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MODELING CONTOURS OF TRIVARIATE DATA

by B. HaMANN (')

Abstrct, = A peneral soleme for compuling comtones of frivariane data s discussed, Bt is
axsmed that three-dimensional points with asociated furction values are given witkoir oty
ather fformation, The goal 5 fo copstruct a semootl apprecimalion fe g eontour of these dafa,
U sually, an interpolating or approximating function is constructed in order o estimeate values on
a whale three-dimensional dismain. Very aften, the resulting function iy represented by a et of
eontourd which are surfaces in space. Here, a method is described that fiest extimates podais on o
particular coniour, geaerales @ plecewise linedr approsimartion (o thal confour, and finally uxes
thii liear approximarion ai inpui for a surface scheme. The surface scheare then yields a surface
which approximates the degired contowr, Applications for this technique are found in medicine
{Computerized Tomography (CT), Magnetic Resorance lmaging (MR, meteoralogy (lem-
perature measurements ) and physics ln general. Pardealarly in medical applications one is more
intereated in comtenrs and the shape of obyjects than in a favchion that interpolates measareme s,

Kevwords : Comtour, curvaiire, data reduction, G '.mr]"ﬂ'cr. fopofogy, frigngulation, trivariete
dafa,

Résumé — Modélisation de lignes de niveaux pour des donndes i trois variables, Un schéma
général poar le calew! d tio-comionrs de donndes d rols variables est examing, On suppose gie
senly les poines ridimensionnels ef lo valewur de o fonctéion en ces poldnts sont donads. Le bur exr de
congtrire une approximation réguliére powr wn iso-contour de ces données. 0" habinde, une
Jonetion o interpolation oy o approximation exf corstruile pour e dédwire Tes valears sur un
domaine tridimensfonne! compler. Souvenr lo fonction aingi obtenwe ext représentée par un
enzenibile d iso-contours gui sont des surfaces dans ' espace. Iei une méthode st décrile qui extime
o abard les points sur i so-comfour donnd, génére une approximation lindaire par morcean de
ce coRfour, ef utilise cefte approxtmation pour R sohéma de géndrabivin de surface, Ce sehénia
donme wne serface gui approxime I iso-contowr cholsi. On trowve des applications de celie
techiigue en Tomographie par ordiratenr (CT), Viealisation par Résomance Magnétigue
(MRI}, métdorologic (mesure de températiires ) el en plysigue en gédndral. Plus précisément dans
les applivations médivales, on " intéresse plas o des iso-comtours et @ la forme d ehjets gu'd des
fonctiony inperpolant des mesires.
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52 ‘ B. HAMANN

. INTRODUCTION

In the following, it will be assumed that the given data are either of the
form '

{(Xi’ F)= (i yi 2z, )] % € R?, fieR, i=1.. ”} (1)
or
{(Xi’ fi)= O .00 Yisj o Ziyj, o fi,j,k)| X; € R,

fieR,i:O...ni,j=0...nj,

k=0..n . (2)
In the first case, the data are given scattered in three dimensional space, in
the second case they are organized in a rectilinear fashion. Therefore, the
terms scattered data and rectilinear data will be used in the following.
Figure 1 shows the two different data types. The desired goal is to compute
an approximation to one or more contours of the data. A contour is defined
as the set of all points for which f = const holds, when f is the (unknown)
discretized function.

i |

®
® ® Zk’l]k)

X X

Figure 1. — Scattered and rectilinear data in three-dimensional space.

There exist two basic approaches to deal with these data : either one uses
volume visualization techniques, if one is interested in rendering the original
data only, or one uses numerical methods, if one wants to obtain a
mathematical description of a trivariate approximating function to the data
or an approximation of certain contours of the data. Most volume
visualization methods are based on ray tracing techniques. A finite number
of rays (equal to the number of points to be colored on a screen) intersecting
the domain of the scattered or rectilinear data is used to determine color
values when the data are to be rendered directly. These methods can be
quite expensive, when large numbers of rays have to be considered (usually
1,0242 rays per image). Effects like transparency of volumes can be
simulated.
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MODELING CONTOURS OF TRIVARIATE DATA 53

In this paper, it will not be explained which technigues could be used to
visualize this kind of given data directly using wolume visualization,
Appropriate algorithms are given in the standard computer graphics
literature, e.g., Drebin et al. [13], Foley eral. [13], Fuchs eral. [22],
Hamann [24], Kajiva/von Herzen [27], Levoy [30], [31], Ney et al. [34],
Nielson/Hamann [36], Sabella [41] and Tiede eral. [44]. The general
problem of data acquisition and noise reduction in the case of physical
measurements is discussed in the field of computer vision and pattern
recognition {see Ballard/Brown [9] and Fu eral, [22]),

One common approach in computer-aided geometric design 1o model this
kind of data can be divided into three steps: first, certain derivative
estimates at the data poinits are generated, second, an approximating
trivariate function is constructed and third, the result is rendered, usually as
a scl of contours. Stead [43] and Zucker/Hummel [46] give methods for
estimating gradients for this kind of data, scatiered data inlerpolation
methods are described in Alfeld [1], Bamhill [6], Bloomguist [7],
Franke/MNielson [20], Hoschek/Lasser [26], Petersen eral. [37] and Wor-
sey/Farin [45]. Again, these technigues will not be covered here.

The whole modeling process to be explained here can be divided into the
following sequence of steps :

(i} A method for data reduction will be given as a modification and
extension of a bivariate point removal procedure (see Le
Meéhaute/Lafranche [29]).

(i) Algorithms will be presented for obtaining points on a contour
considering only the given scattered or rectilinear data or a reduced
data set as the result of step (i) in scattered form. The algorithms will
be different for scattered and rectilinear data. Triangles will be
constructed from these contour points as a piecewise linear approxima-
tion to a contour. They will be obtained by triangulating closed non-
planar polygons in three-dimensional space. In Choi etal. [11] a
criterion is proposed for a ** good " triangulation in space. In Loren-
sen/Cline [33] contours are generated for rectilinear data.

(i11) Further, it will be explained how to get topologcal information. c.g..
the neighbor triangles of a triangle and the component of a contour a
particular triangle belongs to (a contour can be separated into multiple
components),

{iv) A surface will be computed that interpolates to all the points
approximating the contour and eventually to prescribed normal vectors
al those points (see Barnhill er af. [5], Boehm er af. [8], Farn [16], [17],
Hagen/Pottmann [23], Hamann ef al, [25], Nielson [35] and Pottmann
[39] for more details on surfaces).

vol, 26, n" 1, 19492



54 B. HAMANN

(v) Finally, a technique will be introduced for estimating the curvature
behavior of a surface, if one knows a triangulated version of the surface
only. This technique can then be wused for interrogating the
** smoothness '° of the surface created in step (iv).

DATA REDUCTION

Data reduction should be done first among the five modeling steps. The
paradigm for data reduction is quite easy : if a subset of the given function
values can be approximated locally by a lincar (trivariate) polynomial within
a prescribed tolerance, certain data points associated with the approximated
function values in this subset will be removed. They can be considered not
being significant, because a contour for the data will later also be
approximated by using a linear polynomial scheme. What is meant by the
term ** subset ** will be explained below. The data reduction procedure
presented here is a modification and extension for trivariate data of the
algorithm described in the publication by Le Méhauté/Lafranche [29]. For
this point removal process, the data can be given in scattered or rectilinear
form. For the further discussion it is more convenient to ignore the implied
structure of rectilinear data.

First, the given point set {x,| x; € R, i = | ... n} with associated func-
tion values {f;| f, e R, i =1... n} will be triangulated. It is assumed that
the resulting tnangulation is the Delaunay triangulation £ of the poimt set.
Whenever the lerm triangulation is used in combination with this point
removal procedure (and only in this context), one actually is dealing with
tetrahedra in three-dimensional space. Given the triangulation of the data
points and the function values f, associated with them it is possible to
construct a C " piecewise polynomial interpolating trivariate function for the
data, This can easily be done by defining the function value at a point x in a
tetrahedron as fix) = u, )+ 0y fo + 0y 3+ 0y fy, where (u), w,, u;,
iy) are the baryceniric coordinates of the point x relative to the vertices of
the tetrahedron it is Iying in, and /|, f, f+ and f, are the known function
values at these vertices, For the point removal process, il is not necessary to
achieve higher order continuity for the interpolant.

The basic idea of the point removal step is to iteratively replace the four
vertices of an interior tetrahedron by one point and retriangulate the data
set locally (** interior *7 will be explained below). Each interior tetrahedron
will be assigned a weight which is a measure for its significance to the
implied C " interpolant. Data points are removed only if they are lying inside
the convex hull of the original point set such that the domain of the
interpolant still remains the same afier point removal. Tetrahedra will be
removed if the interpolant for the reduced data set does not differ more than

M? AN Modelisation mathematique et Analyse numérigue
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MODELING CONTOURS OF TRIVARIATE DATA 35

a prescnbed tolerance £ from the interpolant for the original data set, To
describe the procedure more formally the following notation will be used :

e V', is the set of the four vertices v, i = | ... 4, constituting a particular
tetrahedron .

® T is the set of all tetrahedra having either one, two, or three vertices in
common with tetrahedron 1.

s P, is the set of all vertices lying on the polyhedral boundary of the region
implied by tetrahedron ¢ and all the tetrahedra in T,

® pred, is a predicate for tetrahedron ¢ which is true if all the points in
¥, are lying inside the convex hull of the original point set (ietrahedron r
15 called an ** interior " tetrahedron) and all tetrahedra in T, are
tetrahedra in the Delaunay triangulation Dy,

The predicate for a tetrahedron will later ensure that only convex regions
have to be retriangulaied and that the significance of a tetrahedron is always
measured with respect to the original triangulation 0, and not with respect
to an already modified triangulation. If a tetrahedron’s predicate is true its
weight @, can be computed in the following way :

i
1. Compute the centroid ¢ =_Ti| Y v; of the vertices of tetrahedron ¢ and
i=1

assign the lunction value f(c) =:]| E I to it {average of the given
=
function values at the four vertices).
2. Compute the (locally) new triangulation T of the point set P, U {¢} by

connecting each point in P, with e. Considering the fact that P, describes
a convex polyhedron, this way of retriangulating is one possible way of
doing it.

3. Compute the (local) difference of the new piecewise linear spline
5, based on the reduced point set and the previous piecewise linear spline
5, based on the unreduced point set. § and S, differ only on the convex
region implied by the polyhedron with vertices in P . Therefore, one has

to consider the local triangulation T only and the difference between the
two splines %, and 5, 15 gmiven by

[%—%i=Y IS-51];- (4)

reT

The norm that is used here to measure the difference is a very simple
discrete norm, || |, . defined as

H'iT_'gI"d,;, - E I..I'r- - Sl“’i” . (5)

wvol, 26, n" 1, 19432



56 B. HAMANN

It is a norm on the set of all polynomials of degree = 1. The weight for a
tetrahedron 1 is defined as

w8y — S, - (6)

To compute w, one has to determine the tetruhedra in the new
triangulation T the *"old "' vertices v, lic in and express them in

barycentric coordinates with respect to the new tetrahedra constructed.
Then linear interpolation is used to evaluate §, at an ** old "' vertex
¥
It is now quite simple to formulate an algorithm which iteratively
removes data points.

ALGORITHM 1 : * DATA REDUCTION ™

Input  : Point set in three-dimensional space with associated function
vialues and Delaunay triangulation, tolerance « :

Output : Reduced point set in three-dimensional space with associated
function values and Delaunay triangulation :

repeat until tolerance ¢ exceeded or no more tetrahedron with frue predicate
cxists
( compute predicate pred, for all tetrahedra :
for all tetrahedra with a rrue predicate do
( (1) compute weight w, for tetrahedron ¢ ;
(i) determine tetrahedron ¢, with minimal weight w,, ;
(i) if wos = ¢ then
compute triangulation T for point set P, U {e}
associated with tetrahedron ¢, ;

)
compute the Delaunay triangulation for the reduced point set ;

It 15 possible to use the reduced data set and the resulting Delaunay
trnangulation after termination of algorithm 1 as input and start the
reduction procedure again.

Some remarks have to be made concerning the data reduction algorithm.
Il two tetrahedra with a rrue predicate exist having both minimal weight
@Wain the result of the algorithm may depend on the decision which
tetrahedron is chosen to be replaced by a single point. The data reduction
algorithm given by Le Méhauté/Lafranche [29] requires a much more
complicated strategy for retriangulating when extended 1o the trivariate
case, When a point is removed the polyhedral boundary of its plateler (see

M? AN Modeélisation mathematique et Analyse numérique
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[29]) is not necessarily convex and to find the (locally) new triangulation is a
guite involved process using their technique.

If the polyhedral boundary of the convex hull of the original point set
does not need to be preserved, there are possibilities for removing
tetrahedra having faces belonging to this polyhedral boundary, too. If a
tetrahedron has one face on the polyhedral boundary, one could use the
centroid of that face as the new point ¢, if it has two faces on the boundary,
one could use the centroid of the edge shared by these two faces, if it has
three faces on the boundary, one could use the vertex belonging only to this
particular tetrahedron.

The effectiveness of the data reduction algorithm depends on the
tolerance « and on the °* nature '* of the data : if the data are originally
obtained from a linear trivariate polynomial by some discretization process,
the reduction will be greatest. In figure 2, the data reduction algorithm is
shown for the bivariate case. The involved data and the old and new
triangulation are represented.

Figure 2. = Point removal in the bivariate case.

CONTOUR APPROXIMATION

Two different ways for obtaining a piecewise linear approximation o a
contour f = const must be considered for data of cither scattered or
rectilinear form. If scatiered data are given or the original data set has been
reduced as proposed in the previous chapter one is concemed with
tetrahedra only. In the case of rectilinear data, the term ** cube ™" will be
used for a set of cight data points {x; ., s 4.x}. L J, K€ {0, 1},
associated with an arbitrary data point x,, even if the actual geometry of
these eight points it not really a cube. Points lying on the approximation of
the desired contour are now obtained by doing linear interpolation along
edges of each tetrahedron (cube, respectively): if one of the two points
determining an edge has a function value greater and the other one smaller
than the contour level, then linear interpolation is done along this edge to
gel a point on the contour approximation. It is assumed that the contour
f = const is different from all given function values at the vertices of all

vol. 26, n" 1, 19492



58 B, HAMANN

tetrahedra {cubes). Special treatment is necessary if this is not the case. It
will now be described how to obtain a piecewise planar approximation to the
contour for both scattered and rectilinear data.

In the case of tetrahedra, one has to consider 2* cases (a function value is
either greater or smaller than the contour and four vertices constilute a
tetrahedron). By symmetry one actually has to treatl two cases only : first,
three function values are greater (smaller) and one function value is smaller
{greater) than the contour level ; second, two function values are greater
and two are smaller than the contour level. The first case automatically
implies three points along edges of a tetrahedron which determine a contour
triangle. The second case determines a planar quadrilateral that must be
split into two triangles afterwards. These two cases for a tetrahedron are
shown in figure 3 (black dots denote function values greater than the
contour level, squares denote points on the contour),

Figure 3. — Contosr tricegles o a tetrahedron.

If reculinear data are given and the data reduction procedure has not
been applied, one is concerned with a total of 2* cases for each cube in the
rectangular data grid. The rectangular data structure is essential for the
contouring algorithm to be given now, It is possible to simply store all cases
and then look them up in a table. Lorensen/Cline [33] use that technique
and make use of symmetry among these 2" cases. Here, an algorithm will be
given that automatically determines a piecewise planar approximation for
the contour. Again, the first thing to be done is to determine contour points
by applying linear interpolation between points of those cube edges whose
associaled function values imply the contour to intersect that edge (one
value greater, the other one smaller than the contour level). Now, two
definitions have to be given in order to understand the notation used in
algorithm 2 that computes the polygonal boundaries (** contour polygons )
of a contour in a cube.

DEFINITION 1 : Each contour point v convidered lving on iwe cube faces
of a particular cube. Two contour points belonging to the same cube have a
face in common {f among those jour cube faces on which the two contour
points lie (two cube faces per conlour point) one cube face is the same,

M AN Modelisation mathématique et Analyse numérigue
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DEFINITION 2: Two contour points belonging to the same cube have a
corner in common if the two contour poinis fle on cube edges that share a
comman vertex with an asseciated function value which is greater than the
contour level.

Definibon 2 is necessary in order to construct consistenl conlour
polygons. If there are more than two contour points on the same cube face it
must be guaranteed that one connects always the same points forming
contour polygons. The method for computing a triangular contour approxi-
mation presented by Lorensen/Cline [33] does not consider this consistency
constraint. The meaning of the definitions of a common face and a common
corner are illustrated in figure 4 ; the pairs of points 1/2, 2/3, 3/4 and 1/4
each have a face in common, the points 5/6/7 have corner ¢ in common.

Figure 4. — Contour polnts with common face, contour points with commuon cormer.

The idea of the algorithm is to construct a set of ¢closed three-dimensional
polygons that constitute the line boundaries for a piecewise planar
approximation of the contour within a cube. The input for the described
algorithm is a list of contour points on edges of a cube, It is further assumed
that functions for effectively computing the two predicates ™ two points
have a face in common "' and ** two points have a corner in common '’ are
given. These functions are rather easy. they basically compare indices
associated with two contour points referring to certain cube faces and
corners. IT the i-th point of the j-th polygon in a particular cube is denoted as
pl the algorithm proceeds as follows for each cube :

ALGORITHM 2: * CONTOUR POLYGONS ™

Input  : List of contour points lying on edges of a particular cube

Output : Set of closed contour polygons with given contour points as
vertices (the i-th point of the j-th polygon is denoted as

p)

vol, 26, m 1, 1942
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je=13
while not all contour points are associated with a polygon
{ p{ = any contour point not yel associated with a polygon ;
/* Among the two faces point p{ is lving on select one, f
[* denoted as f, determining the ** direction ** of the polygon, */
determine face [
P4 = the contour point having face f in common with p|
and not vel being assigned to another polyvgon
if there 1s only one point on f not vet being assigned
or
the contour point having face f in common with p|
and having a corner in common with p{
and not yel being assigned to another polyvgon
if' there is more than one point on f not yet being assigned |
i3
while j-th polygon is not closed
* closed when all contour points on the next #/
/* face f arc assigned to some polygon *
( /*if the face which p/ . and p{ , have in common is f, */
/* then the other face p/ | is lying on is the next face f %/
determine next face [;
pl = the contour point having face £ in common with p/
and not vel being assigned to another polygon
il there is only one point on f not yel being assigned
or
the contour point having face f in common with p! |
and having a corner in common with p! |
and not yet being assigned to another polygon
if’ there is more than one point on f not yet being assigned ;
F=041;
)
F=i+1;
J

Figure 5. — Possible contour polvgons inside cubes,
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Algorithm 2 guaraniees consisient contour polygons in the following
sense : if the common face of two neighboring cubes contains two contour
points {on two different edges of that face), there is only one way to connect
these points ; if there are four contour points {one on each of the four edges
of that face), the points will always be connected in the same fashion on that
face since the convention for connecting contour points having corners in
common (definition 2) is incorporated into algorithm 2. This algorithm
might be slower than the method of Lorensen/Cline [33] based on a look-up
table but it produces consistent contour polygons and might be extended
easily for more complicated polyhedra than cubes. The technmigue of
Lorensen/Cline [33] might lead to ** discontinuous " triangulations (holes in
the triangulation) as pointed out in Diirst [14] which are a result of
constructing inconsistent contour polygons. Some possible contour polygons
are shown in figure 5 (using algorithm 2).

At the end, a set of closed polygons is obtained (with three to seven
vertices each) for a single cube. These polygons are interpreted as polygonal
boundaries of a piecewise triangular approximation of the contour, There-
fore, certain points of each polygon have to be connecied to get the
triangulation of the contour inside a cube. Becanse of consistency constraints
with respect to neighboring cubes, a rule must be followed when computing
the triangulation ;

o The only edges connecting contour pomnts on the same cube face in the
triangulation of a contour polygon are the line segments constituting the
contour polygon : no other edges connecting contour points on the same
face are allowed,

This rule guarantees that triangles consisting of three vertices on the same
face are never constructed. This kind of triangles must be avoided in order
to obtain a triangulation with a continuation inte neighboring cubes.
Possible triangulations inside single cubes for contour polygons are shown in
figure 6.

Figure &, — Possible irinngulations of confour pelvgons.

At this stage of the triangulation process of the contour, the ** quality & of
the trangulation within a single cube is not taken into account. As soon as

vl 2y, m” 1, 1992
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one has oblained the whole set of triangles approximating the contour,
** smoothness ™' criteria can be used to improve the triangulation in the
whole domain given by the convex hull of the data points. Referring 1o the
involved data structures two tables have been created : one table contains
all the contour points, the other table describes the triangulation by
contamning the references to those three contour peints constituting each
triangle. Figure 7 shows the piecewice linear approximation to the contour
fix. v, z2)=x'— y* 4 2% = 0.5 obiained using algorithm 2 and the technique
described for triangulating contour pelygons. The trivariate function is
evaluated on a 21 « 21 « 21 grid, where x, v, z € [- 1, 1]. Flat shading is
used for rendering.

Figure 7. — Contour for ¥'— '+ =08 x p 26 [= 1, 1)

The skull shown in figure 8 has been computed as a contour from a set of
68 +« 64 + 64 density measurements given in rectilinear form. The measure-
ments f; , ; themselves are integer values in {0, I, ..., 255} . This contour
{for f = 13.5) consists of approximately 30,000 contour points and &0, D00
triangles. Gouraud shading is used for rendering.
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I"'Juu.n: K. — Humun skull s confoor of o density fonction.

TOPOLOGY

In this section 1t will be described how to obtain topological information
for the set of (contour) triangles. Some surface schemes require neighbor-
hood information in order to construct smooth interpolants. The topology is
obtained as a ** byproduct ** of the contouring step. The contouring process
basically yvields two tables : a verrex table which contains each contour point
as a triple (x, v, z) and a triangle rable which contains each tnangle as a
triple (v, vy, vy} of indices referring to the three vertices in the vertex table
constituting a tmangle. An algorithm will be given that computes the
neighborhood information considering the tmangle table only. The contour
[ = const might be split into several non-connected components inside the
convex hull of the data points. Therefore, it is also essential to know to
which component of the contour a particular triangle belongs to if one wants
to model the different components separately.

vol. 26, o 1, 1952
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DEFINITION 3 TE-.'.-: triangles f, and 1, are neighbors if ¢, have &, and
exactly fwe vertices in commaon.

It 15 assumed that there are no degenerate cases meaning that a triangle
has at most three neighbors (an edge in the triangulation is shared by at
most two triangles). Otherwise, one would be dealing with a bifurcating
triangulation. Algorithm 2 and the way each contour polygon inside a single
cube has been triangulated guarantee that there are no bifurcations in this
case. Denoting the total number of triangles by n, the algorithm to compute
the number of neighbors for each triangle and the actual indices of these
neighbors (referring to the triangle table) is straightforward :

ALGORITHM 3 : “ NEIGHRORHOOD **

Input  : Table of triangles, each given by its three vertex indices
Output  : Number of neighbor triangles and their indices for each triangle
in the triangle table

fori=11ton
( ecmt=0; /* number of neighbors */
jo= 1
while j = n and cnt < 3
( if i+ jand r; and 1, are neighbors
then
( emt=cnt+1;
caf-th neighbor of ¢ = ;

}
}
number of neighbors for f, = car ;

)

Algorithm 3 is of order I'J{n!} with respect 1o the total number of
triangles. Its performance can be improved by storing the index triple
(. j, k) for the ** lower-front-bottom " vertex of the cube a triangle is lying
in. Then, the search for the neighbors of a particular triangle inside a cube ¢
can be restricted to the cube ¢ iself and its six neighbor cubes in the
rectilinear grid. By doing so order @ (n) is achieved. In order to give an
algorithm for determining the component of the contour, a particular
triangle belongs to a definition has 1o be given first.

DEFINITION 4 : Two triangles t; and 1; belong to the same component of a
contour if triangles t, ty, .., t, exist, such that (t, is a neighbor of
00 Aty ix a neighbor af t)) & ... a (1, i5 a neighbor of t, _ ) A (1, is @ neighbor

af 1)
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The actual ordering of the triangles t,, 7., ..., 1, does not matter, In other
words, two triangles 1, and 1, belong to the same component if there is a path
from ¢; to f; of triangles which are pairwise neighbors to each other. To
effectively determine the component index a particular triangle belongs 1o,
the following algorithm is used. Again, r is the number of triangles.

ALGORITHM 4 : * COMPONENT OF CONTOUR ™

Input  : Table of triangles (including the neighborhood information)
Output : Component index for each triangle which determines the compo-
nent of the contour it belongs to
/™ initially all triangles have an invalid component index ** 0" %/
pe=1: [*first valid component index */
fori=110n
{ determine minimal component index min among all the component
indices of 1's neighbors ;
if min =0
then
{ component index for triangle ¢, =p ;
pe=p+1; [®one more component of contour found */
)
else
{ component index for triangle ¢ ==mn ;
if there is 1 [are 2] valid component index [indices] # min among
t,’s neighbors
then
{ component index for this [these] triangle[s] = min ;
pe=p— 1[2]; /" connecting ™" triangle has been found */

The case in brackets ([ ]) in algorithm 4 indicates the situation, when
triangle ¢, has three neighbors with valid component indices {(# 0) which are
all different from each other. At the end, cach triangle will have been
assigned to a certain component of the contour. The principle of assigning a
component index to a triangle f, is shown in figure 9 : the minimal
component index among r,'s neighbors is | ; therefore, the component index
for 1, is 1 and all component indices 2 and 3 are changed to component index
1.

At this stage of the modeling process, it might be worth considering some
methods for improving the triangulation of the contour approximation.
Knowing the neighborhood configuration the ** max - min'  or
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“min —max "' angle criterion could be wsed. Nerative algorithms as
proposed in Lawson [28] for swapping diagonals in quadrilaterals (given by
two neighbor triangles) could be applied. Considering the fact that the
triangulation to be improved is not a planar triangulation differemt
optimization criteria might be appropriate. Choi ef al. [11] use the angles
between normals of neighboring triangles as a smoothness criterion and
minimize these angles.

A 7' SURFACE

The question to be addressed now is the problem of constructing a
tangent plane continuous surface when a triangulation @ = { (v}, v}, v})]|
t=1..n} (implying the topology and the neighborhood configuration) is
given in form of index-triples (v, v5, v5) for a set of points x; together with
(outward) unit normal vectors n,, denoted as the set XN = {(x, m)|
i =1..n}. The fact that each triangular patch has to be determined from
three vertices and three normals solely gives rise to speak of a ** six
parameter patch "',

A brief overview for existing interpolation methods will be given,
Different surface schemes have been proposed recently for solving the
interpolation problem when points together with unit outward normals in a
triangular mesh are given in three-dimensional space. It is not the goal here
to discuss these methods in detail but rather 1o give a brief overview for
existing methods. Basically, there are two approaches for solving the
interpolation problem, either parametrically or implicitly defined triangular
patches are created. The methods discussed in Farin [15], Hamann er al.
[25], Nielson [35] and Piper [38] follow the first principle, Dahmen [12] uses
the implicit form for constructing a surface based on the ideas of Sederberg
[42]. If normal vectors are not initially given they can easily be approximated
using a difference scheme or by differentiating a locally approximating
function when the points to be interpolated are points on a contour of an
underlying (unknown) trivariate function, as it is the case here. Possibilities
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for obtaining gradient estimates for trivariate data are given in Stead [43]
and Zucker/Hummel [46]. The gradients then deétermine the unit normal
vectors for the contour points directly (the gradient is normal to a contour).

The methods of Hamann er al. [25] and Nielson [35] gencrate a tangent
plane continuous surface for given points and unit outward normals. Each
triangular patch is a convex combination of the form

3

s{n) = E wi(u)su), (7

where the weight functions w(u) and the single patch constituents
% {u) are chosen in a way, such that each s;(u), i = 1 ... 3, interpolates to all
three boundary curves and to the normals along the i-th boundary curve of a
patch. The notation ** w ""refers to the triple (n,, uy, 4;) of barycentric
coordinates associated with a point on the patch. The difference between
the two methods i1s that Hamann et al. [25] use degree elevated conics in
Bemnstein-Bézier form and Nielson [35] uses cubic polynomials in Hermite
form for the curve scheme that is needed in both methods for blending from
4 vertex to an opposite boundary curve of a triangular patch.

Piper [38] also constructs a tangent plane continuous surface when points
and tangent (normal) vectors are given. His solution consists of a set of
triangular Bernstein-Bézier patches of degree four, His scheme has to use a
Clough-Tocher split to obtain the desired continuity.

Dahmen [12] uses the lowest degree possible for implicitly defined
triangular Bernstein-Bézier patches with tangent plane continuity, which is
degree two. These patches are contours of trivariate functions defined inside
tetrahedra. To obtain these quadric patches a complicated procedure for
constructing tetrahedra over each given triangle has to be followed. A
Powell-Sabin split for each tetrahedron is necessary o guarantee tangent
plane continuity between all quadric patches. The rendering process for
these implicitly defined patches is quite expensive ; intersections of paramet-

Figure 10, — Parametric triangular surfeces using different weights,
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rically defined lines with the implicitly defined patch have to be calculated in
order to obtain points on the surface.

An example for the method described in Hamann er al. [25] is shown in
figure 10. Four points from a unit sphere have been given with their
cormesponding unit {outward) normal vectors. The weights for the interior
Bézier points decrease in the sequence of surfaces from left to right giving
the effect of increasing *° tension ',

CURVATURE ESTIMATION

A technigue will be described now that allows to interrogate a surface. i
is assumed that the surface created in the previous step is approximated by a
set of triangles (the topology is also known), and a method for curvature
estimation is desired in order to interrogate the smoothness of the surface,
Especially, when the number of approximating triangles is large and their
size small it is hard to tell whether there are changes in the sign of Gaussian
curvature by simply looking at an image of the set of triangles themselves.
Therefore, a way is needed to approximate principal curvatures of a surface
and to render these estimates on a screen.

Calladine [10] introduced a method for estimating Gaussian curvature for
a triangulated surface. The technigque described here will not be limited to
this particular curvature measure but compute a whole set of estimates for
normal curvatures for each surface point. Given a triangulation of a surface
in three-dimensional space and outward (unit) normal vectors associated
with each point in the triangulation, a technique will be derived that allows
to calculate estimates for different kinds of curvature, e.g., Gaussian, mean
and absolute curvature. These curvature estimales can then be linearly
interpolated inside each triangle approximating the surface to be interro-
gated. Therefore, one obtains a Gouraud ** shaded "' representation for the
curvature behavior of the surface. The curvature estimates will be color
coded and rendered on a screen.

To obtain estimates for a particular point x; only triangles having
x; as one among their three vertices have to be considered. Tt is assumned
that the pelygonal boundary around x; formed by an ordered sequence of
vertices (except x; itself) constitutes a closed polygon, denoted as

pol, = x, X, .. (8)

L R "y

where the edges of this polygon are given by Xp, Xp2s  Xp, Xpds  coen
%, Xy The case when this polygon is nor closed will be treated later. The
normal vector at x;, denoted as n,, determines a whole set of vectors
perpendicular to n,. If a finite set of perpendicular vectors, say

D, = {d}, db, . d i), (9)

!
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has to be determined, these vectors are chosen such that

(i) mdl =0, i=1..k

(ii) dy = — d,,

(iii) all angles between two consecutive vectors & and o
i=1..k-1, are the same, and

{(iv) the sum of these angles equals 180 degrees.

?

The vector d; can be chosen arbitrarily as long as it satisfies (i). The
motivation for conditions (i) to (iv) is to ebtain a fnite number of normal
planes with normal vectors &) equidistantly distributed over a finite range
{condition (ui)). The conditions (ii) and (iv) ensure that this range 15 just
large enough to compute normal curvature estimates in all directions of
interest and not to compute estimates in a certain direction more than once.

It is now very easy to get a normal curvature estimate for a point
x, : calculate the two intersections between pol; and a normal plane with
normal vector &, i =1..k (it is assumed that there are exactly two
intersections). These two intersection points, called ¥, and ¥,, determine a
circle together with the point x,. Defining the two vectors a = x; — ¥, and
b=y;—y suchthatbxn, = ad!, a =0, the radius of this circle (approxi-
mating an osculating circle) is given by

_ llallbifa—v]
o ”1|E|a ! T (10)

(see also Faux/Pratt [18]). Here, **| || ™ is the uswal cuclidean norm.
Therefore, the absolute value of the normal curvature estimate 15 given by
x = l/r. The sign of the curvature estimate can be obtained doing the
following convention ; if b x a = ad!, a =0,  is considered being positive,
otherwise negative. Using this method for calculating normal curvature
estimates, one gets a total of &— 1 estimates for each point (the
k-th estimate equals the 1st estimate). The mimimal and maximal normal
curvature estimates (x, and w~,) can be computed as estimates for the
principal curvatures and estimates for Gaussian (&) x;), mean

(%{ﬁ, - xll) and absolute curvature (| x| + | x| ) can be derived from

them. It has also been found that the average of all computed normal
curvature estimates at a point x;, denoted as & is a good measure to
understand the curvature behavior of the surface (approximating the mean
curvature) :

|
=i _ i
¥ = oy Xl (1)
where k{, i = | ... & — 1, are all normal curvature estimates computed for a
point x,. Figure 11 illustrates the method for obtaining a single normal
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curvature estimate for a point x;. The accuracy of the computed normal
curvature estimates can further be checked using standard results of
differential geometry, e.g., whether the normals for the normal planes
associated with the principal curvature estimates & and &, are perpendicular
to each other, or whether Euler’s theorem is satisfied (see Farin [17]). It will
be investigated whether the method presented here can be extended to
higher-dimensional geometry in order to interrogate higher-dimensional
surfaces, e.g.. surfaces of the form (x, v, z, f(x, v. 2)Y (see Rath [40]).

Figure 11. — Normal curvature estimate for x.

Some remarks have to be made. The quality of the curvalure approxi-
mation depends on the size of the involved triangles relative to the surface
area approximated by them and on the accuracy of the normal vectors atl the
data points. If x; is nor surrounded by a closed polygon two cases can occur
either, some among the used normal planes for obtaining normal curvature
estimates still have two intersections or, no normal plane has two
intersections with the polygon. In the first case, some normal curvatuere
estimates can still be computed using the proposed technique, in the second
case, a weighted average of curvature estimates of points connected (o
x; by an edge in the triangulation could be taken. Special consideration must
be given to the case when more than two intersections are found between a
normal plane and a polygon surrounding x,. Figure 12 shows the average of
all computed normal curvature estimates (formula (11)) for points on the
surface (x, v, fix, ¥))7, where fix, v) =02 (x*~yY and x, ve [ 1, 1].
Normal vectors for a point on the surface can be computed exactly using the
gradient of f and are given by (- f,(x, ¥), = f,(x, ¥), 1)7. The function fis
evalualted on a 21 =21 « 21 rectangular grid such that the surface is
approximated by 20 « 20 « 2 = B00 triangles (each rectangle in the domain is
split into two triangles). Brighter grey levels represent areas with positive
average normal curvature estimates, darker areas with negalive averape
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Figure 13 — Average normal curvatwre estimate Tor o bivariate function,

Figure 13, — Average normal curvalure estimate on haman skull (see fi. 81
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normal curvature estimates. The *° discontinuity " in the grey levels
corresponds to the change of sign in the estimate for the average normal
curvature,

Very often, surfaces appear to have no changes in the sign of curvature
behavior when rendered on a screen, especially when Gouraud shading is
used, IT there are changes in the sign of curvature these can be made visible
using the described technique for surfaces approximated by triangular
facets. In figure 13 the estimate for the average normal curvature (formu-
la (11}) 1s shown for the human skull from figure 8 (which appears to be
fairly smooth there). The triangulation used for computing the estimates is
the triangulation obtained from the contour approximation step (ii).
Normals for the points on the surface are obtained using a linear difference
scheme for gradient approximation of the underlying trivariate function.
Brighter grey levels represent areas with positive average normal curvature
estimates, darker grey levels areas with negative estimates. The changes of
sign in average normal curvature can be seen clearly (sudden changes in the
grey levels).

COMNCLUSIONS

A scheme has been presenied which includes all steps necessary to
mathematically model contours of skalar fields in three-dimensional space,
beginning with data reduction and ending with a (contour) surface
interrogation technique. The limited length for this publication and the wish
not to leave out certain aspecis of the whole modeling process have not
allowed 1o discuss the single steps in more depth.

Future research is planned particularly for data reduction and curvature
estimation. Papers treating the problems of computing a piecewise linear
approximation for a contour and of curvature estimation are in preparation,
The methods described more briefly here will be explained in greater detail
here.
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