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ABSTRACT OF THE DISSERTATION

Hamilton Jacobi Equations and Variational Problems in Wasserstein Space

by

Mohit Bansil

Doctor of Philosophy in Mathematics

University of California, Los Angeles, 2024

Professor Christina Kim, Chair

This thesis explores several problems in the calculus of variations especially in the space of

measures. Drawing from mean field games (MFG), Hamilton–Jacobi equations (HJE), opti-

mal transport (OT), and quantum mechanics, we explore challenges in existence, uniqueness,

and well-posedness in both deterministic and stochastic settings.

The first part of this work examines mean field games and the associated master equation,

an infinite-dimensional partial differential equation that links individual decisions with popu-

lation dynamics. We establish new well-posedness results under monotonicity and convexity

conditions, extending previous theories to accommodate broader interaction structures and

types of noise (in particular we obtain results in the absence of idiosyncratic noise).

Next, we investigate Hamilton–Jacobi equations in optimal control and classical me-

chanics, using canonical transformations as a method to achieve global well-posedness in

non-convex settings. This approach expands the range of systems that can be studied, with

implications for stability and optimal trajectory analysis. This method also extends to the

master equation, revealing hidden monotonicity properties that result in new well-posedness

theories.
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Finally, we explore an extension OT to quantum mechanics by formulating a quantum

dynamic transport problem governed by the Schrödinger equation. By establishing a link

with the Pauli problem in quantum state reconstruction, this framework could open new

avenues for attacking this long-standing problem.
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This work was supported in part by the National Science Foundation Graduate Research

Fellowship under Grant No. DGE-1650604 and by the Air Force Office of Scientific Research

under Award No. FA9550-18-1-0502. I would like to acknowledge the partial support of the

Heilbronn Institute for Mathematical Research and the UKRI/EPSRC Additional Fund-

ing Programme for Mathematical Sciences through the focused research grant “The master

equation in Mean Field Games”. I am also grateful for the support of UCLA’s Dissertation

Year Fellowship.

x



VITA

2020 B.S. (Mathematics), Michigan State University.

2022 C. Phil. in Mathematics, UCLA, Los Angeles, California

PUBLICATIONS

Mohit Bansil and Alpár R. Mészáros, Hidden monotonicity and canonical transformations

for mean field games and master equations. arXiv:2403.05426, 2024. Preprint.
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CHAPTER 1

Introduction

1.1 Background and Motivation

In recent years, game theory has witnessed a remarkable evolution with the emergence of

mean field games (MFGs), a framework that addresses the behavior of large populations

of interacting rational agents. Mean field games offer a powerful lens through which to

study complex systems characterized by the interplay between individual decision-making

and collective dynamics. Central to this framework is the master equation, a fundamental

equation that governs the evolution of the system’s distribution of agents over state and

action spaces.

The study of mean field games is motivated by diverse applications ranging from eco-

nomics and finance to biology and engineering, where understanding the strategic interac-

tions of a large number of agents is crucial. Traditional game theory approaches encounter

challenges when applied to large-scale systems due to the complexity of non-linear PDEs that

grow with the number of agents. Mean field games offer a promising avenue to overcome

these limitations by approximating the behavior of individual agents within the population,

thereby enabling the analysis of systems with a large number of interacting components.

Central to the modern framework of mean field games is the master equation, which

governs the evolution of the system’s distribution of agents over time. The master equation

is remarkable in that it enables a single, comprehensive solution to the MFG problem, even

with an arbitrary number of agents. However, its infinite-dimensional nature and non-
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linearity present significant challenges for theoretical understanding and solution techniques.

Advancements in the well-posedness theory of the master equation deepen our theoretical

understanding of MFGs and could have practical implications for optimizing and managing

large-scale systems with interacting agents.

A key aspect of mean field games lies in the assumptions made regarding the data. In

current works, monotonicity assumptions play a crucial role in ensuring the existence and

uniqueness of solutions to the master equation. Similarly, noise is often introduced to provide

regularity to the master equation, but understanding the master equation in the absence of

noise remains a significant challenge.

Alongside MFGs, optimal transport (OT) has evolved as a versatile mathematical tool

for problems involving distributional shifts under constraints. OT theory is traditionally

concerned with efficiently moving mass from one distribution to another. We explore an

extension of optimal transport into quantum mechanics. Here the dynamics are governed by

the Schrödinger equation, creating links between classical OT and quantum mechanics. OT

with quantum dynamics involves finding a wave function’s optimal evolution from an initial

to a final distribution, where optimal is with respect to an energy function in momentum

space.

A particularly intriguing connection arises between OT with quantum dynamics and

the Pauli problem, which seeks to determine whether a quantum state can be uniquely

reconstructed from its (marginal) probability distributions in both position and momentum

space. By relating the Pauli problem to a OT problem governed by quantum dynamics, we

offer a novel approach to quantum state reconstruction.

1.2 Outline of the Thesis

This thesis explores these frameworks, presenting new results in mean field games, Hamilton–

Jacobi equations, and optimal transport with quantum dynamics. Each chapter builds on

2



foundational concepts, extending classical results to address challenges in existence, unique-

ness, and stability.

1.2.1 Mean Field Games and the Master Equation

Mean field games (MFGs), developed in the seminal works of Lasry and Lions, and Huang,

Malhamé, and Caines ([LL07, HMC06]), provide a rigorous way to model strategic decision-

making in populations with a large number of interacting agents. Classical game theory,

although powerful in analyzing small groups of rational agents, becomes theoretically and

computationally intractable as the number of participants increases. MFG theory circum-

vents this limitation by modeling the asymptotic behavior of games with infinitely many

agents. The resulting mathematical framework captures the dynamics of the population

distribution, while also incorporating the strategic interactions among agents.

The core equation in mean field game theory is the master equation (introduced in

[Lio12a]), a infinite-dimensional partial differential equation (PDE) that links individual

agents’ strategies with the collective behavior of the entire population. This equation, ini-

tially formulated by Lions, governs the evolution of the value function in MFGs and allows

one to connect finite-player games with their mean-field limits. In the absence of noise, the

deterministic master governs MFGs without noise, while stochastic versions contain terms

to account for idiosyncratic noise impacting each agent individually or common noise af-

fecting all agents collectively. The well-posedness of the master equation ensuring existence,

uniqueness, and stability of solutions is fundamental to the successful application of MFG

theory (see [CDLL19, DLR19, DLR20]), but it requires specific assumptions on the problem

data.

Classical well-posedness results rely on either smallness conditions (such as restrictions

on the time horizon or characteristics of the Hamiltonian) or monotonicity conditions on

the data, with the two most popular of the latter being Lasry–Lions monotonicity and

displacement monotonicity. The former comes from viewing the space of measures as a flat
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linear space, while the latter leverages concepts from optimal transport, viewing the space

of measures as a curved space. In this thesis we are concerned primarily with long time

solutions so we will impose monotonicity conditions.

The master equation that we consider in this thesis writes as follows. As data, we are

given a Hamiltonian H : Rd × P2(Rd) × Rd → R and a final cost G : Rd × P2(Rd) → R.

We emphasize that throughout the text we assume that H and G are smooth enough (we

detail the specific assumptions in each chapter), and in particular they are defined and finite

at any probability measure with finite second moment. Therefore, they will be assumed

to be non-local and regularizing in the measure variable. Furthermore, we are given a

time horizon T > 0 and the intensities of the Brownian idiosyncratic and common noises

β, β0 ∈ R, respectively. Then, the master equation, written for the unknown function V :

(0, T )× Rd × P2(Rd) → R reads as



−∂tV (t, x, µ) +H(x, µ, ∂xV )−NV (t, x, µ)− β2

2 ∆indV − β2
0
2 ∆comV (t, x, µ) = 0,

in (0, T )× Rd × P2(Rd),

V (T, x, µ) = G(x, µ),

in Rd × P2(Rd),

(1.1)

where

NV (t, x, µ) = −
∫
Rd

∂µV (t, x, µ, x̃) · ∂pH(x̃, µ, ∂xV (t, x̃, µ))dµ(x̃)

∆indV = tr(∂xxV (t, x, µ)) +

∫
Rd

tr(∂x̃µV (t, x, µ, x̃))dµ(x̃)

and

∆comV = tr(∂xxV (t, x, µ)) +

∫
Rd

tr(∂x̃µV (t, x, µ, x̃))dµ(x̃) + 2

∫
Rd

tr(∂xµV (t, x, µ, x̃))dµ(x̃)

+

∫
Rd×Rd

tr(∂µµV (t, x, µ, x̃, x̄))dµ(x̃)dµ(x̄).

Here ∂µV stands for the so-called Wasserstein gradient whose definition is given later in the

text.
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Chapter 2 of this thesis addresses the deterministic master equation (β = β0 = 0). We

present a new well-posedness result for the deterministic master equation, particularly for

displacement monotone systems, which expand classical solutions to cases lacking regulariz-

ing noise effects. Furthermore, we don’t require a ‘separability’ condition on the Hamiltonian,

which is a significant departure from previous results (such as [GM22a]).

Chapter 3 extends these results to the setting where we have common noise but no

idiosyncratic noise. The chapter discusses the role of displacement monotonicity conditions

that are sufficient to guarantee well-posedness, even under degenerate noise conditions. To

the best of our knowledge, these results represent one of the first well-posedness theories

for long time classical solutions of the master equation in MFGs in the presence of common

noise without idiosyncratic noise (some weak solution theory is obtained in [CS22a, CS22b,

CSS22]).

1.2.2 Hamilton–Jacobi Equations and Canonical Transformations

Hamilton–Jacobi equations (HJEs) originate in classical mechanics (see [Arn89]), where they

encode the system’s dynamics via the principle of least action. This principle states that the

actual path taken by a system between two states is the one that minimizes (or extremizes)

the action, a scalar quantity that summarizes the effect of the system’s dynamics over time.

HJEs arise naturally in Lagrangian and Hamiltonian mechanics, providing an elegant way

to study mechanical problems.

In optimal control theory, the HJE describes the value function representing the minimal

cost for a system to transition from one state to another. Dynamic programming principles

lead to the Hamilton–Jacobi–Bellman equation, a first-order PDE that governs the evolution

of this value function (see [Eva98]). Solutions to the HJE can often be challenging to obtain

due to non-linearities and the potential for singularities to form over time. Additionally,

the absence of convexity in certain problems can prevent global well-posedness, limiting the

applicability of classical solution techniques.
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Chapter 4 of this thesis introduces a novel approach to achieving global well-posedness

in Hamilton–Jacobi equations through the use of canonical transformations. These trans-

formations, which preserve the symplectic structure of Hamiltonian mechanics, enable a

redefinition of the Hamiltonian in a way that can reveal convexity properties. Specifically,

transformations that are linear in the phase space—mapping (x, p) 7→ (x, p − αx), for in-

stance—allow one to convert certain Hamiltonians arising from non-convex Lagrangians into

a convex-concave form. This reformulation facilitates the analysis of global well-posedness

for the system, expanding the set of Hamiltonians that can be studied effectively under this

framework.

Chapter 5 extends these results to the master equation of MFG. We leverage the canon-

ical transformations to reveal hidden monotonicity in non-monotone data. By reformulating

the Hamiltonian through these transformations, we extend the well-posedness theory of the

master equation to cover MFG scenarios that do not satisfy traditional monotonicity as-

sumptions.

1.2.3 Optimal Transport and Quantum Mechanics

Optimal transport theory provides a way to study the efficient movement of distributions

under given cost functions (we refer to [Vil03, Vil09] for a thorough introduction). Tradition-

ally, optimal transport is governed by deterministic maps; however, Eric Carlin and Wilfrid

Gangbo have extended it to settings where transport follows quantum dynamics, particularly

through the Schrödinger equation. This quantum extension of OT links classical transport

with quantum mechanics, offering a framework to understand probabilistic distributions in

a quantum setting.

Chapter 6 investigates this quantum dynamic extension of optimal transport, connecting

it with the Pauli problem, a classical question in quantum mechanics. The Pauli problem

asks whether a quantum state can be uniquely determined by its magnitude distributions

in both position and momentum space (see [CH78, Cor06] for some partial results). In the

6



OT with quantum dynamics framework, this translates to minimizing the kinetic energy of

a system subject to constraints on initial and final probability densities.

This chapter establishes an equivalence between the Pauli problem and an OT problem

governed by quantum dynamics. The results provide a new perspective on quantum state

reconstruction, with many potential applications.

1.3 Contributions and Significance

1. New well-posedness results for mean field game master equations: This thesis

extends classical well-posedness results for the master equation in mean field games, incorpo-

rating versions of the well-known displacement monotonicity conditions that ensure stability

and uniqueness for both deterministic and stochastic models.

2. Application of canonical transformations in Hamilton–Jacobi theory: By

applying canonical transformations to the analysis of Hamilton–Jacobi equations, this work

expands the class of systems that admit globally well-posed solutions, opening up new ap-

plications in optimal control.

3. Quantum extension of optimal transport and applications to the Pauli

problem: By exploring optimal transport with quantum dynamics, this thesis offers a novel

approach to studying the Pauli problem, enriching our understanding of quantum state

reconstruction and contributing to the intersection of OT and quantum mechanics.

Together, these results advance the mathematical frameworks for studying complex, high-

dimensional systems across regimes, from deterministic and stochastic dynamics to quantum

mechanical behaviors.
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CHAPTER 2

Deterministic Master Equation

2.1 Introduction and Motivation

2.1.1 Motivation for Mean Field Games

In recent decades, the need to model large populations of interacting agents—ranging from

economic agents, such as consumers and firms, to biological populations and self-driving ve-

hicles—has led to the emergence of mean field game (MFG) theory. Classical game theory,

while providing powerful tools for modeling strategic interactions among a small number of

agents, becomes intractable as the number of participants grows. MFG theory addresses

this limitation by studying the asymptotic behavior of games with infinitely many agents,

allowing for a continuum approach to model the population’s overall dynamics. This frame-

work, initiated independently by Lasry and Lions and by Huang, Caines, and Malhamé,

has rapidly developed into a robust mathematical foundation for understanding collective

behavior in complex systems.

At the heart of MFG theory is the idea that, in large populations, individual actions

have a negligible impact on the overall distribution, allowing each agent to interact with

an ”average effect” of the population. This leads to a model where each agent optimally

responds to the statistical distribution of all agents rather than to specific interactions,

dramatically reducing the complexity of analyzing such systems. For instance, MFGs provide

insights into traffic flow optimization, where individual drivers’ decisions (such as route

choice) collectively influence congestion patterns, or into financial markets, where the trading

8



behavior of numerous investors shapes the aggregate demand and price evolution.

MFG theory also enables the quantitative analysis of long-term dynamics and equilibrium

properties of large populations. It bridges the gap between microscopic and macroscopic

descriptions, offering a rigorous framework to derive macroscopic equations that describe

the collective behavior of agents from the underlying microscopic interactions. In economic

applications, MFGs allow for the study of competitive behaviors in large markets, such as

price formation and product diffusion, which have critical implications for policy design and

resource allocation.

Furthermore, MFGs have significant mathematical appeal, as they often involve study-

ing systems of coupled partial differential equations (PDEs) with intricate interactions be-

tween the agents’ states and distributions. These systems require innovative approaches in

PDE theory, probability, and optimal control, making MFGs a fertile ground for theoretical

advances. Additionally, MFGs provide a framework for exploring questions of existence,

uniqueness, and stability of equilibria in dynamic systems, as well as foundational proba-

bilistic results, such as large deviation principles and central limit theorems for interacting

particle systems.

In summary, MFG theory is a versatile and powerful tool for analyzing complex, large-

scale systems in which individual decisions collectively shape emergent behaviors. By re-

ducing complex interactions to tractable models that retain essential features of the system,

MFGs open up new possibilities for understanding, predicting, and controlling dynamics in

vast populations across various scientific fields.

2.1.2 Introduction to the Deterministic Master Equation

The deterministic master equation, a fundamental object in mean field game (MFG) theory,

provides a framework for describing the limit behavior of large populations of interacting

agents in the absence of random perturbations. Initially introduced by P.-L. Lions in his
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lectures at Collège de France [Lio12b], this partial differential equation (PDE) governs the

evolution of both individual agent states, typically within a finite-dimensional Euclidean

space, and the overall distribution of agents, often represented by a Borel probability measure

over this space. In a purely deterministic setting, solutions to the master equation play

a critical role in analyzing Nash equilibria, capturing the strategic interactions within a

population as it approaches infinite size, and offering insight into the stability and uniqueness

of these equilibria in the absence of stochastic fluctuations (see [CDLL19]).

The deterministic nature of the master equation poses unique challenges and has thus mo-

tivated several specialized approaches within the literature. Ensuring global well-posedness,

particularly for classical solutions, requires that the model data satisfy specific conditions.

These conditions can be broadly classified into two types: (i) those imposing a smallness

criterion on the time horizon, and (ii) those enforcing monotonicity, such as the Lasry–Lions

monotonicity condition. In many deterministic settings, the Lasry–Lions monotonicity con-

dition has proven essential for establishing uniqueness of Nash equilibria in the underlying

game and, by extension, ensuring well-posedness of the master equation under certain regu-

larity conditions on the data (see [CP20a, CCD22, GM22b]).

Unlike the case with non-degenerate idiosyncratic noise, the deterministic setting is less

well understood. To the best of our knowledge the only other long time classical well-

posedness result for the deterministic master equation is [GM22a], which requires a potential

structure and separable Hamiltonian.

Despite significant advances, deterministic master equations continue to present chal-

lenges, particularly in understanding solution behavior when monotonicity conditions are

violated. In such cases, standard well-posedness results no longer hold, and weak solution

concepts may be necessary. Recent efforts, such as those in [CD24] and [GM22b], propose

frameworks to handle these complexities, though the development of robust weak solution

theories remains an active area of research.
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2.1.3 Motivation for Displacement Monotonicity

Displacement monotonicity is an important concept in the study of mean field games (MFGs),

as it provides a robust condition for ensuring the uniqueness and stability of solutions,

particularly in large-scale systems. To understand displacement monotonicity in MFGs, it

helps to first explore displacement convexity, a foundational idea from optimal transport

theory that generalizes classical convexity to probability measures.

2.1.3.1 Displacement Convexity vs. Regular Convexity

Convexity defines a function f(x) as convex if, for all points x and y in its domain and any

λ ∈ [0, 1], the function satisfies:

f(γλ) ≤ λf(x) + (1− λ)f(y).

where γt is the geodesic connecting x and y. In the case where the domain of f is a Euclidean

space the geodesics are straight lines and the above becomes

f(λx+ (1− λ)y) ≤ λf(x) + (1− λ)f(y).

This inequality indicates that f lies below the line segment connecting f(x) and f(y), which is

key in many areas of analysis and optimization. Convex functions have well-known stability

and uniqueness properties, which make them easier to optimize and analyze.

Displacement convexity extends this idea to functionals defined on probability measures.

Specifically, consider a functional F(µ), where µ is a probability measure over some space

(often Rd). A functional F(µ) is said to be displacement convex if, for any two probability

measures µ0 and µ1, we have:

F(µλ) ≤ (1− λ)F(µ0) + λF(µ1),

where the interpolation, µλ, between µ0 and µ1 is defined along the Wasserstein geodesic the

path in probability space that minimizes the transportation cost to move the distribution µ0
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to µ1. This notion arises in optimal transport theory, where the Wasserstein space is a metric

space for probability measures, equipped with the Wasserstein distance that quantifies the

“cost” of transporting mass from one distribution to another.

In displacement convexity, the convexity is not along linear paths but rather along

geodesic paths in Wasserstein space, which follow the direction of minimal transport cost.

This provides a generalized notion of convexity suited for spaces of probability measures,

allowing F to retain stability properties similar to those of classically convex functions in

contexts where mass redistributes optimally.

2.1.3.2 Mean Field Games as Optimization Problems

In certain mean field games, referred to as potential mean field games (MFGs), the data

(the Hamiltonian and boundary condition) can be described by a potential functional J (µ),

where µ is a probability measure representing the distribution of the population over states.

In these settings, the behavior of the system can be characterized as an optimization problem,

where the evolution of the agents’ distribution is driven by minimizing a functional, rather

than by solving a traditional Nash equilibrium.

When the functional J is displacement convex, the data can be shown to satisfy a

property called displacement monotonicity. Displacement convexity in this context implies

that J has a unique minimizer in Wasserstein space, allowing the MFG to reach a stable

equilibrium where the distribution µ does not oscillate or create multiple equilibria as agents

adjust their strategies.

As we will see below it is possible to formulate this displacement monotonicity condition

without needing a potential structure (this was realized in [GMMZ22]). This condition can

replace the Lasry–Lions monotonicity condition and in fact is able to give a well-posedness

result for the master equation without needing idiosyncratic noise (as we will see below).
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2.1.4 From Optimal Control to the Master Equation

2.1.4.1 Optimal Control

Optimal control theory addresses problems where a single agent, beginning at some initial

point y ∈ Rd, aims to follow a trajectory that minimizes an associated cost over time. This

control trajectory, represented by γ : [0, T ] → Rd, is chosen to balance an ongoing movement

cost with a terminal cost upon reaching a destination. The agent’s objective is to control its

velocity, which influences the trajectory, and to minimize the combined running cost L(x, v)

and final cost G(x) at the endpoint. The agent’s optimization problem is given by:

inf
γ

∫ T

0

L(γ(s), γ̇(s)) ds+G(γ(T )),

where L : Rd×Rd → R quantifies the instantaneous cost based on the position x and velocity

v, and G : Rd → R determines the penalty or cost at the terminal state γ(T ).

To solve this, dynamic programming is applied. This method utilizes the fact that any

optimal path γ retains optimality over all subintervals within [0, T ]. The concept of a value

function V (t, x) arises, representing the minimal possible cost from state x at time t onward.

For any subinterval [t, T ], this value function satisfies a partial differential equation called

the Hamilton–Jacobi–Bellman (HJB) equation:

∂tV + inf
v
(L(x, v) +∇xV · v) = 0.

In this equation, the Hamiltonian H : Rd × Rd → R is defined as:

H(x, p) = sup
v

(⟨p, v⟩ − L(x,−v)) ,

which recasts the HJB equation as:

∂tV −H(x,∇xV ) = 0,

with the boundary condition V (T, x) = G(x) at the terminal time T .
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2.1.4.2 Differential Games

Differential game theory generalizes optimal control by involving multiple agents or players,

each with competing objectives that depend on the actions of others. In a differential game

with N players, each player i starts at an initial position xi ∈ Rd and controls their own

velocity to minimize their individual cost, while interacting with the strategies of other

players.

Each player incurs a running cost Li : Rd × Rd × Rd(N−1) → R, based on their own

state, velocity, and the states of the other players. They also face a terminal cost Gi :

Rd×Rd(N−1) → R, depending on their final position relative to the other players. Player i’s

total cost for a path γi is:∫ T

0

Li(γi(s), γ̇i(s), γ1(s), . . . , γi−1(s), γi+1(s), . . . , γN(s)) ds

+Gi(γi(T ), γ1(T ), . . . , γi−1(T ), γi+1(T ), . . . , γN(T )).

In this framework, each player is assumed to be rational and seeks to optimize their

individual cost. This interdependence creates a competitive scenario in which the best re-

sponse of each player depends on the strategies of others. A solution concept called the

Nash equilibrium arises, where no player can unilaterally reduce their cost by changing only

their strategy, given the strategies of the others. Mathematically, a Nash equilibrium is a

collection of paths (γ1, . . . , γN) where each γi is optimal for player i, given the paths of all

other players.

The dynamic programming approach for differential games leads to a coupled system

of PDEs for the players’ value functions Vi(x, t, z). Each value function Vi describes the

minimal cost for player i from a given state and time, while accounting for the strategies of

others:

∂tVi(x, t, z)−Hi(x,∇xVi(x, t, z), z)−
∑
j ̸=i

∇zjVi(x, t, z) · ∇pHj(zj,∇xVj(zj, t, z), z) = 0,
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where Hi is the Hamiltonian associated with the cost function Li of player i. This equation

illustrates the intricate interdependencies between players’ strategies, creating challenges in

establishing well-posedness and uniqueness of Nash equilibria, particularly when the players’

objectives conflict or align in complex ways.

2.1.4.3 The Master Equation for Deterministic Mean Field Games

In mean field games (MFGs), when the number of agents N becomes large, interactions

between any two individual agents become negligible. Each agent optimally responds to the

distribution of the overall population rather than to specific agents, making MFGs particu-

larly suitable for large-scale systems. In the deterministic setting, we assume the absence of

random perturbations (or noise) affecting individual agents. Consequently, the collective be-

havior is governed by a master equation, which describes the evolution of the value function

V over time and space.

Assume all agents are identical and that both the running cost L and the terminal cost

G are symmetric with respect to the configuration of agents. For player i, the system can

be represented by a PDE that incorporates the distribution of the remaining N − 1 players.

Defining µi as the empirical measure that approximates the distribution of other agents:

µi =
1

N − 1

∑
j ̸=i

δxj ,

we can write a deterministic equation as:

∂tV (x, t, µi)−H(x,∇xV (x, t, µi), µi)

−
∫
∂µV (x, t, µi, x̃) · ∇pH(x̃,∇xV (x̃, t, µx̃), µx̃) dµi(x̃) = 0.

In this formulation:

• V (x, t, µi) represents the value function that provides the minimal cost starting from

point x at time t under the distribution µi of other agents.
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• The Hamiltonian H(x, p, µ) incorporates the interaction between the agent’s own state

x, momentum p, and the population distribution µ.

• The term ∂µV denotes the derivative of V with respect to the measure µ, capturing

how the population distribution influences the optimal cost.

As N approaches infinity, this discrete empirical measure µi converges to a continuum

distribution µ, leading to the mean field limit:

∂tV (x, t, µ)−H(x,∇xV (x, t, µ), µ)−
∫
∂µV (x, t, µ, x̃) · ∇pH(x̃,∇xV (x̃, t, µ), µ) dµ(x̃) = 0.

This master equation describes the evolution of the value function in a continuum of

agents, where each agent’s optimal strategy depends on both its own state and the population

distribution µ. This equation is central to deterministic mean field games, as it encapsulates

the interactions within a large population without requiring detailed tracking of individual

agents.

In this chapter we will show existence of unique classical solutions to the deterministic

master equation under displacement monotonicity conditions and regularity assumptions

(described formally in the next section).

2.2 Notation and Setup

Before proceeding to the master equation we give a brief refesher on the Wasserstein space

and the Wasserstein calculus.

2.2.1 Elements of analysis and calculus on the Wasserstein space

Let P(Rd) be the set of Borel probability measures supported in Rd. For any q ≥ 1 and any

measure µ ∈ P(Rd), we set Mq(µ) :=
(∫

Rd |x|qdµ(x)
) 1

q . Furthermore, let Pq(Rd) := {µ ∈
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P(Rd) : Mq(µ) <∞}. For any µ, ν ∈ Pq(Rd), the Wq–Wasserstein distance is defined as

Wq(µ, ν) := inf
{∫∫

Rd×Rd

|x− y|2dγ(x, y) : γ ∈ Π(µ, ν)
} 1

q
,

where Π(µ, ν) :=
{
γ ∈ P2(Rd × Rd) : (π1)♯γ = µ, (π2)♯γ = ν

}
, and π1, π2 : Rd × Rd → Rd

stand for the canonical projections, i.e. π1(x, y) = x and π2(x, y) = y.

According to the terminology in [AGS08], the Wasserstein gradient of a function U :

P2(Rd) → R at µ, is an element ∂µU(µ, ·) ∈ ∇C∞
c (Rd)

L2
µ
(the closure of gradients of C∞

c

functions in L2
µ(Rd;Rd)) and so, it is a priori defined µ–almost everywhere. The theory de-

veloped in [CP20a, GT19, Lio12b] shows that ∂µU(µ, ·) can be characterized by the property

U(Lξ+η)− U(µ) = E
[
⟨∂µU(µ, ξ), η⟩

]
+ o(∥η∥2), ∀ ξ, η, with Lξ = µ. (2.1)

Let C0(P2(Rd)) denote the space of W2–continuous functions U : P2(Rd) → R. For k ∈

{1, 2} we next define a subset of Ck(P2(Rd)), referred to as functions of full Ck regularity

in [CD18a, Chapter 5]), as follows. By C1(P2(Rd)), we mean the space of functions U ∈

C0(P2(Rd)) such that ∂µU exists for all µ ∈ P2 and it has a unique jointly continuous

extension to P2 × Rd, which we continue to denote by

Rd × P2(Rd) ∋ (x̃, µ) 7→ ∂µU(µ, x̃) ∈ Rd.

Similarly, C2(P2(Rd)) stands for the space of functions U ∈ C1(P2(Rd)) such that the global

version of ∂µU is differentiable in the sense that all the following maps exist and have unique

jointly continuous extensions

Rd × P2 ∋ (x̃, µ) 7→ ∂x̃µU(µ, x̃) ∈ Rd and

R2d × P2 ∋ (x̃, x̄, µ) 7→ ∂µµU(µ, x̃, x̄) ∈ Rd×d.

We define similarly the spaces C1(Rd×P2(Rd)) and C2(Rd×P2(Rd)). In particular C2(Rd×

P2(Rd)) is the space of continuous functions U : Rd × P2(Rd) → R satisfying the following

(i) ∂xU, ∂xxU exist and are jointly continuous on Rd × P2;
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(ii) The following maps exist and have unique jointly continuous extensions

R2d × P2 ∋ (x, x̃, µ) 7→ ∂µU(x, µ, x̃) ∈ Rd and

R2d × P2 ∋ (x, x̃, µ) 7→ ∂xµU(x, µ, x̃) ∈ Rd×d;

(iii) Finally, the following maps exist and have unique jointly continuous extensions

R2d × P2 ∋ (x, x̃, µ) 7→ ∂x̃µU(x, µ, x̃) ∈ Rd×d and

R3d × P2 ∋ (x, x̃, x̄, µ) 7→ ∂µµU(x, µ, x̃, x̄) ∈ Rd×d.

We underline that for notational conventions, we always denote the ‘new spacial vari-

ables’ appearing in Wasserstein derivatives with tilde symbols (for first order Wasserstein

derivatives), with “bar” symbols (for second order Wasserstein derivatives) and so on, and

we place them right after the corresponding measures variables. For example, when U :

Rd ×P2 ×Rd → R is typically evaluated as U(x, µ, p), we use the notations ∂µU(x, µ, x̃, p),

∂x̃∂µU(x, µ, x̃, p), ∂µ∂µU(x, µ, x̃, x̄, p), and so on. This convention will be carried through to

compositions with random variables too, for example ∂µU(x, µ, ξ̃, p), when ξ̃ is an Rd-valued

random variable.

In this chapter we consider the master equation (1.1) with β = β0 = 0. For the conve-

nience of the reader we reproduce it here:

∂tV (t, x, µ) +H(x, µ, ∂xV )−NV (t, x, µ) = 0 (2.2)

V (T, x, µ) = G(x, µ)

where

NV (t, x, µ) = −
∫
∂µV (t, x, µ, x̃) · ∂pH(x̃, µ, ∂xV (t, x̃, µ))dµ(x̃)

We assume that we have a fixed atomless probability space (Ω,P). We use L2(Ω) to

denote the L2 functions that map Ω into Rd.
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2.2.2 Displacement Monotonicity

Following [GMMZ22], we can recall the followings.

Definition 2.2.1. Let ξ, η ∈ L2(Ω) and U : Rd × P2(Rd) → R. Assume that U is differen-

tiable in the first variable and ∂xU ∈ C1(Rd × P2(Rd)). We define

(dxd)ξU(η, η)

:=

∫∫
Ω×Ω

⟨∂xµU (ξ(ω),Lξ, ξ(ω̃)) η(ω̃), η(ω)⟩+ ⟨∂xxU (ξ(ω),Lξ) η(ω), η(ω)⟩dP(ω)dP(ω̃)

We say that U is displacement monotone if (dxd)ξU(η(ω), η(ω)) ≥ 0 for all ξ, η ∈ L2(Ω).

Remark 2.2.2. The condition can also be written directly in terms of measures. U is

displacement monotone if and only if for every λ ∈ P2(Rd × Rd) we have∫∫
Rd×Rd

⟨∂xµU (x, (π1)♯λ, x̃) ỹ, y⟩+ ⟨∂xxU (x, (π1)♯λ) y, y⟩dλ(x, y)dλ(x̃, ỹ) ≥ 0

where (π1)♯λ stands for the left marginal of λ.

We recall the following Lemma from [GMMZ22, Lemma 2.6]. For the convenience of the

reader we provide a detailed proof.

Lemma 2.2.3. Suppose that U is displacement monotone and twice differentiable in space.

If ∂xxU is continuous (where continuity in the measure variable is respect to W2) then

∂xxU(x, µ) ≥ 0, i.e. U is convex in space.

Proof. Since absolutely continuous measures with positive and bounded densities are dense

we may assume without loss of generality that µ = ρdx with ρ positive and bounded (say

|ρ| ≤M).

Fix some x0, z ∈ Rd and let ϵ > 0. Let ξ be distributed according to µ and let

η(ω) =


0, if |ξ(ω)− x0| ≥ ϵ

ϵ−d/2z, else

19



We now have

0 ≤ (dxd)ξU(η, η)

=

∫∫
Ω×Ω

⟨∂xµU (ξ(ω),Lξ, ξ(ω̃)) η(ω̃), η(ω)⟩+ ⟨∂xxU (ξ(ω),Lξ) η(ω), η(ω)⟩dP(ω)dP(ω̃)

=

∫∫
B(x0,ϵ)×Ω

⟨∂xµU (x, µ, ξ(ω̃)) η(ω̃), ϵ−d/2z⟩+ ⟨∂xxU (x, µ) ϵ−d/2z, ϵ−d/2z⟩ρ(x)dxdP(ω̃)

=

∫∫
B(x0,ϵ)×B(x0,ϵ)

⟨∂xµU (x, µ, x̃) ϵ−d/2z, ϵ−d/2z⟩+ ⟨∂xxU (x, µ) ϵ−d/2z, ϵ−d/2z⟩ρ(x)ρ(x̃)dxdx̃

= ϵ−d
∫∫

B(x0,ϵ)×B(x0,ϵ)

⟨∂xµU (x, µ, x̃) z, z⟩ρ(x)ρ(x̃)dxdx̃

+ ϵ−d
∫
B(x0,ϵ)

⟨∂xxU (x, µ) z, z⟩ρ(x)dx

Now we send ϵ→ 0. We see that the first term goes to 0 (it is on the order of ϵ−dϵ2d) where

as the second term goes to C⟨∂xxU (x0, µ) z, z⟩ where C is the volume of the unit ball in Rd.

Hence we have

⟨∂xxU (x0, µ) z, z⟩ ≥ 0

as desired.

Definition 2.2.4. Let H : Rd × P2(Rd) × Rd → R. Assume that H is differentiable in

the x and p variables and ∂xH(·, ·, p) ∈ C1(Rd × P2(Rd)) for all p ∈ Rd and ∂pH(x, ·, ·) ∈

C1(P2(Rd) × Rd) for all x ∈ Rd. Let φ ∈ C1(Rd;Rd) be a bounded Lipschitz function,

µ ∈ P2(Rd), and ξ ∈ L2(Ω). We define

(displφξH)(η, η)

:=

∫∫
Ω×Ω

[〈
∂xµH(ξ(ω), µ, ξ(ω̃), φ(ξ(ω)))η(ω̃)

+ ∂xxH(ξ(ω), µ, φ(ξ(ω)))η(ω), η(ω)
〉]
dP(ω)dP(ω̃) +Qφ

ξH(η, η),

20



where

Qφ
ξH(η, η)

:=
1

4

∫
Ω

[∣∣∣(∂ppH(ξ(ω), µ, φ(ξ(ω)))
)− 1

2

∫
Ω

[
∂pµH(ξ(ω), µ, ξ(ω̃), φ(ξ(ω)))η(ω̃)

]
dP(ω̃)

∣∣∣2]dP(ω)
H is said to be displacement monotone if (displφξH)(η, η) ≤ 0 for all φ, µ, ξ.

2.3 Assumptions

We will always assume that G,H are displacement monotone. We also make the following

regularity assumptions.

Assumption 1. We assume that

1. G is smooth.

2. |∂xG| , |∂xxG| , |∂µxG| are uniformly bounded by LG0 .

Assumption 2. We assume that

1. H is smooth.

2. All of the derivatives of H (not including H itself) are uniformly bounded in x, µ and

locally in p.

3. |∂xH(x, µ, p)| ≤ C1(1 + |p|).

4. ∂ppH ≥ c0I for some c0 > 0.

We remark that 4 in the above tells us that H is convex in the p variable.

Definition 2.3.1. A constant C is said to be universal if it depends only on the above

quantities (LG0 and the bounds on H) and T .
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We now translate these assumptions onto L.

Proposition 2.3.2. Under the assumptions in 2 we have that

1. L is smooth.

2. ∂vvL ≤ c−1
0 I.

3. |∂xL(x, µ, v)| ≤ C(1 + |∂vL(x, µ, v)|).

4. |∂vL(x, µ, v)| ≤ C(1 + |v|).

5. |∂xL(x, µ, v)| ≤ C(1 + |v|).

Proof. 1,2 are well known.

3 comes from the formula

∂xL(x, µ, v) = −∂xH(x, µ, ∂vL(x, µ, v)).

Now to prove 4 note that Assumption 2 on H implies that

|∂pH(x, µ, 0)| ≤ C

and so

|∂pH(x, µ, p)| ≥ c0 |p| − |∂pH(x, µ, 0)| ≥ c0 |p| − C

Hence

|v| = |∂pH(x, µ, ∂vL(x, µ, v))| ≥ c0 |∂vL(x, µ, v)| − C

as desired.

5 now follows from 3 and 4.

Assumption 3. There is a superlinear function θ so that

L(x, µ, v) ≥ L(x, µ, 0) + θ(|v|).

22



Lemma 2.3.3. Let C(R) = supx,µ,p:|p|≤R∥∂ppH(x, µ, p)∥.

The above assumption holds if
∫∞
1
C(R)−1 diverges.

Proof. We have

L(x, µ, v) = L(x, µ, 0) +

∫ 1

0

∂vL(x, µ, vs) · vds

= L(x, µ, 0) +

∫ 1

0

(
∂vL(x, µ, 0) +

∫ s

0

∂vvL(x, µ, vr)vdr

)
· vds

= L(x, µ, 0) + ∂vL(x, µ, 0) · v +
∫ 1

0

∫ s

0

∂vvL(x, µ, vr)v · vdrds

= L(x, µ, 0) + ∂vL(x, µ, 0) · v +
∫ 1

0

∫ 1

r

∂vvL(x, µ, vr)v · vdsdr

= L(x, µ, 0) + ∂vL(x, µ, 0) · v +
∫ 1

0

(1− r)∂vvL(x, µ, vr)v · vdr

≥ L(x, µ, 0) + ∂vL(x, µ, 0) · v +
|v|
2

∫ |v|
2

0

∂vvL(x, µ, rv̂)v̂ · v̂dr

= L(x, µ, 0) + ∂vL(x, µ, 0) · v +
|v|
2

∫ |v|
2

0

∂ppH(x, µ, ∂vL(x, µ, rv̂))
−1v̂ · v̂dr

≥ L(x, µ, 0) + ∂vL(x, µ, 0) · v +
|v|
2

∫ |v|
2

0

C−1
|∂vL(x,µ,rv̂)|dr

≥ L(x, µ, 0) + ∂vL(x, µ, 0) · v +
|v|
2

∫ |v|
2

0

C−1
Crdr

= L(x, µ, 0) + ∂vL(x, µ, 0) · v +
|v|
2C

∫ C|v|
2

0

C−1
r dr

and so defining

θ(|v|) = |v|
2C

∫ C|v|
2

0

C−1
r dr − |∂vL(x, µ, 0)| |v|

we see that L(x, µ, v) ≥ L(x, µ, 0) + θ(|v|) and θ is superlinear.

2.4 Propagation of Displacement Monotonicity

In this section we show that the conditions on H propagate the displacement monotonicity of

G to V for all times. The proofs of this section are very similar to the proofs in [GMMZ22]
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however since the formal statements in that work require individual noise and the proofs

are written in the notation of stochastic analysis we rewrite the proofs here in simplified

notation.

Lemma 2.4.1. Let Y, Ỹ :M → Rd where M = Rd or M = Ω depending on context. Then

W 1(Y#µ, Ỹ#µ) ≤ ∥Y − Ỹ ∥∞

Proof. We have

W 1(Y#µ, Ỹ#µ) = sup
ϕ

∫
ϕ(x)d(Y#µ− Ỹ#µ)

= sup
ϕ

∫
ϕ(Y (x))− ϕ(Ỹ (x))dµ

≤ sup
ϕ

∫ ∣∣∣ϕ(Y (x))− ϕ(Ỹ (x))
∣∣∣ dµ

≤
∫ ∣∣∣Y (x)− Ỹ (x)

∣∣∣ dµ
≤ ∥Y − Ỹ ∥∞

where the supremums are taken over ϕ that are 1-Lipschitz.

Lemma 2.4.2. Let V be a classical solution of the master equation (2.2) with Vx, Vxx, Vxµ

uniformly bounded. Fix some ξ, η ∈ L2(Ω). Then the following system of ODE’s has a

unique solution

Xt(ω) = ξ −
∫ t

0

Hp(Xs, µs, ∂xV (s,Xs, µs))ds, µt := Xt(ω)#P

δXt(ω) = η −
∫ t

0

Hpx(Xs)δXs +
1

2

∫
Ω

[Hpµ(Xt(ω), Xt(ω̃))δXt(ω̃)]dP(ω̃) +Hpp(Xs)Nsds

where

Nt :=

∫
Ω

∂xµV (Xt(ω), Xt(ω̃))δXt(ω̃)dP(ω̃) + ∂xxV (Xt(ω))δXt(ω)

+
1

2
Hpp(Xt(ω))

−1

∫
Ω

Hpµ(Xt(ω), Xt(ω̃))δXt(ω̃)dP(ω̃).
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Proof. Note that the first equation is decoupled from the second. Hence we first show that

the first equation has a unique solution.

We prove this with the contraction mapping principle. Let B be the space of all X :

[0, T1]×Ω → Rd so that ∥X − ξ∥∞ < +∞. where T1 will be chosen later. We equip B with

the supremum metric given by d(X, X̃) = ∥X − X̃∥∞. Define A : B → B by

A(X)t = ξ +

∫ t

0

Hp(Xs, µs, ∂xV (t,Xs, µs))ds.

Clearly X is a solution to the above system (for t ∈ [0, T1]) if and only if X is a fixed point

of A. We prove that A is a contraction. We have∣∣∣A(X)t − A(X̃)t

∣∣∣ ≤ ∫ t

0

∣∣∣Hp(Xs, µs, ∂xV (t,Xs, µs))−Hp(X̃s, µ̃s, ∂xV (t, X̃s, µ̃s))
∣∣∣ ds

≤ C

∫ t

0

∣∣∣Xs − X̃s

∣∣∣+W 1(µs, µ̃s)ds

where C depends on the bounds on the derivatives of V (specifically on Vx, Vxx, Vxµ). By

Lemma 2.4.1

C

∫ t

0

∣∣∣Xs − X̃s

∣∣∣+W 1(µs, µ̃s)ds ≤ C

∫ t

0

∣∣∣Xs − X̃s

∣∣∣+ ∥Xs − X̃s∥∞ds ≤ 2CT1∥X − X̃∥∞

so by taking T1 <
1
2C

we will get that A is a contraction. Since C depends only derivatives

of V that are a priori uniformly bounded we may repeat this procedure for the whole time

interval. Hence we obtain that the first equation has a unique solution which we denote Xt.

Now given Xt note that the second equation is just a linear ODE and so it will have a

unique solution by another routine application of the contraction mapping principle.

Remark 2.4.3. The second equation can be rewritten as

δXt(ω) = η −
∫ t

0

Hpx(Xs)δXs +

∫
Ω

[Hpµ(Xt(ω), Xt(ω̃))δXt(ω̃)]dP(ω̃) +Hpp(Xs)Ñsds

where

Ñt :=

∫
Ω

∂xµV (Xt(ω), Xt(ω̃))δXt(ω̃)dP(ω̃) + ∂xxV (Xt(ω))δXt(ω).
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Theorem 2.4.4. Assume that G,H are displacement monotone and that they satisfy the

regularity assumptions 1 and 2. Let V be a classical solution of the master equation (2.2).

Assume ∂xV ∈ C1,1 jointly in all variables and for each fixed t, we have ∂xV (t, ·) ∈ C2. Then

V (t, ·, ·) is displacement monotone for all t ∈ [0, T ].

Proof. The proof of this Theorem follows the same argument of [GMMZ22] although we give

the full details.

Without loss of generality, it suffices to prove the claim when t = 0.

Fix some ξ, η ∈ L2(Ω) and let X, δX be the unique solution to the ODE system from

Lemma 2.4.2.

Define

I(t) :=

∫∫
Ω×Ω

⟨∂xµV (Xt(ω), Xt(ω̃))δXt(ω̃), δXt(ω)⟩dP(ω)dP(ω̃)

Ī(t) :=

∫
Ω

⟨∂xxV (Xt(ω))δXt(ω), δXt(ω)⟩dP(ω)

so that

I(t) + Ī(t) = (dxd)Xt(ω)V (δXt(ω), δXt(ω))

Since V (T, ·) = G(·) is displacement monotone we get that I(T )+ Ī(T ) ≥ 0. Note that when

t = 0 we have I(0) + Ī(0) = (dxd)ξV (η, η) and so it suffices to show that I(0) + Ī(0) ≥ 0 in

order to prove that V (0, ·) is displacement monotone. To do this we show İ(t) + ˙̄I(t) ≤ 0.

We proceed by direct computation.

We have

İ(t) = I + II + III

where I comes from the terms where ∂t hits V , II from when ∂t hits δXt(ω̃), and III from
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when ∂t hits δXt(ω). We have

I :=

∫∫∫
Ω3

⟨{∂txµV (Xt(ω), Xt(ω̃))−Hp(Xt(ω))
T∂xxµV (Xt(ω), Xt(ω̃))

−Hp(Xt(ω̄))
T∂µxµV (Xt(ω), Xt(ω̃), Xt(ω̄))

−Hp(Xt(ω̃))
T∂x̃xµV (Xt(ω), Xt(ω̃))}δXt(ω̃), δXt(ω)⟩dP(ω)dP(ω̃)dP(ω̄).

Now rewrite ω̃ in N as ω̄ and use the simplified expression in Remark 2.4.3 to obtain:

II := −
∫∫∫

Ω3

⟨∂µxV (Xt(ω), Xt(ω̃)){[Hpx(Xt(ω))

+Hpp(Xt(ω))∂xxV (Xt(ω))]δXt(ω) + II2}, δXt(ω̃)⟩dP(ω)dP(ω̃)dP(ω̄)

II2 := [Hpµ(Xt(ω), Xt(ω̄)) +Hpp(Xt(ω))∂xµV (Xt(ω), Xt(ω̄))]δXt(ω̄)

III := −
∫∫∫

Ω3

⟨∂µxV (Xt(ω), Xt(ω̃)){[Hpx(Xt(ω̃))

+Hpp(Xt(ω̃))∂xxV (Xt(ω̃))]δXt(ω̃) + III2}, δXt(ω)⟩dP(ω)dP(ω̃)dP(ω̄)

III2 := [Hpµ(Xt(ω̃), Xt(ω̄)) +Hpp(Xt(ω̃))∂xµV (Xt(ω̃), Xt(ω̄))]δXt(ω̄)

Note that the III expression is the same as the II expression where all of the tildes have

been toggled outside of the first ∂µxV .

Next we apply −∂xµ to the master equation and rewrite x̃ in the nonlocal term, N , as x̄

to obtain

0 = −(∂xµL V )(t, x, µ, x̃) = J + JJ + JJJ. (2.3)

Here, we have set,

J :=∂txµV (x, x̃)−Hxµ(x, x̃)− ∂xxV (x)Hpµ(x, x̃)

−(Hxp(x) + ∂xxV (x)Hpp(x))∂xµV (x, x̃)−Hp(x)
T∂xxµV (x, x̃),

JJ :=−Hp(x̃)
T∂x̃xµV (x, x̃)− ∂xµV (x, x̃)(Hpx(x̃) +Hpp(x̃)∂xxV (x̃))

and

JJJ :=

∫
Rd

−Hp(x̄)
T∂µxµV (x, x̃, x̄)− ∂xµV (x, x̄)[Hpµ(x̄, x̃) +Hpp(x̄)∂xµV (x̄, x̃)]dµt(x̄).
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J is the term that arises when −∂xµ hits either V or H. Recall

NV =

∫
Rd

∂µV (t, x, µ, x̄) · (∂pH)(x̄, µ, ∂xV (t, x̄, µ))dµ(x̄)

When −∂xµ hits this we get two terms. The first is JJ which is the gradient term where ∂µ

hits the integral itself. The second is JJJ which is the integral ∂µ term where the ∂µ hits

the integrand.

Now we evaluate (2.3) along (Xt(ω), µt, Xt(ω̃)), multiply it by δXt(ω̃), and inner product

with δXt(ω). Note that since µt = Xt#P the integral over Rd against µt(x̄) in JJJ will

become an integral over Ω and the x̄ will become Xt(ω̄). Integrate J, JJ over ω, ω̃, ω̄ and

integrate JJJ over ω, ω̃. Hence we get

J →
∫∫∫

Ω3

⟨[∂txµV (Xt(ω), Xt(ω̃))−Hxµ(Xt(ω), Xt(ω̃))− ∂xxV (Xt(ω))Hpµ(Xt(ω), Xt(ω̃))

−(Hxp(Xt(ω)) + ∂xxV (Xt(ω))Hpp(Xt(ω)))∂xµV (Xt(ω), Xt(ω̃))

−Hp(Xt(ω))
T∂xxµV (Xt(ω), Xt(ω̃))]δXt(ω̃), δXt(ω)⟩dP(ω)dP(ω̃)dP(ω̄),

JJ →−
∫∫∫

Ω3

⟨[Hp(Xt(ω̃))
T∂x̃xµV (Xt(ω), Xt(ω̃))

− ∂xµV (Xt(ω), Xt(ω̃))(Hpx(Xt(ω̃))

+Hpp(Xt(ω̃))∂xxV (Xt(ω̃)))]δXt(ω̃), δXt(ω)⟩dP(ω)dP(ω̃)dP(ω̄)

and

JJJ →
∫∫∫

Ω3

⟨[−Hp(Xt(ω̄))
T∂µxµV (Xt(ω), Xt(ω̃), Xt(ω̄))

− ∂xµV (Xt(ω), Xt(ω̄)){Hpµ(Xt(ω̄), Xt(ω̃))

+Hpp(Xt(ω̄))∂xµV (Xt(ω̄), Xt(ω̃))}]δXt(ω̃), δXt(ω)⟩dP(ω)dP(ω̃)dP(ω̄).

Next we break up the JJJ term into two parts. The first is∫∫∫
Ω3

⟨−Hp(Xt(ω̄))
T∂µxµV (Xt(ω), Xt(ω̃), Xt(ω̄))δXt(ω̃), δXt(ω)⟩dP(ω)dP(ω̃)dP(ω̄)
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which we leave as is. For the other part we make the change of variables that swaps ω̃ and

ω̄ giving:∫∫∫
Ω3

⟨[−∂xµV (Xt(ω), Xt(ω̃))[Hpµ(Xt(ω̃), Xt(ω̄))

+Hpp(Xt(ω̃))∂xµV (Xt(ω̃), Xt(ω̄))]dµ(Xt(ω̃))]δXt(ω̄), δXt(ω)⟩dP(ω)dP(ω̃)dP(ω̄).

We now subtract these expressions from our expression for İ(t). In doing so we cancel

many terms. Notice the second part of JJJ exactly cancels III2, I will be entirely eliminated

from the first part of JJJ along with some terms from J and a term from JJ . Next the rest

of JJ cancels III exactly since the III2 is already gone. At this point we are left with all

of II along with some of J . We now transpose II (the part before II2) to swap the δXt(ω)

and δXt(ω̃) and use the symmetry properties (as in certain second derivative matrices are

symmetric matrices) of the involved quantities to cancel a few more terms. Finally we are

left with

İ(t) =

∫∫∫
Ω3

[−⟨∂µxV (Xt(ω), Xt(ω̃))
[
Hpµ(Xt(ω), Xt(ω̄))

+Hpp(Xt(ω))∂xµV (Xt(ω), Xt(ω̄))
]
δXt(ω̄), δXt(ω̃)⟩

+ ⟨
[
Hxµ(Xt(ω), Xt(ω̃))

+ ∂xxV (Xt(ω))Hpµ(Xt(ω), Xt(ω̃))
]
δXt(ω̃), δXt(ω)⟩]dP(ω)dP(ω̃)dP(ω̄)

We now repeat the exact same procedure for Ī. Differentiating in t we get

˙̄I(t) = Ī + II

where Ī comes from the terms where ∂t hits V and II from when ∂t hits either of the δXt(ω).

We have

Ī :=

∫∫
Ω2

⟨{∂txxV (Xt(ω))−Hp(Xt(ω))
T∂xxxV (Xt(ω))

−Hp(Xt(ω̃))
T∂µxxV (Xt(ω), Xt(ω̃))}δXt(ω), δXt(ω)⟩dP(ω)dP(ω̃).
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Now using the simplified expression in Remark 2.4.3 we obtain:

II := −2

∫∫
Ω2

⟨∂xxV (Xt(ω)){[Hpx(Xt(ω)) +Hpp(Xt(ω))∂xxV (Xt(ω))]δXt(ω)

+ [Hpµ(Xt(ω), Xt(ω̃)) +Hpp(Xt(ω))∂xµV (Xt(ω), Xt(ω̃))]δXt(ω̃)}, δXt(ω)⟩dP(ω)dP(ω̃)

where the 2 in front is because there are two δXt(ω) terms.

Next we apply −∂xx to the master equation and rewrite x̃ in the nonlocal term, N , as x̄

to obtain

0 = −(∂xxL V )(t, x, µ, x̃) = J̄ + JJ. (2.4)

Here, we have set,

J̄ :=∂txxV (x)−Hxx(x)− 2∂xxV (x)Hpx(x)− ∂xxV (x)Hpx(x)∂xxV (x)−Hp(x)
T∂xxxV (x)

and

JJ := −
∫
Rd

Hp(x̃)
T∂µxxV (x, x̃)dµ(x̃)

Here J̄ is the term that arises when −∂xx hits either V or H and JJ is the term from when

−∂xx hits N .

We evaluate the (2.4) along (Xt(ω), µt) multiply it by δXt(ω), and inner product with

δXt(ω). Just as in the case for I note that since µt = Xt#P the integral over Rd against

µ(x̃) in JJ will become an integral over Ω and the x̃ will become Xt(ω̃). Integrate J̄ over

ω, ω̃ and integrate JJ over ω. We obtain

J̄ →
∫∫

Ω2

⟨[∂txxV (x)−Hxx(Xt(ω))− 2∂xxV (Xt(ω))Hpx(Xt(ω))− ∂xxV (Xt(ω))

Hpx(Xt(ω))∂xxV (Xt(ω))−Hp(Xt(ω))
T∂xxxV (Xt(ω))]δXt(ω), δXt(ω)⟩dP(ω)dP(ω̃),

JJ →−
∫∫

Ω2

Hp(Xt(ω̃))
T∂µxxV (Xt(ω), Xt(ω̃))dP(ω)dP(ω̃)
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We now subtract these expressions from Ī , II to obtain

˙̄I(t) =

∫∫
Ω×Ω

[⟨Hxx(Xt(ω))− ∂xxV (Xt(ω)){Hpp(Xt(ω))∂xxV (Xt(ω))δXt(ω)

− 2[Hpµ(Xt(ω), Xt(ω̃)) +Hpp(Xt(ω))∂xµV (Xt(ω), Xt(ω̃))]δXt(ω̃)}, δXt(ω)⟩]dP(ω)dP(ω̃)

=

∫
Ω

[−⟨Hpp(Xt(ω))∂xxV (Xt(ω))δXt(ω), ∂xxV (Xt(ω))δXt(ω)⟩

− 2⟨Hpp(Xt(ω))∂xxV (Xt(ω))δXt(ω),

∫
Ω

[∂xµV (Xt(ω), Xt(ω̃))δXt(ω̃)]dP(ω̃)⟩

− 2⟨∂xxV (Xt(ω))δXt(ω),

∫
Ω

[Hpµ(Xt(ω), Xt(ω̃))δXt(ω̃)]dP(ω̃)⟩

+ ⟨Hxx(Xt(ω))δXt(ω), δXt(ω)⟩]dP(ω).

Finally we combine our expressions for İ and ˙̄I to obtain

İ(t) + ˙̄I(t)

=

∫
Ω

[−|H
1
2
pp(Xt(ω)){

∫
Ω

[∂xµV (Xt(ω), Xt(ω̃))δXt(ω̃)]dP(ω̃) + ∂xxV (Xt(ω))δXt(ω)}|2

− ⟨
∫
Ω

[Hpµ(Xt(ω), Xt(ω̃))δXt(ω̃)]dP(ω̃),∫
Ω

[∂xµV (Xt(ω), Xt(ω̃))δXt(ω̃)]dP(ω̃) + ∂xxV (Xt(ω))δXt(ω)⟩

+ ⟨
∫
Ω

[Hxµ(Xt(ω), Xt(ω̃))δXt(ω̃)]dP(ω̃) +Hxx(Xt(ω))δXt(ω), δXt(ω)⟩]dP(ω)

=

∫
Ω

[−|H
1
2
pp(Xt(ω)){

∫
Ω

[∂xµV (Xt(ω), Xt(ω̃))δXt(ω̃)]dP(ω̃) + ∂xxV (Xt(ω))δXt(ω)}

+
1

2
H

− 1
2

pp (Xt(ω))

∫
Ω

[Hpµ(Xt(ω), Xt(ω̃))δXt(ω̃)]dP(ω̃)|2

+ ⟨
∫
Ω

Hxµ(Xt(ω), Xt(ω̃))δXt(ω̃)dP(ω̃), δXt(ω)⟩+ ⟨Hxx(Xt(ω))δXt(ω), δXt(ω)⟩

+
1

4
|H− 1

2
pp (Xt(ω))

∫
Ω

[Hpµ(Xt(ω), Xt(ω̃))δXt(ω̃)]dP(ω̃)|2]dP(ω)

= −
∫
Ω

[|H
1
2
pp(Xt(ω))Nt|2]dP(ω) + (displφXt(ω)

H)(δXt(ω̃), δXt(ω̃)), (2.5)

where φ(x) := ∂xV (t, x, µt(ω
0)) and the last line is from the definition of displφXt(ω)

. Applying

the fact that H is displacement monotone we obtain that

İ(t) + ˙̄I(t) ≤ 0
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as desired.

2.5 A-Priori Bounds in Space

This section represents the main fundamental departure from [GMMZ22]. In that work the

a-priori bounds in space were a simple consequence of the parabolic PDE theory because

of noise. Here we have a deterministic system and so we must work harder to obtain these

bounds.

Lemma 2.5.1. Let V be a classical solution to the master equation. Fix some µ ∈ P2.

Then there exists a path m(t) : [0, T ] → P2 with m(0) = µ so that the following holds. Let

U(t, x) = V (t, x,m(t)). Then

U(t, x) = inf
γ:γ(t)=x

∫ T

t

L(γ(s),m(s), γ̇(s))ds+G(γ(T )).

Remark 2.5.2. The above formula for U is called the representation formula. What this

says is that once we fix an initial distribution µ then V becomes the value function for some

optimal control problem with Lagrangian L̃(t, x, v) = L(x, v,m(t)).

Proof of Lemma 2.5.1. We have that U satisfies the Hamilton Jacobi equation

∂tU(t, x) +H(x,m(t), ∂xU) = 0

U(T, x) = G(x)

By [CL86, Theorem 1] this Hamilton Jacobi equation has a unique solution (note that the

assumptions here are just regularity assumptions on H which are implied by our assump-

tions). By [CS04, Theorem 6.4.5] we have that the claimed representation formula is a

solution to this equation (note that the assumptions here are regularity assumptions along

with convexity and superlinear growth in v for L which are implied by our assumptions).

Hence U is equal to the claimed representation formula.
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Lemma 2.5.3. Fix some t̃, x and let γ be the optimizer in the representation formula for

U . Then there exists a universal constant C so that |γ̇| ≤ C.

Proof. We first would like to show that
∫ T
t
|γ̇| ds is bounded by a universal constant. To see

this note that by Assumption 3 we have∫ T

t

θ(|γ̇(s)|) + L(γ(s),m(s), 0)ds ≤
∫ T

t

L(γ(s),m(s), γ̇(s))ds

=

∫ T

t

L(γ(s),m(s), γ̇(s))ds+G(γ(T ))−G(γ(T ))

≤
∫ T

t

L(γ(t),m(s), 0)ds+G(γ(t))−G(γ(T ))

≤
∫ T

t

L(γ(t),m(s), 0)ds+ C |γ(T )− γ(t)|

where we have used that G is Lipschitz with universal Lipschitz constant in the last line

(this is from Assumption 1). Hence∫ T

t

θ(|γ̇(s)|)ds ≤
∫ T

t

L(γ(t),m(s), 0)− L(γ(s),m(s), 0)ds+ C |γ(T )− γ(t)|

≤ C

∫ T

t

|γ(s)− γ(t)| ds+ C |γ(T )− γ(t)|

≤ C

∫ T

t

∫ s

t

|γ̇(r)| drds+ C |γ(T )− γ(t)|

≤ C

∫ T

t

|γ̇(s)| ds

where the second inequality is from (5) in Proposition 2.3.2. Now there is some universal

constant C̃ so that θ(v) ≥ (C + 1) |v| − C̃. The claim now follows.

We proceed to the proof of the lemma. By Assumption 3 we have

θ(|γ̇(s)|) ≤ L(γ(s),m(s), γ̇(s))− L(γ(s),m(s), 0) ≤ Lv(γ(s),m(s), γ̇(s)) · γ̇(s)
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since L is convex. Continuing we get

θ(|γ̇(s)|) ≤ Lv(γ(s),m(s), γ̇(s)) · γ̇(s)

=

(
Lv(γ(T ),m(T ), γ̇(T ))−

∫ T

s

d

dt
Lv(γ(t),m(t), γ̇(t))dt

)
· γ̇(s)

=

(
Lv(γ(T ),m(T ), γ̇(T ))−

∫ T

s

Lx(γ(t),m(t), γ̇(t))dt

)
· γ̇(s)

where we have used the Euler-Lagrange equation for the last line. Now by Hamilton’s

equations we have(
Lv(γ(T ),m(T ), γ̇(T ))−

∫ T

s

Lx(γ(t),m(t), γ̇(t))dt

)
· γ̇(s)

=

(
Lv(γ(T ),m(T ), Hp(γ(T ),m(T ), ∂xG(γ(T ))))−

∫ T

s

Lx(γ(t),m(t), γ̇(t))dt

)
· γ̇(s)

=

(
∂xG(γ(T ))−

∫ T

s

Lx(γ(t),m(t), γ̇(t))dt

)
· γ̇(s)

where the last line follows because H,L are Legendre transforms of each other. Finally

applying Assumption 1 and (5) in Proposition 2.3.2 we get(
∂xG(γ(T ))−

∫ T

s

Lx(γ(t),m(t), γ̇(t))dt

)
· γ̇(s) ≤

(
C + C

∫ T

s

1 + |γ̇(t)| dt
)
|γ̇(s)|

≤ C + C |γ̇(s)|

All together we obtain θ(|γ̇(s)|) ≤ C + C |γ̇(s)|.

Now there is some further universal constant C̃ so that θ(v) ≥ (1 +C)v − C̃. Using this

we obtain |γ̇(s)| ≤ C + C̃ as desired.

Theorem 2.5.4. Suppose that V is a classical solution to the master equation. Then ∂xV

is bounded by a universal constant. Furthermore V is semi-concave with universal semi-

concavity constant.

Proof. We want to bound ∂xV (t, x, µ). Without loss of generality we bound ∂xV (0, x, µ).

Fix some µ and consider the corresponding U from Lemma 2.5.1. We have ∂xV (0, x, µ) =
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∂xU(0, x). Let γ be the optimal path in the representation formula for U(0, x). Let z ∈ Rn

be arbitrary. We set γz(s) = γ(s) + z. We have

U(0, x+ z)− U(0, x)

= U(0, x+ z)−
(∫ T

0

L(γ(s),m(s), γ̇(s))ds+G(γ(T ))

)
≤
∫ T

0

L(γz(s),m(s), γ̇z(s))ds+G(γz(T ))−
(∫ T

0

L(γ(s),m(s), γ̇(s))ds+G(γ(T ))

)
=

∫ T

0

L(γz(s),m(s), γ̇(s))− L(γ(s),m(s), γ̇(s))ds+G(γ(T ) + z)−G(γ(T ))

≤
∫ T

0

|z| sup
x̃,µ̃,v∈Rn×P2×B(C)

Lx(x̃, µ̃, v)ds+G(γ(T ) + z)−G(γ(T ))

≤ C |z|

which shows that U is Lipschitz in the space variable.

Next we do the semi-concavity. The objective is to show that there is some universal

C > 0 so that

V (t, x+ z, µ)− 2V (t, x, µ) + V (t, x− z, µ) ≤ C |z|2

Again without loss of generality we assume that t = 0 and we fix an initial µ and so the

objective becomes to show

U(0, x+ z)− 2U(0, x) + U(0, x− z) ≤ C |z|2
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Let γ be the optimal path in the representation formula for U(0, x). We have

U(0, x+ z)− 2U(0, x) + U(0, x− z)

= U(0, x+ z) + U(0, x− z)− 2

(∫ T

0

L(γ(s),m(s), γ̇(s))ds+G(γ(T ))

)
≤
(∫ T

0

L(γz(s),m(s), γ̇z(s))ds+G(γz(T ))

)
+

(∫ T

0

L(γ−z(s),m(s), γ̇−z(s))ds+G(γ−z(T ))

)
− 2

(∫ T

0

L(γ(s),m(s), γ̇(s))ds+G(γ(T ))

)
=

∫ T

0

L(γ(s) + z,m(s), γ̇(s))− 2L(γ(s),m(s), γ̇(s)) + L(γ(s)− z,m(s), γ̇(s))ds

+G(γ(T ) + z)− 2G(γ(T )) +G(γ(T )− z)

≤
∫ T

0

∥∂xxL∥L∞(BC) |z|2 ds+ ∥∂xxG∥∞ |z|2

≤ C |z|2

as desired.

Corollary 2.5.5. Suppose that V is a classical solution to the master equation. Then ∂xxV

is bounded by a universal constant.

Proof. From Theorem 2.5.4 we have that ∂xxV ≤ CI. But because V is displacement convex

we have that ∂xxV ≥ 0 by Lemma 2.2.3. Hence the result follows.

2.6 W2 A-Priori Bounds in Measure

In this section we show that the conditions of displacement monotonicity gives bounds on

∂xV in the measure variable. The proofs of this section are very similar to the proofs in

[GMMZ22] however since the formal statements in that work require individual noise and

the proofs are written in the notation of stochastic analysis we rewrite the proofs here in

simplified notation.
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Theorem 2.6.1. Suppose that V is a smooth solution to the master equation. Then ∂xV is

Lipschitz in the measure variable with respect to W2. In particular the Lipschitz constant is

bounded by a universal constant.

Proof. The proof is essentially the same as [GMMZ22, Theorem 5.1] however we give all the

details.

Fix some ξ, η ∈ L2(Ω). Let X, δX be the solution to the system in Lemma 2.4.2. By

integrating equation (2.5) in the proof of Theorem 2.4.4 over t, we have (keeping the same

notation as in that proof)∫ t

0

∫
Ω

∣∣∣Hpp(Xs(ω))
1
2Ns

∣∣∣2 dP(ω)ds
= [I(0) + Ī(0)]− [I(t) + Ī(t)] +

∫ t

0

(displφXs(ω)
H)(δXs(ω̃), δXs(ω̃))ds

= [I(0) + Ī(0)]− [I(t) + Ī(t)] +

∫ t

0

(displφXs(ω)
H)(δXs(ω̃), δXs(ω̃))ds

= [I(0) + Ī(0)]− [I(t) + Ī(t)] +

∫ t

0

∫
Ω2

[⟨Hxµ(Xs(ω), Xs(ω̃))δXs(ω̃), δXs(ω)⟩

+ ⟨Hxx(Xs(ω))δX(ω), δX(ω)⟩+ 1

4

∣∣∣H− 1
2

pp (Xs(ω))Hpµ(Xs(ω), Xs(ω̃))δXs(ω̃)
∣∣∣2]dP(ω)dP(ω̃)ds

≤ I(0)− [I(t) + Ī(t)] + C

∫
Ω

|η|2 dP(ω) + C

∫ t

0

∫
Ω

|δXs(ω)|2dP(ω)ds

where we have used that by Theorem 2.5.4 and Corollary 2.5.5 ∥∂xV ∥∞, ∥∂xxV ∥∞ are

bounded by a universal constant. In particular all the derivatives of H that appear are

uniformly bounded by a universal constant (since we assumed all derivatives of H are locally

bounded in p). Since V is displacement monotone we have that I(t) + Ī(t) ≥ 0 and so

c0

∫ t

0

∫
Ω

|Ns|2 dP(ω)ds ≤
∫ t

0

∫
Ω

∣∣∣Hpp(Xs(ω))
1
2Ns

∣∣∣2 dP(ω)ds
≤ I(0) + C

∫
Ω

|η|2 dP(ω) + C

∫ t

0

∫
Ω

|δXs(ω)|2dP(ω)ds

Recall that the defining ODE for δX is

δXt = η −
∫ t

0

Hpx(Xs)δXs +
1

2

∫
Ω

[Hpµ(Xs(ω), Xs(ω̃))δXs(ω̃)]dP(ω̃) +Hpp(Xs)Nsds

37



and so

|δXt|2 ≤ 2 |η|2 + C

∫ t

0

|δXs|2 +
∫
Ω

|δXs(ω̃)|2 dP(ω̃) + |Ns|2 ds.

Now integrating over ω we get∫
Ω

|δXt|2 dP(ω) ≤ 2

∫
Ω

|η|2 dP(ω) + C

∫ t

0

∫
Ω

|δXs|2 dP(ω)ds+ C

∫ t

0

∫
Ω

|Ns|2 dP(ω)ds

≤ C

∫
Ω

|η|2 dP(ω) + C

∫ t

0

∫
Ω

|δXs|2 dP(ω)ds+ C |I(0)|

and so by Gronwall’s inequality we have

sup
t∈[0,T ]

∫
Ω

|δXt|2 dP(ω) ≤ C

∫
Ω

|η|2 dP(ω) + C |I(0)|

We define

Υt(ω) =

∫
Ω

∂xµV (t,Xt(ω), µt, Xt(ω̃))δX(ω̃)tdP(ω̃)

Note that Υt is like I(t) from the proof of Theorem 2.4.4 except that we don’t inner product

with δX. In particular

|I(0)| ≤
∫
Ω

∣∣∣∣∫
Ω

⟨∂xµV (X0(ω), X0(ω̃))δX0(ω̃), η(ω)⟩dP(ω̃)
∣∣∣∣ dP(ω)

=

∫
Ω

∣∣∣∣∫
Ω

⟨∂xµV (X0(ω), X0(ω̃))δX0(ω̃)dP(ω̃), η(ω)⟩
∣∣∣∣ dP(ω)

≤
∫
Ω

∣∣∣∣∫
Ω

∂xµV (X0(ω), X0(ω̃))δX0(ω̃)dP(ω̃)
∣∣∣∣ |η(ω)| dP(ω)

=

∫
Ω

|Υ0(ω)| |η(ω)| dP(ω)

so that

sup
t∈[0,T ]

∫
Ω

|δXt|2 dP(ω) ≤ C

∫
Ω

|η|2 + |η| |Υ0| dP(ω)

Now in the exact same manner as in the proof of Theorem 2.4.4 we compute

Υ̇t = K3(t)−K4(t)
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where

K3(t) :=

∫∫
Ω2

{∂txµV (Xt(ω), Xt(ω̃))−Hp(Xt(ω))
T∂xxµV (Xt(ω), Xt(ω̃))

−Hp(Xt(ω̄))
T∂µxµV (Xt(ω), Xt(ω̃), Xt(ω̄))

−Hp(Xt(ω̃))
T∂x̃xµV (Xt(ω), Xt(ω̃))}δXt(ω̃)dP(ω̃)dP(ω̄)

K4(t) := −
∫∫

Ω2

⟨∂µxV (Xt(ω), Xt(ω̃)){[Hpx(Xt(ω̃))

+Hpp(Xt(ω̃))∂xxV (Xt(ω̃))]δXt(ω̃) +KK2}dP(ω̃)dP(ω̄)

KK2 := [Hpµ(Xt(ω̃), Xt(ω̄)) +Hpp(Xt(ω̃))∂xµV (Xt(ω̃), Xt(ω̄))]δXt(ω̄).

Note that these correspond to terms I, III in the expression for İ(t). We may now use

the exact same procedure of applying −∂xµ to the master equation, getting J, JJ, JJJ and

subtracting. After this we get

K3(t)−K4(t) =

∫
Ω

{Hxµ(Xt(ω), Xt(ω̃)) + ∂xxV (Xt(ω))Hpµ(Xt(ω), Xt(ω̃))

+ [Hxp(Xt(ω)) + ∂xxV (Xt(ω))Hpp(Xt(ω))]∂xµV (Xt(ω), Xt(ω̃))}δXt(ω̃)dP(ω̃)

Let

K5(t) := Hxp(Xt(ω)) + ∂xxV (Xt(ω))Hpp(Xt(ω))

K6(t) :=

∫
Ω

{Hxµ(Xt(ω), Xt(ω̃)) + ∂xxV (Xt(ω))Hpµ(Xt(ω), Xt(ω̃))}δXt(ω̃)dP(ω̃)

So that K3(t)−K4(t) = K5(t)Υt +K6(t). Now we have |K5(t)| ≤ C and

|K6(t)| ≤ C

∫
Ω

|δXt(ω̃)|dP(ω̃)

for some universal constant C. Finally

ΥT =

∫
Ω

∂xµV (T,XT (ω), µT , XT (ω̃))δX(ω̃)TdP(ω̃)

=

∫
Ω

∂xµG(XT (ω), µT , XT (ω̃))δX(ω̃)TdP(ω̃)
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and so

|ΥT | ≤ C

∫
Ω

|δXT (ω̃)|dP(ω̃)

Recall

Υ̇t = K5(t)Υt +K6(t)

so

|Υt|2 ≤ 2 |ΥT |2 + C

∫ T

t

[|Υs|2 +
∫
Ω

|δXt(ω̃)|2dP(ω̃)]ds

≤ C

∫
Ω

|δXT (ω̃)|2dP(ω̃) + C

∫ T

t

[|Υs|2 +
∫
Ω

|δXt(ω̃)|2dP(ω̃)]ds

Now Gronwall’s inequality tells us that

|Υt|2 ≤ C

∫
Ω

|δXT (ω̃)|2 + C

∫ T

0

∫
Ω

|δXt(ω̃)|2dP(ω̃)ds

and so

|Υ0|2 ≤ C sup
t∈[0,T ]

∫
Ω

|δXt|2 dP(ω)

Let ϵ > 0 be arbitrary. Recall that we have shown

sup
t∈[0,T ]

∫
Ω

|δXt|2 dP(ω) ≤ C

∫
Ω

|η|2 + |η| |Υ0| dP(ω)

and so

sup
t∈[0,T ]

∫
Ω

|δXt|2 dP(ω) ≤
∫
Ω

C

ϵ
|η|2 + Cϵ |Υ0|2 dP(ω)

≤
∫
Ω

C

ϵ
|η|2 dP(ω) + Cϵ sup

t∈[0,T ]

∫
Ω

|δXt|2 dP(ω)

where C is independent of ϵ. By taking ϵ = 1
2C

we obtain

sup
t∈[0,T ]

∫
Ω

|δXt|2 dP(ω) ≤ C

∫
Ω

|η|2 dP(ω)
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and so

|Υ0(ω)|2 ≤ C

∫
Ω

|η|2 dP(ω)

Recalling the definition of Υ0 we have∣∣∣∣∫
Ω

∂xµV (0, ξ(ω), µ, ξ(ω̃))η(ω̃)dP(ω̃)
∣∣∣∣2 ≤ C

∫
Ω

|η|2 dP

for every ω ∈ Ω. In particular for µ almost every x we get∣∣∣∣∫
Ω

∂xµV (0, x, µ, ξ(ω̃))η(ω̃)dP(ω̃)
∣∣∣∣2 ≤ C

∫
Ω

|η|2 dP

and so

|∂xV (0, x,Lξ+η)− ∂xV (0, x,Lξ)| =
∣∣∣∣∫ 1

0

∫
Ω

∂xµV (0, x,Lξ+θη, ξ + θη)ηdPdθ
∣∣∣∣

≤ C

(∫
Ω

|η|2 dP
) 1

2

.

Now if ξ, η are chosen so W 2
2 (Lξ+η,Lξ) =

∫
Ω
|η|2 dP then we will obtain the desired Lipschitz

regularity of ∂xV in measure.

2.7 Short Time Existence and Regularity

In this section we derive short time existence results for the master equation. Our methods

are inspired by the short time results of [GM22a] however the lack of separability for our

Hamiltonian introduces some new difficulties.

41



2.7.1 Hamiltonian ODE’s

Proposition 2.7.1. Suppose some G, µ are fixed. Then there is a δ > 0 so that the system

Ẏt = ∂pH(Yt, Yt#µ, Zt)

Żt = −∂xH(Yt, Yt#µ, Zt)

Y0 = Id

ZT = ∂xG(YT , YT#µ)

has a unique solution whenever T < δ. Furthermore δ depends only on ∥Gx∥, ∥Gxx∥, the

W2 Lipschitz constant of Gx, and universal constants. Also ∥Z∥∞ ≤ 2∥Gx∥∞ + 4CG where

CG = ∥Gxx∥+ CGµ and CGµ is the W2 Lipschitz constant of Gx with respect to the measure

variable.

Here Yt, Zt : Rn → Rn.

Proof. We first prove this under the additional assumption that CG ≤ 1
4
.

We proceed by using a fixed point theorem. Let B1 be the space of pairs of continuous

functions on [0, T ] × Rd, (Y, Z) so that supt∥Y (t, ·) − Id∥∞ ≤ 1 and ∥Z∥∞ ≤ 2∥Gx∥∞ + 1.

We equip B1 with the supremum metric.

First we rewrite the system in integral form

Yt(x) = x+

∫ t

0

∂pH(Ys(x), Ys#µ, Zs(x))ds

Zt(x) = Gx(YT (x), YT#µ)−
∫ T

t

∂xH(Ys(x), Ys#µ, Zs(x))ds

and so we define Φ to be the map on B1 so that Φ(Y, Z) is the tuple given by the right hand

sides of the above system.

We first show that Φ maps B1 into itself as long as T is sufficiently small. Fix some
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(Y, Z) ∈ B1 and let (Ỹ , Z̃) = Φ(Y, Z). We have∣∣∣Z̃t(x)∣∣∣ ≤ |Gx(YT (x), YT#µ)|+
∫ T

t

|∂xH(Ys(x), Ys#µ, Zs(x))| ds

≤ ∥Gx∥∞ + T sup
s

|∂xH(Ys(x), Ys#µ, Zs(x))|

≤ ∥Gx∥∞ + TC sup
s
(1 + |Zs(x)|)

≤ ∥Gx∥∞ + TC(2 + 2∥Gx∥∞)

≤ (1 + 2TC)∥Gx∥∞ + 2TC (2.6)

and so ∥Z̃∥∞ ≤ 1 + 2∥Gx∥∞ as long as T ≤ 1
2C

. Next∣∣∣Ỹt(x)− x
∣∣∣ ≤ T sup

s
|∂pH(Ys(x), Ys#µ, Zs(x))| ≤ CT

where C is the universal constant that bounds ∂pH on the set where p ≤ 1+2∥Gx∥∞. Hence

we have shown that Φ maps B1 into itself.

Finally we must show that Φ is a contraction. Fix some (Y, Z), (Ỹ , Z̃) ∈ B1. Let

(Ŷ , Ẑ) = Φ(Y, Z)− Φ(Ỹ , Z̃). We have∣∣∣Ŷt(x)∣∣∣ ≤ ∫ t

0

∣∣∣∂pH(Ys(x), Ys#µ, Zs(x))− ∂pH(Ỹs(x), Ỹs#µ, Z̃s(x))
∣∣∣ ds

≤ TC sup
s

(∣∣∣Ys(x)− Ỹs(x)
∣∣∣+ ∣∣∣Zs(x)− Z̃s(x)

∣∣∣+W 2(Ys#µ, Ỹs#µ)
)

≤ TC
(
∥Y − Ỹ ∥∞ + ∥Z − Z̃∥∞

)
at this point we will insist that T < 1

8C(CG+1)
so that ∥Ŷ ∥∞ ≤ 1

4(CG+1)
∥(Y, Z) − (Ỹ , Z̃)∥∞.

Next ∣∣∣Ẑt(x)∣∣∣ ≤ ∣∣∣Gx(YT (x), YT#µ)−Gx(ỸT (x), ỸT#µ)
∣∣∣

+

∫ T

t

∣∣∣∂xH(Ys(x), Ys#µ, Zs(x))− ∂xH(Ỹs(x), Ỹs#µ, Z̃s(x))
∣∣∣ ds
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Just as before the integral term is controlled by TC∥(Y, Z)− (Ỹ , Z̃)∥∞. For the Gx term∣∣∣Gx(YT (x), YT#µ)−Gx(ỸT (x), ỸT#µ)
∣∣∣ ≤ CG

∣∣∣YT (x)− ỸT (x)
∣∣∣+ CGW

2(YT#µ, ỸT#µ)

≤ CG

∣∣∣YT (x)− ỸT (x)
∣∣∣+ CG∥YT − ỸT∥∞

≤ 2CG∥YT − ỸT∥∞

≤ 1

2
∥(Y, Z)− (Ỹ , Z̃)∥∞

This completes the proof that Φ is a contraction.

We now prove the claim without the assumption that CG ≤ 1
4
. Let G̃ = G

4CG
and

H̃(x, µ, p) = 1
4CG

H(x, µ, 4CGp). Note that CG̃ = 1
4
. Hence by the above the system

˙̃Yt = ∂pH̃(Ỹt, Ỹt#µ, Z̃t)

˙̃Zt = −∂xH̃(Ỹt, Ỹt#µ, Z̃t)

Ỹ0 = Id

Z̃T = ∂xG̃(ỸT , ỸT#µ)

has a unique solution. It is then easily verified that (Yt, Zt) := (Ỹt, 4CGZ̃t) is the unique

solution to our original system.

Finally we have that ∥Z̃∥∞ ≤ 1 + 2∥G̃x∥∞ and so

∥Z∥∞ = 4CG∥Z̃∥∞ ≤ 4CG + 2∥4CGG̃x∥∞ = 4CG + 2∥Gx∥∞

as desired.

Remark 2.7.2. It seems likely that one could avoid the rescaling argument by using a more

complicated contraction mapping (for example as in [Zha17, Theorem 8.2.1]).

Remark 2.7.3. Note that for Equation 2.6 it was crucial to have that |∂xH(x, µ, p)| ≤

C1(1 + |p|). In particular a weaker regularity assumption such as saying that ∂xH is locally

bounded in p wouldn’t suffice. It is important that the growth is at most linear.
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Definition 2.7.4. We let Y (t, x, µ), Z(t, x, µ) be the solutions to the system in Proposition

2.7.1.

Lemma 2.7.5. Y, Z are Lipschitz in t, x and in µ with respect to W1 where the Lipschitz

constant depends only on universal quantities and ∥Gx∥, ∥Gxx∥, the W2 Lipschitz constant

of Gx.

Proof. The Lipschitz in the time variable follows directly from the ODE system in Proposi-

tion 2.7.1 since |Zt| is bounded by a universal constant and the derivatives of H are locally

bounded in p.

Next we prove Lipschitz in space. This follow a similar proof to Proposition 2.7.1. We

first assume that ∥Gxx∥∞ ≤ 1
4
. Fix some µ, x. Consider the ODE system

Ȧ(t) = ∂pH(A(t), Yt#µ,B(t))

Ḃ(t) = −∂xH(A(t), Yt#µ,B(t))

A(0) = x

B(T ) = ∂xG(A(T ), YT#µ)

to be solved for A,B (of course the solution will be A,B = Y (·, x, µ), Z(·, x, µ)). We may

rewrite the system in the form

A(t) = x+

∫ t

0

∂pH(A(s), Ys#µ,B(s))ds

B(t) = Gx(A(T ), YT#µ)−
∫ T

t

∂xH(A(s), Ys#µ,B(s))ds

Let Ψ be the map that sends (A,B) to the right hand side. Just as in the proof to Proposition

2.7.1 we obtain that Ψ is a contraction. Note that if Ã, B̃ = Y (·, y, µ), Z(·, y, µ) then∣∣∣Ψ(Ã, B̃)− (Ã, B̃)
∣∣∣ = |x− y|

and so by the contraction mapping principle we get∣∣∣(A,B)− (Ã, B̃)
∣∣∣ ≤ C |x− y|
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(here C is a universal constant that is equal to 1
1−r where r is the contraction constant of

Ψ). Hence Y, Z are Lipschitz in space. By rescaling we can remove the assumption that

∥Gxx∥∞ ≤ 1
4
.

Now, Lipschitz in the measure variable will also come from the contraction mapping.

Again fix µ and let Φ be contraction associated to the initial data µ from the proof of

Proposition 2.7.1. Let Ỹ , Z̃ be the solutions with initial data µ̃ then∣∣∣Φ(Ỹ , Z̃)− (Ỹ , Z̃)
∣∣∣ ≤ CW 1(Ỹs#µ, Ỹs#µ̃) ≤ CW 1(µ, µ̃)

and so by the contraction mapping principle we get that∣∣∣(Y, Z)− (Ỹ , Z̃)
∣∣∣ ≤ CW 1(µ, µ̃)

as desired.

Lemma 2.7.6. Suppose that µ = 1
m+1

∑m
j=0 δqi and x ∈ {q1, . . . , qm}. Then∑

j

∣∣∂qjY (t, x, µ)
∣∣ ≤ 16

if T is sufficiently small.

Proof. Fix some q ∈ R(m+1)×d (labeled q0, . . . , qk). Let γ
i
t(q) = Yt(qi) with the initial condi-

tion µ = 1
m+1

∑m
j=0 δqi . Similarly let ζ it(q) = Zt(qi). Translating the ODE system into our

new notation we have

γ̇it(q) = Hp(γ
i
t(q),

1

m+ 1

m∑
j=0

δγjt (q)
, ζ it(q))

ζ̇ it(q) = −Hx(γ
i
t(q),

1

m+ 1

m∑
j=0

δγjt (q)
, ζ it(q))

ζ iT (q) = Gx(γ
i
T (q),

1

m+ 1

m∑
j=0

δγjT (q))

γi0(q) = qi (2.7)
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We now differentiate in qj

∂qj γ̇
i
t(q) = Hpx · ∂qjγit(q) +Hpp · ∂qjζ it(q) +

1

m+ 1

m∑
k=0

Hpµ(..., γ
k
t (q)) · ∂qjγkt (q)

∂qj ζ̇
i
t(q) = −Hxx · ∂qjγit(q)−Hxp · ∂qjζ it(q)−

1

m+ 1

m∑
k=0

Hxµ(..., γ
k
t (q)) · ∂qjγkt (q)

∂qjζ
i
T (q) = Gxx · ∂qjγiT (q) +

1

m+ 1

m∑
k=0

Gxµ(..., γ
k
t (q)) · ∂qjγkT (q)

∂qjγ
i
0(q) = δij Id (2.8)

where we have omitted the argument

γit(q),
1

m+ 1

m∑
j=0

δγjt (q)
, ζ it(q)

from H and γit(q),
1

m+1

∑m
j=0 δγjt (q)

from G.

Note now that since γ, ζ are already known and each ζ i is bounded by a universal constant,

the above is just a finite dimensional system of linear ODE’s. Hence we may use Gronwall’s

inequality to bound ∂qjγ
i
t, ∂qjζ

i
t . Fix some q and define

γi,j = sup
t

∣∣∂qjγit(q)∣∣
ζ i,j = sup

t

∣∣∂qjζ it(q)∣∣
By applying Gronwall’s inequality we obtain

ζ i,j ≤ C

(
γi,j +

1

m+ 1

m∑
k=0

γk,j + Tγi,j +
T

m+ 1

m∑
k=0

γk,j

)
eCT ≤ C

(
γi,j +

1

m+ 1

m∑
k=0

γk,j

)
and

γi,j ≤

δij + CTζ i,j +
CT

m+ 1

∑
k∈{0,...,m},k ̸=i

γk,j

 eCT

≤

δij + CT

(
γi,j +

1

m+ 1

m∑
k=0

γk,j

)
+

CT

m+ 1

∑
k∈{0,...,m},k ̸=i

γk,j

 eCT

≤

(
δij + CTγi,j +

CT

m+ 1

m∑
k=0

γk,j

)
eCT
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Now suppose that T is so small that TCeTC ≤ 1
4
. Then

γi,j ≤ 2δij +
1

2
γi,j +

1

4(m+ 1)

m∑
k=0

γk,j

γi,j ≤ 4δij +
1

2(m+ 1)

m∑
k=0

γk,j

and so summing both sides in i gives
∑m

k=0 γ
k,j ≤ 8 and so γi,i ≤ 8 and γi,j ≤ 8

m+1
if i ̸= j.

Furthermore we have ζ i,i ≤ C and ζ i,j ≤ C
m+1

if i ̸= j.

Lemma 2.7.7. In the notation of the above lemma we have |∂tγit| , |∂ttγit| , |∂tqiγit| ≤ C.

Furthermore if i ̸= j then
∣∣∂tqjγit∣∣ ≤ C

m
. Furthermore the same bounds hold for ζ.

Proof. Since ζ it is bounded by a universal constant |∂tγit| , |∂tζ it | ≤ C follows immediately

from the ODE system (2.7).

For the bound on |∂ttγit| we differentiate (2.7) in time to obtain

∂ttγ
i
t = Hpx · ∂tγit +Hpp · ∂tζ it +

1

m+ 1

m∑
k=0

Hpµ(..., γ
k
t (q)) · ∂tγkt (q)

where the argument of H is (γit,
1

m+1

∑m
j=0 δγjt

, ζ it). Taking absolute values of both sides and

using the bounds |∂tγit| , |∂tζ it | ≤ C we see that |∂ttγit| ≤ C. A similar argument holds for

|∂ttζ it | ≤ C.

Finally for the bounds on
∣∣∂tqjγit∣∣ we recall (2.8). Using γi,i ≤ 8 and γi,j ≤ 8

m+1
if i ̸= j

and the corresponding bounds on ζ we see the claim that |∂tqiγit| ≤ C and
∣∣∂tqjγit∣∣ ≤ C

m
if

i ̸= j follows immediately from taking absolute values in the first equation in (2.8).

Proposition 2.7.8. We have Y, Z ∈ C1,1 jointly in all variables and for each fixed t, we

have Y (t, ·), Z(t, ·) ∈ C2.

Proof. In light of the above two Lemmas, by [GM22a, Theorems 2.17, 2.19, Corollary 2.18]
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it suffices to prove the following bounds:

∣∣∂qj1qj2γ0∣∣ ≤ C

m2
, j1 ̸= j2∣∣∂qj1qj1γ0∣∣ ≤ C

m∣∣∂qj1q0γ0∣∣ ≤ C

m∣∣∂q0q0γ0∣∣ ≤ C∣∣∂qj1qj1qj1γ0∣∣ ≤ C

m∣∣∂qj1qj2qj3γ0∣∣ ≤ C

m2
, |{j1, j2, j3}| ≠ 1

where ja > 0.

Note that since (2.8) is a finite system of ODE’s with a unique bounded solution, the clas-

sical ODE theory allows us to differentiate it without needing to check that the differentials

exists. We get

∂qj1qj2 γ̇
i
t = Hpx · ∂qj1qj2γ

i
t +Hpp · ∂qj1qj2ζ

i
t +

1

m+ 1

m∑
k=0

Hpµ · ∂qj1qj2γ
k
t + κ1,i,j1,j2

∂qj1qj2 ζ̇
i
t = −Hxx · ∂qj1qj2γ

i
t −Hxp · ∂qj1qj2ζ

i
t −

1

m+ 1

m∑
k=0

Hxµ · ∂qj1qj2γ
k
t + κ2,i,j1,j2

∂qj1qj2ζ
i
T = Gxx · ∂qj1qj2γ

i
T +

1

m+ 1

m∑
k=0

Gxµ · ∂qj1qj2γ
k
T + κ3,i,j1,j2

∂qj1qj2γ
i
0 = 0

where the κ terms encapsulate all the terms from where the derivative hits H. In particular

the κ terms are are quadratic polynomials in ∂qj1γ
i
t, ∂qj2γ

i
t, ∂qj2ζ

i
t , ∂qj2ζ

i
t with coefficients being

derivatives of H,G. Hence using that γi,i ≤ C and γi,j ≤ C
m+1

if i ̸= j from the previous

Proposition we will get that |κa,i,j1,j2| ≤ C
m2 if both j1, j2 ̸= 0, |κa,i,j1,j2| ≤ C

m
if one of

j1, j2 ̸= 0, and |κa,i,j1,j2| ≤ C in any case.

Notice that this system is of the form described in Proposition 2.9.2. Furthermore since

ζ i is already bounded by a universal constant we will obtain that all derivatives of H that
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appear are bounded by a universal constant. Hence we may apply Proposition 2.9.2 to obtain

that ∣∣∂qj1qj2γ0∣∣ ≤ C

m2∣∣∂qj1q0γ0∣∣ ≤ C

m∣∣∂q0q0γ0∣∣ ≤ C

when ja > 0.

For the third derivatives terms we differentiate the system yet again:

∂qj1qj2qj3 γ̇
i
t = Hpx · ∂qj1qj2qj3γ

i
t +Hpp · ∂qj1qj2qj3ζ

i
t +

1

m+ 1

m∑
k=0

Hpµ · ∂qj1qj2qj3γ
k
t + κ1,i,j1,j2,j3

∂qj1qj2qj3 ζ̇
i
t = −Hxx · ∂qj1qj2qj3γ

i
t −Hxp · ∂qj1qj2qj3ζ

i
t −

1

m+ 1

m∑
k=0

Hxµ · ∂qj1qj2qj3γ
k
t + κ2,i,j1,j2,j3

∂qj1qj2qj3ζ
i
T = Gxx · ∂qj1qj2qj3γ

i
T +

1

m+ 1

m∑
k=0

Gxµ · ∂qj1qj2qj3γ
k
T + κ3,i,j1,j2,j3

∂qj1qj2qj3γ
i
0 = 0

where here we will take ja > 0. This time the κ terms are are cubic polynomials in

∂qj1γ
i
t, ∂qj2ζ

i
t or quadratic with terms like ∂qj1γ

i
t∂qj1qj2γ

i
t or ‘summation terms’ like

1

m3

∑
k1,k2,k3

∂qj1γ
k1
t ∂qj2γ

k2
t ∂qj3γ

k3
t .

Since none of the ja = 0 we have that all the first derivative terms are bounded by C
m

and

all the second derivative terms by C
m2 and so we will get |κb,i,j1,j2,j3| ≤ C

m3 and so Proposition

2.9.2 will give that ∣∣∂qj1qj2qj3γ0∣∣ ≤ C

m3
.

Remark 2.7.9. The results of [GM22a] are all local in the sense that they prove C1,1
loc . For

our purpose it is crucial that we have global C1,1 bounds (in particular for Proposition 2.9.3).
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However reading through the proofs in [GM22a] it seems like the local constants only depend

on the local bounds in the assumptions. In particular if we have global bounds then we will

get global constants. For example in Theorem [GM22a, Theorem 2.17] reading through the

proof it seems like the final ”C” depends only on the input C(K, r) and so if the the initial

C doesn’t depend on K, r then the final C won’t either.

2.7.2 Master Equation

We adopt the notation Yt(x, µ, S), Zt(x, µ, S) to denote the solution to

Ẏt = ∂pH(Yt, Yt#µ, Zt)

Żt = −∂xH(Yt, Yt#µ, Zt)

YS = Id

ZT = ∂xG(YT , YT#µ) (2.9)

Definition 2.7.10. Define V by

V (t, x, µ) = G(YT (x, µ, t), YT (·, µ, t)#µ)−
∫ T

t

L(Ys(x, µ, t), Ẏs(x, µ, t), Ys(·, µ, t)#µ)ds

This is our candidate solution to the master equation.

Proposition 2.7.11. V is differentiable in x and ∂xV (t, x, µ) = Zt(x, µ, t). Furthermore V

is Lipschitz in time.

Proof. Fix some µ, S. Define

Lµ,S(t, x, v) = L(x, v, Yt(·, µ, S)#µ)

Hµ,S(t, x, p) = H(x, p, Yt(·, µ, S)#µ)

Gµ,S(x) = G(x, YT (·, µ, S)#µ)

Consider the optimal control problem

min
γ
Gµ,S(γ(T )) +

∫ T

S

Lµ,S(s, γ(s), γ̇(s))ds
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Since Yt(x, µ, S), Zt(x, µ, S) are the unique solutions to the Hamiltonian ODE system (2.9),

by [CS04, Theorem 6.3.3] we get that Yt(x, µ, S) is the minimizer of the above control

problem. Furthermore if we let Ṽ µ,S(t, x) be the associated value function then by [CS04,

Theorem 6.4.7] we have that Ṽ µ,S is differentiable at (S, x) for all x. Furthermore by [CS04,

Theorem 6.4.8] we have

∂xṼ
µ,S(S, x) = ZS(x, µ, S)

Note that by the definition of the value function

Ṽ µ,S(S, x) = Gµ,S(YT (x, µ, S)) +

∫ T

S

Lµ,S(s, Ys(x, µ, S), Ẏs(x, µ, S))ds

and so Ṽ µ,S(S, x) = V (S, x, µ).

Next we prove the claim that V is Lipschitz in time. Let S1 > S be some fixed time.

First since Ṽ µ,S(t, x) is the value function associated to an optimal control problem we have

that it satisfies the Hamilton Jacobi equation

∂tṼ
µ,S(t, x) = −Hµ,S(t, x, ∂xṼ

µ,S(t, x)) = −H(x, Zt(x, µ, S), Yt(·, µ, S)#µ)

and so ∂tṼ
µ,S(t, x) is bounded by a universal constant and so Ṽ µ,S(t, x) is Lipschitz in time.

We have

|V (S, x, µ)− V (S1, x, µ)| =
∣∣∣Ṽ µ,S(S, x)− V (S1, x, µ)

∣∣∣
≤
∣∣∣Ṽ µ,S(S1, x)− V (S1, x, µ)

∣∣∣+ ∣∣∣Ṽ µ,S(S, x)− Ṽ µ,S(S1, x)
∣∣∣

≤ |V (S1, x, YS1(·, µ, S)#µ)− V (S1, x, µ)|+ C |S − S1|

To bound this final expression we first argue that V is Lipschitz in the measure variable

with respect to W1. To see this first recall that from Lemma 2.7.5 we have Yt(x, µ, S) is

Lipschitz in both x, µ. Hence it follows that the map µ → Yt(·, µ, S)#µ is also Lipschitz

with respect to W1. It now follows directly from the first Hamilton ODE that Ẏt(x, µ, S) is
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Lipschitz in µ. Hence it follows directly the the definition of the V (Definition 2.7.10) that

V is Lipschitz in the measure variable with respect to W1. Now continuing we have

|V (S, x, µ)− V (S1, x, µ)| ≤ W1(YS1(·, µ, S)#µ, µ) + C |S − S1|

≤ ∥YS1(x, µ, S)− x∥L∞(x) + C |S − S1|

≤ C |S − S1|

where the second inequality is from Lemma 2.4.1 and the last line follows because

YS(x, µ, S) = x

and Yt is Lipschitz in time (by Lemma 2.7.5).

Lemma 2.7.12. We have

Ys(Yt(x, µ, η), Yt(·, µ, η)#µ, t) = Ys(x, µ, η)

when s ≥ t ≥ η.

Proof. Fix x, µ, η, t. Let Ỹs be the left hand side and Z̃s = Zs(Yt(x, µ, η), Yt(·, µ, η)#µ, t).

Note that Ỹs, Z̃s solve the ODE

˙̃Ys = ∂pH(Ỹs, Ỹs#µ, Z̃s)

˙̃Zs = −∂xH(Ỹs, Ỹs#µ, Z̃s)

Ỹt = Yt(x, µ, η)

Z̃T = ∂xG(ỸT , ỸT#µ)

which is also solved by Ys(x, µ, η), Zs(x, µ, η). Since this ODE has a unique solution by

Proposition 2.7.1, we obtain the result.

Proposition 2.7.13. V is differentiable in µ. Furthermore ∂xV ∈ C1,1 jointly in all vari-

ables and for each fixed t, we have ∂xV (t, ·) ∈ C2.
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Proof. For differentiability in µ we consider the two terms in V separately. First consider

I(µ) := G(YT (x, µ, t), YT (·, µ, t)#µ) as a function of µ. The lift Î is given by

Î(A) = Ĝ(ŶT (x,A, t), YT (A(·), A#P, t)) = Ĝ(ŶT (x,A, t), F (A))

where F (A) := YT (A(·), A#P, t). Now by Proposition 2.9.3 we have that F (A) is Frechet

differentiable and ŶT (x,A, t) is Frechet differentiable (with respect to A) since YT is Wasser-

stein differentiable from Proposition 2.7.8. Hence Î(A) is Frechet differentiable and so I(A)

is Wasserstein differentiable. A similar argument holds for the integral term in V .

Finally since ∂xV (t, x, µ) = Zt(x, µ, t) the claims about ∂xV (t, x, µ) follow from Proposi-

tion 2.7.8.

Theorem 2.7.14. V is a solution to the master equation.

Proof. First Ys(Yt(x, µ, η), Yt(·, µ, η)#µ, t) = Ys(x, µ, η) by Lemma 2.7.12. Hence

Ys

(
·, Yt(·, µ, η)#µ, t

)
#

(
Yt(·, µ, η)#µ

)
= Ys

(
Yt(·, µ, η), Yt(·, µ, η)#µ, t

)
#µ = Ys(·, µ, η)#µ

and so

V (t, Yt(x, µ, η), Yt(·, µ, η)#µ)

= G(YT (x, µ, η), YT (·, µ, η)#µ)−
∫ T

t

L(Ys(x, µ, η), Ẏs(x, µ, η), Ys(·, µ, η)#µ)ds

We may now differentiate both sides with respect to t for almost every t to get

∂tV + ∂xV · Ẏt +
∫
∂µV (..., x̃) · Ẏt(x̃, µ, η)dYt#µ = L(Yt, Ẏt, Yt#µ)

where the argument of Yt is (x, µ, η) and the argument of V is (t, Yt, Yt#µ). When η = t we

get Yt(x, µ, t) = x and so evaluating the above when η = t we get

∂tV (t, x, µ) + ∂xV (t, x, µ) · Ẏt(x, µ, t) +
∫
∂µV (t, x, µ, x̃) · Ẏt(x̃, µ, t)dµ = L(x, Ẏt(x, µ, t), µ)
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Now by the Hamiltonian ODE’s we have

Ẏt(x, µ, t) = ∂pH(Yt(x, µ, t), Yt(·, µ, t)#µ, Zt(x, µ, t))

= ∂pH(x, µ, Zt(x, µ, t)) = ∂pH(x, µ, ∂xV (t, x, µ))

where the last equality is from Proposition 2.7.11. Plugging in we get

∂tV (t, x, µ) + ∂xV (t, x, µ) · ∂pH(x, µ, ∂xV (t, x, µ))− L(x, ∂pH(x, µ, ∂xV (t, x, µ)), µ)

+

∫
∂µV (t, x, µ, x̃) · ∂pH(x̃, µ, ∂xV (t, x̃, µ))dµ(x̃) = 0

Using that H = L∗ we have

∂xV (t, x, µ) · ∂pH(x, µ, ∂xV (t, x, µ))− L(x, ∂pH(x, µ, ∂xV (t, x, µ)), µ) = H(x, µ, ∂xV (t, x, µ))

and so we get

∂tV (t, x, µ) +H(x, µ, ∂xV (t, x, µ)) +

∫
∂µV (t, x, µ, x̃) · ∂pH(x̃, µ, ∂xV (t, x̃, µ))dµ(x̃) = 0

as desired.

We remark that since the terms besides ∂tV (t, x, µ) are continuous in time we get that V

was actually continuously differentiable in time as opposed to only almost everywhere.

2.8 Well-Posedness for the Master Equation

With the a-priori estimates in hand it is now standard to obtain well-posedness for the master

equation. For convenience of the reader we include the full proof.

Theorem 2.8.1. There is a unique classical solution to the master equation.

Proof. We prove uniqueness first. Suppose that V, Ṽ are two classical solutions to the master

equation. Let

T1 = inf{t : V (s, x, µ) = Ṽ (s, x, µ) ∀s ∈ [t, T ]}
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Since V, Ṽ are continuous we have V (T1, ·) = Ṽ (T1, ·). We will assume without loss of

generality that T1 = T .

Let δ be the constant from Proposition 2.7.1. Choose some fixed s, y, µ with s ∈ (T−δ, T )

so that V (s, y, µ) ̸= Ṽ (s, y, µ). We may shift our V, Ṽ in time by s to reduce to the situation

where V (0, y, µ) ̸= Ṽ (0, y, µ) and T < δ.

Let Yt : Rd → Rd be the solution to

Ẏt = ∂pH(Yt, Yt#µ, ∂xV (t, Yt, Yt#µ))

Y0 = Id

and define Zt(x) = ∂xV (t, Yt(x), Yt#µ). We claim that

Żt(x) = −∂xH(Yt(x), Yt#µ, Zt(x))

Indeed if we define U(t, x) = V (t, x, Yt#µ) then U is the value function for an optimal

control problem with Hamiltonian H(·, Yt#µ, ·) (this follows from the exact same reasoning

as Lemma 2.5.1). Furthermore, we see that ∂xU(t, x) = ∂xV (t, x, Yt#µ). From

Ẏt = ∂pH(Yt, Yt#µ, ∂xU(t, Yt))

we see that Yt(x) are actually the optimal paths for the optimal control problem. Hence it

follows from Hamilton’s ODE’s that

Żt(x) = −∂xH(Yt(x), Yt#µ, Zt(x))

since Zt(x) = ∂xU(t, Yt(x)). Finally we remark that since V (T, ·) = G(·) we have

ZT = ∂xG(YT , YT#µ).

We now repeat the exact same procedure to define Ỹt, Z̃t, and Ũ only we use Ṽ in place of

V . By the uniqueness from Proposition 2.7.1 we get that Yt = Ỹt and Zt = Z̃t. In particular
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Yt#µ = Ỹt#µ and so the optimal control problems associated to U, Ũ are the same. Hence

U = Ũ . In particular

V (0, y, µ) = U(0, y) = Ũ(0, y) = Ṽ (0, y, µ)

as desired.

Now we prove existence. We proceed by contradiction. Suppose T1 > 0 is the smallest

time so that there is a classical solution to the master equation, V , on (T1, T ] so that

∂xV ∈ C2.

Let δ be the constant from Proposition 2.7.1 except that we take the a-priori bounds

from Theorems 2.5.4 and 2.6.1 and Corollary 2.5.5 in place of ∥Gx∥∞, ∥Gxx∥∞ and the W2

Lipschitz constant of Gx.

Set T2 = T1 +
δ
2
and G2 = V (T2, ·). By Theorem 2.4.4, V is displacement monotone and

so we may use Theorems 2.5.4 and 2.6.1 and Corollary 2.5.5 to bound ∥∂xG2∥∞, ∥∂xxG2∥∞

and the W2 Lipschitz constant of ∂xG2.

Now we use Theorem 2.7.14 to construct a classical solution V2 to the master equation

on (T2−δ, T2) = (T1− δ
2
, T1+

δ
2
) so that V2(T1+

δ
2
, ·) = G2(·) = V (T1+

δ
2
). By the uniqueness

result above we get V2 = V for all t ∈ (T1, T1 +
δ
2
). Hence we may use V2 to extend our

solution V to a solution to the master equation on (T1− δ
2
, T ]. This contradicts T1 being the

smallest time.

2.9 Technical Lemmas

2.9.1 Forward Backward ODE Systems

We first show Existence/Uniqueness for Linear Forward Backward ODE’s. These results

are needed for our method to obtain well-posedness for the deterministic master equation.

While they will not be surprising to experts we are not aware of any reference for these exact

results.
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Lemma 2.9.1. The Linear Forward Backward ODE

γ̇it =
∑
j

Aij1 (t)γ
j
t +

∑
j

Bij
1 (t)ζ

j
t +K1(t)

ζ̇ it =
∑
j

Aij2 (t)γ
j
t +

∑
j

Bij
2 (t)ζ

j
t +K2(t)

γi0 = qi

ζ iT =
∑
j

GijγjT +K3

has a unique solution as long as T < 1
8

(∑
j

∣∣Aij1 (s)∣∣+ ∣∣Bij
1 (s)

∣∣)−1

.

Proof. We first prove this under the additional assumption that
∑

j |Gij| ≤ 1
2
.

We proceed by contraction mapping principle. Rewrite the ODE in the integral form

γit = qi +

∫ t

0

∑
j

Aij1 (s)γ
j
s +

∑
j

Bij
1 (s)ζ

j
s +K1(s)ds

ζ it =
∑
j

GijγjT +K3 +

∫ T

t

∑
j

Aij2 (s)γ
j
s +

∑
j

Bij
2 (s)ζ

j
s +K2(s)ds

Let B be that space of all continuous (γit, ζ
i
t) such that ∥γit∥∞, ∥ζ it∥∞ < ∞ where the L∞

norm is taken over time. We equip B with the supremum metric.

Let Φ be the map that sends (γit, ζ
i
t) to the right hand side of the above system. We see

that Φ maps B to B. We show that Φ is a contraction. We proceed by direct computation.

Let (γ̂it, ζ̂
i
t) = Φ(γit, ζ

i
t)− Φ(γ̃it, ζ̃

i
t). Set η = ∥(γit, ζ it)− (γ̃it, ζ̃

i
t)∥∞ We see that

∣∣γ̂it∣∣ ≤ ∫ t

0

∑
j

∣∣Aij1 (s)∣∣ ∣∣γjs − γ̃js
∣∣+∑

j

∣∣Bij
1 (s)

∣∣ ∣∣∣ζjs − ζ̃js

∣∣∣ ds ≤ Tη

(∑
j

∣∣Aij1 (s)∣∣+ ∣∣Bij
1 (s)

∣∣)
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and ∣∣∣ζ̂ it ∣∣∣ ≤ ∫ t

0

∑
j

∣∣Aij2 (s)∣∣ ∣∣γjs − γ̃js
∣∣+∑

j

∣∣Bij
2 (s)

∣∣ ∣∣∣ζjs − ζ̃js

∣∣∣ ds+∑
j

∣∣Gij
∣∣ ∣∣γjT − γ̃jT

∣∣
≤ η

(
T
∑
j

∣∣Aij2 (s)∣∣+ T
∑
j

∣∣Bij
2 (s)

∣∣+∑
j

∣∣Gij
∣∣)

≤ η

(
T
∑
j

∣∣Aij2 (s)∣∣+ T
∑
j

∣∣Bij
2 (s)

∣∣+ 1

2

)

and so Φ is a contraction as long as T < 1
4

(∑
j

∣∣Aij1 (s)∣∣+ ∣∣Bij
1 (s)

∣∣)−1

.

Now we consider the case where KG :=
∑

j |Gij| ≥ 1
2
. Consider the rescaled system

˙̃γit =
∑
j

Aij1 (t)

KG

γ̃jt +
∑
j

Bij
1 (t)ζ̃

j
t +

K1(t)

KG

˙̃i
tζ =
∑
j

Aij2 (t)

KG

γ̃jt +
∑
j

Bij
2 (t)ζ̃

j
t +

K2(t)

KG

γ̃i0 = qi

ζ̃ iT =
∑
j

Gij

KG

γ̃jT +
K3

KG

This system satisfies the assumptions of our contraction mapping proof and so it has a unique

solution (γ̃it, ζ̃
i
t). We then see that (γit, ζ

i
t) := (γ̃it, KGζ̃

i
t) is the solution the the original (un-

rescaled) system.

Proposition 2.9.2. Consider the following linear forward backward ODE

γ̇it,j = H1,1(t) · γit,j +H1,2(t) · ζ it,j +
∑
k ̸=i

H2,k(t) · γkt,j + κ1,i,j(t)

ζ̇ it,j = H3,1(t) · γit,j +H3,2(t) · ζ it,j +
∑
k ̸=i

H4,k(t) · γkt,j + κ2,i,j(t)

γi0,j = 0

ζ iT,j = H5,1 · γiT,j +
∑
k ̸=i

H6,k · γkT,j + κ3,i,j
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Here i runs from 0, . . . ,m and j runs over an arbitrary index set (typically {0, . . . ,m}a).

Define Ha,b = supt |Ha,b(t)|, κa,b,c = supt |κa,b,c(t)|, γa,b = supt
∣∣γat,b∣∣, and ζa,b = supt

∣∣ζat,b∣∣.
Let κi,j =

∑
a=1,2,3 κ

a,i,j.

Suppose that there is a constant C so that∣∣H1,1
∣∣ , ∣∣H1,2

∣∣ , ∣∣H3,1
∣∣ , ∣∣H3,2

∣∣ , ∣∣H5,1
∣∣ ≤ C

and
∣∣Ha,k

∣∣ ≤ C
m

for a ∈ {2, 4, 6} and k ∈ {0, . . . ,m}.

Then if T is sufficiently small (which depends only on C) we have

γi,j ≤ κi,j +
1

m

∑
k

κk,j

and

ζ i,j ≤ C

(
κi,j +

1

m

∑
k

κk,j

)
.

Proof. To simplify the notation we will drop the · used for dot products. All sums over k

are over k ∈ {0, . . . ,m} but k ̸= i.

By Gronwall’s inequality we have

ζ i,j ≤ 2

(
κ3,i,j +H5,1γi,j +

∑
k

H6,kγk,j + T

(
κ2,i,j +

∑
k

H4,kγk,j +H3,1γi,j

))
eTH

3,2

≤ C

(
κ3,i,j + γi,j + κ2,i,j +

1

m

∑
k

γk,j

)
and

γi,j ≤ T

(
κ1,i,j +H1,2ζ i,j +

∑
k

H2,kγk,j

)
eTH

1,1 ≤ CT

(
κ1,i,j + ζ i,j +

1

m

∑
k

γk,j

)
Combining these two we get

γi,j ≤ CT

(
κ1,i,j + κ3,i,j + γi,j + κ2,i,j +

1

m

∑
k

γk,j +
1

m

∑
k

γk,j

)

≤ CT

(
γi,j +

1

m

∑
k

γk,j + κi,j

)
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Now if CT ≤ 1
2
we get

γi,j ≤ 2CT

(
1

m

∑
k

γk,j + κi,j

)

Summing over i on both sides we get

m∑
i=0

γi,j ≤ 2CT

(∑
k

γk,j +
m∑
i=0

κi,j

)

and so if 2CT ≤ 1
2
we have

m∑
i=0

γi,j ≤ 4CT
m∑
i=0

κi,j

which yields

γi,j ≤ κi,j +
1

m

∑
k

κk,j

as desired. Next plugging into our bound on ζ i,j we get

ζ i,j ≤ C

(
κ3,i,j + κi,j +

1

m

∑
k

κk,j + κ2,i,j +
1

m

m∑
i=0

κi,j

)
≤ C

(
κi,j +

1

m

m∑
i=0

κi,j

)

as desired.

Proposition 2.9.3. Suppose that Y : Rd × P2 → Rd is C1,1 (in the sense of [GM22a,

Theorem 2.17]). Then the map F : L2(Ω) → L2(Ω) defined by

F (X)[ω] = Y (X(ω), X#P)

is Frechet differentiable and the Frechet derivative is Lipschitz.

Proof. We let Ŷ : Rd × L2(Ω) → Rd be the lift of Y defined by Ŷ (x,A) = Y (x,A#P). We

have

Ŷ (A(ω) +B(ω), A+B) = Ŷ (A(ω), A+B) +DxŶ (A(ω), A+B) ·B(ω) +O(|B(ω)|2)
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where the constant in the big O doesn’t depend on A,B, ω. Hence we obtain

∥Ŷ (A(·)+B(·), A+B)− Ŷ (A(·), A+B)−DxŶ (A(·), A+B) ·B(·)∥2 ≤ C∥|B(·)|2∥2 ≤ C∥B∥22
(2.10)

Next because DxŶ is Lipschitz we have that∣∣∣DxŶ (A(ω), A+B)−DxŶ (A(ω), A)
∣∣∣ ≤ C∥B∥2

for each fixed ω. Hence∣∣∣DxŶ (A(ω), A+B) ·B(ω)−DxŶ (A(ω), A) ·B(ω)
∣∣∣ ≤ C∥B∥2 |B(ω)|

and so

∥DxŶ (A(·), A+B) ·B(·)−DxŶ (A(·), A) ·B(·)∥2 ≤ C∥B∥22

Plugging into (2.10) we get

∥Ŷ (A(·) +B(·), A+B)− Ŷ (A(·), A+B)−DxŶ (A(·), A) ·B(·)∥2 ≤ C∥B∥22

Because Y is differentiable in the measure variable we have that Ŷ is Frechet differentiable

in its second variable. We denote this derivative by DµŶ . For a fixed x ∈ Rd we have

DµŶ (x, ·) : L2(Ω) → (L2(Ω) → Rd). Hence we use the notation DµŶ (x,A)[·] : L2(Ω) → Rd.

Next we have for each fixed ω

Ŷ (A(ω), A+B) = Ŷ (A(ω), A) +DµŶ (A(ω), A)[B] +O(∥B∥22)

and so

∥Ŷ (A(·), A+B)− Ŷ (A(·), A)−DµŶ (A(·), A)[B]∥2 ≤ C∥B∥22

Again plugging in we get

∥Ŷ (A(·) +B(·), A+B)− Ŷ (A(·), A)−DµŶ (A(·), A)[B]−DxŶ (A(·), A) ·B(·)∥2 ≤ C∥B∥22
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Finally recall that

F (X)[ω] = Y (X(ω), X#P) = Ŷ (X(ω), X)

and so

∥F (A+B)[·]− F (A)[·]−DµŶ (A(·), A)[B]−DxŶ (A(·), A) ·B(·)∥2 ≤ C∥B∥22

as desired.
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CHAPTER 3

Common Noise Master Equation

3.1 Introduction

Master equations are PDEs of hyperbolic type, whose solutions depend both on the state of

individual agents (typically a variable in a finite dimensional Euclidean space) and on the

agents’ distribution (typically a Borel probability measure supported over the state space of

the agents). Beside their independent interest, one of the main motivations for studying these

equations lies in the fact that their classical solutions can be used to provide quantitative

rates of convergence for the closed loop Nash equilibria of stochastic differential games, when

the number of agents tends to infinity (cf. [CDLL19]). They can serve also as important tools

in showing large deviation principles, concentration of measure and central limits theorems

for these games (see [DLR19, DLR20]).

Because of the infinite dimensional character of these equations, their well-posedness

provide great mathematical challenges and so their investigation has gained considerable at-

tention in the community in the past decade. Classical solutions to the master equation are

known to exist under certain assumptions on the data, which are responsible for the unique-

ness of the MFG Nash equilibria of the underlying game. These assumptions can be roughly

grouped into two categories: (i) the data satisfy some sort of smallness condition (related

to the time horizon, to the Hamiltonian, to a specific subclass of probability measures, etc.)

or (ii) the data fulfill suitable monotonicity conditions.

In the case (i), besides the smallness assumption typically there is no need to impose
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additional structural assumptions on the data (such as separability or convexity of the un-

derlying Hamiltonian or final datum or the presence of a non-degenerate idiosyncratic noise)

governing the game (see for instance [CD18b, GS15, May20, AM23]). The question regarding

the global well-posedness of master equations (in the class of classical solutions) is way more

subtle and this is understood in suitably defined monotone regimes (cf. case (ii)). In the liter-

ature to date, these are essentially classified in two major groups: the so-called Lasry–Lions

monotonicity and displacement monotonicity conditions, which are in general in dichotomy

with each other. Historically, the Lasry–Lions monotonicity condition was used first for the

global well-posedness of the master equation (see [CCD22, CDLL19, CD18b]). When dealing

with classical solutions, it worth mentioning that the Lasry–Lions monotonicity condition

on its own is in general not enough for the global well-posedness of the underlying master

equation, unless a non-degenerate idiosyncratic noise (or stronger convexity assumption on

the data) is also present and the corresponding Hamiltonians are separable in the momentum

and measure variables, i.e. they possess a decomposition of the form

H(x, µ, p) := H0(x, p)− F (x, µ), (3.1.1)

for some H0 : Rd×Rd → R and F : Rd×P2(Rd) → R (where the state space of the agents is

Rd and P2(Rd) stands for the set of Borel probability measures with finite second moment,

supported on Rd, describing the agents’ distribution).

Displacement monotonicity (which stems from the notion of displacement convexity aris-

ing in optimal transport, [McC97]) is an alternative condition which guarantees the existence

and uniqueness of classical solutions to the master equation. Prior to using this condition

in the context of master equations, under different names (as ‘weak monotonicity’ or ‘L-

monotonicity’) this condition has already appeared in works on MFG (see [Ahu16, ARY19]

and [CD18a, Section 3.4.3]) and on FBSDEs of McKean–Vlasov type (see [CD15]). This

condition turned out to be sufficient in the case of deterministic potential master equations

in the lack of the regularizing effect of the idiosyncratic noise ([GM22a, BGY24]), or for a

general class of non-separable Hamiltonians in the presence of non-degenerate idiosyncratic
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noise ([GMMZ22]). In the presence of Lasry–Lions monotonicity and non-degenerate id-

iosyncratic noise, for separable Hamiltonians suitable notions of weak solutions have been

proposed if the data are not regular enough ([Ber21, MZ22a]). In such cases, however, we

still have uniqueness of the MFG Nash equilibria. The recent work [GM22b] proposed a

new notion of monotonicity condition, which is also a sufficient condition for the global

well-posedness of the master equation. This condition is in general in dichotomy with both

Lasry–Lions and displacement monotonicity conditions (see [GM23]).

When monotonicity conditions are violated and the uniqueness of the MFG Nash equi-

libria does not hold, the classical well-posedness theory for the master equation breaks down

in finite time and it is a great challenge to define suitable notions of weak solutions, which

may help selecting specific equilibria of the game. In this direction it worth mentioning

the recent breakthrough [CD24] which proposes a notion of weak solution (in the spirit of

entropy solutions) for potential MFG master equations in the presence of non-degenerate

idiosyncratic noise. It has been pointed out in [GM22b] that weak solutions in entropy sense

(although different from the ones in [CD24]) might in general not select MFG Nash equilibria

of the underlying game.

As discussed above, the Lasry–Lions monotonicity condition on the data without the

presence of a non-degenerate idiosyncratic noise in general cannot guarantee the unique-

ness of solutions to the MFG system (see the discussion in [GM23]) and so, the existence

of a classical solution to the corresponding master equation. In the lack of non-degenerate

idiosyncratic noise, the literature discusses two important classes of examples: purely de-

terministic problems and problems driven by a common noise. In the case of deterministic

Lasry–Lions monotone MFG systems, [CP20a, Theorem 1.8] presents a uniqueness result

under the additional assumption that the measure component is essentially bounded.

MFG systems and master equations driven by common noise only or in presence of

common noise and degenerate idiosyncratic noise have been recently investigated in the

series of interesting works [CS22a, CS22b, CSS22]. In such cases, a notion of weak solution
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for the master equation is obtained in the spirit of monotone solutions proposed in [Ber21].

The study of MFG with common noise goes back to the works [Ahu16, CDL16]. Interestingly,

already in these early works it has been discussed that additional convexity properties of the

value function can render a stronger notion of solutions to MFG with common noise (than

the ones in [CS22b, CSS22]). It is well-known now that the convexity of the value function

in the state variable is strongly linked to the displacement monotonicity of the data (see

[GM22a, GMMZ22, MM24]).

To the best of our knowledge, there are only very few works in the literature studying

the global existence and uniqueness of classical solutions to the master equation in lack of

non-degenerate idiosyncratic noise: [GM22a] considers potential deterministic master equa-

tion in the case of separable Hamiltonians and displacement convexity; [GM22b] studies a

class of deterministic master equations in the presence of a different monotonicity condition;

a particular dimension reduction technique and the associated monotonicity conditions al-

lowed the authors of [LLS22] to obtain global classical solutions to the deterministic master

equation. Finally, in [CS22a] the authors obtain weak monotone solutions to a class of time

independent master equations both in the deterministic setting and driven by a common

noise.

Our objective in this chapter is to show the global existence and uniqueness of classi-

cal solutions to the master equation in the lack of idiosyncratic noise and the presence of

displacement monotone data. Our result cover both the deterministic problem and the one

driven purely by a common noise. In this chapter we consider the master equation (1.1) with

β = 0 but β0 ̸= 0. For the convenience of the reader we reproduce it here:
−∂tV (t, x, µ) +H(x, µ, ∂xV )− (NV )(t, x, µ)− β2

2
∆comV (t, x, µ) = 0,

in (0, T )× Rd × P2(Rd),

V (T, x, µ) = G(x, µ), in Rd × P2(Rd)
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where

(NV )(t, x, µ) := −
∫
Rd

∂µV (t, x, µ, x̃) · ∂pH(x̃, µ, ∂xV (t, x̃, µ))dµ(x̃)

and

∆comV (t, x, µ) := tr(∂xxV (t, x, µ)) +

∫
Rd

tr(∂x̃µV (t, x, µ, x̃))dµ(x̃)

+ 2

∫
Rd

tr(∂xµV (t, x, µ, x̃))dµ(x̃)

+

∫∫
Rd×Rd

tr(∂µµV (t, x, µ, x̃, x̄))dµ(x̃)dµ(x̄).

Here T > 0 is the time horizon of the game, β ≥ 0 stands for the intensity of the common

noise represented by a Brownian motion (B0
t )t∈[0,T ] on Rd, H : Rd × P2(Rd)× Rd → R and

G : Rd × P2(Rd) → R are the Hamiltonian and the final cost function, respectively.

Definition 3.1.1. A function V : (0, T )×Rd×P2(Rd) → R is said to be a classical solution

to the master equation if all of the derivatives that appear in the equation exist and are

continuous (with respect to Euclidean distance and W1) and V satisfies the master equation

pointwise.

The master equation (3.1.2) is strongly linked to the following mean field games system



du(t, x) = −
[
tr
(β2

2
∂xxu(t, x) + β∂xv

⊤(t, x)
)
−H(x, ρ(t, ·), ∂xu(t, x))

]
dt

+βv(t, x) · dB0
t , in (t0, T )× Rd,

dρ(t, x) =
[β2

2
tr
(
∂xxρ(t, x)

)
+ div(ρ(t, x)∂pH(x, ρ(t, ·), ∂xu(t, x)))

]
dt

−β∂xρ(t, x) · dB0
t , in (t0, T )× Rd,

ρ(t0, ·) = µ, u(T, ·) = G(·, ρ(T, ·)),

in Rd.

(3.1.2)

The solution to (3.1.2) is a triple (ρ, u, v), F0-progressively measurable, which serves formally

as the system of generalized characteristics for (3.1.2). We note that if β > 0, then ρ(t, ·, ω)
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is a random probability measure. Conversely, the solution V to the master equation (3.1.2)

also serves as the decoupling field for this forward-backward PDE system, i.e.

u(t, x, ω) = V (t, x, ρ(t, ·, ω)). (3.1.3)

The description of results. As our main result (Theorem 3.5.3) we show the global

in time existence and uniqueness of a classical solution to (3.1.2), by assuming that H and

G satisfy suitable displacement monotonicity (and regularity) conditions. The displacement

monotonicity condition on H and G are the same as the ones proposed in [GMMZ22, Defini-

tion 2.2(ii), Definition 3.4]. This results can be seen as a completion of the program initiated

in [GM22a, GMMZ22]. The roadmap to the proof of our main result is similar in spirit to

the one used in [GMMZ22], but several new ideas were necessary to fulfil this because of the

lack of the idiosyncratic noise.

Let us discuss the main similarities and differences in the two approaches. First, the heart

of our analysis is the a priori propagation of the displacement monotonicity: if V is a classical

solution to (3.1.2) and H and G are displacement monotone, so is V (t, ·, ·). Displacement

monotonicity will readily imply that ∂xV (t, x, ·) is Lipschitz continuous with respect to the

metric W2 (with a Lipschitz constant depending on the data and on ∥∂xxV ∥L∞). These two

properties follow similarly as in [GMMZ22]. It is well-known (see [CD18b]) that the master

equation is well-posed for short time if the data is regular enough (without any monotonicity

assumptions). The short time horizon depends on the Lipschitz constant of ∂xV (t, ·, ·) (in

the metric W1 for the measure variable). To show that this Lipschitz constant is a priori

bounded, we use two arguments. First, the uniform a priori estimates on ∥∂xxV ∥L∞ are a

consequence of the semi-concavity bounds (a result of classical optimal control arguments)

and convexity (a consequence of the displacement monotonicity) of V (t, ·, µ). To obtain

the necessary a priori bounds on ∥∂µxV ∥L∞ we rely on several representation formulas via

suitable FBSDE systems. Although these representation formulas are similar in spirit to the

ones used in [GMMZ22, MZ22a], we need to work with different systems of FBSDEs. During
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this process, we show also that – similarly as in [GMMZ22, MZ22a] – the small time horizon

depends on the W2-Lipschitz constant of ∂xV (and not on the W1-Lipschitz constant as in

[CD18b]).

This approach represents a major difference with the work [GMMZ22] and let us elaborate

more on this. Indeed, we can observe that the FBSDE systems in [GMMZ22] (see for

instance the [GMMZ22, System (2.24)]) are not natural if the intensity of the idiosyncratic

noise is taken to be zero. Therefore, instead we will be working with FBSDE systems of

Pontryagin type, where the natural variables are the state and the momentum (instead of the

state and optimal value, as in [GMMZ22]). This system will become the classical forward-

backward Hamiltonian system in case of deterministic problems. This subtlety has already

been emphasized in [CCD22, Section 5.2]: in the case when non-degenerate idiosyncratic

noise is present optimal paths may be characterized by solutions of FBSDEs, where the value

function is represented as the decoupling field of the forward-backward system (similarly to

the approach used also in [GMMZ22]); on the contrary, when the idiosyncratic noise is

degenerate but additional convexity is present on the data (which is provided in our case by

the displacement monotonicity), the natural characterization of the optimal paths may be

obtained via the stochastic Pontryagin principle, where the decoupling field of the FBSDE

system is understood as the gradient of the value function of the optimization problem.

The FBSDE systems used in [GMMZ22] required slightly stricter assumptions on the

data. For instance, as we can see in [GMMZ22, Assumpotions 3.1 and 3.2], G was assumed to

be globally Lipschitz continuous (with respect to the metricW1 in the measure variable) and

H was assumed to be Lipschitz continuous in all three variables (locally in the momentum

variable, but globally in the state and measure variables). These actually imposed that

∂xG, ∂µG are uniformly bounded (in Rd×P2(Rd)) and in case of H, ∂xH, ∂pH are uniformly

bounded in Rd × P2(Rd) × BR(0) and ∂µH uniformly bounded in Rd × P2(Rd) × Rd ×

BR(0) (with constants possibly depending on R > 0). In contrast to these, we improve

these assumptions in the way that we require only ∂xG, ∂xH, ∂pH to be uniformly Lipschitz
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continuous (see Assumptions 4 and 5 below). As a result of the assumption in [GMMZ22]

the value function was such that both ∂xV and ∂µV are uniformly bounded, while this will

not be the case in our work (allowing for instance both ∂xV and ∂µV to have linear growth

in x at infinity).

It is not hard to see that adding an additional idiosyncratic noise (with a constant in-

tensity) would result in essentially the same analysis as the one present in this chapter. The

Pontryagin principle used here is very similar in spirit to the analysis on the deterministic

Hamiltonian system in [GM22a], however, the results there (as they rely both on the separa-

ble Hamiltonian and potential game structure) cannot imply our results if β = 0. Therefore,

the results of our chapter unify and generalize the results of both [GM22a] and [GMMZ22].

The structure of the rest of the chapter is simple. In Section 3.2 we present some notations

and the necessary assumptions on the data. Section 3.3 contains the classical semi-concavity

estimates and convexity results for the master function. Here we discuss the propagation

of the displacement monotonicity and its consequences as well. Section 3.4 contains the

technical results on the representation formula for ∂µxV which yields the crucial a priori

W1-Lipschitz estimate for ∂xV . Section 3.5 contains a by now standard argument describing

how to extend the local in time well-posedness theory for the master equation, in case of

sufficient a priori estimates.

3.2 Notations, setup and assumptions

We assume that we have a fixed standard filtered probability space (Ω,P,Fs). We use L2(Ω)

to denote the L2 functions that map Ω into Rd. We let (B0
t )t∈[0,T ] be a standard Brownian

motion on Rd adapted to the filtration and define B0,t0
t := B0

t − B0
t0

which is a Brownian

motion starting at the time t0. We also let L2(Fs) be the collection of random variables

with finite second moment that are measurable with respect to Ft. We also use the notation

F0 := {Fs}s∈[0,T ].
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3.2.1 Standing assumptions

We will always assume that G,H are displacement monotone in the sense of Definition 2.2.1

and Definition 2.2.4, respectively. We also make the following regularity assumptions.

Assumption 4. We assume that

1. G, ∂xG, ∂xxG ∈ C2(Rd × P2(Rd)) and ∂µG, ∂xµG ∈ C2(Rd × P2(Rd)× Rd).

2. |∂xxG| and |∂µxG| are uniformly bounded by LG.

We underline that these assumptions are weaker than those in [GMMZ22, Assumption

3.1] in that we do not require the uniform boundedness of ∂xG or ∂µG.

We denote with LG2 the Lipschitz constant of ∂xG with respect to space and W2. Note

the boundedness of ∂µxG implies that ∂xG is Lipschitz with respect to W1 and so LG2 ≤ LG.

Assumption 5. We assume that

1. H ∈ C3(Rd×P2(Rd)×Rd), ∂xH, ∂pH, ∂xxH, ∂xpH, ∂ppH, ∂xxpH, ∂xppH, ∂pppH ∈ C2(Rd×

P2(Rd)× Rd) and ∂µH, ∂xµH, ∂pµH, ∂xpµH, ∂ppµH ∈ C2(Rd × P2(Rd)× Rd × Rd).

2. ∂ppH ≥ c0I for some c0 > 0.

3. |∂pxH| , |∂xxH| , |∂ppH| , |∂xµH| , |∂pµH| are uniformly bounded by LH .

We remark that (2) in the above tells us that H is convex in the p variable.

Definition 3.2.1. A constant C is said to be universal if it depends only on the above

quantities (LG, LH , and c0) and T .

We also require some assumptions for the short time well-posedness of the master equation

imposed in [CD18b, Theorem 5.45] (in particular those that are imposed in A2 of Assumption

(MFG Smooth Coefficients) on page 414 which is required for the quoted theorem). We note

that none of the a priori estimates depend on these.
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Assumption 6. Let w = (x, p). A derivative of H having linear growth will mean that is

bounded by a constant times 1+ |w|+M1(µ). For a derivative of G linear growth will mean

bounded by a constant times 1 + |x|+M1(µ).

For H we assume that

1. ∂µµH, ∂µH, ∂x̃µH exists and have linear growth.

2. ∂wwwH, ∂µµwH, ∂x̃µwH, ∂wwµH exist and are bounded and Lipschitz continuous with

respect to the space and measure variables (the latter with respect to W1).

For G we assume that

1. ∂µµG, ∂µG, ∂x̃µG exist and have linear growth.

2. ∂xxxG, ∂µµxG, ∂x̃µxG, ∂xxµG exist and are bounded and Lipschitz continuous with re-

spect to the space and measure variables (the latter with respect to W1).

3.2.2 The roadmap of the well-posedness theory

The proof of our main theorem (Theorem 3.5.3) will go as follows. First we assume that we

have a smooth solution, V , to the master equation (3.1.2). We show that V is displacement

monotone. This is a consequence of the displacement monotonicity assumption on H and G

and will follow as the corresponding propagation of monotonicity result in [GMMZ22].

The heart of our analysis is to show that ∂xV is Lipschitz continuous (with respect

to the Euclidean norm in x and the W1 distance in µ) where the Lipschitz constant is

universal. To achieve this, we will proceed as follows. First, the uniform boundedness of

∂xxV will be implied by semi-concavity estimates on V in the space variable (which comes

from classical optimal control arguments) and its convexity in the space variable (which

is implied immediately by displacement monotonicity, c.f. Lemma 2.2.3). Second, for the

Lipschitz continuity of ∂xV in the measure variable we will first show that this is Lipschitz
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continuous with respect to the W2 distance, which will also follow exactly as in [GMMZ22].

From this, together with the uniform bounds on ∂xxV , we will be able to see that a certain

system of FBSDEs is well-posed and that this system gives us a representation formula for

∂xµV . From here we deduce that ∂xµV is bounded by a universal constant which is equivalent

to ∂xV being W1-Lipschitz continuous (with the same universal constant). The arguments

to show that ∂xµV is uniformly bounded are different from the arguments in [GMMZ22], as

they rely on the study of different linearized systems (than in [GMMZ22]) derived from the

Pontryagin system.

Once these a priori bounds are proven, the well-posedness of the master equation will

follow easily. Indeed by [CD18b] we have that the master equation is well-posed for short

time and this short time depends only on the Lipschitz constant of ∂xG (with respect to

space and W1 norm in measure).

3.3 Semi-concavity and displacement monotonicity of the master

function

3.3.1 Semi-concavity of value functions

Lemma 3.3.1. Let V be a classical solution to the master equation. Fix some t ∈ [0, T ] and

µ ∈ P2(Rd). Then there exists a path (ρs)s∈[t,T ] of random probability measures with ρt = µ

(specifically the ones given by the second equation of the mean field games system (3.1.2)) so

that

V (t, x, µ) = inf
αs

E
{
G(XT , ρT ) +

∫ T

t

L(Xs, ρs, αs(Xs))ds

}
,

where the infimum is taken over all pairs (Xs, αs) that satisfy the SDE

dXs = αs(Xs)ds+ βdB0,t
s , with Xt = x.

Here Ex stands for the conditional expectation with respect to the event Xt = x.
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Proof. This is essentially a folklore result discussed in [GMMZ22, Remark 2.10 part (ii)].

Proposition 3.3.2. Let L(x, s, v) be a stochastic process adapted to a filtration generated

by a Brownian motion (B0,t
s )s∈[t,T ] and G(x) be a random variable that is measurable with

respect to the filtration at T (in particular both L,G depend on ω which is suppressed in the

notation).

Suppose that L,G are semi-concave (in x) with a constant C > 0 and the optimal control

problem

inf
α
E
{
G(XT ) +

∫ T

t

L(Xs, s, αs)ds

}

subject to

 dXs = αsds+ βdB0,t
s , s ∈ (t, T )

Xt = x

has a solution (i.e. an optimal control (αs)s∈[t,T ] which is an adapted process) for every x, t.

Let

V (t, x) = min
α

E
{
G(XT ) +

∫ T

t

L(Xs, s, αs)ds

}
.

Then V is semi-concave with a semi-concavity constant (1 + T )C.

The results of this proposition are certainly well-known for experts (see for instance [CS04]

for the deterministic setting, i.e. when β = 0, and [BCQ10] for a similar stochastic control

problem). However we were unable to find a reference that matches our exact assumptions.

Hence for completeness we reprove it.

Proof. Fix some (t, x) and let (αs)s∈[t,T ] be the associated optimal control. Fix some λ ∈ Rd.

Consider the exact same control (αs)s∈[t,T ] as a proposed control for the problem initiated at

(t, x+ λ). Note that the solution to dX1
s = αsds+ βdB0,t

s , s ∈ (t, T ),

X1
t = x+ λ
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is simply X1 = X + λ.

We get

V (t, x+ λ) ≤ E
{
G(X1

T ) +

∫ T

t

L(X1
s , s, αs)ds

}
= E

{
G(XT + λ) +

∫ T

t

L(Xs + λ, s, αs)ds

}
By a symmetric argument we get

V (t, x− λ) ≤ E
{
G(XT − λ) +

∫ T

t

L(Xs − λ, s, αs)ds

}
and so

V (t, x+ λ) + V (t, x− λ)

2
− V (t, x)

≤ E
{
G(XT + λ) +G(XT − λ)

2
−G(XT )

}
+ E

{∫ T

t

L(Xs + λ, s, αs) + L(Xs − λ, s, αs)

2
− L(Xs, s, αs)ds

}
≤ C |λ|2 + TC |λ|2

as desired.

Corollary 3.3.3. If V is a classical solution to the master equation then V is semi-concave

with a universal semi-concavity constant.

Proof. By (3) in Assumption 5 (specifically the bound on ∂xxH) we have that L is semi-

concave (in x) with universal constant.

3.3.2 Propagation of displacement monotonicity and a priori W2-Lipschitz con-

tinuity

Proposition 3.3.4. Suppose that G,H are displacement monotone and satisfy Assumptions

4 and 5 and that V is a classical solution to the master equation. Furthermore, assume
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that V (t, ·, ·), ∂xV (t, ·, ·), ∂xxV (t, ·, ·) ∈ C2(Rd × P2(Rd)) and ∂µV (t, ·, ·, ·), ∂xµV (t, ·, ·, ·) ∈

C2(Rd × P2(Rd) × Rd) . Then for each fixed t, we have V (t, ·) is displacement monotone.

Furthermore ∂xV is Lipschitz continuous in µ with respect to the W2 metric and the Lipschitz

constant is universal.

Remark 3.3.5. The additional regularity of V needed for this Proposition (specifically that

∂xV, ∂xxV, ∂µV, ∂xµV ∈ C2) will be provided below by Lemma 3.5.2.

Proof of Proposition 3.3.4. The claims follow the exact same proof as in [GMMZ22, Theorem

4.1, Theorem 5.1]. The reason that we do not need the bound on ∥∂xV ∥L∞ is that in

[GMMZ22, Theorem 5.1] this is only used via second derivatives of H, e.g. to get that

∂xpH(·, ·, ∂xV ) is bounded. Under the assumptions in [GMMZ22, Theorem 5.1], ∂xpH is

only locally bounded in p whereas we assume a uniform bound. Furthermore, [GMMZ22,

Theorem 5.1] proves two results, that both ∂xV and V are W2 Lipschitz whereas we only

need that ∂xV is.

Corollary 3.3.6. Suppose that V is a classical solution to the master equation. Then ∂xV

is uniformly Lipschitz in space and measure variables with respect to the W2 metric in the

case of the measure component. Furthermore, the Lipschitz constant is universal.

Proof. From Lemma 2.2.3 we have that ∂xxV ≥ 0 and from Corollary 3.3.3 we get that

∂xxV ≤ CI. Hence |∂xxV | is bounded by a universal constant and so ∂xV is Lipschitz

continuous in space with universal Lipschitz constant.

The Lipschitz continuity in measure comes from Proposition 3.3.4.

3.4 A Priori W1-Lipschitz estimates on ∂xV (x, ·)

Several FBSDE systems will play a crucial role in our analysis.
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3.4.1 FBSDE of Pontryagin type

Let t0 ∈ [0, T ) and ξ ∈ L2(Ft0) and on the time interval [t0, T ] we consider
Xξ
t = ξ +

∫ t

t0

∂pH(Xξ
s , ρs, Y

ξ
s )ds+ βB0,t0

t

Y ξ
t = ∂xG(X

ξ
T , ρT )+

∫ T

t

∂xH(Xξ
s , ρs, Y

ξ
s )ds+

∫ T

t

Z0,ξ
s dB0,t0

s

(3.4.1)

where ρt0 := Lξ and ρt := LXξ
t |F0

t
.

Lemma 3.4.1. Suppose that V is a classical solution to the master equation. Then we have

the representation formulas Y ξ
t = ∂xV (t,Xξ

t , ρt) and

Z0,ξ
t = β

(
∂xxV (t,Xξ

t , ρt) + ẼFt [∂xµV (t,Xξ
t , ρt, X̃

ξ
t )]
)
.

Proof. This result is well-known for experts and its proof follows the same lines as the proofs

of [CD18b, Proposition 5.42], [CCD22, Remark 57], [GMMZ22, Theorem 6.3] and [MM24,

Theorem 4.1].

We also consider the standard system
Xx
t = x+ βB0,t0

t

Y x,ξ
t = ∂xG(X

x
T , ρT )+

∫ T

t

∂xH(Xx
s , ρs, Y

x,ξ
s )ds+

∫ T

t

Z0,x,ξ
s dB0,t0

s

(3.4.2)

and the alternative system
Xξ,x
t = x+

∫ t

t0

∂pH(Xξ,x
s , ρs, Y

ξ,x
s )ds+ βB0,t0

t

Y ξ,x
t = ∂xG(X

ξ,x
T , ρT )+

∫ T

t

∂xH(Xξ,x
s , ρs, Y

ξ,x
s )ds+

∫ T

t

Z0,ξ,x
s dB0,t0

s ,

(3.4.3)

which also have the corresponding representation formulas. Note the the difference between

the variables (Y x,ξ
t , Z0,x,ξ

s ) and (Y ξ,x
t , Z0,ξ,x

s ) which is expressed in the superscript labels. We

underline that the solutions of (3.4.2) and (3.4.3) depend implicitly on ξ via the flow of

measures (ρt)t∈[t0,T ].
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We emphasize that these differ from the systems in [GMMZ22] in that for us the variable

Y plays the role of the momentum along the characteristics whereas in [GMMZ22] it is the

value function along the characteristics. All the previous FBSDE systems presented above

are strongly linked to the Pontryagin system associated to the stochastic maximum principle

(or to the classical Hamiltonian system when β = 0), and the systems used in [GMMZ22]

have no such connection.

Both previously presented systems have similar representation formulas as in Lemma

3.4.1. Indeed,

Y x,ξ
t = ∂xV (t,Xx

t , ρt), Y ξ,x
t = ∂xV (t,Xξ,x

t , ρt).

These are clearly different quantities, as in particular, if β = 0, we simply have Y x,ξ
t =

∂xV (t, x, ρt) ̸= ∂xV (t,Xξ,x
t , ρt), except when t = t0, when Y

x,ξ
t0 = Y ξ,x

t0 = ∂xV (t0, x, ρt0).

3.4.2 Intuition

To help to give some intuition for the role of the different systems considered above, let us

consider β = 0 for this subsection. In the deterministic case we can use Xξ,x
t to define ρt. In

particular we get that ρt = L(Xξ,ξ(·)
t ) = L(Xξ,·

t ◦ ξ) (note that Xξ,x
t0 = x).

Our objective is to develop some equations that give a representation for ∂µxV . Since

Y x,ξ
t = ∂xV (t, x, ρt) (since β = 0) it would be natural to try to differentiate the defining

equation of Y x,ξ
t with respect to ξ (this will become (3.4.6) below). Let us formally attempt

this. Our equation is

Y x,ξ
t = ∂xG(X

x
T , ρT )+

∫ T

t

∂xH(Xx
s , ρs, Y

x,ξ
s )ds

and so we see that this comes down to differentiating the flow of measures L(Xξ,·
t ◦ ξ) with

respect to ξ. Replacing ξ with ξ + ϵe1 we get

Xξ+ϵe1,·
s ((ξ(ω) + ϵe1)) ≈ Xξ+ϵe1,·

s (ξ(ω)) + ϵ∇Xξ,·
s (ξ(ω)) · e1

≈ Xξ,·
s (ξ(ω)) + ϵ∇Xξ,·

s (ξ(ω)) · e1 + ϵδXξ,·
s (ξ(ω))
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where δXξ,·
s represents the value that one gets when from Xξ,·

s when perturbing ξ. So we see

that an equation that gives the variation of Y x,ξ
t with respect to ξ will involve two types of

variations of X. The first is a gradient in space and the second is a variation with respect

to ξ. Each of these will require their own system of FBSDEs which gives us three systems

in total.

This also helps us understand the reason that we need to consider the three systems above

(3.4.1),(3.4.2),(3.4.3). Having (3.4.2) is a matter of convenience as it provides the simplest

representation formula. (3.4.3) is necessary because we need to understand the gradient in

space of X. In the case of no noise these two alone would have been sufficient. However in

the presence of noise we must also consider (3.4.1) because we cannot extract the ρs directly

from (3.4.3).

3.4.3 FBSDEs for pointwise representation

In order to gain the necessary a priori regularity estimates on ∂xV (notably the fact that it is

W1–Lipschitz continuous in the measure variable), we work at the level of linearized FBSDE

systems. These are derived from (3.4.1), (3.4.2) and (3.4.3). Linearization techniques com-

bined with finite dimensional projections (in the measure variable) are underneath essentially

all well-posedness results on master equations. This is typically carried out either at the PDE

level using the MFG system (as for instance in [CDLL19, AM23], etc.) or at the level of the

Hamiltonian/FBSDE system (as for instance in [CD18b, GS15, GM22a, GMMZ22], etc.)

Consider {e1, . . . , ed} ⊂ Rd the canonical basis and for k ∈ {1, . . . , d}. First, we differen-
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tiate (3.4.3) in the ek direction to obtain

∇kX
ξ,x
t = ek+

∫ t

t0

{
(∇kX

ξ,x
s )⊤∂xpH(Xξ,x

s , ρs, Y
ξ,x
s ) + (∇kY

ξ,x
s )⊤∂ppH(Xξ,x

s , ρs, Y
ξ,x
s )
}
ds

∇kY
ξ,x
t = ∂xxG(X

ξ,x
T , ρT ) · ∇kX

ξ,x
T

+

∫ T

t

{
∂xxH(Xξ,x

s , ρs, Y
ξ,x
s ) · ∇kX

ξ,x
s +∂pxH(Xξ,x

s , ρs, Y
ξ,x
s ) · ∇kY

ξ,x
s

}
ds

+

∫ T

t

∇kZ
0,ξ,x
s · dB0,t0

s .

(3.4.4)



∇kX ξ,x
t = +

∫ t

t0

{
(∇kX ξ,x

s )⊤∂xpH(Xξ
s , ρs, Y

ξ
s ) + (∇kYξ,x

s )⊤∂ppH(Xξ
s , ρs, Y

ξ
s )

+ẼFs

[
(∇kX̃

ξ,x
s )⊤(∂µpH)(Xξ

s , ρs, X̃
ξ,x
s , Y ξ

s )

+(∇kX̃ ξ,x
s )⊤∂µpH(Xξ

s , ρs, X̃
ξ
s , Y

ξ
s )
]}
ds

∇kYξ,x
t = ∂xxG(X

ξ
T , ρT ) · ∇kX ξ,x

T

+ẼFT

[
∂µxG(X

ξ
T , ρT , X̃

ξ,x
T ) · ∇kX̃

ξ,x
T + ∂µxG(X

ξ
T , ρT , X̃

ξ
T ) · ∇kX̃ ξ,x

T

]
+

∫ T

t

{
∂xxH

(
Xξ
s , ρs, Y

ξ
s ) · ∇kX ξ,x

s + ∂pxH
(
Xξ
s , ρs, Y

ξ
s ) · ∇kYξ,x

s

+ẼFs

[
∂µxH

(
Xξ
s , ρs, X̃

ξ,x
s , Y ξ

s ) · ∇kX̃
ξ,x
s + ∂µxH

(
Xξ
s , ρs, X̃

ξ
s , Y

ξ
s ) · ∇kX̃ ξ,x

s

]}
ds

+

∫ T

t

∇kZ0,ξ,x
s · dB0,t0

s ,

(3.4.5)

and

∇µkY
x,ξ,x̃
t = ẼFT

[
∂µxG(X

x
T , ρT , X̃

ξ,x̃
T ) · ∇kX̃

ξ,x̃
T + ∂µxG(X

x
T , ρT , X̃

ξ
T ) · ∇kX̃ ξ,x̃

T

]
+

∫ T

t

{
∂pxH(Xx

s , ρs, Y
x,ξ
s ) · ∇µkY

x,ξ,x̃
s (3.4.6)

+ ẼFs

[
∂µxH(Xx

s , ρs, X̃
ξ,x̃
s , Y x,ξ

s ) · ∇kX̃
ξ,x̃
s + ∂µxH(Xx

s , ρs, X̃
ξ
s , Y

x,ξ
s ) · ∇kX̃ ξ,x̃

s

]}
ds

+

∫ T

t

∇µkZ
0,x,ξ,x̃
s · dB0,t0

s .

Remark 3.4.2. The motivation behind the notation ∇µk in (3.4.6) is that this is linked to
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the kth component for the Wasserstein gradient. Later we will also use the notation ∂µk with

a similar purpose, i.e. ∂µkF := ∂µF · ek, for any F regular enough.

Lemma 3.4.3. There is a constant δ > 0 so that whenever T − t0 < δ the systems (3.4.1),

(3.4.4), and (3.4.5) have a unique solution, where δ depends only on LH and LG2 (these are

the bounds on the second derivatives of H and the bounds on Lipschitz constant of ∂xG, with

respect to space and W2 in measure). Furthermore the solutions to these systems are bounded

by controlled quantities, specifically there is a constant C depending only on T , LH , and LG2

so that if At is one of ∇kX
ξ,x
t ,∇kY

ξ,x
t ,∇kX ξ,x

t , or ∇kYξ,x
t then

E

[
sup

s∈[t0,T ]
|As|2

]
≤ C

It is crucial in the above lemma that the constant δ depends only on the W2-Lipschitz

constant of ∂xG and not on the W1-Lipschitz constant.

Proof. The proof is similar to [GMMZ22, Proposition 6.2(i)].

The described short time existence and uniqueness for (3.4.1) follows from [CD18b, The-

orem 5.4].

For (3.4.4) we use [Zha17, Theorem 8.2.1]. In particular we note that because (3.4.4) is

linear (in ∇kX
ξ,x
T and ∇kY

ξ,x
T ) the short time interval only depends on the absolute value of

the coefficients which only include ∂xxG and second derivatives of H. Finally from the cited

theorem we see that E
[
sups∈[t0,T ] |As|

2] is bounded for As = ∇kX
ξ,x
t or ∇kY

ξ,x
t .

Next we consider (3.4.5). Again this is a linear FBSDE. The proof follows very similiarly

to [Zha17, Theorem 8.2.1] however a modification is required.

Consider the standard mapping F given by ys maps to ∇kYξ,x
s where ∇kYξ,x

s is the
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solution to

∇kX ξ,x
t =

∫ t

t0

{
(∇kX ξ,x

s )⊤∂xpH(Xξ
s , ρs, Y

ξ
s ) + (ys)

⊤∂ppH(Xξ
s , ρs, Y

ξ
s )

+ẼFs

[
(∇kX̃

ξ,x
s )⊤(∂µpH)(Xξ

s , ρs, X̃
ξ,x
s , Y ξ

s )

+(∇kX̃ ξ,x
s )⊤∂µpH(Xξ

s , ρs, X̃
ξ
s , Y

ξ
s )
]}
ds

∇kYξ,x
t = ∂xxG(X

ξ
T , ρT ) · ∇kX ξ,x

T

+ẼFT

[
∂µxG(X

ξ
T , ρT , X̃

ξ,x
T ) · ∇kX̃

ξ,x
T + ∂µxG(X

ξ
T , ρT , X̃

ξ
T ) · ∇kX̃ ξ,x

T

]
+

∫ T

t

{
∂xxH

(
Xξ
s , ρs, Y

ξ
s ) · ∇kX ξ,x

s + ∂pxH
(
Xξ
s , ρs, Y

ξ
s ) · ys

+ẼFs

[
∂µxH

(
Xξ
s , ρs, X̃

ξ,x
s , Y ξ

s ) · ∇kX̃
ξ,x
s + ∂µxH

(
Xξ
s , ρs, X̃

ξ
s , Y

ξ
s ) · ∇kX̃ ξ,x

s

]}
ds

+

∫ T

t

∇kZ0,ξ,x
s · dB0,t0

s ,

We will show that F is a contraction mapping under the norm given by ∥ys∥2 = sups E(|ys|
2)

when T is sufficiently small (for now assume T < 1). Indeed fix some y1, y2 denote by

∆y := y1 − y2 and ∇kX i be the solutions to the above system with ys = yis. Let ∆X :=

∇kX 1−∇kX 2 and ∆Y := F (y1)−F (y2). Applying Grönwall’s inequality to the first equation

in the system we see that ∆X satisfies ∥∆X∥ ≤ CT∥∆y∥ where C depends only on LH .

From the second equation we see that ∆Y satisfies the system

∆Yt = ∂xxG(X
ξ
T , ρT ) ·∆XT

+ẼFT

[
∂µxG(X

ξ
T , ρT , X̃

ξ
T ) · ∆̃XT

]
+

∫ T

t

{
∂xxH

(
Xξ
s , ρs, Y

ξ
s ) ·∆Xξ,x

s + ∂pxH
(
Xξ
s , ρs, Y

ξ
s ) ·∆ys

+ẼFs

[
∂µxH

(
Xξ
s , ρs, X̃

ξ
s , Y

ξ
s ) · ∆̃X

ξ,x

s

]}
ds

+

∫ T

t

∆Z0,ξ,x
s · dB0,t0

s ,

The only term that may seem concerning is ẼFT

[
∂µxG(X

ξ
T , ρT , X̃

ξ
T ) · ∆̃XT

]
since we want

to claim that the short time interval depends only on the W2-Lipschitz constant of ∂xG and
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not on the W1-Lipschitz constant of G. However, note that∣∣∣ẼFT

[
∂µxG(X

ξ
T , ρT , X̃

ξ
T ) · ∆̃XT

]∣∣∣ ≤ LG2 E(∆X2
T )

1
2

which follows from (2.1). It now follows from standard BSDE estimates (see [Zha17, The-

orem 4.2.1]) that ∥∆Y ∥ ≤ C1T∥∆y∥ + C2∥∆X∥ where C1, C2 depend only on LH and LG2 .

Combining this with our estimate ∥∆X∥ ≤ CT∥∆y∥ we see that F is a contraction mapping

as long as T is sufficiently small and so there exists a unique solution to the above system.

In particular the small time interval and corresponding bound will depend only on LG2 and

not ∥∂xµG∥L∞ .

Corollary 3.4.4. E
[∣∣∣∇µkY

x,ξ,x̃
t0

∣∣∣2] is bounded by a universal constant.

Proof. We see that ∇µkY
x,ξ,x̃
t0 is the solution to a linear BSDE with coefficients that are

bounded by universal constants.

3.4.4 Proof of the representation formula

The proof is broken into four steps. In the first step we develop a system of FBSDE that

gives a representation for E
[
∂µxV (t0, x, µ, ξ)η

]
where η ∈ L2(Ft0 ,R) is arbitrary. In the

next two steps we prove the representation formula for discrete and absolutely continuous

measures respectively. Finally we prove it for general measures.

Proposition 3.4.5. Suppose that G,H are displacement monotone and satisfy Assumptions

4 and 5 and that V is a classical solution to the master equation. Then

∂µkxV (t0, x, µ, x̃) = ∇µkY
x,ξ,x̃
t0 (3.4.7)
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Proof. Step 1. For any ξ ∈ L2(Ft0 , µ) and any scalar random variable η ∈ L2(Ft0 ,R),

following standard arguments and by the stability property of the involved systems we have

lim
ε→0

E
[

sup
t0≤t≤T

∣∣∣1
ε

[
Xξ+εηe1
t −Xξ

t

]
− δXξ,ηe1

t

∣∣∣2] = 0, (3.4.8)

where
(
δXξ,ηe1 , δY ξ,ηe1 , δZ0,ξ,ηe1

)
satisfies the linear McKean–Vlasov FBSDE

δXξ,ηe1
t = ηe1+

∫ t

t0

{
(δXξ,ηe1

s )⊤∂xpH
(
Xξ
s , ρs, Y

ξ
s ) + (δY ξ,ηe1

s )⊤∂ppH
(
Xξ
s , ρs, Y

ξ
s )

+ẼFs

[
∂µpH(Xξ

s , ρs, X̃
ξ
s , Y

ξ
s ) · δX̃ξ,ηe1

s

]}
ds

δY ξ,ηe1
t = ∂xxG(X

ξ
T , ρT ) · δX

ξ,ηe1
T + ẼFT

[
∂µxG(X

ξ
T , ρT , X̃

ξ
T ) · δX̃

ξ,ηe1
T

]
+

∫ T

t

{
∂xxH

(
Xξ
s , ρs, Y

ξ
s ) · δXξ,ηe1

s + ∂pxH
(
Xξ
s , ρs, Y

ξ
s ) · δY ξ,ηe1

s

+ẼFs

[
∂µxH(Xξ

s , ρs, X̃
ξ
s , Y

ξ
s ) · δX̃ξ,ηe1

s

]}
ds+

∫ T

t

δZ0,ξ,ηe1
s · dB0,t0

s .

(3.4.9)

Specifically let δΦξ,ηe1,ε
t = 1

ε
(Φξ+εηe1

t − Φξ
t ) for Φ ∈ {X, Y, Z0}. By substituting and

subtracting in (3.4.1) we see

δXξ,ηe1,ε
t = ηe1 +

1

ε

∫ t

t0

{
∂pH(Xξ+εηe1

s , ρξ+εηe1s , Y ξ+εηe1
s )− ∂pH(Xξ

s , ρ
ξ
s, Y

ξ
s )
}
ds

= ηe1+

∫ t

t0

{
(δXξ,ηe1,ε

s )⊤∂xpH
(
Xξ
s , ρs, Y

ξ
s ) + (δY ξ,ηe1,ε

s )⊤∂ppH
(
Xξ
s , ρs, Y

ξ
s )

+ ẼFs

[
∂µpH(Xξ

s , ρs, X̃
ξ
s , Y

ξ
s ) · δX̃ξ,ηe1,ε

s

]}
ds+O(ε)

and

δY ξ,ηe1,ε
t = ∂xxG(X

ξ
T , ρT ) · δX

ξ,ηe1,ε
T + ẼFT

[
∂µxG(X

ξ
T , ρT , X̃

ξ
T ) · δX̃

ξ,ηe1,ε
T

]
−
∫ T

t

{
∂xxH

(
Xξ
s , ρs, Y

ξ
s ) · δXξ,ηe1,ε

s + ∂pxH
(
Xξ
s , ρs, Y

ξ
s ) · δY ξ,ηe1,ε

s

+ ẼFs

[
∂µxH(Xξ

s , ρs, X̃
ξ
s , Y

ξ
s ) · δX̃

ξ,ηe1,ε
T

]}
ds+

∫ T

t

δZ0,ξ,ηe1,ε
s · dB0

s +O(ε)

where the implicit constant in O(ε) is bounded by various third derivatives of H (such as

∂xxpH, ∂xppH, etc.) which are assumed to be bounded by Assumption 6. Note that aside
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from the O(ε) term
(
δXξ,ηe1,ε

t , δY ξ,ηe1,ε
t , δZ0,ξ,ηe1,ε

)
satisfies the exact same FBSDE system

as (
δXξ,ηe1,

t , δY ξ,ηe1
t , δZ0,ξ,ηe1

)
.

By the stability of FBSDE we get

lim
ε→0

E
[

sup
t0≤t≤T

∣∣∣δXξ,ηe1,ε
t − δXξ,ηe1

t

∣∣∣2] = 0

as desired.

Similarly to (3.4.8), using (3.4.2), one can show that

lim
ε→0

E
[

sup
t0≤t≤T

∣∣∣1
ε

[
Y x,ξ+εηe1
t − Y x,ξ

t

]
− δY x,ξ,ηe1

t

∣∣∣2] = 0, (3.4.10)

where
(
δY x,ξ,ηe1 , δZ0,x,ξ,ηe1

)
satisfies the linear (standard) BSDE

δY x,ξ,ηe1
t = ẼF0

T

[
∂µxG(X

x
T , ρT , X̃

ξ
T ) · δX̃

ξ,ηe1
T

]
+

∫ T

t

δZ0,x,ξ,ηe1
s · dB0

s

+

∫ T

t

{
∂pxH(Xx

s , ρs, Y
x,ξ
s ) · δY x,ξ,ηe1

s + ẼFs

[
∂µxH(Xx

s , ρs, X̃
ξ
s , Y

x,ξ
s ) · δX̃ξ,ηe1

s

]}
ds

(3.4.11)

In particular, (3.4.10) implies,

lim
ε→0

∣∣∣1
ε

[
∂xV (t0, x,Lξ+εηe1)− ∂xV (t0, x,Lξ)

]
− δY x,ξ,ηe1

t0

∣∣∣2 = 0. (3.4.12)

Thus, by the definition of ∂µxV ,

E
[
∂µxV (t0, x, µ, ξ)ηe1

]
= E

[
∂µ1xV (t0, x, µ, ξ)η

]
= δY x,ξ,ηe1

t0 . (3.4.13)

Step 2. In this step we assume that ξ (or say, µ) is discrete: pi = P(ξ = xi), i = 1, · · · , n.

In particular, we have that µ =
∑n

i=1 pixi, for some {x1, . . . , xn} ⊂ Rd. Fix i and consider
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the following system of McKean–Vlasov FBSDEs: for j = 1, · · · , n,

∇µ1X
i,j
t = δije1+

∫ t

t0

{ n∑
k=1

pkẼFs

[
(∇µ1X̃

i,k
s )⊤∂µpH(Xξ,xj

s , ρs, X̃
ξ,xk
T , Y ξ,xj

s )
]

+(∇µ1X
i,j
s )⊤∂xpH

(
Xξ,xj
s , ρs, Y

ξ,xj
s ) + (∇µ1Y

i,j
s )⊤∂ppH

(
Xξ,xj
s , ρs, Y

ξ,xj
s )

}
ds,

∇µ1Y
i,j
t = ∂xxG(X

ξ,xj
T , ρT ) · ∇µ1X

i,j
T +

n∑
k=1

pkẼFT

[
∂µxG(X

ξ,xj
T , ρT , X̃

ξ,xk
T ) · ∇µ1X̃

i,k
T

]
+

∫ T

t

{
∂xxH

(
Xξ,xj
s , ρs, Y

ξ,xj
s ) · ∇µ1X

i,j
s + ∂pxH

(
Xξ,xj
s , ρs, Y

ξ,xj
s ) · ∇µ1Y

i,j
s

+
n∑
k=1

pkẼFs

[
∂µxH(Xξ,xj

s , ρs, X̃
ξ,xk
s , Y ξ,xj

s ) · ∇µ1X̃
i,k
s

}
ds

+

∫ T

t

∇µ1Z
0,i,j
s · dB0,t0

s ,

(3.4.14)

where δij stands for Kronecker’s symbol. In the above system ∇µ1X
i,j
t represents perturbing

xi in µ in the e1 direction and measuring the variation in Xt at X
ξ,xj (the place where xj

has moved to by time t). The interpretation for ∇µ1Y
i,j
t is similar.

For any Φ ∈ {X, Y, Z0}, we define

∇1Φ
ξ,xi := ∇µ1Φ

i,i, ∇1Φ
ξ,xi,∗ :=

1

p i

∑
j ̸=i

∇µ1Φ
i,j1{ξ=xj}.

Note that Φξ =
∑n

j=1Φ
ξ,xj1{ξ=xj}. Since (3.4.14) is linear, one can easily check that

∇1X
ξ,xi
t = e1+

∫ t

t0

{
(∇1X

ξ,xi
s )⊤∂xpH

(
Xξ,xi
s , ρs, Y

ξ,xi
s ) + (∇1Y

ξ,xi
s )⊤∂ppH

(
Xξ,xi
s , ρs, Y

ξ,xi
s )

+ piẼFs

[
(∇1X̃

ξ,xi
s )⊤∂µpH(Xξ,xi

s , ρs, X̃
ξ,xi
s , Y ξ,xi

s ) (3.4.15)

+ (∇1X̃
ξ,xi,∗
s )⊤∂µpH(Xξ,xi

s , ρs, X̃
ξ
s , Y

ξ,xi
s

]}
ds,

∇1X
ξ,xi,∗
t = −

∫ t

t0

{
(∇1X

ξ,xi,∗
s )⊤∂xpH

(
Xξ
s , ρs, Y

ξ
s ) + (∇1Y

ξ,xi,∗
s )⊤∂ppH

(
Xξ
s , ρs, Y

ξ
s )

+ ẼFs

[
(∇1X̃

ξ,xi
s )⊤∂µpH(Xξ

s , ρs, X̃
ξ,xi
s , Y ξ

s ) (3.4.16)

+ (∇1X̃
ξ,xi,∗
s )⊤∂µpH(Xξ

s , ρs, X̃
ξ
s , Y

ξ
s )
]
1{ξ ̸=xi}

}
ds
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∇1Y
ξ,xi
t = ∂xxG(X

ξ,xi
T , ρT ) · ∇1X

ξ,xi
T −

∫ T

t

∇1Z
0,ξ,xi
s dB0,t0

s

+ piẼFT

[
∂µxG(X

ξ,xi
T , ρT , X̃

ξ,xi
T ) · ∇1X̃

ξ,xi
s + ∂µxG(X

ξ,xi
T , ρT , X̃

ξ
T ) · ∇1X̃

ξ,xi,∗
T

]
(3.4.17)

+

∫ T

t

{
∂xxH

(
Xξ,xi
s , ρs, Y

ξ,xi
s ) · ∇1X

ξ,xi
s + ∂pxH

(
Xξ,xi
s , ρs, Y

ξ,xi
s ) · ∇1Y

ξ,xi
s

+ piẼFs

[
∂µxH(Xξ,xi

s , ρs, X̃
ξ,xi
s , Y ξ,xi

s ) · ∇1X̃
ξ,xi
s

+ ∂µxH(Xξ,xi
s , ρs, X̃

ξ
s , Y

ξ,xi
s ) · ∇1X̃

ξ,xi,∗
T )

]}
ds

∇1Y
ξ,xi,∗
t = ∂xxG(X

ξ
T , ρT ) · ∇1X

ξ,xi,∗
T −

∫ T

t

∇1Y
0,ξ,xi,∗
s · dB0,t0

s

+ ẼFT

[
∂µxG(X

ξ
T , ρT , X̃

ξ,xi
T ) · ∇1X̃

ξ,xi
s + ∂µxG(X

ξ
T , ρT , X̃

ξ
T ) · ∇1X̃

ξ,xi,∗
T

]
1{ξ ̸=xi}

+

∫ T

t

{
∂xxH

(
Xξ
s , ρs, Y

ξ
s ) · ∇1X

ξ,xi,∗
s + ∂pxH

(
Xξ
s , ρs, Y

ξ
s ) · ∇1Y

ξ,xi,∗
s (3.4.18)

+ ẼFs

[
∂µxH(Xξ

s , ρs, X̃
ξ,xi
s , Y ξ

s ) · ∇1X̃
ξ,xi
s

+ ∂µxH(Xξ
s , ρs, X̃

ξ
s , Y

ξ
s ) · ∇1X̃

ξ,xi−
T )

]
1{ξ ̸=xi}

}
ds

Since (3.4.9) is also linear, one can check that, for Φ ∈ {X, Y, Z0},

δΦξ,1{ξ=xi}e1 = ∇1Φ
ξ,xi1{ξ=xi} + pi∇1Φ

ξ,xi,∗. (3.4.19)

Moreover, note that

ẼFT

[
∂µxG(X

x,ξ
T , ρT , X̃

ξ
T ) · δX̃

ξ,1{ξ=xi}e1
T

]
= ẼFT

[
∂µxG(X

x,ξ
T , ρT , X̃

ξ
T ) ·

[
∇1X̃

ξ,xi
T 1{ξ=xi} + pi∇1X̃

ξ,xi,∗
T

]]
= piẼFT

[
∂µxG(X

x,ξ
T , ρT , X̃

ξ,xi
T ) · ∇1X̃

ξ,xi
T + ∂µxG(X

x,ξ
T , ρT , X̃

ξ
T ) · ∇1X̃

ξ,xi,∗
T

]
and similarly

ẼFs

[
∂µxH(Xx,ξ

s , ρs, X̃
ξ
s , Y

x,ξ
s ) · δX̃ξ,1{ξ=xi}e1

s

]
= piẼFs

[
∂µxH(Xx,ξ

s , ρs, X̃
ξ,xi
s , Y x,ξ

s ) · ∇1X̃
ξ,xi
s + ∂µxH(Xx,ξ

s , ρs, X̃
ξ
s , Y

x,ξ
s ) · ∇1X̃

ξ,xi,∗
s )

]
.
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Plug this into (3.4.11), we obtain

δΦ
x,ξ,1{ξ=xi}e1
t = pi∇µ1Φ

x,ξ,xi
t , (3.4.20)

where

∇µ1Y
x,ξ,xi
t = ẼFT

[
∂µxG(X

x
T , ρT , X̃

ξ,xi
T ) · ∇1X̃

ξ,xi
T + ∂µxG(X

x
T , ρT , X̃

ξ
T ) · ∇1X̃

ξ,xi,∗
T )

]
+

∫ T

t

{
∂pxH(Xx,ξ

s , ρs, Y
x,ξ
s ) · δY x,ξ,xi

s

+ẼFs

[
∂µxH(Xx,ξ

s , ρs, X̃
ξ,xi
s , Y x,ξ

s ) · ∇1X̃
ξ,xi
s

+∂µxH(Xx,ξ
s , ρs, X̃

ξ
s , Y

x,ξ
s ) · ∇1X̃

ξ,xi,∗
s

]}
ds

+

∫ T

t

∇µ1Z
0,x,ξ,xi
s · dB0,t0

s .

(3.4.21)

In particular, by setting η = 1{ξ=xi} in (3.4.13) we obtain:

∂µ1xV (0, x, µ, xi) = ∇µ1Y
x,ξ,xi
0 . (3.4.22)

We shall note that (3.4.15)-(3.4.16), (3.4.17)-(3.4.18) is different from (3.4.4) and (3.4.5), so

(3.4.22) provides an alternative discrete representation.

Step 3. We now prove (3.4.7) in the case that µ is absolutely continuous. For each n ≥ 3,

set

xn
i⃗
:=

i⃗

n
, ∆n

i⃗
:=

[
i1
n
,
i1 + 1

n

)
× · · · ×

[
id
n
,
id + 1

n

)
, i⃗ = (i1, · · · , id)⊤ ∈ Zd.

For any x ∈ Rd, there exists i⃗(x) := (i1(x), · · · , id(x)) ∈ Zd such that x ∈ ∆n
i⃗(x)

. Let

i⃗n(x) := (in1 (x), · · · , ind(x)) ∈ Zd, where inl (x) := min{max{il,−n2}, n2}, l = 1, · · · , d.

Denote Qn := {x ∈ Rd : |xi| ≤ n, i = 1, · · · , d}, Zdn := {⃗i ∈ Zd : ∆n
i⃗
∩Qn ̸= ∅}, and

ξn :=
∑
i⃗∈Zd

n

xn
i⃗
1∆n

i⃗
(ξ) +

i⃗n(ξ)

n
1Qc

n
(ξ). (3.4.23)
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It is clear that limn→+∞ E
[
|ξn − ξ|2

]
= 0 and thus limn→∞W2(Lξn ,Lξ) = 0. Then for any

scalar random variable η, by stability of FBSDE (3.4.9) and BSDE (3.4.11), we derive from

(3.4.13) that

E
[
∂µ1xV (0, x, µ, ξ)η

]
= δY x,ξ,ηe1

0 = lim
n→∞

δY x,ξn,ηe1
0 . (3.4.24)

For each x̃ ∈ Rd, let i⃗(x̃) be the i such that x̃ ∈ ∆n
i⃗
, which holds when n > |x̃|. Then(

Lξn ,
i⃗(x̃)
n

)
→ (µ, x̃) as n→ ∞ in W2 and as a sequence in Rd, respectively. By the stability

of FBSDEs (3.4.1)-(3.4.2), we have as n → ∞ that Xξn,
i⃗(x̃)
n → Xξ,x̃ and Y ξn,

i⃗(x̃)
n → Y ξ,x̃, as

n → +∞, under the norm given by ∥A∥ := E
(
supt |At|

2). Moreover, since µ is absolutely

continuous,

P
(
ξn =

i⃗(x̃)

n

)
= P

(
ξ ∈ ∆n

i⃗

)
→ 0, as n→ ∞.

Then by the stability of (3.4.15)-(3.4.16), (3.4.17)-(3.4.18) and (3.4.21) we can check that

lim
n→∞

(
∇1Φ

ξn,
i⃗(x̃)
n , ∇1Φ

ξn,
i⃗(x̃)
n
,∗, ∇µ1Φ

x,ξn,
i⃗(x̃)
n

)
=

(
∇1Φ

ξ,x̃, ∇1Φ
ξ,x̃,∗, ∇µ1Φ

x,ξ,x̃

)
. (3.4.25)

Now for any bounded function φ ∈ C(Rd), set η = φ(ξ) in (3.4.24), we derive from (3.4.20)

that

E
[
∂µ1xV (0, x, µ, ξ)φ(ξ)

]
= lim

n→∞
δY

x,ξn,φ(ξn)e1
0 = lim

n→∞

∑
i⃗∈Zd

n

φ
(
xn
i⃗

)
δY

x,ξn,1{ξn=xn
i⃗
}e1

0

and so,

E
[
∂µ1xV (0, x, µ, ξ)φ(ξ)

]
= lim

n→∞

∑
i⃗∈Zd

n

φ(xn
i⃗
)∇µ1Y

x,ξn,xn
i⃗

0 P(ξ ∈ ∆i⃗) =

∫
Rd

φ(x̃)∇µ1Y
x,ξ,x̃
0 dµ(x̃).

This implies (3.4.7) immediately.

Step 4. We finally prove the general case. Denote ψ(x, µ, x̃) := ∇µ1Y
x,ξ,x̃
0 . By the

stability of FBSDEs, ψ is continuous in all the variables. Fix an arbitrary (µ, ξ). One can

construct ξn such that Lξn is absolutely continuous and limn→∞ E[|ξn − ξ|2] = 0. Then, for

any η = φ(ξ) as in Step 3, by (3.4.13) and Step 3 we have

E
[
∂µ1xV (0, x, µ, ξ)φ(ξ)

]
= lim

n→∞
δY

x,ξn,φ(ξn)e1
0

= lim
n→∞

E
[
ψ(x,Lξn , ξn)φ(ξn)

]
= E

[
ψ(x, µ, ξ)φ(ξ)

]
,
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which implies (3.4.7) in the general case.

Corollary 3.4.6. Suppose that G,H are displacement monotone and satisfy Assumptions

4 and 5 and that V is a classical solution to the master equation. Then ∂xµV is uniformly

bounded by a universal constant.

Proof. From the above representation formula we have ∂µkxV (t0, x, µ, x̃) = ∇µkY
x,ξ,x̃
t0 . In

particular ∂µkxV (t0, x, µ, x̃) is deterministic and so

|∂µkxV (t0, x, µ, x̃)|2 = E(|∂µkxV (t0, x, µ, x̃)|2) = E
(∣∣∣∇µkY

x,ξ,x̃
t0

∣∣∣2)
which is bounded by a universal constant by Corollary 3.4.4.

3.5 Long Time Well-Posedness for the Master Equation

First we recall a short time existence result, [CD18b, Theorem 5.45].

Lemma 3.5.1. Suppose that Assumptions 4, 5, and 6 are satisfied. Then there exists a

universal constant c > 0 and V so that V is a classical solution to the master equation on

[T − c, T ] × Rd × P2(Rd). Furthermore for each fixed t ∈ [T − c, T ], V (t, ·, ·) satisfies the

same assumptions as G in Assumption 6.

Proof. First note that Assumption 6 gives the regularity conditions for the short time exis-

tence that will not affect the size of the time interval (in the notation of [CD18b] the terms

bounded by Γ).

We note that the length of the time interval, c, is a universal constant for us. Indeed we

have that ϕ is the identity (since in the notation of [CD18b], b = α for us), λ = 1
4c0

(this is

the strong convexity constant for the Lagrangian which was assumed for us in Assumption

5), and L is the sum of the Lipschitz constants of ∂xH and ∂xV in space and in measure
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with respect to W1, which is bounded by a universal constant due to Corollaries 3.3.6 and

3.4.4.

Lemma 3.5.2. If V is a classical solution to the master equation with regular data, then V

is in fact as regular as the data.

Proof. This is essentially the same as [GMMZ22, Proposition 6.3iii] and [MZ, Section 9.2].

Theorem 3.5.3. Suppose that G,H are displacement monotone and satisfy Assumptions 4,

5, and 6.

Then there is a unique global in time classical solution to the master equation (3.1.2).

Proof. We first prove uniqueness. Let V, Ṽ be two classical solutions to the master equation.

Because of the short time well-posedness of the system (3.4.1) we obtain that ∂xV = ∂xṼ .

We will now use (3.1.2) to show that V = Ṽ . Let u, ũ be the value functions given by (3.1.3)

and ρ, ρ̃ be the associated solutions of the second equation of (3.1.2). Since ∂xV = ∂xṼ we

have that ∂xu = ∂xũ and so from the second equation of (3.1.2) we obtain that ρ = ρ̃. It

now follows from Lemma 3.3.1 that V = Ṽ .

Next we prove existence. We will repeatedly apply the short time existence result Lemma

3.5.1. We let V0 be a short time solution to the master equation on [T − c, T ]. We can

recursively define solutions Vk to the master equation by letting Vk be the short time solution

on [T − (k + 1) c
2
, T − k c

2
] with the terminal condition Vk(T − k c

2
, ·) = Vk−1(T − k c

2
, ·). Since

c is a universal constant we will need only finitely many steps to cover the whole interval

[0, T ]. Because of the uniqueness proved above we have that the Vk’s agree where their

domains overlap and so we can stitch these together to obtain a classical solution to the

master equation.
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CHAPTER 4

Canonical Transformations for Hamilton–Jacobi

Equations

4.1 Introduction

4.1.1 Classical Mechanics and the Principle of Least Action

The Hamilton–Jacobi equation (HJE) in classical mechanics is deeply tied to the principle

of least action, which provides a fundamental framework for describing the motion of a

mechanical system. This principle, central to both Lagrangian and Hamiltonian mechanics,

states that the actual trajectory of a system between two points in time is the one that

extremizes the action functional.

Given a Lagrangian L(x, ẋ), the action A[γ] along a trajectory γ : [t0, t1] → Rd is defined

as:

A[γ] =

∫ t1

t0

L(γ(s), γ̇(s)) ds.

The principle of least action asserts that the trajectory γ(s) followed by the system is the one

that makes the action stationary, leading to the Euler–Lagrange equations, which describe

the system’s dynamics.

However, an alternative and equally powerful approach to this problem is through the

Hamiltonian formalism, where the system’s dynamics are encoded in the Hamilton–Jacobi

equation. To see how this arises, consider the value function u(t, x), which represents the
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minimum action from time t to a fixed final time T , for a particle starting at position x at

time t. This function can be written as:

u(t, x) = inf
γ:γ(t)=x

∫ T

t

L(γ(s), γ̇(s)) ds+G(γ(T )),

where G(x) is a terminal cost or boundary condition at t = T . The function u(t, x) gives the

minimal accumulated action, or cost, of traveling from the point x at time t to the endpoint

at time T .

4.1.1.1 Dynamic Programming and the Hamilton–Jacobi Equation

The value function u(t, x) satisfies a fundamental property known as the dynamic program-

ming principle (DPP). According to the DPP, the minimum action over the time interval

[t, T ] can be decomposed into the minimum action over the shorter interval [t, t + δt] plus

the minimum action from t+ δt to T . Formally, this gives:

u(t, x) = inf
v∈Rd

{∫ t+δt

t

L(x, v) ds+ u(t+ δt, x+ vδt)

}
.

Expanding u(t+ δt, x+ vδt) using a first-order Taylor expansion yields:

u(t+ δt, x+ vδt) ≈ u(t, x) + δt

(
∂u

∂t
+ v · ∇xu

)
.

Substituting this back into the dynamic programming principle and simplifying, we obtain

the following expression for the minimal action over an infinitesimal time step:

u(t, x) = inf
v∈Rd

{
δt

(
L(x, v) + v · ∇xu+

∂u

∂t

)
+ u(t, x)

}
.

For this to hold, the term inside the brackets must vanish as δt→ 0, which leads directly to

the Hamilton–Jacobi equation:

∂u

∂t
+H (x,∇xu) = 0,

where the Hamiltonian H(x, p) is defined as the Legendre transform of the Lagrangian:

H(x, p) = sup
v∈Rd

{p · v − L(x, v)} .
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Thus, the Hamilton–Jacobi equation governs the evolution of the value function u(t, x),

encoding the minimal action required to reach the final state as time evolves. In this way,

the HJE arises naturally from the principle of least action and the dynamic programming

principle.

4.1.1.2 Connection to Euler–Lagrange Equations

The Hamilton–Jacobi equation provides an alternative formulation of classical mechanics

that is fully equivalent to the Euler–Lagrange equations. While the Euler–Lagrange equa-

tions describe the explicit dynamics of the system in terms of the second-order differential

equation:

d

dt

(
∂L

∂ẋ

)
=
∂L

∂x
,

the Hamilton–Jacobi equation focuses on the evolution of the value function u(t, x), which

encodes the system’s entire future dynamics. By solving the HJE, one indirectly solves for

the trajectory γ(s) that minimizes the action, thereby determining the motion of the system.

In cases where the Hamiltonian H(x, p) is integrable, the HJE can be solved explicitly,

and the value function u(t, x) provides a direct path to understanding the system’s behavior.

In more complex cases, where the HJE may not admit an explicit solution, the equation still

offers valuable insights into the qualitative behavior of the system, including the formation

of singularities and the presence of conserved quantities.

4.1.1.3 Relation to Hamilton’s Equations

The Hamilton–Jacobi equation also provides an alternative way to derive Hamilton’s equa-

tions of motion:

ẋ =
∂H

∂p
, ṗ = −∂H

∂x
.
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In fact, if u(t, x) is a solution to the Hamilton–Jacobi equation, the quantities

pi =
∂u

∂xi

automatically satisfy Hamilton’s equations. Thus, finding the solution to the HJE is equiv-

alent to solving the equations of motion for the system.

This formalism is particularly advantageous for systems with multiple degrees of free-

dom, where the direct solution of Hamilton’s equations may be complex. By solving the

HJE, one reduces the problem to finding a suitable generating function, which encodes the

entire dynamics of the system. In integrable systems, where there exist as many conserved

quantities as degrees of freedom, the HJE can be solved by separation of variables, leading

to a complete solution of the system.

4.1.2 Context on Coordinate Transformations in HJEs

The idea of using coordinate transformations to study Hamiltonian systems is well-known

in analytic mechanics. For example, see [Arn89, Chapter 9] for an introduction to canonical

transformations, and [Arn89, Appendix B] for a discussion on the role of canonical transfor-

mations in the study of Hamiltonian systems from the perspective of symplectic geometry.

4.1.3 Setup and Notation

For given data H : Rd × Rd → R and G : Rd → R and time horizon T > 0 let us consider

the following Cauchy problem associated to the Hamilton–Jacobi–Bellman equation ∂tu(t, x) +H(x, ∂xu) = 0, (t, x) ∈ (0, T )× Rd,

u(T, x) = G(x), x ∈ Rd,
(4.1.1)

For convenience we will assume that H ∈ C2(Rd ×Rd) and G ∈ C2(Rd), and the second

derivatives of these functions are uniformly bounded. Suppose that H is convex in its second

variable, so that this can be seen as the Legendre–Fenchel transform of a Lagrangian function,
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i.e. we have

H(x, p) = sup
v∈Rd

{p · v − L(x,−v)}, (4.1.2)

for some L ∈ C2(Rd × Rd) given. For convenience, we also assume that L is convex in

its second variable. In this case (4.1.1) corresponds to a variational problem. Indeed, it is

well-known that under suitable assumptions we have that the value function

u(t, x) := inf
γ:[t,T ]→Rd:γ(t)=x

∫ T

t

L(γ(x), γ̇(s))ds+G(γ(T )) (4.1.3)

is the unique viscosity solution to (4.1.1). This solution is locally Lipschitz continuous

and locally semi-concave with a linear modulus of continuity (cf. [CS04, Theorem 7.4.12,

Theorem 7.4.14]).

It is well-known, however, that the unique viscosity solution u in general develops singu-

larities in finite time, even if H and G are smooth. Fine properties of sets of singularities of

viscosity solutions have been studied extensively in the literature. Probably the first results

on this topic were obtained in [CS87]. For a non-exhaustive list of further works dealing with

singularities of solutions we refer the reader to [CS89, AC99, AC99, Yu06, CMS97, CY09,

CF91, CF14] and to the review paper [CC21]. Singularity formation is equivalent to the

non-uniqueness of optimal trajectories in the variational problem (4.1.3) (cf. [CS04]).

Therefore, if one is able to ensure uniqueness of optimizers in (4.1.3), this results in the

differentiability of the value function, hence in the existence of a unique classical solution to

(4.1.1). This is precisely the case if L is jointly convex and G is convex, when the dynamics

in the control problem is linear. This implies that u(t, ·) inherits the convexity and thus it

becomes a C1,1
loc classical solution for arbitrary time horizon. This fact and related properties

are classical and well documented in the literature, see for instance [CS04, Corollary 7.2.12]

and [BE84, GR02, Goe05a, Goe05b, Roc70c, Roc70a].

As evidenced by the aforementioned works, the global existence of classical solutions

is more of an exception than the rule in the theory of HJB equations. To the best of
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our knowledge, beyond the fully convex regime described above, there are no alternative

sufficient conditions on the data (H,G) (or (L,G)) which would result in global in time

classical well-posedness theory for (4.1.1) in the class C1,1
loc .

In this chapter we show that a special class of linear canonical transformations can reveal

new global well-posedness theories. Let us describe the philosophy behind our approach. Let

α ∈ R be given. Then the transformation

Rd × Rd ∋ (x, p) 7→ (x, p− αx)

is a so-called canonical transformation on the phase space, which preserves the structure

of Hamilton’s equations. Such transformations are well-known in classical mechanics (cf.

[Arn89]). We will make use of the following definitions.

Hα(x, p) := H(x, p− αx) (4.1.4)

and

Gα(x) := G(x) +
α

2
|x|2. (4.1.5)

Because of the nature of this transformation, we can state the first result of the chapter.

Theorem 4.1.1. Let α ∈ R. Then u is a classical solution to (4.1.1) with data (H,G) in

(0, T )× Rd, if and only if uα : (0, T )× Rd, defined as

uα(t, x) := u(t, x) +
α

2
|x|2,

is a classical solution to (4.1.1) on (0, T )× Rd with data (Hα, Gα).

This theorem has two immediate consequences. First, if we have a global well-posedness

theory for (4.1.1) in the class C1,1
loc with data (H,G), we obtain a whole one parameter family

of global well-posedness theories in C1,1
loc with data (Hα, Gα)α∈R. Second, if we are able to

find one real number α ∈ R such that (4.1.1) is globally well-posed for the data (Hα, Gα),

then the original problem with data (H,G) must also be globally well-posed.
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It turns out that this second consequence will be the one revealing genuine new global in

time well-posedness theories for (4.1.1) in the class C1,1
loc . Therefore, as our second main result

(formulated in Theorem 4.3.4 below), we have identified sufficient conditions on (H,G) which

imply that for some precise α ∈ R, the transformed data (Hα, Gα) (or the corresponding

(Lα, Gα)) fall into the well-known fully convex regime, and therefore this gives the global

well-posedness of (4.1.1) in C1,1
loc with the original data (H,G). A direct corollary of our main

results can be summarized as follows.

Corollary 4.1.2. Let H : Rd × Rd → R and G : Rd → R be C2 functions with uniformly

bounded second order derivatives. Suppose furthermore that H(x, ·) is strongly convex, uni-

formly in x.

Then, we have the followings.

1. There exist a constant C > 0 depending only on ∥D2G∥∞, ∥D2H∥∞, and the lower

bound on ∂ppH such that (4.1.1) with data (H̃, G), where

H̃(x, p) := H(x, p) + αx · p,

is globally well-posed in the class C1,1
loc ([0, T ]× Rd), for any T > 0, whenever α > C.

2. There exist a constant C > 0 depending only on ∥D2G∥∞, ∥D2H∥∞, and the lower

bound on ∂ppH such that (4.1.1) with data (H̃, G), where

H̃(x, p) := H(x, p)− α
|x|2

2
,

is globally well-posed in the class C1,1
loc ([0, T ]× Rd), for any T > 0, whenever α > C.

Remark 4.1.3. We see that suitably modifying the existing data of a Hamilton–Jacobi–

Bellman equation can ‘convexify’ the problem, and in turn this leads to a global in time

classical well-posedness theory. Corollary 4.1.2 shows that this procedure can be done not

only by adding the term (x, p) 7→ −α |x|2
2

to the Hamiltonian, but also by adding (x, p) 7→ αx·p

to H, for a suitably chosen α.
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Remark 4.1.4. The attentive reader will notice that we are only using ‘upper triangular’

canonical transformations, i.e. transformations of the form (x, p) 7→ (x, p−αx). The reason

for this is that in order for a system of ODEs (in the (Xs, Ps) unknowns) to be the charac-

teristic equations of a HJB equation not only do they need to have a Hamiltonian system

structure but the boundary conditions must be of a particular form. Specifically to preserve

the structure of boundary condition X0 = x0 we need to have the transformation to be

upper triangular. From here one could imagine taking a transform (x, p) 7→ (x, p− Ax) for

some constant matrix A. In order to preserve the structure of the condition PT = ∇G(XT )

(specifically that the right-hand side is the gradient of a function) we need that A is sym-

metric. The choice of A = αI is taken for simplicity and the same arguments should work

with any symmetric matrix A.

Remark 4.1.5. Although we illustrate this canonical transformation technique to obtain

a classical global well-posedness theory for the HJB equation, the approach works exactly

the same for any other features of HJB equations. For example, if one had a result on

the structure of the shocks for a HJB equation with data (H,G) (e.g. for instance, the

points of non-differentiability lie on a smooth curve) then the same result would hold for

the transformed data (Hα, Gα) (in fact the non-differentiability points would be the exact

same).

We finish this introduction with some concluding remarks.

• In this chapter, for the simplicity of the exposition, we choose to consider only a simple

class of linear canonical transformations of the form Rd × Rd ∋ (x, p) 7→ (x, p − αx).

However, our approach would work for a class of more general transformations of the

form

Rd × Rd ∋ (x, p) 7→ (x, p−∇φ(x)),

for suitable potential functions φ : Rd → R.
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• Our approach works using only a Hamiltonian perspective, therefore, in particular by

working purely with Hamiltonian systems, we believe that similar results could be

proven in the case of Hamiltonians which are not necessarily convex in the momentum

variable. Again, for simplicity of the exposition, we do not pursue this direction here.

• Canonical transformations are well understood in the case of more general Hamiltonian

systems on symplectic manifolds, as these are symplectomorphisms on the cotangent

bundle (cf. [Arn89]). Although we consider only the Euclidean setting here, we be-

lieve that our ideas could imply well-posedness theories for Hamilton–Jacobi–Bellman

equations in more general geometric frameworks as well.

• It turns out the the canonical transformations that we have considered in this chapter

reveal new deep well-posedness theories in a particular infinite dimensional setting,

namely for the master equation in Mean Field Games. These results are detailed in

the following chapter.

The rest of the chapter contains two short sections. In Section 4.2, for pedagogical

reasons, we detail the role of the specific canonical transformations from the Lagrangian

perspective. Section 4.3 contains our main results, and this is written purely from the

Hamiltonian perspective.

4.2 Canonical transformations and classical solutions from the La-

grangian perspective

For t ∈ (0, T ), consider the functional Ft : C
1((t, T );Rd) → R defined as

Ft(γ) :=

∫ T

t

L(γ(x), γ̇(s))ds+G(γ(T )).

Furthermore, we define the set of admissible curves as

Admt,x := {γ ∈ C1((t, T );Rd) : γ(t) = x}.
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Using this functional, one has

u(t, x) := inf
γ∈Admt,x

Ft(γ).

Differentiability of solutions to (4.1.1) is deeply linked to the uniqueness of minimizers in

the optimal control problem (4.1.3). In particular, it is well-known that the convexity of the

functional γ 7→ F(γ) would imply that u(t, ·) is convex, which in turn would further implies

that u is a classical solution to (4.1.1) in the class C1,1
loc ([0, T ] × Rd) (see [CS04, Theorem

7.4.13]). The convexity of γ 7→ F(γ) can be guaranteed by the joint convexity of L and the

convexity of G.

However since the endpoint in the optimization problem, i.e. γ(t) = x, was fixed we

could have just as well considered the functional

Ft,α(γ) := Ft(γ) +
α

2
|x|2 = Ft(γ) +

α

2
|γ(t)|2,

for any α ∈ R. In this case, one would simply have

u(t, x) +
α

2
|x|2 := inf

γ∈Admt,x

Ft,α(γ). (4.2.1)

Following a standard idea in classical mechanics we rewrite this new term as the integral

of its time derivative and an initial term to get

Ft,α(γ) =

∫ T

t

L(γ(x), γ̇(s))− d

ds

(α
2
|γ(s)|2

)
ds+

α

2
|γ(T )|2 +G(γ(T ))

=

∫ T

t

L(γ(x), γ̇(s))− α⟨γ(s), γ̇(s)⟩ds+G(γ(T )) +
α

2
|γ(T )|2

Notice now that it is possible to not have convexity of

γ 7→ Ft(γ),

but have convexity of

γ 7→ Ft,α(γ),
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for some α ∈ R, even though

inf
γ∈Admt,x

Ft(γ) and inf
γ∈Admt,x

Ft,α(γ)

are the same problems, in that the optimal values differ by the constant α
2
|x|2 and in par-

ticular they have the same minimizers.

Therefore, it turns out that such transformations could reveal hidden convexity structures

on the data, which were not straightforward in the original setting of the problem, and in

particular (4.1.1) would be well-posed in the class C1,1
loc ([0, T ] × Rd), if γ 7→ Ft,α is convex

even if we did not have convexity of γ 7→ Ft.

We also have the opposite situation, i.e. when γ 7→ Ft is convex, yet γ 7→ Ft,α is not

convex. As the convexity properties of the functionals can be characterized by the convexity

of the Lagrangian and final data, it is natural to define the following quantities. For α ∈ R,

let Lα : Rd × Rd → R be defined as

Lα(x, v) := L(x, v)− αx · v

and Gα : Rd → R, defined as

Gα(x) := G(x) +
α

2
|x|2.

Based on the previous discussion, we can formulate the following proposition.

Proposition 4.2.1. We have the following.

(i) Let G : Rd → R be convex and let L : Rd × Rd → R be jointly convex, and suppose

furthermore that both G and L have bounded second derivatives. Then, there exists

α0 ∈ R such that Lα is not jointly convex and Gα is not convex for any α < α0.

(ii) There exist L : Rd×Rd → R not jointly convex and G : Rd → R non-convex, such that

there for a suitable α ∈ R, Lα becomes jointly convex and Gα becomes convex.

Proof. (i) Let f : Rd × Rd → R defined as f(v, x) = v · x. We see that −1 is an eigenvalue

of D2f (the eigenvector is the (1, . . . , 1,−1, . . . ,−1)). Hence for α < α̂0 := −∥D2L∥∞ we
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have that Lα is not jointly convex. Now let α0 := min{α̂0,−∥∂xxG∥L∞}, and then the result

follows.

(ii) In the previous point we have constructed Lα and Gα that are non-convex, but L

and G were convex. Now if we apply the same transformation on these new functions with

constant −α, i.e. (Lα)−α and (Gα)−α we get back to the original functions which were

convex. The statement follows.

The transformations on L, as describe above, translate naturally to the Hamiltonian H.

Indeed, we can see that Hα corresponding to Lα is defined as in 4.1.4.

It is important to notice that the previous transformation preserves the Hamiltonian

structure and the HJB equation. This is what leads precisely to Theorem 4.1.1, whose proof

is straightforward and we present it below.

Proof of Theorem 4.1.1. This result readily follows from the representation formula (4.2.1).

Alternatively, direct computation yields

∂tuα(t, x) = ∂tu(t, x), and, ∂xuα(t, x) = ∂xu(t, x) + αx,

and so

−∂tuα(t, x) +Hα(x, ∂xuα(t, x)) = −∂tu(t, x) +H(x, ∂xu(t, x) + αx− αx) = 0,

and

uα(T, x) = Gα(x).

The result follows.

Remark 4.2.2. Because of the representation formula (4.2.1), the previous result clearly

holds true for viscosity solutions as well.
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4.3 Canonical transformations and classical solutions from the

perspective of Hamiltonian systems

Based on [Roc70b, Theorem 33.1], we can formulate the following result.

Lemma 4.3.1. H : Rd×Rd → R, defined in (4.1.2) is concave-convex (i.e. H(·, p) is convex

for all p ∈ Rd and H(x, ·) is convex for all x ∈ Rd) if and only L is jointly convex.

From this lemma we see that the global existence of classical solutions to the Hamilton–

Jacobi equation (4.1.1) in the class C1,1
loc , from the Hamiltonian point of view, is intimately

linked to the concave-convex properties of H and convexity of the final condition G.

Definition 4.3.2. For a square matrix A ∈ Rm×m, we define the symmetric matrix

ReA :=
1

2
(A+ A⊤).

For a symmetric matrix A ∈ Rm×m, we denote by λmin(A) and λmax(A) its smallest and

largest eigenvalues, respectively.

Lemma 4.3.3. Suppose that

(
w⊤Re ∂xpH(x, p)w

)2−(w⊤∂ppH(x, p)w
) (
w⊤∂xxH(x, p)w

)
≥ 0, ∀w ∈ Rd, ∀x, p ∈ Rd×Rd.

(4.3.1)

Define

α :=

inf
(x,p,w)∈R3d

∥w∥=1

w⊤Re ∂xpH(x, p)w +
√(

w⊤Re ∂xpH(x, p)w
)2 − (w⊤∂ppH(x, p)w

)(
w⊤∂xxH(x, p)w

)
w⊤∂ppH(x, p)w

.

(4.3.2)

Suppose that x 7→ G(x) + α |x|2
2

is convex and
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α ≥

sup
(x,p,w)∈R3d

∥w∥=1

w⊤Re ∂xpH(x, p)w −
√(

w⊤Re ∂xpH(x, p)w
)2 − (w⊤∂ppH(x, p)w

)(
w⊤∂xxH(x, p)w

)
w⊤∂ppH(x, p)w

.

(4.3.3)

Then the Hamilton–Jacobi equation (4.1.1) with data (H,G) is globally well-posed in the

class C1,1
loc ([0, T ]× Rd).

Proof. Using (4.1.4) and (4.1.5) we define Hα and Gα with the particular choice of α given

in the statement. We see that Gα is convex. Also, we compute for any w ∈ Rd and any

(x, p) ∈ Rd × Rd

w⊤∂xxHα(x, p)w

= w⊤∂xxH(x, p− αx)w − 2αw⊤Re(∂xpH(x, p− αx))w + α2w⊤∂ppH(x, p− αx)w

This expression is a quadratic polynomial in α with positive leading coefficient. The condi-

tions of the theorem assure that this polynomial is non-positive at α, i.e.

w⊤Re ∂xpH(x, p)w −
√

(w⊤Re ∂xpH(x, p)w)2 − (w⊤∂ppH(x, p)w)(w⊤∂xxH(x, p)w)

w⊤∂ppH(x, p)w

≤ α

≤
w⊤Re ∂xpH(x, p)w +

√
(w⊤Re ∂xpH(x, p)w)2 − (w⊤∂ppH(x, p)w)(w⊤∂xxH(x, p)w)

w⊤∂ppH(x, p)w
,

for all (x, p) ∈ Rd × Rd and for all w ∈ Rd.

In particular Hα is concave in x. Furthermore, this particular transformation does not

change the convexity of Hα in the p-variable, as ∂ppHα(x, p) = ∂ppH(x, p− αx). The thesis

of the lemma follows by Lemma 4.3.1 and [CS04, Theorem 7.4.13].

As a consequence of this lemma, we can formulate the following result.
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Theorem 4.3.4. We define the following quantities

λ0 := inf
(x,p)∈Rd×Rd

λmin (Re ∂xpH(x, p)) ,

λH := sup
(x,p)∈Rd×Rd

λmax (∂xxH(x, p))

and

λG := inf
x∈Rd

λmin (∂xxG(x)) .

Suppose that

λ20 ≥ ∥∂ppH∥∞λH and that λ0 +
√
λ20 − ∥∂ppH∥∞λH + ∥∂ppH∥∞λG ≥ 0.

Furthermore assume that either λH ≤ 0 or λ0 ≥ 0. Then the Hamilton–Jacobi equation

(4.1.1) is globally well-posed, for any T > 0, in the class C1,1
loc ([0, T ]× Rd).

Proof. We verify the assumptions of Lemma 4.3.3. First, let us consider the inequality

(4.3.1).

If λH ≤ 0 then (4.3.1) is fulfilled immediately.

If λH > 0, but λ0 ≥ 0 we have the following. By definition of λ0, w
⊤Re ∂xpH(x, p)w ≥ λ0,

for all (x, p) ∈ Rd×Rd and for all w ∈ Rd. Since the right side is non-negative we can square

to obtain

(w⊤Re ∂xpH(x, p)w)2 ≥ λ20 ≥ ∥∂ppH∥∞λH ,

which implies that

(w⊤Re ∂xpH(x, p)w)2 ≥ (w⊤∂ppH(x, p)w)(w⊤∂xxH(x, p)w).

Thus, (4.3.1) follows.

We verify the other assumptions in the statement of Lemma 4.3.3. Let α be defined as

in (4.3.2). Just as before, we distinguish two cases.

Case 1. λH ≤ 0.
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In this case we have that (w⊤∂ppH(x, p)w)(w⊤∂xxH(x, p)w) ≤ 0, for all (x, p) ∈ Rd ×Rd

and for all w ∈ Rd. Therefore

α ≥ 0

≥
w⊤Re ∂xpH(x, p)w −

√
(w⊤Re ∂xpH(x, p)w)2 − (w⊤∂ppH(x, p)w)(w⊤∂xxH(x, p)w)

w⊤∂ppH(x, p)w
,

for all (x, p) ∈ Rd × Rd and for all w ∈ Rd. This implies (4.3.3).

Furthermore, we have

α =

inf
(x,p,w)∈R3d

∥w∥=1

w⊤Re ∂xpH(x, p)w +
√(

w⊤Re ∂xpH(x, p)w
)2 − (w⊤∂ppH(x, p)w

)(
w⊤∂xxH(x, p)w

)
w⊤∂ppH(x, p)w

≥ inf
(x,p,w)∈R3d

∥w∥=1

w⊤Re ∂xpH(x, p)w +
√(

w⊤Re ∂xpH(x, p)w
)2 − ∥∂ppH∥∞

(
w⊤∂xxH(x, p)w

)
∥∂ppH∥∞

.

where in the last inequality we have used that the function f : {(a, b, c) : c ≥ 0, b ≤

0, a2 ≥ bc} → R defined as f(a, b, c) = a+
√
a2−bc
c

is decreasing in c.

Continuing we have

α ≥

inf
(x,p,w)∈R3d

∥w∥=1

w⊤Re ∂xpH(x, p)w +
√(

w⊤Re ∂xpH(x, p)w
)2 − ∥∂ppH∥∞

(
w⊤∂xxH(x, p)w

)
∥∂ppH∥∞

≥ inf

(x, p, w) ∈ R3d

∥w∥ = 1

w⊤Re ∂xpH(x, p)w +
√

(w⊤Re ∂xpH(x, y)w)2 − ∥∂ppH∥∞λH
∥∂ppH∥∞

≥
λ0 +

√
λ20 − ∥∂ppH∥∞λH
∥∂ppH∥∞

where the last inequality is because the function f : {(a, b) : b ≤ 0} → R defined as

f(a, b) = a +
√
a2 − b is increasing in a. From this, by the assumptions of this theorem it

follows that x 7→ G(x) + α |x|2
2

is convex.
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Case 2. λ0 ≥ 0. We notice that without loss of generality, we may assume also that the

inequality λH ≥ 0 takes place.

We have

α =

inf
(x,p,w)∈R3d

∥w∥=1

w⊤Re ∂xpH(x, p)w +
√(

w⊤Re ∂xpH(x, p)w
)2 − (w⊤∂ppH(x, p)w

)(
w⊤∂xxH(x, p)w

)
w⊤∂ppH(x, p)w

(4.3.4)

≥ inf

(x, p, w) ∈ R3d

∥w∥ = 1

λ0 +
√

λ2
0 − (w⊤∂ppH(x, p)w)λH
w⊤∂ppH(x, p)w

≥ inf

(x, p, w) ∈ R3d

∥w∥ = 1

λ0 +
√

λ2
0 − ∥∂ppH∥∞λH

w⊤∂ppH(x, p)w

≥
λ0 +

√
λ2
0 − ∥∂ppH∥∞λH
∥∂ppH∥∞

where the last two inequalities follow from λH ≥ 0 and λ0 ≥ 0 respectively. We notice

also that in the previous chain of inequalities all the quantities under the square root are

non-negative.

Furthermore, we see that λ0+
√
λ20 − ∥∂ppH∥∞λH+∥∂ppH∥∞λG ≥ 0 implies that α+λG ≥

0 and so x 7→ G(x) + α |x|2
2

is convex.

Next note that the function f : {(a, b) : a, b ≥ 0, a2 ≥ b} → R defined as f(a, b) =
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a−
√
a2 − b is decreasing in a. Hence

w⊤Re ∂xpH(x, p)w −
√

(w⊤Re ∂xpH(x, p)w)2 − (w⊤∂ppH(x, p)w)(w⊤∂xxH(x, p)w)

w⊤∂ppH(x, p)w
(4.3.5)

≤
λ0 −

√
λ20 − (w⊤∂ppH(x, p)w)(w⊤∂xxH(x, p)w)

w⊤∂ppH(x, p)w

≤
λ0 −

√
λ20 − (w⊤∂ppH(x, p)w)λH
w⊤∂ppH(x, p)w

≤
λ0 −

√
λ20 − ∥∂ppH∥∞λH
∥∂ppH∥∞

where the last inequality follows from the fact that the function f : {(a, b, c) : a, b, c ≥

0, a2 ≥ bc} → R, defined as f(a, b, c) = a−
√
a2−bc
c

is increasing in c. Combining (4.3.4) and

(4.3.5) we can conclude that

α ≥

sup
(x,p,w)∈R3d

∥w∥=1

w⊤Re ∂xpH(x, p)w −
√(

w⊤Re ∂xpH(x, p)w
)2 − (w⊤∂ppH(x, p)w

)(
w⊤∂xxH(x, p)w

)
w⊤∂ppH(x, p)w

,

which completes the proof in this case.

From this theorem the proof of Corollary 4.1.2 is immediate.

Proof of Corollary 4.1.2. We see that if α is large enough then the assumptions of Theorem

4.3.4 are satisfied.
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CHAPTER 5

Hidden Monotinicity in Master Equation

5.1 Introduction

Mean field games (MFGs), first introduced in the seminal works of Lasry and Lions as

well as Huang, Malhamé, and Caines (see [LL07, HMC06]), were motivated by the need

to model strategic decision-making in large-scale systems with numerous rational agents,

stemming from (stochastic) differential games. Since then, this theory has seen widespread

success, both theoretically and in practical applications. For a thorough and relatively

current overview of the field’s progress from probabilistic and analytic perspectives, see

[CD18a, CD18b, CP20b].

In his lecture series at Collège de France ([Lio12a]), Lions introduced what is now known

as the master equation for MFGs. This equation is a nonlocal, nonlinear PDE of hyperbolic

type set on Rd × P2(Rd), where Rd models an individual agent’s state space, and P2(Rd)

represents the set of Borel probability measures on Rd with finite second moments, encoding

the distribution of agents. A major motivation for solving the master equation lies in its

deep link between games with a finite, but large, number of agents and the associated

MFG. Specifically, classical solutions to the master equation are instrumental in deriving

quantitative rates of convergence for closed-loop Nash equilibria in finite-agent games as the

number of agents approaches infinity.

The search for well-posedness theories for (1.1) has catalyzed an extensive program in

the field. The non-local and infinite-dimensional nature of this PDE introduces considerable
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challenges. In particular, the lack of a comparison principle means that approaches relying

on viscosity solutions, for instance, are not feasible. Consequently, there is potential for

debate in defining suitable weak solutions, especially where uniqueness is not guaranteed.

Nevertheless, there is clarity when it comes to classical solutions, and in this chapter, we

will focus on classical solutions. Unless otherwise stated, the term well-posedness will refer

to classical solutions. As with finite-dimensional conservation laws, global classical solutions

generally require specific monotonicity conditions on data elements H and G, which also

strongly relate to the uniqueness of MFG Nash equilibria.

Literature review on the well-posedness of master equations. To date, there have

been different notions of monotonicity conditions proposed on the dataH and G, which could

serve as sufficient conditions for the global well-posedness theory of (1.1). The diversity and

richness of these conditions are deeply related to the geometry under the lens of which we

look at P2(Rd). For instance, P2(Rd) can be seen as a flat convex space, but it is natural to

look at it also as a non-negatively curved infinite dimensional manifold, when equipped with

suitable metrics. Historically, the so-called Lasry–Lions (LL) monotonicity condition was

the first one, introduced already in the seminal work [LL07]. Geometrically, this is linked to

the flat geometry, imposed on P2(Rd).When it comes to nonlocal Hamiltonians, this notion

has been defined and exploited so far only for so-called separable Hamiltonians, i.e. the

ones which have the structure

H(x, µ, p) := H0(x, p)− F (x, µ), ∀(x, µ, p) ∈ Rd × P2(Rd)× Rd, (5.1.1)

for some H0 and F . An alternative monotonicity condition is the so-called displacement

monotonicity condition, which does not require the separable structural assumption on H.

This stems from the notion of displacement convexity, used widely in the context of optimal

transport theory. Thus, this is linked to the curved geometry on P2(Rd). We now give a

brief overview of the well-posedness theories for (1.1) in these settings and we also mention

some alternative, more recently proposed notions of monotonicity conditions.
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In [CD18b, Theorem 5.46] the authors have shown that the master equation (1.1) is glob-

ally well-posed if the data are LL monotone and possess additional regularity assumptions.

Several other works provide similar conclusions. We refer to [CDLL19, Theorem 2.4.5] for

the case when the physical space is the flat torus instead of Rd and to [CCD22, Theorems

56 and 58] to the case without common noise (i.e. β0 = 0). We refer also to [JR23] for new

results and clarifications regarding the results from [CDLL19]. However, [CD18b, Theorem

5.46] is the closest result for our purposes.

It is also important to mention that all these global well-posedness results in the context

of Lasry–Lions monotonicity impose both the separable structure on the Hamiltonian and

the presence of a non-degenerate idiosyncratic noise.

In the context of displacement monotonicity global in time well-posedness have been

obtained chronologically as follows. [GM22a] provided this in the context of deterministic

and potential (in particular β = β0 = 0 and H separable) games (for similar results, see also

[BGY24]). [GMMZ22] provided the first global in time well-posedness result in the case of

non-separable displacement monotone Hamiltonians and non-degenerate idiosyncratic noise

(i.e. β ̸= 0). Finally, [BMM23a] provided the result in the case of degenerate idiosyncratic

noise (i.e. β = 0) and compared to [GMMZ22], under lower level regularity assumptions on

the data, and the weaker version of the displacement monotonicity condition on H.

Recently, in [MZ22b] and [MZ24] the authors have proposed a notion of anti-monotonicity

condition on final data of master equations, which together with other sufficient structural

conditions on the Hamiltonian resulted in the the global in time well-posedness of the master

equation. We would like to emphasize that for this to hold, the anti-monotonicity condition

on the final data has to be carefully chosen in line with the structural conditions on the

Hamiltonian. As we show below, this framework can entirely be embedded into our main

results under the umbrella of our newly proposed canonical transformation.

Several other recent developments have seen the light in the context of the well-posedness
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of MFGmaster equations. For a non-exhaustive list we refer to [AM23, Ber21, CCP23, CD24,

GM22c, GM23].

Description of results. In this chapter our main objective is to present new global

well-posedness theories for the master equation (1.1). The heart of our analysis consist of

so-called canonical transformations which in particular reveal new perspectives on existing

and new monotonicity conditions on the Hamiltonians and final data associated to (1.1), and

in turn lead to new well-posedness theories. The values of the noise intensities, β, β0 will not

not be significant in our consideration, and our main results hold true also for degenerate

problems, i.e. when β = 0 or β0 = 0.

In classical Hamiltonian mechanics, canonical transformations are coordinate transforma-

tions on the phase space, which preserve the structure of Hamilton’s equations. In symplectic

geometry, canonical transforms are known as symplectomorphisms (where the phase space is

a cotangent bundle and the symplectic form is the canonical 2-form). Since in our setting we

are only concerned with Euclidean space we do not use the symplectic terminology. However,

one could use symplectomorphisms to generate new well-posedness theories for Hamilton–

Jacobi equations and the master equation in more general settings (i.e. when the underlying

space is not Euclidean). We refer the reader to [Arn89] for a introduction to applications

of symplectic geometry in classical mechanics. We refer also to our companion short note

[BM24a], where we explain the regularization effect of such transformations in the case of

deterministic finite dimensional HJB equations.

As the master equation has in particular a natural character arising from infinite dimen-

sional Hamiltonian dynamics, we will show below, that such transformations play a deep

role in obtaining new well-posedness theories for it.

Let us describe the driving idea behind our results. For Hamiltonians H : Rd×P2(Rd)×

Rd → R and final data G : Rd × P2(Rd) → R we consider a family of prototypical linear

canonical transformations as follows. Let α ∈ R and define Hα : Rd × P2(Rd) × Rd → R
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and Gα : Rd × P2(Rd) → R as

Hα(x, µ, p) := H(x, µ, p− αx) and Gα(x, µ) := G(x, µ) +
α

2
|x|2. (5.1.2)

In particular, this means that the corresponding canonical transformation has the form of

Rd × P2(Rd)× Rd ∋ (x, µ, p) 7→ (x, µ, x− αp).

This is a ‘finite dimensional’ transformation, as there is no change in the measure variable

µ. Having defined these transformations, we can formulate our first main result.

Theorem 5.1.1. Fix any α ∈ R. The master equation with data (H,G) is well-posed if and

only if it is well-posed with data (Hα, Gα).

The message of this theorem is that if one produces a well-posedness theory for the master

equation, this will lead to a whole one parameter family of well-posedness theories, with

the transformed data. A deeper consequence of this theorem is the opposite implication.

Suppose that one is given the data (H,G). If one is able to find a suitable range of the

parameter α such that (Hα, Gα) satisfies some well-known monotonicity conditions, then the

problem with the original data must be well-posed. This second one will be the direction

that we investigate in this chapter.

Fix α ∈ R. It is easy to see that G is LL monotone, if and only if Gα is LL monotone and

the situation is the same for separableH. However, as we will show below, this phenomenon is

much different in the displacement monotone regime. Therefore Theorem 5.1.1 has powerful

applications in the context of displacement monotonicity but not for LL monotonicity.

In Theorem 5.2.8, we propose easily verifiable sufficient conditions on H to ensure that

Hα is displacement monotone.

This theorem has an immediate consequence which can informally be formulated as

follows. This result provides a new global well-posedness theory for the master equation.
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Corollary 5.1.2. Suppose that G : Rd × P2(Rd) → R and H : Rd × P2(Rd)×Rd → R are

twice continuously differentiable with uniformly bounded second order derivatives. Suppose

moreover that H is strongly convex in the p-variable.

We have that there exists C > 0 depending on second derivatives of H and G (but

independent of T ) so that if α ≥ C then the master equation is globally well-posed with data

(H̃, G), where H̃ : Rd × P2(Rd)× Rd → R is given by

H̃(x, µ, p) := H(x, µ, p) + αp · x.

Hence even if we did not know that the original master equation was solvable, the modified

master equation is solvable for α large enough. One can compare the Hamiltonian H̃ with

the one in [MZ24, Example 7.2].

Remark 5.1.3. Corollary 5.1.2 has a deep message: if the Hamiltonian is such that ∂xpH

is sufficiently large compared to other second order derivatives of H and the second order

derivatives of G, then we have a global well-posedness theory for the master equation. There-

fore ∂xpH, and in particular adding suitable multiples of the function (x, p, µ) 7→ p · x to H

have a ‘regularization effect’. By carefully examining Lemma 5.2.6, we see that what is going

on is that the p · x term is transformed into a multiple of |x|2
2
, which provides displacement

monotonicity for the problem and hence regularizes the master equation. It is easy to see

that adding a suitable multiple of the term |x|2
2

to H produces displacement monotonicity.

Clearly, these regularization effects are independent of the noise intensities.

Further implications of main results. Having our main results in hand, we have

revisited some previous well-posedness results from the literature.

When G is displacement semi-monotone, then the well-posedness of (1.1) can be guar-

anteed if Hα is displacement monotone for sufficiently large α. It turns out that our char-

acterization for this given in Proposition 5.2.6 coincides with the respective assumptions on

H discovered recently in [MZ22b].
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In the recent paper [MZ24], the authors proposed a notion of anti-monotonicity for final

data G. They have described some heavy sufficient conditions on H and G which result in a

global well-posedness theory of (1.1), if β ̸= 0, and G is suitably anti-monotone. There was

an emphasis on the fact that G needed to be ‘sufficiently’ anti-monotone.

It turns out that these well-posedness results from [MZ24], under the additional as-

sumptions that H is strictly convex in the p-variable fall directly into the framework of the

canonical transformations and they are an easy consequence of our main results, from Corol-

lary 5.1.2. More precisely, first in Proposition 5.2.10 we show that if G is λ-anti-monotone,

this implies that it is displacement semi-monotone with a constant which depends only

on λ (in particular, the displacement semi-monotonicity constant is independent of the sec-

ond derivative bounds of G). Having strong convexity of H in the p-variable, which has also

bounded second derivatives allows us to use our Corollary 5.1.2. The Hamiltonian considered

in [MZ24] has the form of

H(x, µ, p) := H0(x, µ, p) + ⟨A0p, x⟩,

for some constant matrix A0 ∈ Rd×d. This is slightly different than H̃ from our Corollary

5.1.2, but the term ⟨A0p, x⟩ has exactly the same role as αp·x in our consideration. Therefore,

for completeness, as our last contributions, in Proposition 5.2.14 and Remark 5.2.15 we show

that the assumptions from the main theorem in [MZ24] essentially imply our assumptions.

Furthermore, in the case of Hamiltonians which are strongly convex in the p-variable, our

results need less and weaker assumption, and they hold true without the presence of a

non-degenerate idiosyncratic noise. In particular, we demonstrate that the emphasis on the

sufficient anti-monotonicity of G in [MZ24] is misleading, and this is not needed. Specifically,

in [MZ24] it is remarked: “. . . we will need to require our data to be sufficiently anti-monotone

in appropriate sense”. However we will see that anti-monotonicty is not needed (as anti-

monotonicity implies semi-monotonicity) and that [MZ24] has other other, more essential

assumptions on H which are what really give the well-posedness result.
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Some concluding remarks.

• For simplicity and transparency of our main ideas, in this chapter we have decided

to focus only on linear canonical transformations of the form Rd × P2(Rd) × Rd ∋

(x, µ, p) 7→ (x, µ, x−αp). Without much philosophical effort but with significant tech-

nical effort, one could consider canonical transformations of the form

Rd × P2(Rd)× Rd ∋ (x, µ, p) 7→ (x, µ, x−∇φ(x)),

where φ : Rd → R is any given smooth potential function, with bounded second deriva-

tives. In the case of noise, this transformation would lead to the modified Hamiltonians

and final data as

Hφ(x, µ, p) := H(x, µ, x−∇φ(x)) + β2 + β2
0

2
∆φ(x) and Gφ(x, µ) := G(x, µ) + φ(x).

It is easy to see that Theorem 5.1.1 holds true if in its statement (Hα, Gα) is replaced

with (Hφ, Gφ). However, in order to obtain new global well-posedness theory (in the

case of potentially degenerate noise), we would need to have a ‘convexifying regulariza-

tion’ on Gφ, which means that φ would need to be taken to be convex with sufficiently

large Hessian eigenvalues. From this point of view, φ(x) = α
2
|x|2 would be a natural

choice, and this is why we have decided to reduce our study to this particular family

of potentials.

We remark that in general Hamiltonians are only defined up to an additive constant.

In classical mechanics, this is saying that we may pick any value to correspond to the

‘zero energy’. In the presence of noise the attentive reader will notice that our Hα is

not the same as the Hφ defined above, when φ(x) is taken to be α
2
|x|2 . However, this

is not an issue as the difference between the two is a constant. In particular, the two

Hamiltonians are equivalent. Thus, we could have defined our Hα as Hα(x, µ, p) :=

H(x, µ, p− αx) +
(β2+β2

0)d

2
α which would then be the exact same as Hφ defined above,

however this would introduce unnecessary notational clutter.
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• In this chapter we have considered only ‘finite dimensional’ canonical transformations

(where the measure component stayed fixed). These have proved to have a deep effect

on new global well-posedness theories for the master equation. It is a very interesting,

but seemingly challenging task to analyze truly infinite dimensional canonical trans-

formations in the context of MFG master equations. In particular it seems that the

infinite dimensional canonical transformations do not preserve the structure of MFG,

they only preserve the structure of optimal control problems. In this we see a significant

difference between games and variational problems.

Remark 5.1.4. If the Hamiltonian H has an associated Lagrangian with bounded second

derivatives we must have that H is strongly convex in p. Similarly, the master equation only

corresponds to a game, when H is convex in p. To the best of the authors knowledge there

is no motivation for the master equation outside of this case.

We remark that if one is interested in the case of non-convex H in p then one can adapt

our results by using the Hamiltonian system directly. We refer to the Lagrangian purely for

pedagogical reasons and it is not needed for any technical reason. In particular our canonical

transformation and main theorem, Theorem 5.1.1, holds regardless of the convexity of H in

p.

5.2 Preliminaries and well-posedness theories for master equa-

tions

5.2.1 Some notations

In order to keep this discussion self-contained, let us recall some definitions and notations.

Let p ≥ 1. Based on [AGS08], we recall that the p-Wasserstein between µ, ν ∈ Pp(Rd)
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(probability measures with finite p-order moment supported on Rd) is defined as

W p
p (µ, ν) := inf

{∫
Rd×Rd

|x− y|pdγ(x, y) : γ ∈ Π(µ, ν)

}
,

where Π(µ, ν) :=
{
γ ∈ Pp(Rd × Rd) : (px)♯γ = µ, (py)♯γ = ν

}
stands for the set of admis-

sible transport plans in the transportation of µ onto ν, and px, py : Rd × Rd → Rd denote

the canonical projection operators, i.e. px(a, b) = a and py(a, b) = b. We refer to the metric

space (Pp(Rd),Wp) as the Wasserstein space.

We refer to [AGS08, GT19] and to [CD18a, Chapter 5] for the notion of Wasserstein

differentiability and fully Ck functions defined on the Wasserstein space, respectively. Based

on [Ahu16, CD18a, GMMZ22, MM24] we recall the notion of displacement monotonicity

which is given formally in Definition 2.2.1 and Definition 2.2.4.

Definition 5.2.1. Let G : Rd × P2(Rd) → R be a fully C1 function. Based on [GMMZ22,

Definition 2.7], we say that G is displacement semi-monotone or displacement α-monotone,

if there exists α ∈ R such that (x, µ) 7→ G(x, µ) + α
2
|x|2 is displacement monotone.

For the corresponding Hamiltonians, we can define the displacement monotonicity con-

dition as follows.

Definition 5.2.2. Let H : Rd × P2(Rd) × Rd → R be such that H(·, µ, ·) ∈ C1(Rd × Rd)

for all µ ∈ P2(Rd). We say that H is displacement monotone, if

−
∫
Rd×Rd

[∂xH(x, µ, p1(x))− ∂xH(y, ν, p2(y))] · (x− y)dγ(x, y) (5.2.1)

+

∫
Rd×Rd

[∂pH(x, µ, p1(x))− ∂pH(y, ν, p2(x))] · (p1(x)− p2(y))dγ(x, y),

for all µ, ν ∈ P2(Rd), γ ∈ Π(µ, ν) and for all p1, p2 ∈ Cb(Rd;Rd).

Remark 5.2.3. 1. Suppose that H : Rd ×P2(Rd)×Rd → R is fully C2, strictly convex

in the p-variable and satisfies∫
Rd×Rd

[∂xµH(x, µ, x̃, p(x))v(x̃) + ∂xxH(x, µ, p(x))v(x)] · v(x)dµ(x)dµ(x̃) (5.2.2)

+
1

4

∫
Rd

{∣∣∣[∂ppH(x, µ, p(x))]−
1
2

∫
Rd

∂pµH(x, µ, x̃, p(x))v(x̃)dµ(x̃)
∣∣∣2} dµ(x) ≤ 0,
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for all µ ∈ P2(Rd), for all p ∈ C(Rd;Rd) and for all v ∈ L2
µ(Rd;Rd). Then H satisfies

the displacement monotonicity condition from Definition 5.2.2. For the proof of this

fact we refer to [MM24, Lemma 2.7].

Definition 5.2.4. [MZ24, Definition 3.8],[MZ22b, Definition 3.4] Let λ = (λ0, λ1, λ2, λ3) ∈

R4 be such that λ0 > 0, λ1 ∈ R, λ2 > 0 and λ3 ≥ 0. Let G : Rd × P2(Rd) → R be fully C2.

It is said that G is λ-anti-monotone, if

λ0

∫
Rd

⟨∂xxG(x, µ)ξ(x), ξ(x)⟩dµ(x) + λ1

∫
Rd×Rd

⟨∂xµG(x, µ, x̃)ξ(x), ξ(x̃)⟩dµ(x)dµ(x̃)

+

∫
Rd

|∂xxG(x, µ)ξ(x)|2 dµ(x) + λ2

∫
Rd

∣∣∣ ∫
Rd

∂xµG(x, µ, x̃)ξ(x̃)dµ(x̃)
∣∣∣2dµ(x)

≤ λ3

∫
Rd

|ξ(x)|2 dµ(x)

for all µ ∈ P2(Rd) and for all ξ ∈ L2
µ(Rd;Rd).

5.2.2 New Well-Posedness Theories for MFG and master equations

On the data (H,G) we impose the same assumptions as in Chapter 3, see Assumptions 4

and 5. These are relatively standard assumptions, which appear naturally in the literature

on the well-posedness theories for master equations.

We now prove Theorem 5.1.1.

Proof of Theorem 5.1.1. Via direct computation we can verify that V is a solution of the

master equation with data (H,G) if and only if Ṽ (t, x, µ) := V (t, x, µ)+ α
2
|x|2− (β2

0+β
2)αd

2
(t−

T ) is a solution of the master equation with data (Hα, Gα).

Remark 5.2.5. Because of the connection between the solvability of the master equation

with data (H,G) and (Hα, Gα) described in Theorem 5.1.1, the same connection holds true

for the solutions to the corresponding finite dimensional mean field games systems as well.

Recall the definition (5.1.2). Now we give some sufficient conditions on Hamiltonians H

which would result into the displacement monotonicity of the transformed Hamiltonians Hα.
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Lemma 5.2.6. Let H be fully C2. Then Hα is displacement monotone if and only if∫
Rd

[(
∂xxH(x, µ, p(x))− 2α∂xpH(x, µ, p(x))

)
v(x)

]
· v(x)dµ(x) (5.2.3)

+

∫
Rd×Rd

[(
∂xµH(x, µ, x̃, p(x))− 2α∂pµH(x, µ, x̃, p(x))

)
v(x̃)

]
· v(x)dµ(x)dµ(x̃)

+
1

4

∫
Rd

{∣∣∣∣[∂ppH(x, µ, p(x))]−
1
2

[ ∫
Rd

∂pµH(x, µ, x̃, p(x))v(x̃)dµ(x̃)

+ 2α∂ppH(x, µ, p(x))v(x)

]∣∣∣∣2}dµ(x) (5.2.4)

≤ 0,

for all µ ∈ P2(Rd), for all p ∈ C(Rd;Rd) and for all v ∈ L2
µ(Rd;Rd).

Proof. We readily compute

∂xxH̃(x, µ, p) = ∂xxH(x, µ, p− αx)− 2αRe(∂xpH(x, µ, p− αx)) + α2∂ppH(x, µ, p− αx),

∂xµH̃(x, µ, ·, p) = ∂xµH(x, µ, ·, p− αx)− α∂pµH(x, µ, ·, p− αx),

∂pµH̃(x, µ, ·, p) = ∂pµH(x, µ, ·, p− αx),

∂ppH̃(x, µ, p) = ∂ppH(x, µ, p− αx).

The result now immediately follows by writing the inequality (5.2.2) for H̃ in terms of H,

after noting that we may replace Re(∂xpH) with ∂xpH since the quadratic form induced by

a skew-symmetric operator is null.

Remark 5.2.7. The inequality in (5.2.3) can be equivalently rewritten as∫
Rd×Rd

[∂xµH(x, µ, x̃, p(x))v(x̃)− α∂pµH(x, µ, x̃, p(x))v(x̃)] · v(x)dµ(x)dµ(x̃) (5.2.5)

+

∫
Rd

[
∂xxH(x, µ, p(x))v(x)− 2α∂xpH(x, µ, p(x))v(x) + α2∂ppH(x, µ, p(x))v(x)

]
· v(x)dµ(x)

+
1

4

∫
Rd

{∣∣∣[∂ppH(x, µ, p(x))]−
1
2

∫
Rd

∂pµH(x, µ, x̃, p(x))v(x̃)dµ(x̃)
∣∣∣2} dµ(x) ≤ 0,

for all µ ∈ P2(Rd), for all p ∈ C(Rd;Rd) and for all v ∈ L2
µ(Rd;Rd). This is the exact same

condition as [MZ22b, (5.10)].
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We introduce the following notations.

κ(∂xpH) := inf
(x,µ,p)∈Rd×P2(Rd)×Rd

λmin(Re ∂xpH(x, µ, p)),

where for A ∈ Rd×d, we adopt the notation Re(A) := (A + A⊤)/2 and for A ∈ Rd×d

symmetric λmin(A) stands for its smallest eigenvalue. Furthermore, to denote the suprema

of the standard 2-matrix norms, we use the notation

|∂xµH| := sup
(x,µ,p,x̃)∈Rd×P2(Rd)×Rd×Rd

|∂xµH(x, µ, p, x̃)| ;

|∂pµH| := sup
(x,µ,p,x̃)∈Rd×P2(Rd)×Rd×Rd

|∂pµH(x, µ, p, x̃)| ;

|∂xxH| := sup
(x,µ,p)∈Rd×P2(Rd)×Rd

|∂xxH(x, µ, p)| ,

and so on for similar quantities. Now, we can formulate the second main result of our

chapter.

Theorem 5.2.8. Suppose that H : Rd × P2(Rd) × Rd → R satisfies ∂ppH(x, µ, p) ≥ c−1
0 I,

for some c0 > 0 and for all (x, µ, p) ∈ Rd × P2(Rd) × Rd. Suppose that the quantities

κ(∂xpH), |∂ppH| , |∂xxH| , |∂pµH| and |∂xµH| are finite. Define

LHour := |∂xµH|+ 1

4
c0 |∂pµH|2 + |∂xxH| .

Suppose that κ(∂xpH) ≥ 1
2
|∂pµH| +

√
|∂ppH|LHour. Then Hα is displacement monotone for

any

α ∈
[
αH− , α

H
+

]
,

where

αH± :=
κ(∂xpH)− 1

2
|∂pµH| ±

√(
κ(∂xpH)− 1

2
|∂pµH|

)2 − |∂ppH|LHour
|∂ppH|

.

In particular we have the result for α :=
κ(∂xpH)− 1

2
|∂pµH|

|∂ppH| .
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Proof. For α ∈
[
αH− , α

H
+

]
, µ ∈ P2(Rd), p ∈ C(Rd;Rd) and for v ∈ L2

µ(Rd;Rd) normalized,

i.e.
∫
Rd |v(x)|2dµ = 1, we compute∫

Rd×Rd

[∂xµH(x, µ, x̃, p(x))v(x̃)− α∂pµH(x, µ, x̃, p(x))v(x̃)] · v(x)dµ(x)dµ(x̃)

+

∫
Rd

[
∂xxH(x, µ, p(x))v(x)− 2α∂xpH(x, µ, p(x))v(x) + α2∂ppH(x, µ, p(x))v(x)

]
· v(x)dµ(x)

+
1

4

∫
Rd

{∣∣∣[∂ppH(x, µ, p(x))]−
1
2

∫
Rd

∂pµH(x, µ, x̃, p(x))v(x̃)dµ(x̃)
∣∣∣2} dµ(x)

≤
∫
Rd×Rd

[|∂xµH|+ α |∂pµH|+ |∂xxH| − 2ακ(∂xpH) + α2 |∂ppH|]dµ(x)dµ(x̃)

+
c0
4

∫
Rd

{∣∣∣ ∫
Rd

|∂pµH| dµ(x̃)
∣∣∣2} dµ(x)

= |∂xxH| − 2ακ(∂xpH) + α2 |∂ppH|+ |∂xµH|+ α |∂pµH|+ c0 |∂pµH|2

4

= |∂ppH|α2 − 2

(
κ(∂xpH)− 1

2
|∂pµH|

)
α + |∂xxH|+ |∂xµH|+ c0 |∂pµH|2

4

= |∂ppH|α2 − 2

(
κ(∂xpH)− 1

2
|∂pµH|

)
α + LHour

≤ 0,

where in the last inequality we used the sign of the quadratic expression.

As an immediate consequence of Theorem 5.2.8, we have the well-posedness result in

Corollary 5.1.2.

Proof of Corollary 5.1.2. We see that all second order derivatives of H̃ and H match, except

the ones involving ∂xp, for which we have

∂xpH̃ = ∂xpH + αI.

By the uniform bounds on the corresponding second order derivatives of H, we see that

for α sufficiently large, H̃ fulfills the assumptions of Theorem 5.2.8. Increasing α further

if necessary, we can ensure that G is displacement α-monotone. Having G displacement

α-monotone and Hα displacement monotone would result via Theorem 5.1.1 in the desired

global well-posedness result for the master equation.
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5.2.2.1 Our results and previous results on the master equation involving dis-

placement semi-monotone data

We notice that the inequality (5.2.3) is precisely the inequality (5.10) from [MZ22b]. This

means in particular that [MZ22b, Theorem 5.6] is a direct consequence of Theorem 5.1.1 and

Remark 5.2.6 above.

We note that Theorem 5.1.1 shows that we have a global well-posedness theory for the

master equation as long as G is displacement semi-monotone and the corresponding H̃ is

displacement monotone. In particular, it is enough for these to satisfy the ‘first order’

monotonicity conditions, in the sense of Definition 5.2.1(1) and (5.2.1). Therefore, Theorem

5.1.1 together with the well-posedness results from [BMM23a] provide a more general result

than the one in [MZ22b, Theorem 5.6].

5.2.2.2 Our results and previous results on the master equation involving anti-

monotone data

Our first objective in this subsection is to show that any function G : Rd × P2(Rd) →

R which is λ-anti-monotone in the sense of Definition 5.2.4 is actually displacement α-

monotone in the sense of Definition 5.2.1(2), where α can be computed explicitly in terms

of λ = (λ0, λ1, λ2, λ3). We start with some preparatory results.

Remark 5.2.9. G is λ-anti-monotone in the sense of Definition 5.2.4 with λ = (λ0, λ1, λ2, λ3)

if and only if∫
Rd

{∣∣∣∣∂xxG(x, µ)ξ(x) + λ0
2
ξ(x)

∣∣∣∣2 + λ2

∣∣∣∣∫
Rd

∂xµG(x, µ, x̃)ξ(x̃)dµ(x̃) +
λ1
2λ2

ξ(x)

∣∣∣∣2
}
dµ(x)

≤

(
λ3 +

(
λ0
2

)2

+ λ2

(
λ1
2λ2

)2
)∫

Rd

|ξ(x)|2 dµ(x)

Proof. This is immediate by an algebraic manipulation after computing the squares.
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Proposition 5.2.10. If G is λ-anti monotone in the sense of Definition 5.2.4 with λ =

(λ0, λ1, λ2, λ3), then∣∣∣∣∫
Rd×Rd

⟨∂xµG(x, µ, x̃)ξ(x), ξ(x̃)⟩dµ(x)dµ(x̃)
∣∣∣∣

≤

 |λ1|
2λ2

+

√
λ3
λ2

+
λ0

2

4λ2
+

(
λ1
2λ2

)2
∫

Rd

|ξ(x)|2 dµ(x)

and∣∣∣∣∫
Rd

⟨∂xxG(x, µ)ξ(x), ξ(x)⟩dµ(x)
∣∣∣∣ ≤

 |λ0|
2

+

√
λ3 +

(
λ0
2

)2

+ λ2

(
λ1
2λ2

)2
∫

Rd

dµ(x) |ξ(x)|2

In particular G is displacement αλ-monotone, with

αλ ≥ max

 |λ1|
2λ2

+

√
λ3
λ2

+
λ0

2

4λ2
+

(
λ1
2λ2

)2

;
|λ0|
2

+

√
λ3 +

(
λ0
2

)2

+ λ2

(
λ1
2λ2

)2

 .

Proof. Let us recall that in the definition of λ-anti-monotonicity we have λ0 > 0, λ2 > 0,

λ3 ≥ 0 and there is no sign restriction on λ1.

First, let us suppose that λ1 ̸= 0.

Note that for any v, w ∈ Rd and any C > 0 we have

|⟨v, w⟩| ≤ C + 2

2
|v|2 + 1

2C
|v + w|2 .

With the choice of v := λ1
2λ2
ξ(x) and w :=

∫
Rd ∂xµG(x, µ, x̃)ξ(x̃)dµ(x̃), we obtain∫

Rd

∣∣∣∣〈∫
Rd

∂xµG(x, µ, x̃)ξ(x̃)dµ(x̃),
λ1
2λ2

ξ(x)

〉∣∣∣∣ dµ(x)
≤
∫
Rd

{(
C

2
+ 1

) ∣∣∣∣ λ12λ2
ξ(x)

∣∣∣∣2 + 1

2C

∣∣∣∣∫
Rd

∂xµG(x, µ, x̃)ξ(x̃)dµ(x̃) +
λ1
2λ2

ξ(x)

∣∣∣∣2
}
dµ(x)

=

∫
Rd

{(
C

2
+ 1

) ∣∣∣∣ λ12λ2
ξ(x)

∣∣∣∣2
+

1

2Cλ2

(
λ2

∣∣∣∣∫
Rd

∂xµG(x, µ, x̃)ξ(x̃)dµ(x̃) +
λ1
2λ2

ξ(x)

∣∣∣∣2
)}

dµ(x)

≤
∫
Rd

{(
C

2
+ 1

) ∣∣∣∣ λ12λ2
ξ(x)

∣∣∣∣2 + 1

2Cλ2

(
λ3 +

(
λ0
2

)2

+ λ2

(
λ1
2λ2

)2
)
|ξ(x)|2

}
dµ(x)
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where the last inequality follows from Proposition 5.2.9. Hence,∫
Rd

∣∣∣∣〈∫
Rd

∂xµG(x, µ, x̃)ξ(x̃)dµ(x̃), ξ(x)

〉∣∣∣∣ dµ(x)
≤

((
C

2
+ 1

)
|λ1|
2λ2

+
1

C|λ1|

(
λ3 +

(
λ0
2

)2

+ λ2

(
λ1
2λ2

)2
))∫

Rd

|ξ(x)|2 dµ(x)

=

(
|λ1|
2λ2

+
C|λ1|
4λ2

+
1

C|λ1|

(
λ3 +

(
λ0
2

)2

+ λ2

(
λ1
2λ2

)2
))∫

Rd

|ξ(x)|2 dµ(x).

We now take C = 1
|λ1|

√(
λ3 +

(
λ0
2

)2
+ λ2

(
λ1
2λ2

)2)
(4λ2) to obtain

∫
Rd

∣∣∣∣〈∫
Rd

∂xµG(x, µ, x̃)ξ(x̃)dµ(x̃), ξ(x)

〉∣∣∣∣ dµ(x)
≤

 |λ1|
2λ2

+ 2

√√√√λ3 +
(
λ0
2

)2
+ λ2

(
λ1
2λ2

)2
4λ2

∫
Rd

|ξ(x)|2 dµ(x)

=

 |λ1|
2λ2

+

√
λ3
λ2

+
λ0

2

4λ2
+

(
λ1
2λ2

)2
∫

Rd

|ξ(x)|2 dµ(x)

Now, as the left hand side of this estimate is continuous at λ1 = 0, we can send λ1 → 0, and

conclude the claim for general λ1 ∈ R.

In the same manner with the choice of v := λ0
2
ξ(x) and w := ∂xxG(x, µ)ξ(x), for C > 0

arbitrary we get∫
Rd

|⟨∂xxG(x, µ)ξ(x), ξ(x)⟩| dµ(x)

≤ 2

|λ0|

∫
Rd

(
C + 2

2

∣∣∣∣λ02 ξ(x)
∣∣∣∣2 + 1

2C

∣∣∣∣∂xxG(x, µ)ξ(x) + λ0
2
ξ(x)

∣∣∣∣2
)
dµ(x)

≤ 2

|λ0|

(
C + 2

2

(
λ20
4

)
+

1

2C

(
λ3 +

(
λ0
2

)2

+ λ2

(
λ1
2λ2

)2
))∫

Rd

dµ(x) |ξ(x)|2

=

(
|λ0|
2

+
C |λ0|
4

+
1

|λ0|C

(
λ3 +

(
λ0
2

)2

+ λ2

(
λ1
2λ2

)2
))∫

Rd

dµ(x) |ξ(x)|2

By taking C = 2
|λ0|

√(
λ3 +

(
λ0
2

)2
+ λ2

(
λ1
2λ2

)2)
we obtain the result.

127



Remark 5.2.11. In Proposition 5.2.10 we see that the estimates, and hence the conclusion

regarding the displacement α-monotonicity, hold true even for λ0 ≤ 0. Therefore, we might

drop the requirement λ0 > 0, and our claims from below will remain true.

Corollary 5.2.12. Let G : Rd×P2(Rd) → R be λ-anti-monotone which satisfies Assumption

4. Suppose that H : Rd × P2(Rd)× Rd → R satisfies Assumption 5 and it is such that Hαλ

is displacement monotone, where the constant αλ is given in Proposition 5.2.10. Then, the

master equation (1.1) with data (H,G) is globally well-posed.

Proof. This is a direct consequence of Proposition 5.2.10 and Theorem 5.1.1.

We would like to conclude our chapter by showing that, if H is strictly convex in the

p-variable, then the main theorem on the global well-posedness of the master equation from

[MZ24, Theorem 7.1] is a particular case of our main results from Corollary 5.2.12. For

completeness, we informally state this here.

Theorem 5.2.13. [MZ24, Theorem 7.1] Suppose that G : Rd×P2(Rd) is smooth enough with

uniformly bounded second, third and fourth order derivatives. Suppose that the Hamiltonian

H : Rd × P2(Rd)× Rd → R has the specific factorization

H(x, µ, p) := ⟨A0x, p⟩+H0(x, µ, p),

for a constant matrix A0 ∈ Rd×d and H0 : Rd × P2(Rd)× Rd → R smooth enough. Suppose

furthermore that G is λ-anti-monotone and that a special set of specific assumption take

place jointly for λ = (λ0, λ1, λ2, λ3), the matrix A0 and H0. Then the master equation (1.1)

is globally well-posed for any T > 0, in the classical sense.

Proposition 5.2.14. Suppose that G : Rd × P2(Rd) → R is λ-anti monotone and satisfies

Assumption 4. Suppose that H : Rd × P2(Rd)× Rd → R is given by

H(x, µ, p) = ⟨A0x, p⟩+H0(x, µ, p),
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with H0 : Rd×P2(Rd)×Rd → R satisfying Assumption 5 and A0 ∈ Rd×d is a given constant

matrix. Let KH := c0 |∂ppH| = c0 |∂ppH0| be the condition number of ∂ppH. Suppose that

κ(A0) ≥ max

{(
7

2
+

√
KH

2

)
LH0
2 +

√
|∂ppH| |∂xxH0|;

(
3

2
+ f(λ)

)
LH0
2

}
, (5.2.6)

where λ = (λ0, λ1, λ2, λ2), we have set

f(λ) :=
5|λ1|
4λ2

+ 1 +
λ3
2λ2

+
λ0
4λ2

+
5λ0
4

+
λ3
2

+
|λ1|
4

= 1 +
1

2

(
5λ0
2

+
|λ1|
2

+ λ3

)
+

1

2λ2

(
λ0
2

+
5|λ1|
2

+ λ3

)
,

and LH0
2 > 0 is a constant associated to H0, satisfying

|∂xpH0| ≤ LH0
2 , |∂ppH0| ≤ LH0

2 , |∂xµH0| ≤ LH0
2 and |∂pµH0| ≤ LH0

2 .

Then the master equation is globally well-posed.

Proof. Let us note that by the definition of LH0
2 and by the definition of LH0

our, we have that

LH0
our ≤ LH0

2 +
c0
4

(
LH0

)2
+ |∂xxH0|. (5.2.7)

As κ(∂xpH) ≥ κ(A0) − |∂xpH0|, we see that the assumption κ(A0) ≥ (7
2
+

√
KH

2
)LH0

2 +√
|∂ppH| |∂xxH0| and (5.2.7) imply

κ(∂xpH) ≥ κ(A0)− |∂xpH0| ≥ 3LH0
2 +

1

2
|∂pµH| − |∂xpH0|+

√
KH

2
LH0
2 +

√
|∂ppH| |∂xxH0|

≥ 2LH0
2 +

1

2
|∂pµH|+

√
KH

2
LH0
2 +

√
|∂ppH| |∂xxH0|

=
1

2
|∂pµH|+

√
c0
4
|∂ppH0|

(
LH0
2

)2
+

√
4
(
LH0
2

)2
+
√
|∂ppH| |∂xxH0|

≥ 1

2
|∂pµH|+

√
c0
4
|∂ppH0|

(
LH0
2

)2
+

√
4|∂ppH0|LH0

2 +
√

|∂ppH| |∂xxH0|

≥ 1

2
|∂pµH0|+

√
|∂ppH0|LH0

our

=
1

2
|∂pµH|+

√
|∂ppH|LHour
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and so we can apply Theorem 5.2.8. We get that H is displacement α-monotone with

α =
κ(∂xpH)− 1

2
|∂pµH|

|∂ppH|

≥
κ(A0)− |∂xpH0| − 1

2
|∂pµH0|

|∂ppH0|

≥
(
3
2
+ f(λ)

)
LH0
2 − |∂xpH0| − 1

2
|∂pµH0|

|∂ppH0|

≥ f(λ).

From Proposition 5.2.10 we see that G is semi-monotone with constant

η :=
|λ1|
2λ2

+

√
λ3
λ2

+
λ0

2

4λ2
+

(
λ1
2λ2

)2

+
λ0
2

+

√
λ3 +

(
λ0
2

)2

+ λ2

(
λ1
2λ2

)2

≤ |λ1|
2λ2

+

√
λ3
λ2

+

√
λ0

2

4λ2
+

√(
λ1
2λ2

)2

+
λ0
2

+
√
λ3 +

√(
λ0
2

)2

+

√
λ2

(
λ1
2λ2

)2

≤ |λ1|
λ2

+

√
λ3
λ2

+

√
λ0

2

4λ2
+ λ0 +

√
λ3 +

√
λ21
4λ2

≤ |λ1|
λ2

+
1

2
+

λ3
2λ2

+
λ0
4λ2

+
λ0
4

+ λ0 +
1

2
+
λ3
2

+
|λ1|
4λ2

+
|λ1|
4

=
5|λ1|
4λ2

+ 1 +
λ3
2λ2

+
λ0
4λ2

+
5λ0
4

+
λ3
2

+
|λ1|
4

= f(λ)

and so the result follows.

Remark 5.2.15. We compare Proposition 5.2.14 with [MZ24, Theorem 7.1]. This theorem

has many assumptions. We show that up to constants (depending only on KH) only a few

of these many assumptions imply our assumptions. First, we recall that the definition of the

3× 3 matrices A1, A2 from formula [MZ24, (4.3)]. These are not constructed from A0 above,

and they involve constants coming in particular from λ = (λ0, λ1, λ2, λ3). Furthermore, for

A ∈ Rd×d, κ̄(A) stands for the largest eigenvalue of Re(A).

To continue we need the assumption

κ(A0) ≥ (1 + κ̄(A−1
1 A2))L

H0
2 . (5.2.8)
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In [MZ24, Theorem 7.1] (specifically the second item of (7.1)) it is assumed that

κ(A0) ≥ (1 + κ(A−1
1 A2))L

H0
2 , (5.2.8′)

although they probably meant to assume (5.2.8)1 .

We can formulate the following statement.

Claim. The assumptions of [MZ24, Theorem 7.1], up to a multiplicative constant

depending on KH , imply (5.2.6).

Proof of claim. By definition, we have that κ̄(A−1
1 A2) ≥ v⊤A−1

1 A2v for any unit vector

v ∈ R3. Taking v = 1√
3
(1, 1, 1)⊤ and using the explicit form of A1, A2 given in [MZ24,

(4.3)] together with the fact that all the entries of these matrices are non-negative, by direct

computation we obtain

κ̄(A−1
1 A2) ≥

1

3

(
1

4

(
λ0 + λ0 +

∣∣∣∣λ0 − 1

2
λ1

∣∣∣∣+ λ3

)
+

1

2λ2

(
λ0 + |λ1|+ (

1

2
|λ1|+ λ2 + λ3)

))
≥ 1

3

(
1

4

(
λ0 + λ0 − |λ0|+

1

2
|λ1|+ λ3

)
+

1

2λ2

(
λ0 + |λ1|+ (

1

2
|λ1|+ λ2 + λ3)

))
=

1

3

(
1

4

(
λ0 +

1

2
|λ1|+ λ3

)
+

1

2λ2

(
λ0 + |λ1|+ (

1

2
|λ1|+ λ2 + λ3)

))
≥ 1

15
f(λ),

so (5.2.8) implies that

κ(A0) ≥
1

15
LH0
2 (15 + f(λ)) . (5.2.9)

Furthermore we see from the second inequality in [MZ24, (7.2)] that γ̄κ(A0) ≥ |∂xxH|.

By the assumption (i) of [MZ24, Theorem 7.1] we have that γ̄ satisfies [MZ24, (4.2)] in which

the first inequality implies that λ0 >
γ̄2

4γ
− 8λ3

4γ
. Hence we obtain (4γλ0 + 8λ3) ≥ γ̄2. It is

1The κ on the right-hand side is likely a typo as in the fourth to last line on [MZ24, page 15] the authors
need to use κ̄(A−1

1 A2). Furthermore we see κ̄ appearing correctly also in a similar assumption, [MZ22b,
(6.3)].
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clear that 2f(λ) ≥ λ0 and 2f(λ) ≥ λ3, therefore we get 16f(λ)(1 + γ) ≥ γ̄2. Since γ < γ̄ by

assumption (i) of [MZ24, Theorem 7.1] and 1 < γ̄ by the same assumption we get 2γ̄ ≥ 1+γ

and so we obtain 32f(λ) ≥ γ̄. Hence we get

κ(A0)
2 ≥ LH0

2

15
f(λ)κ(A0) ≥

LH0
2

15 · 32
γ̄κ(A0) ≥

|∂ppH|
15 · 32

|∂xxH|

and so we obtain κ(A0) ≥ 1
4
√
30

√
|∂ppH| |∂xxH|.

Moreover, (5.2.8) implies that κ(A0) ≥ LH0
2 and so we get

κ(A0) ≥
1

2
LH0
2 +

1

8
√
30

√
|∂ppH| |∂xxH|. (5.2.10)

To summarize, the assumptions of [MZ24, Theorem 7.1] imply (5.2.9) and (5.2.10) which

in turn imply that

κ(A0) ≥
1

8
√
30 +

√
KH

max

{(
7

2
+

√
KH

2

)
LH0
2 +

√
|∂ppH| |∂xxH0|;

(
3

2
+ f(λ)

)
LH0
2

}
.

This, aside from the constant of 1
8
√
30+

√
KH

in front, is the exact assumption (5.2.6) of our

Proposition 5.2.14.
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CHAPTER 6

Optimal Transport with Quantum Dynamics

6.1 Introduction

The classical optimal transport (OT) problem, introduced by Gaspard Monge in the 18th

century and further developed by Leonid Kantorovich in the 20th century, is a foundational

question in both pure and applied mathematics. The problem focuses on finding the most

efficient way to transport one distribution of mass, described by a probability measure, to

another, under a specified cost function. In this chapter, we explore an extension of this

problem to quantum mechanics, where the transport is governed by quantum dynamics,

specifically the Schrödinger equation. We show how this quantum dynamic extension of OT

is connected to a well-known problem in quantum mechanics: the Pauli problem.

6.1.1 The Classical Optimal Transport Problem

6.1.1.1 Formulation of the Classical OT Problem

The classical optimal transport problem can be formulated as follows: given two probability

measures µ0 and µ1 on Rd, the goal is to find a transport map T : Rd → Rd such that T

pushes forward µ0 to µ1, i.e., T#µ0 = µ1, while minimizing a given cost functional. The

cost of transporting a unit of mass from x to T (x) is typically described by the Euclidean

distance |x− T (x)|, or more generally by a cost function c(x, T (x)).
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The problem is formally stated as:

inf
T

∫
Rd

c(x, T (x)) dµ0(x)

subject to the constraint T#µ0 = µ1, i.e., for all measurable sets A ⊂ Rd, we have

µ1(A) = µ0(T
−1(A)).

While originally posed by Monge, the problem proved challenging due to its nonlinearity.

Kantorovich’s relaxation of the problem, formulated in terms of couplings between µ0 and

µ1, led to significant breakthroughs.

6.1.1.2 Motivation for the Classical OT Problem

The classical OT problem has widespread applications across fields such as logistics, eco-

nomics, image processing, and machine learning. Initially, it was intended to solve practical

problems like minimizing the cost of transporting soil for construction, but its mathematical

structure has allowed it to be applied to a variety of domains. In economics, for example,

OT can model the most efficient way to allocate resources, while in machine learning, it

plays a role in domain adaptation and generative modeling, where transforming one data

distribution into another is a key challenge.

Additionally, the OT problem is deeply connected to areas like partial differential equa-

tions, geometry, and probability theory. The development of Wasserstein distances, a fam-

ily of metrics used to measure the “cost” of transforming one probability distribution into

another, has led to significant advances in probability theory on metric spaces and has in-

fluenced the study of the geometry of probability measures.
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6.1.2 Optimal Transport with Quantum Dynamics

6.1.2.1 Formulation of Optimal Transport with Quantum Dynamics

In the classical OT problem, the transport of mass is governed by a deterministic map T .

In the quantum dynamic extension of OT, however, the transport of probability densities is

governed by the evolution of a wave function under the Schrödinger equation. The goal is to

minimize the kinetic energy of a quantum system while subject to constraints on the initial

and final probability densities.

Given two probability measures µ0 and µ1, we seek to minimize

inf
ψt

∫ 1

0

∫
Rd

|∇ψt(x)|2 dx dt

over all wave functions ψt such that |ψ0|2 dx = µ0, |ψ1|2 dx = µ1, and where ψt evolves

according to the Schrödinger equation

iℏ∂tψt = −ℏ2

2
∆ψt,

with ℏ = 1
2π

being the reduced Planck constant. Here, the cost functional represents the

kinetic energy of the quantum system, and the Schrödinger equation governs the wave func-

tion’s time evolution.

This problem was first considered by Eric Carlin and Wilfrid Gangbo (private commu-

nication).

6.1.2.2 Motivation for Optimal Transport with Quantum Dynamics

There are several compelling reasons to explore optimal transport with quantum dynamics.

First, quantum mechanics is a fundamental theory in physics, and the Schrödinger equation

describes the evolution of quantum systems. Extending OT into this quantum dynamic

framework opens up possibilities for studying the interaction between quantum systems and

probability distributions.
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Second, this extension provides a natural bridge between classical mechanics and quantum

mechanics. As the reduced Planck constant ℏ → 0, the quantum dynamic version of OT

reduces to the classical OT problem, linking both regimes under one conceptual framework.

This connection offers new insights into transport problems in both classical and quantum

settings, and allows for the application of methods from both fields.

6.1.3 The Pauli Problem

6.1.3.1 Formulation of the Pauli Problem

The Pauli problem, named after the physicist Wolfgang Pauli, asks whether a quantum

state can be uniquely determined from the knowledge of its magnitude in both position and

momentum space (via its Fourier transform). More formally, given two probability measures

µ0 and µ1 on Rd, we define the set

S1 =

{
ψ ∈ L2 : |ψ|2 dx = µ0,

∣∣∣ψ̂∣∣∣2 dξ = µ1

}
,

where ψ̂ denotes the Fourier transform of ψ. The Pauli problem asks whether S1 is a

singleton (up to multiplication by a complex phase) or whether multiple quantum states

could correspond to the same magnitude distributions in both physical and momentum

space.

This problem is deeply related to the uncertainty principle, which places limits on the

simultaneous knowledge of a quantum particle’s position and momentum. In this sense, the

Pauli problem can be interpreted as a question about the uniqueness of the mapping between

a quantum state and its probability distributions in position and momentum space.

6.1.3.2 Motivation for the Pauli Problem

The Pauli problem addresses fundamental questions in quantum mechanics. In practical

quantum measurements, information is often obtained about the magnitude of the wave
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function in position or momentum space, but not its full complex phase. The Pauli problem

asks whether this limited information is sufficient to uniquely determine the quantum state,

which has important implications for fields like quantum state tomography and quantum

information theory.

Furthermore, the Pauli problem highlights the interplay between position and momen-

tum, which are conjugate variables in quantum mechanics. Understanding the conditions

under which these magnitude distributions in position and momentum space determine a

unique quantum state is crucial for exploring the boundaries of quantum measurements and

the uncertainty principle.

6.1.4 Results

We demonstrate that, the optimal transport problem with quantum dynamics always admits

a minimizer, provided that the feasible set is non-empty. This ensures that for any given

pair of initial and final probability measures, there exists a wave function evolution, governed

by quantum dynamics, that optimally transports the probability distribution in a way that

minimizes the associated cost functional.

We further explore the relationship between the optimal transport problem with quantum

dynamics and the Pauli problem. In particular, we show that the optimal transport problem

with quantum dynamics is equivalent to finding a unique (up to symmetry) solution in the

feasible set. This means that solving the quantum optimal transport problem can be seen

as a means to uniquely determine the quantum state, constrained by probability densities

in both physical and Fourier space, similar to the Pauli problem. The symmetry inherent in

quantum systems, where states may be determined only up to a phase factor, plays a crucial

role in this equivalence.

The Pauli problem, which asks whether a quantum state can be reconstructed from its

probability distributions in position and momentum (Fourier) space, can thus be reframed
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as an instance of an optimal transport problem in the quantum setting. By understanding

the structure of the feasible set and developing solutions to the optimal transport problem

with quantum dynamics, we provide a new approach to understand the Pauli problem.

Specifically, this framework allows us to select a distinguished solution to the Pauli problem

from among the possible quantum states that satisfy the given constraints.

This equivalence between the Pauli problem and the optimal transport problem with

quantum dynamics is particularly valuable because it brings together two seemingly distinct

areas of mathematics and physics.

Moreover, the connection we establish between these two problems opens up new avenues

for research. On one hand, it deepens our understanding of quantum transport processes by

providing a bridge between classical transport theory and quantum mechanics. On the other

hand, it offers new methodologies for tackling problems in quantum state reconstruction,

such as those encountered in quantum information theory, quantum state tomography, and

even in foundational questions related to the uncertainty principle.

6.2 Optimal Transport with Quantum Dynamics

6.2.1 Problem Description

Say that we are given probability measures µ0, µ1.

We consider

inf
ψt

∫ 1

0

∫
Rd

|∇ψt(x)|2 dxdt

where the infimum is taken over all ψt such that |ψ0|2 dx = µ0 and |ψ1|2 dx = µ1 and ψt solves

the Schrödinger equation iℏ∂tψt = −ℏ2
2
∆ψt. Here ℏ = 1

2π
is the reduced Planck constant (we

take h = 1).

Of course, it is easy to see that for general µ0, µ1 there might not even exist a single ψt

that satisfies our constraints. Hence, we assume that µ0, µ1 are such that there exists at
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least one ψt that satisfies the constraints.

6.2.2 Some Basic Facts about the Schrödinger Equation

In order that we can be rigorous we will assume that µ0, µ1 are absolutely continuous with

respect to Lebesgue measure.

If ψ0 is ’nice’ (say Schwartz for example) then we may solve the Schrödinger equation

explicitly. On the Fourier side the solution is

ψ̂t(ξ) = e−2πi(|ξ|2/2)tψ̂0(ξ) (6.2.1)

See [Hal13, Proposition 4.3] for a proof.

Note that this expression makes sense and defines a unique ψt ∈ L2 even if ψ0 isn’t ’nice’.

All we need is ψ0 ∈ L2 which is guaranteed by |ψ0|2 dx being a probability measure. Hence

we will take (6.2.1) as our notion of weak solution of the Schrödinger equation even when

ψ0 isn’t nice.

Lemma 6.2.1. Suppose that ψt solves the Schrödinger equation. Then
∫
Rd |∇ψt(x)|2 dx is

constant in t.

Proof. By Pancherel’s theorem, we have that∫
Rd

|∇ψt(x)|2 dx =

∫
Rd

∣∣∣ξψ̂t(ξ)∣∣∣2 dξ = ∫
Rd

∣∣∣ξψ̂0(ξ)
∣∣∣2 dξ = ∫

Rd

|∇ψ0(x)|2 dx

Remark 6.2.2. The above lemma is obvious in physics. Since we have taken the free particle

Schrödinger equation, there aren’t any forces acting on the particle and hence the kinetic

energy is conserved.
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6.2.3 Existence of a Minimizer

By Lemma 6.2.1, we have that∫ 1

0

∫
Rd

|∇ψt(x)|2 dxdt =
∫
Rd

|∇ψ0(x)|2 dx

and so our problem is reduced to

inf
ψ0

∫
Rd

|∇ψ0(x)|2 dx

where the infimum is taken over all ψ0 such that |ψ0|2 dx = µ0 and |ψ1|2 dx = µ1 where

ψ̂1 = e−2πi(|ξ|2/2)ψ̂0(ξ) is the solution to the Schrödinger equation.

Proposition 6.2.3. The above problem has a minimizer.

Proof. Let ψn0 be a minimizing sequence. Then∫
Rd

|∇ψn0 (x)|
2 dx ≤

∫
Rd

∣∣∇ψ0
0(x)

∣∣2 dx
and so ψn0 is uniformly bounded in H1. Hence there exists a ψ∗

0 and subsequence of ψn0

(which we do not relabel) such that ψn0 → ψ∗
0 in L2 and ψn0 ⇀ ψ∗

0 in H1.

We claim that ψ∗
0 is a minimizer. Indeed since the functional that we seek to minimize

is weakly lower semi-continuous we have that∫
|∇ψ∗

0(x)|
2 dx ≤ lim inf

n→∞

∫
|∇ψn0 (x)|

2 dx = inf
ψ0

∫
|∇ψ0(x)|2 dx

Furthermore since ψn0 → ψ∗
0 in L2 we get that |ψ∗

0|
2 = limn→∞ |ψn0 |

2 = µ0.

Since (in L2) ψn0 → ψ∗
0 we get that ψ̂n0 → ψ̂∗

0. From (6.2.1) we get that ψ̂n1 → ψ̂∗
1 and so

ψn1 → ψ∗
1 in L2. Hence we also get that |ψ∗

1|
2 = limn→∞ |ψn1 |

2 = µ1.

Hence ψ∗
0 satisfies the constraints and is a minimizer.
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6.2.4 Remarks on the Constraint Set

Let us use L2 = L2(Rd,C) to denote the space of square integrable functions on Rd. We

define the unitary operator P = eiℏ∆/2 which is the solution operator to the Schrödinger

equation.

We saw that the problem is reduced to

inf
ψ0

∫
Rd

|∇ψ0(x)|2 dx

where the infimum is taken over all ψ0 such that |ψ0|2 dx = µ0 and |Pψ0|2 dx = µ1. We define

S0(µ0, µ1) = {ψ ∈ L2 : |ψ|2 dx = µ0, |Pψ|2 dx = µ1} which is the set that we are minimizing

over.

Fix α ∈ R. Note that if ψ ∈ S0(µ0, µ1) then e
iαψ ∈ S0(µ0, µ1). We wonder when S0 is

actually a singleton up to this symmetry, i.e. for which µ0, µ1 does there exist some ψ ∈ L2

so that S0(µ0, µ1) = {eiαψ : α ∈ R}.

6.3 The Pauli Problem

6.3.1 Problem Description

The physicist Wolfgang Pauli conjectured whether or not a function in L2 can be recovered

from its magnitude and the magnitude of its Fourier transform. More precisely, given mea-

sures µ0, µ1 on Rd define S1 = {ψ ∈ L2 : |ψ|2 dx = µ0,
∣∣∣ψ̂∣∣∣2 dξ = µ1}. The Pauli problem

asks whether S1 is a singleton up to the symmetry ψ 7→ eiαψ for some α ∈ R.

First it is easy to see that S1 could be empty. For example the Heisenberg uncertainty

principle tells us that if µ0, µ1 are both points masses then S1 is empty. Even more, it tells

us that if S1 is non-empty then the product of the variances of µ0, µ1 is bounded below by

a universal constant.

However even excluding the case where S1 is empty the conjecture is not true. One can
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construct specific examples where S1 is not a singleton (up to symmetry).

The question then becomes to understand when S1 is a singleton (up to symmetry). A

few classes of measures are known but it seems very little is known.

6.3.2 Reformulation of the Problem

We use the notation pj = −iℏ ∂
∂xj

as a (densely defined) operator on L2. Similarly we use xj

as the operator of multiplication by xj.

If we have a list of operators A1, . . . , Ad on L2, given a continuous function f : Rd → C

we use the notation f(A) = f(A1, . . . , Ad) which is defined by the continuous functional

calculus (considering L2 as a C∗ algebra for example). We note that f(A) is a (densely

defined) operator on L2.

Lemma 6.3.1. Fix ψ ∈ L2. Let U be any unitary operator on L2 and µ be any measure on

Rd. Define Aj = U∗xjU .

Then |Uψ|2 dx = µ if and only if ⟨f(A)ψ, ψ⟩ =
∫
f(y)dµ(y) for all continuous and

compactly supported functions f .

Proof. We have

⟨f(A)ψ, ψ⟩ = ⟨U∗f(A)Uψ, ψ⟩ = ⟨f(A)Uψ,Uψ⟩ =
∫
f(y) |Uψ(y)|2 dy

and so the result follows.

Note that if we take U to be the Fourier transform operator then Aj = pj and so the above

lemma tells us that
∣∣∣ψ̂∣∣∣2 dξ = µ if and only if ⟨f(p)ψ, ψ⟩ =

∫
f(y)dµ(y) for all continuous

and compactly supported functions f . Hence we have
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Corollary 6.3.2.

S1(µ0, µ1) =

{
ϕ ∈ L2 : ⟨ϕ, f(x)ϕ⟩ =

∫
f(y)dµ0(y), ⟨ϕ, g(p)ϕ⟩ =

∫
g(y)dµ0(y)

for all f, g continuous and compact

}

6.4 Equivalence of the Two Problems

In this section we show that the two problems are equivalent. In particular we show that S0

is isometric to S1.

We start with a quick lemma about commutators which I think is well-known in the

physics.

Lemma 6.4.1. Let A,B be operators such that [A, [A,B]] = 0. Then if f is a smooth

function we have [f(A), B] = [A,B]f ′(A).

Proof. If f(x) = xn then the result is clear. Both sides are linear in f so it extends to

polynomials and then to smooth functions by density.

We define the unitary operator

P = e−i∆/2

which is the solution operator to the Schrödinger equation. Also define the operators Kj =

P ∗xjP .

Lemma 6.4.2. Kj = xj + pj.

Proof. Note that by the product rule for Laplacian we have [−iℏ
2
∆, xj] = pj. In particular

[−iℏ
2
∆, [−iℏ

2
∆, xj]] = 0 since pj commutes with ∆. Hence by the previous lemma we have that

[P ∗, xj] = [e−iℏ∆/2, xj] = pje
−iℏ∆/2 = pjP

∗. The result now follows by multiplying by P on

the right.
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Remark 6.4.3. To a physicist, this is just Newton’s first law of motion.

We recall S0(µ0, µ1) = {ψ ∈ L2 : |ψ|2 dx = µ0, |Pψ|2 dx = µ1}. By taking U = P in

Lemma 6.3.1 we see that S0(µ0, µ1) = {ψ ∈ L2 : ⟨f(x)ψ, ψ⟩ =
∫
f(y)dµ0(y), ⟨g(K)ψ, ψ⟩ =∫

g(y)dµ1(y) for all f, g}.

Let Q be the unitary operator on L2 given by Qψ = e
i
ℏ |x|

2/2ψ. We see Q is left multipli-

cation by e
i
ℏ |x|

2/2 and by the standard abuse of notation we write Q = e
i
ℏ |x|

2/2.

Proposition 6.4.4. Fix µ0, µ1. Then S1(µ0, µ1) = {Qψ : ψ ∈ S0(µ0, µ1)}.

Proof. Fix ψ ∈ S0(µ0, µ1) and let ϕ = Qψ. Clearly |ϕ|2 = |ψ|2 and so ⟨ψ, f(A0)ψ⟩ =∫
f(x)dµ0(x) if and only if ⟨ϕ, f(A0)ϕ⟩ =

∫
f(x)dµ0(x).

We have pjQ = pje
i
ℏ |x|

2/2 = e
i
ℏ |x|

2/2(xj + pj) = QKj and so Q∗pjQ = Kj. Hence for any

g continuous we have Q∗g(p)Q = g(K). This gives

⟨g(p)ϕ, ϕ⟩ = ⟨g(p)Qψ,Qψ⟩ = ⟨Q∗g(p)Qψ,ψ⟩ = ⟨g(K)ψ, ψ⟩

and so ⟨g(K)ψ, ψ⟩ =
∫
g(x)dµ1(x) if and only if ⟨g(p)ϕ, ϕ⟩ =

∫
g(x)dµ1(x).

Remark 6.4.5. The above Proposition says that S0 is isometric to S1 via the isometry on

L2 given by Q.

Remark 6.4.6. This isometry didn’t come out of nowhere. It represents the canonical

transformation that that was studied in Chapter 4. Essentially this transforms the free

particular problem (Optimal Transport with Quantum Dynamics) into a simple harmonic

oscillator problem (Pauli problem).

6.5 Revisiting Bohm’s Interpretation of Quantum Mechanics

Let us return to our original formulation of the Optimal Transport problem with Quantum

Dynamics. Given µ0, µ1 we want to study the Schrödinger equation: i∂tψt = −ℏ
2
∆ψt subject

to the boundary conditions |ψ0|2 dx = µ0 and |ψ1|2 dx = µ1.
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In the early 1950s David Bohm proposed writing the Schrödinger equation in polar co-

ordinates. Let ψt =
√
ρte

iθt and then the Schrödinger equation becomes

∂tS +
1

2
|∇S|2 − ℏ2

2
√
ρ
∆(

√
ρ) = 0

∂tρ+∇ · (ρ∇S) = 0

and our boundary conditions become ρ0 = µ0 and ρ1 = µ1. This is now a mean field game

system with the Hamilton-Jacobi equation and the continuity equation. The Hamiltonian is

H(x, µ, p) = 1
2
|p|2 − ℏ2

2
√
µ(x)

∆(
√
µ(x)).

For the rest of this section we will proceed formally.

Let us define the energy E(ρ) = 1
2

∫ ∣∣∣∇√ρ(x)
∣∣∣2 dx. We compute its first variation

E(ρ+ ϵ) =
1

2

∫ ∣∣∣∇√ρ(x) + ϵ(x)
∣∣∣2 dx

=
1

2

∫ ∣∣∣∣∣∇
(√

ρ(x) +
ϵ(x)

2
√
ρ(x)

)∣∣∣∣∣
2

dx+ o(ϵ)

=
1

2

∫ ∣∣∣∣∣∇√ρ(x) +∇ ϵ(x)

2
√
ρ(x)

∣∣∣∣∣
2

dx+ o(ϵ)

= E(ρ) + 1

∫
∇
√
ρ(x) · ∇ ϵ(x)

2
√
ρ(x)

dx+ o(ϵ)

= E(ρ)− 1

2

∫
∆
√
ρ(x)√
ρ(x)

ϵ(x)dx+ o(ϵ)

and so we get

δE

δρ
= − 1

2
√
ρ(x)

∆
√
ρ(x)

Hence if we define f(x, µ) = − 1

2
√
ρ(x)

∆
√
ρ(x) we get ∂µE = ∇f . Hence our mean field game

was actually a potential mean field game with Hamiltonian

H(µ, b) =
1

2

∫
|b(ω)|2 dω + ℏ2E(µ)
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and associated Hamilton Jacobi Equation

∂tU(t, µ) +
1

2

∫
|∂µU(t, µ, x̃)|2 dµ(x̃) + ℏ2E(µ) = 0

U(0, µ) = δµ0(µ)

Because this Hamiltonian is convex in b we may write down an equivalent control problem.

We want to minimize

min
ρt,vt

∫ 1

0

∫
|vt(x)|2 ρt(x)dxdt− ℏ2

∫ 1

0

E(ρt)dt

subject to the continuity equation ∂tρt+∇ · (ρtvt) = 0 and the boundary conditions ρ0 = µ0

and ρ1 = µ1. We remark that as ℏ → 0 we get the classical optimal transport problem.

Landau comments that it is important to note that this approximation is accurate not just

to ℏ but to ℏ2.

Remark 6.5.1. We have

E(ρ) =
1

2

∫ ∣∣∣∇√ρ(x)
∣∣∣2 dx

=
1

2

∫ ∣∣∣∣∣∇
√
ρ(x)√
ρ(x)

∣∣∣∣∣
2

ρ(x)dx

=
1

2

∫ ∣∣∣∇ ln(
√
ρ(x))

∣∣∣2 ρ(x)dx
=

1

8

∫
|∇ ln(ρ(x))|2 ρ(x)dx

This is the Fisher information.
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[GM22c] P.J. Graber and A.R. Mészáros. On mean field games and master equations
through the lens of conservation laws. arXiv:2208.10360, 2022.
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[GMMZ22] W. Gangbo, A.R. Mészáros, C. Mou, and J. Zhang. Mean field games master
equations with nonseparable Hamiltonians and displacement monotonicity. Ann.
Probab., 50(6):2178–2217, 2022.

[Goe05a] R. Goebel. Convex optimal control problems with smooth Hamiltonians. SIAM
J. Control Optim., 43(5):1787–1811, 2005.

[Goe05b] R. Goebel. Duality and uniqueness of convex solutions to stationary Hamilton-
Jacobi equations. Trans. Amer. Math. Soc., 357(6):2187–2203, 2005.

[GR02] R. Goebel and R. T. Rockafellar. Generalized conjugacy in Hamiltonian-Jacobi
theory for fully convex Lagrangians. volume 9, pages 463–473. 2002. Special
issue on optimization (Montpellier, 2000).
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