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ABSTRACT OF THE DISSERTATION

The Material Point Method

for Solid and Fluid Simulation

by

Qi Guo

Doctor of Philosophy in Mathematics

University of California, Los Angeles, 2020

Professor Joseph M. Teran, Chair

The Material Point Method (MPM) has shown its high potential for physics-based sim-

ulation in the area of computer graphics. In this dissertation, we introduce a couple of

improvements to the traditional MPM for different applications and demonstrate the advan-

tages of our methods over the previous methods.

First, we present a generalized transfer scheme for the hybrid Eulerian/Lagrangian method:

the Polynomial Particle-In-Cell Method (PolyPIC). PolyPIC improves kinetic energy con-

servation during transfers, which leads to better vorticity resolution in fluid simulations and

less numerical damping in elastoplasticity simulations. Our transfers are designed to select

particle-wise polynomial approximations to the grid velocity that are optimal in the local

mass-weighted L2 norm. Indeed our notion of transfers reproduces the original Particle-

In-Cell Method (PIC) and recent Affine Particle-In-Cell Method (APIC). Furthermore, we

derive a polynomial basis that is mass-orthogonal to facilitate the rapid solution of the

optimality condition. Our method applies to both of the collocated and staggered grid.

As the second contribution, we present a novel method for the simulation of thin shells

with frictional contact using a combination of MPM and subdivision finite elements. The

shell kinematics are assumed to follow a continuum shell model which is decomposed into

a Kirchhoff-Love motion that rotates the mid-surface normals followed by shearing and

compression/extension of the material along the mid-surface normal. We use this decom-
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position to design an elastoplastic constitutive model to resolve frictional contact by decou-

pling resistance to contact and shearing from the bending resistance components of stress.

We show that by resolving frictional contact with a continuum approach, our hybrid La-

grangian/Eulerian approach is capable of simulating challenging shell contact scenarios with

hundreds of thousands to millions of degrees of freedom. Without the need for collision

detection or resolution, our method runs in a few minutes per frame in these high-resolution

examples. Furthermore, we show that our technique naturally couples with other traditional

MPM methods for simulating granular and related materials.

In the third part, we present a new hybrid Lagrangian Material Point Method for simu-

lating volumetric objects with frictional contact. The resolution of frictional contact in the

thin shell simulation cannot be generalized to the case of volumetric materials directly. Also,

even though MPM allows for the natural simulation of hyperelastic materials represented

with Lagrangian meshes, it usually coarsens the degrees of freedom of the Lagrangian mesh

and can lead to artifacts, e.g., numerical cohesion. We demonstrate that our hybrid method

can efficiently resolve these issues. We show the efficacy of our technique with examples that

involve elastic soft tissues coupled with kinematic skeletons, extreme deformation, and cou-

pling with various elastoplastic materials. Our approach also naturally allows for two-way

rigid body coupling.
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CHAPTER 1

Introduction

Simulating natural phenomena remains hugely challenging these days. The Material Point

Method (MPM) rises as the generalization of Particle-In-Cell Method (PIC) and Fluid Im-

plicit Particle Method (FLIP) to solid mechanics [Har64, BR86, SZS95], has been shown to

be a very effective hybrid Eulerian/Lagrangian method for simulating various materials.

In this dissertation, we raise a computationally efficient algorithm, the Polynomial Particle-

In-Cell Method, for the hybrid Eulerian/Lagrangian which enhances the kinetic energy con-

servation. Also, we develop a new method using MPM for the numerical simulation of the

continuum-based shell model. Lastly, we design a novel hybrid Lagrangian MPM to allevi-

ate a couple of drawbacks of collision handling when simulating volumetric objects with the

traditional MPM.

1.1 Material Point Method

MPM combines Lagrangian material particles with Eulerian Cartesian grids, and it handles

the phenomena like fracture/topological change, multiple material interactions, and chal-

lenging self contact scenarios with complex geometric domains very well. This was first

demonstrated for snow dynamics by Stomakhin et al. [SSC13]. Since then a wide variety of

other phenomena, particularly those that can be described as elastoplastic, have been sim-

ulated with MPM in graphics applications. This includes the dynamics of non-Newtonian

fluids and foams [YSB15, RGJ15], melting [SSJ14, GTJ17, DHW19], porous media [TGK17,

GPH18, FBG18], and frictional contact between granular materials [DB16, KGP16, YSC18].

MPM has also been used to simulate contact and collision with volumetric elastic objects
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[JSS15, ZZL17] and frictional contact between thin hyperelastic materials like clothing and

hair [JGT17, FBG18].

We summarize the MPM steps as below:

1. Particles to grid: Transfer particle mass and momentum to the grid.

2. Apply forces: Compute the elastic force, and the external force on the grid and

update grid velocities based on these forces.

3. Grid to particles: Interpolate velocities from the grid to update particles’ velocities.

4. Strain and representation update: Update the positions, deformation gradient

and the trial elastic state.

5. Plasticity update: Update the plastic deformation gradient using the plastic flow

return mapping algorithm.

1.2 Polynomial Particle-In-Cell Method

The Affine Particle-In-Cell (APIC) Method was proposed by Jiang et al.[JSS15, JST17]

to improve the accuracy of the transfers in the hybrid Lagrangian/Eulerian method by

augmenting each particle with a locally affine, rather than locally constant description of

the velocity. This reduced the dissipation of the original method without suffering from

the noise. In this dissertation, we present a generalization of APIC, Polynomial Particle-In-

Cell method (PolyPIC), by augmenting each particle with a more general local function. By

viewing the grid-to-particle transfer as a linear and angular momentum conserving projection

of the particle-wise local grid velocities onto a reduced basis, we greatly improve the energy

and vorticity conservation over the original APIC. Furthermore, we show that the cost of

PolyPIC is negligible over APIC when using a particular class of local polynomial functions.

Lastly, we note that our method retains the filtering property of APIC and PIC and thus

has similar robustness to noise.

We summarize our contributions as:
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Figure 1.1: Shell Montage. Upper left : simulation of shells coupled with granular mate-
rials. Center left : a walk cycle benchmark for clothing simulation. Bottom right : a T-shirt
twisted to induce many self-collisions. Center : the effect of increasing bending stiffness
(from left to right) for six collapsing elastic cylinders.

• A generalization of APIC from locally affine to locally polynomial representations that

improves kinetic energy conservation in particle/grid transfers.

• A mass weighted L2 optimality condition that achieves linear and angular momentum

conservation.

• A mass-orthogonal class of polynomials for rapid solution of projection to the polyno-

mial basis.

• Natural treatment of staggered and collocated grids.

We demonstrate the benefits of our technique in a number of representative applications of

incompressible flow and MPM simulation of elastoplastic materials.
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1.3 Shell

The shell structure is a thin surface with stretching, shearing, and bending resistance. This

structure appears almost everywhere in the real-world products made of sheets of different

materials; see Figure 1.1. The numerical simulation of the thin shell draws a long history

and is usually based on the finite shell element, which is less computationally expensive and

more numerically stable than the volumetric solid finite element [BLM13].

For the shell model, two types of continuum-based assumptions, the Kirchhoff-Love the-

ory, and Mindlin-Reissner theory, are widely adopted to model the elastic behavior. Ad-

ditionally, in many cases, the permanent plastic deformation of the shell is another crucial

factor to be counted. Furthermore, in the challenging large-scale simulation scenario, for

example, in visual effects, the intense frictional contact/collision, together with the coupling

effect with diverse materials, needs be captured during the simulation.

We present an algorithm that takes all the elements above into account. We demonstrate

the efficacy of our approach with several challenging simulations for shell and clothing sim-

ulation applications with scenarios involving hundreds of thousands to millions of degrees of

freedom. Without the need for collision detection or resolution, we show that our method

runs in a few minutes per frame in these high-resolution examples. We summarize our novel

contributions as

• An elastoplastic formulation for frictional contact and resistance to bending and dent-

ing of thin shells

• A strain splitting technique to separate thin shell motion into Kirchhoff-Love and

continuum shell components

• A plane strain/stress formulation for Kirchhoff-Love thin shells that simplifies the

return mapping algorithm for denting resistance

• A hybrid/Eulerian MPM discretization of the deformation gradient in the shell and

the associated potential energy
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1.4 Volumetric Objects with Frictional Contact

The traditional MPM update handles the collision automatically because particle movements

are interpolated from undistortable nodal movement on a grid. However, there are several

drawbacks of this treatment of collision. For volumetric objects, this scheme is unable to

regulate the potential energy with a plasticity model derived from Coulomb friction as for

the thin shell simulation in Section §1.3. Additionally, the method requires careful matching

between grid and mesh resolution. In the situations where the resolutions mismatch, the

traditional MPM either does not prevent collision at all, or causes visual artifacts, such

as interaction at a visual distance. Furthermore, when volumetric objects are coupled with

traditional MPM materials, for example, the granular materials, it causes numerical cohesion

of materials, see Figure 1.2.

In this dissertation, we develop a novel hybrid Lagrangian Material Point Method to

alleviate these drawbacks. Our approach utilizes more of the Lagrangian degrees of freedom

to define novel alternatives to the updated Lagrangian assumption. We retain aspects of

MPM that allow for collision resolution without suffering from information loss when go-

ing from particles to grid. Our approach also resolves the Eulerian grid size (and apparent

separation distance) limitations associated with volumetric elasticity, allowing for Coulomb

frictional contact with volumetric elastic meshes. We support coupling with materials simu-

lated with standard MPM discretizations, and we provide for simple two-way coupling with

rigid bodies. We demonstrate the effectiveness of our techniques with skinning, clothing,

and multi-material simulation examples. In summary, our contributions are:

• Collision impulses defined from the MPM particle to grid transfers that are applied to

Lagrangian FEM volumetric meshes for frictional self collision, removing the drawbacks

of the volumetric approaches in [JSS15, ZZL17].

• Two-way coupling with rigid bodies.

• Removal of numerical cohesion between phases.

• Coupling with materials discretized with traditional MPM.
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Figure 1.2: Friction. Our method (right) removes the excessive numerical friction common
to traditional MPM (left), and regulates friction with the Coulomb friction model. With low
friction coefficients, the colored sand freely slides off the bunnies.

1.5 Related Work

1.5.1 Particle-In-Cell Method

Momentum conservation and noise removal: There are a number of recent PIC ap-

proaches designed to improve robustness to noise without sacrificing accurate energy and

momentum conservation. Hammerquist and Nairn [HN17] developed a PIC extension de-

signed to reduce the noise of the FLIP by adding a smoothing term to the FLIP velocity.

This strikes a good balance between noise reduction and energy preservation. Edwards and

Bridson also add a regularization term to diminish particle noise [EB12]. Gritton and Berzins

[GB17] reduce noise by filtering spatial gradients based on a local SVD approximation of the

null space of the particle-to-grid transfer operator. Wallstedt and Guilkey use a locally-affine

assumption as in [JSS15, JST17], but they use FLIP grid-to-particle transfers that still suffer

from noise [WG07]. Um et al. develop a particle repulsion force to improve particle bunching

associated with the ringing instability [UBH14].
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1.5.2 Shell

The literature in graphics and engineering related to simulation of clothing is extremely vast.

Here we only discuss the work most related to our continuum-based shell model.

Early continuum models: Continuum models for elastic surfaces with appreciable bend-

ing resistance have been used for many years. Early methods had many limitations related

to treatment of self-collision, general mesh geometry/topology etc., but they demonstrated

great promise and addressed aspects of the functionality we provide with our method. As

an example, Terzopoulos et al.[TPB87] use the second fundamental form to define a bending

energy and use finite differences to discretize the problem over a regular grid. Eischen et

al.[EDC96] use a finite element method (FEM) discretization of Mindlin-Reissner shells to

model quasistatic equilibrium with draping cloth. They use penalty methods for collision

with external objects, but they do not handle self-collision. Other early works use contin-

uum shell models like those of Simo et al.[SF89] successfully for fabrics, albeit with limited

support for self-collision [CCO91, GLS95, CG95, MS07]. Etzmuss et al.[EKS03, EGS03] go

further by approximating the bending response in cloth warp and weft directions using a

discrete projected Laplacian, but the Laplacian approach is limited to flat reference config-

urations.

Kirchhoff-Love Theory: The Kirchhoff-Love model is one example of a continuum model

used for thin shells. The formulation applies the simple kinematic assumption that lines

normal to the shell mid-surface always remain normal as the shell is deformed. However,

the kinematic assumption requires higher order derivatives in the associated PDEs and this

requires comparatively burdensome regularity of interpolation functions used in FEM cal-

culations. Many approaches in engineering and graphics applications use Kirchhoff-Love

continuum shells despite the additional regularity requirements. However, very few of them

address the problem of self and external object collision. Cirak et al.[COS00] use Loop’s

subdivision scheme for triangle meshes to develop FEM basis functions that are H2 as re-

quired by Kirchhoff-Love theory for thin shells. Similarly, Wawrzinek et al.[WHP11] use
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the Catmull-Clark subdivision scheme and Lu and Zheng [LZ14] use the NURBS isogeo-

metric analysis discretization of Kirchhoff-Love shells in Kiendl et al.[KBL09, KHW15]. Of

these, only Lu and Zheng [LZ14] address self and external body collisions, and Wawrzinek et

al.[WHP11] and Cirak et al.[COS00] only focus on linear elasticity and small strain problems.

Cirak and Ortiz[CO01] provide an extension of the subdivision approach in [COS00] to allow

for large deformation and nonlinear elasticity. A number of works including Thomaszewski et

al.[TWS06], Grinspun et al.[GCS99] and Kaufmann et al.[KMB09] provide extensions to in-

clude inertia effects, implicit time stepping and large deformations. Kaufmann et al.[KMB09]

use the Discontinous Galerkin (DG) approach of [NR08] to remove the need for H2 interpola-

tion. However, the DG approach requires the duplication of grid nodes on element boundaries

which increases computational expense. Martin et al.[MKB10] use Kirchhoff-Love shell and

Kirchhoff rod models as motivation in their construction of a unified approach to simulation

of elastic volumes, solids and rods. Clyde et al.[CTT17] design a new orthotropic hyperelas-

tic constitutive model for Kirchhoff-Love shells simulated with subd FEM to fit experimental

data, but they also do not provide a treatment for self-collision. Grinspun et al.[GKS02] de-

velop an adaptive version of the subd interpolation functions. Similar to our approach, Long

et al. [LBC12] show that shear-flexible shells can be decomposed into Kirchhoff-Love and

shear motions. Remarkably they show that the splitting has no compatibility constraints on

the shape functions used for discretizing the mid-surface and the shear vectors respectively.

Echter et al. [EOB13] use a family of isogeometric shell finite elements based on NURBS

shape functions to satisfy the H2 regularity requirements. Furthermore, as with our ap-

proach they split the shell kinematics into bending and shear deformations and show that

this results in an element that prevents shear locking for Mindlin-Reissner shell kinematics.

Plasticity for wrinkles: Our approach naturally supports plasticity based denting of shells.

Similar approaches in the literature include that of Gingold et al.[GSH04] where they use a

von-Mises yield condition with kinematic hardening to create denting and wrinkling effects.

Narain et al.[NPO13] develop an adaptive method for triangle meshes to simulate detailed

folds and wrinkles. They use the hinge bending models in Grinspun et al.[GHD03] and

Bridson et al.[BMF03] with nonzero rest angles derived from the plasticity formulation in
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Gingold et al.[GSH04]. Our plasticity approach for producing wrinkling behavior is very

similar to these. However because we also use plasticity to model frictional contact, we

design a decoupled plasticity model.

1.5.3 Frictional Contact and Collision

Lagrangian/Eulerian collision/contact: A number of recent approaches have used hy-

brid Lagrangian and Eulerian views to simplify collision and contact treatment. Examples

include simulation of elastoplastic solids using an Eulerian view of the governing physics

[LLJ11, FLL13, LSN13, FLP14], using MPM [YSB15, SSC13, ZB05, NGL10, DB16, KGP16]

and using Particle-In-Cell [MSW09]. Other hybrid approaches have been used successfully

for solid/fluid coupling [TLK16, JSS15, JGT17] and for crowds [NGC09, GNL14]. Hybrid

approaches of this type provide the starting point for our approach.

Shell contact and collision: Collision and contact handling for subd and NURBS based

interpolation is challenging because of wider coupling between discrete degrees of freedom;

however added regularity in the surface can simplify some aspects [MCB13, MB16]. A de-

tailed review of contact with isogeometric approaches for volumetric objects are provided in

Temizer et al.[TWH11] and Lorentis et al.[LWH14]. Martin et al.[MKB10] use forces derived

from an energy that penalizes overlap of particles. Our collision stress response similarly

arises from a potential, however their approach is purely Lagrangian whereas our is hybrid

Lagrange/Eulerian. A number of works including Lu and Zheng [LZ14] and Thomaszewski

et al.[TWS06] use the Bridson et al. impulse based approach for self collision. However,

the Bridson et al. approach [BFA02] to self collision is designed for linear strain triangle

meshes, this makes their application to more general meshes using subd and NURBS more

challenging. Specifically, a triangulated mesh must be created solely for collision purposes

and the application of the impulse can only be applied assuming linear interpolation, which

is innacurate. Lu and Zheng [LZ14] use the NURBS isogeometric analysis discretization

of Kirchhoff-Love shells in Kiendl et al.[KBL09, KHW15]. They use collision detection

techniques from Lu[Lu11] and Temizer et al.[TWH11]. Grinspun et al.[GCS99] use a vari-

ational approach to self collision that is rooted in the approach of Kane et al.[KRO99] and
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the subdivision-surface interference detection algorithm in Grinspun and Schröder[GS01].

Kane et al. [KRO99] use non-smooth analysis to formulate self-collision in a Newmark

(implicit/explicit) time stepping schemes as nonlinearly constrained optimization problems

which they solve with sequential quadratic programming (SQP). However, the approach in

Kane et al. [KRO99] is computationally burdensome for simulations with moderate to high

spatial mesh resolution.
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CHAPTER 2

Polynomial Particle-In-Cell Method

2.1 Method Outline and Notation

Our method is concerned with the update of the Lagrangian quantities in PIC calculations.

We discuss this in detail and give an overview of each step in the process in Section §2.4.

However, we first motivate our generalized notion of velocity local to a particle in Section §2.2

as well as the connection of our method to the very useful class of updated Lagrangian

techniques in Section §2.3.

The Lagrangian state associated with particle p at time tn consists of mass mp, position

xnp , generalized velocity coefficients cnp and auxiliary quantities An
p . Note that the mass does

not change with time in accordance with conservation of mass. The auxiliary quantities in

An
p are not relevant to our particle/grid transfers but we include them for completeness.

E.g. in an MPM calculation the deformation gradient Fn
p is auxiliary to transfers and would

be included in An
p . We will generally consider the update of the auxiliary quantities to be

outside the scope of the paper.

In order to update the Lagrangian state to obtain xn+1
p , cn+1

p and An+1
p , we first transfer

mass and momentum from particle to grid (Section §2.4.1), then grid momentum is dynam-

ically updated (Section §2.4.2) and finally, we transfer the generalized velocity information

from grid to particle (Section §2.4.3). We use the notation mn
i and vni to denote the mass

and velocity transferred to the grid node xi from the particles before the grid momentum

update. We further use the notation v̂n+1
i to denote the grid node velocity that is updated

in grid momentum update. We use this convention to distinguish it from vn+1
i , the velocity

that is transferred to the grid in the next time step. Lastly, we use xn+1
i = xi + ∆tv̂n+1

i to
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Figure 2.1: Grid interpolation. We visualize the weights wnip for multilinear (NB = 1),
collocated (left), multiquadratic (NB = 2), collocated (center) and weights wniαp for linear

(NB = 1), MAC grids (right). We emphasize that the particle interpolates from (NB + 1)d

grid nodes.

denote the position of the grid nodes if they move with the grid node velocity v̂n+1
i . This

process is illustrated in following commutative diagram.

mp, xnp , cnp , An
p mp, xn+1

p , cn+1
p , An+1

p

mn
i ,v

n
i mn

i , v̂
n+1
i

P2G

Update

Lagrangian State

Update

Grid Momentum

G2P

Grid-based interpolating functions N(x− xi) provide the mechanism for the transfer of

particle and grid quantities. As in many other recent approaches [SKB08, SSC13, JSS15],

the grid interpolating functions are constructed from dyadic products of one-dimensional

B-splines. We use the notation wnip = N(xi−xnp ) to denote the weight of interaction between

node xi and particle xnp .

We note that a particle will interpolate from (NB + 1)d grid nodes where NB is the

B-spline interpolating order (1 for linear, 2 for quadratic, etc) and d = 2, 3 is the spatial

dimension. In other words, the particle with position xnp will only have non-zero weights wnip

for the (NB + 1)d grid nodes most local to it. We will use the notation V̂n+1
p ∈ Rd(NB+1)d

to denote the vector of updated grid-node velocities v̂n+1
inkp

corresponding to grid nodes xinkp
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with non-zero weights wninkpp

V̂n+1
p =



v̂n+1
in1p

v̂n+1
in2p
...

v̂n+1
in
(NB+1)dp


.

We use inkp for k = 1, 2, . . . , (NB + 1)d as an index for nodes with non-zero weights wninkpp. We

illustrate this in Figure 2.1. When it is clear from context, we will use either ik, w
n
ikp

or even

ik, w
n
ip in lieu of the more descriptive inkp, w

n
inkpp

since the sub and super indices can become

excessive in some expressions.

2.2 Velocity Modes

Our approach closely resembles that of Jiang et al. [JSS15, JST17]. Our most fundamental

difference is that instead of augmenting particles with affine velocities, we augment them with

more general functions. In the APIC approaches advocated by Jiang et al. [JSS15, JST17],

the velocity local to the particle p at time tn is approximated as

vnp (x) = vnp + Cn
p (x− xnp )

where vnp is the velocity of the particle and the matrix Cn
p ∈ Rd×d satisfies Cn

p = 0 for PIC,

Cn
p = −

(
Cn
p

)T
for RPIC (locally rigid PIC) and Cn

p is arbitrary for APIC.

In this paper, we improve the approach by considering the particle-wise local velocity to

be of the form

vnp (x) =
Nr∑
r=1

d∑
α=1

sr(ξ
n
p (x)− xn−1

p )eαc
n
prα (2.1)

where the functions sreα : Rd → Rd are generalized velocity modes, eα ∈ Rd is the αth

standard basis vector and the cnprα are the coefficients of the modes which are stored in the
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Figure 2.2: Velocity modes. We visualize the component-wise velocity modes from Equa-
tion (2.2) in 2D. The top shows bilinear interpolation and the bottom shows biquadratic
interpolation. Constant (peach), linear (green), bilinear (pink) and biquadratic (light blue)
modes are depicted for x (red) and y (blue) components.
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vector cnp ∈ RdNr . We build our generalized velocity modes component-by-component in

terms of the scalar functions sr : Rd → R. Nr indicates the total number of scalar modes

that we use. We illustrate these modes in Figure 2.2. The function ξnp approximates the

mapping from the time tn configuration to the time tn−1 configuration local to the particle

and represents the advection of the material (see Section §2.3). We note that in PIC and

APIC it is simply given by ξnp (x) = x−∆tvn−1
p and ξnp (x)− xn−1

p = x− xnp .

By approximating the velocity local to particle xnp in terms of more general functions, we

allow for a wider range of local behavior than in the original APIC. Notably, we can write

APIC in this way by choosing affine functions for sr. Similarly, we can write PIC in this

way by choosing constant functions for the sr. In either case we note that the coefficients

cnp ∈ RdNr are equivalent to the vnp and Cn
p in the original APIC and PIC. Note that for

APIC, dNr = d2 + d (d translations and d2 linear functions) and similarly for PIC, dNr = d.

We primarily use polynomial modes of the form

s(z) =
d∏

β=1

z
iβ
β . (2.2)

Here zβ is the βth component of z ∈ Rd, the iβ ∈ Z+ are non-negative integer powers. We

note that this reduces to the original PIC when iβ = 0 for 1 ≤ β ≤ d. Furthermore, when

we choose all sr with exactly one of the iβ = 1 and the rest equal to zero, we obtain the

affine modes and the method reduces to APIC. In general, we will modify the polynomial

modes in Equation (2.2) slightly to ensure a mass-orthogonality condition that is essential

for efficiency in the grid to particle transfer (see Section §2.4.3).

The particle-wise local velocity in Equation (2.1) is used in the particle-to-grid and grid-

to-particle transfers. As in [JSS15, JST17], it is used to define a particle’s contribution

to the grid node linear momentum in the particle-to-grid transfer (Section §2.4.1). In the

grid-to-particle transfer (Section §2.4.3), the coefficients cn+1
p are chosen so that

v̂n+1
p (y) =

Nr∑
r=1

d∑
α=1

sr(y − xnp )eαc
n+1
prα ≈

∑
i

v̂n+1
i N(y − xi) (2.3)
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for y near xnp . However, this approximation is done with points y in the time tn rather than

tn+1 configuration of the material. This is a local approximation of the updated Lagrangian

velocity. The updated Lagrangian velocity is related to the Eulerian velocity by the mapping

(ξn+1
p )

−1
, which approximates the advection of the material local to the particle to the time

tn+1 configuration. We discuss the significance of this mapping and the notion of updated

Lagrangian velocity in the next section.

2.3 Updated Lagrangian

Eulerian and Lagrangian methods can be characterized in terms of the flow map of the

material φ(·, t) : Ω0 → Ωt [GS08]. Here Ω0 ⊂ Rd is the initial configuration of the material.

Each point X ∈ Ω0 is the initial position of a particle of material in the continuum and

φ(X, t) is its location at time t. Ωt is the time t configuration of the material consisting of

the points x = φ(X, t) for some X ∈ Ω0. It is this mapping that defines the Lagrangian

velocity and acceleration of each particle via V(X, t) = ∂φ
∂t

(X, t) and A(X, t) = ∂V
∂t

(X, t).

The Eulerian counterparts can be defined in terms of the inverse of the flow map φ−1(·, t) :

Ωt → Ω0 via v(x, t) = V(φ−1(x, t), t) and a(x, t) = A(φ−1(x, t), t) for all x ∈ Ωt. Here

X = φ−1(φ(X, t), t) for all particles X ∈ Ω0 and x = φ(φ−1(x, t), t) for all points x ∈ Ωt.

Also, the Eulerian velocity and acceleration are related through the total derivative

a(x, t) =
Dv

Dt
(x, t) =

∂v

∂t
(x, t) +

∂v

∂x
(x, t)v(x, t). (2.4)

We note that Levin et al. have developed a number of methods that make use of the inverse

flow map [LLJ11, FLL13, TLK16].

In Lagrangian approaches, the initial configuration of the material Ω0 serves as the do-

main of field functions like velocity and stress. This is sometimes referred to as a total

Lagrangian approach. Updated Lagrangian approaches use a similar idea, but rather than

using a single reference configuration Ω0, the time tn configuration Ωtn is used as the ref-

erence. With these approaches, it is convenient to define v̂(y, t) = V(φ−1(y, tn), t) and
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â(y, t) = A(φ−1(y, tn), t) for all y ∈ Ωtn . These are the time t velocity and acceleration

defined over Ωtn . They are analogous to the Lagrangian acceleration and velocity, except

the points y ∈ Ωtn serve as the reference for each particle in the continuum, rather than

the initial points X ∈ Ω0. This is convenient because unlike the Eulerian velocity and ac-

celeration in Equation (2.4) that relate through the total derivative, v̂ and â relate through

standard temporal differentiation

â(y, t) =
∂v̂

∂t
(y, t). (2.5)

Thus, the updated Lagrangian velocity and acceleration have the same essential relation as

their total Lagrangian counterparts.

PIC can be viewed as an updated Lagrangian approach. At time tn the particles have

positions xnp = φ(Xp, t
n) and represent samples of Ωtn . When we transfer state to the grid

(see Section §2.4.2), we obtain approximations to the velocity vni and mass mn
i at grid nodes

xi ∈ Ωtn . This provides an alternative approximation to the time tn configuration that has

the advantage of being defined over particles with structured (grid-aligned) locations, as op-

posed to the unstructured xnp . The structured nature of their locations has many advantages,

e.g. it is easy to interpolate data via regular grid interpolating functions. Indeed, the Eulerian

velocity at time tn can be approximated via interpolation from v(x, tn) ≈
∑

i v
n
i N(x−xi). In

the grid momentum update step, we assume that Ωtn is the updated reference configuration

and approximate the updated Lagrangian acceleration in an essentially Lagrangian manner

via

â(y, tn+1) ≈
∑
i

v̂n+1
i − vni

∆t
N(y − xi), y ∈ Ωtn .

Here, the new grid node velocities v̂n+1
i approximate samples of v̂(y, tn+1) at grid nodes

y = xi ∈ Ωtn . Their interpolant approximates the updated Lagrangian velocity v̂(y, tn+1) =∑
i v̂

n+1
i N(y − xi), i.e. the time tn+1 velocity but defined over y ∈ Ωtn .

By definition, the time tn+1 Eulerian velocity is related to the updated Lagrangian velocity
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through

v(x, tn+1) = v̂(ξn+1(x), tn+1) (2.6)

for x ∈ Ωtn+1
. Here we use ξn+1(x) = φ(φ−1(x, tn+1), tn) to denote the mapping of material

from the time tn+1 configuration to the time tn configuration. Intuitively, φ−1 maps the

point x ∈ Ωtn+1
to its reference location X = φ−1(x, tn+1) ∈ Ω0 and φ maps the reference

location to the its position ξn+1(x) = φ(X, tn) ∈ Ωtn . Thus X = φ−1(x, tn+1) ∈ Ω0 is

the location in the reference configuration Ω0 of the particle that occupies x ∈ Ωtn+1
and

ξn+1(x) = φ(φ−1(x, tn+1), tn) is the location in the time tn configuration Ωtn of the particle

that occupies x ∈ Ωtn+1
. In other words, the mapping reverses the motion of material over

the time step. Since the updated Lagrangian velocity is the time tn+1 velocity, defined over

the time tn configuration, the composition with this mapping in Equation (2.6) can be viewed

as the key to defining the Eulerian velocity in a PIC calculation.

2.3.1 Particle-Wise Velocity Modes

The v̂n+1
p (y) from Equation (2.3) locally approximate the updated Lagrangian velocity

v̂(y, tn+1) for y ∈ Ωtn near xnp . We use them to obtain the similar, but more useful ap-

proximation to the Eulerian velocity vn+1
p (x) to v(x, tn+1). The vn+1

p (x) are required for the

transfers from particle to grid at the beginning of time step tn+1 (see Section §2.4.1). We

obtain them by composition with the local approximation ξn+1
p (x) to ξn+1(x) for x ∈ Ωtn+1

near xn+1
p

vn+1
p (x) = v̂n+1

p (ξn+1
p (x)). (2.7)

In our approach, as well as in PIC and APIC, particles move with the interpolated updated

Lagrangian velocity

xn+1
p = xnp + ∆t

∑
i

v̂n+1
i N(xnp − xi).
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Figure 2.3: Updated Lagrangian. Here we visualize the options for the mapping ξn+1
p . As

a particle moves, from xnp to xn+1
p , it selects different grid nodes xi to biquadratically inter-

polate from (green at tn and yellow at tn+1). The middle shows the ξn+1
p (xi) approximation

from Equation (2.8) and the right from Equation (2.10).

This motion of the particles defines the material mapping from configuration Ωtn to configu-

ration Ωtn+1
. Since ξn+1(x) is the inverse of this mapping, we know its value at each particle

ξn+1(xn+1
p ) = xnp . We can use this to approximate the mapping local to each particle.

2.3.1.1 Piecewise constant material motion

If we assume that ξn+1 is approximately a simple translation near xn+1
p and that ξn+1(xn+1

p ) =

xnp , then we obtain the local approximation

ξn+1
p (x) = xnp +

(
x− xn+1

p

)
. (2.8)

The PIC and APIC transfers can be derived from the local velocities in Equation (2.1)

combined with the advection approximation in Equation (2.8). With PIC, the local up-

dated Lagrangian velocity is constant v̂n+1
p (y) = vn+1

p and thus for any local approximation

ξn+1
p (x),

vn+1
PIC,p(x) = vn+1

p .

With APIC, the local updated Lagrangian velocity is affine v̂n+1
p (y) = vn+1

p + Cn+1
p (y−xnp ).

If we combine this affine velocity via the composition in Equation (2.8) with the constant
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local approximation in Equation (2.7), we obtain

vn+1
APIC,p(x) = v̂n+1

p (xnp +
(
x− xn+1

p

)
) = vn+1

p + Cn+1
p (x− xn+1

p ).

2.3.1.2 Piecewise affine material motion

It is evident that more accurate local approximations to ξn+1(x) are readily available. If we

assume that the updated Lagrangian velocity is well approximated by v̂n+1
p (y) for particles

y ∈ Ωtn near xnp , then particle trajectories will evolve locally as approximately yn+1 =

y+∆tv̂n+1
p (y). This approximates the motion of the material from Ωtn to Ωtn+1

for particles

near xnp . The inverse of the mapping local to the particle is then approximately given by

ξn+1
p (x) = x̂ where x̂ is given by the solution to the implicit equation

x = x̂ + ∆tv̂n+1
p (x̂). (2.9)

Intuitively, for particle x ∈ Ωtn+1
, x̂ ∈ Ωtn is its location at time tn. For general functions

v̂n+1
p , Equation (2.9) can be solved using Newton’s method; however if we approximate

the updated Lagrangian velocity by its affine components v̂n+1
p (x̂) ≈

∑Nr
r=1

∑d
α=1 sr(x̂ −

xnp )eαc
n+1
prα with cn+1

prα only non-zero for affine modes, then the system for x̂ is linear and we

obtain

ξn+1
p (x) = xnp +

(
I + ∆tCn+1

p

)−1 (
x− xn+1

p

)
(2.10)

where Cn+1
p is the linear part of the polynomial modes. When Cn+1

p = 0, we obtain the

constant approximation in Equation (2.8) and thus this can be seen as a higher-order ap-

proximation. We visualize the approximations to ξn+1
p in Equations (2.8) and (2.10) in

Figure 2.3.
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2.4 Method

Here we detail all of the steps necessary for advancing the Lagrangian state from time tn

to tn+1 in a PIC calculation. We cover the necessary details for a MPM approach with

elastoplastic materials as well as for incompressible Euler fluids with pressure projection on

a MAC grid. This process consists of (1) the transfer from particle to grid of mass and

linear momentum (Section §2.4.1), (2) the grid based momentum update (Section §2.4.2)

and (3) the transfer from grid to particle of generalized velocity coefficients (Section §2.4.3).

The particle-wise local approximations discussed in Sections §2.2 and §2.3 are the keys to the

particle/grid transfers. We provide the details of the grid momentum update for completeness

but we note that it is not novel as our approach is not relevant to this step.

2.4.1 Transfer from Particle to Grid

The velocity local to the particle vnp : Rd → Rd from Equation (2.1) is used to design

the momentum transfer to the grid. We use the notation (mv)nip = mpw
n
ipv

n
p (xi) to denote

the particle’s contribution to the momentum local to the node xi and (mv)ni =
∑

p(mv)nip

is the total momentum of grid node from the contribution of all particles. Similarly, the

contribution of the particle’s mass to the grid node xi is mn
ip = wnipmp and the total grid

node mass is the sum of the contributions from all particles mn
i =

∑
pm

n
ip. Using this we can

define the grid node velocity vni by dividing momentum by mass. In summary, this transfer

consists of

(mv)nip = mn
ip

Nr∑
r=1

d∑
α=1

sr(ξ
n
p (xi)− xn−1

p )eαc
n
prα

(mv)ni =
∑
p

(mv)nip, vni =
(mv)ni
mn

i

.

(2.11)

Either local approximations ξnp (xi) from Equations (2.8) or (2.10) can be used. We note that

this is essentially the same transfer as in the original APIC approaches [JSS15, JST17], with

the only modification being the more general notions of the local velocity and the improved
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Figure 2.4: MPM elastoplasticity. Rainbow colored sand is poured onto an elastic Jell-O
square. We compare APIC (left) vs. PolyPIC with (from left to right) Nr = 4 and Nr = 6.
Notice that increasing degrees of PolyPIC allow for more energetic sand flowing and Jell-O
bouncing.
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approximation to ξnp (xi).

2.4.2 Update Grid Momentum

The grid momentum update is outside the scope of this paper. However, we include a generic

description for representative cases that we used to generate our examples: incompressible

Euler fluids and elastoplastic solids with MPM. In the case of the incompressible Euler, we

used a MAC grid discretization of the pressure projection to update the fluid velocity. In

the case of elastoplastic solids and MPM the update is from the elastic force (see [FGG17a]

for more details).

v̂n+1
i = vni +

∆t

ρ
∇p, (Euler/MAC)

v̂n+1
i = vni +

∆t

mn
i

(f + g), (elastoplastic/MPM)

where f is the elastic force and g is the gravitational acceleration.

2.4.3 Transfer from Grid to Particle

The transfer from grid to particle is achieved by choosing the generalized velocity coefficients

cn+1
p ∈ RdNr so that the approximation in Equation (2.3) is optimal in the appropriate sense.

Here we show that we can solve a linear system for the coefficients cn+1
p ∈ RdNr , and that

by design our approach (1) is equivalent to PIC and APIC if only constant or affine modes

are used, (2) conserves linear and angular momentum (see [FGG17a]) and (3) has a diagonal

system matrix in the equation for the cn+1
p ∈ RdNr .

We choose the coefficients cn+1
p to minimize the mass-weighted distance dnp (cn+1

p ) between

local velocities at the grid nodes and the updated grid-node velocities
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Figure 2.5: MPM elastoplasticity refinement. We verify that the behavior exhibited by
PolyPIC with Nr = 6 at lower resolution in Figure 2.4 is exhibited by PolyPIC with Nr = 4
and APIC under refinement.
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sr

st 1 x y xy x2 y2 x2y xy2 x2y2

1 X X X X
x X X X X
y X X X X
xy X X X X
x2 X X X X X X
y2 X X X X X X
x2y X X X X X X
xy2 X X X X X X
x2y2 X X X X X X X X X

Table 2.1: Sparsity pattern: unmodified. We illustrate the sparsity pattern of the matrix
(Snp )Tmn

pS
n
p for dimension d = 2 with scalar modes s = xi1yi2 . X indicates a non-zero entry

in the matrix. Note that the multilinear modes (indicated in red) are mass-orthogonal to
one another, but that the multiquadratic modes couple extensively.

dnp (cn+1
p ) =

∑
i

mn
ip

∣∣v̂n+1
i − v̂n+1

p (xi)
∣∣2

=
∑
i

mn
ip

∣∣∣∣∣v̂n+1
i −

Nr∑
r=1

d∑
α=1

sr(xi − xnp )eαc
n+1
prα

∣∣∣∣∣
2

where mn
ip = mpw

n
ip is the mass that the particle xnp transfers to the grid node i. The

minimizer of this mass weighted distance can be expressed more concisely in terms of the

grid node locations that received non-zero mass from the particle xnp . Recall that the particle

will have non-zero weights wnip for precisely the (NB+1)d grid nodes in closest proximity to the

particle and that V̂n+1
p ∈ Rd(NB+1)d is the vector of velocities of the grid nodes with non-zero

weights. Similarly, we use the notation Qn
p =

[
Qnp11,Qnp12, . . . ,QnpNrd

]
∈ Rd(NB+1)d×dNr where

the columns Qnprα of Qn
p are analogous to V̂n+1

p and have entries equal to the particle-wise
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sr

st 1 x y xy g1(x) g2(y) g1(x)y xg2(y) g1(x)g2(y)

1 a
x b
y b
xy c
g1(x) d(x)
g2(y) d(y)
g1(x)y e(x)
xg2(y) e(y)

g1(x)g2(y) f(x, y)

Table 2.2: Sparsity pattern: modified. We illustrate the sparsity pattern of the matrix
(Snp )Tmn

pS
n
p for dimension d = 2 with the modified quadratic modes given by Equation (2.14).

a = 1, b = ∆x2

4
, c = ∆x2

16
, d(z) = (∆x2−4z2)2(3∆x2−4z2)

16∆x2
, e(z) = (∆x2−4z2)2(3∆x2−4z2)

64
, f(x, y) =

(∆x2−4x2)2(3∆x2−4x2)(∆x2−4y2)2(3∆x2−4y2)
256∆x4

.

local modes sr(xi − xnp )eα at the grid nodes with non-zero weights

Qnprα =


sr(xi1 − xnp )eα

sr(xi2 − xnp )eα
...

sr(xi
(NB+1)d

− xnp )eα

 .

The optimal coefficients cn+1
p can be expressed in terms of these vectors as

cn+1
p =

argmin

c ∈ RdNr
dnp (c) =

(
(Qn

p )TMn
pQ

n
p

)−1
(Qn

p )TMn
p V̂n+1

p (2.12)

where the matrix Mn
p ∈ Rd(NB+1)d×d(NB+1)d is diagonal and consists of (NB + 1) diagonal

blocks mn
ipId. Here Id ∈ Rd×d is the d−dimensional identity.

2.4.3.1 Dimension-by-dimension decoupling

Our approach is only efficient if the linear system for cn+1
p in Equation (2.12) can be solved

quickly. Fortunately, the matrix (Qn
p )TMn

pQ
n
p ∈ RdNr×dNr has remarkable properties for

polynomial velocity modes of the type in Equation (2.2). First, because the matrix Mn
p is
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Figure 2.6: MPM hyperelasticity. We compare from left to right APIC (green) and
PolyPIC with Nr = 8 (blue), Nr = 11 (red), Nr = 14 (orange), Nr = 18 (yellow). PolyPIC
better conserves total energy which results in less numerical damping of the deformable
motion.

diagonal,

Mn
pQnptβ =


mn

i1p
st(xi1 − xnp )eβ

mn
i2p
st(xi2 − xnp )eβ

...

mn
i
(NB+1)d

pst(xi
(NB+1)d

− xnp )eβ

 .

Therefore, the entries in Mn
pQnptβ are proportionate to the entries in Qnprα. Thus, since they

have the same dimension-by-dimension sparsity as a consequence of the eβ and eα terms,

the individual dimensions decouple when we take the dot products Qnprα ·
(
Mn

pQnptβ
)
. The

exact expression for the entries in the matrix (Qn
p )TMn

pQ
n
p are then

Qnprα ·
(
Mn

pQnptβ
)

=
∑
i

mn
i sr(xi − xnp )st(xi − xnp )eα · eβ.

Here we use r, α to index the rows and t, β to index the columns of the matrix (Qn
p )TMn

pQ
n
p .

Furthermore, r, t index the mode type while α, β index the dimension. Therefore the matrix

entries Qnprα ·
(
Mn

pQnptβ
)

= 0 when α 6= β since eα · eβ = 0 when α 6= β. Thus the coefficients

cnprα are decoupled in α and the matrix (Qn
p )TMn

pQ
n
p is block diagonal with d identical

diagonal blocks associated with the dimension-by-dimension velocity modes.

The d non-zero diagonal blocks of (Qn
p )TMn

pQ
n
p ∈ RdNr×dNr are each equal to (Snp )Tmn

pS
n
p ∈

RNr×Nr . Here mn
p ∈ R(NB+1)d×(NB+1)d is diagonal with entries equal to mn

ip. Furthermore,

the matrix Snp consists of columns analogous to V̂n+1
p and Qnprα, but with entries equal to
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the scalar particle-wise local modes sr(xi − xnp ) at the grid nodes with non-zero weights.

Snp =
[
Snp1, . . . ,SnpNr

]
∈ R(NB+1)d×Nr with columns

Snpr =


sr(xi1 − xnp )

sr(xi2 − xnp )
...

sr(xi
(NB+1)d

− xnp )

 ∈ R(NB+1)d .

With this convention, Qnprα·
(
Mn

pQnptβ
)

= Snpr ·
(
mn

pSnpt
)
eα·eβ and the dimension-by-dimension

decoupled equations for the optimal coefficients cn+1
p are

Nr∑
t=1

Snpr ·
(
mn

pSnpt
)
cn+1
ptα = Qnprα ·

(
Mn

p V̂n+1
p

)
=
∑
i

mn
ipsr(xi − xnp )v̂n+1

iα

(2.13)

for 1 ≤ r ≤ Nr, where v̂n+1
iα is the αth component of v̂n+1

i .

2.4.3.2 Mass-orthogonal polynomial modes

The individual blocks (Snp )Tmn
pS

n
p ∈ RNr×Nr have further favorable sparsity structure. If we

assume that we number the modes with increasing degree (e.g. in 2D, constant modes first:

s1 = 1, followed by linear s2 = x, s3 = y, then multilinear: s4 = xy, etc) and if we use

modes sr with r ≤ Nr ≤ 2d, the matrix (Snp )Tmn
pS

n
p is diagonal. This can be verified directly

using Mathematica [Res16] and we provide Mathematica code in Appendix §A.6. Notably,

this means that constant modes (r ≤ 1), linear modes (1 < r ≤ d) and multilinear modes

(d < r ≤ 2d) are mass-orthogonal and therefore the coefficients in Equation (2.13) can be

obtained through the solution of a diagonal system.

In general for 2d < r ≤ Nr ≤ (NB + 1)d, the matrix (Snp )Tmn
pS

n
p is not diagonal. We

illustrate this in Table 2.1 with d = 2 for brevity. However, we can obtain a diagonal system

with a modified Gram-Schmidt approach that takes into account the inner product defined
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by mn
p . This amounts to simple modifications of the quadratic scalar modes 2d < r ≤ Nr ≤

(NB + 1)d in Equation (2.2). Remarkably, the Gram-Schmidt mass-orthogonalization does

not modify any of the constant, linear or multilinear modes. Only the quadratic modes are

modified and the change is very simple: each quadratic term z2
β in Equation (2.2) is replaced

with gβ(zβ) given by

gβ(w) = w2 −
xnpβ
(
∆x2 − 4(xnpβ)2

)
∆x2

w − ∆x2

4
. (2.14)

E.g. the mode s5 = g1(x) replaces x2, s6 = g2(y) replaces y2, s7 = g1(x)y replaces x2y, etc.

This trivial modification yields a diagonal (Snp )Tmn
pS

n
p whose entries we enumerate in Ta-

ble 2.2. We give expressions for the individual entries in the solution cn+1
p to Equation (2.13)

with diagonal basis in Appendix §A.2.

We note that (NB + 1)d is a natural upper bound on the number of reduces modes Nr

since the minimization in Equation (2.12) is over determined for Nr > (NB + 1)d.

2.5 MAC Grid

For clarity of exposition, we only consider the case of collocated grids in Sections §2.4.1

and §2.4.3. For incompressible Euler we transfer to and from staggered velocity MAC grids

[HW65]. Using iα, 1 ≤ α ≤ d to denote the face index for each of the staggered grids,

MAC transfers are done component-wise (see Figure 2.1). Particle xnp transfers mass mn
iαp

to each α face grid from mn
iαp

= mn
pw

n
iαp

. The total mass on each grid face mn
iα

is equal to

the sum of the contribution from each particle mn
iα

=
∑

pm
n
iαp

. The weight of interaction

wniαp = N(xiα − xnp ) is between the particle xnp and the MAC face xiα . The component-wise

particle-to-grid momentum transfer is

(mv)niαp = mn
iαp

∑
r

sr(ξ
n
p (xiα)− xn−1

p )cnprα

(mv)niα =
∑
p

(mv)niαp, v
n
iα =

(mv)niα
mn

iα

.
(2.15)
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These transfers are very similar to those in Equation (2.11); however each face grid gets its

own mass and respective component of the momentum. This is slightly more costly since

mass must be transferred d times with the MAC grid instead of just one with the collocated

grid.

The transfers from grid to particle are also trivially done component-wise since as dis-

cussed in Section §2.4.3.1, the system in Equation (2.13) decouples component-wise. How-

ever, unlike in the collocated case, the mass matrix and scalar mode vectors will be different

on each of the velocity face grids. We use the notation mn
pα and Snptα to denote this, where

the appearance of α emphasizes that they vary with each face grid. With this convention

we can write the system for the reduced mode components cn+1
p ∈ RdNr as

Nr∑
t=1

Snprα ·
(
mn
pαSnptα

)
cn+1
ptα =

∑
k=iα

mn
iαpsr(xiα − xnp )v̂n+1

iα
(2.16)

for 1 ≤ r ≤ Nr. These systems are very similar to those in Equation (2.13). However,

in the case of the MAC grid the matrices that appear in the left-hand side (whose entries

Snprα ·
(
mn

pαSnptα
)

are indexed by 1 ≤ r, t ≤ Nr ) of Equation (2.16) are different on each of

the α grids. In Equation 2.13 there is only one matrix on the left-hand side, independent of

α.

2.6 Results

We demonstrate our method on a number of examples with incompressible flow and MPM

elastoplasticity. We compare PolyPIC with APIC and FLIP in a number of representative

scenarios. All incompressible flow simulations were done using Manta Flow [TP16]. In a

few of our incompressible examples, we use passive advected particles as a post-process to

aid in visualization. We note that these are simply advected in the flow for post-process

visualization and do not use PolyPIC transfers. Also, all grid interpolation is multilinear

for the incompressible flow examples. All grid interpolation is multiquadratic for the MPM

elastoplasticity examples.
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Figure 2.7: Energy conservation. We plot of the total energy as a function of time for an
elastic square with initial compressive dilation. The energy is calculated as the sum of the
elastic potential energy on the particles and the kinetic energy on the grid.
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2.6.1 Incompressible flow

In Figure 2.8 we simulate a vortex sheet by setting the velocity inside a circle to be initially

rotating relative to a stationary surrounding fluid. The discontinuity in the velocity induces

vorticity at the interface which produces intricate flow patterns. We compare PolyPIC to

FLIP and APIC and see that it better resolves the vorticial flow.

In Figure 2.9 we simulate an ink droplet in an ambient incompressible fluid by dropping

liquid onto a free surface. We only render the particles in the jet. Note that the ink and

water are both simulated as the same incompressible fluid. We compare PolyPIC to FLIP

and APIC and see that it again better captures the transition to turbulence. We note that

PolyPIC works well even when the grid resolution is rather low. Figure 2.9 was run with a

relatively low grid resolution 64× 256× 64. We used 8 simulated particles per cell, and 8000

passively advected tracer particles per cell in a post-process for visualization.

Figure 2.10 demonstrates a 3D version of the vortex sheet. The cylinder is initially

rotating about its axis relative to a stationary ambient fluid. It was also run on a low

resolution grid (88 × 132 × 88) with 8 simulated particles per cell for simulation and 216

passively advected tracer particles per cell in a post-process for visualization. Despite the

low resolution simulation, intricate flow patterns are observed.

For all incompressible flow examples we use constant, linear and multilinear modes (i.e.

Nr = 2d) with PolyPIC. This is the maximum number of modes we can use because the grid

interpolation in the incompressible flow solver is multilinear (NB = 1) and, as discussed in

Section §2.4.3.2, the number of reduced modes is bounded by Nr ≤ (NB + 1)d.

2.6.2 MPM elastoplasticity

In Figure 2.4 we demonstrated the increasingly energetic nature of PolyPIC elastoplasticity

simulations as we add more polynomial modes. Note that with Nr = 6 modes the sand

flows more freely and splashes off the jello more dramatically, while the Jell-O bounces more

readily.
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Figure 2.8: Vortex sheet. We compare from left to right FLIP, APIC, and PolyPIC with 2D
incompressible flow. The initial conditions are of a rotating circle surrounded by stationary
fluid. This creates a vortex sheet which our method effectively resolves. The bottom row
shows that despite the energetic nature of our method, our simulations are stable at long
runtimes.
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Figure 2.9: Ink drop. We compare from left to right FLIP, APIC, and PolyPIC for an
inkjet in an ambient incompressible fluid. PolyPIC more effectively resolves the vorticial
details.

Figure 2.10: Rotating column of colored dust. We demonstrate intricate vorticial pat-
terns that arise from simple initial conditions with incompressible flow. PolyPIC achieves
great detail with modest spatial grid resolution (88× 132× 88). The rightmost image shows
that despite the energetic nature of our method, our simulations are stable at long runtimes.
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In Figure 2.7 we demonstrate the improved energy conservation of our method over APIC.

In this scenario, a 2D hyperelastic square is initially compressed. The total energy of the

system should be conserved with these initial and boundary conditions (zero traction). As

we add more polynomial modes, the energy preservation improves. In Figure 2.6, we demon-

strate how the increased energy retention affects the dynamics of a Jell-O cube dropped on

the ground.

2.6.3 Accuracy and the number of modes

We verify that adding additional modes increases the accuracy of the simulation. In Fig-

ures 2.4 and 2.5 we examine the case of granular sand flowing from a container onto Jell-0.

In Figure 2.4 we see that PolyPIC with Nr = 4 and APIC are less energetic than PolyPIC

with Nr = 6. The flow of the sand in the container suffers from more numerical friction with

PolyPIC Nr = 4 and APIC, therefore sand flows out of the container much slower. We can

see this because the containers are still quite full in the final frame with PolyPIC Nr = 4

and APIC compared to PolyPIC with Nr = 6. In Figure 2.5 we rerun the same simulations

but with higher grid and particle resolution. At this resolution, the PolyPIC Nr = 4 and

APIC containers are all nearly empty in the final frame and as a result all flows are similarly

energetic, indicating that PolyPIC with more modes gives a more accurate result since it is

more predictive of the refined behavior.

2.6.4 Momentum conservation

We verify the angular momentum conservation properties of the PolyPIC transfers. In Fig-

ure 2.11 we plot the linear and angular momentum over the course of the time step for the

falling Jell-O example shown in Figure 2.6. Even though the PolyPIC transfers conserve

the momenta, the grid momentum update and the application of boundary conditions (Sec-

tion §2.4.2) are not momentum conserving. To illustrate the conservation of the momentum
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Figure 2.11: Momentum conservation. The top figure plots the linear and angular mo-
menta for the falling Jell-O’s in Figure 2.6. The bottom illustrates the angular momentum
loss resulting form transfers. We plot the momenta l̂n and p̂n from Equation (2.17) to mon-
itor the transfers effects on conservation. APIC and PolyPIC preserve angular momentum
during transfers, however the FLIP/PIC blends are commonly used in incompressible flow
simulations do not. We illustrate this by comparing with increasing amounts of PIC.
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Seconds/Frame ∆tmax Particles Cores

Ink Drop(FLIP99) 20.569 5× 10−2 3.64M 16
Ink Drop(APIC) 23.188 5× 10−2 3.64M 16
Ink Drop(PolyPIC) 31.466 5× 10−2 3.64M 16
Cylinder(PolyPIC) 146.744 2× 10−1 7.86M 12
Vortex Sheet(FLIP99) 2.367 1× 10−1 0.97M 20
Vortex Sheet(APIC) 2.739 1× 10−1 0.97M 12
Vortex Sheet(PolyPIC) 2.760 1× 10−1 0.97M 20
Sand & Jello(APIC) 11.582 4× 10−5 59.7K 12
Sand & Jello(PolyPIC4) 12.616 4× 10−5 59.7K 12
Sand & Jello(PolyPIC6) 17.682 4× 10−5 59.7K 12
Jello(APIC) 4.882 2× 10−4 17.5K 48
Jello(PolyPIC8) 5.713 2× 10−4 17.5K 48
Jello(PolyPIC11) 5.562 2× 10−4 17.5K 48
Jello(PolyPIC14) 5.512 2× 10−4 17.5K 48
Jello(PolyPIC18) 5.852 2× 10−4 17.5K 48

Table 2.3: We list the time step sizes, run times, particle counts and number of cores
used for our simulations. We note that the Jell-O examples demonstrate that increasing the
number of reduced modes Nr in PolyPIC only moderately increases the computational cost
over APIC.

in the transfers, we can monitor

l̂n = lnP2G +
n−1∑
m=1

lmgrid − lmP2G, p̂n = pnP2G +
n−1∑
m=1

pmgrid − pmP2G (2.17)

where ln =
∑

i xi×miv
n
i and pn =

∑
imiv

n
i are the angular and linear momenta on the grid.

lmP2G lmP2G are computed after the transfer from particle to grid (Section §2.4.1) and lmgrid and

pmgrid are computed after the grid momentum update (Section §2.4.2). The quantities lmgrid −

lmP2G and pmgrid− pmP2G are the momenta lost during the grid momentum update at time step

tm. This is the only source of angular momentum loss for APIC and PolyPIC and thus the

quantities in Equation (2.17) should be constant for those methods. We visualize the angular

momentum loss from transfers in Figure 2.11. The straight lines indicate conservation.

2.7 Discussion and Limitations

While our method is a natural extension to the APIC approaches in [JSS15, JST17], it

has some apparent drawbacks. Adding more polynomial modes helps to increase the en-

ergy conservation during transfers which reduces numerical dissipation. However, numerical

dissipation is often desirable. Most everyday examples of elasticity involve some type of

damping term and numerical dissipation is often an acceptable approximation to this. Also,
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numerical dissipation in the transfers can help to stabilize the method. At large time steps

PIC calculations will go unstable and numerical dissipation can increase the critical time

step size at which instability dominates. Indeed we found that introducing too many modes

for the hyperelastic simulations can lead to small time steps. In general, we set ∆t =

min(CFL∆x
max v

,∆tmax) where max v is the magnitude of the maximum velocity, 0¡CFL¡1 and

∆tmax is typically about 1e-3 (see Table 2.3). If simulations go unstable, we shrink ∆tmax.

We notice that ∆tmax will decrease to around 1e-5 if we use larger numbers of modes and

this can lead to longer run times. We typically use explicit symplectic Euler (SE) integration

for the grid momentum update and energy loss in transfers helps to stabilize it.

Our approach incurs storage proportionate to the number of modes since each particle

must store the coefficient of the polynomial bases used to locally represent the velocity

field, however in the case of affine polynomials this is equivalent to storing the velocity

and velocity derivative, thus for Nr ≈ d + 1 the storage is approximately that of original

APIC. Similarly, our transfers have computational cost that is linear in the number of

reduced modes. Therefore, the run time will increase slightly with additional modes. We

demonstrate this by progressively adding more modes in the Jell-O examples in Figure 2.6.

Run times are given in Table 2.3.

The number of nodes with nonzero weights implies a threshold on the number of velocity

modes Nr ≤ (NB + 1)d. For larger Nr the system for cn+1
p is overdetermined since there

would be more modes than grid node velocity values to determine them from. In principle,

our method would still work however we did not investigate this possibility. Interestingly,

we noticed that with Nr = (NB + 1)d the transfer from grid to particle then back to grid is

lossless (neglecting motion of the particles) (see Appendix §A.3).
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CHAPTER 3

Numerical Simulation for Thin Shell with Frictional

Contact

3.1 Mathematical Details and Notation

We use bold face (e.g. v) to denote vector and tensor quantities and plain text (e.g. v) to

denote scalar quantities. We use brackets around bold face to denote matrices associated

with a tensor in a given basis (e.g [M] ∈ R3×3 is the matrix of entries mij ∈ R where tensor

m = mijei ⊗ ej). We use the convention that Greek indices (e.g. aα) range from 1− 2 and

Latin indices (e.g. bi) range from 1− 3. We use hat notation to indicate the upper left 2× 2

sub matrix of a given matrix (e.g.
[
M̂
]
∈ R2×2 consists of entries mαβ from [M] ∈ R3×3).

Unless otherwise stated, we use the summation convention for repeated indices. For a set

of (covariant) basis vectors vi, we use vj to denote the corresponding contravariant basis

vectors satisfying vi · vj = δji . | · | is used to denote the L2 norm of a vector.

We assume shells have constant thickness τ and use ωτ = ω × [− τ
2
, τ

2
] to parameterize

the domain of the shell where ω is two-dimensional parameter domain for the mid-surface of

the shell. We use x̄ : ω → Ω̄ and x : ω → Ωt to denote the mappings from the mid-surface

parameter domain to the reference (Ω̄) and time t (Ωt) configurations of the mid-surface.

Similarly we use r̄ : ωτ → Ω̄τ and r : ωτ → Ωτ
t to denote mappings from the shell parameter

domain to the reference (Ω̄τ ) and time t (Ωτ
t ) configurations of the shell. We illustrate this

in Figure 3.1. We will use ξ = (ξ1, ξ2, ξ3) ∈ ωτ to denote coordinates in parameter space.

We refer to surfaces s(ξ1, ξ2) = r(ξ1, ξ2, ξ̂3) in the shell with fixed values of the thickness

parameter ξ̂3 as laminae and we refer to lines in the l(ξ3) = r(ξ̂1, ξ̂2, ξ3) with fixed values of

the surface parameters ξ̂1, ξ̂2 as fibers. We illustrate fibers and laminae in Figure 3.3.
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3.2 Shell Kinematics

ω

Ωt

Ω̄
x̄

x

ωτ

Ωτ
t

Ω̄τ

r

r̄

ΩKL,τ
t

φS

φKL

φ = φS ◦ φKL

Figure 3.1: Shell Kinematics. On the left, the mid-surface mappings are illustrated, and
on the right the corresponding volumetric shell mappings are shown.

We assume the kinematics of a continuum shell

r̄(ξ) = x̄(ξ1, ξ2) + ξ3ā3(ξ1, ξ2), r(ξ) = x(ξ1, ξ2) + ξ3a3(ξ1, ξ2) (3.1)

where ā3 is the unit normal to the mid-surface and a3 is the stretched and sheared image of

ā3 under the motion of the shell. We use āα = ∂x̄
∂ξα

to denote the tangents to the mid-surface

of the reference shell. When combined with ā3 = ā1×ā2

|ā1×ā2| , they form a complete basis for R3

(see Figure 3.3).

We decompose the motion of the shell into two steps

r(ξ) = φS(rKL(ξ)). (3.2)

The first step rKL : ωτ → ΩKL,τ
t does not see shearing or compression normal to the mid-

surface. That is, lines originally normal to the midsurface rotate and translate with the

midsurface so that they remain constant length and normal to the midsurface. This is

40



Figure 3.2: Elastic spheres on diving boards. We demonstrate appealing dynamics
achieved with self-collision and appreciable bending for shells. Both the spheres and the
diving boards are simulated as thin shells.

φKL φS

āα

ḡα

ḡ3 = ā3

aα

gKLα

gKL3 = aKL3

aα

gα

g3

Figure 3.3: Continuum shell/Kirchhoff-Love splitting. Mid-surface tangents and fibers
are shown in red. Laminae are shown as dashed curves, and the local frame at a point on a
lamina is shown in black. On the left is the undeformed reference configuration, while the
deformed configuration is on the right, and the middle shows the intermediate Kirchhoff-Love
deformation.

consistent with a Kirchhoff-Love kinematic assumption

rKL(ξ) = x(ξ1, ξ2) + ξ3a
KL
3 (ξ1, ξ2). (3.3)

Here aKL3 is the unit normal to the mid-surface which satifsies aKL3 = a1×a2

|a1×a2| where aα =

∂x
∂ξα

. The second step φS : ΩKL,τ
t → Ωτ

t does not move the mid-surface but captures the

shearing and compression/extension of material normal to the mid-surface. That is, lines
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that remained normal to the midsurface and with constant length in the Kirchhoff-Love

mapping rKL are allowed to change length and shear under the mapping φS, thus becoming

non-normal to the midsurface in general (see Figure 3.3).

3.2.1 Deformation gradient

The motion of the shell from the reference configuration to the time t configuration is then

obtained from the composition φ : Ω̄τ → Ωτ
t , φ(X) = r(r̄−1(X)) for X ∈ Ω̄τ . The elastic and

frictional contact responses of our model are characterized in terms of the spatial derivative

(our deformation gradient) of this mapping. The deformation gradient of the motion is

F = ∂φ
∂X

= ∂r
∂ξ

(
∂r̄
∂ξ

)−1

, which can further be expressed in terms of derivatives from the

parameter space gi = ∂r
∂ξi

and ḡi = ∂r̄
∂ξi

as F = gi ⊗ ḡi. Here ḡi are the contravariant basis

vectors associated with ḡi. Furthermore, the composition of motion in Equation (3.2) leads

to the multiplicative decomposition

F = FSFKL, FS = gi ⊗ gKL,i, FKL = gKLi ⊗ ḡi (3.4)

where gKLi = ∂rKL

∂ξi
and gKL,j form the corresponding contravariant basis. We note that the

third contravariant counterparts to the Kirchhoff-Love and material configuration bases are

the same as their covariant counterparts because of the perservation of midsurface normals

in these mappings. That is, gKL3 = gKL,3 = aKL3 and ḡ3 = ḡ3 = ā3 since gKLα · gKL3 = 0 and

ḡα · ḡ3 = 0 (see [Cly17] for details).

3.2.2 Plasticity

As in Jiang et al.[JGT17], we use an elastoplastic decomposition of the motion to resolve

frictional contact. Following that approach, we allow for plastic deformation in the fiber

directions to enable material separation and frictional sliding. However, in order to decouple

the frictional contact stress from the bending stress, we only apply the frictional contact

elastoplastic decomposition to the shearing component of the motion. Furthermore, unlike

in Jiang et al.[JGT17] we also allow for plastic deformation in the laminae to account for
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yielding and denting of the shell. This plastic decomposition is applied to the motion in the

Kirchhoff-Love component of the motion.

The frictional contact elastic stress model in Jiang et al. [JGT17] penalizes compression

and shearing of the surface normals. Since the Kirchhoff-Love component of the motion

does not see any sliding or compression relative to the mid-surface, it is not capable of

resolving frictional contact in this manner. We therefore apply this model to the shearing

and compression/extension component of the shearing motion FS = FS,EFS,P as

FS,E = gα ⊗ gKL,α + aE3 ⊗ gKL3 , (3.5)

FS,P = gKLα ⊗ gKL,α + aP3 ⊗ gKL3 . (3.6)

Here aE3 represents the shearing and compression/extension of normals in the shell that is

penalized elastically. Coulomb friction constrains how much shearing and compression is

penalized. aP3 is the discarded shearing and extension in the fiber direction from plastic

yielding associated with this constraint. They are related through FS,EaP3 = a3. We note

FS,P does not affect components in the laminae since we do not want the frictional contact

response to couple with the elastoplasticty of the Kirchhoff-Love component of the shell

motion.

To allow for yielding and denting of the shell in response to loading, we decompose

the Kirchhoff-Love component of the motion into lamina elastic and plastic parts FKL =

FKL,EFKL,P

FKL,E = gKLα ⊗ gP,α + gKL3 ⊗ ḡ3, (3.7)

FKL,P = gPα ⊗ ḡα + ḡ3 ⊗ ḡ3 (3.8)

Here the form of FKL,P is designed to not affect the motion normal to the mid-surface

since the elastoplasiticty of denting and wrinkling is expressed only in terms of the lamina

components of defomraiton. The exprssion for FKL,E is then what remains to satisfy the

constraint FKL = FKL,EFKL,P . We note that the gPα (with gPα · ḡ3 = 0) in Equation (3.8) for
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FKL,P express the forgotten deformation of plastic yielding in the lamina that is associated

with denting and wrinkling. The {gPα, ḡ3} are the contravariant counterparts to {gPα , ḡ3}.

Lastly, ḡ3 is the same in the covariant and contravariant bases as in Equation (3.4).

3.3 Elastic Stress and Plastic Constraints

We define our elastoplastic constitutive response to deformation and frictional contact terms

of potential energy in the shell. We decompose the total elastic potential as a sum of

contributions from the Kirchhoff-Love (lamina elasticity, denting wrinkling etc.) and shearing

(frictional contact) potentials. The contribution from the Kirchhoff-Love motion is

ΨKL =

∫
ω

∫ τ
2

− τ
2

ψ(FKL,E)

∣∣∣∣∂r̄

∂ξ

∣∣∣∣ dξ. (3.9)

and the total elastic potential energy of the shell is

ΨCS = ΨKL +

∫
ω

∫ τ
2

− τ
2

χ(FS,E)

∣∣∣∣∂r̄

∂ξ

∣∣∣∣ dξ (3.10)

where ψ(FKL,E) is the elastic potential energy density of the Kirchhoff-Love motion and

χ(FS,E) is the energy density of the normal shearing and compression in the continuum shell

motion.

These potentials are defined from energy densities ψ(FKL,E) and χ(FS,E) respectively. In

general, a potential energy density Ξ of this type is related to the material Kirchhoff stress

τ through τ = ∂Ξ(FE)
∂FE

FE. It is the stress defined through this relation that will directly

affect our MPM implementation. In our elastoplastic model, the stress must satisfy certain

constraints related to bending and denting as well as frictional contact. In the sections that

follow we define these elastic stresses and their associated plastic constraints.

44



3.3.1 Bending and lamina potential

The energy density ψ(FKL,E) penalizes only the deformation in the laminae (zero transverse

normal stress) since the Kirchhoff-Love kinematics preclude shearing and compression of the

fibers. The stress in the material is the derivative of this potential with respect to strain (see

Appendix §B.1 for derivation). Our approach supports any potential used in Kirchhoff-Love

shell models. In particular we use the orthotropic model for woven fabrics from Clyde et

al.[CTT17] in Figures 3.10a and 3.10b. Here we provide the derivation of a simple energy

density useful for applications with denting that is isotropic in the lamina directions while

satisfying the zero transverse normal stress condition.

With Kirchhoff-Love kinematics, the lamina directions ḡα = āα + ξ3ā3,α and gKLα =

aα + ξ3a
KL
3,α are always tangent to the mid-surface since ḡα · ā3 = gKLα · aKL3 = 0. In order to

satisfy the zero transverse normal stress conditions, we design a potential density with respect

to the lamina directions by first writing the Kirchhoff-Love deformation in the reference mid-

surface lamina/fiber basis FKL,E = FKL,E
ij āi⊗ āj. Here the directions āα are the tangents to

the midsurface in the reference configuration and ā3 is the normal. This choice of basis more

clearly identifies deformations in the laminae and normal directions since FKL,E
αβ are then

components of deformation in the laminae. The right Cauchy-Green strain is C = Cijāi⊗ āj

with Cij = FKL,E
ki FKL,E

kj . We define the matrix [Ĉ] ∈ R2×2 with entries Cαβ. This is the

upper left 2× 2 block of the matrix of Cij entries and it represents strain in the lamina. We

use a model that is quadratic in the right Hencky strain
[
εR
]

= 1
2

log([Ĉ])

ψ(FKL,E) = µεRαβε
R
αβ +

λ

2
(εRδδ)

2. (3.11)

Here the εRαβ are the entries in
[
εR
]
∈ R2×2 and µ, λ are Lame parameters that can be set

intuitively from Young’s modulus and Poisson ratio to control stiffness and incompressibility

in the lamina. We choose the quadratic in Hencky strain model because it simplifies the

return mapping during plastic yielding (see Section §3.3.2).

It is convenient for our MPM implementation as well as for the plasticity constraints to

work with the Kirchhoff stress τ . It is related to the more commonly used Cauchy stress σ
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as τ = det(F )σ. The derivation of the Kirchhoff stress in terms of the potential is given in

Appendix §B.1. We summarize the expression as

τKL = ταβq
KL,E
α ⊗ qKL,Eβ , τKLαβ = 2µεLαβ + λεLγγδαβ. (3.12)

Here we write the stress in terms of the basis defined by the directions qKL,Ei obtained from

the QR decomposition FKL,E = rKL,Eij qKL,Ei ⊗ āj with respect to the reference lamina/fiber

basis āj. Since the Kirchhoff-Love component of the motion preserves normals to the mid-

surface, the first two directions qKL,Eα are tangent to the deformed lamina and the third

direction qKL,E3 is normal to the mid-surface. Therefore, since τKL is expressed only in

terms of qKL,Eα , we see that it satisfies the zero transverse normal stress condition since it

has no components in the directions normal to the laminae. We use εLαβ to denote the entries

in the left Hencky strain matrix [εL] = 1
2

log([r̂KL,E][r̂KL,E]T ) ∈ R2×2. Here, [r̂KL,E] ∈ R2×2

is the matrix with entries rKL,Eαβ . These are the components of the deformation gradient

FKL,E related to the lamina strain. This formula follows directly from the definition of the

energy in Equation (3.11) and we provide details of the derivation in Appendix §B.1.

3.3.2 Denting yield condition and return mapping

In order to produce permanent denting and wrinkling phenomena resulting from excessive

straining, we introduce a notion of yield stress. Intuitively, stresses satisfying the yield stress

criteria are those associated with elastic, non-permanent deformation in the shell. Those that

do not satisfy the condition are non-physical and permanent plastic deformation will occur

to prevent them from happening. We apply the von Mises yield condition to the Kirchhoff-

Stress in Equation (3.12). This condition states that the shear stress (or magnitude of the

deviatoric component of the stress) must be less than a threshold cvM before permanent

plastic deformation occurs

fvM(τ ) = |τ − tr(τ )

3
I|F ≤ cvM . (3.13)
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This condition defines a cylindrical region of feasible states in the principal stress space since

fvM (τ ) =

√
2

3
(τ1

2 + τ2
2 + τ3

2 − (τ1τ2 + τ2τ3 + τ1τ3)) (3.14)

where τ =
∑

i τiui ⊗ ui with principal stresses τi. Stresses with principal values in the

cylinder do not produce any permanent deformation. Note that zero stress is inside the

cylinder. As deformation becomes significant enough that the principal stresses reach the

boundary of the cylinder, permanent plastic denting and wrinkling will occur. The zero

transverse normal stress nature of τKL =
∑

α τ
KL
α uα ⊗ uα means that its principal stresses

are always in a plane and thus the feasible region is ellipsoidal intersection of the cylinder

and the plane (see Appendix §B.7 for illustration).

In practice, the yield condition is satisfied via projection (or return mapping) of the

stress to the feasible region. During simulation, we first take a time step to create a trial

state of stress ignoring the yield condition. By ignoring the condition, we essentially assume

the material undergoes no further plastic deformation. We use FKL,Etr
, FKL,P tr

to denote

this trial state of elastoplastic strains with associated trial stress τKL
tr

. This stress may or

may not satisfy the yield condition. The trial stress τKL
tr

is then projected to the feasible

region to create τKL which satisfies the yield condition. The elastic and plastic strains are

then computed from the projected stress. We use FKL,E,FKL,P to denote final elastic and

plastic deformation associated with the projected stress τKL. The product of the projected

elastic and plastic deformation gradients must be equal to the original deformation gradient,

creating a constraint on the return mapping

FKL = FKL,Etr
FKL,P tr

= FKL,EFKL,P . (3.15)

We describe the process as FKL,Etr
,FKL,P tr → FKL,E,FKL,P .

The projection is naturally done in terms of the QR decomposition of the trial elastic

deformation gradient FKL,Etr
= rKL,Eαβ

tr
qKL,Eα ⊗ āβ + qKL,E3 ⊗ ā3. The trial principle stresses
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are

τKL,tr1 = (2µ+ λ) log(σEtr
1 ) + λ log(σEtr

2 ) (3.16)

τKL,tr2 = (2µ+ λ) log(σEtr
2 ) + λ log(σEtr

1 ) (3.17)

where σEtr
α are the singular values of the matrix [r̂KL,Etr] ∈ R2×2 with entries rKL,Etr

αβ from

the QR decomposition

[r̂KL,Etr] = [UE]

 σE1
tr

σE2
tr

 [VE]T . (3.18)

We project the trial τKL,trα to the intersection of the von Mises yield surface and the (1, 2)

plane to obtain the projected τKLα from which

 log(σE1 )

log(σE2 )

 =

 2µ+ λ λ

λ 2µ+ λ

−1 τKL1

τKL2

 . (3.19)

We then express the deformation gradient associated with this stress projection as FKL,E =

FKL,E
αβ qKL,Eα ⊗ āβ + qKL,E3 ⊗ ā3 where FKL,E

αβ are the components of the elastic deformation

gradient

[F̂KL,E] = [UE]

 σE1

σE2

 [VE]T . (3.20)

The projected plastic deformation gradient is computed from FKL,P = FKL,E−1
FKL in order

to maintain the constraint in Equation (3.15). We provide more detail in this derivation in

Appendix §B.7.

3.3.2.1 Associativity and Hencky strain

The projection of the trial stress to the feasible region is done using a generalized notion

of closest point. This generalized projection is derived from the associative plastic flow
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assumption. Associativity requires that the closest points to the feasible stress region are

not traced back along lines normal to the boundary, but rather along lines parallel to a

matrix times the normal [BW08]. This matrix is associated with the linearization of the

constitutive model and in general it varies along the boundary. However, with the quadratic

in Hencky strain model given in Equation (3.11), the matrix is constant along the boundary

of the feasible region, which greatly simplifies the process of finding the generalized closest

point. We illustrate this further in Appendix §B.7.

3.3.3 Frictional contact potential

As in Jiang et al.[JGT17], we resolve collision and contact through the continuum. We

design the potential energy density χ(FS,E) to penalize compression and shearing in the

direction normal to the mid-surface as in Jiang et al.[JGT17]. The deformation of the fiber

from the Kirchhoff-Love configuration is given by aE3 = FS,EaKL3 . We decompose this into

shear (aE3S) and normal (sE3 aKL3 ) components aE3 = aE3S + sE3 aKL3 where sE3 = aE3 · aKL3 . As

material normal to the cloth is compressed, the normal component sE3 will decrease and as

the material separates, it will increase. Similarly, as material slides tangentially to the shell

|aE3S| will increase. We therefore write our potential as

χ(FS,E) =
γ

2
|aE3S|2 + f(sE3 ) (3.21)

where γ represents the amount of shear resistance and

f(sE3 ) =

 kc

3
(1− sE3 )3 0 ≤ sE3 ≤ 1

0 sE3 > 1
(3.22)

represents the resistance to compression/contact which increases with the parameter kc > 0.

This potential is designed to increase, and thus penalize, increasing compressive contact and

shear. Note that in the case of fiber elongation (sE3 > 1) there is no elastic penalty as this

would be associated with cohesive contact.

The potential in Equation (3.21) is constant in the fiber direction since aKL3 is constant
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along the fiber from the continuum shell kinematics. Therefore it is convenient to express

the contact potential χ at all points in the fibers in terms of their values at the mid-surface

χ(FS,E(ξ1, ξ2, ξ3)) = χ(FS,E(ξ1, ξ2, 0)) since

∫
ω

∫ τ
2

− τ
2

χ(FS,E)

∣∣∣∣∂r̄

∂ξ

∣∣∣∣ dξ =

∫
ω

χ(FS,E)

∫ τ
2

− τ
2

∣∣∣∣∂r̄

∂ξ

∣∣∣∣ dξ (3.23)

in Equation (3.10). On the mid-surface FS,E(ξ1, ξ2, 0) = aα⊗aKL,α+aE3 ⊗aKL3 . Furthermore,

since the potential varies with the normal and tangential components of aE3 , it is equivalent

to write the energy as a function of the tensor aα⊗ āα + aE3 ⊗ ā3 since its QR decomposition

with respect to the āi basis satisfies

aα ⊗ āα + aE3 ⊗ ā3 = rS,Eij qS,Ei ⊗ āj (3.24)

and the energy density can then be written in terms of the QR decomposition as was done

in Jiang et al.[JGT17]

χ(FS,E(ξ1, ξ2, 0)) =
γ

2

(
rS,E13

2
+ rS,E23

2
)

+ f(rS,E33 ). (3.25)

This follows because the normal and shear components of aE3 can be written in terms of

the basis vectors qS,Ei from the QR decomposition aE3 = rS,Ei3 qS,Ei . With this convention,

sE3 = rS,E33 since span{aα} = span{qS,Eα } and qS,E3 = aKL3 . Using sEi = rS,Ei3 for conciseness

τ S = γsEi s
E
j qS,Ei ⊗ qS,Ej +

(
f ′(sE3 )sE3 − γsE3

2
)

qS,E3 ⊗ qS,E3 . (3.26)

We provide a more detailed derivation of energies defined in terms of the QR decomposition

and this specific case in Appendix §B.4.

3.3.4 Frictional contact yield condition and return mapping

With a continuum view of frictional contact, Coulomb friction defines a constraint on the

types of stress that are admissible. This can be done concisely in terms of the Cauchy stress
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σ. This stress measure is defined through contact interactions internal to a continuum body

[GS08]. Specifically, the contact force per unit area across a surface with normal n is σn. In

the shell, the contact direction is aKL3 . Coulomb friction places a constraint on the stress as

|tS| ≤ −cFσn (3.27)

where σaKL3 = σna
KL
3 + tS. Here σaKL3 is contact force per unit area, σna

KL
3 is its normal

component and tS is the shearing component orthogonal to aKL3 . The condition in Equa-

tion (3.27) states that the magnitude of the shearing component can be no larger than a

coefficient of friction times the normal component, with the convention that no shearing is

allowed in the case of σn > 0 since this would be a separating rather than a compressive

state. We note that each object can have its own coefficient of friction which provides a

simple way of modeling interactions between many objects.

The Kirchhoff stress is related to the Cauchy stress as τ = det(F)σ. By design, the

Kirchhoff-Love Kirchhoff stress has no component in the aKL3 direction τKLaKL3 = 0. There-

fore, the Coulomb friction constraint applies only to the shearing Kirchhoff stress τ S. Using

Equation (3.26) we can see that the continuum stress Coulomb friction condition is

√
sE1

2
+ sE2

2 ≤


cF k

c

γ

(
1− sE3

)2
, 0 < sE3 ≤ 1

0, sE3 > 1
(3.28)

Whereas the plastic constraint associated with denting involved the principle stresses of

τKL, only the components sEi of the elastic aE3 in the qS,Ei basis are constrained under the

Coulomb condition. It is satisfied with a return mapping of trial elastic aE3
tr

= sEi
tr
qS,Ei to

the projected aE3 = sEi qS,Ei where the trial and projected coefficients are related through

sEα =

 h(aE3
tr

)sEα
tr
, 0 < sE3

tr ≤ 1

0, sE3
tr
> 1

, sE3 =

 sE3
tr
, 0 < sE3

tr ≤ 1

1, sE3
tr
> 1

(3.29)
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with

h(aE3
tr

) =


cF k

c(1−sE3
tr)

2

γ

√
sE1

tr2
+sE2

tr2
,

√
sEtr

1
2

+ sEtr
2

2
> cF k

c

γ

(
1− sEtr

3

)2

1,

√
sEtr

1
2

+ sEtr
2

2 ≤ cF k
c

γ

(
1− sEtr

3

)2
.

(3.30)

This is the projection from Jiang et al.[JGT17] where 0 < sE3
tr ≤ 1 implies material is

compressed from contact in the normal direction. In this case, the function h regulates the

amount of shearing allowed relative to compression from the Coulomb constraint. In the case

sE3
tr
> 1, material is separating in the normal direction and thus no resistance to shearing

or compression is allowed.

3.4 Subdivision and B-spline FEM

The Kirchhoff-Love kinematics require higher regularity for midsurface interpolating func-

tions in FEM calculations. This arises from the use of the normal aKL3 in the definition of

the kinematics in Equation (3.3) since the deformation gradient in the shell then depends on

second order derivatives of the kinematics of the midsurface. Technically the requirement is

H2 regularity, meaning that the interpolating functions and all their derivatives of order less

than or equal to two are square integrable over the midsurface. In practice this means that

the interpolating functions must also have continuous first derivatives (C1 continuous) over

the midsurface. This is a challenging constraint on the interpolating functions. We represent

the shell midsurfaces as Catmull-Clark subdivision surfaces since they posses the required

regularity.

The Catmull-Clark subdivision scheme takes as input an arbitrary polygonal mesh and

returns a subdivided, refined mesh. The input polygonal mesh is referred to as the control

mesh, and the limiting result of the subdivision process yields a H2 surface [CC78, Sta98].

As the output mesh from Catmull-Clark subdivisions only consists of quadrilateral faces, we

may assume that all input meshes have quadrilateral faces by replacing the control mesh

with its first subdivision if necessary.
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We denote the world space locations of the control points by xp, where p = 1, ..., np and

np is the number of control points. We use xKL =
(
x1,x2, . . . ,xnp

)T
to denote the collection

of all xp. The limiting surface from subdivision is represented as

x(xKL, ξ1, ξ2) = xpN
SD
p (ξ1, ξ2),

where NSD
p ∈ H2

(
ω → [0, 1]

)
is the FEM basis weight function corresponding to the control

point p. The NSD
p have only local support and for each (ξ1, ξ2) ∈ ω, only a sparse subset

of NSD
p (ξ1, ξ2) are nonzero. We use the OpenSubdiv library to evaluate the basis functions

NSD
p (ξ1, ξ2) and their first and second derivatives.

For each control mesh face, we sample rectangular quadrature points on either side of the

face with ξ3 = − τ
4

and ξ3 = τ
4

for energy density evaluation. The generalized force on each

of the control points is calculated as the negative derivative of the Kirchhoff-Love energy in

Equation (3.10) which we approximate using quadrature

ΨKL =
∑
q

V 0
q ψ(FKL,Etr

q (xKL)) (3.31)

The derivatives satisfy

fKLp = −
∂ΨKL(FKL,Etr

q (xKL))

∂xp
(3.32)

= −
∑
q

V 0
q

∂ψ

∂F
(FKL,Etr

q (xKL))) :
∂FKL,Etr

q

∂xp
(xKL). (3.33)

Here ξq1, ξq2 are the locations of the quadrature points in parameter space and V 0
q are their

associated volumes. For each quadrature point q, the Kirchhoff-Love deformation gradient

at mid-surface configuration xKL is computed from

FKLq (xKL) =
3∑
i=1

gqi(x
KL)⊗ ḡiq. (3.34)
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Furthermore, in Equation (3.33),

∂ψ

∂F
(FKL,Etr

q (xKL)) = τKL(FKL,Etr
q (xKL))

(
FKL,Etr
q (xKL)

)T
where τKL is from Equation (3.12). This relation follows from the definition of the first

Piola-Kirchhoff stress and its relation to the Kirchhoff stress [BW08].

The trial elastic deformation FKL,Etr and its derivative with respect to control points

∂FKL,Etr
q

∂xp
(xKL) are computed assuming no further plastic flow over the time step

FKL,Etr
q = FKL

q FKL,P,n
q

−1
(3.35)

∂FKL,Etr
q

∂xp
(xKL) =

∂FKL
q

∂xp
(xKL)FKL,P,n

q

−1
(3.36)

Note that when calculating the generalized force in Equation (3.32)-(3.33), FKL,Etr is used

even though the associated stress may not satisfy the yield criteria. This is a consequence

of the variational FEM discretization of the analogous formula for the stress in terms of

derivative of the strain energy density[BW08]. We provide the calculation of FKL
q (xKL) and

∂FKLq
∂xp

(xKL) in Appendix §B.2.

3.5 MPM Discretization

We use MPM to discretize our elastoplastic model for frictional contact. We represent the

shell using particles connected with subd interpolation as in §3.4. That is, we consider the

subd FEM control point as particles in a MPM method. This allows us to resolve contact

and collision automatically through the elastoplastic constitutive behavior when we transfer

to the background grid. There is no need for any collision detection or resolution other

than that inherent in the MPM discretization of the continuum model. Furthermore, our

approach naturally allows for coupling with materials (e.g. granular sand, snow and soil)

simulated with MPM.

MPM is a hybrid Lagrangian/Eulerian approach. However, the primary representation
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of material for MPM is the Lagrangian state. At time tn, we store particle position xnp ,

velocity vnp , initial mass mp, initial volume V 0
p , affine velocity Cn

p for all materials in the

simulation. Similar to Jiang et al.[JGT17], we classify particles as either: (i) traditional

MPM particles, (ii) subd particles or (iii) continuum shell shearing/compression particles.

Particles of type (i) are used for coupling with traditional MPM materials like sand or snow.

Types (ii) and (iii) are associated with elasticity and frictional contact respectively in the

subd shell mesh. Furthermore, particles of type (ii) are control vertices in xKL (see §3.4) for

the subd shell and particles of type (iii) are quadrature points for the shearing component

of the energy in Equation (3.10) and lie on the subd surface. For particles of type (i), we

store the elastic deformation gradient FE,n
p . For particles of type (iii), we store the time

tn elastic shearing aEp3 and the parameters in the mid-surface (ξp1, ξp2) associated with the

particle. As in Jiang et al.[JGT17], we use the notation I(i), I(ii), I(iii) to represent the

sets of particle indices of types (i), (ii) and (iii) respectively. At each of the quadrature

points used in the Kirchhoff-Love energy, we store the deformation gradient and its elastic

and plastic components FKL,n
q , FKL,E,n

q , FKL,P,n
q , the reference contravariant basis vectors

ḡiq needed for deformation gradient computation, and the mid-surface parameters (ξp1, ξp2)

associated with the point. Although these quadrature points are not MPM particles and

are not used in transfers to and from the grid etc., we additionally use I(iv) to denote the

collection of quadrature points used in the Kirchhoff-Love energy. We illustrate all particle

and quadrature point types in Figure 3.6.

In MPM, the Eulerian grid can be viewed as an auxiliary structure for updating the

Lagrangian state. We first transfer the particle mass and momentum state to an equivalent

grid counterpart. We use mn
i to denote the mass of Eulerian grid node xi at time tn, vni to

denote its velocity and pn+1
i to denote its linear momentum after the grid update. The grid

momentum is updated from the force defined as the gradient of the potential energy with

respect to grid node motion. The motion of the grid is then interpolated to the particles

to update the Lagrangian state without ever actually moving grid nodes. Our approach is

ultimately very similar to other MPM methods that define forces from a notion of potential

energy [YSB15, DB16, SSC13, JSS15, KGP16] and particularly Jiang et al.[JGT17]. We
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briefly discuss aspects common to the approach of Jiang et al.[JGT17] and discuss our novel

modifications needed for subd shells in more detail.

3.5.1 Grid transfers: particle to grid

To update the Lagrangian state, we transfer mass and momentum from particles xnp to the

grid nodes xi using APIC [JSS15].

mn
i =

∑
p

wnipmp (3.37)

vni =
1

mn
i

∑
p

wnipmp(v
n
p + Cn

p (xni − xnp )) (3.38)

Here wnip = N(xnp − xi) is the weight of interaction between particle xnp and grid node xi.

The N(x) are linear, quadratic or cubic B-spline kernels used for interpolation over the grid.

vnp and Cn
p define an affine notion of velocity local to the particle.

3.5.2 Grid momentum update

The grid momentum update uses the updated Lagrangian view of the governing physics

[BLM13, FGG17b]. The grid at time tn, after transferring state from the Lagrangian par-

ticles, is an alternative Lagrangian mesh with degrees of freedom xi, vni and mass mn
i . Its

update is derived from the Lagrangian FEM discretization of a problem with a notion of

potential energy. The internal force is the negative gradient of the potential energy with

respect to positional changes. Using xn+1
i and pn+1

i to denote the new position and linear

momentum state after the time step, the grid discretization has the form

xn+1
i = xi +

∆t

mn
i

pn+1
i (3.39)

pn+1
i = mn

i v
n
i −∆t

∂Ψ

∂xi

(x∗) + ∆tmn
i g (3.40)

where Ψ(x) is the potential energy which depends on the positional state where we use

x∗ =
(
x∗i1 ,x

∗
i2 , . . .

)T
to denote the vector of all grid node positions. In the case of symplectic
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Euler integration, x∗i = xi and in the case of backward Euler, x∗i = xn+1
i . We note that

the grid nodes are not actually moved from xi to xn+1
i . Instead, the motion of the grid is

interpolated to the particles (see §3.5.3).

The potential energy Ψ is a sum of the contributions from the shell ΨCS and from

traditional MPM particles ψM used for coupling multiple materials.

Ψ(x∗) =
∑
p∈I(i)

ψM
(

FE,tr
p (x∗)

)
V 0
p + ΨCS(x∗) (3.41)

ΨCS(x∗) =
∑

p∈I(iii)
χ

(
apα(xKL(x∗))⊗ āpα

+ aE,trp3 (xKL(x∗))⊗ āp3

)
V 0
p

+
∑
q∈I(iv)

ψ

(
FKL,Etr
q (xKL(x∗))

)
V 0
q . (3.42)

Here ψM is the contribution from the standard MPM potential discretization (see e.g. Stom-

akhin et al.[SSC13]) and ΨCS is the contribution from the continuum shell. An advantage

of the MPM approach is that coupling is achieved between any materials whose constitutive

behaviors can be defined from potential energies. With any such models, coupling is achieved

by first representing the motion of the materials in a Lagrangian way (e.g. discrete particles

or Lagrangian meshes) and defining their motion and the way it effects their potential energy

in terms of interpolation from the grid. With this model, coupling is a simple as defining

the total potential energy as the sum of the varied materials.

The energy ΨCS is the sum of the discretization of the Kirchhoff-Love component in

Equation (3.10) given in Equation (3.31) and the frictional contact energy in Equation (3.23)

obtained from the quadrature points q ∈ I(iv) and p ∈ I(iii) respectively. We highlight

the dependence of these potentials on the grid motion x∗. For particles of type (i), this

dependence follows from the updated Lagrangian formulation

FE,tr
p (x∗) =

(∑
i

x∗i ⊗∇wnip

)
FE,n
p (3.43)
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Here ∇wnip = ∇N(xnp − xi) is the gradient of the grid interpolating function (or weight

gradient) and
(∑

i x
∗
i ⊗∇wnip

)
represents deformation induced by the grid motion x∗. For

particles of type (iii), the dependence follows from the updated Lagrangian

aE,trp3 (x∗) =

(∑
i

x∗i ⊗∇wnip

)
aE,np3 (3.44)

and from interpolation the xKL(x∗) in Equation (3.45) in apα(xKL(x∗)) (Appendix §B.6).

Following the approaches in Jiang et al.[JSS15, JGT17], the mid-surface control points for

the shell are interpolated from the grid degrees of freedom as

x∗p =
∑
i

x∗iw
n
ip, p ∈ I(ii). (3.45)

This interpolation also affects the discrete Kirchhoff-Love term through quadrature points

q ∈ I(iv).

Taking the x∗ dependence into account and using the chain rule, the potential energy

based forces obtained from the gradient of Ψ with respect to x∗ are

∂Ψ

∂xi

(x∗) = f
(i)
i (x∗) + f

(ii)
i (x∗) + f

(iii)
i (x∗) (3.46)

f
(i)
i (x∗) =

∑
p∈I(i)

∂ψM

∂FE
(FE,tr

p (x∗))FE,n
p

T∇wnipV 0
p (3.47)

f
(ii)
i (x∗) =

∑
p∈I(ii)

wnipf
KL
p (xKL(x∗)) (3.48)

f
(iii)
i (x∗) =

∑
p∈I(iii)

τ Sp ãβp :
∂apβ
∂xp

wnip + τ Sp ã3
p : ∇wnipa

E,n
p3 (3.49)

In Equation (3.48), fKLp is the generalized Kirchhoff-Love force from Equation (3.32). In

Equation (3.49), the stress τ Sp is from Equation (3.26) and the vector ã3
p is the third con-

travariant basis vector with respect to the covariant basis {aα(x∗), aE,tr3 (x∗)}. We refer to

Appendix §B.1 for this derivation.
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3.5.3 Grid transfers: grid to particle

The grid to particle transfer defines the time tn+1 affine velocity local to particle xnp in terms

of vn+1
p and Cn+1

p from

vn+1
p =

∑
i

wnip
pn+1
i

mn
i

(3.50)

C̃n+1
p =

12

∆x2(d+ 1)

∑
i

wnip
pn+1
i

mn
i

⊗ (xni − xnp ) (3.51)

Cn+1
p = (1− ν) C̃n+1

p +
ν

2

(
C̃n+1
p − C̃n+1T

p

)
(3.52)

Here d is the B-spline degree (d = 3 for cubic b-spline interpolation, d = 2 for quadratic B-

spline interpolation) and ∆x is the Eulerian grid spacing. ν is the explicit damping coefficient

from Jiang et al.[JGT17] where ν = 0 is completely undamped and 1
2

(
C̃n+1
p − C̃n+1T

p

)
is

the RPIC transfer from Jiang et al.[JSS15].

3.5.4 Update positions and trial elastic state

For particles of type (i) and (ii), positions are moved with the interpolated grid node veloc-

ities. For particles of type (iii), positions are updated based on interpolation from updated

particles of type (ii).

xn+1
p = xnp + ∆tvn+1

p =
∑
i

xn+1
i wnip, p ∈ I(i) ∪ I(ii) (3.53)

xn+1
p =

∑
p(ii)∈I(ii)

xn+1
p(ii)

NSD
p(ii)(ξp1, ξp2), p ∈ I(iii). (3.54)

We first assume there was no additional plastic flow over the time step and consider a trial

state of elastic deformation. For particles of type (i) and (iii), the trial elastic deformation

FE,tr
p and aE,trp3 are computed as in Equations (3.43) and (3.44) respectively with x∗i = xn+1

i .

For Kirchhoff-Love quadrature points q ∈ I(iv), the trial elastic deformation gradient FKL,Etr
q

is computed from Equation (3.35) where xKL(x∗) is interpolated as in Equation (3.45) with

x∗i = xn+1
i .
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3.5.5 Update plasticity

The assumption of no plastic flow over the time step is often safe. However, if the trial

state of elastic stresses are not inside the yield surfaces associated with denting, frictional

contact, etc. then they must be projected to satisfy the constraint. For particles p ∈ I(i),

FE,tr
p is projected to FE,n+1

p in accordance with whichever yield surface is being used (e.g.

the Drucker-Prager law in Klár et al.[KGP16]). For quadrature points q ∈ I(iv), FE,tr
q and

FP,tr
q are projected to FE,n+1

q and FP,n+1
q in accordance with the denting return mapping in

§3.3.2. Lastly, the aE,trp3 are projected to an+1
p3 in accordance with the frictional contact return

mapping in Equation (4.23).

3.6 Results

We demonstrate the efficacy of our method on a number of representative examples that

exhibit appreciable bending and persistent self-collision and show that our method automat-

ically allows for coupling with granular materials. Furthermore, we demonstrate the range

of behaviors that are possible with the parameters in our model. We list the runtime per-

formance for all of our examples in Table 3.1. All simulations were run on an Intel Xeon

E5-2687W v4 system with 48 hyperthreads and 128GB of RAM. We report the timing in

terms of average seconds of computation per frame. We chose ∆t in an adaptive manner

that is restricted by a CFL condition when the particle velocities are high. In all of our sim-

ulations we use a CFL number equal to 0.3, i.e., we do not allow particles to move further

than 0.3∆x in a time step.

3.6.1 Effect of shell thickness

We control the bending stiffness of the shell by varying the thickness τ . In Figure 1.1,

six cylinders with increasing thickness from left to right free-fall and drop on the ground.

In Figure 3.8, four cylinders of decreasing thickness from left to right buckle under lateral

pressure and exhibit characteristic buckling patterns. In Figure 3.7, ribbons of varying

60



thickness are planted in plates and twisted to produce interesting buckling phenomena.

3.6.2 Woven fabrics

We demonstrate that our method supports any potential function in the Kirchhoff-Love shell

model. In particular, we implement the data-driven orthotropic model for woven fabrics from

Clyde et al.[CTT17] with parameters fitted from experimental data. In Figure. 3.9a and

3.9b, we twist and compress sleeves made of denim and silk. In Figure. 3.10a and 3.10b,

we suspend squares of silk and denim which then collide with moving spheres. Our model

accurately captures the behaviors of these real world materials.

3.6.3 Self collisions

Our model successfully resolves self-collision without any use of collision detection or con-

straint modeling outside the MPM discretization. We demonstrate this in a number of

representative scenarios. In Figure 3.2, the spheres and the diving boards, both modeled as

shells, collide with each other. In Figure 1.1 and Figure 3.12, we demonstrate self-collisions

resolution for clothing simulation stress tests. In Figure 3.5, four decks of cards collide and

then slide against each other to demonstrate the effect of varying friction coefficients.

3.6.4 Plasticity for denting

Our method naturally incorporates the effect of plasticity in the shell. In Figure 3.4, three

cylinders with different yield stress are twisted and then released. By changing the yield

stress, we are able to control the amount of denting. In Figure 3.13, a square sheet of

metal is compressed and then dented with a rod. The effect of plasticity creates permanent

buckling and denting deformation.
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3.6.5 Two-way coupling

Our MPM approach automatically resolves coupling of different materials. In Figure 1.1, a

cup is filled with slush and then released and toppled. The cup is modeled as a shell and

the slush is modeled as in Stomakhin et al.[SSC13]. This example demonstrates that our

method successfully resolves the interactions between two different materials of millions of

particles with moderate computation cost.

3.6.6 Resolution refinement

In Figure 3.11 we examine the behavior of our method under refinement of grid and subd

mesh spatial resolution. This refinement study is done on a sleeve-buckling simulation with

boundary conditions compressing the material at top and bottom. As the spatial resolution

is increased, the simulation converges to the characteristic buckling pattern that is expected.

3.6.7 Bending with Jiang et al.

We demonstrate the failure of the Jiang et al. [JGT17] model in achieving significant bending

resistance. In Figure 3.15 we compare our model with the Jiang et al. generalized to bending

with the addition of bending springs. The frictional contact model in Jiang et al. [JGT17]

was not designed for bending resistance, however it is possible to simply add bending cross

springs to their model even though it violates the stress assumptions. We show that this is

not capable of generating significant resistance to bending whereas our approach is designed

to support stiff shells and thin membranes.

3.7 Discussion and Limitations

While our method can efficiently simulate thin shells with extreme contact and collision,

there are a number of notable limitations. First, we have the same artifacts as Jiang et

al. [JGT17], namely visible separation if ∆x is too large, persistent wrinkles if subd mesh

resolution is too high relative to the grid resolution and self-penetration if the resolution is
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Figure seconds/frame Element # Particle # ∆x

Cup of Slush 1.1 273 19.5K 3.1M 0.04
Shirt Twister 1.1 188 168K 504K 0.005
Six Cylinders 1.1 2/2/2/2/2/4 20K 60K 0.025
Walk Cycle 1.1 75 33K 100K 10
Silk Curtain 3.10a 167 75K 227K 0.004
Denim Curtain 3.10b 3 8K 25K 0.012
Pants Twister 3.12 78 131K 393K 0.005
Silk Twister 3.9a 47 63K 315K 0.02
Denim Twister 3.9b 3 15.8K 47K 0.04
Spheres On Diving Board 3.2 87 150K 450K 0.027
Playing Cards 3.5 55 23K 115K 0.02
Plastic Twister 3.4 < 1 5K 14K 0.06
Sleeves (Yellow) 3.8 97 126K 378K 0.01
Sleeves (Others) 3.8 8 31K 93K 0.02
Fixed Ribbons 3.7 3/8/30 12K 93K 0.02
Free Ribbons 3.7 4/4/7 12K 85K 0.02
Denting with Rod 3.13 < 1 5K 15K 0.01

Table 3.1: All simulations were run on Intel Xeon E5-2687W v4 system with 48 hyperthreads
and 128GB of RAM. Element # denotes number of quadrilaterals. Particle # denotes the
number of type (i), (ii) and (iii) particles.

too low relative to the grid. Also, the time step size is generally smaller than those used

for membranes in Jiang et al. [JGT17]. This is due to the added stiffness associated with

shell thickness and bending. With MPM, the increase in time step size with implicit time

stepping is bounded above since particles cannot move more than a grid cell in a time step

without causing bunching, self collision or material inversion. Therefore the demand on the

efficiency of nonlinear solver for the implicit systems is very high. Unfortunately this demand

is difficult to meet since the nonlinear systems have non-symmetric linearizations that result

from the plasticity [KGP16]. “Lagging” the plasticity as in Stomakhin et al.[SSC13] provides

a symmetric linearization but can cause cohesion artifacts that are unacceptable for frictional

contact applications. Development of a solver that is more efficient than Newton’s method

with GMRES for the linearized systems is an interesting area of future work.
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Figure 3.4: Plastic shell deformation. The effect of the yield condition in Equation (3.13)
is shown here with decreasing values of the coefficient cvM (from left to right). Larger values
correspond to a larger stress needed for before denting plasticity is induced. The cylinders
are twisted and then dropped to the ground to illustrate the plastic deformation.
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Figure 3.5: Variation in Coulomb friction coefficient. The effect of the friction pa-
rameter cF can be seen in this card comparison. By decreasing cF (from left to right) we
demonstrate a range of surface frictions.

x
x

x
x

x

x

x

x

X

traditional MPM particles I(i)

subd particles I(ii)

continuum shell
shearing/compression particles I(iii)

quadrature points I(iv)

Figure 3.6: Particle type classification. A schematic illustration of the different types of
MPM particles and quadrature points.
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Figure 3.7: Ribbons. We illustrate interesting dynamics achieved from colliding ribbons
with increasing thickness (from left to right).

Figure 3.8: Variation in shell thickness. We demonstrate the effect of the shell thickness
parameter in a compression comparison.
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(a) (b)

Figure 3.9: Twisting Orthotropic Model. Using the data-driven model of Clyde et al.
[CTT17] for woven materials, the characteristic wrinkling of silk (left) and denim (right) is
obtained. Our method naturally resolves the many self-collisions induced by the twisting
boundary conditions.

(a) (b)

Figure 3.10: Orthotropic Model. A range of materials can be simulated with our con-
tinuum shell formulation. Here we use the data-driven model of Clyde et al. [CTT17] for
woven silk (left) and denim (right) materials. The model naturally allows for characteristic
buckling and wrinkling behaviors in this object collision test.
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Figure 3.11: Convergence under spatial refinement. We demonstrate that our method
converges under refinement of grid and subd mesh spatial resolution in this buckling example.
The simulations have increasing spatial resolution from left to right.

Figure 3.12: Pants twister. Our approach works for clothing simulation with many self
collisions as shown here in the legs of a twisted pair of pants. The subdivision mesh for the
pants has 393K control points and the simulation runs at 78s per frame.
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Figure 3.13: Denting. We demonstrate plastic deformation of foil induced by object colli-
sion.

Figure 3.14: Grid resolution dependent wrinkling. Our method suffers from persistent
wrinkling if the subd mesh resolution is too high relative to the grid resolution. We demon-
strate this phenomenon here with a cloth twisting comparison example. In both examples,
the subd mesh ∆x = 0.02. The example on the left has grid ∆x = 0.02 whereas the one on
the right has grid ∆x = 0.04.

Figure 3.15: Jiang et al. [JGT17] comparison. We demonstrate that only moderate
bending is possible with the approach of Jiang et al. [JGT17]. Our approach allows for a
much wider range of bending resistance.
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CHAPTER 4

Simulation for Volumetric Objects with Frictional

Contact

4.1 Constitutive Model

For volumetric elastic objects, we adopt the fixed corotational model from [SHS12], though

any hyperelastic potential may be used. With this choice, the stress satisfies

ψ(F) = µ
∑
i

(σi − 1)2 +
λ

2
(J − 1)2,

P = µ(F−R) + λ(J − 1)JF−T .

(4.1)

Here µ and λ are the Lamé coefficients that express the material resistance for deformation

and volume change, and σi are the singular values of the deformation gradient F computed

according to the polar SVD convention of [ITF04] to allow for extreme deformation.

4.2 Discretization

Our hybrid FEM/MPM discretization of hyperelastic volumetric objects closely resembles

that of traditional FEM for hyperelasticity [SB12]. However, our approach is largely moti-

vated by the the MPM treatment of volumetric objects from Jiang et al. [JSS15] and Zhu

et al. [ZZL17]. This method was originally designed to prevent the numerical fracture that

would occur with volumetric objects in traditional particle-based MPM. We first discuss this

approach and how it resolves self collision, followed by its drawbacks.
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In this formulation, the state at time tn consists of particles with positions xnp connected

with a tetrahedron mesh with elements indexed by e, as in Lagrangian FEM. Furthermore,

particles store velocities vnp and masses mp. The MPM time step from time tn to tn+1 consists

of three steps: (1) mass (mp) and momentum (mpv
n
p ) are transferred from particles to the

grid using weights (wnip = N(xnp−xi)) that describe the degree of interaction between particle

p and grid node i and which are defined by Eulerian grid interpolation functions N(x), (2)

the grid momentum (mn
i v

n
i ) is updated in a variational way from the potential energy in the

system and finally, (3) the motion of the grid under the updated momentum is interpolated

to the particles. The process of updating the grid momentum in step (2) uses the updated

Lagrangian convention where the time tn configuration serves as the reference, rather than

the t = 0 configuration in a Lagrangian discretization. With this updated Lagrangian con-

vention, the particles xnp are moved by the grid via interpolation xn+1
p =

∑
i x

n+1
i wnip, and

they change the potential energy via the per-element deformation gradient computed as in

standard FEM (see Equation (4.2)). The grid node vertices xi, which are allowed to move

temporarily as xn+1
i = xi + ∆tvn+1

i , serve as degrees of freedom. When the spatial dis-

cretization is done variationally from the potential energy, this step is almost identically

what is done in a Lagrangian FEM discretization of elastoplasticity [SB12]. In this sense,

the method can be interpreted as continually remeshing the domain of the material, where

the transfer process in step (1) is all that is needed to define the mesh at a given time step.

We refer the reader to [JSS15, JST16] for more basic MPM details.

The MPM update only considers the variation of the potential energy with respect to grid

degrees of freedom; nothing explicit is done to model self collision. Self collision is modeled

as if it were an elastic phenomenon, and by virtue of switching between particle and grid rep-

resentations. We describe these two aspects of collision resolution as type (i) and type (ii).

Type (i): The grid transfers in step (1) ultimately remesh the domain (see Figure 4.1).

By transferring to the grid, and using an updated Lagrangian formulation where the grid

nodes are updated based on the variation of the potential energy in Equation (4.1), MPM
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(a)(a)

(c)(c)

(b)(b)

Figure 4.1: MPM Overview. The steps in the MPM update are: (a) The Lagrangian
quantities (black and red) are transferred to an Eulerian grid (blue), which may be viewed
as a new FEM mesh. (b) Grid nodes receive new velocities (purple) from updated Lagrangian
elastic updates and are temporarily moved with those velocities. (c) The Lagrangian quan-
tities are updated by interpolating from the new positions and velocities of the Eulerian grid
nodes. The triangles are colored based on the amount of compression.

essentially uses a new FEM mesh (blue in Figure 4.1) to calculate the elastic update. This

process creates new connections in the updated Lagrangian mesh and once they are made,

collision inducing modes are penalized via the potential energy in the system (see Figure 4.1).

For example, collision trajectories in the particles will induce compression in elements of the

Eulerian grid which would be penalized from the elastic potential in the system.

Type (ii): Since the motion of the Eulerian grid after the momentum update in step (2)

is interpolated to the particles using continuous interpolating functions, particle collisions

cannot occur as long as the Eulerian mesh is not tangled by the motion. This can be guar-

anteed with a CFL restriction. Collisions occur because of discontinuities in the velocity,

e.g. consider two particles next to each other with opposing velocities. Transferring to and

from the grid smooths the particle velocities, which ultimately prevents collision. In fact, an

updated Lagrangian MPM simulation with no constitutive model on the particles at all can

still prevent material collision, simply by virtue of the type (ii) interactions (see Figure 4.2).

These modes of collision resolution are simplistic, but limited by several drawbacks. For
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volumetric objects, the type (i) interactions are unable to regulate the potential energy

with a plasticity model derived from Coulomb friction as in [JGT17] and Chapter 3. The

mesh is volumetric and therefore does not have the flexibility of codimension that can be

used to model contact through the continuum. There are no directions left for plastic flow

of the type designed in [JGT17] that could be used to satisfy the Coulomb friction stress

constraints. This can lead to unregulated resistance to shearing and cohesion as the elas-

tic potential will still increase with these modes, even though that is not consistent with

Coulomb friction (see Figure 4.3). Furthermore, the updated Lagrangian treatment of the

stress-based momentum leads to visual interaction at a distance and persistent wrinkling

when the grid resolution is too low [JSS15, FGG17b, HN17]. Additionally, when the grid

resolution is too high, type (i) and type (ii) interactions have no effect and the method does

not prevent collision (see Figure 4.2). It is therefore required that for volumetric elasticity,

the Lagrangian mesh resolution must be about the same as the Eulerian grid resolution. This

is suboptimal when a coarse Lagrangian mesh suffices for resolution of deformation modes

since collision interactions will also be resolved at a coarse scale with visible separation when

the Eulerian grid resolution is set appropriately.

4.2.1 Hybrid Lagrangian MPM for elastic solids

Our method is designed by abandoning the type (i) collision prevention for volumetric

meshes and the updated Lagrangian integration of the elastic forces in general. Instead we

use a splitting approach where elastic forces are applied in a Lagrangian way, and type

(ii) interactions are integrated by MPM with no elastic force computation. We achieve

this by introducing collision particles xnq which are sampled on the boundary of the volu-

metric elastic mesh. These particles are not true degrees of freedom and are tied to the

mesh during the Lagrangian update. They are then used to generate type (ii) collision

prevention. We show that their response defines a type of impulse that can be regulated

by Coulomb friction and applied to the mesh at the end of the time step. Furthermore,

because the collision particles can be sampled at a density proportional to the grid spacing,

we show that they remove the effect of grid resolution on collision resolution (see Figure 4.4).

73



Figure 4.2: Type (ii) interations with different ∆x. At appropiate grid resolution
(middle row), MPM prevents material collision even without constitutive model. However,
when the grid resolution is too low (top row), objects are separated at a distance, and when
the grid resolution is too high (bottom row), the MPM grids may miss a collision.
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Figure 4.3: Comparison between MPM (top) and our method (bottom).
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Figure 4.4: Collision particles. Sampling density based on Eulerian grid ∆x.

Our approach uses the same discrete state as in [JSS15]: time tn, particle positions xnp

connected with a tetrahedron mesh, velocities vnp , and masses mp. In addition, we store

the collision particles xnq sampled on the boundary of the tetrahedron mesh. We summarize

essential steps in the algorithm for updating our discrete state to time tn+1 below. Note the

difference between our method and traditional MPM steps sketched in Section §1.1.

1. Lagrangian update: Update particle velocities from potential-energy-based and

body forces, and interpolate velocities to collision particles. §4.2.2

2. Transfer to grid: Transfer mass and momentum from collision particles to grid.

§4.2.3.1

3. Transfer to collision particles: Transfer velocities from grid back to collision par-

ticles. §4.2.3.2

4. Apply impulses: Calculate the impulse applied to each boundary mesh using the

velocity change in collision particles and update velocities of particles on the boundary

mesh.

5. Update positions: Update particle positions and elastic states. §4.2.5.
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4.2.2 Lagrangian update

We consider the case of piecewise linear interpolation over a tetrahedron mesh. The defor-

mation gradient varies in a piecewise constant manner with each element, which we denote

as Fe. With this convention, the FEM force per particle fp can be seen as the negative

gradient of the the total potential energy Ψ with respect to grid node positions:

Fe(x) =
∑
p

xp
∂Ñp

∂X
(Xe) (4.2)

Ψ(x) =
∑
e

ψ(Fe(x))V 0
e (4.3)

fp(x) = −
∑
e

∂ψ

∂F
(Fe(x)) :

∂Fe

∂xp
(x)V 0

e (4.4)

= −
∑
e

P(Fe(x))
∂Ñp

∂X
V 0
e . (4.5)

Here x ∈ R3np refers to the vector of all particles xp, where np is the total number of particles,

Ψ is the total potential energy which is a sum of tetrahedron element contributions ψ(Fe)V
0
e ,

where ψ is the potential energy density in Equation (4.1), V 0
e is the volume of the element in

the initial state, Ñp is the piecewise linear interpolating function associated with particle xp,

and Xe is the tetrahedron barycenter in the time t = 0 configuration. We refer the reader

to Sifakis and Barbic [SB12] for a more detailed derivation.

The FEM update uses the usual Lagrangian view of the governing physics. The internal

force is the negative gradient of the potential energy in Equation (4.5). Particle velocities

are updated according to forces computed at particle positions xn+α
p , where symplectic Euler

integration corresponds to α = 0 and backward Euler corresponds to α = 1:

v∗p = vnp + ∆t
fp(x

n+α)

mp

. (4.6)

When damping is required while using symplectic Euler integration, we construct a back-

ground Eulerian grid with ∆x comparable to the mesh size and transfer the vecloty to and

then back from the grid using APIC with RPIC damping as described in [JGT17]. We can
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Figure 4.5: Element inversion. MPM (left) has difficulties when elements invert, especially
with low grid resolution (yellow and red). Our method (right) handles element inversions
with ease.

even perform the transfers multiple times when more damping is desired. For interior par-

ticles, vn+1
p = v∗p. On the other hand, for particles on the boundary mesh, we interpolate

their velocities and positions to collision particles using

v∗q =
∑
p

bpqv
∗
p (4.7)

xnq =
∑
p

bpqx
n
p (4.8)

where bpq is the barycentric weight of the point q relative to p. We also assign to each point

q an outward normal vector nq inherited from the face of the mesh that q is tied to.
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4.2.3 Grid transfers

4.2.3.1 Particle to Grid

To process collision and contact, we transfer mass and momentum from collision particles

xnq to grid nodes xi using standard MPM transfers

mn
i =

∑
q

wniqmq (4.9)

v∗i =
1

mn
i

∑
q

wniqmqv
∗
q . (4.10)

Here wniq = N(xnq − xi) is the weight of interaction between particle xnq and grid node xi, as

in standard MPM.

4.2.3.2 Grid to particle

Without any constitutive model on the grid, we proceed directly to the grid to particle step.

The grid to particle transfer defines the velocity local to collision particle xnq in terms of v?q

from

v?q =
∑
i

wniqv
∗
i . (4.11)

4.2.4 Apply impulse

Since the velocity v?q is interpolated from an updated Lagrangian background grid, the

boundary of the mesh is safe from self-intersection if it is moved with v?q . However, the

change may not be consistent with a Coulomb friction interaction, and the response can

even be cohesive. In the case of a cohesive response after collision, we reject the change.
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That is, when

vr = v?q − v∗q (4.12)

vr · nq ≥ 0 (4.13)

the updated Lagrangian mesh detects a separation instead of collision, and the collision

particle keeps the velocity from the FEM update v∗q . On the other hand, if

vr · nq < 0 (4.14)

we apply an elastic impulse Iqnq to the mesh at position xnq where Iq = 2mqvr · nq. We

also allow for friction using Coulomb’s model with the friction parameter µ. When an elastic

impulse of magnitude Iq would be applied based on condition (4.14), Coulomb friction admits

a change in magnitude of tangential velocity of at most −µ Iq
mq

. So the combined velocity

change on collision particle q is then

∆vq =
Iqnq
mq

+ min

(
‖vt‖,−µ

Iq
mq

)
vt
‖vt‖

, (4.15)

where vt = vr − vr · nqnq. We then transfer this change to the particles p as

∆vp = vn+1
p − v∗p =

∑
q

b̃pq∆vq (4.16)

where

b̃pq =
bpqmq∑
r bprmr

(4.17)

are the normalized weights defined from the barycentric weights used to transfer from par-

ticles to collision particles.
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4.2.5 Update positions and elastic state

For boundary particles, we adopt symplectic Euler time integration

vn+1
p = vnp + ∆vp (4.18)

xn+1
p = xnp + ∆tvn+1

p (4.19)

For interior particles, the update is in accordance with either symplectic Euler or backward

Euler, depending on the choice of α in Equation (4.6):

vn+1
p = v∗p (4.20)

xn+1
p = xnp + ∆tvn+1

p . (4.21)

4.3 Rigid Body

Two-way rigid body coupling may be achieved with a treatment similar to volumetric elastic

objects. We sample collision particles on the boundary in the same fashion as in Section 4.2.1

and then uniformly distribute the mass of the rigid body to the collision particles. How-

ever, we found that unlike for volumetric elastic objects, type (ii) interactions on the grid

alone are not enough to resolve collisions. Instead we endow the collision particles with the

potential described in [JGT17] and Chapter 3 to penalize contact. Specifically, we update

the deformation gradient Fq from time tn to tn+1 in the following way. Let xα and Xα,

α ∈ {0, 1, 2} be the current and initial positions of the vertices of the triangle that collision

particle q is tied to. Let D̄Dq,β = Xβ −X0 be the undeformed mesh element edge vectors

(where β = 1, 2), and d̂Eq,β = xnβ−xn0 be the deformed edge vectors. We choose each D̄D3 to

be unit-length and normal to D̄D1 and D̄D2, and evolve each one as in traditional MPM via

d̂Eq,3 = ∇xqd
E
q,3. Then F̂E

q = d̂Eq D̄D
−1
q . Following [JGT17] and Chapter 3, we let F̂E

q = QR̂
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be the QR decomposition of F̂E
q and design a collision energy density ψ(R̂) = f(R̂) + g(R̂),

f(R̂) =

 kc

3
(1− r̂33)3 0 ≤ r̂33 ≤ 1

0 r̂33 > 1
, g(R̂) =

γ

2
(r̂2

13 + r̂2
23) (4.22)

where r̂ij is the ij-th entry of R̂. We resolve the force which is the negative derivative of this

energy on the MPM background grid, and we refer the reader to [JSS15, JST16] for more

details. Plasticity is then applied according to [JGT17] and Chapter 3 to give R

r33 =

 r̂33 0 < r̂33 ≤ 1

1 r̂33 > 1
, rβ3 = h(r̂13, r̂23, r33)r̂β3 (4.23)

h(r̂13, r̂23, r33) = min

(
1,
cFk

c (1− r33)2

γ
√
r̂2

13 + r̂2
23

)
(4.24)

Finally, we update the deformation gradient with Fn+1
q = QR.

Let v∗q =
∑

iw
n
iqv
∗
i , where v∗i is the grid velocity after the MPM force update, and let

vr = v∗q − vq. If vr · nq < 0, we apply an impulse Iq to the rigid bodies to update velocity v

and angular velocity ω via

Iq = mqvr · nq (4.25)

vt = vr − vr · nqnq (4.26)

Iq = Iqnq +mq min

(
‖vt‖,−µ

Iq
mq

)
vt
‖vt‖

(4.27)

vn+1 = vn +
∑
q

Iq
mq

(4.28)

ωn+1 = ωn +
∑
q

I−1(r× Iq) (4.29)

where r is the vector from the rigid body’s center of mass to the application point of the

impulse, and I is the inertia tensor.
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Figure 4.6: Skin and shirt. The skin of a mannequin is coupled with clothing simulated
with MPM.

4.4 Coupling with traditional MPM

Our method easily couples with traditional MPM particles such as snow, sand, and cloth-

ing through the Eulerian background grid. To prevent numerical cohesion between phases

common to MPM, we adopt separate grids for volumetric objects and MPM particles. The

interactions among them are resolved by inelastic collision impulses between collocated grid

nodes from different grids. The contact normal nni is determined by the grid averaged normal

of collision particles, which takes the form:

nni =

∑
q wiqnq

‖
∑

q wiqnq‖
(4.30)

We provide implementation details on cohesion-free coupling with traditional MPM in Ap-

pendix §C.1.

4.5 Results

We demonstrate the efficacy of our method with a number of representative examples that

illustrate the dynamics of volumetric objects, and show that our method couples with gran-

ular materials, clothing and rigid bodies. We list the runtime performance for our examples

in Table 4.1. All simulations were run on an Intel Xeon E5-2690 V2 system with 20 threads
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Figure 4.7: Walking mannequins. Our method handles the numerous collisions occurring
in the scene with walking characters.
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and 128GB of RAM. We report the timing in terms of average seconds of computation per

frame. We chose ∆t in an adaptive manner that is restricted by a CFL condition when the

particle velocities are high, i.e., we do not allow particles to move further than the CFL

number times ∆x in a time step.

4.5.1 Volumetric objects

We demonstrate the robustness of our method for resolving collisions between volumetric ob-

jects. We demonstrate that our method correctly resolves frictional sliding without artifacts.

In Figure 4.7, we show a skin simulation with walking characters in various body shapes. In

Figure 4.3, we compare our approach with updated Lagrangian MPM, which exhibits exces-

sive cohesion and numerical friction. We also show that our method removes the requirement

of comparable grid and mesh resolution. We use a moderate resolution Lagrangian mesh

to resolve the dynamics of the bunnies and Jell-O’s and a high resolution Eulerian grid to

resolve more detailed behaviors of the sand. In contrast, updated Lagrangian MPM would

require a high resolution Lagrangian mesh for bunnies and Jell-O’s in order to resolve colli-

sions between phases. Our method handles extreme deformation and even element inversion

as demostrated in Figure 4.5. MPM fails to recover the original shape of the object when

the grid resolution is low and exhibits high frequency noise when the grid resolution is high.

On the other hand, the elastic object recovers its original shape with any grid resolutions

using our method.

4.5.2 Coupling with MPM and rigid bodies

Our method also supports coupling with rigid bodies as well as traditional MPM particles

such as snow, sand and clothing. In Figure 4.6, we demostrate the coupling of soft tissues

with clothing material simulated with MPM as in [JGT17]. In Figure 4.3, colored sand is

poured on top of three Jell-O, generating interesting patterns. In Figure 4.8, elastic dittos

and a column of sand are poured on a series of pinwheels simulated as rigid bodies, setting

them in motion.
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Figure 4.8: Rigid body coupling. Elastic volumetric objects are coupled with MPM
particles and rigid bodies in a scene with intense collisions.

Time Element # Particle # ∆x CFL

Mannequin (Fig. 4.7 left) 39 933K 41k 0.05 0.6
Mannequin (Fig. 4.7 right) 27 641K 31K 0.05 0.6
Pinwheel (Fig. 4.8) 89 93K 930K 0.5 0.6
Jell-O (MPM) (Fig. 4.3 top) 73 8.64M 5.41M 0.005 0.6
Jell-O (Hybrid) (Fig. 4.3 bottom) 220 1.08M 3.81M 0.005 0.6
Bunnies (MPM) (Fig. 1.2 left) 186 3.97M 2.67M 0.1 0.6
Bunnies (Hybrid) (Fig. 1.2 right) 66 201K 1.99M 0.1 0.6
Skin and shirt (Fig. 4.6) 3 207K 120K 0.006 0.6

Table 4.1: All simulations were run on Intel Xeon E5-2690 v4 system with 20 threads and
128GB of RAM. Simulation time is measure in seconds per frame. Element # denotes
number of segments for number of tetrahedra for volumetric simulations. Particle # denotes
the total number of MPM particles and collision particles where applicable.

4.6 Discussion and Limitations

While our approaches address many shortcomings in existing techniques, there are a number

of limitations that persist. While our treatment of rigid body dynamics is useful for coupling

with elastoplastic materials like sand, soft tissues, etc., our approach is not ideally suited for

interactions between rigid bodies. Our approach fails to resolve simple cases like stacking

of a few rigid bodies without penetration and/or grid based separation artifacts. Also, our

collision impulses do not provide any geometric guarantees against self collision, as in e.g.

[BFA02]. If large time steps are taken, material will interpenetrate. In general this can be

avoided by obeying a CFL condition, as is generally true with MPM.
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APPENDIX A

Polynomial Particle-In-Cell Method

A.1 List of Bases

A.1.1 Linear interpolation

Polynomials of the form

s(z) =
d∏

β=1

z
iβ
β , iβ = 0, 1

are all we need for linear interpolation. We have Snpr ·
(
mn

pSnpt
)

= 0 for all r 6= t.

A.1.2 Quadratic interpolation

For quadratic interpolation, by replacing z
iβ
β with gβ(w) = w2 − xnpβ(∆x2−4(xnpβ)2)

∆x2
w − ∆x2

4
in

s(z) =
d∏

β=1

z
iβ
β , iβ = 0, 1, 2

whenever iβ = 2, we get the full set of basis vectors. For completeness we list all the bases

below.
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In 2D,

s1(xinkp
− xnp ) = 1

s2(xinkp
− xnp ) = xikp1 − xnp1 s3(xinkp

− xnp ) = xikp2 − xnp2
s4(xinkp

− xnp ) = (xikp1 − xnp1)(xikp2 − xnp2)

s5(xinkp
− xnp ) = g1(xikp1 − xnp1) s6(xinkp

− xnp ) = g2(xikp2 − xnp2)

s7(xinkp
− xnp ) = g1(xikp1 − xnp1)(xikp2 − xnp2) s8(xinkp

− xnp ) = g2(xikp2 − xnp2)(xikp1 − xnp1)

s9(xinkp
− xnp ) = g1(xikp1 − xnp1)g2(xikp2 − xnp2)

In 3D,

s1(xinkp
− xnp ) = 1

s2(xinkp
− xnp ) = xikp1 − xnp1

s3(xinkp
− xnp ) = xikp2 − xnp2

s4(xinkp
− xnp ) = xikp3 − xnp3

s5(xinkp
− xnp ) = (xikp1 − xnp1)(xikp2 − xnp2)

s6(xinkp
− xnp ) = (xikp1 − xnp1)(xikp3 − xnp3)

s7(xinkp
− xnp ) = (xikp2 − xnp2)(xikp3 − xnp3)

s8(xinkp
− xnp ) = (xikp1 − xnp1)(xikp2 − xnp2)(xikp3 − xnp3)

s9(xinkp
− xnp ) = g1(xikp1 − xnp1)

s10(xinkp
− xnp ) = g2(xikp2 − xnp2)

s11(xinkp
− xnp ) = g3(xikp3 − xnp3)

s12(xinkp
− xnp ) = g1(xikp1 − xnp1)g2(xikp2 − xnp2)

s13(xinkp
− xnp ) = g2(xikp2 − xnp2)g3(xikp3 − xnp3)

s14(xinkp
− xnp ) = g1(xikp1 − xnp1)g3(xikp3 − xnp3)

s15(xinkp
− xnp ) = g1(xikp1 − xnp1)g2(xikp2 − xnp2)g3(xikp3 − xnp3)

s16(xinkp
− xnp ) = g1(xikp1 − xnp1)(xikp2 − xnp2)

s17(xinkp
− xnp ) = g1(xikp1 − xnp1)(xikp3 − xnp3)

s18(xinkp
− xnp ) = g1(xikp1 − xnp1)(xikp2 − xnp2)(xikp3 − xnp3)
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s19(xinkp
− xnp ) = g2(xikp2 − xnp2)(xikp1 − xnp1)

s20(xinkp
− xnp ) = g2(xikp2 − xnp2)(xikp3 − xnp3)

s21(xinkp
− xnp ) = g2(xikp2 − xnp2)(xikp1 − xnp1)(xikp3 − xnp3)

s22(xinkp
− xnp ) = g3(xikp3 − xnp3)(xikp1 − xnp1)

s23(xinkp
− xnp ) = g3(xikp3 − xnp3)(xikp2 − xnp2)

s24(xinkp
− xnp ) = g3(xikp3 − xnp3)(xikp1 − xnp1)(xikp2 − xnp2)

s25(xinkp
− xnp ) = g1(xikp1 − xnp1)g2(xikp2 − xnp2)(xikp3 − xnp3)

s26(xinkp
− xnp ) = g1(xikp1 − xnp1)g3(xikp3 − xnp3)(xikp2 − xnp2)

s27(xinkp
− xnp ) = g2(xikp2 − xnp2)g3(xikp3 − xnp3)(xikp1 − xnp1)

The entries for Snpr ·
(
mn

pSnpr
)

, r = 1, 2, · · · , 27 are:
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1,

∆x2

4
, ∆x2

4
, ∆x2

4
,

∆x4

16
, ∆x4

16
, ∆x4

16
, ∆x6

64
,

(∆x2−4x2)
2
(3∆x2−4x2)

16∆x2
,
(∆x2−4y2)

2
(3∆x2−4y2)

16∆x2
,
(∆x2−4z2)

2
(3∆x2−4z2)

16∆x2
,

(∆x2−4x2)
2
(3∆x2−4x2)(∆x2−4y2)

2
(3∆x2−4y2)

256∆x4
,

(∆x2−4x2)
2
(3∆x2−4x2)(∆x2−4z2)

2
(3∆x2−4z2)

256∆x4
,

(∆x2−4y2)
2
(3∆x2−4y2)(∆x2−4z2)

2
(3∆x2−4z2)

256∆x4
,

(∆x2−4x2)
2
(3∆x2−4x2)(∆x2−4y2)

2
(3∆x2−4y2)(∆x2−4z2)

2
(3∆x2−4z2)

4096∆x6
,

1
64

(∆x2 − 4x2)
2

(3∆x2 − 4x2) ,

1
64

(∆x2 − 4x2)
2

(3∆x2 − 4x2) ,

1
256

(3∆x2 − 4x2) (∆x3 − 4∆xx2)
2
,

1
64

(∆x2 − 4y2)
2

(3∆x2 − 4y2) ,

1
64

(∆x2 − 4y2)
2

(3∆x2 − 4y2) ,

1
256

(3∆x2 − 4y2) (∆x3 − 4∆xy2)
2
,

1
64

(∆x2 − 4z2)
2

(3∆x2 − 4z2) ,

1
64

(∆x2 − 4z2)
2

(3∆x2 − 4z2) ,

1
256

(3∆x2 − 4z2) (∆x3 − 4∆xz2)
2
,

(∆x2−4x2)
2
(3∆x2−4x2)(∆x2−4y2)

2
(3∆x2−4y2)

1024∆x2
,

(∆x2−4x2)
2
(3∆x2−4x2)(∆x2−4z2)

2
(3∆x2−4z2)

1024∆x2
,

(∆x2−4y2)
2
(3∆x2−4y2)(∆x2−4z2)

2
(3∆x2−4z2)

1024∆x2

A.2 Grid to Particle

From grid to particle, we wish to find c such that

Nr∑
t=1

Snpr ·
(
mn

pSnpt
)
cn+1
ptα = Qnprα ·

(
Mn

p V̂n+1
p

)

=

(NB+1)d∑
k=1

mn
inkpp

sr(xinkp
− xnp )v̂n+1

inkpα
.
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The bases we choose satisfy the property that Snpr ·
(
mn

pSnpt
)

= 0 for r 6= t. So we have

Snpr ·
(
mn

pSnpr
)
cn+1
prα = Qnprα ·

(
Mn

p V̂n+1
p

)
=

(NB+1)d∑
k=1

mn
inkpp

sr(xinkp
− xnp )v̂n+1

inkpα
.

For linear interpolation, the grid to particle transfer is similar to APIC. For quadratic

interpolation, Snpr ·
(
mn

pSnpr
)

can be zero for some r when xnpα = ±h
2
,±
√

3
2
h. However, we can

still find a meaningful expression for c.

In 2D, mn
inkpp

= mpN(xinkp
−xnp ) = mpN1(xinkp

−xnp )N2(xinkp
−xnp ), c can be computed from

the formula below:

cp1α =

(NB+1)d∑
k=1

N(xinkp
− xnp )v̂n+1

inkpα

cp2α =

∑(NB+1)d

k=1 N(xinkp
− xnp )(xinkp1 − xp1)v̂n+1

inkpα

∆x2

4

cp3α =

∑(NB+1)d

k=1 N(xinkp
− xnp )(xinkp2 − xp2)v̂n+1

inkpα

∆x2

4

cp4α =

∑(NB+1)d

k=1 N(xinkp
− xnp )(xinkp1 − xp1)(xinkp2 − xp2)v̂n+1

inkpα

∆x4

16

cp5α =

∑(NB+1)d

k=1 N2(xinkp
− xnp )(−2)(ikp1−1) mod 2v̂n+1

inkpα

2∆x2

cp6α =

∑(NB+1)d

k=1 N1(xinkp
− xnp )(−2)(ikp2−1) mod 2v̂n+1

inkpα

2∆x2

cp7α =
2
∑(NB+1)d

k=1 (xikp1 − xp1)N2(xinkp
− xnp )(−2)(ikp2−1) mod 2v̂n+1

inkpα

∆x4

cp8α =
2
∑(NB+1)d

k=1 (xikp2 − xp2)N1(xinkp
− xnp )(−2)(ikp1−1) mod 2v̂n+1

inkpα

∆x4

cp9α =

(NB+1)d∑
k=1

1

4∆x4
(−2)(ikp1−1) mod 2(−2)(ikp2−1) mod 2v̂n+1

inkpα

In 3D, mn
inkpp

= mpN(xinkp
− xnp ) = mpN1(xinkp

− xnp )N2(xinkp
− xnp )N3(xinkp

− xnp ), c can be
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computed from the formula below:

cp1α =

(NB+1)d∑
k=1

N(xinkp
− xnp )v̂n+1

inkpα

cp2α =

∑(NB+1)d

k=1 N(xinkp
− xnp )(xinkp1 − xp1)v̂n+1

inkpα

∆x2

4

cp3α =

∑(NB+1)d

k=1 N(xinkp
− xnp )(xinkp2 − xp2)v̂n+1

inkpα

∆x2

4

cp4α =

∑(NB+1)d

k=1 N(xinkp
− xnp )(xinkp3 − xp3)v̂n+1

inkpα

∆x2

4

cp5α =

∑(NB+1)d

k=1 N(xinkp
− xnp )(xinkp1 − xp1)(xinkp2 − xp2)v̂n+1

inkpα

∆x4

16

cp6α =

∑(NB+1)d

k=1 N(xinkp
− xnp )(xinkp2 − xp2)(xinkp3 − xp3)v̂n+1

inkpα

∆x4

16

cp7α =

∑(NB+1)d

k=1 N(xinkp
− xnp )(xinkp1 − xp1)(xinkp3 − xp3)v̂n+1

inkpα

∆x4

16

cp8α =

∑(NB+1)d

k=1 N(xinkp
− xnp )(xinkp1 − xp1)(xinkp2 − xp2)(xinkp3 − xp3)v̂n+1

inkpα

∆x6

64
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cp9α =

∑(NB+1)d

k=1 N2(xinkp
− xnp )N3(xinkp

− xnp )(−2)(ikp1−1) mod 2v̂n+1
inkpα

2∆x2

cp10α =

∑(NB+1)d

k=1 N1(xinkp
− xnp )N3(xinkp

− xnp )(−2)(ikp2−1) mod 2v̂n+1
inkpα

2∆x2

cp11α =

∑(NB+1)d

k=1 N1(xinkp
− xnp )N2(xinkp

− xnp )(−2)(ikp3−1) mod 2v̂n+1
inkpα

2∆x2

cp12α =

∑(NB+1)d

k=1 N3(xinkp
− xnp )(−2)(ikp1−1) mod 2(−2)(ikp2−1) mod 2v̂n+1

inkpα

4∆x4

cp13α =

∑(NB+1)d

k=1 N2(xinkp
− xnp )(−2)(ikp1−1) mod 2(−2)(ikp3−1) mod 2v̂n+1

inkpα

4∆x4

cp14α =

∑(NB+1)d

k=1 N1(xinkp
− xnp )(−2)(ikp2−1) mod 2(−2)(ikp3−1) mod 2v̂n+1

inkpα

4∆x4

cp15α =

∑(NB+1)d

k=1 (−2)(ikp1−1) mod 2(−2)(ikp2−1) mod 2(−2)(ikp3−1) mod 2v̂n+1
inkpα

8∆x6

cp16α =

∑(NB+1)d

k=1 N2(xinkp
− xnp )N3(xinkp

− xnp )(xinkp2 − xp2)(−2)(ikp1−1) mod 2v̂n+1
inkpα

∆x4

2

cp17α =

∑(NB+1)d

k=1 N2(xinkp
− xnp )N3(xinkp

− xnp )(xinkp3 − xp3)(−2)(ikp1−1) mod 2v̂n+1
inkpα

∆x4

2

cp18α =

∑(NB+1)d

k=1 N2(xinkp
− xnp )N3(xinkp

− xnp )(xinkp2 − xp2)(xinkp3 − xp3)(−2)(ikp1−1) mod 2v̂n+1
inkpα

∆x6

8

cp19α =

∑(NB+1)d

k=1 N1(xinkp
− xnp )N3(xinkp

− xnp )(xinkp1 − xp1)(−2)(ikp2−1) mod 2v̂n+1
inkpα

∆x4

2

cp20α =

∑(NB+1)d

k=1 N1(xinkp
− xnp )N3(xinkp

− xnp )(xinkp3 − xp3)(−2)(ikp2−1) mod 2v̂n+1
inkpα

∆x4

2

cp21α =

∑(NB+1)d

k=1 N1(xinkp
− xnp )N3(xinkp

− xnp )(xinkp1 − xp1)(xinkp3 − xp3)(−2)(ikp2−1) mod 2v̂n+1
inkpα

∆x6

8
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cp22α =

∑(NB+1)d

k=1 N1(xinkp
− xnp )N2(xinkp

− xnp )(xinkp1 − xp1)(−2)(ikp3−1) mod 2v̂n+1
inkpα

∆x4

2

cp23α =

∑(NB+1)d

k=1 N1(xinkp
− xnp )N2(xinkp

− xnp )(xinkp2 − xp2)(−2)(ikp3−1) mod 2v̂n+1
inkpα

∆x4

2

cp24α =

∑(NB+1)d

k=1 N1(xinkp
− xnp )N2(xinkp

− xnp )(xinkp1 − xp1)(xinkp2 − xp2)(−2)(ikp3−1) mod 2v̂n+1
inkpα

∆x6

8

cp25α =

∑(NB+1)d

k=1 N3(xinkp
− xnp )(xinkp3 − xp3)(−2)(ikp1−1) mod 2(−2)(ikp2−1) mod 2v̂n+1

inkpα

∆x6

cp26α =

∑(NB+1)d

k=1 N2(xinkp
− xnp )(xinkp2 − xp2)(−2)(ikp1−1) mod 2(−2)(ikp3−1) mod 2v̂n+1

inkpα

∆x6

cp27α =

∑(NB+1)d

k=1 N1(xinkp
− xnp )(xinkp1 − xp1)(−2)(ikp2−1) mod 2(−2)(ikp3−1) mod 2v̂n+1

inkpα

∆x6

A.3 PolyPIC is Lossless

In this section, we prove that if we use PolyPIC to transfer grid momentum to particle and

then directly transfer back without advecting, we get the exact same grid momentum back.

For simplicity, we prove it for the one particle case.

Given grid mass Mn
p and grid velocity Vnp , the cn+1

p we find by using full-interpolation

PolyPIC is given by

cn+1
p = (Qn

P
TMn

pQ
n
p )−1Qn

p
TMn

pVnp .

We want to show that the momentum p̂ we get from p̂ = Mn
pQ

n
pc

n+1
p is equal to the original

momentum on the grid Mn
pvi. The key obversation is that Qn

p is invertible: (Qn
p )TMn

pQ
n
p is
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full rank diagonal, which means that Qn
p is also full rank and therefore invertible.

p̂ = Mn
pQ

n
pc

n+1
p

= (Qn
p
−TQn

p
T )Mn

pQ
n
pc

n+1
p

= (Qn
p
−TQn

p
T )Mn

pQ
n
p (Qn

p
TMn

pQ
n
p )−1Qn

p
TMn

pVnp

= (Qn
p )−T (Qn

p
TMn

pQ
n
p )(Qn

p
TMn

pQ
n
p )−1Qn

p
TMn

pVnp

= Mn
pVnp

A.4 Linear and Angular Momentum Conservation

The ith component of the local linear momentum associated with velocity U is CT
i (Qn

p )TMn
pU

and the jth component of the angular velocity is CT
j+d(Q

n
p )TMn

pU where Cki = δki for 1 ≤

k ≤ d and

Ck(j+d) =

 1, k = 4

−1, k = 5

when d = 2 and

Ck4 =

 1, k = 5

−1, k = 7

Ck5 =

 1, k = 6

−1, k = 10

Ck6 =

 1, k = 9

−1, k = 11

Thus local linear and angular momentum conservation (which implies global) follows from

CT
i (Qn

p )TMn
pVn+1

p = CT
i (Qn

p )TMn
pQ

n
pc

n+1
p
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A.5 Grid Momentum Update

In the case of the incompressible Euler, we used a MAC grid discretization of the pressure

projection to update the fluid velocity. We first compute an intermediate velocity field on

the grid

v∗i = vni + ∆tg,

where g is the gravitational acceleration. Then we set up a Poisson system for pressure p

∇2p =
ρ

∆t
∇ · v∗i

to project grid velocities to be divergence free. Note that velocity is discretized at cell faces

and pressure is discretized at cell centers. During the solve we enforce Dirichlet p = 0

boundary condition at free surface cells and zero Neumann boundary condition at collision

object cells. Then we compute the updated velocity with

v̂n+1
i = v∗i +

∆t

ρ
∇p.

In the case of elastoplastic solids and MPM the updates is from the elastic force.

v̂n+1
i = vni +

∆t

mn
i

(f + g)

where f is the elastic force. If explicit time integration is adopted, fni is given explicitly as

fni = −
∑
p

V n
p σ

n
p∇wnip,

where V n
p = V 0

p J
n
p is the current volume of particle p, V 0

p is its original volume, Jnp = det(Fn
p )

and Fn
p is the current deformation gradient. Cauchy stress σnp can be computed from Fn

p

using any elastic constitutive model. For hyperelasticity with energy density function Ψ(F),

σnp is given by

σnp =
1

Jnp

∂Ψ

∂F
(Fn

p )Fn
p
T .
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For implicit time integration such as Backward Euler, we need to differentiate the force with

respect to imaginarily deformed grid node positions x̂i = xni + ∆tv̂i. The force differential

on an arbirary increment δu is given by

δfiα =
∂fiα
∂xjλ

δujλ = −
∑
p

V 0
p

∂FE
βζ

∂xiα

∂2ψ

∂FE
βζ∂F

E
ωσ

∂FE
ωσ

∂xjλ
δujλ.

Based on that we solve

v̂n+1
i = vni +

∆t

mn
i

(f(xni + ∆tv̂n+1
i ) + g)

using Newton’s method.

A.6 Code

In this section we present the Mathematica code generating the bases and corresponding

formula.

A.6.1 Linear interpolation in 2D

(* 2D linear *)(* 2D linear *)(* 2D linear *)

ClearAll[ “Global̀*”]ClearAll[ “Global̀*”]ClearAll[ “Global̀*”]

(* Assume x is in [0, h],(* Assume x is in [0, h],(* Assume x is in [0, h],

N [x, 1] is the weight of node at xi = 0,N [x, 1] is the weight of node at xi = 0,N [x, 1] is the weight of node at xi = 0,

N [x, 2] is the weight of node at h.N [x, 2] is the weight of node at h.N [x, 2] is the weight of node at h.

*)*)*)

N1[ x , i ] = Piecewise[{{1− x, i == 1}, {x, i == 2}}];N1[ x , i ] = Piecewise[{{1− x, i == 1}, {x, i == 2}}];N1[ x , i ] = Piecewise[{{1− x, i == 1}, {x, i == 2}}];

NN[ x , y , ii , jj ] = N1[x/h, ii] ∗ N1[y/h, jj];NN[ x , y , ii , jj ] = N1[x/h, ii] ∗ N1[y/h, jj];NN[ x , y , ii , jj ] = N1[x/h, ii] ∗ N1[y/h, jj];

(* xi - xp *)(* xi - xp *)(* xi - xp *)

r = ConstantArray[0, {4, 2}];r = ConstantArray[0, {4, 2}];r = ConstantArray[0, {4, 2}];

Do[{id = 2 ∗ ( i1− 1) + j1;Do[{id = 2 ∗ ( i1− 1) + j1;Do[{id = 2 ∗ ( i1− 1) + j1;
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nodex = ( i1− 1) ∗ h;nodex = ( i1− 1) ∗ h;nodex = ( i1− 1) ∗ h;

nodey = ( j1− 1) ∗ h;nodey = ( j1− 1) ∗ h;nodey = ( j1− 1) ∗ h;

r[[id]][[1]] = (nodex− particlex)/h;r[[id]][[1]] = (nodex− particlex)/h;r[[id]][[1]] = (nodex− particlex)/h;

r[[id]][[2]] = (nodey− particley)/h; }, { i1, 1, 2}, { j1, 1, 2}];r[[id]][[2]] = (nodey− particley)/h; }, { i1, 1, 2}, { j1, 1, 2}];r[[id]][[2]] = (nodey− particley)/h; }, { i1, 1, 2}, { j1, 1, 2}];

(* mass *)(* mass *)(* mass *)

M = ConstantArray[0, {4, 4}];M = ConstantArray[0, {4, 4}];M = ConstantArray[0, {4, 4}];

Do[{id = 2 ∗ ( i1− 1) + j1;Do[{id = 2 ∗ ( i1− 1) + j1;Do[{id = 2 ∗ ( i1− 1) + j1;

weight = NN[ particlex, particley, i1, j1];weight = NN[ particlex, particley, i1, j1];weight = NN[ particlex, particley, i1, j1];

M [[id]][[id]] = mass ∗ weight; }, { i1, 1, 2}, { j1, 1, 2}];M [[id]][[id]] = mass ∗ weight; }, { i1, 1, 2}, { j1, 1, 2}];M [[id]][[id]] = mass ∗ weight; }, { i1, 1, 2}, { j1, 1, 2}];

(* basis *)(* basis *)(* basis *)

(* row index is node index(* row index is node index(* row index is node index

col index is basis indexcol index is basis indexcol index is basis index

*)*)*)

Do[{id = 2 ∗ ( i1− 1) + j1;Do[{id = 2 ∗ ( i1− 1) + j1;Do[{id = 2 ∗ ( i1− 1) + j1;

weight = NN[ particlex, particley, i1, j1];weight = NN[ particlex, particley, i1, j1];weight = NN[ particlex, particley, i1, j1];

M [[id]][[id]] = mass ∗ weight; }, { i1, 1, 2}, { j1, 1, 2}];M [[id]][[id]] = mass ∗ weight; }, { i1, 1, 2}, { j1, 1, 2}];M [[id]][[id]] = mass ∗ weight; }, { i1, 1, 2}, { j1, 1, 2}];

B1 = ConstantArray[0, {4, 4}];B1 = ConstantArray[0, {4, 4}];B1 = ConstantArray[0, {4, 4}];

Do[{id = ( i1− 1) ∗ 2 + j1;Do[{id = ( i1− 1) ∗ 2 + j1;Do[{id = ( i1− 1) ∗ 2 + j1;

B1[[idr]][[id]] = r[[idr]][[1]]∧( i1− 1) ∗ r[[idr]][[2]]∧( j1− 1)}, { i1, 1, 2}, { j1, 1, 2}, {idr, 1, 4}];B1[[idr]][[id]] = r[[idr]][[1]]∧( i1− 1) ∗ r[[idr]][[2]]∧( j1− 1)}, { i1, 1, 2}, { j1, 1, 2}, {idr, 1, 4}];B1[[idr]][[id]] = r[[idr]][[1]]∧( i1− 1) ∗ r[[idr]][[2]]∧( j1− 1)}, { i1, 1, 2}, { j1, 1, 2}, {idr, 1, 4}];

Diagonal[M ] // MatrixForm;Diagonal[M ] // MatrixForm;Diagonal[M ] // MatrixForm;

(* Verify the diagonal structure *)(* Verify the diagonal structure *)(* Verify the diagonal structure *)

MatrixForm[ Transpose[ B1].M. B1] // SimplifyMatrixForm[ Transpose[ B1].M. B1] // SimplifyMatrixForm[ Transpose[ B1].M. B1] // Simplify

A.6.2 Linear interpolation in 3D

(* 3D linear *)(* 3D linear *)(* 3D linear *)

ClearAll[ “Global̀*”]ClearAll[ “Global̀*”]ClearAll[ “Global̀*”]

(* Assume x is in[0, h],(* Assume x is in[0, h],(* Assume x is in[0, h],

N [x, 1] is the weight of node at xi = 0,N [x, 1] is the weight of node at xi = 0,N [x, 1] is the weight of node at xi = 0,

N [x, 2] is the weight of node ath.N [x, 2] is the weight of node ath.N [x, 2] is the weight of node ath.
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*)*)*)

N1[ x , i ] = Piecewise[{{1− x, i == 1}, {x, i == 2}}];N1[ x , i ] = Piecewise[{{1− x, i == 1}, {x, i == 2}}];N1[ x , i ] = Piecewise[{{1− x, i == 1}, {x, i == 2}}];

NN[ x , y , z , ii , jj , kk ] = N1[x/h, ii] ∗ N1[y/h, jj] ∗ N1[z/h, kk];NN[ x , y , z , ii , jj , kk ] = N1[x/h, ii] ∗ N1[y/h, jj] ∗ N1[z/h, kk];NN[ x , y , z , ii , jj , kk ] = N1[x/h, ii] ∗ N1[y/h, jj] ∗ N1[z/h, kk];

(* xi - xp *)(* xi - xp *)(* xi - xp *)

r = ConstantArray[0, {8, 3}];r = ConstantArray[0, {8, 3}];r = ConstantArray[0, {8, 3}];

Do[{id = 4 ∗ ( i1− 1) + 2 ∗ ( j1− 1) + k1;Do[{id = 4 ∗ ( i1− 1) + 2 ∗ ( j1− 1) + k1;Do[{id = 4 ∗ ( i1− 1) + 2 ∗ ( j1− 1) + k1;

nodex = ( i1− 1) ∗ h;nodex = ( i1− 1) ∗ h;nodex = ( i1− 1) ∗ h;

nodey = ( j1− 1) ∗ h;nodey = ( j1− 1) ∗ h;nodey = ( j1− 1) ∗ h;

nodez = ( k1− 1) ∗ h;nodez = ( k1− 1) ∗ h;nodez = ( k1− 1) ∗ h;

r[[id]][[1]] = ( nodex− particlex)/h;r[[id]][[1]] = ( nodex− particlex)/h;r[[id]][[1]] = ( nodex− particlex)/h;

r[[id]][[2]] = ( nodey− particley)/h;r[[id]][[2]] = ( nodey− particley)/h;r[[id]][[2]] = ( nodey− particley)/h;

r[[id]][[3]] = ( nodez− particlez)/h; }, { i1, 1, 2}, { j1, 1, 2}, { k1, 1, 2}];r[[id]][[3]] = ( nodez− particlez)/h; }, { i1, 1, 2}, { j1, 1, 2}, { k1, 1, 2}];r[[id]][[3]] = ( nodez− particlez)/h; }, { i1, 1, 2}, { j1, 1, 2}, { k1, 1, 2}];

(* mass *)(* mass *)(* mass *)

M = ConstantArray[0, {8, 8}];M = ConstantArray[0, {8, 8}];M = ConstantArray[0, {8, 8}];

Do[{id = 4 ∗ ( i1− 1) + 2 ∗ ( j1− 1) + k1;Do[{id = 4 ∗ ( i1− 1) + 2 ∗ ( j1− 1) + k1;Do[{id = 4 ∗ ( i1− 1) + 2 ∗ ( j1− 1) + k1;

weight = NN[ particlex, particley, particlez, i1, j1, k1];weight = NN[ particlex, particley, particlez, i1, j1, k1];weight = NN[ particlex, particley, particlez, i1, j1, k1];

M [[id]][[id]] = mass ∗ weight; }, { i1, 1, 2}, { j1, 1, 2}, { k1, 1, 2}];M [[id]][[id]] = mass ∗ weight; }, { i1, 1, 2}, { j1, 1, 2}, { k1, 1, 2}];M [[id]][[id]] = mass ∗ weight; }, { i1, 1, 2}, { j1, 1, 2}, { k1, 1, 2}];

(* basis *)(* basis *)(* basis *)

(* row index is node index(* row index is node index(* row index is node index

col index is basis indexcol index is basis indexcol index is basis index

*)*)*)

B1 = ConstantArray[0, {4 ∗ 2, 8}];B1 = ConstantArray[0, {4 ∗ 2, 8}];B1 = ConstantArray[0, {4 ∗ 2, 8}];

Do[{id = ( i1− 1) ∗ 4 + ( j1− 1) ∗ 2 + k1;Do[{id = ( i1− 1) ∗ 4 + ( j1− 1) ∗ 2 + k1;Do[{id = ( i1− 1) ∗ 4 + ( j1− 1) ∗ 2 + k1;

B1[[idr]][[id]] = r[[idr]][[1]]∧( i1− 1) ∗ r[[idr]][[2]]∧( j1− 1) ∗ r[[idr]][[3]]∧( k1− 1); },B1[[idr]][[id]] = r[[idr]][[1]]∧( i1− 1) ∗ r[[idr]][[2]]∧( j1− 1) ∗ r[[idr]][[3]]∧( k1− 1); },B1[[idr]][[id]] = r[[idr]][[1]]∧( i1− 1) ∗ r[[idr]][[2]]∧( j1− 1) ∗ r[[idr]][[3]]∧( k1− 1); },

{i1, 1, 2}, { j1, 1, 2}, { k1, 1, 2}, {idr, 1, 8}];{i1, 1, 2}, { j1, 1, 2}, { k1, 1, 2}, {idr, 1, 8}];{i1, 1, 2}, { j1, 1, 2}, { k1, 1, 2}, {idr, 1, 8}];

Diagonal[M ] // MatrixForm;Diagonal[M ] // MatrixForm;Diagonal[M ] // MatrixForm;

(* Verify the diagonal structure *)(* Verify the diagonal structure *)(* Verify the diagonal structure *)

MatrixForm[ Transpose[ B1].M. B1] // SimplifyMatrixForm[ Transpose[ B1].M. B1] // SimplifyMatrixForm[ Transpose[ B1].M. B1] // Simplify
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A.6.3 Quadratic interpolation in 2D

(* 2D quadratic *)(* 2D quadratic *)(* 2D quadratic *)

ClearAll[“Global̀*”]ClearAll[“Global̀*”]ClearAll[“Global̀*”]

(* Assumexis in[−0.5h, 0.5h],we use quadratic interpolation.(* Assumexis in[−0.5h, 0.5h],we use quadratic interpolation.(* Assumexis in[−0.5h, 0.5h],we use quadratic interpolation.

N2[x, 1]is the weight of node at xi = −h,N2[x, 1]is the weight of node at xi = −h,N2[x, 1]is the weight of node at xi = −h,

N2[x, 2]is the weight of node at xi = 0,N2[x, 2]is the weight of node at xi = 0,N2[x, 2]is the weight of node at xi = 0,

N2[x, 3]is the weight of node at xi = h,N2[x, 3]is the weight of node at xi = h,N2[x, 3]is the weight of node at xi = h,

*)*)*)

N2[x , i ] = Piecewise[{{1/2 ∗ (1/2− x)∧2, i == 1},N2[x , i ] = Piecewise[{{1/2 ∗ (1/2− x)∧2, i == 1},N2[x , i ] = Piecewise[{{1/2 ∗ (1/2− x)∧2, i == 1},

{3/4− x∧2, i == 2}, {1/2 ∗ (x+ 1/2)∧2, i == 3}}];{3/4− x∧2, i == 2}, {1/2 ∗ (x+ 1/2)∧2, i == 3}}];{3/4− x∧2, i == 2}, {1/2 ∗ (x+ 1/2)∧2, i == 3}}];

NN[x , y , ii , jj ] = N2[x/h, ii] ∗ N2[y/h, jj];NN[x , y , ii , jj ] = N2[x/h, ii] ∗ N2[y/h, jj];NN[x , y , ii , jj ] = N2[x/h, ii] ∗ N2[y/h, jj];

(* xi - xp *)(* xi - xp *)(* xi - xp *)

r = ConstantArray[0, {9, 2}];r = ConstantArray[0, {9, 2}];r = ConstantArray[0, {9, 2}];

Do[{id = 3 ∗ (i1− 1) + j1;Do[{id = 3 ∗ (i1− 1) + j1;Do[{id = 3 ∗ (i1− 1) + j1;

nodex = (i1− 2) ∗ h;nodex = (i1− 2) ∗ h;nodex = (i1− 2) ∗ h;

nodey = (j1− 2) ∗ h;nodey = (j1− 2) ∗ h;nodey = (j1− 2) ∗ h;

r[[id]][[1]] = (nodex− x);r[[id]][[1]] = (nodex− x);r[[id]][[1]] = (nodex− x);

r[[id]][[2]] = (nodey− y); }, {i1, 1, 3}, {j1, 1, 3}];r[[id]][[2]] = (nodey− y); }, {i1, 1, 3}, {j1, 1, 3}];r[[id]][[2]] = (nodey− y); }, {i1, 1, 3}, {j1, 1, 3}];

(* mass *)(* mass *)(* mass *)

M = ConstantArray[0, {9, 9}];M = ConstantArray[0, {9, 9}];M = ConstantArray[0, {9, 9}];

Do[{id = 3 ∗ (i1− 1) + j1;Do[{id = 3 ∗ (i1− 1) + j1;Do[{id = 3 ∗ (i1− 1) + j1;

weight = NN[x, y, i1, j1];weight = NN[x, y, i1, j1];weight = NN[x, y, i1, j1];

M [[id]][[id]] = mass ∗ weight; }, {i1, 1, 3}, {j1, 1, 3}];M [[id]][[id]] = mass ∗ weight; }, {i1, 1, 3}, {j1, 1, 3}];M [[id]][[id]] = mass ∗ weight; }, {i1, 1, 3}, {j1, 1, 3}];

(* basis *)(* basis *)(* basis *)

(* row index is node index(* row index is node index(* row index is node index

col index is basis indexcol index is basis indexcol index is basis index

*)*)*)

B = ConstantArray[0, {9, 9}];B = ConstantArray[0, {9, 9}];B = ConstantArray[0, {9, 9}];

Do[{id = (j1− 1) ∗ 3 + i1;Do[{id = (j1− 1) ∗ 3 + i1;Do[{id = (j1− 1) ∗ 3 + i1;

100



B[[idr]][[id]] = r[[idr]][[1]]∧(i1− 1) ∗ r[[idr]][[2]]∧(j1− 1);B[[idr]][[id]] = r[[idr]][[1]]∧(i1− 1) ∗ r[[idr]][[2]]∧(j1− 1);B[[idr]][[id]] = r[[idr]][[1]]∧(i1− 1) ∗ r[[idr]][[2]]∧(j1− 1);

}, {i1, 1, 3}, {j1, 1, 3}, {idr, 1, 9}];}, {i1, 1, 3}, {j1, 1, 3}, {idr, 1, 9}];}, {i1, 1, 3}, {j1, 1, 3}, {idr, 1, 9}];

(* Rearrange the basis so that the corresponding polynomials are in the order of(* Rearrange the basis so that the corresponding polynomials are in the order of(* Rearrange the basis so that the corresponding polynomials are in the order of

1, x, y, xy, x∧2, y∧2, x∧2 ∗ y, x ∗ y∧2, x∧2 ∗ y∧2.1, x, y, xy, x∧2, y∧2, x∧2 ∗ y, x ∗ y∧2, x∧2 ∗ y∧2.1, x, y, xy, x∧2, y∧2, x∧2 ∗ y, x ∗ y∧2, x∧2 ∗ y∧2.

*)*)*)

BS = B[[All, {1, 2, 4, 5, 3, 7, 6, 8, 9}]];BS = B[[All, {1, 2, 4, 5, 3, 7, 6, 8, 9}]];BS = B[[All, {1, 2, 4, 5, 3, 7, 6, 8, 9}]];

(* The first four basis vectors are already othogonal.(* The first four basis vectors are already othogonal.(* The first four basis vectors are already othogonal.

Use Gram-Schmidt and we get the basis vectors corresponding to x∧2 and y∧2.Use Gram-Schmidt and we get the basis vectors corresponding to x∧2 and y∧2.Use Gram-Schmidt and we get the basis vectors corresponding to x∧2 and y∧2.

*)*)*)

BS[[All, 5]] = BS[[All, 5]]− h∧2/4− x(h∧2− 4x∧2)/h∧2 ∗ BS[[All, 2]];BS[[All, 5]] = BS[[All, 5]]− h∧2/4− x(h∧2− 4x∧2)/h∧2 ∗ BS[[All, 2]];BS[[All, 5]] = BS[[All, 5]]− h∧2/4− x(h∧2− 4x∧2)/h∧2 ∗ BS[[All, 2]];

BS[[All, 6]] = BS[[All, 6]]− h∧2/4− y(h∧2− 4y∧2)/h∧2 ∗ BS[[All, 3]];BS[[All, 6]] = BS[[All, 6]]− h∧2/4− y(h∧2− 4y∧2)/h∧2 ∗ BS[[All, 3]];BS[[All, 6]] = BS[[All, 6]]− h∧2/4− y(h∧2− 4y∧2)/h∧2 ∗ BS[[All, 3]];

(* The rest are simply products of the previous ones *)(* The rest are simply products of the previous ones *)(* The rest are simply products of the previous ones *)

BS[[All, 7]] = BS[[All, 5]]BS[[All, 3]];BS[[All, 7]] = BS[[All, 5]]BS[[All, 3]];BS[[All, 7]] = BS[[All, 5]]BS[[All, 3]];

BS[[All, 8]] = BS[[All, 6]]BS[[All, 2]];BS[[All, 8]] = BS[[All, 6]]BS[[All, 2]];BS[[All, 8]] = BS[[All, 6]]BS[[All, 2]];

BS[[All, 9]] = BS[[All, 5]] BS[[All, 6]];BS[[All, 9]] = BS[[All, 5]] BS[[All, 6]];BS[[All, 9]] = BS[[All, 5]] BS[[All, 6]];

(* Verify the diagonal structure *)(* Verify the diagonal structure *)(* Verify the diagonal structure *)

BTMB = Transpose[BS].M.BS//Simplify;BTMB = Transpose[BS].M.BS//Simplify;BTMB = Transpose[BS].M.BS//Simplify;

(* Get the awesome formula to put in your code!*)(* Get the awesome formula to put in your code!*)(* Get the awesome formula to put in your code!*)

MB = M.BS//Simplify;MB = M.BS//Simplify;MB = M.BS//Simplify;

MB//MatrixForm;MB//MatrixForm;MB//MatrixForm;

Inverse[BTMB].Transpose[BS].M//MatrixForm//Simplify;Inverse[BTMB].Transpose[BS].M//MatrixForm//Simplify;Inverse[BTMB].Transpose[BS].M//MatrixForm//Simplify;

A.6.4 Quadratic interpolation in 3D

(* 3D quadratic *)(* 3D quadratic *)(* 3D quadratic *)

ClearAll[ “Global̀*”]ClearAll[ “Global̀*”]ClearAll[ “Global̀*”]

(* Assumex is in[−0.5h, 0.5h], we use quadratic interpolation.(* Assumex is in[−0.5h, 0.5h], we use quadratic interpolation.(* Assumex is in[−0.5h, 0.5h], we use quadratic interpolation.

N2[x, 1] is the weight of node at xi = −h,N2[x, 1] is the weight of node at xi = −h,N2[x, 1] is the weight of node at xi = −h,

N2[x, 2] is the weight of node at xi = 0,N2[x, 2] is the weight of node at xi = 0,N2[x, 2] is the weight of node at xi = 0,

N2[x, 3] is the weight of node at xi = h,N2[x, 3] is the weight of node at xi = h,N2[x, 3] is the weight of node at xi = h,
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*)*)*)

N2[ x , i ] = Piecewise[{{1/2 ∗ (1/2− x)∧2, i == 1},N2[ x , i ] = Piecewise[{{1/2 ∗ (1/2− x)∧2, i == 1},N2[ x , i ] = Piecewise[{{1/2 ∗ (1/2− x)∧2, i == 1},

{3/4− x∧2, i == 2}, {1/2 ∗ (x+ 1/2)∧2, i == 3}}];{3/4− x∧2, i == 2}, {1/2 ∗ (x+ 1/2)∧2, i == 3}}];{3/4− x∧2, i == 2}, {1/2 ∗ (x+ 1/2)∧2, i == 3}}];

NN[ x , y , z , ii , jj , kk ] = N2[x/h, ii] ∗ N2[y/h, jj] ∗ N2[z/h, kk];NN[ x , y , z , ii , jj , kk ] = N2[x/h, ii] ∗ N2[y/h, jj] ∗ N2[z/h, kk];NN[ x , y , z , ii , jj , kk ] = N2[x/h, ii] ∗ N2[y/h, jj] ∗ N2[z/h, kk];

(* xi - xp *)(* xi - xp *)(* xi - xp *)

r = ConstantArray[0, {27, 3}];r = ConstantArray[0, {27, 3}];r = ConstantArray[0, {27, 3}];

Do[{id = 9 ∗ ( i1− 1) + 3 ∗ ( j1− 1) + k1;Do[{id = 9 ∗ ( i1− 1) + 3 ∗ ( j1− 1) + k1;Do[{id = 9 ∗ ( i1− 1) + 3 ∗ ( j1− 1) + k1;

nodex = ( i1− 2) ∗ h;nodex = ( i1− 2) ∗ h;nodex = ( i1− 2) ∗ h;

nodey = ( j1− 2) ∗ h;nodey = ( j1− 2) ∗ h;nodey = ( j1− 2) ∗ h;

nodez = ( k1− 2) ∗ h;nodez = ( k1− 2) ∗ h;nodez = ( k1− 2) ∗ h;

r[[id]][[1]] = ( nodex− x);r[[id]][[1]] = ( nodex− x);r[[id]][[1]] = ( nodex− x);

r[[id]][[2]] = ( nodey− y);r[[id]][[2]] = ( nodey− y);r[[id]][[2]] = ( nodey− y);

r[[id]][[3]] = ( nodez− z); }, { i1, 1, 3}, { j1, 1, 3}, { k1, 1, 3}];r[[id]][[3]] = ( nodez− z); }, { i1, 1, 3}, { j1, 1, 3}, { k1, 1, 3}];r[[id]][[3]] = ( nodez− z); }, { i1, 1, 3}, { j1, 1, 3}, { k1, 1, 3}];

(* mass *)(* mass *)(* mass *)

M = ConstantArray[0, {27, 27}];M = ConstantArray[0, {27, 27}];M = ConstantArray[0, {27, 27}];

Do[{id = 9 ∗ ( i1− 1) + 3 ∗ ( j1− 1) + k1;Do[{id = 9 ∗ ( i1− 1) + 3 ∗ ( j1− 1) + k1;Do[{id = 9 ∗ ( i1− 1) + 3 ∗ ( j1− 1) + k1;

weight = NN[x, y, z, i1, j1, k1];weight = NN[x, y, z, i1, j1, k1];weight = NN[x, y, z, i1, j1, k1];

M [[id]][[id]] = mass ∗ weight; }, { i1, 1, 3}, { j1, 1, 3}, { k1, 1, 3}];M [[id]][[id]] = mass ∗ weight; }, { i1, 1, 3}, { j1, 1, 3}, { k1, 1, 3}];M [[id]][[id]] = mass ∗ weight; }, { i1, 1, 3}, { j1, 1, 3}, { k1, 1, 3}];

(* basis *)(* basis *)(* basis *)

(* row index is node index(* row index is node index(* row index is node index

col index is basis indexcol index is basis indexcol index is basis index

*)*)*)

B = ConstantArray[0, {27, 27}];B = ConstantArray[0, {27, 27}];B = ConstantArray[0, {27, 27}];

Do[{id = ( i1− 1) ∗ 4 + ( j1− 1) ∗ 2 + k1;Do[{id = ( i1− 1) ∗ 4 + ( j1− 1) ∗ 2 + k1;Do[{id = ( i1− 1) ∗ 4 + ( j1− 1) ∗ 2 + k1;

B[[idr]][[id]] = r[[idr]][[1]]∧( i1− 1) ∗ r[[idr]][[2]]∧( j1− 1) ∗ r[[idr]][[3]]∧( k1− 1);B[[idr]][[id]] = r[[idr]][[1]]∧( i1− 1) ∗ r[[idr]][[2]]∧( j1− 1) ∗ r[[idr]][[3]]∧( k1− 1);B[[idr]][[id]] = r[[idr]][[1]]∧( i1− 1) ∗ r[[idr]][[2]]∧( j1− 1) ∗ r[[idr]][[3]]∧( k1− 1);

}, { i1, 1, 2}, { j1, 1, 2}, { k1, 1, 2}, {idr, 1, 27}];}, { i1, 1, 2}, { j1, 1, 2}, { k1, 1, 2}, {idr, 1, 27}];}, { i1, 1, 2}, { j1, 1, 2}, { k1, 1, 2}, {idr, 1, 27}];

(* The basisvectors corresponding to1, x, y, z are already orthogonal.(* The basisvectors corresponding to1, x, y, z are already orthogonal.(* The basisvectors corresponding to1, x, y, z are already orthogonal.

Use gram− schmidt and we get the basis corresponding to x∧2, y∧2, andz∧2.Use gram− schmidt and we get the basis corresponding to x∧2, y∧2, andz∧2.Use gram− schmidt and we get the basis corresponding to x∧2, y∧2, andz∧2.

*)*)*)
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B[[All, 9]] = B[[All, 5]]B[[All, 5]]− h∧2/4− x(h∧2− 4x∧2)/h∧2 ∗B[[All, 5]];B[[All, 9]] = B[[All, 5]]B[[All, 5]]− h∧2/4− x(h∧2− 4x∧2)/h∧2 ∗B[[All, 5]];B[[All, 9]] = B[[All, 5]]B[[All, 5]]− h∧2/4− x(h∧2− 4x∧2)/h∧2 ∗B[[All, 5]];

B[[All, 10]] = B[[All, 3]]B[[All, 3]]− h∧2/4− y(h∧2− 4y∧2)/h∧2 ∗B[[All, 3]];B[[All, 10]] = B[[All, 3]]B[[All, 3]]− h∧2/4− y(h∧2− 4y∧2)/h∧2 ∗B[[All, 3]];B[[All, 10]] = B[[All, 3]]B[[All, 3]]− h∧2/4− y(h∧2− 4y∧2)/h∧2 ∗B[[All, 3]];

B[[All, 11]] = B[[All, 2]]B[[All, 2]]− h∧2/4− z(h∧2− 4z∧2)/h∧2 ∗B[[All, 2]];B[[All, 11]] = B[[All, 2]]B[[All, 2]]− h∧2/4− z(h∧2− 4z∧2)/h∧2 ∗B[[All, 2]];B[[All, 11]] = B[[All, 2]]B[[All, 2]]− h∧2/4− z(h∧2− 4z∧2)/h∧2 ∗B[[All, 2]];

(* The rest are simply products of the previous ones *)(* The rest are simply products of the previous ones *)(* The rest are simply products of the previous ones *)

B[[All, 12]] = B[[All, 2]]B[[All, 9]];B[[All, 12]] = B[[All, 2]]B[[All, 9]];B[[All, 12]] = B[[All, 2]]B[[All, 9]];

B[[All, 13]] = B[[All, 3]]B[[All, 9]];B[[All, 13]] = B[[All, 3]]B[[All, 9]];B[[All, 13]] = B[[All, 3]]B[[All, 9]];

B[[All, 14]] = B[[All, 2]]B[[All, 3]]B[[All, 9]];B[[All, 14]] = B[[All, 2]]B[[All, 3]]B[[All, 9]];B[[All, 14]] = B[[All, 2]]B[[All, 3]]B[[All, 9]];

B[[All, 15]] = B[[All, 2]]B[[All, 10]];B[[All, 15]] = B[[All, 2]]B[[All, 10]];B[[All, 15]] = B[[All, 2]]B[[All, 10]];

B[[All, 16]] = B[[All, 5]]B[[All, 10]];B[[All, 16]] = B[[All, 5]]B[[All, 10]];B[[All, 16]] = B[[All, 5]]B[[All, 10]];

B[[All, 17]] = B[[All, 2]]B[[All, 5]]B[[All, 10]];B[[All, 17]] = B[[All, 2]]B[[All, 5]]B[[All, 10]];B[[All, 17]] = B[[All, 2]]B[[All, 5]]B[[All, 10]];

B[[All, 18]] = B[[All, 3]]B[[All, 11]];B[[All, 18]] = B[[All, 3]]B[[All, 11]];B[[All, 18]] = B[[All, 3]]B[[All, 11]];

B[[All, 19]] = B[[All, 5]]B[[All, 11]];B[[All, 19]] = B[[All, 5]]B[[All, 11]];B[[All, 19]] = B[[All, 5]]B[[All, 11]];

B[[All, 20]] = B[[All, 3]]B[[All, 5]]B[[All, 11]];B[[All, 20]] = B[[All, 3]]B[[All, 5]]B[[All, 11]];B[[All, 20]] = B[[All, 3]]B[[All, 5]]B[[All, 11]];

B[[All, 21]] = B[[All, 9]]B[[All, 10]];B[[All, 21]] = B[[All, 9]]B[[All, 10]];B[[All, 21]] = B[[All, 9]]B[[All, 10]];

B[[All, 22]] = B[[All, 10]]B[[All, 11]];B[[All, 22]] = B[[All, 10]]B[[All, 11]];B[[All, 22]] = B[[All, 10]]B[[All, 11]];

B[[All, 23]] = B[[All, 9]]B[[All, 11]];B[[All, 23]] = B[[All, 9]]B[[All, 11]];B[[All, 23]] = B[[All, 9]]B[[All, 11]];

B[[All, 24]] = B[[All, 21]]B[[All, 2]];B[[All, 24]] = B[[All, 21]]B[[All, 2]];B[[All, 24]] = B[[All, 21]]B[[All, 2]];

B[[All, 25]] = B[[All, 22]]B[[All, 5]];B[[All, 25]] = B[[All, 22]]B[[All, 5]];B[[All, 25]] = B[[All, 22]]B[[All, 5]];

B[[All, 26]] = B[[All, 23]]B[[All, 3]];B[[All, 26]] = B[[All, 23]]B[[All, 3]];B[[All, 26]] = B[[All, 23]]B[[All, 3]];

B[[All, 27]] = B[[All, 9]]B[[All, 10]]B[[All, 11]];B[[All, 27]] = B[[All, 9]]B[[All, 10]]B[[All, 11]];B[[All, 27]] = B[[All, 9]]B[[All, 10]]B[[All, 11]];

(* Rearrange the basis so that the corresponding polynomials are in the order of(* Rearrange the basis so that the corresponding polynomials are in the order of(* Rearrange the basis so that the corresponding polynomials are in the order of

1, x, y, z, xy, xz, yz, xyz, x∧2, y∧2, z∧2, x∧2 ∗ y∧2, x∧2 ∗ z∧2, y∧2 ∗ z∧2, x∧2 ∗ y∧2 ∗ z∧2,1, x, y, z, xy, xz, yz, xyz, x∧2, y∧2, z∧2, x∧2 ∗ y∧2, x∧2 ∗ z∧2, y∧2 ∗ z∧2, x∧2 ∗ y∧2 ∗ z∧2,1, x, y, z, xy, xz, yz, xyz, x∧2, y∧2, z∧2, x∧2 ∗ y∧2, x∧2 ∗ z∧2, y∧2 ∗ z∧2, x∧2 ∗ y∧2 ∗ z∧2,
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x∧2 ∗ y, x∧2 ∗ z, x∧2 ∗ yz, y∧2 ∗ x, y∧2 ∗ z, y∧2 ∗ xz, z∧2 ∗ x, z∧2 ∗ y, z∧2 ∗ xy,x∧2 ∗ y, x∧2 ∗ z, x∧2 ∗ yz, y∧2 ∗ x, y∧2 ∗ z, y∧2 ∗ xz, z∧2 ∗ x, z∧2 ∗ y, z∧2 ∗ xy,x∧2 ∗ y, x∧2 ∗ z, x∧2 ∗ yz, y∧2 ∗ x, y∧2 ∗ z, y∧2 ∗ xz, z∧2 ∗ x, z∧2 ∗ y, z∧2 ∗ xy,

x∧2 ∗ y∧2 ∗ z, x∧2 ∗ z∧2 ∗ y, y∧2 ∗ z∧2 ∗ xx∧2 ∗ y∧2 ∗ z, x∧2 ∗ z∧2 ∗ y, y∧2 ∗ z∧2 ∗ xx∧2 ∗ y∧2 ∗ z, x∧2 ∗ z∧2 ∗ y, y∧2 ∗ z∧2 ∗ x

*)*)*)

BS = B[[All, {1, 5, 3, 2, 7, 6, 4, 8, 9, 10, 11, 21, 23, 22, 27, 13, 12, 14, 16,BS = B[[All, {1, 5, 3, 2, 7, 6, 4, 8, 9, 10, 11, 21, 23, 22, 27, 13, 12, 14, 16,BS = B[[All, {1, 5, 3, 2, 7, 6, 4, 8, 9, 10, 11, 21, 23, 22, 27, 13, 12, 14, 16,

15, 17, 19, 18, 20, 24, 26, 25}]];15, 17, 19, 18, 20, 24, 26, 25}]];15, 17, 19, 18, 20, 24, 26, 25}]];

(* Verify the diagonal structure *)(* Verify the diagonal structure *)(* Verify the diagonal structure *)

BTMB = Transpose[ BS].M. BS // Simplify;BTMB = Transpose[ BS].M. BS // Simplify;BTMB = Transpose[ BS].M. BS // Simplify;

BTMB // MatrixFormBTMB // MatrixFormBTMB // MatrixForm

(* Get the awesome formula to put in your code! *)(* Get the awesome formula to put in your code! *)(* Get the awesome formula to put in your code! *)

MB = M. BS // Simplify;MB = M. BS // Simplify;MB = M. BS // Simplify;

MB // MatrixForm;MB // MatrixForm;MB // MatrixForm;

BTMBinvBTM = Inverse[ BTMB]. Transpose[ BS].M ;BTMBinvBTM = Inverse[ BTMB]. Transpose[ BS].M ;BTMBinvBTM = Inverse[ BTMB]. Transpose[ BS].M ;

Transpose[ BTMBinvBTM] // MatrixForm // Simplify;Transpose[ BTMBinvBTM] // MatrixForm // Simplify;Transpose[ BTMBinvBTM] // MatrixForm // Simplify;
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APPENDIX B

Numerical Simulation of Thin Shell With Frictional

Contact

B.1 FEM Force Computation

We compute forces on the control points xp by

fKLp = −∂ΨS(FKL,Etr(xKL))

∂xKLp

= −
∑
q

V 0
q

∂ψ(FKL,Etr
q (xq))

∂xKLp

= −
∑
q

V 0
q

∂ψ

∂FKL
(FKL,Etr

q (xq)) :
∂FKL,Etr

q

∂xKLp
(xq),

where xq’s are positions of the quadrature points. We give expressions for each
∂FKLq
∂xKLpk

(xq)

with fixed p, q and k, where k represents the x, y, or z direction. For simplicity of notation,

we omit the subscripts p, q and superscript KL for now.

Recall from the paper that we have

F =
3∑
i=1

gi ⊗ ḡi, with gα = aα + ξ3a3,α, g3 = a3,
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where

aα =
∑
j

xj
∂NSD

j

∂ξα
(ξ1, ξ2), α = 1, 2

a3 =
a1 × a2

|a1 × a2|

a3,α = (I− a3 ⊗ a3)
a1,α × a2 + a1 × a2,α

|a1 × a2|

= ã− a3(a3 · ã)

in which we define ã to be

ã =
a1,α × a2 + a1 × a2,α

|a1 × a2|
.

Now we compute ∂F
∂xk

.

∂F

∂xk
=

3∑
i=1

∂gi
∂xk
⊗ ḡi,

and
∂gα
∂xk

=
∂aα
∂xk

+ ξ3
∂a3,α

∂xk

∂g3

∂xk
=
∂a3

∂xk

where

∂aα
∂xk

=
∂NSD

k (ξ1, ξ2)

∂ξα
ek (summation convention does not apply here) (B.1)

∂a3

∂xk
=

∂a1

∂xk
× a2 + a1 × ∂a2

∂xk
− |a1×a2|

∂xk
a3

|a1 × a2|
,

and
|a1 × a2|
∂xk

= a3 · (
∂a1

∂xk
× a2 + a1 ×

∂a2

∂xk
)

Finally,

∂a3,α

∂xk
=

∂ã

∂xk
− a3(

∂a3

∂xk
· ã + a3 ·

∂ã

∂xk
)− ∂a3

∂xk
(a3 · ã),
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where

∂ã

∂xk
=

a1,α

∂xk
× a2 + a1,α × ∂a2

∂xk
+ ∂a1

∂xk
× a2,α + a1 × ∂a2,α

∂xk

|a1 × a2|
− a1,α × a2 + a1 × a2,α

|a1 × a2|2
∂|a1 × a2|

∂xk
,

in which

∂aα,β
∂xk

=
NSD
k (ξ1, ξ2)

∂ξβ∂ξα
ek (summation convention does not apply here).

B.2 Grid force Computation

The force on the MPM grid f iiii (x∗) computes as follows:

f
(iii)
i (x∗) =

∑
p∈I(iii)

∂χ(apα ⊗ āpα + aEp3 ⊗ āp3)

∂xi

V 0
p

=
∑

p∈I(iii)

∂χ(apα ⊗ āpα + aEp3 ⊗ āp3)

∂FE
:
∂
(
apα ⊗ āpα + aEp3 ⊗ āp3

)
∂apβ

:
∂apβ
xi

V 0
p

+
∑

p∈I(iii)

∂χ(apα ⊗ āpα + aEp3 ⊗ āp3)

∂FE
:
∂
(
apα ⊗ āpα + aEp3 ⊗ āp3

)
∂aEp3

:
∂aEp3
xi

V 0
p .

Then, omitting the subscript p, we compute each term in the contraction:

∂χ(aα ⊗ āα + aE3 ⊗ ā3)

∂FE
= τ S

(
aα ⊗ āα + aE3 ⊗ ā3)

)−T
= τ S

(
ãα ⊗ āα + ã3 ⊗ ā3)

)
where τ S is the Kirchhoff stress and ãα and ã3 are the contravariant counterparts of aα and

aE3 respectively.

107



And using index notation, we see that

∂
(
aα ⊗ āα + aE3 ⊗ ā3

)
∂aβ

=
∂aαi āαj
∂aβk

= δαβδikāαj

= δikāβj

Similarly,

∂
(
aα ⊗ āα + aE3 ⊗ ā3

)
∂aE3

= δikā3j

Hence, contracting the first two terms in the summation, each term in the summation

becomes

τ S (ãα ⊗ āα + ã3 ⊗ ā3) āβ :
∂aβ
∂xi

+ τ S (ãα ⊗ āα + ã3 ⊗ ā3) ā3 :
∂aE3
∂xi

= τ Sãβ :
∂aβ
∂xi

+ τ Sã3 :
∂aE3
∂xi

Note that

∂aβ
∂xi

=
∂aβ
∂xp

∂xp
∂xi

=
∂aβ
∂xp

wnip,

and the expression for
∂aβ
∂xp

is given equation (B.1).

Ignoring further plastic flow, we have

aE3 (x∗) =

(∑
j

x∗j ⊗∇wnjp

)
aE,n3 ,
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and thus,
∂aE3
∂xi

= ∇wnipa
E,n
3

Therefore, we arrive at the final expression for the force of type (iii):

f
(iii)
i (x∗) =

∑
p∈I(iii)

τ Sp ãβp :
∂apβ
∂xp

wnip + τ Sp ã3
p : ∇wnipa

E,n
p3

B.3 Laminate Stress

In this section we derive the expression for

τKL = ταβq
KL,E
α ⊗ qKL,Eβ , τKLαβ = 2µεLαβ + λεLγγδαβ. (B.2)

First notice that we may replace the right Hencky strain with left Hencky strain in the

definition of energy because of the isotropic nature of the energy function. We now give the

drivation of Equation (B.2) with index free notation assuming all variables are in 2D.

ψ(F) = ψ(UΣVT )

P(F) = P(UΣVT ) = UP(Σ)VT

because the energy is isotropic.

Hence,

P(F) = UP(Σ)VT

= U
∂ψ

∂Σ
VT

= U
(
2µ log(Σ)Σ−1 + λtr(log Σ)Σ−1

)
VT .
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Therefore,

τKL =
(
U
(
2µ log(Σ)Σ−1 + λtr(log Σ)Σ−1

)
VT
)
FT

= U (2µ log(Σ) + λtr(log Σ)) UT

= 2µεL + λtr(εL)

B.4 QR and Elastic Potential

We can use QR orthogonalization of deformed material directions to define

qirij = Fāj, F = rijqi ⊗ āj, rij = 0 for i > j. (B.3)

B.4.1 Change of basis tensor

Define the change of basis tensor

Q = Qijāi ⊗ āj (B.4)

with Qij = qj · āi. With this convention we see that Qāi = qi and QTQ = I. Furthermore,

defining

R = rijāi ⊗ āj

we have F = QR.

B.4.2 Differentials

The QR differential satisfies

qk · δqirij + δrkj = qk · (δFāj) , δF = δrijqi ⊗ āj + rijδqi ⊗ āj (B.5)

110



where qk · δqi = −qi · δqk from orthogonality of the qi. And

δF = δQR + QδR (B.6)

where δQTQ = −QT δQ from QTQ = I. Furthermore,

δQ = δQijāi ⊗ āj, δQij = δqj · āi, δqi = δQāi (B.7)

δR = δrijāi ⊗ āj (B.8)

and the δrij = 0 for i > j.

B.5 Elastic Potential and Stresses

Define the hyperelastic potential as

ψ(F) = ψ̂([R]) (B.9)

where

[R] =


r11 r12 r13

r22 r23

r33

 . (B.10)

The differential satisfies

δψ(F) =
∂ψ

∂F
(F) : δF = P : δF =

∂ψ̂

∂rij
([R])δrij (B.11)

where P = ∂ψ
∂F

(F). Therefore

δrijqi · (Pāj) + rijδqi · (Pāj) =
∂ψ̂

∂rij
([R])δrij. (B.12)
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Similarly,

P : δF = P : (δQR) + P : (QδR) =
∂ψ̂

∂rij
([R])δrij (B.13)

Choosing δF = δrijqi ⊗ āj (i.e. δqi = 0), we can conclude that

qi · (Pāj) δrij =
∂ψ̂

∂rij
([R])δrij (B.14)

for arbitrary δrij with i ≤ j. Therefore the qi · (Pāj) = ∂ψ̂
∂rij

([R]) for i ≤ j. Similarly,

P : (QδR) = (QTP) : δR = δrijāi ·
(
QTPāj

)
= δrijqi · (Pāj) =

∂ψ̂

∂rij
([R])δrij. (B.15)

Choosing δF = rijδqi ⊗ āj (i.e. δrij = 0), we can conclude that

0 = rijδqi · (Pāj) . (B.16)

Similarly,

0 = P : (δQR) =
(
PRT

)
: δQ =

(
PRT

)
:
(
δQQTQ

)
=
(
PFT

)
:
(
δQQT

)
(B.17)

In other words, the Kirchhoff stress τ = PFT is symmetric since δQQT is arbitrary skew.

Furthermore,

P = Pijqi ⊗ āj, τ = Pijrkjqi ⊗ qk = τikqi ⊗ qk (B.18)
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and we know Pij = ∂ψ̂
∂rij

for i ≤ j from Equation B.14. Thus


τ11 τ12 τ13

τ21 τ22 τ23

τ31 τ32 τ33

 =


P11 P12 P13

P21 P22 P23

P31 P32 P33




r11

r12 r22

r13 r23 r33

 (B.19)

=


P11r11 + P12r12 + P13r13 P12r22 + P13r32 P13r33

P21r11 + P22r12 + P23r13 P22r22 + P23r32 P23r33

P31r11 + P32r12 + P33r13 P32r22 + P33r32 P33r33

 , (B.20)

and since τ = τ T and Pij = ∂ψ̂
∂rij

for i ≤ j,


τ11 τ12 τ13

τ21 τ22 τ23

τ31 τ32 τ33

 =


∂ψ̂
∂r11

r11 + ∂ψ̂
∂r12

r12 + ∂ψ̂
∂r13

r13
∂ψ̂
∂r12

r22 + ∂ψ̂
∂r13

r32
∂ψ̂
∂r13

r33

∂ψ̂
∂r12

r22 + ∂ψ̂
∂r13

r32
∂ψ̂
∂r22

r22 + ∂ψ̂
∂r23

r32
∂ψ̂
∂r23

r33

∂ψ̂
∂r13

r33
∂ψ̂
∂r23

r33
∂ψ̂
∂r33

r33

 (B.21)

In particular, the matrix representation of τ S reads


τ11 τ12 τ13

τ21 τ22 τ23

τ31 τ32 τ33

 =


0 0 γs1

0 0 γs2

0 0 f ′(s3)




0

0 0

s1 s2 s3

 (B.22)

=


γs2

1 γs1s2 γs1s3

γs1s2 γs2
2 γs2s3

γs1s3 γs2s3 f ′(s3)

 (B.23)

B.6 Frictional Contact Yield Condition

Coulomb friction places a constraint on the stress as

|tS| ≤ −cFσn (B.24)
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where σn = aKL3 · σaKL3 . Recall that aKL3 = q3 and thus σn = q3 · σq3. On the other hand,

tS is the tangential component of the force density and has the form tS = (cq1 + sq2) · σq3

for some c and s such that c2 + s2 = 1. Hence, we may rewrite the constraint on stress as

(cq1 + sq2) · σq3 + cFq3 · σq3 ≤ 0. (B.25)

Using the fact that σ = det(F)τ , we rewrite the constraint as

(cq1 + sq2) · τq3 + cFq3 · τq3 ≤ 0. (B.26)

Substituting in the expression for τ from equation (B.23), we find that the maximum on

the left-hand-side is

±γs3

√
s2

1 + s2
2 + cFf

′s3

We apply the particular form of f in the paper where f(x) = 1
3
kc(1 − x)3 for x ≤ 1 and 0

otherwise. When s3 > 1, the maximum is γs3

√
s2

1 + s2
2. In this case the return mapping set

s1 and s2 to 0. If 0 < s3 ≤ 1, the maximum is

γs3

√
s2

1 + s2
2 − cFkc(s3 − 1)2s3,

and thus we need √
s2

1 + s2
2 ≤

cFk
c

γ
(1− s3)2.

In this case we uniformly scale back s1 and s2 to satisfy the constraint.

B.7 Denting Yield Condition and Return Mapping

We apply the von Mises yield condition to the Kirchhoff-Stress in Equation (B.2)

This condition states that the deviatoric component of the stress is less than a threshold
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value cvM

fvM(τ ) = |τ − tr(τ )

3
I|F ≤ cvM . (B.27)

This condition defines a cylindrical region of feasible states in the principal stress space since

fvM (τ ) =

√
2

3
(τ1

2 + τ2
2 + τ3

2 − (τ1τ2 + τ2τ3 + τ1τ3)) (B.28)

where τ =
∑

i τiui ⊗ ui with principal stresses τi. The plane stress nature of τKL =∑
α τ

KL
α uα⊗uα means that feasible stresses are those where the principal stresses are in the

ellipsoidal intersection of the cylinder and the τKLα plane.

The yield condition is satisfied via associative projection (or return mapping) of the stress

to the feasible region. The elastic and plastic strains are then computed to be consistent

with the projected stress. We use FKL,Etr
,FKL,P tr

to denote the trial state of elastoplastic

strains with associated trial stress τKL
tr

. We use FKL,E,FKL,P , τKL to denote their projected

counterparts.

FKL,Etr
,FKL,P tr

, τKL
tr → FKL,E,FKL,P , τKL. (B.29)

The deformation gradient constraint must be equal to the product of trial and projected

elastic and plastic deformation gradients, creating the constraint on the projection

FKL = FKL,Etr
FKL,P tr

= FKL,EFKL,P . (B.30)

The projection is completed by first computing the trial state of stress τKL
tr

from FKL,Etr

using Equation (B.2). This is done by computing the QR decomposition of the trial elastic

deformation gradient FKL,Etr
= rKL,Eαβ

tr
qKL,Eα ⊗ āβ +qKL,E3 ⊗ ā3. Then we compute the SVD
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of matrix [rKL,E
tr

] ∈ R2×2 and the trial strain [εL
tr

]

[rKL,E
tr

] = [UE]

 σE1
tr

σE2
tr

 [VE]T (B.31)

[εL
tr

] = [UE]

 log(σE1
tr

)

log(σE2
tr

)

 [UE]T (B.32)

From Equation (B.2) we see that the two non-zero principal stresses τKL
tr
α of τKL

tr
are equal

to the eigenvalues of the matrix [τKL
tr

]

[τKL
tr

] = 2µ[εL
tr

] + λtr([εL
tr

])I = [UE]

 τKL1
tr

τKL2
tr

 [UE]T . (B.33)

We therefore project the eigenvalues (τKL
tr
α → τKLα) into the ellipsoidal intersection the von

Mises yield surface and the (τ1, τ2) plane in the direction that maximizes energy dissipation.

We approximate this region by the diamond shaped region whose boundaries have slopes of

±1 to simplify the return mapping. Note that the direction of the return that maximizes

energy dissipation is a function of the Cauchy-Green strain derivative of the Kirchhoff stress

and thus is non-trivial to find in general. Fortunately, the quadratic Hencky strain model has

the favorable property that the return direction is perpendicular to the yield surface [Mas13]

which greatly simplifies the return mapping. We illustrate this property in Figure B.1. After

projection, we rebuild the matrix without changing the eigenvectors and rebuild τKL from

the matrix

[τKL] = [UE]

 τKL1

τKL2

 [UE]T , τKL = τKLαβ qKL,Eα ⊗ qKL,Eβ (B.34)

where τKLαβ are the entries in the projected matrix [τKL] ∈ R2×2. The projected strain [εL]
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Figure B.1: Return Mapping. In general in the return mapping direction is non trivial
(left). Quadratic Hencky strain energy density simplifies the return mapping (right).

is computed from the projected principal stresses from

[εL] = [UE]

 log(σE1 )

log(σE2 )

 [UE]T (B.35)

 log(σE1 )

log(σE2 )

 =

 2µ+ λ λ

λ 2µ+ λ

−1 τKL1

τKL2

 (B.36)

and the projected elastic deformation gradient is FKL,E = FKL,E
αβ qKL,Eα ⊗ āβ + qKL,E3 ⊗ ā3

where

[F̂KL,E] = [UE]

 σE1

σE2

 [VE]T . (B.37)

The projected plastic deformation gradient is computed from FKL,P = FKL,E−1
FKL in order

to maintain the constraint in Equation (B.30).
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APPENDIX C

Simulation for Volumetric Objects with Frictional

Contact

C.1 Cohesion-free Coupling with Traditional MPM

To prevent numerical cohesion between phases common to MPM, we adopt three separate

background MPM grids, one for volumetric elastic and rigid objects, one for general MPM

materials, and one for them combined. We denote quantities associated with traditional

MPM particles with subscript MPM, p, quantities associated with collision particles with

subscript q, quantities associated with combined grid with subscript i, quantities associated

with volumetric grid vol, i, and quantities associated with MPM grid MPM, i. So we have

mn
vol,i =

∑
q

wniqmq (C.1)

mn
MPM,i =

∑
MPM,p

wnipmMPM,p (C.2)

mn
i = mn

vol,i +mn
MPM,i (C.3)

v∗vol,i =
1

mn
vol,i

∑
q

wniqmqv
∗
q (C.4)

vnMPM,i =

∑
MPM,pw

n
ipmMPM,p (vMPM,p + CMPM,p(xi − xMPM,p))

mn
MPM,i

(C.5)

vni =
mn
vol,iv

∗
vol,i +mn

MPM,iv
n
MPM,i

mn
i

(C.6)

nni =

∑
q wiqnq

‖
∑

q wiqnq‖
(C.7)
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Grid velocity vMPM,i is updated as in [JSS15, JST16] to get v∗MPM,i. Then the collision

between phases is handled through an inelastic collision on collocated grid nodes. Let vr =

v∗vol,i − vnMPM,i. If vr · ni < 0, we apply impulse in the following way:

vt = vr − vr · nni nni (C.8)

Ii =
mn
MPM,im

n
vol,i

mn
MPM,i +mn

vol,i

vr · nnq (C.9)

vn+1
MPM,i = v∗MPM,i +

Iini

mn
MPM,i

+ min

(
− µIi
mn
MPM,i

, ‖vt‖

)
vt
‖vt‖

(C.10)

Finally, we interpolate the the grid velocity vn+1
MPM,i to MPM particles with APIC as in

[JSS15, JST16], and the updated velocity of collision particle q is then

v?q =
∑
i

wniqv
n
i . (C.11)
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