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DomiRank Centrality reveals structural
fragility of complex networks via node
dominance

Marcus Engsig 1 , Alejandro Tejedor 2,3,4 , Yamir Moreno 2,3,5,
Efi Foufoula-Georgiou 4,6 & Chaouki Kasmi1

Determining the key elements of interconnected infrastructure and complex
systems is paramount to ensure system functionality and integrity. This work
quantifies the dominance of the networks’ nodes in their respective neigh-
borhoods, introducing a centralitymetric, DomiRank, that integrates local and
global topological information via a tunable parameter. We present an analy-
tical formula and an efficient parallelizable algorithm for DomiRank centrality,
making it applicable to massive networks. From the networks’ structure and
function perspective, nodes with high values of DomiRank highlight fragile
neighborhoods whose integrity and functionality are highly dependent on
those dominant nodes. Underscoring this relation between dominance and
fragility, we show that DomiRank systematically outperforms other centrality
metrics in generating targeted attacks that effectively compromise network
structure and disrupt its functionality for synthetic and real-world topologies.
Moreover, we show that DomiRank-based attacks inflict more enduring
damage in the network, hindering its ability to rebound and, thus, impairing
system resilience. DomiRank centrality capitalizes on the competition
mechanism embedded in its definition to expose the fragility of networks,
paving the way to design strategies to mitigate vulnerability and enhance the
resilience of critical infrastructures.

Complex systems consist of many interacting components, with
dynamics and emergent behavior being system properties. However,
not all the constituents of such systems areequivalently central to their
structure anddynamics, and in some systems, a few elementsmight be
critical to ensure the integrity of the complex systems’ structure or
functionality1–10. Our capacity to accurately and efficiently identify key
elements of such complex systems is at the coreof actions asdiverse as
providing the most suitable website on an internet search11, defining a
vaccination scheme to mitigate the spreading of a disease12–15, or

ensuring the integrity and functionality of transportation networks
and critical infrastructures16–20.

Network theory, by abstracting complex systems as a collec-
tion of nodes (system constituents) and links (interactions), has
been instrumental in providing a general framework to assess
different aspects of the relative importance of nodes in a network,
yielding different node centrality definitions depending on the
evaluated aspects, ranging from considering only the number of
links a node has (degree centrality), aggregating the importance of
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a node’s neighborhood (e.g., eigenvector21, Katz22, and PageRank11

centralities) to considering the relative position of the node in the
network (e.g., closeness and betweenness23 centralities) or the
role of the node in a dynamic process (e.g., current-flow24,
entanglement25, and random-walk26 centralities). The performance
of these centralities is often benchmarked against each other in
evaluating their capacity to generate targeted attacks to dismantle
the network’s structure or disrupt its functionality. In fact, cen-
tralitymetrics have a pivotal role in designingmitigation strategies
to enhance network robustness and resilience, critical emerging
properties of utmost importance to maintain our day-to-day pri-
vileges and necessities, which heavily rely on interconnected
infrastructures such as the internet1,27,28 or the power grid29–31.

In this work, we introduce a centrality metric called DomiRank
centrality. Intuitively, it quantifies the degree of dominance of
nodes in their respective neighborhoods. Thus, high scores of
DomiRank centrality are associated with nodes surrounded by a
large number of unimportant (e.g., typically low-degree) nodes,
which they dominate. This new centrality gives importance to
nodes based on how locally dominant they are, where the extent of
the dominance effect can be modulated through a tuneable para-
meter (σ). Contrary to other centralities such as eigenvector or
PageRank, and due to an implicit competition mechanism in the
definition of DomiRank, connected nodes tend to have more dis-
parate scores in terms of DomiRank centrality. We demonstrate
that the inherent properties of DomiRank make both synthetic and
real-world networks particularly fragile to the DomiRank
centrality-based attacks, outperforming all other centrality-based
attacks. Furthermore, we show that the DomiRank-based attack
consistently outperforms most of the computationally feasible
iterative (recomputed after each node removal) attack methods
(e.g., degree, PageRank), and it causesmore enduring damage than
the efficient iterative betweenness attack. We provide both an
analytical formula and a computationally efficient iterative algo-
rithm for DomiRank, enabling it to be computed on graphical
processing units (GPUs) with a parallelizable computational cost
scaling with the number of links, allowing the centrality to be
computed for massive sparse networks.

Results
Definition and interpretation of DomiRank Centrality
We define DomiRank centrality, denoted Γ 2 RN × 1, as the stationary
solution of the following dynamical process

dΓ ðtÞ
dt

=αAðθ1N × 1 � Γ ðtÞÞ � βΓ ðtÞ, ð1Þ

where A 2 RN ×N is the adjacency matrix of the network N and
�
α,β, θ 2 R+ : lim

t!1
Γ ðtÞ= Γ 2 RN × 1

�
. Note that the definition pre-

sented here is valid for unweighted, weighted, directed, and
undirected networks, so in the more general case, a non-zero entry
of the adjacency matrix Aij =wij represents the existence of a link
from node i to node j with a weight wij. By expanding the term

αA(θ1N×1 − Γ(t)), we obtain that the rate of change dΓ ðtÞ
dt has a positive

contributing term proportional to the nodal degree k = A1N×1, and
two negative contributing terms: the first proportional to the sum
of Γ(t) over each node’s neighbors (AΓ(t)), and the second
proportional to the current value of Γ(t). Thus, for the i − th node,
Eq. (1) reads

dΓiðtÞ
dt

=α θki �
X

j

wijΓjðtÞ
 !

� βΓiðtÞ: ð2Þ

For enhanced interpretability and without loss of generality, we
discuss the caseof an unweighted network, forwhich Eq. (2) reduces to

dΓiðtÞ
dt

=α
X

j2neighborsi
θ� ΓjðtÞÞ
h i

� βΓiðtÞ: ð3Þ

where neighborsi refers to the set of nodes directly connected to
node i.

From a simple model perspective, Γ(t) can be interpreted as the
evolving fitness of the individuals in a population subject to compe-
tition. Two different processes can alter the fitness of each individual:
(i) Natural relaxation—fitness naturally converges to zero at a rate
proportional to a constant β; (ii) Competition—individuals compete
with eachneighbor for a limited amount of resources,with theirfitness
reflecting their capacity to successfully maintain those resources. An
individual’s fitness tends to increase by being connected to neighbors
whose fitness are below the threshold for domination (θ) and
decreases otherwise. Thus, the fitness of each individual changes
proportionally to (∑j∈neighborsθ − Γj(t)), where the proportionality con-
stant is denoted by α and represents the degree of competition
between neighboring individuals.

Notably, the fitness score of a given individual k is a function of (i)
its number of neighbors: the larger the number of neighbors of k, the
more resources at stake, and therefore the larger the potential of k to
increase/decrease its fitness, and; (ii) its neighbors’ neighborhood:
having neighbors lacking dominance in their respective neighbor-
hoods due to either the absence of neighbors or the presence of
dominant neighbors increases the fitness of individual k. In other
words, a given individual results in having a high value of fitness via the
dominance of its neighborhood, either due to the direct dominance of
its neighbors (quasi-solitary individuals) or via collusion (joint dom-
inance) emerging from the synergetic action of several individuals in
suppressing the fitness of a common neighbor while incrementing
their respective fitness. The DomiRank centrality is thus based on the
concept of dominance to provide scores to nodes that contextualize
their importance in their neighborhood. Consequently, its direct
interpretation in systems wherein interactions are mediated by dom-
inance/power-based relations, such as Rich-Club networks32–35, is
apparent. In the Supporting Material (SM - see Section S-I), we provide
illustrative examples ofRich-Clubnetworks that shedmore light on the
relevance of the key factors controlling the emergence of dominant
and dominated nodes via the joint dominance (collusion) mechanism
and how to steer the relative power exploiting the concept of joint
dominance.

From Eq. (1), we note that the centrality converges when
αA(θ1N×1 − Γ(t)) = βΓ(t), for which the analytical expression (see Meth-
ods section for proof) of theDomiRank centrality Γ 2 RN × 1 is given by:

Γ =θσðσA+ IN ×NÞ�1A1N × 1, ð4Þ

where
�
σ = α

β 2 R+ : detðσA+ IN ×NÞ≠0
�
. A convergence interval can

be defined for σ, such that it is bounded as follows:

σðN Þ 2 0,
1

�λN

� �
, ð5Þ

where λN represents the minimum (dominant negative) eigenvalue of
A. Also note that the threshold for domination, θ, only plays a rescaling
role on the resulting DomiRank centrality, and therefore, we choose
θ = 1 without loss of generality.

We recall that the definition, interpretation, and use of DomiRank
are valid for both undirected and directed networks. Only note that in
the case of directed graphs, the adjacencymatrix used in the definition
of DomiRank (e.g., Eq. (4)) should correspond to the reverse of the
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graph relevant for the transfer of resources (e.g., information, traffic,
etc.) to be consistent with the underlying concept of dominance.

Numerical solution and computational cost of DomiRank
One of the key advantages of the proposed centrality is that it can be
calculated efficiently through iteration in a parallelizable algorithm
(see Fig. 1),

Γ ðt +dtÞ= Γ ðtÞ+β σAð1N × 1 � Γ ðtÞÞ � Γ ðtÞ� �
dt, ð6Þ

with a computational cost per iteration C:

CðAÞ=m+ 5N, ð7Þ

which scales withOðm+NÞ, wherem is the number of links andN is the
number of nodes. Thus, the DomiRank scales with OðN2Þ in the worst
case (fully connected graph). Importantly, the algorithm can be dis-
tributed among κ cores given that κ ≤ m for sparse matrices, which
allows for parallel computation and efficient execution on GPUs. Fig-
ure 1 shows the computational costs of calculating DomiRank (analy-
tically and recursively) and PageRank (recursively) for different
network sizes, showing: (i) the high computational cost for the analytic
computation of DomiRank for large networks, as it requires matrix
inversion, (ii) the comparable computational cost of the recur-
sive DomiRank to that of PageRank on both CPU and GPU infra-
structure, and (iii) that the latency of computing recursive DomiRank
on the GPU is the computational bottleneck unless the number of links
is significantly larger the number of GPU cores, i.e., m > > κ. Thus,
DomiRank centrality is computable even for massive (sparse) net-
works, allowing computational time costs under one second for net-
works consisting of millions of nodes.

The role of DomiRank’s parameter σ
The DomiRank centrality is modulated by the ratio σ = α

β. To pro-
vide further insight into the effect of this parameter on the scores
of the centrality, we explore DomiRank for varying values of σ
computed for a very simple network (see Fig. 2). As σ → 0, the
competition between the different nodes vanishes, and the

importance of the nodes reduces to their degree (see Fig. 2a, d and
Eq. (4)). At the other end of the spectrum where σ! 1

�λN
, the com-

petition is maximum, and although the number of neighbors still
plays a role, the network structure is the key feature defining the
scores, where the synergistic competitive action of not directly
connected nodes might result in their joint dominance in their
respective neighborhoods. On that note, Fig. 2c,d shows how a
node with a relatively high degree (square node) results in the
lowest value of DomiRank centrality. This low value is the result of
the joint domination by its four neighbors, which, despite having
the same or lower degree as the dominated node, are able to
increase their relative fitness by dominating their respective non-
overlapping unfit neighborhoods and, together, the mentioned
node. In fact, at the limit of high σ, each node tends to be either
dominating its neighbor(s) or dominated by its neighbor(s) (see
Fig. 2c). This effect is evenmore apparent when the direction of the
steady-state pairwise contribution of the competition term to
DomiRank is represented by arrows in Fig. 2c. Interestingly, in
these extremely competitive environments, negative DomiRank
scores emerge (see Fig. 2d). Individuals with deficit values of
DomiRank are interpreted as fully submissive individuals who,
instead of competing, directly give up their resources to neigh-
boring nodes. This is the case for the node highlighted by its square
shape in Fig. 2, which for highly competitive environments (Fig. 2c)
experiences a reversal of its fitness exchanges (represented by the
arrows) when compared with less competitive environments
(Fig. 2a). Note that nodes exhibiting negative scores are able to
maintain their steady-state DomiRank value due to the relaxation
mechanism present in the model (see Eq. (1)). This mechanism
effectively functions as a recovery or healing process for such
nodes. Finally, intermediate values of σ (e.g., see Fig. 2b) represent
different domination strategies based on utilizing different
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Fig. 2 | DomiRank for different levels of competition (σ).DomiRank centrality is
displayed on the nodes of a simple network with N = 15 nodes for a low, bmedium,
and c large values of σ. Panel d shows the DomiRank centrality as a function of σ,
wherein each solid line represents a specific node (color encoding node degree). In
panels a–c, the direction of the pairwise transfer of fitness between nodes is shown
by arrows, with their thickness representing the magnitude of that exchange. Note
that for visualization purposes, the arrow thickness in panels a–c are scaled 25: 5: 1.

Analytical Domirank
CPU: Rec. DomiRank
GPU: Rec. DomiRank
CPU: Rec. PageRank
GPU: Rec. PageRank

Fig. 1 | Computational cost ofDomiRank.Mean (30 samples) computational costs
to compute DomiRank analytically and estimate it recursively on a multi-threaded
CPU and on the GPU as a function of the network size N. The mean DomiRank
computational cost is also compared with the mean computational cost for esti-
mating PageRank on the same multi-threaded CPU and GPU. The convergence
criterion is evaluated using the L1 error between two consecutive iterations - i.e.,
1
N jjΓ ðtÞ � Γ ðt +dtÞjj1<dt � ϵ, with a threshold set to ϵ = 10−6 (note that for the chosen
convergence threshold, the Spearman correlation with the analytical solution
is > 0.9999999).
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balances of local node-based (low σ) and global network-structure-
based (high σ) properties.

To develop some intuitive understanding of the role of σ in setting
up the trade-off between local (nodal) vs. global (meso- to large-scale)
network properties in the resulting DomiRank distribution, we explore
the DomiRank scores for different values of σ in network with clear
structure at the mesoscale level, a square lattice network (see Fig. 3).
Note that we have chosen a small domain, 7 × 7 (49 nodes) to facilitate
the visual interpretation of the results. When σ approaches its lower
bound (Fig. 3a), DomiRank converges to the node degree, relying
solely on local information. As a result, all nodes except those on the
lattice’s edges tend to have nearly identical DomiRank values. As σ
increases, the DomiRank values begin to deviate from the node degree
scores (Fig. 3b). This deviation occurs because each node’s DomiRank
becomes influenced by the values of their immediate neighbors. As a
result, nodes directly linked to the lattice’s edge nodes can partially
dominate them, increasing their own DomiRank scores (note that this
effect appears for significantly smaller values of σ than the one dis-
played in Fig. 3b, but its visualization is less apparent using a consistent
color scheme across panels).With further increments in σ (Fig. 3c), the
competition dynamics intensify. More internal nodes start sensing
the lattice’s boundary, and this influence propagates through the
DomiRank scores, causing them to adapt based on dominance rela-
tionships. In essence, a node’s DomiRank score is no longer solely
determined by its immediate neighboring nodes; it also considers
more distant features. Upon reaching the maximum σ value (Fig. 3d),
each node’s DomiRank score is partially influenced by the entire net-
work via the competition mechanism. For this extremely competitive
setting, an ultimate alternating pattern of dominating and dominated
nodes emerges shaped by two global network properties: the finite
boundary and global symmetries. Thus, for example, in a square lattice
with an even number of nodes, the pattern that emerges differs from
the one shown in Fig. 3 due to the different constraints exerted by the
system symmetry (for more details, see section S-II in the SM). Also, as
an end member, a lattice with periodic boundary conditions, or an
infinite lattice, all nodes are indistinguishable from any centrality
metric perspective, including DomiRank.

Dominance and network fragility
We also advocate for the capacity of DomiRank to reveal network
fragility, both in terms of structure and dynamics. The rationale of
this claim ties back to the two mentioned key factors dictating the
DomiRank score of a node: its degree (number of neighbors) and the
characteristics of its neighbors’ neighborhoods (peripheries). In this
context, nodeswith high degrees that are connected to neighborswith
few connections, i.e., sparse peripheries, are the prime candidates to
achieve high DomiRank scores (being a star network, the end-member
case of such a configuration). Those nodes are also central to network
fragility, as their failure would lead to the fragmentation of their
neighborhood. Interestingly, there exists an alternative source of
heightened dominance that relies less on a node’s local properties
(degree) andmore on its position within the global network structure.
This kind of dominance primarily emerges in highly competitive
environments characterized by high σ values. Specifically, it results
from joint dominance, where a group of nodes shares an overlapping
neighborhood and lacks direct connections among themselves. Con-
sequently, each of these nodes contributes to subduing dominance
within the shared neighborhood. Notably, this mechanism also serves
to identify vulnerable parts (structures) of the network, as the joint
removal of the dominant nodes would lead to the fragmentation of
their shared neighborhood, highlighting the fragility inherent in this
structure.

Thus, DomiRank centrality-based attacks are anticipated to be
very effective in dismantling networks because of their capacity to
shatter the network in small components by targeting preferentially
fragile neighborhoods. Also, from the point of view of the dynamics on
networks, removing high-score DomiRank nodes could drastically
disturb such dynamics, as those removalswould appear as insuperable
obstructions in sections of the system.

Evaluating network robustness under DomiRank-based attacks
In order to gain further insight into the capabilities ofDomiRank and to
benchmark its performance with respect to other commonly used
centralities, we examine the efficacy of targeted attacks based on
DomiRank centrality for different network topologies, analyzing its

a) b)

c) d)

0.95

0.01 0.75

0.99

������	
�����	������������	��
� �

Fig. 3 | The roleofσ in settingDomiRankvalues.DomiRank centrality is displayed
on the nodes of a 2D-square lattice withN = 49 nodes for different values of σ a 0:01

�λN
,

b 0:75
�λN

, c 0:95
�λN

and d 0:99
�λN

to illustrate different levels of competition, and how those
levels set the trade-off between local (nodal) and global (meso- to large- scale

structure) network information conveyed by DomiRank. Note that for each panel,
the values of DomiRank are normalized to range in interval [0, 1] for enhanced
visualization.
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ability to dismantle the network structure and functionality, and con-
trasting its performance with those of the attacks based on other
centralities.

In this section, we first evaluate the structural robustness of dif-
ferent networks, both synthetic and real-world topologies, under
sequential node removal (attacks)basedondifferent centralitymetrics
and compare the results with those obtained based on DomiRank. To
evaluate network robustness, we use its most commonly used proxy,
the evolution of the relative size of the largest connected component
(LCC)36–39, whilst the network is undergoing sequential node removal.
We compare the robustness of the different networks for the different
attacks by directly comparing the resulting LCC curves, and for sim-
plicity and enhanced comparability, we also use the area under that
curve as a summary indicator of robustness (the larger the area, the
more robust the network is under that particular attack).

We start our analysis with synthetic toy networks, consisting of a
reduced number of nodes, but wherein their graphical representation
still allows us to visually identify patterns on the centrality distribu-
tions for different topologies, gaining insight into the interpretation of
DomiRank and its performance when compared with different cen-
tralities. Particularly, we perform targeted attacks based on DomiRank
and nine other centralities for three different topologies: 2D-regular
lattice40, Erdős-Rényi41, and Barabási-Albert42 networks. Note that for
each topology, the range of σ was explored to determine its optimal
value to dismantle the network, i.e.,minimize area under the LCC curve
(for other centralities such as Katz and PageRank, we used, without
loss of generality of the results, the default values of 0.01 and 0.85,
respectively—See SM section S-III for details). Figure 4a, e, i reveals that

theDomiRank centrality-based attacks dismantle these three networks
more efficiently than all other tested centrality-based attacks. More
particularly, DomiRank excels at dismantling regular networks
(Fig. 4a). It is not surprising that for this topology, DomiRank centrality
produces the most effective attack for large values of σ, wherein net-
work structure is overweighed to the detriment of local node prop-
erties. This value of σ leads to a DomiRank distribution wherein if a
node is important (dominating node), all of its adjacent nodes are not
important (dominated node), and vice-versa (Fig. 4b). An attack
strategy based on such an alternating spatial pattern is significantly
advantageouswith respect to other traditional centrality-based attacks
(Fig. 4a–d). This advantage stems from the strategic removal of
existing neighbors, effectively isolating nodes and efficiently reducing
the size of the largest connected component. Applying a similar
DomiRank-based attack strategy to a more heterogeneous network,
such as Erdős-Rényi (see Fig. 4e), still leads to the highest fragility of
the network, also capitalizing on the built-in competition mechanism
of DomiRank (high value of σ) that penalizes connections between
nodes labeled as highly central, unless they possess disjoint neigh-
borhoods to exert their respective dominance. For most of the other
centrality metrics, including Betweeness, Eigenvector, PageRank, and
Katz, highly central nodes permeate their centrality to their direct
connections (see Fig. 4f–h). However, that by-contact importance only
reflects the centrality of their truly important neighbor, yielding attack
sequences less efficient than DomiRank. As networks display more
hub-dominated topologies (e.g., scale-free),we expect that theoptimal
value of σ for the most efficient attack decreases, emphasizing nodal
properties (degree) with respect to the neighborhood structure. In the
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Fig. 4 | Comparing DomiRank with other centralities in dismantling toy net-
works. Evolution of the relative size of the largest connected component whilst
undergoing sequential node removal according to descending scores of various
centralities for three toy networks: a 2D regular lattice (N = 49), e Erdős-Rényi (ER;
N = 32), and i Barabási-Albert (BA; N = 25). For each topology, panels b–d, f–h, and

j–l show the graphical representation of the respective networks at various stages
of the attack based on DomiRank, betweenness, closeness, and PageRank cen-
tralities. Note that the nodes are colored according to the relative value of the
centralities normalized to be in an interval [0, 1] for enhancing comparability and
visualization purposes.
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toy example for a network generated by a Barabási-Albert model (see
Fig. 4i), DomiRank still outperforms other centrality-based attacks in
dismantling the network. In this case, the improvement is incremental
since the most relevant information to destroy the network is local
(node degree), andmost of the centralities converge to a similar nodal
ranking and attack sequence (Fig. 4j–l).

We further investigate the efficacy of the attack strategies based
on the DomiRank centrality by dismantling larger synthetic networks
(N = 1000) with varying degrees (2< �k <20) for numerous topologies.
Particularly, we analyze the robustness ofWatts-Strogatz43, stochastic-
block-model44, Erdős-Rényi, random geometric graph45, and Barabási-
Albert networks, under ten different targeted attack strategies based
on different centralities, including DomiRank, which revealed itself as
the overall most efficient at dismantling synthetic networks (Fig. 5a–f).
As hinted from our previous analysis of the toy networks, the margin
by which the DomiRank-based attack outperforms the other strategies
relates to the topological properties of the networks, which also dic-
tate the optimal value of σ. Thus, for the Barabási-Albert topology
(hub-dominated), DomiRank offers only an incremental improvement
in the efficiency at dismantling the network (see Fig. 5f). On the other
hand, for networks with meso-to-macro scale structural features (e.g.,
regularity) that dominate over the local node-based properties,
DomiRank centrality significantly outperforms all other centralities
(Fig. 5d). This also occurs for the Erdős-Rényi (Fig. 5b,e) and Watts-
Strogatz networks (Fig. 5a). For a more detailed comparison between
the different centralities, we refer the reader to the SM (section S-IV)
where the correlation between them is displayed.

Real networks introduce several properties that are hard to pro-
duce simultaneously using generative models. Therefore for a more
thorough and general benchmark of DomiRank, we analyze various
real networks topologies of various sizes: (g) hub-dominated transport
network (RyanAir connections)46, (h) neural network (C-elegans)3,47,48,
(i) spatial network (power-grid of the Western States of the United
States of America)43, (j) citation network (high-energy-physics
arXiv)49,50, (k) massive social network (LiveJournal users and their
connections)50, and (l) massive spatial transport network (Full US
roads)49. Our results are in line with those for synthetic networks,
showing that the DomiRank is able to consistently dismantle the net-
works more efficiently than the other centrality-based attacks tested
(see Fig. 5g–l). Another interesting phenomenon also observed for the
synthetic networks is that the DomiRank-based attacks remove links
more efficiently than previous methods (see Section S-VII in the SM).
This means that for many of these networks, not only is the DomiRank
better at reducing the size of the largest cluster size, but it also more
severely cripples its connectivity, yielding not only to an overall faster
but also a more thorough dismantling of the network. However, we
note that for the social network analyzed (Fig. 5k), the PageRank-based
attack outperforms the one based on DomiRank. We attribute this
phenomenon to the presence of structural heterogeneity in the net-
work topology (i.e., different structures in different subgraphs of the
network). This heterogeneity hinders the assessment of node impor-
tance by DomiRank with a single value of σ for the whole network. In
the SM (section S-V), we provide evidence showing that, indeed, het-
erogeneity can lead DomiRank to underperform, hinting at potential
approaches to address the evaluation of networks exhibiting
heterogeneity.

As a last point of discussion about Fig. 5, we want to emphasize
how the sensitivity of DomiRank to its unique parameter σ becomes
apparent from analyzing and displaying the results for such an
extensive set of diverse networks jointly. This sensitivity, far from
being a weakness, is a key strength of DomiRank, as it allows us to
assess the important nodes in networks with topologies as different as
a regular lattice and hub-dominated network. Thus, for any individual
case, the edge that a DomiRank-based attack could offer over other
centrality-based attacks could vary from being very significant (e.g.,

planar networks) to just marginal (e.g., scale-free). In fact, it is the
consistent and sustained superior performance of DomiRank-based
attacks across all ranges of topologies that makes these results parti-
cularly noteworthy overall.

The analysis of synthetic networks and real-world topologies has
demonstrated the capacity of DomiRank to integrate local (node) and
mesoscale information of the network, which, together with the
competition mechanism embedded in its definition, produces cen-
trality distributions that efficiently dismantle the networks by avoiding
redundant scores in neighboring nodes (importance by-contact). This
apparent handicap for other centralities couldbe addressed at the cost
of recomputing the centrality distributions after each node removal.
Note that this cost is prohibitive for distance-based or process-based
metrics such as closeness, betweenness, or load centralities, even for
networks of modest sizes as, for instance, betweenness has a compu-
tational complexity that scales with OðNmÞ and OðNm+N2 logNÞ for
unweighted and weighted graphs respectively51. Despite this limita-
tion, and for the sake of completeness, we also benchmark the
DomiRank centrality distribution (computed once before the begin-
ning of the attack) with the targeted attacks based on sequentially
recomputed centralities. In this part of the analysis, we have incorpo-
rated attacks based on the Collective Influence (CI) algorithm52–54,
which is an iteratively recomputed centrality that aims to find themost
influential nodes in a network. CI could be particularly relevant to our
study as: (i) it can be mapped to an optimal percolation problem, and
(ii) it has been successful in identifying previously neglected (non-
locally important) nodes as important influencers.

Figure 6a–d displays the increase in performance of various
centrality-based attacks when recomputed iteratively, particularly for
betweenness centrality. In fact, for all the synthetic topologies tested,
iterative betweenness and load centralities lead to the most efficient
attacks at dismantling networks by a largemargin.We also note, thatCI
is able to fully disintegrate the network (i.e., reduce all clusters to
minimum size) the fastest, as expected from its mathematical for-
mulation. However, the path of deterioration followed by the LCC
during the attack is not among the most competitive in rapidly and
sustainably reducing the size of the largest connected component.
Notably, the attacks based on pre-computed DomiRank centrality
generally outperform other attacks based on iterative centralities
that are computationally feasible for medium, large, and massive
networks - i.e., iterative degree, PageRank, eigenvector, Katz, and CI
(except for ER and marginally for BA). Note that attacks based on
iterative DomiRank centrality perform worse than the ones obtained
from a single computation, which is actually expected as DomiRank
leads to attack strategies aiming to cause structural damage, which
requires the joint removal of several nodes. Therefore by recomputing
DomiRank every time step, no coherent strategy emerges as the net-
work structure becomes a moving target, i.e., the structure is re-
evaluated at a faster rate (every node removal) than the time needed to
remove the number of nodes necessary to inflict the structural
damage. This fact underscores the intrinsic ability of the pre-
computed DomiRank version to extract local information while con-
sidering the network’s global context (with a larger value of σ indi-
cating a broader global context). In other words, DomiRank’s
underlying competition mechanism establishes an inherent, built-in
process to prevent the assignment of artificial redundant scores to
neighboring nodes. All the other displayed methods in Fig. 6a–d lack
this intrinsic mechanism, which is compensated for through the
sequential recomputation of the centralities after each node removal.

From all the attacks shown in Fig. 6, we want to highlight iterative
betweenness, being the most efficient, and CI because it shares
potential similarities with DomiRank. Attacks based on iterative
betweenness centrality excel at destroying the LCC by finding bottle-
neck nodes instrumental in mediating most of the shortest paths and,
thus, focusing on simply splitting the network. As a result of these
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fundamental differences in the aim of the two centralities, we expect
that despite the DomiRank-based attack being less efficient at dis-
mantling the network than those based on iterative betweenness, it
causes more severe and enduring damage, making it more difficult to

recover from when compared with the damage produced by an
iterative betweenness attack. CI-based attacks seek to find influential
nodes according to their potential to cascade down information. As
such, CI does not look only to local information but also integrates

"# $��%	 %�� ���& �''

()#(* $����+�� ���&

�&

�&

�&

�&

�&

�&

���

���

���

���

���

���

���

���

���

���

���

���

����)	���������& ����� ��,��������&

-.��/#����,��������� ��� ��&#�0	�����+��������!��" ����&

#&

$&

%&

�&

	&

�&

����1��2��0�	��34

��� ��� ��� ��� ��� ������ ��� ��� ��� ��� ��� ��� ��� ��� ��� ��� ���

���

���

���

���

���

���

���

���

���

���

���

���

5�
� 
�,
��
��
��
0�
��
�
��

4�
��
��

/#4�+��� �	������ �� �&

�	���	�������� �! �&

0.89
=

������

�

0.90
=

������

�

0.92
=

������

�

0.83
=

������

�

0.85
=

������

�

0.12
=

������

�

0.51
=

������

�

0.18
=

������

�

0.04
=

������

�

0.06
=

������

�

0.40
=

������

�

0.67
=

������

�

Fig. 5 | Centrality-based attacks on synthetic and real-world networks. Evolu-
tion of the relative size of the largest connected component (robustness) whilst
undergoing sequential node removal according to descending scores of various
centrality measures for different synthetic networks of size N = 1000: a Watts-
Strogratz (WS; small-world, �k =4), Erdős-Rényi (ER) with b high (�k = 20) and e low
link density (�k =6), c random geometric graph (RGG; �k = 16), d stochastic block
model (SBM; �k = 7), and f Barabási-Albert (BA; �k =6). The performance of the

attacks based on the different centrality metrics is also shown for different real
networks: g hub-dominated transport network (airline connections, �k = 16),
h neural network (worm, �k = 29), i spatial network (power-grid, �k = 3), j citation
network (�k = 25), k massive social network (�k = 19), and l massive spatial transport
network (roads, �k = 5). Note that for panels j–l, wheremassive networks are shown,
only a few attack strategies are displayeddue to the impossibility of computationof
the rest.
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information regarding the neighboring structure of the nodes. Despite
both CI and DomiRank having the ability to combine local and global
network properties, they differ fundamentally in their mechanism to
do it, and therefore, their nodal importance assessment could differ
significantly (See section S-VI in the SM for more details). In fact, we
expect DomiRank (particularly for large σ) to generally inflict more
enduring damage than CI since DomiRank focuses more on fragile
neighborhoods, whose fragmentation depends on joint sets of nodes,
and once removed, the restitution of a fraction of those nodes might
not serve to recover a proportionally equivalent fragmented section.

Thefirst indirect piece of evidence supporting the hypothesis that
DomiRank inflicts more severe and enduring damage than other
centrality-based attacks is that DomiRank-based attacks remove links
more efficiently than other attack strategies (see section S-VII in the
SM). To test the hypothesismoredirectly, we implemented two simple
recovery mechanisms to evaluate from which of the attacks the net-
work was less prompt to recover. Both recovery mechanisms assign a
probability p to a given removed node to recover every time step,
wherein the first strategy selects the nodes in the same order that they
were removed (results shown in Fig. 6e–h), while for the second
strategy, nodes are selected at random from the pool of removed
nodes (see results in section S-VIII in the SM). Our results show that for
all the networks, except for the random geometric graph (probably
due to network modularity), when a recovery mechanism is put in
place, the attack based on a single computation of DomiRank cen-
trality has a comparative dismantling ability than the attack based on
iterative betweenness, as shown by the deterioration trend of the LCC
in Fig. 6e–h. Moreover, for all the analyzed topologies, the DomiRank-
based attack causes longer-lasting effects, as the recovery mechanism
requires a larger fraction of reinstated nodes to obtain an equivalent
recovery in termsof LCC. The superior ability of theDomiRank strategy
to inflict more severe damage is grounded in its aim to dismantle the

inherent network structure via the dominance mechanism. To further
demonstrate this point, Fig. 6e–h also displays a high-σ DomiRank-
based attack (boosted dominance), where the pace at which the net-
works recovered was increasingly impeded. Thus, the DomiRank cen-
trality provides a trade-off between the celerity and the severity of the
attack throughmodulation of σ, highlighting its applicability to design
vaccination schemes and other mitigation strategies.

Sequential node failure caused by random or targeted attacks can
compromise not only the structure but also the dynamics taking place
on the network, i.e., the functional robustness of the network. Here, we
benchmark the ability of DomiRank-based attacks to disrupt a rumor-
spreading dynamic55 ondifferent network topologies.We implement an
epidemic-likemodel for spreading rumors, where each node represents
an individual who can be in three potential states with respect to the
rumor: ignorant, active spreader, and stifler (have heard the rumor but
is no longer spreading it)56. More specifically, the rumor-spreading
dynamic takes four arguments: (i) the network N , (ii) the origin of the
rumor (node), (iii) the probability of persuading someone of the rumor
(ρr), and (iv) the probability of becoming a stifler (ρs). We implement
this model on the subsequent networks originating from sequences of
node removal according to different centrality-based targeted attacks,
choosing the fraction of the population that believes the rumor at the
end of the process as the proxy for functional robustness. Specifically,
we contrast the results obtained from using a DomiRank-based attack
with three other relevant centralities: Degree, PageRank, and CI. The
selection of these threemetrics is based on different reasons. Degree is
a simple, widely-used centrality, which at the same time corresponds to
the limit of no competition for DomiRank (σ =0). PageRank is arguably
one of the most effective metrics to identify critical nodes, as shown in
the results in Fig. 5. We also include CI as an example of a sequentially
recomputed centrality (after each nodal removal) that is particularly
relevant to information-spreading dynamics.

Fig. 6 | Assessing the effect of iterative centrality-based attacks and recovery
mechanisms on network resilience. Panels a–d show the evolution of the relative
size of the largest connected component of various synthetic networks of size
N = 500, namely; aWatts-Strogatz (WS; �k = 4), bBarabási-Albert (BA; �k =4), c Erdős-
Rényi (ER; �k =4), and d random geometric graph (RGG; �k = 7), undergoing
sequential node removal based on iteratively computed centralities and on pre-

computed DomiRank. Panels e–h show the evolution of the relative size of the
largest connected component for the same networks undergoing sequential node
removal based on pre-computed DomiRank (optimal and high σ), iterative
betweenness, andCollective Influence (CI), where a stochastic first-in-first-out node
recovery (stack recovery implementation) process, with a probability of recovery
p =0.25 per time step, is implemented.
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Figure 7 showcases the superior ability of the DomiRank-based
attacks to halt a rumor-spreading process in comparison with degree-
and PageRank-based attacks for synthetic and real networks. When
compared with CI, a general tendency emerges: DomiRank outper-
forms in terms of disrupting the spreading process for smaller frac-
tions of nodes removed, but as more nodes are removed, CI becomes
competitive or even outperforms DomiRank (see Fig. 7). We attribute
this to the fact that DomiRank attempts to halt the spreading process
by creating obstructions for the spreading process by removing sets of
locally dominant nodes in the network, which very effectively impedes
the spreading of information in their neighborhoods. In other words,
contrasting with the goal of CI to undermine the multiplicative con-
tagion effect by targeting the removal of potential super-spreaders,
DomiRank-based attacks aim to stall the spreading process by frag-
menting the spreading domain, quasi-isolating neighborhoods in the
network.

The ability ofDomiRank tohighlight the set of nodes to effectively
establish firewalls to mitigate the propagation of rumors is con-
ceptually generalizable to other dynamic processes, such as informa-
tion transport or epidemic spreading, to name a few, prompting the
idea that the DomiRank could be used for establishing efficient vac-
cination schemes.

Discussion
This work presents a new centrality metric, called DomiRank, which
evaluates nodal importance by integrating different aspects of the
network’s topology according to a single tunable parameter that
controls the trade-off between local (nodal) andmesoscale (structural)
information considered. Thus, the competitionmechanismembedded
in the definition of DomiRank offers an alternative perspective on
identifying highly important nodes for network functionality and
integrity by contextualizing the relevance of nodes in their respective

neighborhoods, taking into account emergent synergies between not
directly connected nodes over overlapping neighborhoods (i.e., joint
dominance).

One key feature of DomiRank centrality is its low computational
cost and fast convergence. On this front, the DomiRank centrality is
competitive with the PageRank centrality whilst being parallelizable,
which allows for efficient execution on GPU infrastructure, making it
applicable on massive sparse networks.

We show the superior ability of DomiRank to generate effective
targeted attacks to dismantle the network structure and disrupt its
functionality, offering an outstanding trade-off between the cel-
erity and the severity of the attack and, therefore, significantly
reducing network resilience. DomiRank could be further custo-
mized to account for localizing heterogeneity in the topology of
massive real-world networks, enhancing the assessment of nodal
importance in such systems. Also, we anticipate that hybrid attack
strategies, where DomiRank is recomputed at different stages of
the attack process, might also increase its performance. Moreover,
analyzing the robustness of networks in the light of the recently
introduced Idle Network (connectivity of the removed nodes by an
attack)46,57 could be particularly illuminating as the DomiRank’s
parameter exerts a direct control on the fragmentation of the Idle
network.

Finally, we want to highlight the broad applicability of DomiRank
centrality to different domains, as via its versatile dominance
mechanism, it is anticipated to be instrumental for tasks as diverse as
improving SPAM detection, establishing effective vaccination
schemes, or assessing vulnerabilities in transportation networks, just
to name a few. Thus, DomiRank, by revealing fundamental aspects of
network fragility, can spur further research to develop more effective
mitigation strategies to improve our overall understanding of complex
systems structure and resilience.
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Fig. 7 | Functional robustness of synthetic and real-world networks under
centrality-based attacks. Average rumor spread fraction (error-bars representing
the standard deviation) of 1000 rumor spreading simulations as a function of the
subsequent network stage resulting of sequential node removal according to

degree, PageRank, DomiRank, and Collective Influence strategies, for two synthetic
networks: a 2D regular lattice (�k =4) and bWatts-Strogatz (WS; �k =6), and two real
networks: c a contact-tracing social network (Hospital; �k = 30) and d a survey based
social network (Residence; �k = 16).
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Methods
DomiRank centrality assigns a dominance score to nodes in a network
based on a competition dynamic, wherein the level of competition is
modulated by the parameter σ. In the Results section, DomiRank
centrality was benchmarked versus other centralities by comparing
the efficacy of their corresponding attacks. In those cases, DomiRank
was computedwith the so-called optimal competition level σ*, which is
the level of competition that generates the most efficient attack (i.e.,
minimize the area under the curve of the largest connected compo-
nent for a network undergoing sequential node removal). In this sec-
tion, we present the methodology used to compute DomiRank
Centrality and explore the parameter space to find the optimal level of
competition σ*.

First, we present the analytical and numerical methods to com-
pute DomiRank centrality. Recall that DomiRank is the steady-state
solution to Eq. (1) (with σ = α

β),

1
β
dΓ ðtÞ
dt

= σAðθ1N × 1 � Γ ðtÞÞ � Γ ðtÞ:

The steady-state solution Γ exists if Γ(t) converges to Γ,

lim
t!1

dΓ ðtÞ
dt

=0, ð8Þ

which implies

lim
t!1

½σAðθ1N × 1 � Γ ðtÞÞ � Γ ðtÞ�=0: ð9Þ

We can solve eq. (9) in the following manner,

σθA1N × 1 � lim
t!1

½ðσA+ IN ×NÞΓ ðtÞ�=0, ð10Þ

and therefore, the analytical solution to DomiRank takes the form:

lim
t!1

Γ ðtÞ : = Γ = σθðσA+ IN ×NÞ�1A1N × 1: ð11Þ

Note that the analytical solution involves a term corresponding to the
inverse of a sparse matrix. Computing this inverse could pose chal-
lenges in terms of both computational time cost and memory usage,
especially for increasingly large networks. Alternatively, DomiRank can
also be found as the solution of the linear system of equations
(σA + IN×N)Γ = σθA1N×1, allowing us to obtain the exact calculation of
DomiRank for significantly larger networks than when using the
inverse formulation. Nevertheless, for massive networks, the compu-
tational time cost for the analytical solutionmay still remain infeasible.
For this reason, we introduced the numerical (recursive) solution to
DomiRank as displayed in Eq. (6) (with σ = α

β, β = 1 and without loss of
generality),

Γ ðt +dtÞ= Γ ðtÞ+ ðσAðθ1N × 1 � Γ ðtÞÞ � Γ ðtÞÞdt, ð12Þ

allowing the approximation of DomiRankwith a computational cost of
τðm+ 5NÞ, where τ is the total number of time steps required for
convergence (set such that 1

N jjΓ ðtÞ � Γ ðt +dtÞjj1<dt � ϵ), m is the num-
ber of links, N is the number of nodes, and computational complexity
scaling with Oðmþ NÞ.

Now that the different methodologies to compute DomiRank are
stated, we focus on estimating σ*. We systematically explore the levels
of competition σ, by linearly discretizing the interval of convergence
ð0, 1

�λN
Þ into n (typically n = 100) values. For each of these values, we

compute DomiRank and generate an attack strategy, wherein nodes
are sequentially removed in decreasing order of DomiRank. The effect
of each attack strategy is summarized in a curve representing the
evolution of the largest connected component throughout the attack.

We use the area under this curve as a quantifier to assess the efficacyof
the attack, and thus, σ* is selected as the value of σ that produces the
attack sequence that minimizes the aforementioned area. Note that
both the computation of DomiRank for the different values of σ, and
the size of largest connected component at the different stages of the
corresponding DomiRank-based attacks are independent and can thus
be computed in parallel. However, it is also important to notice that
the computation of the subsequent values of the largest connected
component size of a network undergoing an attack is computationally
expensive. Specifically, the computation of the largest connect com-
ponent of a network with N nodes and m links scales with Oðm+NÞ.
This computation is repeated after each removal, i.e.,N times, yielding
a total computational cost <OðNðm+NÞÞ. For large networks, we can
reduce the computational cost of finding σ* by sampling, i.e., com-
puting the largest connected component every 1

γ = 1% of nodes
removed. This reduces the computational cost of the evaluation of the
attack, effectively causing this computation to scale linearly with the
number of edges <Oðγðm+NÞÞ in the network. The Results section
shows how this methodology can be applied to massive networks of
size N > 20, 000, 000.

The implementation in Python can be found by referring to the
Code Availability section, or on GitHub (https://github.com/mengsig/
DomiRank).

Reporting summary
Further information on research design is available in the Nature
Portfolio Reporting Summary linked to this article.

Data availability
The data supporting the findings of this study are available within the
paper and references.

Code availability
The code developed to compute DomiRank centrality is available at
https://doi.org/10.5281/zenodo.8369910.
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