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HEAT AND MASS TRANSFER IN A FAULT~CONTROLLED GEOTHERMAL 
RESERVOIR CHARGED AT CONSTANT PRESSURE 

K. P. Goyal and T. N. Narasimhan 

Earth Sciences Division, Lawrence Berkeley Laboratory 
University of California, Berkeley, California 94720 

ABSTRACT 

A two~dimensional mathematical model of a fault controlled 

geothermal reservoir has been developed. Heated lighter water, rising 

in the fault, is assumed to charge a reservoir which, in turn, is 

overlain by a thin impermeable, thermally conducting cap rock. The 

mass flow rate or the pressure associated with the charging process 

at the fault inlet is unknown and can only be estimated. Thus, in this 

paper, the pressure in the fault at the bottom of the reservoir is 

assumed to be prescribed. Quasi~analytic solutions for the velocity, 

pressure, and temperature are obtained in the fault~reservoir system 

for a high Rayleigh number flow. In this approximation, the upwelling 

fluid does not cool off appreciably until it reaches the cold upper 

boundary of the reservoir and encounters conductive heat loss. This 

thermal boundary layer, which is thin at the top of the fault, grows 

outward laterally and occupies the full thickness of the aquifer far 

away from the fault. The mathematical model is based on the flow of 

liquid water in a saturated porous medium. The solution techniques 

involve the combination of perturbation methods, boundary layer theory 

and numerical methods. The analysis of this generic model can be 

applied to liquid dominated geothermal systems where the thickness of 

the impermeable caprock is very small compared to the depth of the 

reservoir. 
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NOMENCLATURE 

C~ specific heat of the liquid at constant pressure, m2 tsec~K 

g' acceleration due to gravity, m/sec 2 

K' fault permeability and horizontal permeability in the 

aquifer, m2 

L' depth of the reservoir, m 

M' mass flow rate per unit length in the direction perpendicular 

to the plane of paper, kg/m~sec 

p' fluid pressure in the aquifer, Pascals 

P' fluid pressure in the fault, Pascals 
I 

Pb specified fluid pressure in the fault at z' = -L', Pascals 
I 

PH cold hydrostatic fluid pressure with respect to density 
I 

o
0

, Pascals 

T' fault temperature, K 
i 

Tmax maximum temperature at the hot bottom boundary of the 

v' 

W' 

e' 

reservoir, K 

ambient temperature, K 

horizontal Darcy mass flux in the aquifer per unit area, 

kgtm2-sec 

horizontal Darcy mass flux in the fault per unit area, 

kg/m2-sec 

vertical Darcy mass flux in the fault per unit area, 

kg/m2-sec 

semifault width, m 

coefficient of thermal expansion of the liquid, K-1 

aquifer temperature, K 



v' 

p 

3 

thermal conductivity of the porous medium, Kg-m/sec 3~K 

kinematic viscosity, m2tsec 

density of the liquid at the temperature T', kg/m3 

I 

density of the liquid at the ambient temperature T
0

, 

kg/m3 
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INTRODUCTION 

The analysis of available geophysical data from various geothermal 

systems has made it possible to develop conceptual reservoir models 

which contain elements of physical plausibility. Such availability 

has helped to evolve extremely idealized mathematical models for heat 

and mass transfer in unexploited liquid dominated geothermal systems 

in a form which is at least physically viable. The hypothetical 

idealized models, developed by extensions of classical hydrodynamic 

stability theory in porous media (see review articles by Combarnous 

and Bories [1], Cheng [2], Garg and Kassoy [3]) lack both the signifi­

cant internal structure and boundary conditions relevant to real geo~ 

thermal systems and thus preclude the comparison of theoretical 

prediction with field measurements. For example, the convective con~ 

figuration associated with an incompletely defined system (infinite 

slab configuration) or simplified thermal boundary condition (uniform 

temperature on a horizontal boundary) may not resemble those obtained 

in real systems where geological structure (the combination of fracture 

zones, faults and aquifers), boundary irregularity and localized in~ 

trusive bodies may have a significant effect on the flow dynamics. 

Hypothetical, but more plausible models, containing the elements 

of configurational, structural and thermal reality have developed into 

a variety of ways since the pipe models of Einarsson [4], Wooding [5], 

Elder [6] and Donaldson [7,8]. Such models have been surveyed by Goyal 

and Kassoy [9]. Einarsson's pipe model concept arises from the hydro~ 

dynamic imbalance that exists between the heated, low density 
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water in the active part of a geothermal reservoir and the colder, 

denser water in the peripheral region. 

Attempts have been made in the literature to develop models of 

exploited as well as unexploited geothermal systems on the basis of 

known field data. Such models include Wooding 1 s [5] crosssectional 

model of up-flow in the Wairakei system; the two-dimensional areal 

reservoir model for Wairakei by Mercer et al. [10] and Mercer and 

Faust [11]; Sorey's [12] large~scale vertical model of the Long Valley 

Caldera, The Salton Sea reservoir areal model developed by Riney 

et al. [13], three dimensional model of the Cerro Prieto field by 

Lippmann and Goyal [14], two dimensional vertical model of the Wairakei 

system by Pritchett et al. [15], and a vertical profile analysis of 

the East Mesa system by Goyal [16] and Goyal and Kassoy [17]. Geo­

thermal hot springs were modeled by Sorey [18] as an isolated cylin­

drical conduit and as a fault plane conduit to determine the amount of 

heat lost by conduction to the rocks surrounding the spring. In these 

models Sorey [18] prescribed the fluid mass flux and temperature at 

the base of the conduit and allowed the same mass flux to be removed 

from its top 

In this paper we present a two~dimensional generic type model 

similar to that of Goyal and Kassoy [9], for a liquid dom·inated geo­

thermal reservoir charged by ated water from a vertical fault zone. 

Earlier, Goyal and Kassoy [9] considered a constant flux boundary 

condition at the bottom of the fault. In this study, however, we 

assume a boundary condition such that the pressure in the fault at the 
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bottom of the reservoir is prescribed. Additionally, the analysis can 

also be used to compute the velocity field in response to changes in 

viscosity or permeability under a prescribed pressure gradient. This 

boundary condition is practically realistic since it is far easier to 

measure reservoir fluid pressures than fluid fluxes or velocities. In 

practice, it may possibly be difficult to exactly locate the fault and 

then to measure the pressure in the fault at the bottom of the reser~ 

voir. However, the bottom of the reservoir can be estimated from the 

well logs and the shut~in pressure measured at this depth in a well 

very near the fault zone can be a reasonable estimate of this pre~ 

scribed pressure as shown in Goyal and Kassoy [9,17]. The governing 

equations pertain to heat and mass transfer in saturated permeable 

media. The solution technique used involves a combination of pertur~ 

bation methods, boundary layer theory and numerical methods. Results 

are presented for pressures, velocities, temperatures and temperature 

gradients in the fault-aquifer system. 

DEVELOPMENT OF CONCEPTUAL MODEL 

Studies of liquid-dominated geothermal systems such as those at 

Wairakei (Grindley [19]), Broadlands (Grindley [20]), Long Valley 

(Rinehart and Ross [21]), Imperial Valley (Elders et al. [22]), Cerro 

Prieto (Puente and de la Pena [23]) and Ahuachapan (Ward and Jacobs 

[24]) suggest that geothermal anomalies are intimately associated with 

a specific pattern of faulting. For example, at East Mesa in the 

Imperial Valley of California, the Mesa fault is believed to act as 

conduit for the hot waters rising up from the depth (Combs and Hadley 
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been heated up in the fractured basement system. The mass flow rate 

or the pressure associated with the charging processes at the fault 

inlet cannot be known without a global analysis of the entire convec­

tion process. In the present analysis the pressure in the fault at 

the bottom of the reservoir is considered to be a prescribed parameter. 

The hot light liquid rises up in the reservoir section of the fault 

and is pushed into the aquifer due to the overpressure associated with 

the convection process. The liquid is assumed to flow only horizon~ 

tally within the aquifer. The vertical permeability of the formation 

is expected to be drastically reduced due to the presence of inter­

bedded shaley and sandy layers (Bailey [26]). Except for flow within 

vertical fractures, any net vertical flow in the reservoir will depend 

upon the sand continuity in the vertical direction. During East Mesa 

Modeling efforts, Riney et al. [27] found that the vertical reservoir 

permeabilities of about 0.3-0.5 md and horizontal reservoir permeabil~ 

ities of about 90 md were necessa~y to match the observed field data. 

For mathematical purposes the fracture zone is idealized as a 

vertical slab of homogeneous and isotropic porous material. The 

adjacent aquifer is represented as a porous medium of lateral half 

width H1 with horizontal permeability much larger than the vertical 

value of small absolute magnitude. The impermeable upper boundary is 

assumed to be exposed to ambient conditions. Thus we prescribe a 

constant temperature boundary condition at the cold upper boundary. 

The temperature boundary condition at the bottom of the reservoir is 

derived from the temperatures measured in thirteen wells of the East 
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[25]). Bailey [26] hypothesized that the East Mesa geothermal reser-

voir owes its presence to the charging of hot waters from the fault at 

an intersection with an aqui sufficient horizontal permeability. 

A two dimensional model of this system is discussed in Goyal and 

Kassoy [17] where a thick clay cap separates the reservoir from the 

ground surface. In this study, we consider a similar but a simplified 

model which has a very thin impermeable clay cap represented by an 

upper cold boundary of the reservoir as shown in figure 1. Our results 

of this study will, therefore, be applicable to a system where the 

thickness of the clay cap is orders of magnitude smaller than the 

reservoir depth or where the heated water is present in an extensive 

region just below the surface. While we were motivated by observa-

tions of the East Mesa field 9 it is not our intention to use the model 

to describe East Mesa in detail. The purpose of this paper is to pro-

vide an analytical solution for a gross understanding of a geothermal 

system during the exploratory phase. As more subsurface data becomes 

available for a clearer definition of the reservoir, numerical methods 

will be more appropriate for detailed reservoir analysis. 

The fault is considered to be a vertically oriented region, 
I 

composed of highly fractured material of finite width (2 ye). It 

extends downward through the interbedded sediments of the reservoir 

for a distance L3 to the basement rock. The depth of the reservoir 
I 

(L 1
) is assumed to be much larger than the fault width (2 ye). It is 

postulated that the fault is charged at depth by water which has 
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Mesa system occupying an area of about six square miles. As shown in 

Fig. 2, the temperatures in these wells converage to a value of about 

200°C at the depth of about 2.5~3 km. This motivated us to prescribe 

a constant temperature boundary condition at the bottom of the reser~ 
I 

voir. At the vertical boundary far from the fault (H' >> L' >> ye) 

the temperature distribution is assumed to be controlled by vertical 

conduction, the pressure distribution is hydrostatic, and mass flux 

entering the fault zone is allowed to leave the aquifer from its far 

field boundary at y' = H'. 

It is to be emphasized that this model is only a part of a "global 

circulation pattern. 11 It does not define the downflow and heat up 

zones, and thus input mass or the pressures at the bottom of the fault 

are unknown. The driving mechanism for the convection, the result of 

a hydrostatic pressure imbalance between the hot upflow region and the 

cold downflow region, is identical to that envisioned by Donaldson [7]. 

MATHEMATICAL MODEL 

A detailed derivation of the governing equations for a thermally 

active, saturated, deformable porous material is given by Goyal [16]. 

The equations used in the present study are obtained from the above by 

assuming that the flow is steady, the solid matrix is rigid, the fault 

medium is homogeneous and isotropic, liquid properties are constant, the 

thermal conductivities of the fault and aquifer media are constant and 

equal. and that the vertical permeability in the aquifer is much smaller 

than the horizontal value. Thus for all practical purposes vertical 
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velocity in the aquifer is nearly zero. We also assume that the horizon~ 

tal permeability in the reservoir is equal to that of the fault for 

mathematical simplicity and may not be true in actual field situations. 

However, Goyal and Kassoy [17] modeled East Mesa system under a similar 

assumption and the predicted results matched favorably with those measured 

in the field. Riney and Pritchett [28] studied the effect of introduction 

of a fault model on the subsurface isotherms and the surface heat flow 

patterns in the East Mesa field, using a similar assumption. In addition, 

the Boussinesq approximation is invoked. The dimensional equations for 

the system shown in Fig. 1 and the related boundary and continuity condi-

tions are given in the Appendix. 

Within the fault, where the characteristic horizontal dimension and 

velocity component are much smaller than their vertical counterparts, 

appropriate nondimensional variables can be defined as: 

I 

T = T' /T 
0 

(1) 

where , is defined as the overheat ratio. Symbols with prime indicate 

a dimensional quantity while those without it a nondimensional quanti-

ty. The horizontal velocity in the fault is smaller than its vertical 

counterpart because the area perpendicular to flow in y-direction is 

(1/ye) times that in z-direction. Substitution of Eq. (1) into Eqs. (A1) 
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to (A5) leads to an inherent balance between the buoyancy, Darcy, and 

pressure terms in the vertical momentum equation, if 

qo = \)I 
reference convection velocity 

I I I 

p
0 

= p
0
g'ael aT' =reference convection pressure ( 2) 

R "" = Rayleigh number 

I I 

where aT' = T ~ T . The nondimensional equations, transformed max o 
boundary and continuity conditions relevant in the fault zone obtained 

by using Eqs. (1) and (2) in Eqs. {A1)~(A3), (A6), (A7) and (A10b) can 

be written as 

Fault Zone: 

If- + w = o y z 
2-y V = ~P~ 
e Y 

W(Y,O) = 0 

T(Y,O) = 1 T(Y,-1) = 1 + T 

W = -P + z (T ~ 1)/T (3a-c) 

y = R1/2y 
e 

I 

pb = (Pb 

T~(O,z) = 0 y 

(4a,b) 

I I 

PH)/po (5a~c) 

V ( ± 1, z ) = ±v ( z ) 
(6a~d) 

For the aquifer, within which the horizontal scale is measured by 

9 = y 1 /H', the pressure p = P, the temperature e = T, and the velocity 

v = V, the appropriate system of equations obtained from Eqs. (A4) and 

(A5) is given by: 



Aquifer: 

where 

H'/L' = d/y e 

12 

2 2 2 
dy v(z) BYA = y BAA + d 9 e yy zz (7a,b) 

d = 0 (1 ) number (Sa, b) 

The magnitude of H' with respect to the fault depth, L', given in 

Eq. (Sa) is chosen to ensure a balance between the nondimensional 

aquifer velocity v and the horizontal pressure gradient as shown in 

Eq. (7a). The number d, used in this study to define the location of 

the far field boundary (y 1 = H1
) of the aquifer, will be determined 

during the course of this paper. It is assumed that the hot liquid 

loses its heat to the surroundings to the extent that the horizontal 

temperature gradient becomes vanishingly small far from the fault. It 

may be emphasized that horizontal motion exists at the far field 

boundary (y• = H') but that heat transfer is due to vertical conduction 

only. The related boundary conditions as obtained from Eqs. (AS), 

(AlOa) and (A9} are: 

(9a,b) 

(lOa,b) 

The parameter y is assumed to be an 0(1) number because ye is 

considered small. If, for instance, we consider R = 103 and L' = 2 km 
I 

then Ye = 63.2 y meters, indicating that reasonable fault zone 

thicknesses can be incorporated in the theory. In the mathematical 
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analysis solutions are sought in the limit of largeR withy= 0(1) 

implying, of course that Ye is small. 

Large values of R suggest that energy transfer associated with 

liquid convection is far greater than that due to conduction. In this 

regard one may expect that fluid particles moving through the system 

will tend to behave isothermally unless affected by cooling associated 

with a relatively cold boundary, 

The cooling effect of the surface is confined to a thin thermal 

boundary layer near the top of the fault for a high Rayleigh number 

flow, The boundary layer grows as the fluid moves away from the fault 

and virtually occupies the whole depth of the aquifer far away from 

fault. Thus, the flow outside the boundary layer is an isothermal 

flow. 

It can be noted from Eq. (3b) that the horizontal pressure gradient 

in the fault is very small, O(y;). Thus, the basic fault pressure is 

only a function of depth and can be calculated in terms of W and v, 

The horizontal aquifer velocity v(z) can then be calculated explicitly 

from Eq. (?a) because the far field (y• = H1
) pressure is known, once 

Eq. (lOb) is specified. Upon decoupling the fluid mechanics from the 

thermal problem, the energy Eq. (?b) can then be solved for the 

temperatures in the aquifer. 

CLOSED FORM SOLUTIONS IN THE FAULT AQUIFER SYSTEM 

The water in the fault zone rises up adiabatically because the 

convection Rayleigh number is considered to be large. Even the liquid 
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in the aquifer just adjacent to the fault remains at the supply tem~ 

perature. Cooling in the fault itself can take place only in a thin 

boundary layer just below the cold upper surface. The uppermost por~ 

tion of the neighboring aquifer is similarly affected. 

The basic solutions in the isothermal portions of the fault and 

aquifer system are (Goyal and Narasimhan [29]): 

c1 2 w = ~, - s i n h z I Ia - cosh z I /l + z + 1 + o ( y- ) 
~ e 

l C1 P = d d cosh 

where 

Pb +d +~+ ltrsinhL 

cosh-
lcf 

1 

lcf 

(11) 

(12) 

(13) 

(14) 

(15) 

(16) 

(17a,b) 
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It can be noted that (-z2/2) is the pressure at the far field 

boundary (Y 1 = H') of the aquifer and is consistent with the specified 

temperature field (Eq. (lOb)). The solutions for the vertical velocity 

(W) and overpressure (P) in the fault, as given by Eqs. (13) and (14) 
I 

respectively are obtained for a prescribed pressure Pb at Z1 = -L'. 

It is now possible to calculate mass flux entering the fault at Z 1 = 

-L' from Eq. (13) and Eq. (1). This suggests that mass flux and 

pressure at Z 1 = 1 are uniquely related. The exact form of their 

relationship is discussed in Fig. 11. 

BOUNDARY LAYER SOLUTIONS 

According to Eq. (6a), the nondimensional temperature at the top 

of the fault is 1. There should be a boundary layer to accommodate 

the temperature drop from 1 +, to 1. Using the appropriately scaled 

variables 

and VJ = W/y e (18a, b) 

boundary layer solutions in the fault, as discussed in Goyal and 

Narasimhan [29] are 

T = 1 - , erf(Az) + O(ye) 

+ ~1-
AI-:;; 

(19a,b) 

(20) 

(21) 
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where 

(22) 

The thermal boundary layer initiated at the top of the fault continues 

into the adjacent aquifer over a horizontal distance of scale Ye· In 

this initial aquifer zone of water cooling, the solutions for velocity 

and overpressure are: 

TEMPERATURE DISTRIBUTIONS WITHIN THE AQUIFER 

Once the velocity field in the aquifer is known the temperature 

can be calculated from the energy equation. This must be done for five 

different regions shown in Fig. 3. To obtain temperatures in the near 
I 

fault regions where length scale is of O(ye) and O(L') the 

aquifer energy equation (Eq. (7b)) is transformed for these length 

scales as discussed in Goyal and Narasimhan [29] and Goyal and Kassoy 

[9 ]. The solution in region 1 can be written as 

0 
w2 2 +~A4 + w2 e(Y,z) 1 ~ ;' jexp "" -~-A 

4A2 
00 

+ (A2 sin -wz dw (24) y 
(j) 
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A similarity solution, compatible with the solution in region 1 

can be obtained in the region 3. Elementary methods yield 

e(y,z*) = 1 - T erf(;; n) , n " z*/y
112 

, y " r: , z* z 
""ye1/2 

(25a~d) 

It is possible to obtain an analytical solution of Eq. (7b) in 

region 5, when 9 << 1 and z << 1, such that z/9112 = 0(1), which can 

be matched with Eq. (25a). We find the form 

e(y,z) = 1 - ' erfl~ 
Lm 

r-1/2 2 r 
1 

( ) 
1 

"ft2] + Y '~ _z_ 1 + erf __!k_ (26) 
y 4 /2d A f2dY j2dY 

.... 

A 2 A2 2 - _z_ e~ _z_ + O(y) 
dy/IT 2dy 

by using coordinate expansion methods. This solution provides the 

transition between the incompatible conditions 9(y,O) = 1,' 9(y~O,z) = 

1 +'for 1 z 1 > 0 in the vicinity of the singular corner 9 = z = 0. 

The energy equation in Eq. (7b), parabolic to the lowest order, 

must be solved subject to the boundary conditions in Eqs. (9a) and (9b) 

and the initial condition 9(9~0,z) = 1 + ' for 1 z 1 > 0 obtained from 

matching with region 4. The last formal condition at the far end of 

the aquifer, Eq. (lOb), is used to determine a value for d. Numerical 

integration by standard finite difference methods is carried out for 

assumed values of d until the solution at the far edge (y 1 = H1
) is 

within 0.5 percent of the real condition. This approximation provides 

an engineering-type estimate of the boundary location. At that point 
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convection of energy associated with the ~Y~term in Eq. (7b) is very 

small compared to the conduction term. Of course in the formal 

mathematical sense, the purely conductive profile can be found only 

for 9 ~ oo, From the mathematical viewpoint, the reduction of the 

full~elliptic problem in region 1 to the parabolic system in region 5 

of the aquifer permits a simplified numerical computation procedure. 

The fact that the reduction can be developed in a formal, rational 

manner for the large Rayleigh number approximation shows that the 

imposition of the boundary condition at an a priori specified location 

(y 1 = H1
) is fundamentally unsound. In physical terms, this implies 

that the thermal anomaly associated with the upward fault zone flow 

has a natural horizontal relaxation length, associated basically with 

the distance required to transfer out of the surface, heat in excess 

of that arising from the natural geothermal gradient ~T 1 /L 1 • A 

quantitative indication of this matter involves the evaluation of d. 

RESULTS AND DISCUSSION 

It is imperative that the analysis carried out in the preceding 

sections should be applied for the parameters which are representative 

of a typical geothermal system. Consider a geothermal system with 

following typical data. 

Ye = 75 m 

i 

T
0 

298 K 

~T 1 = 298 K 

K = 10~13 m2 

I 

Am= 2.125 W/m~k (Goyal and Kassoy [17]) 
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Using the physical properties of water at 298 K, the following 

reference values can be calculated. 

q~ = 8.5 x 10~8 m/s 

p~ = 22.74 x 105 Pa 

The corresponding nondimensional numbers as given below are 

selected in our calculations. 

R = 500 , 1 = 1 , Ye = 0.025 

For a selected set of nondimensional numbers, R, ,, Ye and Pb, 

as shown in Table 1, Eq. (?b) is integrated to obtain an value of d, 

representative of that set. It can be seen that d is different for 

different sets of parameters. It may be observed from this table that 

an increase in Pb, R, or Ye increases d; which means that a larger 

aquifer is needed for the transition to the conduction temperature 

profile when the parameter is increased. In physical terms this result 

implies that the hot isothermal portions of the aquifer, maintained by 

horizontal convection effects will be more extensive in systems of 

relatively larger fault inlet pressure, permeability and fault size. 

The dependence of various parameters on the velocity, pressure, 

temperature and surface heat flux in the fault and the aquifer is 

given in Figs. 4 to 10. The value of d used in these figures is for 

the parameters shown. 

Figure 4 shows the vertical velocity (W) in the fault as obtained 

from Eq. (13) at various depths for different inlet pressures (Pb). 

It may be noted that an increase in the inlet pressure leads to an 
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increase in the vertical velocity. It is consistent with the commonly 

held notion that one would require higher pressure to push more mass 

into the system. The vertical velocity vanishes at the top of the 

fault due to the impermeable boundary assumption. All the water is 

pushed to the aquifer by the time it reaches the top surface of the 

fault. Dimensional vertical velocity (W 1
) in the fault can be 

i i 

obtained by multiplying W of Fig. 4 by p
0
q

0
• The nondimensional 

ordinate (z) can be converted into dimensional depth by multiplying it 

by the depth of the reservoir (L 1 
). The dimensional specified pressure 

I I 

Pb can be obtained by adding hydrostatic pressure PH to the 
I 

product of Pb and reference convection pressure p
0

• 

Figure 5 is a plot of fault overpressure (P) versus depth for 

different values of Pb as computed from Eq. (14). As one may expect, 

the overall fault pressures increase for an increased inlet pressure 

(Pb). It may be noted that the fault pressures decrease upwards and 

then increase toward the top of the fault. This increase toward the 

top is caused by the stagnation point at z = 0. The dimensional over-

pressure can be obtained by multiplying Pb by reference convection 

pressure p
0

• 

The horizontal velocity in the aquifer calculated from Eq. (15) at 

various depths is shown in Fig. 6 for different inlet pressures. As 

expected, horizontal aquifer velocities increase for an increased in~ 

let pressure. The trend of the curves is similar to the overpressure 

curves in Fig. 5. The larger velocities at the top of the aquifer are 

associated with the relatively higher horizontal pressure gradients 
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there. The dimensional velocity in the aquifer can be obtained by 
I I 

multiplying nondimensional velocities by ye p
0 

q
0

• 

The boundary layer temperatures in the fault are shown in Fig. 7 

for various values of Pb as obtained from Eq. (20). It may be noted 

that only 12 percent of the total depth of the fault is shown in this 

figure. Higher vertical velocities associated with increased Pb give 

rise to higher temperatures as indicated in the figure. The thickness 

of the boundary layer changes from about 10 percent to about 8 percent 

of the fault depth for an increase in Pb from 0.5 to 2.0 respectively. 

Temperatures in lower 90 percent of the fault are constant and equal 

to the highest temperature va·lue of 1 + T. In dimensional terms Pb 

equal to 0.5, 1.0 and 2.0 represents about 305 bars, 316 bars and 

339 bars respectively. 

The fluid temperatures in the near fault regions (1 and 3) of the 

aquifer are shown in Fig. 8 at different horizontal locations in the 

reservoir. Boundary layer temperatures in region 1, and in region 3 

obtained from quadrature solution (Eq. (24)) and similarity solution 

(Eq. (25a)) respectively are explicitly shown in this figure. As 

expected the quadrature solution matches the similarity solution for 

large values of~ (y/ye). It may be noted that the boundary layer 

temperatures decrease with increasing distance from the fault. This 

drop in temperatures is caused due to heat loss to the surroundings 

through the cold upper boundary. The temperatures in the lower 

portions of the aquifer (regions 2 and 4) are constant and equal to 

the highest temperature value of 1 + T. The fluid temperature in 
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these regions remains at the supply temperature since heat loss is 

only confined to boundary layer regions 1 and 3. Thus a hypothetical 

well drilled in regions 2 and 4 should encounter a zero vertical tern~ 

perature gradient regime associated purely with a horizontal flow. In 

contrast, conventional wisdom suggests that the observation of small 

vertical temperature gradients implies vigorous vertical convection. 

It is true, on theoretical grounds, that the latter process will 

generate nearly isothermal regimes, it should be clear that specific 

geologic structure can have a similar influence. 

Figure 9 shows the variations of the aquifer temperature with depth 

at several locations away from the fault. The y = 1 represents the far 

end of the aquifer, which is located at d/ye times its depth. The 

temperature decrease with increasing distance from the fault can be 

seen in the aquifer which is affected by heat loss to the cold upper 

boundary. It may be noted that at y = 0.1, half of the aquifer is at 

least within 80 percent of the high temperature value. 

We shall now qualitatively validate the model profiles (Figs. 8 

and 9) with a field example from East Mesa, California (Fig. 2). 

The geothermal reservoir in East Mesa lies at a depth of about 

800 meters from the ground surface (Goyal and Kassoy [17]). The 

downhole temperatures measured in various wells tapping the permeable 

zones are shown in Fig. 2. The temperatures measured in conduction 

dominated upper 800 meters are not shown in this figure, while Figs. 8 

and 9 show the ambient temperature at the upper boundary of the reser­

voir as prescribed. For a proper comparison, it is desirable to 
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include the clay cap in the model being studied. In that case, large 

temperature gradients at the upper boundary of the reservoir (z = O) 

caused by prescribed ambient temperature boundary conditions~ will 

disappear as discussed in Goyal and Kassoy [17]. However, the heat 

transfer mechanism in the model being studied and that shown in Fig. 2 

is similar if we replace the upper boundary of our model by an inter~ 

face between the reservoir and the Clay Cap where the temperature will 

be much higher than the ambient temperature and will decrease with the 

distance away from the fault due to heat loss to the surface through 

the Clay Cap. Thus a qualitative comparison is only possible between 

Figs. 2, 8 and 9. It can be seen that wells 6~1, 6~2, 8~1, 44~7 and 

48~7 are located in the hottest portions of the reservoir. A qualita~ 

tive comparison of the borehole temperature variations in Fig. 2 and 

theoretical predictions in Figs. 8 and 9 shows that the temperature 
' 

profiles in wells 6~1, 6~2, 8-1, 44~7 and 48~7 are similar to those in 

Fig. 8 pertaining to the near fault regions. This suggests that the 

aforementioned wells are at least close to the hot recharge zones of 

this field. In fact, flat temperature profiles similar to those in 

Fig. 8 can be seen in wells 8~1, 44~7 and 48~7 between depths of 

1200~1800 meters, 1500-1850 meters and 1800~2100 meters respectively. 

The temperature profiles of the other wells in Fig. 2 are similar to 

those in Fig, 9 for 9 > 0.4. These wells are thought to be farther 

away from the intensely fractured zone of the reservoir system. In 

particular, well 18-28 is farthest from any known fault zone. 
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Comparison of Figs. 8, 9 and 2 shows that the model predictions are 

credible at least in a qualitative sense. 

Figure 10 shows the effect of fault inlet pressure on the surface 

temperature gradients both for the fault and the aquifer. Heat transfer 

at the surface increases with increasing Pb, as expected. Nondimensional 

pressures Pb = 1 and 2 represent about 316 bars and 339 bars when trans­

lated into dimensional pressures. Thus an increase of 7 percent in 

the dimensional fault inlet pressure increases surface heat flux by a 

maximum amount of about 11 percent. Matching of the three regions is 

shown for Pb = 1. It can be noted that the length of the aquifer is 

different for each Pb. This difference is due to different value of d 

associated with a different fault inlet pressure. It is found that an 

increase in R and Ye enhances the temperature gradients at the sur-

face, as expected. The results imply that the fault zone convection 

process enhances the surface heat flux by factor of about 30 above the 

background conductive value. 

This value is the right order of magnitude for geothermal systems 

with vigorous surface manifestations where heated water is present in 

an extensive region just below the surface. It is rather large for 

systems exemplified by East Mesa, Imperial Valley, California where 

the reservoir is separated from the surface by an extensive region of 

clay rich sediments. For East Mesa, the heat flux near the fracture 

zone is about three to four times the background value (Goyal and 

Kassoy [17]). 
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As discussed earlier in the paper, the prescribed boundary condi~ 

tions M and Pb are uniquely related by the parameter d which in turn 

is obtained by integrating parabolic Eq. (7b) numerically until the 

specified boundary condition (Eq. (lOb)) is satisfied. 

Figure 11 shows the effect of prescribed boundary conditions M and 

Pb on the length of the aquifer d. M, the nondimensional mass input 
! 

to the fault, is the ratio of M1 and reference mass flow rate M
0 

I I I 

(=2 Yeo
0
q

0
) as defined in Goyal and Kassoy [9]. An increase in M 

increases d significantly more than a corresponding increase in Pb. 

It may be noted in this figure that a change in Pb from 1 to 2 is 

equivalent to an increase in M from 2.65 to 3.55 or a 100 percent in-

crease in the prescribed nondimensional inlet pressure results only 

into 30 percent increase in the nondimensional input mass to the 

system. It suggests that the enlargement of the isothermal region in 

the aquifer is stronger when the input mass is doubled compared to that 

when inlet pressure is doubled. The detailed discussion related to the 

effect of various parameters listed in Table 1 on the pressures, 

velocities, temperatures and temperature gradients in the fault-aquifer 

system is given in Goyal and Narasimhan [29]. 

CONCLUSIONS 

Quasi~analytic solutions are obtained for velocities, pressures, 

temperatures and temperature gradients in a fault-controlled liquid 

dominated geothermal system with a specified pressure at the fault in-

let. The solution techniques involve the combination of perturbation 
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methods, boundary layer theory and numerical methods. Effect of vari~ 

ous parameters such as fault inlet pressure, Rayleigh number, overheat 

ratio and fault width is investigated on these solutions. Additional 

results for other parameter values can be found in Goyal and 

Narasimhan [29]. 

The analysis can be applied to compute the velocity field in an 

aquifer in response to changes in its permeability or fluid viscosity 

under a prescribed inlet pressure. Also, if the geological, geo-

physical, heat flux and borehole logging data is known, it is possible 

to calculate total fluid recharge rate to the geothermal system in 

addition to other physical parameters of interest. 

It is shown that nearly zero gradient temperature profiles in the 

near fault regions 2 and 4 can be associated with purely horizontal 

( 
~8 

water motion Darcy flow rate of about 2 x 10 m/s near the hypothe~ 

sized fault) rather than only with the more vigorous upflow itself. 

While it is clear on theoretical grounds that the latter process will 

generate nearly isothermal regimes, it should be clear that specific 

geologic structure can have a similar effect. Thus it is reasonable 

to speculate that deep, high temperature, isothermal zones are at 

least near to the source of a geothermal system. 

The concepts used to generate the model can be tested directly by 

comparison of the field data and the theoretical prediction. Current 

measurement techniques provide surface heat flux distributions, down~ 

hole temperature and pressure distributions which can be compared with 

values obtained in a given model. The temperatures predicted by this 
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model compare favorably in a qualitative sense to those measured in 

the East Mesa anomaly. 
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APPENDIX 

The dimensional equations describing the conservation of mass, 

momentum and energy in a fault~aquifer system, as obtained from 

Goyal [16] can be written as 

Fault zone: 

Aquifer: 

VI ( Z I ) 
K I I 

=: ~ -~ p I 
v y 

I l I I I A.m Tylyl + Tzlzl 

I I I 

xm(eylyl + ezlzl) 

The solution of the above system is subjected to the following 

boundary and continuity conditions. 

Boundary conditions: 

Fault zone: 

(Al) 

(A2a,b) 

(A3) 

(A4) 

(A5) 

0 (A6a,b) 

I 

Ty 1 (O,z 1
) = 0 (A7a~c) 
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Which describe an impermeable upper boundary, fault pressure at 

the bottom of the reservoir, the cold upper boundary, the hot lower 

boundary and system symmetry respectively. 

Aquifer: 

i i 

gi(y~,o) ""T 
0 

eu (yi ,~L I) = Tmax (A8a,b) 

which describe the temperatures at the cold upper boundary, the 

hot lower boundary and at the far field boundary of the aquifer. 

Equation (A9) is a formal statement of the required conduction~ 

controlled heat transfer at the aquifer edge. 

Continui conditions at the faul 

I I I 

(A9) 

T' (y e' z I ) = B I (y e' z I ) V1 (±ye,z') = ±v' (z') (AlOa,b) 

i I 

P'(yez') ""p'(ye,z') (All) 

which describe the continuity of temperature, velocity and pressure 

respectively. 

The system of Eqs. (Al) to (All) is first nondimensionalized and 

then solved as discussed in the text of the paper. 
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Table L 

p y 
d b R T e 

0.32 0.5 500 1 0.025 

0.41 1 500 1 0.025 

0.49 1.5 500 1 0.025 

0.56 2 500 1 0.025 

0.255 1 250 1 0.025 

0.53 1 750 1 0.025 

0.64 1 1000 1 0.025 

0.96 1 500 1 0.05 

0.41 1 500 2 0.025 
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FIGURE CAPTIONS 

Fig. 1. Two-dimensional conceptual model of a liquid dominated 

geothermal reservoir. 

Fig. 2. Temperature-depth profile for East Mesa wells below 800 meter 

depths {from Goyal and Kassoy [17]). 

Fig. 3. Five different regions in the aquifer. 

Fig. 4. Vertical velocity distributions along the depth of the fault 

for various values of Pb. 

Fig. 5. Fault overpressures versus depth for various values of Pb. 

Fig. 6. Nondimensional horizontal liquid velocity in the aquifer along 

the depth of the reservoir for different values of Pb. 

Fig. 7. Fluid temperatures in the fault for various values of Pb. 

Fig, 8. Fluid temperatures in the near fault regions 1 and 3 of the 

aquifer. 

Fig. 9. Aquifer temperatures in the region 5. 

Fig. 10. Surface temperature gradients along the length of the aquifer 

for different values of Pb. 

Fig. 11. A comparison between the plots of M versus d and Pb versus d. 

(The data of M versus d from Goyal and Kassoy [9]). 
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Fig. 2. Temperature-depth profile for East Mesa Wells below 
800 meters depth (from Goyal and Kassoy [17]). 
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Fig. 4. Vertical velocity distributions along the depth of the fault 

for various values of Pb. 
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Fig. 5. Fault overpressures versus depth for various values of Pb. 
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Fig. 6. Nondimensional horizontal liquid velocity in the aquifer along 

the depth of the reservoir for different values of Pb. 
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Fig. 7. Fluid temperatures in the fault for various values of Pb. 
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Fig. 8. Fluid temperatures in the near fault regions 1 and 3 of the 

aquifer. 
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Fig. 11. A comparison between the plots of M versus d and Pb versus d. 

(The data of M versus d from Goyal and Kassoy [9]). 






