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THE ALGEBRA OF ASSORTATIVE ENCOUNTERS

AND THE EVOLUTION OF COOPERATION

THEODORE C. BERGSTROM

Aaron and Cherie Raznick Professor of Economics

University of California Santa Barbara, Santa Barbara, CA 93105 USA

This paper explores the way in which assortative matching can maintain cooperative
behavior under evolutionary dynamics. If encounters are random, then in Prisoner’s
Dilemma games, defectors necessarily get higher payoffs than cooperators and thus will

eventually prevail. But if matching is assortative, the cost of cooperating may be repaid
by higher probabilities of playing against a cooperating opponent. This paper shows that
a simple index of assortativity allows a unifying treatment of the evolutionary dynamics
in a wide variety of models of social encounters.

Keywords:

1. Introduction

In Prisoner’s Dilemma, everyone gets a higher payoff from playing defect than from

playing cooperate, but everyone gets a higher payoff from playing against a cooper-

ator than against a defector. If meetings between the two types are “random”, then

defectors will on average get higher payoffs than cooperators. But if matching is

assortative, so that cooperators are more likely to meet cooperators than are defec-

tors, then it may be that the cost of cooperating is repaid by a higher probability

of playing against a cooperating opponent.

This paper explores the quantitative relation between non-random, assortative

matching and the maintenance of cooperative behavior under evolutionary dynam-

ics. We consider a population of individuals who are “hard-wired” to play either

cooperate or defect. They meet other individuals according to some random process

and play their programmed strategy in a game of Prisoner’s Dilemma. The type

that gets the higher expected payoff reproduces more rapidly. We define an index

of assortativity of encounters and develop an “algebra of assortative encounters”.

In one set of applications, we calculate the index of assortativity for games between

relatives with either cultural or genetic inheritance and we show the logical con-

nection between the index of assortativity and Hamilton’s theory of kin selection

(Hamilton, 1964). We also apply the index of assortativity to determine the popu-

lation dynamics when players select their partners, using partially informative cues

about each others’ types.

1
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Table 1. A Prisoner’s Dilemma Game.

Player 2

C D

Player 1 C R,R S,T

D T,S P,P

2. Assortative Encounters in Prisoner’s Dilemma

2.1. The payoff matrix

Consider a large population of players who meet other players according to a

specified encounter rule. When two players meet, they play a game of Prisoner’s

Dilemma.a Each individual is programmed for one of two possible strategies, coop-

erate (C) or defect (D). The payoffs for the game are given in Table 1. This game

is a Prisoner’s Dilemma when the payoffs satisfy the inequalities, T > R > P > S.

2.2. The algebra of encounters

2.2.1. The index of assortativity

Let x denote the proportion of the population that are cooperators (C-strategists)

and 1−x the proportion of defectors (D-strategists). Each member of the population

randomly encounters one other member of the population. The probability that an

individual encounters a cooperator depends, in general, both on that individual’s

own type and on the proportion of cooperators in the population. Let p(x) be

the conditional probability that one encounters a cooperator, given that one is

a cooperator and let q(x) be the conditional probability that one encounters a

cooperator, given that one is a defector.

The fraction of all encounters between two individuals in which a cooperator

meets a defector is x(1 − p(x)). The fraction of all encounters in which a defector

meets a cooperator is (1−x)q(x). Since these are just two different ways of counting

the same encounters, we have the following “parity equation”

x(1 − p(x)) = (1 − x)q(x) . (2.1)

Let us define the index of asssortativity a(x) to be the difference between the

probability that a C-strategist meets a C-strategist and the probability that a D-

strategist meets a C-strategist. Thus we have

a(x) = p(x) − q(x) . (2.2)

Since (1 − q(x)) − (1 − p(x)) = p(x) − q(x) = a(x), it follows that a(x) is also

the difference between the probability that a D-strategist meets a D-strategist and

aThe algebra found here applies to any symmetric two-person, two-strategy game, including
chicken, battle of the sexes, or the stag-hunt game. For concreteness, our discussion will focus
on Prisoner’s Dilemma games.
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the probability that a C-strategist meets a D-strategist. Thus for either type, a(x)

is the difference between the probability that one meets one’s own type and the

probability that a member of the other type meets one’s own type.

Rearranging terms in Eq. (2.1), and substituting from the definition in (2.2),

we find that

q(x) = x[1 − (p(x) − q(x))] (2.3)

= x(1 − a(x)) . (2.4)

From Eqs. (2.2) and (2.4), it follows that

p(x) = a(x) + x(1 − a(x)) . (2.5)

2.2.2. A historical digression on measuring assortativity

Sewall Wright (1921) defined the assortativeness of mating with respect to a given

trait as the coefficient of correlation m between the two mates with respect to their

possession of the trait. Cavalli-Sforza and Feldman (1981) interpret this correlation

as follows: “The population is conceived of as containing a fraction (1 − m) that

mates at random and a complementary fraction m which mates assortatively”. With

this interpretation, if the population frequency of a type is x, then the probability

that an individual of that type mates an individual of its own type is p(x) =

m + x(1 − m). The parameter m can be shown to be the coefficient of correlation

between indicator random variables for possession of the trait for pairs of mates.b

From Eq. (2.5), we see that in the special case where a(x) = m is a constant,

Wright’s coefficient of correlation and Cavalli-Sforza’s and Feldman’s “fraction of

the population that mates assortatively” are formally equivalent to the index of

assortativity defined in this paper.

2.3. Evolutionary dynamics and comparing payoffs

We assume that at any time, the growth rate of the proportion of cooperators in

the population is positive, zero, or negative, depending on whether the expected

payoff of cooperators is higher than, equal to, or lower than the expected payoff of

defectors. Weibull (1995) calls this the assumption of payoff monotonicity.c To study

payoff monotone dynamics, we simply compare the expected payoffs of cooperators

and defectors.

bLet Ii be a random variable that takes on value 1 if individual i is of the given type and 0
otherwise. For two partners, 1 and 2, the correlation coefficient between I1 and I2 is defined to be
(E(I1I2) − E(I1)E(I2))/(σ1σ2) where σi is the standard deviation of Ii. Now E(I1I2) = xp(x),
and for i = 1, 2, E(Ii) = x and σi =

√

x(1 − x). Making the appropriate substitutions, we find
that the correlation coefficient is (xp(x) − x2)/x(1 − x) = m.
cA much-studied special case of payoff monotone dynamics is replicator dynamics in which the
growth rate of the population share using a strategy is proportional to the difference between the
average payoff to that strategy and the average payoff in the entire population. (Weibull, 1995).
The results found in this paper do not require the special structure of replicator dynamics.
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With probability p(x) a cooperator meets another cooperator and gets payoff

R and with probability 1 − p(x) a cooperator meets a defector and gets payoff S.

Therefore the expected payoff to a cooperator is:

p(x)R + (1 − p(x))S = S + p(x)(R − S)

= S + a(x)(R − S) + x(1 − a(x))(R − S) , (2.6)

where the last expression is obtained by substituting for p(x) from Eq. (2.5). Similar

reasoning shows that the expected payoff to a defector is

q(x)T + (1 − q(x))P = P + x(1 − a(x))(T − P ) . (2.7)

Let us define δ(x) to be the difference between the expected payoff of a coop-

erator and that of a defector when the proportion of cooperators in the population

is x. Subtracting Eq. (2.7) from Eq. (2.6), we have

δ(x) = S − P + a(x)(R − S) + x(1 − a(x))[(R + P ) − (S + T )] . (2.8)

The function δ(·) plays the starring role in our study of payoff monotonic dy-

namics, since for all x between 0 and 1 the sign of the growth rate of the proportion

of cooperators is the same as the sign of δ(x).

2.4. Prisoner’s Dilemma games with additive payoffs

We can define a special class of Prisoner’s Dilemma games in which the benefits of

being helped and the costs of helping the other player are “additive”. The restrictive

assumption in the additive case is that the cost to one player of helping the other

is independent of whether the help is reciprocated, and the benefit that a player

gets from being helped is independent of whether he is also helping. In this class

of games, each player has the option of helping the other player (the C-strategy)

or not helping (the D-strategy). A player who helps bears a cost of c and confers

a benefit of b on the other player, where 0 < c < b. If each player helps the other,

then both get a benefit of b and both bear costs of c. Thus the payoff to mutual

cooperation is R = b − c. If one player helps and the other does not, the player

who helps bears a cost of c and gets no benefit and the player who doesn’t help

gets a benefit of b and bears no cost. Thus S = −c and T = b. Finally if neither

helps, both get payoffs P = 0. These payoffs satisfy the inequalities necessary for

the game to be a Prisoner’s Dilemma, since S = −c < P = 0 < R = b− c < T = b.

For additive Prisoner’s Dilemma games, we have R + P = S + T = b − c and

therefore

(R + P ) − (S + T ) = 0 . (2.9)

Therefore for additive Prisoner’s Dilemma games, Eq. (2.8) for the difference

between the expected payoffs of cooperators and defectors simplifies to

δ(x) = S − P + a(x)(R − S) = a(x)b − c . (2.10)
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According to Eq. (2.10), with additive payoffs, cooperators will do better or

worse than defectors depending on whether the product of the index of assortativity

times the benefits conferred by help is greater than or less than the cost of helping.

2.5. Prisoner’s Dilemma games with non-additive payoffs

It is important to understand that not all Prisoner’s Dilemma games have additive

payoffs and that the evolutionary dynamics can be qualitatively different in the

non-additive cases. We will show that every Prisoner’s Dilemma game is equivalent

to a game in which the two players each contribute costly effort to produce a

joint output that is shared equally between them. With this parameterization, the

class of additive Prisoner’s Dilemma games corresponds to those in which the joint

“production function” exhibits constant returns to scale.

2.5.1. Working and shirking in a game of shared output

Let us describe the family of PD games with shared output as follows. Each player, i,

can contribute either work, in which case si = 1 or shirk, in which case, si = 0. Total

output is divided equally between the players, regardless of their work effort. We

will assume that the amount of output produced is given by a production function

Φ that takes the following form:

Φ(s1, s2) = 2b(s1 + s2) + 2ks1s2 , (2.11)

where k is a parameter such that −∞ < k < c. The cost of effort for each i is

assumed to be (c + b)si. With this production function, total output when both

players work will be greater than, equal to, or less than twice total output when

one works and one shirks, depending on whether k > 0, k = 0, or k < 0. These

three cases correspond respectively to production processes that are superadditive

(increasing returns to scale), additive, (constant returns to scale), and subadditive

(decreasing returns to scale).

The payoff to player 1 for a game of shared outputs is given by the function

Π(s1, s2) =
1

2
Φ(s1, s2) − (c + b)s1

= b(s1 + s2) + ks1s2 − (c + b)s1 . (2.12)

For this game we see that T = Π(0, 1) = b, R = Π(1, 1) = 2b+k−(c+b) = b+k−c,

P = Π(0, 0) = 0, and S = Π(1, 0) = b − (b + c) = −c. For all k < c, these

payoffs satisfy the inequalities S < P < R < T . A simple calculation shows that

(R+P )− (S +T ) = k. The game has additive payoffs only where k = 0 and in this

case, R + P = S + T .

To see that every Prisoner’s Dilemma game can be described by this parameteri-

zation of a PD game with shared output, notice that without changing the dynamics,



July 19, 2003 10:54 WSPC/151-IGTR 00102

6 T. C. Bergstrom

we can normalize the game so that P = 0.d For any Prisoner’s Dilemma game with

S < P = 0 < R < T , we can show that there is exactly one set of parameters

for a PD game with shared output for which these are the payoffs. In particular, a

Prisoner’s Dilemma game for which the parameters are S, P = 0, R, and T will

be equivalent to a PD game with shared output if and only if the parameters b,

k, and c of the production function and cost function satisfy b = T , c = −S, and

k = R − (S + T ).

2.6. Dynamics with a constant index of assortativity

As we will show, there are interesting applications in which the index of assortati-

vity, a(x) = a is constant with respect to x. When a(x) is constant, the dynamics

are especially simple, since the expression for δ(x) Eq. (2.8) is seen to be linear in x.

The dynamics are further simplified if payoffs are additive and a(x) is constant.

Then, δ(x) = ab − c is constant for all x. When this is the case, equilibrium must

be unique and stable. If ab > c, cooperators always have higher expected payoffs

than defectors and the only equilibrium is x = 1. If ab < c, defectors always have

higher payoffs and the only stable equilibrium is x = 0.

For non-additive Prisoner’s Dilemma games when a is constant, the qualitative

dynamics are determined by the signs of

δ(0) = [aR + (1 − a)S] − P and (2.13)

δ(1) = R − [aP + (1 − a)T ] . (2.14)

There are four distinct possibilities.

• The case δ(0) > 0 and δ(1) > 0 occurs when aR + (1 − a)S > P and R >

aP + (1 − a)T . In this case, δ(x) > 0 for all x between 0 and 1. Therefore

cooperators always have higher expected payoffs than defectors and there is a

unique stable equilibrium with x = 1.

• The case δ(0) < 0 and δ(1) < 0 occurs when aR + (1 − a)S < P and R <

aP + (1 − a)T . In this case, δ(x) < 0 for all x between 0 and 1. Therefore

defectors always have a higher expected payoff than cooperators and there is a

unique stable equilibrium with x = 0.

• Figure 1 shows the graph of δ(x) when δ(0) > 0 and δ(1) < 0. If these inequalities

are satisfied, cooperators have a higher expected payoff than defectors when co-

operators are rare and defectors have a higher expected payoff than cooperators

when defectors are rare. We see from Fig. 1 that in this case, the unique equi-

librium is a polymorphic population that includes some cooperators and some

defectors. This case occurs when aR + (1 − a)S < P and R < aP + (1 − a)T .

dSince we assume that the population dynamics of Prisoner’s Dilemma game depends on expected
payoffs, these dynamics will be unchanged if we subtract a constant amount from each payoff so
as to make P = 0.
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• Figure 2 shows the graph of δ(x) when δ(0) < 0 and δ(1) > 0. If these inequalities

are satisfied, cooperators have a higher expected payoff than defectors when x = 1

and defectors have a higher expected payoff than cooperators when x = 0. In

this case, there are two monomorphic equilibria, one with cooperators only and

one with defectors only. This case occurs when aR + (1 − a)S < P and R >

aP + (1 − a)T .

2.6.1. Interpretation for games of shared outputs

If we parameterize Prisoner’s Dilemma games as games of shared outputs with

production function Φ(s1, s2) = 2b(s1 + s2) + 2ks1s2 and cost of effort (c + b)si,

then we have

δ(0) = [aR + (1 − a)S] − P = ab + ak − c and (2.15)

δ(1) = R − [aP + (1 − a)T ] = ab + k − c . (2.16)

In the additive case, where k = 0, δ(1) = δ(0) = ab − c. Where k 6= 0, we have

δ(1) − δ(0) = k(1 − a). Therefore δ(1) − δ(0) is positive in when the production

function is superadditive and negative where the production function is subadditive.

We see from Figs. 1 and 2 that if a(x) is constant, a stable polymorphic equilib-

rium is possible only in the case of subadditive production and two distinct stable

monomorphic equilibria are possible only in the case of superadditive production.

�������

�� 	
 �

Fig. 1. Unique polymorphic equilibrium.

��
����

�� �� �

Fig. 2. Two stable equilibria; x = 0 and x = 1.
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3. Kin-selection and Assortative Matching

Biologists are familiar with Eq. (2.10) under the name Hamilton’s rule. According

to W. G. Hamilton’s (1964) theory of kin selection, natural selection will favor

individuals who are willing to help a genetic relative if and only if the product

of the benefits from helping times the coefficient of relatedness between the two

relatives exceeds the cost of helping. Hamilton defines the coefficient of relatedness

between two individuals as the probability that the alleles found in a randomly

selected genetic locus in the two individuals are inherited from the same ancestor.

In a population without inbreeding, the coefficient of relatedness is one half for full

siblings, one fourth for half siblings, and one eighth for first cousins.

Hamilton’s coefficient of relatedness plays the same formal role in his theory as

our “index of assortativeness” for the case of additive Prisoner’s Dilemma games.

We will see that this is no accident. The examples below show how the index of

assortativeness can be calculated for siblings under a variety of assumptions about

mechanisms of cultural or genetic inheritance. It is interesting to notice that in all

of these examples, the index of assortativeness, a(x), turns out to be constant with

respect to x.

3.1. Sexual haploid siblings

Let us consider a population in which children play a Prisoner’s Dilemma game

with their siblings. Each child has two parents and inherits its strategy for this

game from one of its parents, chosen at random. Since for most animals, including

humans, genetic inheritance is sexual diploid rather than sexual haploid, the sexual

haploid model is more suitable as a model of culturally transmitted rather than

genetically transmitted characteristics.e

3.1.1. A symmetric case with monogamy and random mating

Suppose that parents mate monogamously and randomly with respect to the strat-

egy that they play with siblings. Assume that each child is equally likely to inherit

its strategy from its mother or its father and that the parent copied by one child is

statistically independent of that copied by its siblings.

Where x is the proportion of cooperators in the entire population, let us calculate

the probability that a randomly chosen sibling of a cooperator is also a cooperator.

With probability 1/2, the sibling will have the same role model as the cooperator,

in which case the sibling will surely be a cooperator. With probability 1/2, the

sibling will have a different role model. Since the parents are assumed to be mated

randomly with respect to their strategies toward siblings, the probability that the

eA sexual diploid individual carries two alleles, one inherited from its mother and one inherited
from its father, in each genetic locus. The two alleles found at a genetic locus then determine the
effect of this locus on the individual’s characteristics.
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other parent is a cooperator will be x. Therefore the probability that a cooperator

has a sibling who is also a cooperator is

p(x) =
1

2
+

1

2
x . (3.1)

If a child is a defector, then its sibling will be a cooperator only if the sibling’s

role model is different from the defector’s. With probability 1/2, the two siblings

will have different role models, and given that they have different role models, the

probability that the other parent is a cooperator is x. Therefore we have

q(x) =
1

2
x , (3.2)

and

a(x) = p(x) − q(x) =
1

2
. (3.3)

3.1.2. Assortative mating and extra-familial influence

Suppose that all else is as in the previous section, but that there is assortative

mating between parents. The degree of assortativeness in mating can be defined

with the same formalism that we used to define the degree of assortativeness in

matching for game-playing encounters. In particular, the degree of assortativeness

in mating is a number m between 0 and 1, such that when the proportion of C-

strategists in the population is x, the probability that a C-strategist mates with

another C-strategist is x + m(1 − x).

Now we can calculate the probablility p(x) that a random sibling of a cooperator

child is also a cooperator. A cooperator child has at least one cooperator parent,

whose strategy the child imitates. With probability 1/2, the child’s sibling imitates

the same parent and is also a cooperator. With probability 1/2, the sibling imitates

the other parent. Given the degree m of assortativeness in mating, the other parent

will be a cooperator with probability x + m(1 − x). Therefore the probability that

a random sib of a cooperator child is also a cooperator is

p(x) =
1

2
+

x + m(1 − x)

2
=

1 + m

2
+

(1 − m)x

2
. (3.4)

A sibling of a defector child is a cooperator only if the two siblings have different

role models and if the sibling’s defector parent is mated with a cooperator. The

probability of this event is

q(x) =
(1 − m)x

2
. (3.5)

Therefore the of assortativity between children is simply

a(x) = p(x) − q(x) =
1 + m

2
. (3.6)
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Another wrinkle that can be added to this calculation is to suppose that with

some probability v, a child copies neither of its parents but rather chooses a random

member of the population to copy. In this case it is not hard to show that

p(x) = v

(

1

2
+

x + m(1 − x)

2

)

+ (1 − v)x , (3.7)

q(x) = v
(1 − m)x

2
+ (1 − v)x , (3.8)

and hence

a(x) = p(x) − q(x) =
v(1 + m)

2
. (3.9)

3.1.3. Some asymmetry and some polygamy

Consider a partially polygamous population where the probability that two children

of the same mother have the same father is µ. Suppose that children copy their

strategy from their mother with probability λ and their father with probability

1 − λ.

We first calculate the probability that a random sibling of a cooperator is a

cooperator. This can happen in any of the following ways: both siblings inherit their

strategies from their mother, both siblings inherit their strategies from the same

father, or the two siblings inherit their strategies from different parents. Adding the

relevant probabilities, we find that

p(x) = λ2 + (1 − λ)2µ + 2λ(1 − λ)x + (1 − λ)2(1 − µ)x . (3.10)

A defector’s sibling will be a cooperator only if the two siblings inherit their

strategies from different parents and the defector’s sibling inherits its strategy from

a cooperator. The probability of this happening is

q(x) = 2λ(1 − λ)x + (1 − λ)2(1 − µ)x . (3.11)

Thus we have

a(x) = p(x) − q(x) = λ2 + (1 − λ)2µ . (3.12)

3.2. Sexual diploid siblings

Most sexually-reproducing creatures reproduce by diploid rather than haploid ge-

netics. In each genetic locus, an individual carries two alleles, one inherited from

its father and one inherited from its mother. The allele inherited from each parent

is randomly selected from that parent’s allele pair. An individual’s genotype is a

specification of the two genes that it carries. If there are two allele types A and

a, then there are three possible genotypes, AA, Aa, and aa. An individual who

carries two alleles of the same type is said to be a homozygote and one who carries

two different types of alleles is said to be a heterozygote. The allele A is said to be

dominant over allele a if heterozygotes of genotype Aa use the same strategy as

homozygotes of type AA.
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The full dynamics of polymorphic equilibria in diploid populations is complex

and in general seems not to be amenable to the simple methods discussed in this

paper. However, our methods work well to characterize necessary conditions for a

monomorphic equilibrium to be stable against dominant mutant alleles A monomor-

phic population is one in which all individuals, except for rare mutants, are homozy-

gotes of the same type. A monomorphic equilibrium is stable against dominant

mutant alleles if, so long as the number of mutant alleles is small, the expected

payoff to players who carry the mutant allele is smaller than that of players who

are homozygotes with the normal allele.

Suppose that there are two types of alleles C and D, and that individuals of

genotype CC play cooperate, while individuals of genotype DD play defect in games

with their siblings. Let x denote the fraction of C genes in the population, let p(x)

be the probability that a random sibling of a child who plays cooperate also plays

cooperate and let q(x) be the probability that a random sibling of a child who plays

defect will play cooperate. We can calculate an index of assortativity, a(x) for the

limiting values of x = 1 and x = 0. With these values in hand, we can determine

conditions under which a monomorphic equilibrium population of cooperators or

of defectors is stable.

Consider a monomorphic population of CC genotypes. This population is stable

only if individuals who carry a dominant mutant D allele receive a lower expected

payoff than the normal CC genotypes. Let us assume that mating is sufficiently

random with respect to genotype so that when the fraction of carriers of mutant

genes is small, the probability that an individual who carries the mutant allele

mates with another carrier of the mutant allele is nearly zero. Then so long as the

mutant D allele is rare, almost every child that is born with the mutant allele has

one heterozygote CD parent and one homozygote CC parent.

When x is nearly one, almost every cooperator child has two homozygote CC

parents, and almost every defector child has one homozygote CC parent and one

heterozygote CD parent. A cooperator child is therefore almost certain to have a

cooperator sibling. A defector child’s sibling is sure to inherit a C allele from its

CC parent, but the probability is only 1/2 that it will receive a C allele from the

CD parent. Thus in the limit for x close to 1, we have p(x) = 1 and q(x) = 1/2

and hence the limiting value of a(x) = p(x) − q(x) is 1/2.

Since limx→1 a(x) = 1/2, it follows from Eq. (2.8) that the limiting value of the

difference in the expected payoffs of cooperators and of defectors is

lim
x→1

δ(x) = R −
1

2
(P + T ) . (3.13)

From Eq. (3.13), it follows that a monomorphic population of C alleles will be

stable against invasion by dominant mutant D alleles if and only if R > (P +T )/2.

Now let us explore conditions under which a monomorphic population of D

alleles is stable against invasion by dominant mutant C alleles. When x is nearly

zero, almost all defector offspring will have two homozygote DD parents, and thus

their siblings will almost certainly be defectors. When x is nearly zero, a cooperator
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child will almost certainly have one heterozygote CD parent and one homozygote

DD parent. Its sibling will inherit a D allele from the homozygote parent, and will

inherit either a C or D allele from the heterozygote parent with equal probabil-

ity. Since the C allele is assumed to be dominant, the sibling will cooperate with

probability close to 1/2. Therefore the limiting value of a(x) = p(x) − q(x) as x

approaches zero is again equal to 1/2. Applying Eq. (2.8) once again, we have

lim
x→0

δ(x) =
1

2
(R + S) − P . (3.14)

From Eq. (3.14), it follows that a monomorphic population of D alleles will be

stable against invasion by dominant mutant C alleles if and only if (R + S)/2 < P .

For Prisoner’s Dilemma games with additive payoffs, we have R = b− c, P = 0,

and T = b. In this case, the condition for a monomorphic population of cooperators

to be an equilibrium is that b/2 > c and the condition for a monomorphic population

of defectors to be an equilibrium is b/2 < c. Thus, in the additive case where b/2 6=

c, we have either a monomorphic equilibrium of cooperators or a monomorphic

population of defectors but not both. Which type of behavior prevails in equilibrium

is determined by Hamilton’s Rule.

In an earlier paper (Bergstrom, 1995), I worked out necessary conditions for

a monomorphic equilibrium to be stable against recessive mutant alleles. In this

case, it can be shown that any carrier of a rare recessive allele is almost certainly

the offspring of two heterozygote parents. Some of the rare recessive genes in the

population will appear in heterozygote children who behave like members of the

normal population and some will appear in homozygotes who behave differently.

Calculations show that a recessive mutant defector gene can invade a monomorphic

population of cooperators if 1
5
P + 3

5
T + 1

5
S > R. A recessive mutant cooperator

gene can invade a monomorphic population of defectors if 1
5
R + 3

5
S + 1

5
T > P .

In the special case of a Prisoner’s Dilemma game with additive payoffs, these con-

ditions reduce to b/2 < c and b/2 > c respectively. Thus for additive Prisoner’s

Dilemma games a monomorphic population will repel invasions of both recessive

and dominant mutants according to the dictates of Hamilton’s Rule.

4. Assortative Matching with Partner Choice

4.1. A model of labelling

Interesting possibilities for assortative matching arise when players have some choice

about their partners. In a game of Prisoner’s Dilemma, everyone would prefer to

be matched with a cooperator rather than with a defector. Let us assume that each

player can make a fixed number of matches, that search costs are negligible, and

that a match requires mutual consent of the two matched players. If players’ types

were observable with perfect accuracy, then the only equilibrium outcome would

have cooperators matched only with cooperators and defectors with defectors. In

this case, a(x) = 1 for all x and therefore cooperators receive a payoff R while
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defectors receive P < R. Thus a population consisting only of cooperators would

be the only stable equilbrium.

But suppose that detection is less than perfectly accurate. Players are labelled

with an imperfect indicator of their type. (e.g. reputation based on partial in-

formation, behavioral cues, or a psychological test) Assume that with probability

α > 1/2, a cooperator is correctly labelled as a cooperator and with probability

1 − α is mislabelled as a defector with probability. Assume that with probability

β > 1/2, a defector is correctly labelled and with probability 1 − β is mislabelled

as a cooperator.f

Everyone sees the same labels, so that at the time when players choose partners

there are only two distinguishable types: players who appear to be cooperators and

players who appear to be defectors. Although everyone realizes that the indicators

are not entirely accurate, everyone prefers to match with an apparent cooperator

rather than an apparent defector. Therefore, with voluntary matching, apparent

cooperators will all be matched with apparent cooperators and apparent defectors

with apparent defectors.

4.2. Calculating the index of assortativity

The proportion of actual cooperators among apparent cooperators is

Cc(x) =
αx

αx + (1 − β)(1 − x)
, (4.1)

and the proportion of actual cooperators among apparent defectors is

Cd(x) =
(1 − α)x

(1 − α)x + β(1 − x)
. (4.2)

There are two possible ways in which a cooperator can be matched with another

cooperator. One way is that the cooperator is correctly labelled as a cooperator and

the apparent cooperator that it is matched with is an actual cooperator. The other

way is that the cooperator is mislabelled as a defector, but has the good fortune to

be matched with a cooperator that has been mislabelled as a defector. Adding the

probabilities of these two outcomes, we find that

p(x) = αCc(x) + (1 − α)Cd(x) . (4.3)

Similarly, a defector can be matched with a cooperator in either of two ways.

The defector can be mislabelled as a cooperator and be matched with a correctly

labelled cooperator, or the defector can be correctly labelled as a defector and

matched with a mislabelled cooperator. Thus we have

q(x) = (1 − β)Cc(x) + βCd(x) . (4.4)

f It would be interesting to pursue an expanded model in which ability to detect and ability to
deceive were also subject to evolutionary pressures.
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We can calculate the index of assortativity, which is

a(x) = p(x) − q(x) = (α + β − 1)(Cc(x) − Cd(x)) . (4.5)

It is straightforward to verify that Cc(0) = Cd(0) = 0 and Cc(1) = Cd(1) = 1

and therefore, according to Eq. (4.4), a(0) = 0 and a(1) = 0. For this model, in

contrast to the examples that we have looked at so far, the index of assortativity is

not constant with respect to x. Applying simple calculus to Eq. (4.4), we find that

a′(0) > 0, a′(1) < 0. We also find that a′′(x) < 0 for all x between 0 and 1, which

implies that a(x) is a concave function, that slopes upwards at x = 0, reaches a

maximum somewhere between 0 and 1, and then slopes downward until it reaches

x = 1.

In the special case where α = β, a(x) attains its maximum value of (2α− 1)2 at

x = 1/2. Figure 3 shows the qualitative nature of the graph of a(x) when α = β.

There is a simple intuitive explanation of the fact that a(0) = a(1) = 0. In

general, a cooperator is more likely to be matched with a cooperator than is a

defector because a cooperator is more likely to be labelled a cooperator than is a

defector. But if x is small, so that actual cooperators are rare, the advantage of

being matched with an apparent cooperator is small because almost all apparent

cooperators are actually defectors who have been mislabelled. Similarly, when x

is close to one, defectors are rare, so that most apparent defectors are actually

cooperators who have been mislabelled. In the latter case, even if a defector is

labelled a defector, his chance of getting matched with a cooperator are good. Thus

in the two extreme cases, where x approaches zero and where x approaches one,

the chances of being matched with a cooperator are nearly the same for a defector

as for a cooperator.

In the case where α > β, so that a cooperator is more likely to be correctly

labelled than is a defector, the graph of a(x) remains convex downward but the

peak occurs at x > 1/2, as in Fig. 4. Simple calculations show that in the limiting

case as α approaches 1, the peak of the graph occurs arbitrarily close to the point

where x = 1 and a(x) = β.
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Fig. 3. Graph of a(x) where α = β.
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Fig. 4. Graph of a(x) with α > β.
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Fig. 5. Graph of δ(x) for additive Prisoner’s Dilemma.

4.3. Population dynamics

We can use what we know about the function a(x) to analyze the function δ(x)

that expresses the difference between the average payoff to cooperators. Since a(0) =

a(1) = 0, it must be that δ(0) = δ(1) = −c < 0. Thus we know that cooperators get

lower payoffs than defectors in monomorphic populations, consisting either entirely

of defectors or of cooperators. This implies that a population consisting entirely of

defectors is locally stable and that a population consisting entirely of cooperators

is locally unstable. There remains however, the possibility for a stable polymorphic

equilibrium with some cooperators and some defectors.

Figure 5 graphs δ(x) for a Prisoner’s Dilemma with additive payoffs. We have

drawn this figure so that δ(x) is positive for some values of x between zero and 1.

The small arrows show directions of movements strarting from any intitial position.

There are two locally stable equilibria. One stable equilibrium occurs at the point

where x = 0. The other is at the point marked A. For any level of x to the left of

the point B or to the right of the point A, δ(x) < 0 and so x, the proportion of

cooperators in the population, would decline. For any level of x between the points

A and B, δ(x) > 0 and so in this region x would increase.

For Prisoner’s Dilemma games with additive payoffs, δ(x) = a(x)b− c. We have

shown that that a(0) = a(1) = 0, a′(0) > 0, a′(1) < 0, and a′′(x) < 0 for all x

between 0 and 1. It follows that δ(0) = δ(1) < 0, δ′(0) > 0, and δ′(1) < 0, and
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δ′′(x) < 0 for all x between 0 and 1. The fact that δ′′(x) < 0 on the interval [0, 1]

implies that the graph of δ(x) is “single-peaked” as in in Fig. 5. Where this is the

case, and if δ(x) > 0 for some x, there must be exactly one stable polymorphic

equilibrium and one stable monomorphic equilibrium with defectors only.

For Prisoner’s Dilemma games with non-additive payoffs, it remains true that

δ(0) = δ(1) < 0, δ′(0) > 0, and δ′(1) < 0. It is not necessarily the case however that

δ′′(x) < 0 on the interval [0, 1], so the graph of δ(x) need not be single-peaked. In

this case, there may be more than one polymorphic equilibrium, but it still must

be that if δ(x) > 0 for some x, then there is at least one locally stable polymorphic

equilibrium and one locally stable monomorphic equilibrium with x = 0.

5. Related Literature

W. D. Hamilton’s classic paper (1964) on the evolution of social behavior among

relatives showed that for some kinds of interactions between relatives, natural se-

lection will lead to a degree of cooperativeness that can be quantified in terms of

genetic relatedness. In later work, Hamilton (1971; 1975) observed that the theory

of kin selection can be viewed as a special case of assortative matching between

individuals who are not necessarily related genetically.

Wilson and Dugatkin (Wilson, 1997) consider assortative matching in N -player

groups where players are programmed with possible strategies that can be described

by a real number x from some specied interval. An individual with strategy x bears

a personal cost cx and confers benefits of bx on every member of the group, where

it is assumed that Nb > c > b.g The authors point out that everyone will prefer to

belong to a group consisting of others with higher x. Therefore if group membership

requires mutual consent and if individual x’s are common knowledge, groups would

segregate exactly according to their values of x and those with the highest value

of x would receive the highest payoffs. They show through simulations that where

individual types are imperfectly known so that assortativity is partial, there can

be selection pressure for high individuals with high x.

Myerson, Pollock, and Swinkels (1991) introduce a viscosity parameter that

is equivalent to a constant index of assortativity as defined in this paper. For a

population with a finite number of pure strategies, they define a δ-viscous population

equilibrium to be an assignment of proportions of the population playing each

strategy such that for each strategy played by a positive proportion, this strategy is

a best response to the current strategy mix under the assumption that an individual

will meet its own type with probability δ and will meet a randomly selected member

of the overall population with probability 1 − δ. Thus a δ-viscous equilibrium is

a symmetric Nash equilibrium for a game in which the payoff to a player is his

expected payoff if with probability δ he encounters a someone playing the same

gThis game is equivalent to the “voluntary provision of public goods game” that is much studied
in experimental economics (Ledyard, 1995).
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strategy as his own and with probability 1 − δ he encounters a randomly chosen

member of the entire population.h

Bergstrom (1995) shows that for symmetric games between relatives in a popu-

lation of sexual diploids, a monomorphic equilibrium will be stable against invasion

by dominant mutants and by recessive mutants if each player acts so as to maximize

a “semi-Kantian” expected utility function that assigns a probability weight k to the

event that one’s opponent mimics one’s own behavior and 1 − k to the event that

one’s opponent is a random draw from the population, where k is defined by the

genetic coefficient of relatedness between the two relatives.

The published papers that seem to be most closely related to this one are Eshel

and Cavalli-Sforzai (1982) and by Bergstrom and Stark (1993). Both papers study

models with assortative matching of players in Prisoner’s Dilemma games and con-

sider examples in which sexual haploid and sexual diploid players recognize genetic

kin. Eshel and Cavalli-Sforza also study a model in which players are able to ac-

tively choose partners who are likely to treat them favorably, though their model of

partner selection differs from ours in that they emphasize search costs rather than

inaccuracy of determining others’ types.

The current paper suggests a unifying method for treating a great variety of

models of assortative encounters and I think offers a simpler, more transparent

method of deriving both known and new results.
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