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Abstract 

Previous work in object categorization has shown that people 
tend to optimize their allocation of attention to object 
features, and suggests that attentional optimization may best 
be explained in terms of cost-benefit tradeoffs. In support of 
this idea, we found that implementing a cost for accessing 
information about object features in a category learning task 
facilitates both attentional optimization and category 
acquisition, contrary to the predictions of existing models. 

Keywords: category learning; categorization; access cost; 
attentional learning; optimization. 

 

An important component of proper psychological 

functioning is the adaptive usage of limited resources. In 

many situations, careful conservation of money, food, water, 

memory capacity, and time can be vital to survival. The 

choice of strategy for dealing with a particular issue depends 

largely on the relative availability of the various resources 

required – for instance, installing hardwood floors might be 

best accomplished by doing it oneself if money is tight and 

time is plentiful, while hiring a contractor might be a better 

idea if money is no object but the job must be done quickly. 

An optimal strategy for a given problem, then, balances 

situational priorities (urgency, desire for quality) with 

available resources (time, money). 

This characterization of optimal strategy applies equally 

to psychological domains such as categorization. Fiske and 

Taylor (1984) characterized humans as cognitive misers, 

meaning we will attempt to solve problems using the 

smallest amount of mental resources possible. Indeed, a 

good deal of evidence suggests that in category learning, 

people learn to ignore irrelevant information, thereby 

optimizing their allocation of attention for the task at hand 

(Rehder & Hoffman, 2005; Blair, Watson, & Meier, 2009; 

Blair, Watson, Walshe, & Maj, 2009; Blair, Chen, et al., 

2009). The process of selectively allocating attentional 

resources to task-relevant information is labeled attentional 

optimization. 

One approach to characterizing the optimal usage of 

attentional resources takes the view that the benefits of 

attending to a piece of information must outweigh the costs. 

This view of attentional optimization as a process of cost-

benefit tradeoffs parallels some of the decisions made in the 

domain of medical diagnosis. A doctor attempting to 

diagnose a patient will order only tests which are necessary, 

and even then will strike a balance between efficacy, cost, 

and safety. A doctor who suspects a particular condition 

may be more likely to order a cheap, safe blood test than 

expensive, dangerous exploratory surgery. 

It is not yet clear which resources are conserved as a 

result of attentional optimization. One candidate is working 

memory capacity: unattended object features are unlikely to 

be stored in memory. There is, in fact, evidence that 

working memory shares a close relationship with category 

learning: those with low working memory spans are less 

able to suppress task-irrelevant information, creating a need 

for selective attention to fill the gap (Conway, Kane, & 

Engle, 2003). Another resource that may be conserved is 

time – attending only to what is necessary is likely to result 

in a reduction in the amount of time required to categorize 

something. In either view, attending to a particular feature 

of an object incurs a cost – whether temporal or mnemonic – 

and attentional optimization minimizes the cost incurred for 

a successful categorization.  

Hayhoe and colleagues (Ballard, Hayhoe, & Pelz, 1995; 

Ballard, Hayhoe, Pook, & Rao, 1997; Droll & Hayhoe, 

2007) provided empirical evidence of cost-benefit tradeoffs 

in visual perception. When performing a task along the lines 

of the Blocks World game (an interactive paradigm in which 

subjects must duplicate a target image by positioning a 

group of coloured boxes from a resource pool), participants 

generally gather information from the environment as they 

need it, minimizing the usage of short-term memory. 

However, increasing the predictability of the task 

encourages participants to save time by storing information 

in memory: time, rather than memory capacity, becomes the 

focus of their conservation efforts. Similar results were 

found in a series of studies by Gray and colleagues, many of 

which also employed the Blocks World paradigm (Gray & 

Fu, 2004; Gray, Sims, Fu, & Scholles, 2006; Fu & Gray, 

2006). When the target window was occluded by a 

removable square, or participants were forced to make head 

movements in addition to eye movements in order to direct 

their gaze about the work area, there tended to be a switch to 

a memory-intensive strategy in order to save time and 

energy.  

It appears that saving time is not the only advantage of 

adopting a memory-based strategy in tasks along the lines of 

Blocks World, although the evidence is not unequivocal. 

Gray et al. (2006) found that participants in a memory-

intensive variation of the Blocks World task made fewer 

errors and mastered the task sooner than others performing a 

standard task. While this contradicted earlier results by Gray 

and Fu (2004), the results of Gray et al. (2006) are 

supported by the research of Waldron and colleagues on 

interface design (Waldron, Patrick, Howes, & Duggan, 

2006; Waldron, Patrick, Morgan, & King, 2007; Morgan, 

Patrick, Waldron, King, & Patrick, 2009). As in the Blocks 
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World literature, Waldron and colleagues found that an 

increased information access cost leads to a change in 

information-gathering strategy in a variety of different 

paradigms. Implementing a time delay for accessing 

information on the target encourages the usage of 

memorization, in contrast to the default strategy of scanning 

back and forth (Waldron et al., 2006). This strategic shift 

was found to be beneficial to memory for particular system 

states, general understanding of the system, competence in 

the absence of available information (Waldron et al., 2007), 

and the ability to fluently resume a task after interruption 

(Patrick et al., 2009), though it has its costs in the form of 

increased response time (Waldron et al., 2006). 

While the above research suggests that there are some 

benefits (and some penalties) resulting from a shift toward 

memory-based strategies in response to increased 

information access costs, it is not yet clear whether 

increased attentional optimization is one of them. None of 

the studies by Waldron and colleagues involved the 

presence of irrelevant information. This is not surprising, as 

interface design tends to avoid including irrelevant data in a 

display; however, in object categorization it is often vitally 

important to be able to divert one’s attention away from 

unimportant information (e.g. Rehder & Hoffman, 2005). 

In spite of the evidence regarding the importance of cost-

benefit considerations in the allocation of attention, it is 

possible (and, until recently, routine) to develop a coherent 

model of attentional optimization without making any 

mention of costs. Computational models of category 

learning, such as ALCOVE (Kruschke, 1992), simply shift 

attention away from irrelevant information and towards 

relevant information. However, in a disease diagnosis 

paradigm, Matsuka and Corter (2008) found that 

participants appeared  optimize attention in a way consistent 

with a sensitivity to cost-benefit considerations. When 

presented with stimuli with two different features which 

perfectly and redundantly predicted category membership, 

people attended to only one of them. The idea of attentional 

optimization as a cost-benefit tradeoff explains this result 

quite well: the benefit of viewing one feature far outweighs 

the cost of accessing it, while the second feature provides no 

additional information to offset its access cost and is thus 

ignored.  

If attentional optimization is indeed based partially on 

cost-benefit considerations, then the degree to which people 

optimize their attention should depend on the additional cost 

incurred in attending to irrelevant features. A high 

information access cost should provide more motivation to 

avoid the waste of time or resources associated with 

attending to irrelevant information, increasing the rate of 

attentional optimization. In contrast, optimizing one’s 

attention would provide only a minimal benefit in a 

situation in which accessing information is nearly or entirely 

free, and as such may be less of a priority for those who are 

able to master the task. 

All other things being equal, then, a category learning 

task with a high information access cost should result in 

more attentional optimization than a task with a low or 

nonexistent access cost. In addition, implementing a high 

access cost should encourage the use of a memory-based 

strategy, resulting in improved learning. The present 

experiment sought to test these hypotheses using the stimuli 

and category structure from Experiment 2 of Blair, Watson, 

Walshe, and Maj (2009). Since the stimuli involved three 

spatially separate features, we were able to manipulate 

access cost by obscuring the features with overlays and 

implementing a variable time cost to remove them. 

Method 

Participants  

149 undergraduate students from Simon Fraser University 

students participated in exchange for course credit in 

introductory Psychology classes. 

Apparatus  

The computer program used in the present experiment was 

developed using E-Prime 1.1 (Psychology Software Tools), 

and was run on four Apple iMac computers running 

Windows XP. Responses were made using the computer 

mouse. 

Design  

The present experiment consisted of a supervised category 

learning task. Participants were shown computer-generated 

pictures of fictitious microorganisms (see Figure 1) and 

asked to categorize them as members of one of four 

different species. The microorganisms (following Blair, 

Watson, Walshe, and Maj, 2009), varied on three binary 

organelle-like features, each located in a distinct area of the 

cell. One organelle looked like either a muscle or a thin 

tube, another was a mitochondrion-like structure with either 

 

Figure 1: A sample microorganism stimulus with response 

buttons in the corners of the screen. The subject has 

revealed the top right feature by moving the mouse over it, 

while the other two are still occluded by overlays. 
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 Table 1: Sample category structure. 

 

Feature 1 Feature 2 Feature 3 Category 

1 0 Irrelevant A1 

1 1 Irrelevant A2 

0 Irrelevant 0 B1 

0 Irrelevant 1 B2 

 

two or four internal compartments, and the third resembled 

an iris and pupil with either a green or a brownish 

coloration. Each feature occupied its own lobule of the cell, 

evenly distributed around the screen and counterbalanced 

across subjects. 

There  were four possible category labels for each 

stimulus: A1, A2, B1, and B2. One feature was always 

relevant, and determined whether the stimulus was a 

member of an A category or a B category. Of the two 

remaining features, one determined whether an A stimulus 

was A1 or A2, and the other determined whether a B 

stimulus was B1 or B2. Thus, only one of the two was 

relevant on any given trial, and the identity of the first  

feature informed the participant of which of the other 

features would be relevant (see Table 1). Feature relevance 

was counterbalanced across subjects, and category labels 

were assigned randomly according to the structure described 

above. 

Procedure 

Following a brief introduction to the experimental task, 

participants began a series of supervised categorization 

trials. A stimulus was presented, with its three variable 

features covered up by noisy square-like overlays. In order 

to remove an overlay and see the feature underneath, 

participants were required to hold the mouse on top of it for 

a predetermined period of time.  

Participants were randomly assigned to a high-cost or 

low-cost condition. In the no-delay (low-cost) condition, the 

overlays disappeared instantly; in contrast, participants in 

the delay (high-cost) condition had to hold the mouse on top 

of an overlay for a full 3000ms before the feature was 

revealed. During this interval, the overlay was replaced by a 

black box marked “SCANNING…” In either condition, 

upon moving the mouse away from the revealed feature, the 

overlay would instantly reappear. The position of the mouse 

was tracked and recorded over the course of the experiment. 

Thus, at most one feature was available for viewing at one 

time. This allowed for a sensitive and dynamic measure of 

attentional allocation, similar to that of eye-tracking, and 

prevented participants in the delay condition from using the 

additional wait time to inspect other features. 

Immediately after participants responded, they were 

presented with corrective feedback and were able to re-

inspect stimulus features, with the same overlay restrictions 

as before, if they so desired. 

By default the experiment lasted for 200 such 

categorization trials. An early learning criterion was 

implemented such that participants who learned the category  

 

Figure 2: Mean number of trials taken to reach the learning 

criterion by condition. Error bars represent SEM. 

 

structure well enough to provide 25 consecutive correct 

answers immediately proceeded to a 72-trial transfer phase 

where corrective feedback was not provided. Those who 

were unable to reach this criterion point by the 200th trial 

did not proceed to transfer. There was no time restriction on 

the experiment; participants were free to spend as long as 

desired on each trial. While there was some individual 

variation in completion times, the entire experiment took 

approximately 45 minutes to complete. 

Results  

20 participants were excluded due to computer errors or 

random responding, leaving 65 participants in the no-delay 

condition  and   64   in   the  delay  condition.  The  no-delay  

condition produced 45 learners and 20 non-learners, 

compared to 49 learners and 15 non-learners in the delay 

condition. This did not constitute a statistically significant 

difference, χ
2
(1) = .877, p > .30. Among those who were 

able to learn the category structure, however, participants in 

the delay condition reached criterion accuracy significantly 

earlier (M = 57.5 trials) than those in the no-delay condition 

(M = 76.2), t(92) = 2.37, p < .05 (see Figure 2). 

We calculated attentional optimization scores for each 

trial following the formula used in the eye-tracking 

experiments of Blair, Watson, Walshe, and Maj (2009): 

 

𝑋 𝑟𝑒𝑙𝑒𝑣𝑎𝑛𝑡 − 𝑋 𝑖𝑟𝑟𝑒𝑙𝑒𝑣𝑎𝑛𝑡

𝑋 𝑟𝑒𝑙𝑒𝑣𝑎𝑛𝑡 + 𝑋 𝑖𝑟𝑟𝑒𝑙𝑒𝑣 𝑎𝑛𝑡

 

 

This amounts to a comparison of the average length of 

time spent attending to relevant versus irrelevant features, 

where 𝑋 𝑟𝑒𝑙𝑒𝑣𝑎𝑛𝑡  is the total time during which relevant 

features were visible divided by the number of relevant 

features and 𝑋 𝑖𝑟𝑟𝑒𝑙𝑒𝑣𝑎𝑛𝑡  is the total time during which 

irrelevant features were visible divided by the number of 

irrelevant features. Our measure of attentional optimization 

thus ranged from -1 (fixating only irrelevant features) to 0 
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Figure 3: Mean optimization in the first 110 trials by 

condition. Error bars represent SEM. 

 

 (equal time spent  fixating all features) to 1 (fixating only 

relevant features). Over the course of the experiment, 

subjects in the delay condition displayed significantly 

greater optimization (M = 0.623) than those in the no-delay 

condition (M = 0.520), t(92) = 2.193, p < .05. 

Since the delay condition resulted in faster learning and 

thus an earlier end to the experiment, we elected to examine 

optimization between conditions over a set number of trials 

as an alternative comparison between conditions. We 

calculated the mean optimization over the first 110 trials 

(the approximate length of the shortest experimental run) for 

each successful learner. In this trial range, participants in the 

delay condition displayed a mean optimization score of .531 

(SD .281), compared to .355 (SD .245) for the no-delay 

condition. This was a significant difference, t(92) = 3.34, p 

< .01 (see Figure 3). 

As attentional optimization has been known to occur after  

categorization errors cease (Blair, Watson, & Meier, 2009), 

it is possible that the contribution of access cost to 

optimization in the first 110 trials was purely a product of 

the earlier learning criterion in the delay condition. With 

more error-free time to optimize, a greater degree of 

optimization would not be surprising. To examine whether 

access cost had an effect on optimization independent of its 

contribution to early accuracy, we performed a mediation 

analysis using the hierarchical multiple-regression 

techniques described by Baron and Kenny (1986). Having 

already demonstrated an association between access cost 

and criterion point (see Figure 2) and a connection between 

access cost and optimization in the first 110 trials (see 

Figure 3), we performed a hierarchical multiple regression 

analysis predicting early optimization from criterion point in 

the first step, and adding delay condition as a new predictor 

in the second. Criterion point proved to be a significant 

negative predictor of optimization, β = -.777, t(92) = -11.85, 

p < .001, as expected. Condition, when added to the model, 

contributed to optimization even after controlling for 

criterion point, β = .140, t(91) = 2.11, p < .05, indicating a 

partial-mediation relationship. Access cost contributed to 

optimization both indirectly (via earlier learning) and 

directly. 

Finally, we suspected that the time course of optimization 

may have differed between conditions – it is possible that a 

long delay encouraged earlier optimization, but participants 

in the no-delay condition may have caught up later on in the 

experiment. To investigate this possibility, we calculated 

each learner’s mean optimization scores before and after 

their criterion point. A 2 (pre-criterion/post-criterion) x 2 

(delay/no-delay) mixed ANOVA revealed no interactive 

effect of stage and delay on optimization, F(1,92) = .106, p 

> .70, suggesting that attentional learning was uniform over 

the course of the experiment in both conditions.  

Discussion 

The results of the present work indicate that increasing 

the temporal cost of accessing information contributes not 

only to improved category learning, but also to more 

optimal allocation of attention. Learners in the high-cost 

delay condition reached the learning criterion earlier than 

those in the no-delay condition, and displayed greater 

attentional optimization over the course of the experiment. 

These findings support the counterintuitive idea that making 

information access more difficult improves multiple aspects 

of performance, extending earlier findings in disease-

diagnosis (Matsuka & Corter, 2008) and interface design 

(Waldron et al., 2007). Taken together, this body of research 

provides compelling evidence for the validity of the 

conception of attentional optimization as a balancing act 

between costs and benefits. 

In addition to cost-benefit considerations, one potential 

contributor to the improved learning in the presence of a 

high temporal access cost is the fact that such a cost 

encourages a strict sequential progression of attention. In 

recalling the positions of objects in space (Yamamoto & 

Shelton, 2009), as well as in recalling lists of words or 

letters (Frick, 1985; Goolkasian, Foos, & Krusemark, 2008), 

performance is significantly improved when information is 

presented sequentially rather than simultaneously. When 

access cost is low, participants are able to switch their 

attention back and forth as they please; in contrast, a high 

access cost discourages jumping back and forth between 

costly pieces of information and promotes a strategy of 

sequential attention. 

Somewhat unexpectedly, in spite of the earlier criterion 

point among learners in the high-cost condition, there was 

not a concomitant difference in the number of learners. This 

may be an issue of motivation: while the increased access 

cost appears to facilitate learning by encouraging the use of 

memory-based strategies, participants in the delay condition 

may have become frustrated with the inconvenience of 

having to wait for features to become visible and applied 

less effort as a result. This possibility may be a fruitful topic 

for future research. Further investigation in this area may 

also benefit from some variance in the number of trials 

given to reach criterion; in the present study, participants in 
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both conditions were given 200, a number far in excess of 

the mean number of trials to criterion (58 for delay, 76 for 

no-delay).  

The practical implications of the present research for 

training in interface design and related fields are obvious: 

implementing an access cost can in certain circumstances 

facilitate learning. However, caution should be taken, as a 

high temporal access cost can greatly reduce the temporal 

efficiency of a training period. While a subject might learn a 

particular system in fewer trials with a high access cost, the 

cost may make each trial so long that the net effect is 

ultimately more time spent on training. If it holds true that 

the learning advantage that comes with an increased access 

cost is largely the product of a shift toward memory-based 

strategies, there is probably a point beyond which increasing 

access cost confers no additional benefit. In addition, there 

may be more practical ways of encouraging the adoption of 

memorization strategies, such as only presenting 

information for a short period of time (Waldron et al., 2006) 

or implementing a non-temporal cost, such as money, 

tokens, or effort. 

Within the field of category learning, researchers have 

long focused on tasks where all of the relevant information 

is immediately and simultaneously available to categorizers. 

Learning, according to the major models, is in most cases 

exclusively based on the accuracy of the response (e.g. 

ALCOVE; Kruschke, 1992). This is because they were 

designed around a specific event – the categorization trial –  

rather than around the dynamic unfolding of the task 

through time (though see Lamberts, 2002). While this has 

been a helpful simplification, it is becoming increasingly 

untenable in the face of dynamic measures of attention such 

as eye- and mouse-tracking (Rehder & Hoffman, 2005; 

Blair, Watson, Walshe, & Maj, 2009), as well as a number 

of results indicating a level of complexity untouched by the 

current generation of computational models. The time spent 

waiting for stimuli to appear can have implications for 

strategy selection and memory performance (Morgan et al., 

2009), the information participants choose to access 

depends on which information was previously accessed 

during the trials (Blair, Watson, Walshe, & Maj, 2009), and 

the length of time spent viewing feedback impacts learning 

speed (Watson & Blair, 2008). Investigations of missing 

data (White & Koehler, 2004; Wood & Blair, 2010), tasks 

which present new sources of information (Blair & Homa, 

2005), and studies of the speed of perceptual processing of 

features (Lamberts, 2003) are further evidence that the 

amount and order of known information exerts a 

considerable influence on the course of category learning.  

These and other temporal effects on learning and 

performance are accumulating and will eventually force 

researchers to embed extant theoretical work in a dynamic, 

temporal framework in order to account for them.  
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