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Interaction of a normally-incident plane wave with a nonlinear 
poroelastic fracture

Seiji Nakagawa,a) Steven R. Pride, and Kurt T. Nihei 

Energy Geosciences Division, Earth & Environmental Sciences Area (EESA), 
Lawrence Berkeley National Laboratory, Berkeley, California 94720, USA
a)Electronic mail: snakagawa@lbl.gov

ABSTRACT

While it has been recognized that a large amplitude incident wave upon a 
dry fracture can exhibit nonlinear seismic wave scattering due to its stress-
dependent mechanical compliance, the impact of pore fluid in the fracture 
and a fluid-filled poroelastic background medium—features common for 
fractures in the Earth—are not well understood. As a first step toward an 
understanding of the nonlinear poroelastic response of elastic waves in 
fractured media, analytical approximate formulas are used for the amplitude 
and phase of a normally incident plane wave using a perturbation method, 
assuming a fluid-filled, highly compliant nonlinear interface embedded in a 
linear poroelastic solid. The stress-closure behavior of the fracture is 
modeled by nonlinear, poroelastic displacement-discontinuity boundary 
conditions (a linear–slip interface). The theory predicts that the static 
(“Direct current,” or DC) and higher-order-harmonic waves produced by the 
nonlinear scattering can be greatly reduced by the presence of fluid in the 
fracture. This, however, depends upon a number of parameters, including 
fracture compliance, fluid properties (compressibility and viscosity), and the 
permeability of the background medium, as well as environmental 
parameters such as the initial fluid pressure and stress acting on the 
fracture. The static effect produces low-frequency fluid pressure pulses when
a finite-duration wave is incident upon the fracture—behavior unique to fluid-
filled fractures within a poroelastic medium.

I. INTRODUCTION

Imperfect interfaces in elastic solids, such as fractures and cracks, are known
to exhibit strongly nonlinear stress-deformation behavior. In nondestructive 
testing, nonlinear elastic wave scattering from imperfect interfaces larger 
than expected from the nonlinearity in the bulk material properties alone has
been recognized, typically through the generation of second- and higher-
order harmonics (Buck et al., 1978; Richardson, 1979). This type of 
nonlinearity―contact acoustic nonlinearity (CAN)—is caused by the changes 
in the local contact stiffness by wave-induced stresses, and has been studied
and used for nondestructive detection of imperfect bonds and for 
characterization of local contact properties (Donskoy et al., 2001; Hirsekorn, 
2001; Van Den Abeele et al., 2000).

Nonlinear scattering of seismic waves by a thin, flat, partially contacting 
(“imperfect” or “partially welded”) interface can be examined using a 



modified form of the linear–slip interface model, which is frequently used for 
linear scattering of waves (e.g., Baik and Thompson, 1984; Schoenberg, 
1980). This involves power-series expansion of the interface's nonlinear 
stress-closure relationship that expresses how displacement discontinuities 
across the interface depend on the stress that is continuous across the 
interface. Subsequent use of a perturbation method to expand the wave-
induced displacement-discontinuity versus stress relation into a perturbation 
series allows the nonlinearity to be analytically addressed. For each order of 
the perturbation expansion, linear boundary conditions at the interface are 
derived, and the scattered waves are determined for a given incident wave. 
Pecorari (2003) solves nonlinear plane wave scattering off an interface 
characterized by the micromechanical contact model developed by 
Greenwood and Williamson (1996). This model involves nonlinear changes in 
both normal and shear contact stiffnesses as well as frictional slip between 
sheared asperities. Kim et al. (2006) examine plane wave scattering from an 
elastic-plastic contact and compare the theoretical predictions against 
laboratory measurements. Biwa et al. (2004) conduct a similar analysis as 
Pecorari, using several types of nonlinear contact stress-displacement 
relationships.

In contrast to the imperfect interfaces involved in nondestructive testing of 
engineered parts, compliant fractures in rock within the Earth's subsurface 
are often filled with fluids and are subject to high normal stress prior to wave
arrival. This suppresses the nonlinear behavior of the fractures, resulting in 
reduced amplitudes of nonlinearly generated harmonics. However, when the 
effective stress acting on a fracture is reduced as a result of increasing pore 
pressure (e.g., induced by fluid injection) or by reducing confining stress 
(e.g., excavation-induced stress relief or stress changes following an 
earthquake), the stress-deformation relationship can become more highly 
nonlinear again. In this case, large-amplitude seismic waves propagating 
through the rock-fracture system can exhibit nonlinear behavior, which may 
prove useful for subsurface fracture detection and stress evaluation when 
combined with estimation or measurements of the pore pressure. A new 
theory needs to be developed for predicting the magnitude of the nonlinear 
scattering in poroelastic media and determining the sensitivity to material 
properties such as the rock matrix and pore fluid stiffnesses, permeability of 
the rock matrix, nonlinear stress-closure relationships of the fracture, and 
environmental parameters such as stress, pore pressure, and wave 
frequency. Additionally, processes unique to a fracture embedded within a 
porous, permeable rock, such as nonlinear relaxation of wave-induced fluid 
pressure in the fracture into the host rock, need to be investigated.

In this paper, we examine the nonlinear seismic response of a compliant, 
fluid-filled fracture embedded within a linear poroelastic host material. After 
a brief review of the theory of dynamic linear poroelasticity in Sec. II A, in 
Sec. II B, we review the earlier poroelastic linear-slip fracture discontinuity 
conditions derived by Nakagawa and Schoenberg (2007) in which the 



fracture compliances are taken to be independent of the wave-induced 
stressing. This serves as a basis for the nonlinear poroelastic fracture 
boundary conditions of Secs. II C and II D in which the fracture opening and 
closing caused by an incident wave and the fluid displacements from the 
wave-stressed fracture into the poroelastic host are allowed to be nonlinearly
dependent on the wave stresses. However, in the present model, the 
nonlinearity attributed to hysteretic responses induced by friction and fluid-
mediated slow changes of solid–solid interfaces (e.g., Johnson and Jia, 2005; 
Van Den Abeele et al., 2002) and are not considered either for the fracture or
the host medium.

Given such nonlinear fracture displacement-discontinuity boundary 
conditions, a perturbation expansion is then used in Secs. II E and II F to 
derive analytical expressions for the reflection and transmission of plane 
waves from the fracture. Throughout, we limit our analysis to the case of a 
compressional wave normally incident upon a fracture, thus excluding the 
coupling between P and S waves and nonlinear scattering due to shearing of 
the fracture. Finally, in Sec. III, the magnitude of the resulting nonlinear 
harmonics in the scattered waves is examined numerically for an example 
set of poroelastic rock matrix, fracture and fluid properties. Time-domain 
waveforms are also computed for a narrow-band incident pulse.

II. THEORY

In this theory section, after a quick review of poroelastic uniaxial response 
that will be needed throughout the paper, we derive a set of boundary 
conditions for nonlinear, plane poroelastic wave scattering by a fluid-filled 
compliant fracture embedded in an isotropic linear poroelastic background 
host. We then use a perturbation expansion to model how a normally 
incident plane compressional wave scatters from the fracture into nonlinear 
transmitted and reflected fast and slow compressional waves.

A. Poroelastic uniaxial response

The laws of isotropic poroelastic response are well established, e.g., Biot 
(1962), Burridge and Keller (1981), and Pride et al. (1992) all provide 
different derivations that yield the same results. In the frequency domain 
with e–iωt time dependence, the poroelastic laws are given by the two force 
balances

the first being on the total bulk material and the second on the fluid in 
relative motion to the solid, and by the constitutive laws



The various response fields are the total stress tensor τ acting on the porous 
material, the associated confining pressure Pc = –(τ11 + τ22 + τ33)/3, the fluid 
pressure pf, the solid displacements u, and the displacement of fluid relative 
to the solid w. The “d” in front of the response fields in the constitutive laws 
of Eqs. (3)–(5) corresponds to a small differential increment from a reference 
state, i.e., these constitutive laws are derived by taking derivatives of a 
poroelastic strain-energy function. In the time domain, further dividing 
through by dt would give a velocity and stress-rate formulation of the 

poroelastic constitutive laws with  and  being the 
solid velocity and the Darcy filtration velocity, respectively, and

 being the 
total derivative of stress and fluid pressure (where ϕ is porosity). We will not 
take a velocity and stress-rate formulation in what follows, however.

The various material properties are the undrained bulk modulus KU, the Biot 
coupling modulus C, the fluid-storage modulus M, the bulk density of the 
porous material ρ, and the fluid density ρf. The effective viscous resistance to
relative fluid motion ρ̃ written as an inertial property is defined as the 
complex parameter

where μf is the fluid viscosity and k(ω) is the so-called “dynamic 
permeability” (Johnson et al., 1987). Lastly, G is the shear modulus of the 
material that is taken to be that of the framework of grains and independent 
of the fluid properties. If the elastic constants are not changing during a 
poroelastic problem, which corresponds to linear poroelasticity, Eqs. (3)–(5) 
can be integrated trivially with the effect of removing the d in front of the 



response fields. Otherwise, if the poroelastic moduli are changing, which 
corresponds to nonlinear poroelasticity, we need to take either a velocity and
stress-rate formulation of the problem or be able to integrate the constitutive
laws while allowing for the stress dependence of the elastic moduli.

Our focus in this paper is on the longitudinal (or uniaxial) plane wave 
response that we take to be in the x3 direction. In this case, there are no 
lateral displacements so that ∂du1/∂x1 = ∂du2/∂x2 = 0, which results in dτ11 = 
dτ22 = −dPc – (2G/3)∂du3/∂x3 and dτ33 = −Pc + (4G/3)∂du3/∂x3. We now rewrite 
Eqs. (4) and (5) as uniaxial compressibility laws

where the Biot-Willis constant α is the proportionality C = αM and the drained
longitudinal modulus HD is defined as HD = KD + 4G/3. The relation between 
the undrained bulk modulus and drained modulus is worked out to be KU = 
KD + α2M. Similarly, the undrained longitudinal modulus is defined as HU = KU 
+ 4G/3, and HU = HD + α2M.

In order to determine how the fluid bulk modulus Kf is influencing these 
moduli, we assume that our porous medium is a Gassmann material, which 
means the framework of grains is composed of a single isotropic mineral 
having bulk modulus Ks. In this case, we have the Gassmann-material results 
that

where ϕ is again the porosity. Another Gassmann-material result is that the 
porosity changes as (Pride, 2005)



which, for uniaxial response, results in

We will use this expression in Sec. II D 2.

Finally, for a plane displacement wave of amplitude U propagating in the ±x3

direction through a uniform porous material, we have that

where s(ω) is the longitudinal complex slowness given as (cf. Pride, 2005)

with the parameter ξ defined as

Taking the minus sign in Eq. (14) gives the so-called “fast-wave” slowness sPf

and taking the plus sign gives the “slow-wave” slowness sPs. The remaining 
part of the linear poroelastic response due to the plane wave is given as



where the parameter β is defined as

and takes on different values for fast waves (s = sPf) and slow waves (s = sPs).
Throughout the paper, we assume that linear response holds in the host 
poroelastic material and all nonlinear responses are due to the fracture.

B. Poroelastic linear-slip fracture-layer model

We now assume that there is an infinite fracture centered about the plane x3 
= 0 within an otherwise uniform and linear poroelastic host material. Real 
fractures consist of contacting asperities associated with the rough 
topography of the two fracture surfaces as shown in Fig. 1. Following 
Nakagawa and Schoenberg (2007), we assume that the fracture zone can be 
considered equivalent to a layer of highly compliant porous material having 
thickness h and approximated as having uniform properties. In future work, 
we plan to address the problem of allowing for the actual fracture surfaces 
with heterogeneous points of contact between them (Fig. 1), but for this 
work, we assume that representing the fracture as a compressible porous 
layer is an adequate approximation.



If the thickness h of the fracture layer is much smaller than the wavelengths 
of the plane waves propagating in the x3 direction, we can take the strain 
within the fracture layer to be uniform and identify these strains as

 and , where



 is the difference in the 
displacements between the top and bottom of the fracture layer. Plane 
longitudinal waves that are normally incident on the fracture layer, as 
depicted in Fig. 2, then satisfy the “jump” displacement conditions that come
directly from the earlier compressibility laws of Eqs. (7) and (8) (Bakulin and 
Molotkov, 1997; Nakagawa and Schoenberg, 2007)

as well as the stress continuity conditions

In Eqs. (20a) and (20b), α is the Biot-Willis constant of the fracture layer, and
the two fracture compliances ηD and ηM are defined as

Note that the elastic moduli, such as HD, M, and α, are for the fracture layer 
and are different from those of the background medium. To allow for linear 
scattering from the fracture, one assumes that the fracture compliances are 
not influenced by the wave stress and are given by the constant values ηD0 =
h0/HD0 and ηM0 = h0/M0, corresponding to the fracture properties that hold 
prior to wave arrival. In this linear scattering case, the jump boundary 
conditions can be integrated to give



where the integrated quantities u3, w3, τ, and pf are the poroelastic 
wavefields in the linear theory. The above summarizes the linear-scattering 
theory of Nakagawa and Schoenberg (2007).

C. General poroelastic nonlinear-slip fracture-layer model

For the remainder of this paper, we allow the integrated wavefield 
displacement discontinuities [u3] and [w3] to depend, in a nonlinear way, on 
the stress due to contact nonlinearity within the fracture. We neglect the 
impact of macroscopic fluid flow parallel to the extent of the fracture, which 
was considered by Nakagawa and Korneev (2014), because the incoming 
plane waves in this study are normally incident upon the fracture. 
Nonetheless, we assume that the fluid moves perpendicular to the fracture 
as characterized by w3, which equilibrates the fluid pressure between the 
fracture and porous host so that the fluid pressure is continuous across the 
thin fracture aperture as indicated by Eq. (21b).

The nonlinearity in the displacement-discontinuity state functions can be 
expressed as [u3] = f(τ,pf) and [w3] = g(τ,pf). Although the functions f and g 



can, in principle, be hysteretic if crack growth or loss processes are 
important as a wave interacts with a fracture, in the current analysis, we 
assume they are unique functions of the stress and fluid pressure, i.e., we 
only consider nonlinear “poroelastic” behavior. Assuming f and g are smooth 
differentiable functions, their bivariate Taylor series expansions about the 
stress state holding prior to wave arrival τ0, pf0 are

where the binomial coefficients are defined as usual by

In what follows, we define [u3] and [w3] to be zero prior to wave arrival, which
amounts to working with f(τ0, pf0) = 0 and g(τ0, pf0) = 0 in whatever model 
we use for f and g. Upon defining δτ = τ − τ0 and δpf = pf − pf0 as the 
possibly finite wave-induced stress deviations from the background state, we
then have



The subscript “0” on the partial derivatives means they are being evaluated 
at the background stress state τ0, pf0.

Under these assumptions, the leading-order linear terms of these expansions
are then

which correspond exactly to Eqs. (23a) and (23b). We may thus identify



as being the fracture compliances in the Nakagawa and Schoenberg (2007) 
linear theory. We used a well-known fact of partial derivatives to write the 
second expression for α0; this simply means that if [u3] = f(τ, pf) is not 
changing when there is an applied stress change dτ, we must simultaneously
apply a fluid-pressure change of dpf = −dτ/α0. The wavefield stress and pore-
pressure continuity conditions are unchanged from the linear case in Eqs. 
(21a) and (21b); simply replace the infinitesmal d by the possibly finite wave 
perturbation “δ”. We continue to use τ and pf (the stress and pressure, 
respectively, which are continuous across the fracture) as convenient 
abbreviations for τ33+ and pf+.

D. The highly compliant fracture-layer approximation

In principle, the nonlinear state functions f and g can be determined via 
extensive laboratory experiments and numerical simulations of a rough 
fracture interface for a range of τ and pf. To simplify the situation, we 
assume that the equivalent fracture layer is much more compliant than the 
surrounding host material. Specifically, we make the approximation that the 
fracture layer has a Biot-Willis coefficient given as α ≈ 1, which corresponds 
to KD/Ks ≪ 1. This will simplify much of the analysis while still allowing for a 
realistic nonlinear fracture response. Note as well that for the fracture layer, 
the changes d[u3] of the jump in solid displacements is exactly given by d[u3]
= dh, which upon integration gives [u3] = h – h0 where h0 is the fracture 
aperture at the background stress state, a fact to be used throughout what 
follows.

1. The wave-induced fracture opening [u3]

When α = 1 in the fracture layer, the jump condition becomes d[u3] = ηDd(τ 
+ pf). Integrating this yields [u3] = f(δτ*) where δτ* = τ – τ0 + pf – pf0 is the 
wave-induced effective stress. So under the highly compliant fracture 
assumption, the nonlinear wave-stress dependence of [u3] is given as

To proceed, specific forms for the stress dependence of [u3] are required.

Although the nonlinear poroelastic function f(τ, pf) for a fluid-saturated 
fracture has never been experimentally or numerically explored as a function
of both τ and pf, a dry fracture embedded in an elastic solid has received 
considerable attention. For example, Goodman et al. (1968) and Goodman 
(1976) propose a generalized hyperbolic model describing the deformation of
a dry fracture as a function of the stress for a wide range of fracture surface 
topographies and stress histories (Bandis et al., 1983). Detournay (1979) 
proposes a semi-logarithmic model that shows a good fit to the initial normal
deformation of displaced (sheared) rough surfaces (e.g., Lang et al., 2016; 



Zangerl et al., 2008). Biwa et al. (2004) examine nonlinear scattering of 
waves from a dry fracture embedded in an elastic host using a power-law 
model, which includes the semi-logarithmic model as a special case.

When the compliant-fracture assumption built into Eq. (30) is valid, fracture 
aperture at any pore pressure can be predicted using the effective stress τ* 
= τ + pf. For example, if a semi-logarithmic fracture deformation model is 
used, the fracture closure function is

and the drained specific normal fracture compliance is determined as

where we used that  because  is not 
changing on the time scale of the seismic wave passage. Such a model 
makes explicit how either [u3] or ηD depends, in a nonlinear way, on the 
varying effective stress level τ*.

For more general effective-stress dependence in the fracture closure [u3] 
model we can use a series in the dimensionless form

where σ is the positive amplitude of the effective stress present prior to 
wave arrival. Because the fracture needs to be in a compressed state in 
order for the asperities to be in contact and have a finite compliance, we 

have  because τ* is negative in a state of compression. Note that 

C1 = 1 because .

We now introduce a small dimensionless parameter , which 
will be the expansion parameter in the perturbation analysis that follows, 



where  is the maximum amplitude of the wave-induced effective 
stress acting in the porous material without a fracture present. We can 
further write

where the quantity h0/ηD0 is again the effective drained uniaxial modulus of 
the compliant fracture (measured in Pa). Because the fracture is being taken 
to be much more compliant than the porous host material, we will assume 
that the dimensionless parameter

is closer to O(1) in what follows than to O(ε). As such, Eq. (33) can be written
in the final compact form

where all terms are O(1) other than the powers of ε explicitly present. For 
the particular case of the semi-logarithmic fracture function given in Eq. (31),
a Taylor-series expansion yields Cn = 1/n exactly in Eq. (36).

2. The relative fluid displacement from the fracture [w3]

In this section, we derive a series expansion of the finite Darcy displacement 
[w3] that characterizes how the displacement of the fluid out of the fracture 
and into the porous host depends, in a nonlinear way, on both the wave-

induced effective stress  and the wave-induced fluid 
pressure δpf = pf − pf0. This jump condition involving the relative fluid-solid 
displacements w3 perpendicular to the fracture must describe the 
conservation of fluid mass. As such, d(ρf[w3]) represents the incremental 
change in fluid mass due to fluid mass fluxing out of the fracture into the 
porous host, and must be equal to the decrease of the fluid mass within the 
fracture –d(ρfϕh), where h is the fracture aperture and ϕ is the porosity 
within the fracture layer. Upon equating these two expressions, we have



which is then integrated from the reference state prior to wave arrival 
characterized by ρf0, ϕ0, and h0 yielding

To understand how porosity evolves in the fracture due to wave stress, we 
again assume the fracture layer is a Gassmann material for which the 
porosity changes according to Eq. (12). Using the highly compliant fracture 
approximation that α = 1 – KD/Ks ≈ 1 then gives the porosity change as

where again dτ* = dτ + dpf. Because d[u3]/h = dh/h = dτ*/HD, Eq. (39) can be
rewritten as

which then integrates from the reference state to give

Because , this result can also be written h(1 − ϕ) = h0(1 − 
ϕ0), which is the statement that solid volume within the deforming fracture 
remains constant during wave passage and is a consequence of our 
assuming that KD/Ks → 0. We thus can write Eq. (38) in the form

To proceed further, a model for how the fluid density ρf depends on the 
wave-induced fluid pressure is required.

To allow for a range of fluid scenarios, we assume the fluid is a liquid that 
possibly has small gas bubbles within it. The liquid is characterized by a bulk 
modulus Kℓ that is taken to be independent of pressure, i.e., Kℓ = Kℓ0 is a 



constant during wave passage. The gas is taken to be ideal and undergoes 
isentropic (adiabatic and reversible) changes, which means it has the bulk 
modulus Kg = γpg, where pg is the gas pressure and γ is the adiabatic index. 
For diatomic molecules, such as nitrogen and oxygen, γ = 1.4. We assume 
the surface tension of the gas bubbles is negligible so that the pressure 
throughout the liquid and gas is the same, i.e., pg = pℓ = pf. Initially, before 
the arrival of the wave, we characterize the volume fraction of gas as vg0 and
the volume fraction of liquid as vℓ0 where vg0 + vℓ0 = 1.

The volume of gas at any moment during wave passage Vg is obtained by 
integrating dVg/Vg = −dpf/(γpf) to give Vg = vg0V0(pf0/pf)1/γ, where vg0V0 is the 
volume of gas initially present in a volume V0 of fluid prior to wave arrival. 
The volume of liquid at any moment during wave passage Vℓ is obtained by 
integrating dVℓ/Vℓ = −dpf/Kℓ0 to give

. Thus, the total volume of fluid 
that is changing during wave passage is V = Vg + Vℓ, which when divided by 
the constant mass M of the fluid gives the density model

which in terms of the wave-induced fluid pressure variable δpf = pf − pf0 can 
be written as

This will be our model for how ρf0/ρf depends on the wave-induced fluid 
pressure δpf.

The function −(1 − ρf0/ρf) required in Eq. (42) can be expanded in terms of 
powers of ε to yield the series

where



and we have introduced O(1) dimensionless parameters cℓ and cg as

which assume that the ratio of the background effective stress σ to bulk 

modulus of the liquid Kℓ0 is small and of order  (the 
perturbation parameter).

Looking ahead to the perturbation analysis of the nonlinear wave scattering 
analysis, and noting that we will only need results through O(ε4), the final 
result for [w3] that will be needed is

where the dimensionless but ε-dependent coefficients Dn are defined through
O(ε4) as



which reveal that there is a different ε dependence in the cases of vg0 ≠ 0 
compared to vg0 = 0 due to gas being more sensitive to fluid-pressure 
changes than liquid.

The first coefficient D1 in Eq. (49a), which is involved in the leading-order 
(linear) scattering from the fracture, can be rewritten using the bulk modulus
of the gas-liquid mixture at the resting state Kf0 = (vg0/γpf0 + vℓ0/Kℓ0)−1 as

where a new O(1) dimensionless coefficient

was introduced. Note as well that from Eq. (48), the fluid-storage fracture 
compliance ηM0 in the above highly compliant (α = 1) fracture model is

where M0 = Kf0/ϕ0 is the fluid-storage coefficient of the fracture layer prior to 
wave arrival.

E. Application of a perturbation method

From here on, we analyze the nonlinear scattering of waves from the 
fracture. As such, all stress, fluid pressure, and displacement variables are 
understood to be those associated with the waves and not the initial state, 
which held prior to wave arrival at the fracture. We thus define 
dimensionless-and-O(1) effective stress τe and fluid pressure p wavefield 
variables as



it being understood that the new variables τe and p are zero prior to wave 
arrival. Next, because [u3] and [w3] are both O(ε) from Eqs. (36) and (48), we 
further rewrite the displacement-jump variables as the dimensionless O(1) 
quantities

In terms of these rescaled wavefield variables, the poroelastic nonlinear 
jump-displacement boundary conditions for a thin fracture can be written as

along with the stress continuity conditions

The variables having the subscripts +, –, and I (standing for forward- and 
backward-propagating waves and forward-propagating incident waves in the 
x3 direction, respectively) have also been converted into dimensionless O(1) 
variables.

To apply a perturbation approach (e.g., Nayfeh, 2007) for solving the 
planewave scattering problem involving the nonlinear boundary conditions of
Eqs. (57a) and (58b), we express the displacements and stresses as 
perturbation series using the ansatz



where X represents any of the suite of variables u±, w±, τe±, and p±. Because 
we will be examining the response only through n = 3, we only need the 
following orders of the powers of the transmitted stress variables:

with equivalent expressions for the powers of τe.

By equating terms of the same powers of ε, the boundary conditions can 
then be rewritten



The leading order n = 0 corresponds to linear scattering off the fracture. 
Nonlinear effects begin at n = 1.

The  and  are the source terms generating the scattering at each 
order n and are given by

And

The liquid is having an effect on the linear scattering through the cμ = σ/Kf0 
coefficient in Eq. (61b). However, the first nonlinear influence of the liquid on
the scattering occurs in the source term of Eq. (63d), which is why we took 
the analysis through to n = 3 effects.

For the various forward- and backward-propagating fast- and slow-
compressional plane waves in the porous host on either side of the fracture 



located at x3 = 0, the displacement and stress response associated with each
wave type are related to each other as given earlier by Eqs. (13)–(19). 
Expressing the solid displacement amplitudes of each planewave type at 

each perturbation order n as , we obtain

A dimensionless displacement matrix  and impedance matrix  
have been introduced through these relations. The coefficient

results from the use of dimensionless stress and displacement variables. The
various material properties in the displacement and stress response of Eqs. 
(64a) and (64b) are those of the host linear-poroelastic material.

The vector-matrix form of the boundary conditions in Eqs. (61a)–(61d) are



where a dimensionless fracture compliance matrix is defined as

By introducing Eqs. (64a) and (64b) into Eqs. (66a) and (66b), we obtain

Equations (68a) and (68b) are used in Eqs. (64a) and (64b) to compute the 
displacement and stress for a range of frequencies for the nth-order 
nonlinear perturbation problem, which are subsequently collected and used 
to compute the time-domain stress (and pressure) waves at order n. The 
waves obtained from the lower-order problems are then combined to 
compute the nonlinear source terms for the next higher-order in the n 
scattering problem. The source term is transformed into the frequency 
domain, and the linear solutions for a range of frequencies are obtained from
Eqs. (68a) and (68b) for the (n+1)th-order problem. This iterative process of 
transforming between the frequency domain and time domain at each order 
n of scattering is depicted in Fig. 3.



Particularly for n = 0 (linear scattering), the displacement and stress for the 
incident wave are given via the incident wave's coefficient vector aI as

By introducing Eqs. (69a) and (69b) into Eqs. (68a) and (68b), zeroth-order 
complex transmission and reflection coefficient matrices T(0) and R(0) can be 
computed via



F. Single-frequency solution for the nonlinear scattering of an incident fast P 
wave

As a special case, we examine the scattering of an incident fast P wave 
consisting of a cosine wave with a circular frequency ω. The rescaled 
displacement [Eq. (62a)] and Darcy flux [Eq. (63a)] of the incident waves on 
the fracture are given by

where , and |uI| is the amplitude of the solid frame 
displacement of the incident fast P wave. The phase delay φ0 is given by the 

function βPf(ω) so that . Note that, for real-

valued wave displacement in the time domain,  and 
φ0(–ω) = −φ0(ω) where “¯¯” indicates complex conjugation.

The coefficients of the zeroth-order transmitted and reflected wave 

displacements, , are computed from Eqs. (70a) and (70b) for the two 
frequencies ±ω. From these, the displacements of the transmitted and 
reflected waves are obtained via Eq. (64a) as



The symbol “Re” indicates the real-value part of the evaluated quantity.

The effective stress and fluid pressure on the fracture are, using Eq. (64b),

where we introduced complex unit amplitude responses  and , and 

their phases  and . Note that, although we shall not indicate so 
explicitly, these are dependent upon the frequency of the incident wave ω.

The nonlinear source terms for the first-order equations in Eqs. (62b) and 
(63b) are

Note that the cosine terms in Eqs. (74a) and (74b) have two Fourier 
components ei2ωt and e−i2ωt. Also, the time-independent terms indicate static 



fracture aperture changes. Korshak et al. (2002) discussed this phenomenon 
for elastic fractures and provided laboratory observations. These are the 
direct consequences of the interactions (multiplications) between two 

harmonic waves in the source,  and , producing a 
difference-frequency [ω – ω = 0 (static)] wave and sum-frequency waves (ω 
+ ω = 2ω). Also note that if the source function contains multiple frequency 
components, for example, ω1 and ω2, the scattered waves contain both sum 
and difference frequencies ω1 ± ω2.

Because the boundary conditions in Eqs. (61a)–(61d) for each order of 
perturbation are linear except for the source term, the plane wave scattering
problem can be solved for each frequency of the nonlinear source term. For 
the current problem, these are 0 (static), −2ω, and +2ω. From Eqs. (68a) 
and (68b),

where for convenience we introduced

The vectors  and  contain each frequency component of 
the displacement and fluid flux in Eqs. (74a) and (74b). Therefore, using Eq. 
(64a), the displacements of the transmitted (+) and reflected (−) waves are



As indicated by Eqs. (72) and (77), nth-order displacement vectors are 

proportional to  where u3I is the incident 
wave's displacement before rescaling. Thus, the overall displacements of the
transmitted (+) and reflected (−) waves on the fracture normalized by the 
amplitude of the incident wave are



These results indicate that the transmission and reflection coefficients of the 
nonlinear scattering depend on the incident wave amplitude through

.

Last, we pay attention to the static displacement jump, or, aperture 
increases. By subtracting Eq. (78b) from Eq. (78a), the static part of the jump
is



Because C2 > 0 (compliance increases with applied tensile stress) and cη > 0,
the first row of Eq. (79) is positive, indicating that the n = 1 nonlinear 
scattering always increases the static fracture aperture. In contrast, the 
behavior of fluid flux in the second row is not well constrained. However, for 
stiff fluid containing little gas, the second term becomes small, leaving the 
first term, which is identical to the displacement jump but with the opposite 
sign. Thus, in this case, the static effect causes influx of fluid into the 
fracture. This will be demonstrated by an example shown later in Figs. 8 and 
9 in Sec. III B.

G. Comparison to the solution for an elastic fracture

For a system with no fluid, the fluid flux , pressure , and slow wave 

coefficients  in Eq. (64a) and (64b) do not exist. Thus, the coefficient 
matrices are reduced to scalars as

 

(P-wave impedance). Note that we used  where M, C → 0. 
The dimensionless fracture compliance matrix also is reduced as

. By defining a dimensionless frequency Ω ≡ ωηD0Z/2, the 
parameters involved in the previous expressions are simplified as

, and

. As a result, the displacements of the 
transmitted and reflected waves up to the first-order perturbation are, 
respectively,



Where tan . Note that 1/σηD0 = cη/h0. These expressions agree 
with the results obtained by Biwa et al. (2004) and Kim et al. (2006) for a dry
(or drained) fracture embedded in an elastic background. (Note that, 
however, their expressions were derived using nonlinear fracture stiffness 
given as a function of fracture aperture, rather than fracture compliance 
given as a function of the effective stress.)

III. EXAMPLES AND DISCUSSION

Using the equations derived in Sec. II F, we examine the impact of fluid in a 
fracture-matrix system on nonlinear seismic wave scattering. To limit the 
number of free parameters used in the examples, we use a set of 
hypothetical rock and fracture parameters in Tables I and II, considering 
typical sandstone properties (e.g., Berea sandstone). These properties are 
used to determine the poroelastic parameters of the background medium 
and the fracture, and frequency-dependent wave properties such as fast and
slow P wave slownesses and the related complex coefficients βPf(ω) and 
βPs(ω), using the equations presented in Sec. II A. The assumed pore-
tortuosity value α∞ = 3 is used to define the dynamic permeability model 
(Johnson et al., 1987) used in Eq. (6).



The fracture compliance value (drained specific normal fracture stiffness) 
and the nonlinear fracture compliance parameter are determined using a 
laboratory-measured relationship for a sandstone core containing a single, 
sheared fracture (Fig. 4). Note that the laboratory-measured compliances 
using small rock samples may be smaller than larger fractures in the field 
due to scale effects (e.g., Worthington and Lubbe, 2007). Also note that the 
sample here is subjected to the uniaxial stress condition, which may result in
fracture deformation characteristics slightly different from the previously 
assumed uniaxial strain condition. This particular measurement resulted in a 
relationship between the stress and normal fracture compliance, which was 
best fit by a semi-logarithmic stress-deformation model (Fig. 3), which 



results in specific drained normal fracture compliance given by ηD = −8.94 × 
10−6/τ* (note that τ* < 0 for compression).

A. Effective stress, fracture saturation, and background permeability effects

Because slow P waves dissipate rapidly as the waves propagate, we examine
only the scattering of fast P waves from an incident fast P wave. The 
transmission and reflection coefficients are computed here as the ratios of 
the solid displacement amplitudes, using Eqs. (72) and (77). In the following 
examples, the static effective stress on the fracture, fluid (water) saturation 
of the fracture, and the permeability of the background poroelastic medium 
are varied around the baseline values in Tables I and II. The assumed 
frequency of the incident wave is fc = ωc/2π = 500 Hz, and the strain 
amplitude is ±2.5 × 10−6.

First, we examine the impact of static effective stress. Saturation of the 
fracture (by water) and the background medium's permeability are 
maintained at 100% and 1 D (Darcy), respectively. The effective stress is 
varied from 10 kPa up to 100 MPa, and the resulting transmission (|T|) and 
reflection (|R|) coefficients of the wave displacements are presented in Fig. 
5. In this plot, the coefficients for linear scattering (frequency ω = ωc) and 
first-order nonlinear scattering [ω = 0 (static) and ω = 2ωc components] are 
shown separately. Note that the magnitudes of the transmission and 



reflection coefficients for nonlinear scattering of the same order are 
identical, resulting in only single curves. As a reference, the magnitudes of 
the perturbation parameter ε are also presented in the same scale. In this 
example, nonlinear scattering becomes somewhat prominent for effective 
stress below 1 MPa, with the 2ωc component exhibiting a peak at ≈0.5 MPa. 
Using somewhat higher frequencies (17–18 kHz), in the laboratory, Johnson 
and Jia (2005) show that a layer of very compliant porous medium (a bead 
pack), which can be thought of as a physical representation of our fracture, 
exhibits strong nonlinear acoustic behavior for strains above ∼ 1 × 10−6 at 
effective stresses ∼0.1 MPa. The theoretical predictions here appear to be 
consistent with their observation. The amplitude of the static (ω = 0) 
component dominates the 2ωc component. Note that the value of the 
perturbation parameter ε becomes large with decreasing effective stress, 
and approaches one at ≈40 kPa. The convergence of the perturbation series 
is not guaranteed for such a large ε.



Next, the effect of compliant gas (Pgas = 0.1 MPa) within a fracture is 
examined for an effective stress of 1 MPa and a background permeability of 
1 D (Fig. 6). The effect becomes prominent once the gas saturation vg0 in the 
fracture reaches 1% where the 2ωc component exhibits a clear peak. This is 
attributed to the nonlinear scattering caused by the wave-induced changes 
of the bulk stiffness of the gas, which is shown separately by a dotted line. 
Because of the interference between the nonlinear scattering induced by the
wave-induced changes in the fracture compliance and in the gas compliance 
[terms involving cη and cg, respectively, in Eqs. (78a) and (78b)], the 2ωc 
component also exhibits a sharp valley at vg0 ≈ 4%. For a fully water-
saturated fracture, the transmission and reflection coefficients of the 2ωc 
component is about 1/10 of the drained fracture, and the static component is
slightly larger.



The last of the three examples examines the impact of the permeability of 
the background medium. In Fig. 7 the background permeability is varied 
from 1 μD up to 100 D. With increasing permeability, the enhanced wave-
induced fluid flow between a fracture and the background medium relaxes 
the pressure within the fracture, making the fracture response more drained 
than undrained and resulting in larger fracture deformation. This increases 
both linear and nonlinear scattering as indicated by the plot. However, for 
the water-saturated fracture in this example, these effects are still small 
(linear |R|≈0.07 and nonlinear |T|,|R|≈0.006 at k0 = 100 D).



B. Transmission of transient incident waves (fast P waves)

In this example, we examine the impact of nonlinear scattering on transient 
pulses of poroelastic waves. The incident wave is a fast P wave with a 
waveform consisting of a ten-cycle (full amplitude part) cosine burst. The 
central frequency fc = ωc/2π is 500 Hz, wave strain is 2.5 × 10−6, and the 
background and fracture parameters in Tables I and II are used. The static 
effective stress prior to wave arrival, fracture saturation, and the background
permeability are 1 MPa, 0.5, and 1 D, respectively. Transmitted wave's solid 
particle displacements (Fig. 9) and pore pressures (Fig. 8) are computed for 
zeroth-, first-, and second-order scattering, at 0 m and 1 m away from the 
fracture surface. Results here include both fast and slow P waves in the 
scattered waves.



First, we examine fluid pressure responses. On (and within) the fracture, a 
compliant and saturated fracture produces enhanced fluid pressure changes.
This results in slow P waves, which diffuse away from the fracture. The linear 
part zeroth-order scattering) of the pressure [Figs. 8(a) and 8(b)] shows a 
single-time-derivative form of the input displacement pulse, which decays in 
amplitude as it propagates away from the fracture. The first-order nonlinear 
part exhibits dominant 1 kHz waves, which are distorted by underlying lower-
frequency waves. Low-pass (<500 Hz) filtered waveforms are superimposed 
in [Figs. 8(c) and 8(d)]. While the cosine burst signal is on, due to the static 
effect discussed in Sec. II F, negative pressure (suction) is generated by the 
low-frequency waves. On the fracture [Fig. 8(c)], however, the pressure 
starts to dissipate once the incident burst signal reaches a steady state. This 
is because the induced pressure diffuses away from the fracture as slow P 
waves. Near the end of the burst signal, the removal of the static effect 
results in positive pressure because the fluid accumulated in the fracture is 
trapped and has to be expelled by the reducing aperture. In contrast, away 
from the fracture [Fig. 8(d)], the minimum pressure is reached with some 
delays from the beginning of the steady state because the static-effect-



induced fluid pressure changes in the fracture take some time to propagate. 
The reversal of the pressure signs observed on the fracture is not seen here. 
This is because the low-frequency slow P waves are strongly diffusive, and 
the positive pressure induced by the aperture reduction is canceled by the 
preceding, more dominant negative pressure in the waveform. For the 
current example, amplitudes of the first-order nonlinearly scattered waves 
(ω = 0 and 2ωc) are much smaller than the linearly scattered waves (ω = 
ωc), and the second-order scattered waves (ω = ωc and 3ωc) are even 
smaller [Figs. 8(e) and 8(f)]. This demonstrates that the related perturbation 
series is converging.

The accompanying solid frame displacement responses are shown in Fig. 9. 
Unlike the pressure response, the displacement of the linearly scattered 
wave does not decay rapidly as it propagates away from the fracture [Figs. 
9(a) and 9(b)]. The first-order nonlinearly scattered waves exhibit prominent 
positive static shifts. Because the displacement on the other side of the 
fracture has an equal magnitude with the opposite sign, this indicates that 
the average fracture aperture increases while the incident wave is arriving 
on the fracture [Figs. 9(c) and 9(d)]. A small, slowly decaying “tail” after the 
incident wave disappears is caused by the closure of the fracture as the fluid 
accumulated by the static effect escapes and the positive pressure within 
the fracture reduces. Again, the amplitudes of the second-order scattered 
waves are much smaller than the others.



IV. CONCLUSIONS

In this paper, we use a perturbation method to solve the one-dimensional, 
nonlinear plane poroelastic wave scattering problem involving a thin, 
compliant, and fluid-filled interface (fracture). The behavior of the interface is
modeled by a nonlinear extension of the poroelastic linear–slip interface 
model. With the assumption that a fracture can be modeled by a thin, 
compliant layer of poroelastic medium, simple expressions can be found for 
wave-induced finite deformation of the fracture and fluid displacement 
(Darcy flux) between the fracture and background medium. We found that 
the nonlinear fracture deformation depends only on the wave-induced 
effective stress while the fluid displacement depends only on the pressure.

Application of a perturbation method to the nonlinear–slip interface model 
results in a set of linear boundary conditions for each order of the 
perturbation [Eqs. (61a)–(61d)]. Except for the lowest-order linear problem, a
nonlinear source term accompanies each of these conditions, which prohibits
us from solving the related planewave scattering problem in the frequency 
domain. To solve this, the nonlinear source term in the time domain is first 



separated into different frequency components. Then, the linear boundary 
conditions are used to obtain the solutions of the scattering problem for 
individual frequencies, which are summed to obtain the time-domain 
solution. This process is applied sequentially to higher orders of perturbation,
with the nonlinear source terms computed from the solutions of the lower-
order scattering problems and incident wave. This method is convenient for 
solving problems involving linear poroelastic waves in the background 
medium with frequency-dependent wave propagation.

The predicted nonlinear scattering transfers wave energy from an original 
frequency to different frequencies. In particular, for the first-order scattering,
transmitted and reflected waves of the same amplitudes but with opposite 
signs are produced, with both the difference frequency and sum frequency. 
For the first-order nonlinear scattering, the displacement amplitude of the 
static, difference-frequency component is generally larger than the sum-
frequency component. However, a small volume of compliant gas in the 
fracture can significantly increase the sum-frequency component, making it 
larger than the static effect.

The examples revealed that, for a set of fracture and background medium 
properties selected in this paper, amplitudes of the nonlinearly scattered 
waves by a water-filled fracture are an order of magnitude or more smaller 
than a dry fracture, even for the relatively large strain of 2.5 × 10−6. This is 
because the stiffening effect of the liquid effectively reduces wave-induced 
fracture aperture changes and the resulting nonlinear behavior. However, 
the relative magnitude of the nonlinear scattering increases for reduced 
static effective stress, increased background permeability, and, particularly, 
for inclusion of compliant gas in the fracture fluid due to the wave-induced 
nonlinear changes of the gas bulk modulus.

Last, the perturbation method used in this paper could produce inaccurate 
results when the perturbation parameter ε approaches O(1). This can happen
for large incident wave amplitudes (or effective stress) and for very large 
static fracture compliances due to small static effective stress (e.g., Fig. 5). 
The resulting large ε would require a longer perturbation series for more 
accurate solutions. For the latter, however, the dimensionless coefficients cη, 

cg, cℓ and the effective stress ratio , which were assumed to be 
O(1), become small, resulting in accelerated convergence of the perturbation
series. For such a case, the perturbation model presented in this paper would
need to be modified. For a diverging series, the solution of the nonlinear 
scattering problem may need to be obtained using explicit numerical 
modeling such as finite-difference methods. The analytical solutions 
presented in this paper, however, still provide valuable physical insights into 
the different mechanisms by which a fracture containing fluid produces 
nonlinear scattering of waves.
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