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Can Causal Induction Be Reduced to
Associative Learning?

Michael R. Waldmann Keith J. Holyoak
University of Frankfurt University of California, Los Angeles

ABSTRACT

A number of researchers have recently claimed that higher-order human learning, such as
categorization and causal induction, can be explained by the same principles as govern lower-
order learning, such as classical conditioning in animals. An alternative view is that people
often impose abstract causal models on observations, rather than simply associating inputs with
outputs. We report three experiments using a multiple-cue learning paradigm in which models
based on associative learning versus abstract causal models make opposing predictions. We
show that different causal models can yield radically different learning from identical
observations. In particular, we compared people's abilities to learn when the positive cases
were defined by a linear cue-combination rule versus a rule involving a within-category
correlation between cues. The linear structure was more readily learned when the cues were
interpreted as possible causes of an effect to be predicted, whereas the correlated structure was
more readily learned when the cues were interpreted as the effects of a cause to be diagnosed.
The results disconfirm all associative models of causal induction in which inputs are associated
with outputs without regard for causal directionality.

Introduction
The Associative View of Multiple-Cue Learning

Tasks as different as classification learning, causal induction, and classical conditioning can be
viewed as examples of multiple-cue learning. In each of these tasks, a number of cues, which might be
features, causes, or conditional stimuli, are combined to trigger a response. This response might be a
classification decision, a prediction of an effect, or a conditioned response. Because of the apparent
similarity between different types of multiple-cue learning situations, it is tempting to postulate
common underlying learning mechanisms for them. A currently popular view of multiple-cue learning
treats it as a bottom-up process that is fundamentally associative in nature. Thus higher-order types of
learning in humans, such as classification learning, and lower-order types of learning in animals, such
as classical conditioning, are seen as examples of similar learning processes.

A number of researchers have recently claimed that higher-order types of human learning, such as
categorization and causal induction, can be explained by principles that govern lower-order learning in
animals, such as classical conditioning (e.g., Gluck & Bower, 1988a, b; Shanks & Dickinson, 1987).
In particular, Gluck and Bower (1988a, b) have suggested that adaptive associative networks can provide
powerful models of human categorization as well as of classical conditioning. These connectionist
models consist of an input layer that represents potential cues, such as symptoms of possible diseases
observed in a patient, and an output layer that might represent classification responses, such as
diagnoses of alternative diseases. The responses are computed by a linear function of the weighted
cues. The weights are learned in a compelitive fashion using the least mean squares (LMS) learning
rule (Widrow & Hoff, 1960), in which the weights are incrementally updated in proportion to the
response error they produce. Gluck and Bower have shown that a simple model of this sort compares
favorably with other models of human categorization (also see Estes, Campbell, Hatsopoulos, &
Hurwitz, 1989; for a critique see Shanks, 1990). Since the LMS rule is formally equivalent to

This research was supported by NSF Grant BNS 87-10305 to Patricia Cheng. Michael Waldmann was
sponsored by a grant from the German Research Foundation. We thank Patricia Cheng for helpful advice
and discussions.

190



Rescorla and Wagner's (1972) theory of classical conditioning (Sutton & Barto, 1981), these findings
suggest that important commonalities link higher-order leamning such as categorization and lower-order
classical conditioning. Thus Gluck and Bower basically claim that categorization can be modelled as
simple associative learning. Similarly, Shanks and Dickinson (1987) argue that causal induction can
be reduced to associative learning.

As pointed out by Minsky and Papert (1969), simple one-layer networks can only learn linearly-
separable learning tasks. To deal with this major limitation, various extensions of associative network
models have been suggested in the connectionist literature. Gluck, Hee, and Bower (1989) proposed a
configural-cue network in which pairwise conjunctions of simple cues are coded using configural cues
added to the input layer (see also Gluck & Bower, 1988b). Alternatively, the standard connectionist
approach to nonlinear leaming tasks is to add intermediate layers of hidden nodes between the input and
the output layers, which can be used to code cue combinations (Rumelhart, Hinton, & Williams,
1986). Using backpropagation of error signals, which conceptually is an extension of the LMS
learning rule to multiple-layer networks, these hidden units can be trained to code interactions in the
input. Despite the differences among the various alternative network models, each of these
connectionist learning schemes shares a fundamental associationistic assumption: The network simply
tries to learn statistical associations between the nodes coded on the input level and the desired output.

Learning Within Abstract Causal Models

The associative view of learning can be contrasted with a more mentalistic approach, which can be
traced back to Gestalt psychology. In this tradition, it is claimed that people use abstract, meaningful
world knowledge to guide their learning about new domains. Higher-order learning and lower-order
associative learning are seen as different in important ways. In particular, one view of human learning
is that people impose abstract causal models on observations. Wattenmaker, Dewey, Murphy, and
Medin (1986) have shown that people profit from specific world knowledge. People become more
sensitive to structural relations between the input cues during learning when they can relate the learning
material to previously acquired knowledge. We will argue here that even in situations in which people
cannot bring to bear specific world knowledge, they nonetheless might use abstract knowledge about
central properties of the world -- in particular, abstract knowledge about causal relations. We have set
up an experimental situation in which associative learning and learning based on abstract causal models
can be pitted against each other. We will show that different causal models can yield radically different
learning from identical observations, a finding that cannot be explained by associative learning models.

Figure 1 illustrates how we decouple higher-order causal learning from associative learning in our
experiments. The arrows represent temporal precedence, either in order of presentation of the
information, or in order of cause and effect.

A. Common-Effect Situation

O ’O Causal Model

Cause Effect
O ’O Associative Level
Cue Response

B. Common-Cause Situation

O‘ O Causal Model

Effect Cause
O ’O Associative Level
Cue Response

Figure 1. (A) Common-effect situation, in which causal cues are used to predict a potential effect; (B)
Common-cause situation, in which presented effects serve as cues to diagnose a potential cause.
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The lower halves of both Figure 1A and B show an associationistic representation of the learning
situations: Cues are presented first, and the task is to learn to associate them with the correct responses.
The corresponding upper halves show how the tasks map to a causal account. In a "common-effect”
situation (Figure 1A), the cues represent causes and the responses represent decisions about a predicted
effect. Since according to our world knowledge causes always precede effects, the temporal orderings
are isomorphic between the causal and associationistic representations of the task. In a "common-
cause" situation (Figure 1B), the cues represent effects, and the responses represent decisions about a
cause to be diagnosed. The temporal ordering is reversed relative to a common-effect situation, and the
mapping to the associationistic description is also reversed. By comparing learning in these two types
of situations, this design allows us to disentangle predictions based on associative accounts from those
derived from assumptions about causal models for induction. In both tasks, cucs have to be associated
with the required responses. Thus if subjects treat both tasks as associative multiple-cue learning, then
both should yield identical patterns of learning. If, however, subjects represent the two situations in
terms of causal models, the two tasks will differ in psychologically important ways, and the learning
patterns should reflect these differences.

Experiment 1

Method

A multiple-cue learning task was used in this experiment. Subjects were handed index cards one at a
time, with each giving a description of a fictitious person. Subjects were asked to give a "yes-no"
response, classifying the cards either as positive or as negative cases. Immediately after every response
subjects were told if their judgment was correct or incorrrect. The subjects were trained until they
reached a learning criterion (two cycles through the eight basic cases without error) or until they
received an upper limit of learning trials.

The descriptions on the index cards consisted of three binary values of dimensional features: weight,
pallor, and perspiration. The fictitious persons had either high (e.g., anorexic) or low (e.g.,
underweight) intensity values on each of these dimensions. The eight possible cases were arranged
either in a linearly separable or in a non-linearly separable, correlated fashion (see Figure 2). Similar
structures have previously been investigated by Wattenmaker et al. (1986) and by Shepard, Hovland,
and Jenkins (1961).

+ -

Case Dimensions Case Dimensions

1 2 3 1 2 3

1. H H H 5 H L L

2. H H L 6 L L H

Linearly Separable 3. H L H ) L H L
4. L H H 8 L L L

1. H H H 5 L H H

2. H L H 6 H L L

Correlated 3. L H L 7 L L H
4, L L L 8 H H L

Figure 2: Structure of item sets used in Experiment 1

The positive set corresponds to a correct "yes” response, and the negative set to a correct "no"
response. In the linearly separable arrangement high values of the dimensions are more typical for the
positive set, and low values for the negative set. For both sets, each dimension has one exceptional
value so that the dimensional values are only probabilistically related to the sets. However, a simple
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linear rule distinguishes the two sets. If a person has at least two out of three high values on the three
dimensions, then this person belongs to the positive set. This structure does not require hidden layers
or configural nodes in a connectionist learning network.

In the correlated, non-lincarly separable condition, neither high nor low values are more or less
typical for the positive or negative set. For each dimension, there are two persons with high values
and two with low values in each set. There is therefore no linear rule to separate the two sets. The
only way to distinguish the two sets is to notice the positive correlation between the first and the third
dimension in the positive set, and the negative correlation in the negative set. The middle dimension is
irrelevant for the classification. This task, which is formally equivalent to learning an "exclusive-or"
structure, requires configural nodes or hidden layers in connectionist networks.

This linear-separability factor was crossed with a second factor involving manipulation of the causal
structure imposed on the learning task. In the "common-cause” condition, subjects were told that they
are going to learn about a disease that is caused by a virus, which could be more or less intense. In
this condition the virus plays the role of a common cause that simultaneously affects the symptoms.
The cues that subjects saw on the index cards thus correspond to effects of a common cause. This
causal model naturally predicts a "spurious correlation” between the effects: A high-intensity virus
should yield high-intensity effects, whereas a low-intensity virus should yield low-intensity effects.
This situation in fact corresponds to the correlated condition; accordingly, we predicted that this
condition should be particularly easy for subjects who received a cover story consistent with the
common-cause model.

In a second causal context, the “common-effect” condition, the causal directions were reversed. Now
the subjects were told that an experiment on social cognition had been conducted. In this experiment it
was found that the appearance of some people produces a new emotional response in their observers.
Here the cues on the index cards correspond to potential causes of a common effect. The subjects' task
was to learn to predict which person elicits an emotional response in an observer. This emotional
response might vary in intensity. Common-effect structures do not imply correlations among the
causes. Learning correlated causes amounts to learning a disordinal interaction, whereas the linear
condition corresponds to a causal model with three main effects. Given the preference people have for
linear as opposed to configural causal structures, the linearly separable task should be relatively easy to
learn (see Dawes, 1982).

It is important to note that although subjects were informed that the cause (common-cause
condition) or effect (common-effect condition) could vary in intensity, no feedback about the intensity
level of the outcome factor was ever provided. Rather, subjects were only told whether the outcome
was obtained, regardless of its intensity.

To summarize, if subjects learn according to the accounts of associative learning theories (e.g.,
connectionist models with hidden layers or configural nodes), the different causal structures imposed on
the task should not matter. Subjects across the two causal conditions see identical cues, and are
required to learn identical cue-response mappings. However, if subjects are sensitive to the different
structural implications of the two causal models, their learning rates for the linear and correlated
condition should vary across the two causal cover stories.

Results

Figure 3 shows the results based on 40 UCLA undergraduates who served as subjects. The mean
number of errors made prior to the subject reaching the learning criterion was used as an indicator of
learning difficulty. As predicted, the causal cover story interacted with the structure of the item set, F
(1, 36) = 7.48, p < .025. The correlated condition was easier to learn in the disease context, in which a
correlation naturally falls out of a common-cause structure. In contrast, in the emotional-response
condition the linearly-separable item set was easier to learn than the correlated set, as would be expected
if people find main-effect models simpler to learn than causal interactions. Overall, the linear condition
was learned with fewer errors than was the correlated condition, F(1,36) = 5.78, p < .025. The results
of Experiment 1 thus clearly support the claim that subjects were using causal models during learning,
rather than simply trying to associate the presented cues with the correct responses.
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Mean Errors

50

7
40 4 7

30 1

u Common Cause
Common Effect

20 1

lincar correlated

Figure 3. Mean errors prior to reaching criterion as a function of the causal model (common cause vs.
common effect) and structure of the item set (linearly separable vs. correlated) in Experiment 1.

Experiment 2
Method

In a second experiment we focused on the correlated condition. In order to better approximate
correlations with continuous variables, we used two variables with four intensity levels each in this
experiment. We again used weight and pallor as dimensions. The levels of weight were "slightly
underweight”, "underweight”, “seriously underweight", and "anorexic body"; analogous levels were used
for pallor. In the positive set these two variables were perfectly positively correlated (values 4 4, 3 3,
2 2, and 1 1, for the four positive items), whereas in the negative set they were negatively correlated
(values4 1,3 2,2 3, and 1 4). Note that models like the configural-cue model of Gluck et al. (1989),
which introduce separate configural cues for each pairwise feature-value combination, do not capture the
monotonicity involved in a correlation of continuous variables. In addition, the number of configural
cues required by such models grows exponentially with the number of levels.

In addition to examining learning with more clearly continuous variables, Experiment 2 addressed
the question of whether subjects really need explicit information about the fact that the virus (the
common cause) may vary in intensity. Even though capturing the positive correlation within the
positive set requires the assumption of a continuous common cause, subjects might be able to infer
this property of the cause by observing the learning patterns. If the effects are clearly continuous (as
was the case for our materials), this may encourage the assumption that the underlying cause is also
continuous. Accordingly, half of the subjects received the hint that the common cause might vary in
intensity, as in Experiment 1, whereas the other half did not. This hint factor was crossed with the
causal context factor, which again consisted of a common-cause and a common-effect condition. Ten
subjects served in each of the four conditions.

Results

The results, displayed in Figure 4, replicated the finding that the correlated item set is learned more
readily in the common-effect than in the common-cause condition, F(1,36) = 7.38, p < .025. Omitting
the hint that the cause (virus) could vary in intensity did not significantly impair subjects' performance.
The impact of causal models on learning correlated item sets thus generalizes to more continuous
dimensions.
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Mean Errors
50

40 A

30

B N Intensity Hint

Z
20 A With Intensity Hint

Common Cause Common Effect

Figure 4. Mean errors prior to reaching criterion as a function of the causal model (common cause vs.
common effect) and provision of an intensity hint for a correlated item set in Experiment 2.

Experiment 3

Method

Experiment 3 addresses a restriction that Gluck et al. (1989) imposed on their configural-cue
network model. The major advantage of configural-cue networks is that they can learn interactions
using simple linear networks with the standard LMS-rule, without requiring backpropagation. Their
major problem is that the potential number of configural cues grows exponentially with thc number of
input cues. Gluck and Bower (1988b) therefore suggest restricting configural cues to pairwise
conjunctions. An obvious drawback of this restriction is that such a network is unable to handle
problems for which the correct decision requires learning an interaction among three (or more) cues.

+ -

Case Dimensions Case Dimensions

1 2 3 4 1 2 3 4
1. H H H H 5. H H L HQ
2. H H H L 6. H L H L H
3. L L L H 7. L H H H(Q
4. L L L L 8. L HL L ®H
9. L L H H(QL
10. H L L L (H

Figure 5. Structure of item set used in Experiment 3.

In contrast, certain three-way interactions should be learned fairly easily within the context of a
common-cause model. Figure 5 shows the structure of the material used in Experiment 3. The
positive set was characterized by three correlated dimensions (H H H, or L L L), while the fourth
dimension is irrelevant. This type of three-way interaction, like the pairwise interactions used in the
correlated conditions in previous experiments, is consistent with a common-cause model in which the
cause can vary in intensity. The negative set consisted of the full contrast set with respect to the first
three dimensions, so that the subjects indeed had to learn the three-way interaction and could not use
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two-way corrclations to predict the correct response. In order to keep the negative set small, half of the
subjects received the negative cases in which every uneven case has an L-value on the fourth irrelevant
dimension, while for the other half these values were reversed. The dimensions and values were the
same as those used in Experiment 1, with the addition of two levels of posture as the irrclevant
dimension. As in the previous experiment, no hint was given regarding potential intensity variations
of the virus. Two groups of subjects diffcred solely in the causal cover story they received: the disease
story (common cause) or the emotional-response story (common effect). Twelve subjects served in
each cover-story condition.

Results

The results presented in Figure 6 indicate that the three-way interaction was considerably more
difficult to learn than were the correlated item sets within the earlier experiments with pairwise
interactions (compare errors for the correlated conditions in Figures 3 and 4). Nonetheless, many
subjects were able to attain the criterion of two passes through the items without an error, thus
contradicting the implication of Gluck et al.'s (1989) configural-cue model, according to which the task
should be unlearnable. In addition, and as in the previous experiments, the common-causc condition
yiclded a considerably lower error rate than did the common-effect condition, F(1,22) = 5.40, p < .0S.

Mean Errors

80

60 1

40 1

201

0
Common Cause Common Effect

Figure 6. Mean errors prior to reaching criterion as a function of the causal model (common cause vs.
common effect) for a correlated item set based on a three-way interacticn in Experiment 3.

Discussion

Taken together, the three presented experiments clearly demonstrate the inadequacy of
associationistic learning accounts of causal induction as they are embodied in recent connectionist
models. Even though the cues and the required responses were identical across the two causal contexts,
subjects proved sensitive to the structural implications of the different causal directions implied by the
cover stories. Networks that simply code cues on the input layers and responses on the output layer
cannot explain such reversal in the relative difficulty of linearly-separable versus correlated item sets,
regardless of how they are internally configured.

Our results also demonstrate that causal induction cannot be reduced to associative learning.
Associative accounts do not capture the fundamental differences between predictive and diagnostic
reasoning (Pearl, 1988). Predictive reasoning requires learning the causal strengths between given
causes and potential predicted effects. Once the causal links are learned, information about the presence
of a cause allows probabilistic conclusions regarding its likely effects. In diagnostic reasoning, in
which causes are inferred from effects, the situation is different. Even with perfect knowledge about
cause-effect relationships, effect information is ambiguous with respect to its causes whenever there
exists more than one potential cause. Reasoning in this situation requires an inference to the best
explanation (Harman, 1986; Thagard, 1989). Different possible theories have to be weighed against
each other, and a decision in favor of one or the other theory is based on the fit between the predictions
of different theories and the evidence. An analogous approach is taken in research on statistical causal

196



models as they are embodied in linear structural cquations (Bollen, 1989). We are currently modelling
the differences between predictive and diagnostic reasoning within a symbolic-connectionist framework,
exploring models in which units are interpreted as causes and effects and core links are viewed as causal
connections.

Finally, our results are in agreement with many findings demonstrating an overall preference for
linear models (e.g., Dawes, 1982; Trabasso & Bower, 1968). Learning linear models puts less strain
on information processing because the impact of individual causes is not moderated by the presence of
other causes. A number of philosophers have argued that common-cause structures are prevalent in
scientific reasoning. Salmon (1984), in particular, argued that theorctical concepts play the role of
common causes. Psychologists and philosophers have asked many times what we gain from inferring
invisible entities. A possible answer, suggested by the present results, might be that inferred common
causes help people to re-represent nonlinear observable structures within a basically linear mental
model.
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