includes
the efficient influence curve component D1(p

0) [65]. The required choice h will be specified below. We
estimate ε with the maximum likelihood estimator ε̂ = arg maxε

∑n
i=1 log Q̂0(ε)(Ai, Wi). The score for

this logistic regression model at ε = 0 is given by,

d

dε1

log p0(ε)(A,W )

∣∣∣∣
ε=0

= h(A,W )(Y − Q̂0(A,W ))

We now set the score equal to the part of the efficient IC for p(Y |A,W ), that is D1, at p̂0 to obtain,

h(A,W )(Y − Q̂0(A,W )) = (Y − Q̂0(A,W ))

(
I(A = 1)

θ̂
− I(A = 0)

(1− θ̂)

)
.

This equality in h(A,W ) is solved by

h(A,W ) =
I(A = 1)

θ̂
− I(A = 0)

(1− θ̂)
.

A.3 Relation between TMLE, DR-IPTW and G-computation

estimators

The efficient influence curve D(p0) can be represented as an estimating function in ψ indexed by Q and
g, D(p0) = D(Q0, g0, Ψ(p0)). In this RCT setting, g0 = θA

0 (1 − θ)1−A. The DR-IPTW estimate is the
solution to the corresponding estimating equation in ψ, 1

n

∑n
i=1 D(Q̂0(Ai,Wi), θ̂, ψ) = 0 and is given

by,

ψ̂DR−IPTW =
1

n

n∑
i=1

I(Ai = 1)

θ̂

[
Yi − Q̂0(1,Wi)

]
− 1

n

n∑
i=1

I(Ai = 0)

1− θ̂

[
Yi − Q̂0(0,Wi)

]

+
1

n

n∑
i=1

Q̂0(1,Wi)− 1

n

n∑
i=1

Q̂0(0,Wi),
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where θ̂ = 1
n

∑n
i=1 Ai. In the logistic regression fit, log

[
Q̂(A,W )

1−Q̂(A,W )

]
= α̂X, where X = (1, A, W ), the

maximum likelihood estimate α̂ solves the score equations given by,

0 =
n∑

i=1

Xij

[
Yi − Q̂(Ai,Wi)

]
,

for j = 1, ..., p. The linear span of scores includes the covariate,

xj =
I(A = 1)

θ̂
− I(A = 0)

1− θ̂
,

when A and an intercept are included in X. Thus, it follows that

0 =
1

n

n∑
i=1

I(Ai = 1)

θ̂

[
Yi − Q̂0(1,Wi)

]
− 1

n

n∑
i=1

I(Ai = 0)

1− θ̂

[
Yi − Q̂0(0,Wi)

]
.

Hence,

ψ̂DR =
1

n

n∑
i=1

[
Q̂(1,Wi)− 1

n

n∑
i=1

Q̂(0,Wi)

]
= ψ̂Gcomp = ψ̂RD−TMLE

Thus in this quite general scenario, we have that the DR-IPTW, the G-computation estimator, and
the TMLE, all reduce to the same estimator.

A.4 Finding covariate for relative risk TMLE based on logis-

tic submodel

We apply the delta method to obtain the efficient influence curve of the log of the relative risk parameter,
i.e. log(µ1

µ0
) = log(µ1)− log(µ0). The efficient influence curve is given by,

D(p0) =
1

µ1

(
I(A = 1)

θ0

(Y −Q0(1,W )) + Q0(1,W )− µ1

)
−

− 1

µ0

(
I(A = 0)

(1− θ0)
(Y −Q0(0,W )) + Q0(0,W )− µ0

)

=
1

µ1

(
I(A = 1)

θ0

(Y −Q0(1,W )) + Q0(1,W )

)
−

− 1

µ0

(
I(A = 0)

(1− θ0)
(Y −Q0(0,W )) + Q0(0,W )

)

In order to find the covariate h(A,W ) that is added to the regression model, we note the following
equality given in [64],

V (Y, A,W ) = (V (1, A,W )− V (0, A, W ))(Y −Q(A, W )), (A.1)

if V is a function with conditional mean 0 given A and W . We apply this equality to D(p0) = V (Y, A,W )
to obtain h(A,W ).
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Let p̂0(ε1) be the logistic regression fit with an extra covariate extension ε1h(A,W ). Based on A.1 we
can immediately observe that the covariate h(A,W ) added to the logistic regression is V (1, A, W ) −
V (0, A,W ) since,

d

dε
log p̂0(ε)(A,W )

∣∣∣∣
ε=0

= h(A,W )(Y − Q̂0(A,W ))

= (V (1, A, W )− V (0, A, W ))(Y − Q̂0(A,W ))

Thus, evaluating D(p̂0) at Y = 1 and Y = 0 gives,

h(A,W ) =
1

µ1

I(A = 1)

θ̂
− 1

µ0

I(A = 0)

(1− θ̂)
.

A.5 Finding covariate for relative risk TMLE based on rela-

tive risk regression submodel

Consider now the parametric submodel p̂0 indexed by parameter ε,

p̂0(ε)(Y |A,W ) = (Q̂0(ε)(A,W ))Y (1− Q̂0(ε)(A,W ))1−Y

where Q̂0(ε)(A,W ) is given by the relative risk regression model,

log(Q̂0)(ε)(A,W ) = m̂0(A,W ) + εh(A, W ).

The score for this model evaluated at ε = 0 is given by,

d

dε
log p̂0(ε)(A,W )

∣∣∣∣
ε=0

=
h(A,W )

1− Q̂0(A,W )
(Y − Q̂0(A,W )),

and it follows that the covariate added to logistic regression model to obtain the TMLE is given by,

h(A, W ) =

(
1

µ1

I(A = 1)

θ̂
− 1

µ0

I(A = 0)

(1− θ̂)

)
(1− Q̂0(A,W )).

A.6 Finding covariate for odds ratio based on logistic regres-

sion submodel

We apply the delta method to obtain the efficient influence curve of the log of this parameter, i.e.
log(µ1/(1−µ1)

µ0/(1−µ0)
) = log( µ1

(1−µ1)
) − log( µ0

(1−µ0)
). We have, d

dµ1
log( µ1

1−µ1
) = 1

µ1
+ 1

1−µ1
and thus the efficient

influence curve is given by,

D(p0) =

(
1

µ1

+
1

1− µ1

)(
I(A = 1)

θ0

(Y −Q0(1,W )) + Q0(1,W )− µ1

)
−

−
(

1

µ0

+
1

1− µ0

)(
I(A = 0)

(1− θ0)
(Y −Q0(0, W )) + Q0(0,W )− µ0

)

Applying equality A.1 to D(p̂0), we obtain,

h(A,W ) =

(
1

µ1

+
1

1− µ1

)
I(A = 1)

θ̂
−

(
1

µ0

+
1

1− µ0

)
I(A = 0)

(1− θ̂)
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A.7 Finding covariate for risk difference with missing data

based on logistic regression submodel

The efficient influence curve is given by,

D(p0) =
I(A = 1)

g0(1, 1|W )
[Y −Q0(1, 1,W )]

− I(A = 0)

(g0(0, 1|W ))
[Y −Q0(0, 1,W )]

+Q0(1, 1,W )−Q0(0, 1, W )−Ψ(p0),

where g0(A = 1, δ|W ) = θ0g(δ|A = 1,W ) and g0(A = 0, δ|W ) = (1 − θ0)g(δ|A = 0,W ). We now
present the analogue to the derivation of the TMLE for ψ0. Consider the parametric submodel through
p̂0 indexed by parameter ε,

p̂0(ε)(Y |A, ∆ = 1,W ) = (Q̂0 [ε)(A, ∆ = 1,W )]Y
[
1− Q̂0(ε)(A, ∆ = 1,W )

]1−Y

where Q̂0(ε)(A, ∆ = 1,W ) is given by the logistic regression model,

Q̂0(ε)(A, ∆ = 1,W ) =
1

1 + exp− [m̂0(A, ∆ = 1,W ) + εh(A, ∆ = 1,W )]
.

At ∆ = 0, the likelihood of P (Y | A, ∆,W ) provides as contribution a factor 1, which can thus be
ignored. The score for this logistic regression model at ε = 0 is given by,

d

dε
log p0(ε)(A, ∆,W )

∣∣∣∣
ε=0

= I(C = 1)h(A, ∆ = 1,W )(Y − Q̂0(A, ∆ = 1,W ))

We now set this score equal to the component of the efficient influence curve which equals a score for
P (Y |A, ∆ = 1,W ), at p̂0, to obtain the equality

h(A, ∆ = 1,W )(Y − Q̂0(A, ∆ = 1,W ))

= (Y − Q̂0(A, ∆ = 1,W ))

(
I(A = 1)

ĝ(1, 1|W )
− I(A = 0)

ĝ(0, 1|W )

)
.

Solving for h(A, ∆ = 1,W ) we obtain,

h(A, ∆ = 1,W ) =
I(A = 1)

ĝ(1, 1|W )
− I(A = 0)

ĝ(0, 1|W )
.
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Appendix B

Double robust consistency properties for
treatment specific survival at a fixed end
point

B.1 TMLE for t0 specific parameter is doubly robust

We now show that,
E0D

∗(S, g0, G0, S0,1(t0)) = 0,

for any S = S(· | A, W ), where D∗(S, g, G, Ψ(S)) is the efficient influence curve of Ψ(S) = S1(t0) at
the data generating distribution identified by S, g, G and the marginal distribution of W .

We have,

D∗(S, g0, G0, S0,1(t0)) =

−∑
t≤t0

I(A=1)

Ḡ0(t−|A=1,W )g0(1|W )

S(t0|A=1,W )
S(t|A=1,W )

(dN(t)− E(dN(t) | N̄(t−), A = 1,W ))

+S(t0 | A = 1,W )− S0,1(t0).

Rewrite this as,

D∗(S, g0, G0, S0,1(t0)) =

−∑
t≤t0

I(C≥t)

Ḡ0(t−|A=1,W )

I(A=1)
g0(1|W )

S(t0|A=1,W )
S(t|A=1,W )

(I(T = t)− I(T ≥ t)λ(t | A = 1,W ))

+S(t0 | A = 1,W )− S0,1(t0).

We now take the conditional expectation given I(T̃ ≥ t), A, W , to obtain

−P0D
∗(S, g0, G0, S0,1(t0)) =

P0

∑
t≤t0

I(C≥t)

Ḡ0(t−|A=1,W )

I(A=1)
g0(1|W )

S(t0|A=1,W )
S(t|A=1,W )

I(T ≥ t)(λ0(t | A = 1,W )− λ(t | A = 1,W ))

+P0S(t0 | A = 1,W )− S0,1(t0)

We now take the conditional expectation, given I(C ≥ t), A,W , to obtain

−P0D
∗(S, g0, G0, S0,1(t0)) =

P0

∑
t≤t0

[ I(C≥t)

Ḡ0(t−|A=1,W )

I(A=1)
g0(1|W )

S(t0|A=1,W )
S(t|A=1,W )

S0(t− | A,W )×
(λ0(t | A = 1,W )− λ(t | A = 1,W ))

]
+P0S(t0 | A = 1,W )− S0,1(t0)
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Define now the term

W ∗(t) ≡ S(t0 | A = 1,W )

S(t | A = 1,W )
S0(t− | A,W )(λ0(t | A = 1, W )− λ(t | A = 1,W )).

If
E(I(C ≥ t, A = 1) | W ∗(t), Ḡ0(t− | A = 1, W )g0(1 | W )) =
Ḡ0(t− | A = 1,W )g0(1 | W ),

then we obtain

−P0D
∗(S, g0, G0, S0,1(t0)) =

P0

∑
t≤t0

S(t0|A=1,W )
S(t|A=1,W )

S0(t− | A,W )(λ0(t | A = 1,W )− λ(t | A = 1,W ))

+P0S(t0 | A = 1,W )− S0,1(t0)

In particular, this identity applies if Ḡ0(t− | A = 1,W ), and g0(1 | W ) are the true conditional
distributions, given the whole W , but the above requirement is weaker by only requiring that the
censoring mechanism G0 and treatment mechanism g0 are conditioning on function of W depending
directly on λ − λ0. In particular, if λ = λ0, then treatment and censoring mechanism do not need to
condition on any covariates at all.

We now take the right-hand side of the latter identity as starting point and prove that it equals zero
for all S. Note that this term has nothing to do with the censoring and treatment mechanism anymore.
Firstly, note that it can be rewritten as:

−P0D
∗(S, g0, G0, ψ0) =

−P0

∑
t≤t0

S(t0 | A = 1,W )
[

S(t−|A=1,W )f0(t|A=1,W )−S0(t−|A=1,W )f(t|A=1,W )
S(t|A=1,W ))S(t−|A=1,W )

]

+P0S(t0 | A = 1,W )− S0,1(t0)

Here we used ψ0 to indicate the true target parameter S0,1(t0). Now we can use the algebraic trick,
ab− cd = (a− c)d + a(b− d) to obtain the expression,

E0D
∗(S, g0, G0, ψ0) =

−E0

∑
t≤t0

S(t0 | A = 1,W )[ (S(t−|A=1,W )−S0(t|A=1,W ))f(t|A=1,W )
S(t|A=1,W ))S(t−|A=1,W )

+S(t−|A=1,W )(f0(t|A=1,W )−f(t|A=1,W ))
S(t|A=1,W ))S(t−|A=1,W )

] + P0S(t0 | A = 1,W )− S0,1(t0)

For the continuous survival case, we note that,

∫

[0,t0]

(
S(t− | A = 1,W )− S0(t− | A = 1,W )

S(t− | A = 1,W )

)

=

∫

[0,t0]

−(S(t− | A = 1,W )− S0(t− | A = 1,W ))f(t− | A = 1,W )

S2(t− | A = 1,W )

+
f(t− | A = 1,W )

S(t− | A = 1,W )
− f0(t− | A = 1, W )

S(t− | A = 1,W )

=
(S(t0 | A = 1,W )− S0(t0 | A = 1,W ))f(t− | A = 1,W )

S2(t0 | A = 1,W )
+

(f0(t0 | A = 1,W )− f(t0 | A = 1,W ))S(t0 | A = 1,W )

S2(t0 | A = 1,W )
.
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Therefore, we have,

E0(D
∗(S, g0, G0, ψ0 | X))

= −E0
S(t0 | A = 1, W )(S(t− | A = 1,W )− S0(t− | A = 1,W ))

S(t0 | A = 1,W )

+E0S(t0 | A = 1,W )− E0S0,1(t0)

= −E0S(t0 | A = 1,W ) + S0,1(t0) + E0S(t0 | A = 1,W )− S0,1(t0)

= 0.

Now for the discrete survival case, it can be shown with some algebra that,

S(tk | A = 1,W )− S0(tk | A = 1,W )

S(tk | A = 1,W )
−

S(tk−1 | A = 1,W )− S0(tk−1 | A = 1,W )

S(tk−1 | A = 1,W )

=
S(tk | A = 1, W )− S0(tk | A = 1,W )f(t0)

S(tk | A = 1,W )S(tk−1 | A = 1,W )
−

f(tk | A = 1,W )− f0(tk | A = 1,W )S(tk | A = 1,W )

S(tk | A = 1, W )S(tk−1 | A = 1, W )

Furthermore,

∑
t0≤t0

(S(tk | A = 1,W )− S0(tk | A = 1,W ))

S(tk | A = 1,W )
−

∑
t0≤t0

(S(tk−1 | A = 1,W )− S0(tk−1 | A = 1,W ))

S(tk−1 | A = 1, W )

=
S(t0 | A = 1,W )− S0(t0 | A = 1,W ))

S(t0 | A = 1,W
.

Therefore for discrete survival we can write,

E0D
∗(S, g0, G0, ψ0 | X)

= −E0

∑
t≤t0

S(t0 | A = 1,W )

[
S(t0 | A = 1,W )− S0(t0 | A = 1,W )

S(t0 | A = 1, W )

]

+E0S(t0 | A = 1,W )− S0,1(t0)

= 0
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Appendix C

Properties of the D-TMLE

C.1 Empirical validation for D-TMLE consistency

In this appendix, results based on extensive simulations are included with the purpose of providing
empirical validation of the consistency of the D-TMLE when targeting the single minimal parameter
directly. We consider the scenario where λ̂∗ converges to some misspecified λ∗ but the efficient influ-
ence curve estimating equation is solved and parameter is consistently estimated. Remarkably, even
though the efficient influence curve estimating equation is not an estimating equation with a variation
independent parameterization in the parameter of interest (ψ) and the nuisance parameters, we still
obtain consistent estimates of ψ even with this misspecified λ.

Four different types data generating distributions were used. For all 4 data generating mechanisms,
the two covariates distributions were given by W1 ∼ U(2, 6) and W2 ∼ N(1, 1). The data generating
distributions differed by definition of the hazard and treatment mechanism. In the first three settings,
treatment was randomized, P (A = 1) = P (A = 0) = 0.5. In the fourth setting, the treatment
mechanism was given by P (A = 1 | W ) = 1

1+exp(−(−0.75+.3∗W2))
and P (A = 0 | W ) = 1− P (A = 1 | W ).

The settings are summarized as follows:

1. Constant hazard, treatment randomized:

λ(t | A,W ) =
I(t0 < 10)I(Y (t0 − 1) = 0)

1 + exp(−(β0 − β1A + β2W 2
1 + β3W2))

+ I(t0 = 10)

.

2. Hazard changed over time, treatment randomized:

λ(t | A,W ) =
I(t0 < 10)I(Y (t0 − 1) = 0)

1 + exp(−(β0 − β1A + β2W 2
1 + β3W2 + β4 ∗ t0))

+ I(t0 = 10)

.

3. Hazard changed over time (interaction between time and covariate), treatment randomized:

λ(t | A,W ) =
I(t0 < 10)I(Y (t0 − 1) = 0)

1 + exp(−(β0 − β1A + β2W1 ∗ t0 + β3W2))
+ I(t0 = 10)

.

4. Constant hazard, treatment not randomized:

λ(t | A,W ) =
I(t0 < 10)I(Y (t0 − 1) = 0)

1 + exp(−(β0 − β1A + β2W 2
1 + β3W2))

+ I(t0 = 10)

.



99

For each settings, 25 sets of parameter values that define the hazard were selected from the following
distributions respectively,

1. β0 ∼ U(−8,−1), β1 ∼ U(−1, 1), β2 ∼ U(−0.5, 0.5) and β3 ∼ U(−2.5, 2.5).

2. β0 ∼ U(−3, 1), β1 ∼ U(−1, 1), β2 ∼ U(−0.4, 0.4), β3 ∼ U(−2, 2) and β4 ∼ U(−0.2, 0.4).

3. β0 ∼ U(−5,−1), β1 ∼ U(−1, 1), β2 ∼ U(−0.1, 0.2) and β3 ∼ U(0, 2).

4. β0 ∼ U(−8,−1), β1 ∼ U(−1, 1), β2 ∼ U(−0.5, 0.5) and β3 ∼ U(−2.5, 2.5).

For simplicity, there was no censoring. Generating the data in such a way provided different levels of
correlation between the covariates and the outcome, as well as differing effects of treatment on survival,
from negative to positive. A single large dataset of with n = 25000 observations was generated for each
of the 25 different randomly selected parameter values for each of the 4 settings (i.e., 100 simulation
settings). The D-TMLE of the average minimal parameter was applied. The initial hazard was esti-
mated based on, 1) an intercept only model, 2) treatment and covariate W1 only, and 3) treatment and
covariate W2 only. In the non-randomized setting, the treatment mechanism was correctly specified.

The results for the 100 simulations, segmented by simulation setting and within each setting ordered by
ψ0 are provided in Figures C.1, C.2 and C.3, which correspond with different misspecified initial hazard
estimates. Clearly, the D-TMLE, even for the intercept only initial hazard (Figure C.1) is consistently
estimating ψ. There remains some noise due to the fact that the initial hazard is so grossly misspecified,
however, the D-TMLE is still performing well. Once covariates are included, even though the initial
hazard is still misspecified, the D-TMLE is performing even better (Figures C.2 and C.3). These results
provide empirical evidence that indeed although the consistency properties of the D-TMLE cannot be
derived based on the usual estimating function methodology, that the estimator is consistent as long
as the initial estimate is not already a solution to the efficient estimating equation (i.e., the algorithm
has a chance to iterate).
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Figure C.1: D-TMLE results for 100 data generating distributions with misspecified initial hazard
that includes intercept only. Open points are the true values, filled in points are the directly targeted
maximum likelihood estimates.
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Figure C.2: D-TMLE results for 100 data generating distributions with misspecified initial hazard that
incorrectly excludes W2 term. Open points are the true values, filled in points are the directly targeted
maximum likelihood estimates.
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Figure C.3: D-TMLE results for 100 data generating distributions with misspecified initial hazard that
incorrectly excludes W1 term. Open points are the true values, filled in points are the directly targeted
maximum likelihood estimates.
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C.2 Asymptotic linearity of D-TMLE and template for deriva-

tion of influence curve

In this appendix, we establish the asymptotic linearity of the D-TMLE for the parameter of interest
without having to use that the gradient or canonical gradient of the path-wise derivative can be repre-
sented as an estimating function for the parameter of interest. In addition, a template for the formal
derivation of the influence curve is outlined.

Consider CAR-censored data models so that D(P ) = D(λ(P ), G(P )), Ψ(P ) depends on P through
λ(P ) only, and the density factorizes as p = λ(p)G(p). Let p∗n = λ̂∗Ĝ∗. We consider the case that Ĝ∗

is assumed to be consistent for G0. We proceed as follows:

P0D(λ̂∗, Ĝ∗) = P0D(λ̂∗, G0)−
{

P0D(λ̂∗, Ĝ∗)−D(λ̂∗, G0)
}

= P0D(λ̂∗, G0) + P0{D(λ∗0, Ĝ
∗)−D(λ∗0, G0)}

−R1n

where
R1n = P0{D(λ̂∗, Ĝ∗)−D(λ̂∗, G0)} − P0{D(Q∗

0, G0)−D(Q∗
0, G0)}.

Here R1n is a second order term and therefore it is natural to make it an assumption that R1n =
oP (1/

√
n). Secondly, we define

Φ(Ĝ∗) ≡ P0D(λ∗0, Ĝ
∗),

so that the term P0{D(λ∗0, Ĝ
∗)−D(λ∗0, G0)} equals Φ(Ĝ∗)− Φ(G0). We now assume that Φ(Ĝ∗) is an

efficient estimator of the parameter Φ(G0) in model M(G) = {pλ,G = λG : G ∈ G}, where we denote
the tangent space generated by model G for G0 at P0 = λ0G0 with Tg(P0). It remains to consider

P0D(λ̂∗, G0). By the general representation Theorem 1.3 in [64] it follows that

P0D(λ̂∗, G0) = Pλ0D
F (λ̂∗),

where DF (λ) is a gradient in the full data model λ for the parameter λ → Ψ(λ), and Pλ0 denotes
the full data distribution. Again, by path-wise differentiability of Ψ in the full data model, if DF (λ̂∗)
consistently estimates DF (λ0), then one expects Pλ0D

F (λ̂∗) = ψ0 −Ψ(λ̂∗) + oP (1/
√

n). In general, we
note that, if λ̂∗ converges to some possibly misspecified λ∗ for which Ψ(λ∗) = Ψ(λ0) and P0D

F (λ∗) = 0,
we have

Pλ0D
F (λ̂∗) = Pλ∗D

F (λ̂∗) + Pλ0−λ∗{DF (λ̂∗)−DF (λ∗)}.
By pathwise differentiability, and the convergence of λ̂∗ to λ∗ the first order Taylor expansion suggests

Pλ∗D
F (λ̂∗) = ψ0 −Ψ(λ̂∗) + oP (1/

√
n).

A separate study of the other term (which can be represented as Φ(λ̂∗)−Φ(λ∗) for some Φ) will result
in an asymptotic linearity result:

Pλ0−λ∗{DF (λ̂∗)−DF (λ∗)} = (Pn − P0)D1(P0) + oP (1/
√

n).

To stay general, we assume the expansion:

P0D(λ̂∗, G0) = ψ0 −Ψ(λ̂∗) +
1

n

n∑
i=1

D1(P0) + oP (1/
√

n),

for some D1(P0). By Theorem 2.3 in van der Laan and Robins [64] the influence curve of Φ(Ĝ∗) equals
−Π(D(λ∗0, G0) + D1(P0) | Tg(P0)

⊥). This proves the following theorem which provides a template for
establishing asymptotic linearity of the D-TMLE in CAR censored data models.
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Theorem 1 Let O1, . . . , On ∼ P0 be n i.i.d. copies of O = Φ(C, X) for some many to one mapping
Φ of censoring variable C and full data structure X. Assume that the conditional distribution G0 of
C, given X, satisfies CAR so that p0 = λ0G0 w.r.t to appropriate dominating measure, G0 is a density
of G0 and λ0 a function of distribution of full data X. Let M = {pλG = λG : λ ∈ λ,G ∈ G}, where
G is a subset of all CAR distributions. Let Ψ : λ → IRd be the Euclidean target parameter of interest.
Let D(P ) = D(λ(P ), G(P )) be a gradient of Ψ at P ∈ M. Consider an estimator P ∗

n with density
p∗n = λ̂∗Ĝ∗ satisfying PnD(λ̂∗, Ĝ∗) = 0.

• Define
R1n ≡ P0{D(λ̂∗, Ĝ∗)−D(λ̂∗, G0)} − P0{D(λ∗0, G0)−D(λ∗0, G0)}.

Assume R1n = oP (1/
√

n).

• Define
Φ(g∗n) ≡ P0D(λ∗0, Ĝ

∗),

where P0 and λ∗0 are treated as given. Assume that Φ(Ĝ∗) is an efficient estimator of the parameter
Φ(G0) in model M(G) = {pλ,G = λG : λ ∈ λ,G ∈ G}, and let TG(P0) denote the tangent space
generated by model G for G0 at P0 = λ0G0.

• Assume the expansion:

P0D(λ̂∗, G0) = ψ0 −Ψ(λ̂∗) +
1

n

n∑
i=1

D1(P0) + oP (1/
√

n),

for some D1(P0).

• Assume D(λ̂∗, Ĝ∗) falls in a P0-Donsker class. Then, Ψ(P ∗
n)− ψ0 = OP (1/

√
n).

• In addition, assume P0{D(λ̂∗, Ĝ∗) −D(λ∗0, G0)}2 → 0 in probability as n → ∞ for some λ∗0 and
D(λ∗0, G0) in the P0-Donsker class.

Then,
Ψ(P ∗

n)− ψ0 = (Pn − P0)IC(P0) + oP (1/
√

n),

where
IC(P0) ≡ Π

(
D(λ∗0, G0) + D1(P0) | Tg(P0)

⊥)
,

Π is the projection operator in L2
0(P0) endowed with inner product 〈f, g〉P0 = EP0fg onto the orthogonal

complement of Tg(P0). If D1(P0) = 0 and D(λ∗0, G0) = D∗(λ0, G0) where D∗ is the canonical gradient,
then Ψ(P ∗

n) is asymptotically efficient.




