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 A liquid crystal elastomer (LCE) combines cross-linked elastomers and rod-like liquid 

crystals (LCs), presenting the hyperelasticity characteristics of elastomers and the unique 

properties associated with LCs. A LCE is a highly promising material utilized in the realm of 

actuators, soft robotics, and related applications, primarily attributed to its unique capability of 

spontaneous strain achieved through changes in ordering and director. This dissertation aims to 

characterize the stress-director coupling behavior under different loading conditions and its effect 

on crack-tip fields and fracture propagation, providing a comprehensive understanding of LCEs 

and guidance in further design.  
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 First, LCEs exhibit extremely slow relaxation due to a combination of viscous network 

deformation and director reorientation. We study the rate-dependent stress-director coupling 

behavior under various loading rates. Our experimental setup successfully captures rate-

dependent stress, strain, and director reorientation in real-time, and distinguishes the two 

relaxation time scales of the network deformation and mesogen reorientation. Based on the 

experimental findings, a viscoelastic constitutive model is developed to manifest the relation 

between rate-dependent macroscopic deformation and microscopic director rotation in LCEs. 

This work provides a comprehensive investigation into and mechanistic understanding of the 

rate-dependent behavior of LCEs. 

 Secondly, we explore the exceptional stress-director coupling effect around the crack tip. 

We examine edge-cracked LCEs samples subjected to tensile loading at different angles relative 

to the initial director. Unlike traditional elastomers, LCEs exhibit an elliptical stress/strain 

distribution, attributed to the significant and inhomogenous director reorientation at the crack 

tips. Notably, we observe a domain wall formation along a certain polar angle at the crack tip, 

caused by opposite director rotation. Moreover, LCEs with a tilted initial director to the loading 

exhibit much smaller crack openings and energy release rates compared to the parallel loading. 

We attribute these findings to a combined effect of bulk softening at the remote region and the 

formation of domains of opposite director rotation near the crack tip.  

 In the end, we report the intriguing crack propagation behavior in LCEs during post-cut 

experiments with varying initial directors. A post-cut method, which induces a crack after the 

sample is stretched and held for a long time, is utilized to minimize the effect of bulk viscosity, 

enabling a systematical record of crack propagation rates and directions. Besides, a growth delay 

is observed after post-cutting, followed by steady-state propagation. The results reveal that 
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cracks typically propagate perpendicular to the director ahead of the crack tip. During the steady 

stage, crack velocity increases with higher pre-stretching levels. Notably, anomalous growth 

occurs when strip domains and monodomain coexist at the crack tip, attributed to the lower 

fracture energy in the strip domain compared to monodomain. This study offers valuable insights 

into fracture behavior and provides significant contributions to the development of fracture 

criteria. 
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Chapter 1 Introduction 

Soft smart materials have seen remarkable progress, driven by the increasing demand for 

enhanced control, flexibility, reliability, and versatility. Among these, liquid crystal elastomers 

(LCEs) stand out as one of the highly promising materials. Compared to other types of soft stimuli-

response materials, LCEs have the advantages of high energy density, fast responses, safe 

operation and reversible actuation, facilitating broad applications including stimuli-responsive 

actuators [1–3], biomedical devices [4,5], artificial muscles [6,7] and soft robots [8–12]. 

Particularly, LCEs can be activated by a wide range of external stimuli, including heating [13–15], 

light irradiation [10,16,17], magnetic fields [18–20], and electrical fields [21–23]. This multi-

modal responsiveness broadens the application potential and makes LCEs a versatile tool in 

advanced material science. This dissertation studies the constitutive and fracture behavior of LCEs 

under various loading conditions, providing a comprehensive understanding of stress-director 

coupling behavior and its effect in the presence of a crack. The findings not only advance the 

fundamental knowledge of LCEs but also offer insights for designing LCEs, paving the way for 

future commercial use.  

1.1 Basic of LCEs – Stress-director Coupling 

Liquid crystal elastomers (LCEs) present a synergistic combination of cross-linked 

elastomers and rod-like liquid crystals (LCs), thereby exhibiting both the hyperelasticity of 

elastomers and the unique properties associated with LCs [24]. In this dissertation, we focus on 

the nematic main-chain LCEs, where LCs are integrated into the network backbone (Figure 
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1.1a). Nematic LC mesogens tend to align in a specific orientation, with the average direction 

called the director, 𝒅 [25–27], which can be identified by their uniaxial optical axis.  

LCEs have unique mechanical behavior attributed to the interaction between mechanical 

deformation and the alignment of directors. When LC mesogens are heated above a transition 

temperature 𝑇𝑛𝑖, they undergo a phase transition from the aligned nematic phase to the randomly 

oriented isotropic phase, inducing macroscopic contraction of LCEs (Figure 1.1b) [24,28]. 

Figure 1.1b shows the temperature-induced shape change in a monodomain LCE, highlighting 

shrinkage along the director axis and expansion along the orthogonal dimensions due to the 

disordering of LCs. Moreover, LCs can also be reoriented by other external stimuli, such as 

external loading, magnetic fields, and electrical fields, which can lead to significant spontaneous 

strain up to around 400% or stress if constrained. On the other hand, mechanical deformation not 

parallel to the director can reorient the director to the stretching direction [24,29–34], inducing a 

stress plateau in the stress-strain relation (Figure 1.1c) [24,28]. Figure 1.1c presents stress-stretch 

curves for LCEs with various initial directors, demonstrating a more obvious plateau when the 

initial director orientation deviates further away from the stretching direction. This distinctive 

stress-director coupling effect differentiates LCEs from conventional soft materials, endowing 

them with unique mechanical responses under various loading conditions.  
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Figure 1.1 (a) Schematic of main-chain monodomain LCEs. (b) Thermal-induced shape variation in the 

unloaded state [28]. (c) Stress-strain curves with various initial directors under tension [29]. 

1.2Rate-dependent Behavior of LCEs 

 It has been reported that LCEs present significant rate-dependent stress-strain relations 

[29,30,35–47]. Different from traditional viscoelastic materials governed solely by viscous 

network dynamics, LCEs’ mechanical response is intricately influenced by both viscous 

networks and the dynamics reorientation of directors. The interplay results in distinctive rate-

dependent characteristics under tension and relaxation.  

 

Figure 1.2 (a) Stress relaxation of LCEs [39].(b) Stress-strain curves of LCEs under parallel/perpendicular 

loading from rates of 0.01%/s to 10%/s [29]. (c) Director-strain relation at different loading rates [32]. 

Figure 1.2a shows multi-stage stress relaxation in LCEs, demonstrating that LCs’ 

reorientation has a profound influence on relaxation, and the material does not reach equilibrium 

after a long time of relaxation. In tension tests, LCEs behave similarly to normal viscoelastic 
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materials when director roration is negligible. However, it presents a rate-dependent stress 

plateau driven by dynamic director reorientation (Figure 1.2b). The relaxation timescales of the 

network and directors differ markedly, as shown in Figure 1.2c, where the director exhibits 

minimal rotation at loading rates far from equilibrium. To illustrate the complex stress-director 

coupling effect, several viscoelastic models have been developed, which will be explored in 

detail in Chapter 2. 

1.3 Fracture Behavior of LCEs 

Understanding the stress/strain field around a defect is essential for evaluating the 

fracture behavior of soft materials [48–50]. The complex stress-director coupling effect can 

induce significant inhomogeneous deformation near defects, resulting in an unusual stress/strain 

distribution different from traditional Neo-Hookean (Figure 1.3a) [51–53].  

 

Figure 1.3 (a) Unusual stress and strain concentration on a LCE plate with a hole [51]. (b) Fracture energy 

of polydomain and monodomain under parallel and perpendicular loading [54]. (c) Tilted crack 

propagation path in LCEs with initial director 𝜃0 = 45° [55].  
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Fracture energy, a critical parameter to assess a material’s resistance to failure, is 

commonly measured through pure shear in soft materials [56]. Rate-dependent fracture energy 

encompasses the intrinsic fracture energy associated with network chain breakage and the 

dissipation energy that occurs during crack propagation [57–59]. Figure 1.3(c) presents the rate-

dependent fracture energy of polydomain and monodomain LCE under parallel and 

perpendicular, indicating the profound influence of director reorientation fracture energy. In 

addition, the fracture energy of LCEs is highly temperature dependent, influenced not only by 

the change of network chains but also by the transition of directors from an ordered to a 

disordered state as temperature increases [60]. 

Crack growth analysis, especially in viscoelastic materials, remains a challenging yet 

crucial area of research. There is limited research on the crack growth path of LCEs. In pure 

shear tests, both polydomain and monodomain LCEs under perpendicular and parallel loading 

exhibit a horizontal crack propagation path [54,61]. However, when the loading direction is 

inclined relative to the initial director, the crack path becomes tilted. Figure 1.3c illustrates the 

inclined crack propagation path in LCEs with a tilted initial director 𝜃0 = 45° under tension 

[55]. A phase-field model, based on the assumption that the crack propagates perpendicularly to 

the director, has been proposed and generally aligned well with the experimental observation at 

different tension rates. 

1.4 Motivation and Objectives 

 LCEs have gained remarkable attention due to their unique mechanical properties and 

potential broad applicability across various fields. Despite extensive research, the complex 

interplay between stress-director coupling and fracture behaviors remains inadequately 
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understood. It is still an ongoing challenge to systematically characterize mechanical responses 

under diverse loading conditions, particularly in the presence of a crack tip. In this dissertation, 

we will rigorously investigate the mechanisms, providing a comprehensive analysis that 

enhances the understanding of LCEs. The findings are intended to expand their applications and 

inform the development of materials with improved performance characteristics.  

 In this dissertation, we explore the dynamic changes in stress, strain and director 

orientation through both experimental and theoretical (Figure 1.4) [62]. Based on the 

birefringence of LCs, we have developed a universal technique to track the director trajectory, 

which can be applied to various types of LCEs. Since there is additional shear strain induced by 

director reorientation and LCEs typically experience inhomogeneous deformation, we employ 

the digital image correlation method to capture local strain components. By measuring stress, 

strain, and director simultaneously, we can observe the stress-director coupling effect, which 

helps us develop a more reasonable constitutive model that reflects the unique mechanical 

behavior of LCEs. 

 

Figure 1.4 Rate-dependent mechanical behavior of LCEs [62] 

 Additionally, there is very limited research on the fracture behavior of LCEs. Because of 

the complex material properties of LCEs, it is challenging to derive analytical solutions near a 
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sharp crack tip. To address this issue, we combine developed experimental testing with a novel 

algorithm implemented within the ABAQUS UEL subroutine to investigate an edge-cracked 

LCE sample under various loading directions (Figure 1.5) [63]. This approach reveals 

exceptional stress, strain, and director distributions around the crack tip. For the first time, 

detailed insights into the local behavior at the crack tip in LCEs are presented.  

 

Figure 1.5 Schematic of an edge-cracked LCE sample under tension [63]. 

 Although people have reported rate-dependent and stretching-direction-dependent 

fracture energy, most studies focus on either polydomain or monodomain under perpendicular or 

parallel loading, and the applicability of traditional analysis (such as pure shear) across all 

scenarios remains uncertain. Moreover, establishing appropriate fracture criteria for such 

complex materials continues to be a challenge. In this dissertation, we utilize a post-cut method 

and report crack growth in LCEs with varying initial directors (Figure 1.6) [64]. The relation 

among the crack propagation, initial directors, and pre-stretching levels are investigated, which 

offers valuable guidance to develop more robust criteria and methods.  
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Figure 1.6 An example of crack propagation profile and director distribution [64]. 

1.5 Outline of the Dissertation  

The goal of this dissertation is to characterize the stress-director coupling relation and 

fracture behavior of LCEs, providing a comprehensive understanding of the mechanisms of 

LCEs and guidance in further designing LCEs. The dissertation is organized as follows: 

In Chapter 2, we systematically measured stress, strain and director reorientation under 

various loading rates and distinguished the relaxation time scales of the network and director. A 

general viscoelastic model was developed to further illustrate the rate-dependent stress-director 

coupling effect. 

Chapter 3 presents an exceptional stress-director coupling effect around the crack tip. We 

stretched an edge-cracked LCE sample without crack propagation, reporting stress, strain, and 

director distribution. Besides, we evaluated the fracture behavior based on the crack opening 

displacement and energy release rate.  

In Chapter 4, we study the crack propagation rate and direction in LCEs with various 

initial directors. We utilized a post-cut method and analyzed the influence of the pre-stretching 

level and initial directors on crack propagation. A phase field model was utilized to demonstrate 

the effect of director reorientation. 
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Chapter 5 concludes the dissertation. 

  



 

10 

 

Chapter 2 Rate-dependent Stress-director Coupling 

Although the rate-dependent stress-strain relation of LCEs has already been widely 

observed, the effect of the intricate interplay of director rotation and network extension on the 

viscoelastic behavior of main-chain LCEs remains inadequately understood. In this Chapter, we 

present real-time measurements of the stress, director rotation, and all strain components in 

main-chain nematic LCEs subjected to uniaxial tension both parallel and tilted to the initial 

directors at different loading rates and relaxation tests. We find that both network extension and 

director rotation play roles in viscoelasticity, and the characteristic relaxation time of the network 

extension is much larger than that of the director rotation. Interestingly, the gradual change of the 

director in a long-time relaxation indicates the director reorientation delay is not solely due to the 

viscous rotation of liquid crystals but also arises from its coupling with the highly viscous 

network. Additionally, significant rate-dependent shear strain occurs in LCEs under uniaxial 

tension, showing non-monotonic changes when the angle between the stretching and the initial 

director is large enough. Finally, a viscoelastic constitutive model, only considering the viscosity 

of the network by introducing multiplicative decomposition of the deformation gradient, is 

utilized to manifest the relation between rate-dependent macroscopic deformation and 

microscopic director rotation in LCEs. 

2.1 Introduction 

A large number of previous studies about side-chain LCEs show mesogen rotation and 

network extension have different characteristic times.[22,37,39,41] Fukunaga et al.[22] studied 

the deformation of side-chain LCEs under an electro-optical effect and found the director rotates 

about 1 order of magnitude faster than the mechanical deformation. Clarke et al.[37] studied 
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stress relaxation during the polydomain-monodomain transition with stress fitting by a power 

law in a short time and a logarithmic scale in a long time, which they explained by a proposed 

theoretical model considering a cooperative mechanical barrier for each domain rotation. Hotta 

and Terentjev[39] systematically investigated the rate-dependent and relaxation responses of 

side-chain LCEs, and also reported two distinct relaxation regions for long-time stress relaxation. 

Although fitting both regions by power laws, they found the short-time region shows a power 

exponent of 0.67, representing the stress relaxation is facilitated by the director rotation due to 

the polydomain-to-monodomain transformation, while the long-time region shows a power 

exponent of 0.15, where the director relaxation is almost finished and the LCEs behave like 

isotropic rubber. Schonstein et al.[65] reported a broad distribution of director relaxation times 

but with a small mean relaxation time on the order of 0.01s via light scattering. Previous studies 

showed that shape recovery of LCEs takes a very long time and requires a very slow loading rate 

of around 10−4 𝑠−1 to reach quasi-equilibrium mainly due to the slow relaxation of the 

network.[29,39,42,47] These findings suggest that the director rotates slightly faster than the 

network deforms. Researchers have also shown that the crosslinker forming conditions, director 

fields, LC phases, chemical components, and many other parameters could profoundly influence 

the viscoelasticity of LCEs.[38,41–46] However, the viscoelasticity of main-chain LCEs was not 

studied intensively until very recently. The comprehensive understanding of viscoelasticity in 

main-chain LCEs remains challenging due to the complicated synergy of the network extension 

and mesogen rotation to give rise to high viscosity. Azoug et al.[36] and Martin Linares et al.[40] 

studied the main-chain polydomain LCEs under uniaxial tension, reporting rate-dependent 

anisotropic stress responses. Moreover, Luo et al.[32] evaluated the director alignment of main-
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chain monodomain LCEs by optical measurements, finding the director almost reaches 

equilibrium rotation at the loading rate of 450%/min. However, it is not clear what the relaxation 

time scales of the network extension and director rotation are for main-chain LCEs, and how 

they influence the macroscopic stress-strain behavior and microscopic director rotation.  

To better understand how viscoelastic LC reorientation affects the mechanical responses 

of LCEs, we need to capture the real-time director rotation at different loading rates. Wide-angle 

X-ray scattering [29,66–68] (WAXS) and polarized Fourier transform infrared spectroscopy 

[28,34,69,70] (FTIR) have been used to measure the mesogen reorientation. However, WAXS 

can only obtain diffraction patterns at quasi-static loading, while FTIR has a strict requirement of 

specific functional groups on the chain backbone, giving an angular-dependent absorbance 

spectrum. Both of them have the restriction that they cannot measure universal main-chain LCEs 

orientation dynamically. Conversely, polarized optical microscopy is an alternative method to 

capture mesogen reorientation under fast loading [31,32,68,71]. Recently, Luo et al.[32] used 

crossed-polarized optical measurements to evaluate the director rotation in monodomain LCEs at 

different loading rates. Mistry et al.[31] used polarized optical microscopy to measure the 

director distribution in LCEs subjected to step stretching almost perpendicular to the initial 

director. Here, we will use crossed-polarized optical measurement to characterize the director 

rotation of LCEs under oblique stretching at different rates. The optical data will be recorded at 

different angles of the crossed polarizer and analyzer with respect to the stretching direction at 

different strains to probe the director. More details can be found in section 2.2. 

Some viscoelastic models are developed to better understand the viscoelasticity 

mechanism of LCEs. Zhang et al.[72] and Zhou and Bhattacharya [73] proposed a viscoelastic 
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model considering both viscous network and director via applying a simple Rayleigh dissipation 

energy. It shows the semi-soft elasticity effect, rate-dependent stress, and director rotation. 

However, as the stress is the summation of the elastic and viscoelastic contributions, which is 

equivalent to a simple Kelvin-Voigt model, it cannot accurately capture the stress response under 

high loading rates due to an impractical instantaneous non-zero stress, and neither can it capture 

relaxation tests due to an unrealistic constant stress. Later, Wang et al.[74] proposed a nonlinear 

viscoelastic model by multiplicative decomposition of the deformation gradient to elastic and 

viscous parts. The predicted stress-strain behavior of LCEs under loading perpendicular to the 

initial director agrees well with the experimental results [36]. Here, following the work of Wang 

et al.[74], we establish a viscoelastic LCE model by considering the more realistic viscosity of 

the network and the low viscosity of the director based on our experimental measurements. 

Furthermore, the semi-soft elasticity is introduced in the elastic free energy. 

This Chapter aims to bridge the existing knowledge gap in understanding the effect of the 

intricate interplay of director rotation and network extension on the viscoelastic behavior of 

LCEs. In particular, we systematically characterize the real-time director-stress-stretch relations 

for main-chain monodomain LCEs with different initial directors under different loading rates, 

showing not only rate-dependent stress-stretch behavior, but also rate-dependent director-stretch 

relation. Since director rotation also induces shear strain, we apply digital image correlation 

(DIC) to quantitatively measure the fields of all the rate-dependent strain components relative to 

the mesogen rotation. Moreover, we conduct relaxation tests and record the time evolution of the 

stress and director under fixed stretch. By comparing the results from the rate-dependent 

director-stress-stretch measurements and relaxation tests, we further distinguish the relaxation 



 

14 

 

times of the network and director. To better understand how the two viscoelastic dissipation 

processes govern the microscopic director rotation and macroscopic deformation, we develop a 

viscoelastic model via the multiplicative decomposition-based method, which implements more 

realistic viscosity and elastic energy compared to existing literature. This Chapter is organized as 

follows. In section 2.2, we introduce the experimental methodology. In section 2.3, we report the 

experimental results, including rate-dependent stress-strain and director-strain relations, and 

stress and director relaxation results. The theoretical model and the predicted viscoelastic 

behavior compared with the experimental results are presented in section 2.4. Section 2.5 

concludes the Chapter. 

2.2 Experimental Methods 

2.2.1 Sample Preparation 

In this study, the main-chain monodomain LCEs were synthesized via a two-stage thiol-

acrylate Michael addition-photopolymerization (TAMAP) reaction [75]. The crosslinker, 

pentaerythritol tetrakis(3-mercaptopropionate) (PETMP, 95%), and chain extender, 2,2-

(ethylenedioxy) diethanethiol (EDDET, 95%), were obtained from Sigma-Aldrich and used as 

received. The diacrylate mesogen, 1,4-Bis-[4-(3-arcyloyoxypropyloxy) benzoyloxy]-2-

methylbenzene (RM257, 95%), was purchased from Wilshire company. Dipropylamine (DPA, 

98%) and (2-hydroxyethoxy)-2-methylpropiophenone (HHMP, 98%) were selected as the 

catalyst and photoinitiator to enable the second-stage photopolymerization reaction, respectively. 

Toluene (98%) was used as the solvent for RM257. To prepare a sample, firstly, RM257 was 

fully dissolved in a vial with 60 wt% of toluene at 80 ℃. Then, PETMP, EDDET, HHMP, and 

DPA solution (DPA:toluene = 1:50) were poured into the solution and mixed using a vortex 
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mixer for 60 s to obtain a uniform solution. The molar ratio of thiol functional groups between 

PETMP and EDDET was 15:85, corresponding to a ratio of 15 mol% PETMP. The molar ratio of 

DPA with respect to the thiol functional group was 1 mol%, while the molar ratio of HHMP was 

1 mol%. The solution was degassed for about 2 mins to remove all bubbles and then poured into 

a mold. Then the samples were cured at room temperature for 24 hours and put into an oven at 

80 ℃ for another 24 hours to remove the toluene from the LCE sample. At this stage, thiol-

acrylate formed a loose network and the sample showed an opaque appearance at room 

temperature. There would be an excess of 15 mol% acrylate groups for a second-stage photo-

crosslinking reaction. In the second stage, the LCE sample was stretched uniaxially to 90% strain 

by a mechanical stretcher. The pre-stretch forced mesogens to reorientate to the tension direction, 

and the sample became transparent, indicating a monodomain LCE. The pre-stretched sample 

was exposed to UV light for 1 hour to photopolymerize the excessive acrylate groups, forming a 

denser network. After releasing the samples from the stretcher, a thin film of monodomain LCE 

sheet remains. 

Rectangular strips with a width of 3 mm and length of 35 mm were cut out of the LCE 

sheet with angles 𝜃0 = 90°, 60°, 45°, and 30° between the director and the 𝑋1 − 𝑎𝑥𝑖𝑠, as shown 

in Figure 2.1. The angles between the longitudinal direction and the director were measured by a 

protractor and further verified by the optical polariscopy method, which will be discussed in 

section 2.2.3. The samples are designated as monodomain nematic elastomers-𝜃0 (MNE-𝜃0), i.e. 

MNE-90, MNE-60, MNE-45 and MNE-30 
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Figure 2.1 Schematics of specimens with different initial directors. (a) The specimen (red dashed line) 

was cut from a LCE thin film with the angle between the director and the 𝑋1 − 𝑎𝑥𝑖𝑠 defined as 𝜃0. (b) 

Specimens with different initial directors are defined as MNE-90, MNE-60, MNE-45, and MNE-30, 

corresponding to 𝜃0 = 90°,  60°,  45° and 30°, respectively. The specimens were 3 mm in width and 35 

mm in length. 

2.2.2 Uniaxial Stretch 

Uniaxial tension measurement was performed in the longitudinal direction of a LCE 

specimen at different loading rates using an Instron universal testing machine (Model 5944) with 

a 50 N load cell to record the LCE rate-dependent stress-strain relationship. A specimen was 

mounted in a pair of tensile grips, leaving a gauge length of 15 mm. The ratio of the length to 

width (= 5) is high enough to ensure that the majority of the specimen undergoes uniaxial 

tension, with negligible edge effects. The thickness was measured at three locations by an 

electronic caliper, giving the average thickness over all specimens to be 0.11 ± 0.01 mm. The 

specimens MNE-90, MNE-60, MNE-45, and MNE-30 were uniaxially stretched up to 40%, 

100%, 150%, and 200% strain, respectively, with loading rates of 10%/s, 1%/s, and 0.1%/s, and 

unloaded at the same rates until stress reached zero. The maximum stretches were set as high as 
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possible, but below the fracture points of specimens with different directors to ensure completion 

of the tests. Although the specimens show complete recovery at room temperature after 

unloading, to accelerate the recovery process, after each loading and unloading, a specimen was 

put on a hotplate at 30 ℃ for 5 mins and then at room temperature for another 10 mins to release 

any residual stress. The next test would be run once the specimen was fully recovered. From 

these tests, we were able to plot the nominal stress as a function of stretch. Here the stretch is 

defined as 𝜆 = 𝐿/𝐿0, where 𝐿0 is the unstretched gauge length (15 mm) and L is the extended 

length. 

2.2.3 Crossed-polarized Optical Measurement  

Director rotation driven by stretching at different loading rates was dynamically 

characterized by the crossed-polarized optical measurement. A light source, a polarizer, a 

specimen stretched by the Instron universal testing machine, an analyzer with the polarization 

perpendicular to the polarizer, and a camera were set up in the order as shown in Figure 2.2a. 

The appearance change of the specimen under uniaxial tension was recorded by a Canon EOS 

6D DSLR camera per 1% strain simultaneously with the measured stress-strain relation. The 

recorded images were used to measure the transmitted light intensity by ImageJ. Because the 

dramatic change of specimen thickness under large stretching can alter the measurement of 

brightness, we recorded the transmitted light intensity for different orientations of the crossed-

polarizers by rotating them every 10° to determine the director as a function of stretch. Since the 

director 𝐝 is symmetric (𝐝 = −𝐝) and the initial director is known, the light intensity is cycled 

every 90°. Therefore, we can calculate director rotation by only measuring the transmitted light 

at different angles between the polarizer and the tension direction, φ, from 0° to 90°. The 
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measured transmitted intensity I for different φ (Figure 2.2a), can be fitted by the following 

equation to determine the director, 

𝐼 = 𝐼0𝑆𝑖𝑛
2 (

𝑏𝜋(90°−𝜑−𝜃)

180
) + 𝑑, ( 2.1) 

where 𝐼0, 𝑏, 𝜃, and d are fitting parameters. In particular, the parameter 𝜃 represents the current 

director. Figure 2.2b shows one example of the measured transmitted intensity as a function of 

angle 𝜑 and the fitting curve based on eqn ( 2.1) at zero strain. The curve fits the experimental 

data well. The φ value at the lowest intensity corresponds to the polarizer parallel or 

perpendicular to the director, and the φ value at the highest intensity corresponds to the polarizer 

45° away from the director. Figure 2.2c shows the appearance of an MNE-90 specimen with 

different 𝜑 angles. When 𝜑 = 0° or 90°, the specimen looks darkest, while when 𝜑 = 45°, the 

specimen looks brightest. We similarly measured the director for different LCE specimens as a 

function of stretch under different loading rates of 0.1%/s, 1%/s, and 10%/s. 
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Figure 2.2 (a) Schematics of the setup of the crossed-polarized optical measurement for directors. (b) The 

transmitted intensity I was measured as a function of the angle between the polarizer and the tension 

direction, 𝜑, and fitted by eqn ( 2.1) to determine the director 𝜃. (c) The appearance of an MNE-90 

specimen showing different brightness was captured by a camera with different angles 𝜑 = 0°, 45°, and 

90°. 

2.2.4 Digital Image Correlation (DIC)  

Attributed to director reorientation, LCEs can experience shear strain even under uniaxial 

external tension. Here we use the 2D digital image correlation (DIC) method to measure all the 

strain components in the middle region of specimens at different loading rates. To generate a 

high-quality pattern, Koh-I-Noor Rapidraw ink, which dries fast and has a dark color, was 

sprayed using a Gocheer airbrush, which generates small droplets, at 30 psi with a 0.3 mm 

nozzle. The changes of the speckle patterns under deformation were recorded as videos by a 

Canon EOS 6D DSLR camera along with a Canon 100mm F/2.8L macro lens. The videos were 

set at 30 frames per second (fps). To enhance the optical contrast, a whiteboard was used as a 

background, and a white LED light was shot on the sample. Figure 2.3a presents an example of 

an MNE-45 specimen with speckle patterns in the undeformed (left) and stretched (right) states. 

After testing, videos were converted to images by the open-source software FFmpeg, with an 

imaging rate of 2 fps, 0.5 fps, and 0.2 fps for loading rates of 10%/s, 1%/s, and 0.1%/s, 

respectively. The images were then read by an open-source 2D DIC Matlab software, Ncorr,[76] 

to calculate the deformation gradient 𝑭. We selected the middle part of a specimen as the region 

of interest (ROI) and set the image of the undeformed sample as the reference image. Here, we 

set the three critical parameters which can affect the results as the following: subset radius as 25, 
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subset spacing as 3, and strain radius as 20. More details are available in the instruction manual 

(http://www.ncorr.com/). Figure 2.3b shows the distributions of the components of the 

deformation gradient calculated by Ncorr for the MNE-45 specimen at 100% external strain in 

the x2 direction at the loading rate of 1%/s. The deformation gradient 𝑭 under uniaxial tension 

could be written as: 

𝑭 = [

𝜆11 𝜆12 0
𝜆21 𝜆22 0
0 0 𝜆33

], ( 2.2 ) 

where 𝜆22 is the normal component in the stretch direction, 𝜆21 is the shear deformation, 𝜆11 and 

𝜆33 are the stretches in width and thickness. 𝜆12 is almost zero during the test, so we could set it 

as zero. From Figure 2.3b, we could see that all the components exhibit uniform distributions in 

the middle part of the specimen. Therefore, we can calculate the median value of the selected 

region to represent the strain of the specimen and plot 𝜆11, 𝜆21 and 𝜆22 versus external stretch. 

When the initial director is tilted with the elongation direction, an obvious shear deformation is 

expected and observed (Figure 2.3b, 3c). 

 

Figure 2.3 (a) Representative images of speckle patterns generated by spraying ink with an airbrush on an 

MNE-45 specimen in the undeformed (𝜆22 = 1) and deformed (𝜆22 = 2) states. (b) Distributions of the 

http://www.ncorr.com/
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components of the deformation gradient, 𝜆11, 𝜆12, 𝜆21 and 𝜆22, using the DIC method in the MNE-45 

specimen under an external tensile stretch 𝜆22 = 2 at the loading rate of 1%/s. (c) the schematic of 

deformation of the MNE-45 specimen under uniaxial tension based on the DIC results. 

2.2.5 Relaxation Tests 

To characterize the reduction of stress and evolution of directors of LCEs during 

relaxation, specimens were subjected to uniaxial stretch performed in the same apparatus as 

described in sections 2.2.2 and 2.2.3. Specimens MNE-90, MNE-60, MNE-45, and MNE-30 

were stretched to a fixed strain, 𝜀0 = 30%, 50%, 70%, and 100%, respectively, at a very high 

loading rate of 267%/s. The specimens were then held for 3600 seconds, and the stress and 

director rotation were recorded as functions of time by an Instron universal testing machine and 

the crossed-polarized optical measurement, respectively. The applied strains are different for 

different specimens to observe significant director rotation and ensure that specimens would not 

break during the tests. As the loading rate is very fast, the stress oscillates at the very beginning. 

We counted the time 𝑡0 as the end of loading when the oscillation dies out. 𝑡0 is 0.40 s, 0.47 s, 

0.56 s, and 0.74 s for specimens MNE-90, MNE-60, MNE-45, and MNE-30, respectively. The 

stress relaxation curves were fitted with a power law: 

𝜎(𝑡) = 𝑚1 + 𝑚2(𝑡 − 𝑡0)
−𝛽, ( 2.3 ) 

where t is the total experiment time, 𝑚1, 𝑚2 and 𝛽 are fitting parameters. Based on the previous 

study,[41] 𝛽 is about 0.4 for a main-chain smectic LCE. We used the nonlinear least-squares 

solver (lsqcurvefit) in Matlab to fit the experimental results and set 𝛽 = 0.4 as the initial value. 



 

22 

 

2.3 Experimental Results 

2.3.1 Rate-dependent Director-stress-strain Relationship 

The uniaxial loading-unloading nominal stress-strain curves for LCE specimens with 

different initial directors under different loading rates, 10%/s, 1%/s, and 0.1%/s, are shown in 

Figure 2.4. The corresponding director-strain relations during loading are shown in Figure 2.5. In 

general, the prepared samples show birefringence, indicating they are monodomain, and the 

measured initial director is close to the design. For MNE-90, the director does not rotate with 

strain independent of the loading rates (Figure 2.5a). Consequently, the stress-strain loading 

curves are similar to those of classical neo-Hookean materials. When the initial director is 

oblique to the elongation direction, as in MNE-60, MNE-45, and MNE-30, the director gradually 

rotates as the strain increases, and eventually approaches the elongation direction when the strain 

is high enough (Figure 2.5b, c, and d). As a result, the director rotation produces high 

spontaneous strain and stress plateau in the stress-stretch relation, where the stress increases a 

little while the strain increases a lot (Figure 2.4b, c and d). For a LCE with a higher initial 

director angle 𝜃0, the nominal stress is lower at a given level of strain, and the specimen can 

survive a higher stretch due to the spontaneous strain.  

All the specimens exhibit rate-dependent stress and director responses. Since the area 

between a loading and an unloading stress-strain curve represents dissipation energy, our results 

show that the specimens do not reach equilibrium even at 0.1%/s (Figure 2.4). A higher loading 

rate leads to higher nominal stress and higher dissipation. For MNE-90, where no director 

rotation occurs, the stress-strain curve is highly rate-dependent and hysteretic, suggesting a 

highly viscous network extension. For LCEs with initial directors oblique to stretching (MNE-
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60, MNE-45, MNE-30), directors show rate-dependent rotation from the initial angles to the 

elongation direction (𝜃 = 90°). At a higher loading rate, the directors rotate less at a given strain, 

showing delayed behavior due to a shorter response time. 

 

Figure 2.4 Loading and unloading nominal stress (𝑆22) as a function of the applied external stretch (𝜆22) 

for specimens (a) MNE-90, (b) MNE-60, (c) MNE-45, and (d) MNE-30 under uniaxial tension at loading 

and unloading rates of 10%/s, 1%/s, and 0.1%/s.  

From Figure 2.4 and Figure 2.5, it is obvious that there is a strong relationship between 

director rotation and stress responses. From MNE-45 and MNE-30, we could observe the stress-

strain curves show three regimes: 1) when the stretch 𝜆22 is small, the stress is neo-Hookean-

like; 2) as the sample is stretched more, the director rotates more, and a stress plateau occurs; 3) 

when the director approaches the elongation direction, the stress-strain curve becomes stiffened 

again. The stress plateau is caused by spontaneous deformation due to director rotation 
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elaborated by previous studies [24,29,31]. As we have shown the rate-dependent director in 

Figure 2.5, it is expected to observe a rate-dependent stress plateau. When a fast loading at 10%/s 

is applied, the director rotation is delayed, so the sample’s deformation is mainly accommodated 

by network extension. When a slow loading at 0.1%/s is applied, the director rotates more, so the 

stress plateau is wider and occurs at a lower strain level. In section 2.3.3, we will further 

distinguish the contributions of the director and the network viscosity by stress relaxation tests.   

 

Figure 2.5 Director reorientation as a function of the applied external stretch 𝜆22 at loading rates 10%/s, 

1%/s, and 0.1%/s for (a) MNE-90, (b) MNE-60, (c) MNE-45, and (d) MNE-30, respectively.  

2.3.2 DIC Measurement 

The rate-dependent strain fields of LCEs were measured by DIC. The median value of the 

strain components 𝜆11, 𝜆21 and 𝜆22 were calculated by Ncorr. Figure 2.6 shows 𝜆11, 𝜆22, and 𝜆21 
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of MNE-60, MNE-45, and MNE-30 measured from DIC at loading rates of 10%/s, 1%/s, and 

0.1%/s. Figure 2.6b, e, and h plot the axial stretch 𝜆22 measured by DIC versus 𝜆22 prescribed by 

the Instron. Their values are very close (grey dashed curve) for all different loading rates and 

initial directors, verifying the accuracy of the DIC method. 

The transverse stretch 𝜆11 measured for MNE-60, MNE-45, and MNE-30 is rate-

dependent (Figure 2.6a, d, and g). When the loading rate is higher, as mentioned in section 2.3.1, 

the director rotates less, leading to lower spontaneous deformation. As a result, LCEs behave 

more like traditional incompressible elastomers. The stress state is closer to the uniaxial state, 

which satisfies 𝜆11 = 𝜆33 = 1 √𝜆22⁄  (grey soild lines in Figure 2.6a, d, and g). We could see that 

the measured 𝜆11 under fast loadings (blue curves) is closer to that of the uniaxial (plane stress) 

condition. When the loading rate is low, the spontaneous strain caused by director rotation 

dominates the deformation. As the director rotation mainly occurs in the 𝑥1 − 𝑥2 plane of the 

specimens [29], the deformation is close to a plane strain condition (𝜆11 = 1 𝜆22⁄ , 𝜆33 = 1, grey 

dashed lines in Figure 2.6a, d, and g). Our results indeed show that the measured 𝜆11 under slow 

loadings (black curves) is closer to that of the plane strain case. Moreover, since a higher initial 

director angle 𝜃0 corresponds to less director rotation, 𝜆11 of MNE-60 is closest to that of the 

uniaxial condition among the three cases under the same loading condition, while MNE-30 is 

closest to that of the plane strain condition. 

Figure 2.6c, f, and i show the measured shear deformation 𝜆21 as a function of the 

external stretch 𝜆22. Different from traditional elastomers, LCEs exhibit considerable shear strain 

under uniaxial tension due to the director rotation. As the director is rate-dependent, it is not 

surprising to see the rate-dependent shear strain. For MNE-60 and MNE-45, the absolute value 



 

26 

 

of 𝜆21 monotonically increases with 𝜆22, exhibiting large shear strain (~-1.4 for MNE-60 and ~-

1.6 for MNE-45) when the director rotates almost parallel to the stretching direction (𝜆22 = 2 for 

MNE-60 and 𝜆22 = 2.5 for MNE-45) at the loading rate of 0.1%/s. For MNE-30, it is interesting 

to observe that 𝜆21 non-monotonically changes with 𝜆22, i.e. at a small stretch, the shear strain 

first rises to be positive and then decreases with the stretch to a negative value. When the director 

rotates almost parallel to the stretching direction (𝜆22 = 3 at the loading rate of 0.1%/s), the 

shear strain is around -1.26. Such non-monotonic shearing has been predicted by theoretical 

modeling before [72,77]. When the external stretch 𝜆22 is high, faster loading rates lead to lower 

shear strain for all different directors due to a delay in director rotation. 
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Figure 2.6 Components of the deformation gradient, 𝜆11, 𝜆22, and 𝜆21, measured by the DIC method as 

functions of the applied external stretch 𝜆22 at different loading rates of 10%/s, 1%/s, and 0.1%/s for 

specimens (a)(d)(g) MNE-60, (b)(e)(h) MNE-45, and (c)(f)(i) MNE-30, respectively.   

2.3.3 Relaxation Test 

The stress relaxation of viscoelastic LCEs has been documented for many years 

[37,39,41]. Compared to traditional elastomers, LCEs show more complex relaxation behavior 

due to the relaxation of both the director and the network, and their coupling effort. Here by 

applying a nearly instantaneous stretch, we characterize both the stress relaxation and director 

reorientation over time to distinguish the different characteristic time scales of the network 

extension and director rotation. 

Figure 2.7 shows the stress relaxation of MNE-90, where the director hardly rotates. The 

specimen was stretched to 30% strain nearly instantaneously in a short time period 𝑡0 and held 

for 3600 s. The stress was measured as a function of the total experimental time 𝑡. The relaxation 

of stress shows two distinct relaxation regimes and can be fitted by two different power laws as 

shown in eqn ( 2.3). At the early stage (𝑡 < 1.5𝑠), the power law with an exponent around 0.14 

fits the experimental data well, while at the long term (𝑡 > 1.5𝑠), relaxation follows a power law 

with an exponent around 0.40. The long-term exponent is similar to the one previously reported 

for main-chain smectic polydomain LCEs [41]. At a short time, the stress does not match the 

long-time fitting curve, which may be caused by slight director rotation since mesogens may not 

align perfectly with the stretching direction.  
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Figure 2.7 Stress relaxation of MNE-90. (a) Stress 𝑆22 as a function of the relaxation time 𝑡 − 𝑡0, where 𝑡 

represents the total experimental time, and 𝑡0 represents the short loading period. Two power laws are 

utilized to fit the experimental data: a power law with an exponent 0.14 for the experimental data before 𝑡 

=1.5s, and a second power law with an exponent 0.40 for the experimental data after 𝑡 =1.5s. (b) Zoom-in 

relation of 𝑆22 and 𝑡 − 𝑡0 within the first 3 seconds.  

Figure 2.8 shows the relaxation of stress (Figure 2.8a-c) and directors (Figure 2.8d-i) for 

MNE-60, MNE-45, and MNE-30. The specimens were stretched to different fixed strains, 50%, 

70%, and 100%, respectively, to ensure significant director rotation but no fracture during a test. 

Then the specimens were held for 3600 s, and the stress and directors were recorded over time. 

Stress relaxation could be divided into two parts. Compared to MNE-90, the stress relaxation in 

LCEs with a tilted director with respect to the stretching is more complicated at the early stage 

(𝑡 < 1.5 𝑠), as stress relaxation is a synergy of the director reorientation, the backbone 

orientation, and the polymer chain sliding. As Figure 2.8g-i show, the director has already rotated 

a lot by the time the loading is completed (𝑡 = 𝑡0). At the stage 𝑡0 < 𝑡 < 1.5𝑠, MNE-60, MNE-

45 and MNE-30, particularly MNE-30, show a the sharp drop in stress (Figure 2.8a-c), caused by 

the spontaneous strain due to director rotation. When  𝑡 > 1.5𝑠, the director rotates smoothly, 

and the stress relaxation can be fitted by a power law well with a power exponent around 0.4 for 
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all the samples, which behaves similarly to MNE-90. This suggests that after 𝑡 > 1.5𝑠, stress 

relaxation is dominated by the network viscosity. The further relaxation of the director after  𝑡 >

1.5𝑠 may be due to the further extension of the network. As mesogens locate on the backbone, 

the network slow extension can drag the mesogens to further realign to the stretching direction. 

Furthermore, it is coincident that the director relaxation could be fitted well with the same power 

law formula 𝜃 = 𝑚1 + 20(𝑡 − 𝑡0)
−𝛽 of stress relaxation (eqn ( 2.3 )), but with a much smaller 

power exponent around 0.04 (Figure 2.8d-f).  

To probe the characteristic times of the network relaxation and director rotation, we 

compare the director and stress values from the uniaxial tension tests at different rates and the 

relaxation tests. We choose some representative cases in Table 2.1 and Table 2.2. 

In Table 2.1, we listed the relative directors (90 − 𝜃) measured for MNE-60 at 50% 

uniaxial strain, for MNE-45 at 70% strain, and for MNE-30 at 100% strain at the loading rates of 

10%/s (1st column), 1%/s (3rd column), and 0.1%/s (5th column). In 2nd, 4th, and 6th columns, we 

compared them with the directors measured from the relaxation tests for MNE-60, MNE-45, and 

MNE-30 at the relaxation time equal to the time needed to load the specimens to the 

corresponding strain in the uniaxial tests. If the directors from the uniaxial tension tests equal or 

approach those from the relaxation, this means the director rotation reaches equilibrium at that 

loading rate. We find that the directors measured from the uniaxial tension tests at 1%/s are close 

to those from the relaxation tests, and the directors measured from the uniaxial tension tests at 

0.1%/s are almost the same as those from the relaxation tests (Table 2.1). To be more specific, 

taking MNE-60 as an example, the relative director is about 19.1° under 50% strain at the rate of 

10%/s, while the relative director reaches around 16.8° when relaxing for 5 s in the relaxation 
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test; the relative director is about 16.3° under 50% strain at the rate of 1%/s, while the relative 

director reaches around 15.3° when relaxing for 50 s in the relaxation test; the relative director is 

about 14.1° under 50% strain at the rate of 0.1%/s, while the relative director reaches around 

13.9° when relaxing for 500 s. Allowing ±1° natural error, the results suggest mesogen 

reorientation approaches equilibrium at 1%/s and has already reached equilibrium at 0.1%/s.   

 

Figure 2.8 Stress and director relaxation as functions of time for MNE-60, MNE-45, and MNE-30. Power 

laws with exponents 0.40, 0.38 and 0.32 fit well the stress relaxation results after 𝑡 = 1.5𝑠 for (a) MNE-

60, (b) MNE-45, and (c) MNE-30, respectively. The director relaxation with power laws of exponents 

0.04, 0.04 and 0.05 fit well the director relaxation results after 𝑡 = 1.5𝑠 for (d) MNE-60, (e) MNE-45, 
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and (f) MNE-30. The director relaxation within 1.5s for (g) MNE-60, (h) MNE-45, and (i) MNE-30. For 

the relaxation tests, MNE-60, MNE-45, and MNE-30 were stretched to 30%, 70%, and 100% strain, 

respectively, and held for 3600s. 

Table 2.1 The director (90° − 𝜃) measured from the uniaxial tension tests and relaxation tests (unit: 

degree) 

 

Table 2.2 The stress measured from the uniaxial tension tests and relaxation tests (unit: MPa) 

 

In Table 2.2, we listed the stress measured for MNE-90 at 30% uniaxial strain, for MNE-

60 at 50% strain, for MNE-45 at 70% strain, and for MNE-30 at 100% strain at the loading rates 

of 10%/s (1st column), 1%/s (3rd column), and 0.1%/s (5th column). Similarly, in the 2nd, 4th, and 

6th columns, we compared them with the stress measured from the relaxation tests at the 

corresponding relaxation time. As a result, the stress values measured from the uniaxial tension 

tests are much higher than those in the corresponding relaxation tests for all specimens at all 

rates, which means the material is far away from the equilibrium state. Taking MNE-60 as an 

example, the stress is about 1.63 MPa under 30% strain at the rate of 10%/s, 0.77 MPa at the rate 

of 1%/s, and 0.45 MPa at the rate of 0.1%/s, while the stress is around 1.07, 0.57 MPa and 0.38 
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when the specimens are relaxed for 3 s, 30 s and 300 s, respectively, in the relaxation tests. As 

we have discussed that the director almost reaches equilibrium at 0.1%/s, we could conclude that 

the viscosity at slow loading is due to the reorganization of the viscoelastic network. And the 

director relaxes at least two orders of magnitude faster than the network. 

In general, based on the relaxation of the director and stress, we can see that the 

relaxation time of the network is much larger than that of directors, and the long-time stress 

relaxation (𝑡 > 1.5 𝑠) is mainly attributed to the reorganization of the viscoelastic network. 

However, since the mesogens are on the main chains of the polymer network, the relaxation is 

the synergy of the director and network. On one hand, the fast-responsive director rotation causes 

fast macroscopic deformation, leading to a sharp stress drop at the early stage of stress 

relaxation. On the other hand, the slowly relaxed network extension further facilitates the 

director alignment at a long relaxation time.  

2.4 Theoretical Model 

LCEs show unique stress behavior distinct from traditional elastomers mainly due to 

mesogen alignment and director rotation. Recently, some viscoelastic models have been developed 

to describe the rate-dependent stress and director of LCEs subjected to external stretching [72,74]. 

Here, following the work of Wang et al,[74] we will establish a viscoelastic model for LCEs based 

on multiplicative decomposition, which is widely used for modeling viscoelastic elastomers 

[74,78]. The viscoelastic constitutive model assumes the elastic energy as the sum of the neo-

classical free energy and the semi-soft energy [24,79–81], but only considers the viscosity of the 

network. After fitting our experimental results, the model will be used to manifest the relation 

between rate-dependent macroscopic deformation and microscopic director rotation.  
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Figure 2.9 Rheological model for the viscoelasticity of LCEs  

2.4.1 A General Continuum Viscoelastic Model for LCEs 

Consider a material particle in a body in the reference configuration labeled by its 

position vector 𝐗. It moves to position 𝐱 at time 𝑡 in the current configuration. The deformation 

gradient is defined as 𝐹𝑖𝐾 = 𝜕𝑥𝑖(𝐗, 𝑡) 𝜕𝑋𝐾⁄ . The rheological model is composed in parallel of an 

equilibrium spring, representing the elasticity after viscoelastic relaxation, and a Maxwell unit 

with a non-equilibrium spring and a dashpot connected in series, describing non-equilibrium 

behavior (Figure 2.9). In the Maxwell unit, we assume the total deformation gradient 𝑭 can be 

decomposed into an elastic part 𝑭𝑒 and a viscoelastic part 𝑭𝒗, 𝑭 = 𝑭𝑒𝑭𝒗. Based on the 

experiments in sections 2.2 and 2.3, we know that the viscosity of the director rotation is much 

smaller than that of the network, so we could assume the viscosity is mainly from the network. 

Thus, the dashpot in the rheological model in Figure 2.9 represents the viscous behavior of the 

network. Here we assume the free energy density in the reference state 𝑓𝑟 is a function of the 

deformation gradient 𝑭, the elastic part 𝑭𝑒, and director 𝒅, 𝑓𝑟 = 𝑓𝑟(𝑭, 𝑭𝑒 , 𝒅). According to the 

free energy imbalance for the isothermal condition, we can write the nonequilibrium 

thermodynamics requirement as 

∫−𝑓𝑟̇𝑑𝑉 + ∫𝑩𝒖̇𝑑𝑉 + ∫𝑻𝒖̇𝑑𝐴 + ∫ 𝛾
𝑑
𝒅 ∙ 𝒅̇𝑑𝑉 ≥ 0, ( 2.4 ) 

    

 0
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where ̇  in 𝑓𝑟̇, 𝒖̇ and 𝒅̇ represents a small variation over a small time increment, ̇ = 𝛿/𝛿𝑡, the 

volume element 𝑑𝑉 and area element 𝑑𝐴 are both defined in the reference configuration; the 

body force and traction do work at the rate ∫𝑩𝒖̇ 𝑑𝑉 + ∫𝑻𝒖̇ 𝑑𝐴; 𝛾𝑑 is a Lagrange multiplier to 

enforce the unit vector constraint of 𝒅, 𝒅 ∙ 𝒅 ≡ 1. Using the relation 𝑓𝑟̇ =
𝜕𝑓𝑟

𝜕𝑭
: 𝑭̇ +

𝜕𝑓𝑟

𝜕𝑭𝑒
: 𝑭𝑒̇ +

𝜕𝑓𝑟

𝝏𝒅
∙

𝒅̇, we could further expand the inequality eqn ( 2.4) in the following manner 

∫(𝑩 + 𝑑𝑖𝑣𝑋(𝑺))𝒖̇𝑑𝑉 + ∫(−𝑺 ∙ 𝑵 + 𝑻)𝒖̇𝑑𝐴 + ∫(𝛾𝑑𝒅 −
𝜕𝑓𝑟

𝜕𝒅
)𝒅̇𝑑𝑉 + ∫

𝜕𝑓𝑟

𝜕𝑭𝑒
: 𝑭𝑒𝑳

𝒗𝑑𝑉 ≥ 0, ( 2.5 ) 

where 𝑳𝒗
= 𝑭𝒗̇𝑭𝒗

−𝟏, 𝑵 is the unit vector normal to any given surface at the reference state, 𝐒 =

𝜕𝑓𝑟

𝜕𝑭
+

𝜕𝑓𝑟

𝜕𝑭𝑒
𝑭𝑣

−𝑇 is the first Piola-Kirchhoff stress. The inequality should always be satisfied, 

requiring each of the above terms to be positive or equal to zero due to the independency of 𝒖̇, 𝒅̇ 

and 𝑭𝒆̇ (and therefore  𝑭𝒗
̇ ). 

Then we can get the force balance equation and traction relation from the first two terms: 

𝑩 + 𝑑𝑖𝑣𝑋(𝑺) = 𝟎, ( 2.6 ) 

−𝑺 ∙ 𝑵 + 𝑻 = 𝟎. ( 2.7 ) 

The third term in eqn ( 2.5 ) indicates that 
𝜕𝑓𝑟

𝜕𝒅
 should be in the same direction as 𝒅, 

requiring that   

𝒅 ×
𝜕𝑓𝑟

𝜕𝒅
= 𝟎,                ( 2.8 ) 

which is a governing equation for the director field, equivalent to the balance of rotational 

momentum derived in previous work [82]. To satisfy the non-negative requirement of the last 

term in eqn ( 2.5), we propose a simple evolution equation for 𝑳𝒗 
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𝑳𝒗 =
1

𝜂0
𝑭𝑒

𝑇
𝜕𝑓𝑟
𝜕𝑭𝑒

. ( 2.9 ) 

Solving the above force balance equation together with the boundary condition eqn 

( 2.6)-(7), the constitutive equation for the director eqn ( 2.8), and the evolution equation for 𝑳𝒗 

eqn ( 2.9), we can determine the viscoelastic stress-director-strain behavior of LCEs under 

arbitrary inhomogeneous deformation.  

Next, we assume the free energy of LCEs includes the synergetic work of the director 

rotation and network extension. We employed the free energy as the summation of the 

equilibrium and nonequilibrium parts based on the neo-classical theory including the semi-soft 

elasticity [24,51,83], 𝑓𝑟 = 𝑓𝑟
𝑒𝑞 + 𝑓𝑟

𝑛𝑒𝑞
, with 

𝑓𝑟
𝑒𝑞

=
𝜇𝑒𝑞

2
𝑡𝑟(𝑭𝑒𝑞𝑭𝑒𝑞𝑇 + 𝑎(𝑰 − 𝒅𝟎 ⊗ 𝒅𝟎)𝑭

𝑻 ∙ 𝒅 ⊗ 𝐝 ∙ 𝐅) − 𝑝(𝐽 − 1), 
( 2.10 ) 

𝑓𝑟
𝑛𝑒𝑞

=
𝜇𝑛𝑒𝑞

2
𝑡𝑟(𝑭𝑛𝑒𝑞𝑭𝑛𝑒𝑞𝑇 + 𝑎(𝑰 − 𝒅𝟎 ⊗ 𝒅𝟎)𝑭𝑒

𝑻 ∙ 𝒅 ⊗ 𝐝 ∙ 𝑭𝑒) − 𝜇𝑛𝑒𝑞ln(𝐽𝑒), ( 2.11 ) 

where 𝜇𝑒𝑞 and 𝜇𝑛𝑒𝑞 are the shear modulus of the equilibrium and non-equilibrium; 𝑝 is the 

Lagrange multiplier to incorporate the incompressibility  𝐽 = det(𝐹) = 1;  𝐽𝑒 = det (𝑭𝑒); 𝑭𝑒𝑞 ≔

𝒍−1/2𝑭𝒍𝟎
1/2

; 𝑭𝑛𝑒𝑞 ≔ 𝒍−1/2𝑭𝑒𝒍𝟎
1/2

; 𝑎 represents the semi-soft parameter, the value of which is 

kept the same for the equilibrium and non-equilibrium free energy; d and 𝒅𝟎 represent the 

director in the current and reference states, respectively. 𝒍 and 𝒍𝟎 are the corresponding 

dimensionless shape (metric) tensor, 𝒍 =
1

𝑙∥
((𝑙∥ − 𝑙⊥)𝒅 ⊗ 𝒅 + 𝑙⊥𝑰) and 𝒍𝟎 =

1

𝑙∥
0 ((𝑙∥

0 − 𝑙⊥
0)𝒅𝟎 ⊗

𝒅𝟎 + 𝑙⊥
0𝑰). The effective lengths along or perpendicular to the director (𝑙∥ 𝑎𝑛𝑑 𝑙⊥) are assumed to 

remain constant during deformation, and we can denote their ratio as 

𝑟 ≔
𝑙∥
𝑙⊥

=
𝑙∥
0

𝑙⊥
0 . ( 2.12 ) 
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In the absence of non-equilibrium and with parameters 𝑟 = 1 and 𝑎 = 0,  eqn ( 2.10 ) 

recovers the conventional neo-Hookean elastic energy. When 𝑟 ≠ 1, the backbone shows 

anisotropy owing to the presence of LCs by the free energy 
𝜇𝑒𝑞

2
𝑡𝑟(𝑭𝑒𝑞𝑭𝑒𝑞𝑇) =

𝜇𝑒𝑞

2
𝑡𝑟(𝒍−𝟏𝑭𝒍𝟎𝑭

𝑻). The energy term could also be interpreted as the classical neo-Hookean elastic 

energy incorporating a deformation gradient 𝑭𝑒𝑞
= 𝒍−1/2𝑭𝒍𝟎

1/2
 from the isotropic phase of the 

reference configuration to the isotropic phase of the current configuration [77]. The energy term 

𝜇𝑒𝑞

2
𝑡𝑟(𝑎(𝑰 − 𝒅𝟎 ⊗ 𝒅𝟎)𝑭

𝑻 ∙ 𝒅 ⊗ 𝐝 ∙ 𝐅) represents the semi-soft elasticity, describing fluctuation 

of chains with various anisotropy 𝑟. When 𝑎 = 0, it implies the director can rotate with 

negligible stress; when 𝑎 > 0, a stress threshold is required to initiate the rotation of the director. 

We can also rewrite the term as 
𝜇𝑒𝑞

2
𝑎‖𝑭𝑻𝒅 − (𝑭𝑻𝒅 ∙ 𝒅𝟎)𝒅𝟎‖

2, indicating that the energy 

vanishes when 𝑭𝑻𝒅 is parallel to 𝒅𝟎.  

Consider the homogeneous deformation of a thin LCE sample with a tilted director 

subjected to uniaxial stress in the x2 direction, and we assume the director only rotates in the x1-

x2 plane, i.e 𝒅 = (cos 𝜃 , sin 𝜃 , 0)𝑇.We can rewrite the first Piola-Kirchhoff stress, evolution 

equation for 𝑳𝒗 eqn ( 2.9), and the constitutive equation for the director eqn ( 2.8) as 

                    𝑺 = 𝜇𝑒𝑞 ((𝒍−𝟏𝑭𝒍𝟎) + 𝑎𝒅 ⊗ (𝑰 − 𝒅𝟎 ⊗ 𝒅𝟎)𝑭
𝑻𝐝) + 𝜇𝑛𝑒𝑞 ((𝒍−𝟏𝑭𝑒𝒍𝟎𝑭𝒆

𝑻𝑭−𝑻) +

𝑎𝒅 ⊗ (𝑰 − 𝒅𝟎 ⊗ 𝒅𝟎)𝑭𝑒
𝑻𝐝𝑭𝒆

𝑻𝑭−𝑻) − 𝐽𝑝𝑭−𝑻 − 𝜇𝑛𝑒𝑞𝑭−𝑻, 

( 2.13 ) 

𝑭𝒗̇ =
𝜇𝑛𝑒𝑞

𝜂0
(𝑭𝑒

𝑇𝒍−𝟏𝑭𝑒𝒍𝟎 + 𝑎𝑭𝑒
𝑇𝒅 ⊗ (𝑰 − 𝒅𝟎 ⊗ 𝒅𝟎)𝑭𝑒

𝑇𝐝 − 𝑰)𝑭𝒗, 
( 2.14 ) 

𝒔𝑒𝑞𝑑 × 𝒅 + 𝒔𝑛𝑒𝑞𝑑 × 𝒅 = 𝟎. ( 2.15 ) 
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where 𝒔𝑒𝑞𝑑 ≔ 𝜇𝑒𝑞((𝑙∥
−1 − 𝑙⊥

−1)𝑭𝒍𝟎𝑭
𝑻𝒅 + 𝑎𝑭(𝑰 − 𝒅𝟎 ⊗ 𝒅𝟎)𝑭

𝑻𝒅) and 𝒔𝑛𝑒𝑞𝑑 ≔

𝜇𝑛𝑒𝑞((𝑙∥
−1 − 𝑙⊥

−1)𝑭𝑒𝒍𝟎𝑭𝑒
𝑻𝒅 + 𝑎𝑭𝑒(𝑰 − 𝒅𝟎 ⊗ 𝒅𝟎)𝑭𝑒

𝑻𝒅). Since the deformation is 

homogeneous, the force balance equation eqn ( 2.6) is satisfied automatically. As discussed in 

section 2.2.4, the deformation gradient under uniaxial tension could be written as 

𝑭 =

[
 
 
 
𝜆11 0 0
𝜆21 𝜆22 0

0 0
1

𝜆11𝜆22]
 
 
 
, ( 2.16 ) 

where the shear strain 𝜆21 exists due to director rotation; 𝜆22 is the stretching direction. Also, we 

can assume the viscous part of the deformation gradient 𝑭𝒗 as 

𝑭𝒗  = [

𝐹𝑣11 𝐹𝑣12 0
𝐹𝑣21 𝐹𝑣22 0
0 0 𝐹𝑣33

]. ( 2.17 ) 

The elastic deformation gradient can be expressed as 𝑭𝒆 = 𝑭𝑭𝒗
−𝟏. Inserting the 

expressions of 𝑭, 𝑭𝑣 (𝑭𝒆) and 𝒅 into eqn ( 2.13 ) to ( 2.15 ), and using the condition 𝑺 =

𝑑𝑖𝑎𝑔(0, 𝑆22, 0) for uniaxial tension, we numerically solve 𝑆22, 𝜃 and all the components of 𝑭 

and 𝑭𝑣 (𝑭𝒆) as functions of time with Matlab, where the Lagrange multiplier 𝑝 is determined 

using 𝑆33 = 0.   

2.4.2 Analysis of Uniaxial Tension 

Here we study the director 𝜃, shear strain 𝜆21 and engineering stress 𝑆22 as functions of 

the normal stretch 𝜆22 at different loading rates 𝜆22
̇ . The viscoelastic model proposed in section 

2.4.1 has five material parameters. As the viscoelastic relaxation is significant, we estimate 

𝜇𝑛𝑒𝑞/𝜇𝑒𝑞 = 9 based on the stress relaxation test on MNE-90. The network viscosity 

𝜂0 (𝜇𝑒𝑞 + 𝜇𝑛𝑒𝑞)⁄ = 1𝑠 and the semi-soft parameter 𝑎 = 0.08 are selected to fit the director 
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reorientation and stress response from the uniaxial tension tests. The parameter 𝑟 = 5.5 is 

calculated based on the following thermomechanical deformation test. We recorded the length of 

a monodomain LCE sample in the nematic configuration at room temperature as 𝑙𝑛𝑒𝑚. Then we 

heated the specimen upto 130℃, which is above the phase transition temperature 𝑇𝑛𝑖, using a 

hotplate, and recorded the length in the isotropic configuration as 𝑙𝑖𝑠𝑜. The macroscopic length 

change in response to the temperature change is purely due to the phase transition of LCs, 

correlating to the magnitude of the anisotropic backbone [24,29], and relates to 𝑟 via: 

𝑟 = (
𝑙𝑛𝑒𝑚

𝑙𝑖𝑠𝑜
)3. ( 2.18 ) 

We measured  𝑙𝑛𝑒𝑚 and 𝑙𝑖𝑠𝑜 several times and took an average value to obtain 𝑟 = 5.5. 

Analytical solutions of the uniaxial engineering stress 𝑆22 (Figure 2.10a-c), the director angle 

90 − 𝜃 (Figure 2.10d-f), and shear strain 𝜆21 (Figure 2.10g-i) at different loading rates 𝜆22
̇ = 

0.1%/s, 1%/s and 10%/s for different initial directors are plotted as functions of the normal 

stretch 𝜆22. Obvious rate-dependent stress, director rotation, and shear deformation are observed. 

At a low loading rate, the director rotates more, providing more spontaneous strain, and the stress 

caused by the viscosity of the network (the dashpot in Figure 2.9) is smaller. As a result, the 

stress is lower at a lower loading rate. Generally, the stress-strain behavior predicted by the 

model exhibits a consistent agreement with the experimental observations.   

For all applied rates, the director approaches the stretching direction (𝜃 = 90°) as the 

normal stretch 𝜆22 increases (Figure 2.10d-f). However, it is evident that the director rotation is 

slower at higher loading rates, exhibiting a noticeable delay. Although we only consider the 

network viscosity in the model, we still observe time-dependent director rotation due to the 

strong influence of the network on the director in main-chain LCEs. When a uniaxial stress 
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oblique to the initial director is applied, the director tends to rotate instantaneously, but the slow 

extension of the network can impede the director rotation. As a result, at a high loading rate, the 

network deforms less under a given normal stretch, constricting the director rotation, and causing 

a pronounced delay in director rotation. Conversely, at a low rate, as the network deforms more, 

the director also rotates more. 

 

Figure 2.10 Analytical results of the (a)-(c) engineering stress 𝑆22, (d)-(f) director angle 90 − 𝜃, and (g)-

(i) shear strain 𝜆21 as functions of the normal stretch 𝜆22 at different loading rates of 10%/s, 1%/s, and 

0.1%/s for MNE-60, MNE-45, and MNE-30, respectively. 
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Figure 2.10g-i show the shear strain 𝜆21 as a function of the normal stretch 𝜆22 at 

different loading rates. The occurrence of shear strain is a consequence of director rotation. In 

general, it is observed that an increase in 𝜆22 leads to greater rotation of the director, and an 

increase in the magnitude of 𝜆21 in MNE-60 and MNE-45. Particularly in the case of loading 

rates at 1%/s and 0.1%/s, the modeling results exhibit a high level of agreement with the 

experimental findings. However, the shear strain at 10%/s presents inconsistencies with the 

experimental observation, as it shows a lower value at a lower normal stretch compared to the 

1%/s loading rate, which can be attributed to the omission of the viscosity of director rotation in 

the model. Experimental evidence has indicated that the director does not reach the equilibrium 

at 10%/s loading rate, and both the viscosity of the director rotation and network extension 

contribute to the delayed direction rotation.  

Moreover, we observe non-monotonic shear strain 𝜆21 with respect to the normal stretch 

𝜆22 in MNE-30. The shear strain initially grows to a positive value and then drops to a negative 

value with the increased normal stretch. Warner and Terentjev et al.[24,84,85] have discussed 

non-monotonic shear strain when the initial director (𝜃 = 0°) is perpendicular to the stretching 

direction. Without the viscous effect, the director and shear strain can be expressed as  

𝜃 = sin−1 √
𝑟

𝑟−1
(1 −

𝜆𝑠𝑠
2

𝜆22
2), 

( 2.19 ) 

𝜆21 = √
(𝜆22

2−𝜆𝑠𝑠
2)(𝑟𝜆𝑠𝑠

2−𝜆22
2)

𝑟𝜆22
2𝜆𝑠𝑠

3 , 
( 2.20 ) 

where 𝜆𝑠𝑠 = (
𝑟−1

𝑟−1−𝑎𝑟
)

1

3 related to semi-soft elasticity. When 𝑎=0, 𝜆𝑠𝑠 = 1, and the above 

equations reflect the case of soft elasticity.  
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Figure 2.11a and b illustrate the behavior of the director and shear strain based on eqn 

( 2.19 ) and ( 2.20 ) for 𝑎=0.1. The director and shear strain start with 𝜃 = 0° and 𝜆21 = 0 when 

𝜆22 = 1. As the director angle increases, the shear strain non-monotonically increases and then 

decreases. Then the director and shear strain end with 𝜃 = 90° and 𝜆21 = 0 when 𝜆22 =

√𝑟𝜆𝑠𝑠 = 2.42. After the director becomes parallel to the stretching direction, the network further 

extends with an elastic energy cost without director rotation, behaving the same as traditional 

neo-Hookean materials. 

 

Figure 2.11 (a) Schematic of the deformation of a LCEs sample with the stretching perpendicular to the 

initial director (𝜃0 = 0°). (b) Shear strain as a function of the director rotation starts from 𝜃0 = 0° and 

ends at 𝜃 = 90° calculated from the soft-elasticity theory. (c) Schematic of the deformation of MNE-30 

under uniaxial stress, exhibiting changes of the shear strain 𝜆21 from a positive value to a negative value. 
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(d) Shear strain of MNE-30 as a function of the director rotation at loading rates of 0.1%/s, 1%/s, and 

10%/s up to a strain of 200% from the experiment.   

The experimental measurement of shear strain for MNE-30 is presented in Figure 2.11d 

as a function of the director. The macroscopic deformation under stretching is depicted in Figure 

2.11c, illustrating the transition of shear strain from a positive value to a negative value induced 

by the director rotation. Based on the perpendicular loading discussed earlier, considering the 

shear strain at the initial director 𝜃0 = 30° as zero in Figure 2.11b, the shear strain exhibits non-

monotonic behavior as the stretch increases and as the director 𝜃 changes from 30° to 90°. 

Consequently, the non-monotonic shear strain is expected when the initial director deviates much 

from the stretching direction.  

2.5 Conclusion  

To summarize, this chapter presents controlled experiments to manifest the relation 

among mechanical stress, director, and stretch for LCEs with different initial directors at 

different loading rates. Examined by dynamically uniaxial tension and relaxation tests, we find 

that the viscoelasticity of LCEs is a synergy of rate-dependent network deformation and mesogen 

rotation, giving rise to the unique mechanical responses of LCEs, which is further verified by a 

general continuum viscoelastic model.  

We successfully measure the rate-dependent stress and director rotation in dynamic 

tension and relaxation tests. In the uniaxial tension tests, the loading rates range from 0.1%/s to 

10%/s and the initial director ranges from 0° to 60° oblique to the stretching direction. We 

observe realignment of oblique directors to the stretching direction, and reorientation delay when 

the loading rate is high. A larger director rotation produces a higher spontaneous strain, which 
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leads to a higher stretchability and a more obvious stress plateau. By comparing the stress and 

director values in uniaxial tension and relaxation tests, we find the viscosity of director rotation 

is much smaller than that of the network extension. For all specimens, stress does not reach 

equilibrium even at the slow loading rate of 0.1%/s, while the director almost reaches 

equilibrium at around 1%/s. Moreover, the stress relaxation in a short time reflects the 

complicated synergy of quick director rotation and network extension, while in a long time, the 

stress relaxation can be fitted by a power law which is similar to traditional rubbers, suggesting 

that the relaxation is dominated by the network extension. Although the viscosity of director 

rotation is considerably small, in a long-term relaxation, the director continues to rotate as the 

viscous network extension further realigns the director, and the director relaxation could also be 

fitted by a power law.  

We quantitatively measure the rate-dependent strain components via DIC for LCEs with 

different initial directors. Our DIC results under uniaxial tension tests reveal homogenous 

deformation in the middle parts of the LCE samples. At a lower rate, the macroscopic 

deformation is primarily originated from spontaneous deformation arising from director rotation, 

exhibiting the stress-strain relation closer to the plane strain case; conversely, at a higher rate, the 

macroscopic deformation is more attributed to network extension, leading the stress-strain 

relation closer to the plane stress case. DIC measurements present notable rate-dependent shear 

strain, where faster loading leads to smaller shear strain, and vice versa. Non-monotonic shear 

strain is observed when the angle between the initial director and the stretching is large.  

We further use a general continuum viscoelastic model to explain the rate-dependent stress, 

director, and strain. The model incorporates the effect of the viscous network deformation via 
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applying multiplicative decomposition of the deformation gradient to elastic and viscous parts. 

No director viscosity is considered in this analysis. The analytical solution elucidates the strong 

coupling between the macroscopic deformation and microscopic director rotation – on one hand, 

the director rotation provides additional spontaneous deformation, reducing the network 

extension and corresponding stress levels; on the other hand, the observation of the director 

reorientation delay indicates that the rate-dependent network deformation influences the rate-

dependent director rotation. Furthermore, the analytical results indicate the possibility of non-

monotonic shear strain when the angle between the initial director and the stretching direction is 

large enough.  

This work provides a comprehensive investigation into and mechanistic understanding of 

the rate-dependent behavior of LCEs. The utilization of crossed-polarized optical measurement 

and DIC allows us to dynamically probe the director and deformation fields for LCEs of different 

directors under different loading conditions. We conduct experiments to characterize the distinct 

relaxation time scales of the director rotation and network extension and explain the rate-

dependent results using a general viscoelastic continuum model, which enhances our 

understanding of the director-stress coupling effect. However, it is important to note that a much 

lower loading rate needs to be applied in order to reach the full equilibrium stress-strain behavior 

of LCEs [29]. Moreover, the efficacy of the model diminishes at high loading rates, where the 

viscosity of both the director and network needs to be accurately accounted for [72,74]. 
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Chapter 3 Exceptional Stress-director Coupling Effect at the Crack Tip 

A liquid crystal elastomer (LCE) presents a highly promising material utilized in the 

realm of soft robotics primarily attributed to its unique capability of spontaneous strain achieved 

through changes in ordering and director. To achieve durable applications of LCEs, it becomes 

imperative to thoroughly understand and characterize their fracture behavior. Despite extensive 

exploration of the stress-director coupling effect of LCEs under uniaxial tension, the influences 

of such coupling on the stress/strain behavior in the vicinity of a crack tip remains inadequately 

understood. In this chapter, we for the first time undertake a comprehensive theoretical and 

experimental analysis of the displacement and director fields in edge-cracked LCE specimens 

with various initial director orientations. Our results reveal that the directors undergo significant 

and inhomogeneous rotation at the crack tips, leading to very different stress/strain distributions 

from traditional elastomers. Particularly, when the initial director is tilted to the loading 

direction, the stress/strain distributions are asymmetrical about the crack plane. Notably, we 

discover the unexpected occurrence of opposite director rotation in two adjacent domains along 

the circumferential direction at the crack tip, leading to opposite shear strain in the domains, and 

thereby a sharp crack surface at the domain wall. As a result, LCEs with an initial director tilted 

to the loading exhibit much smaller crack openings and energy release rates than those of neo-

Hookean materials, while LCEs with a parallel director exhibit higher values. This study 

provides an understanding of how the stress-director coupling of LCEs triggers their unique 

crack-tip fields, and insights into strategies to enhance the fracture properties of LCEs for future 

applications. The findings and methodology presented in this work also lay a solid foundation for 

further investigation of crack propagation in LCEs. 
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3.1 Introduction 

The intricate stress-director coupling behavior in LCEs poses challenges in understanding 

the mechanism of their deformation and fracture. Attributed to the unique stress-director 

coupling effect, we expect significant and highly non-uniform director rotation near the crack tip 

of a LCE, which can dramatically influence its corresponding stress/strain distribution and 

fracture behavior. 

Several studies have already demonstrated the pronounced impact of stress-director 

coupling on the fracture behavior of LCEs, which deviates considerably from that of traditional 

neo-Hookean materials. The reorientation of the director near the crack tip exerts remarkable 

influences on the fracture energy. Specifically, polydomain LCEs exhibit higher fracture energy 

than that of monodomain, and monodomain LCEs under stretching parallel to the director 

display higher fracture energy than that under perpendicular loading [54,61]. The difference in 

the fracture energy among the different samples was attributed to the director rotation in 

polydomain LCEs and monodomain LCEs subjected to perpendicular stretching, although no 

further understanding of the numbers was provided. To investigate the director rotation due to 

stress concentration, a monodomain LCE sheet containing a circular or an elliptical hole subject 

to remote tension was analyzed by finite element method (FEM) [51–53]. It was found that when 

the initial director around the hole edge forms a tilted angle with the stretching, the stress 

concentration factor is lower than that in the parallel case, and reaches the minimum at the tilted 

angle of 45°. However, studying stress concentration solely is insufficient to fully comprehend 

the crack growth resistance in LCEs, and the intricated interplay of stress and the director around 
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a sharp crack remains elusive. Moreover, the crack-tip fields of LCEs have not been 

experimentally characterized. 

Characterizing the deformation fields around a crack tip under various loading plays an 

important role in validating crack-tip fields predicted computationally and analytically in highly 

deformable soft materials [48–50]. It becomes particularly crucial when it is challenging to 

develop an asymptotic solution for the stress/strain fields near a crack tip. Digital image 

correlation (DIC) has been proven effective in mapping the nonlinear deformation in the vicinity 

of a crack in highly deformable soft materials [86–88]. Zehnder et al. [88] utilized DIC to 

measure the strain distribution for a hydrogel specimen with an edge crack in the presence of 

large strain and strain gradients. In addition to DIC, the particle tracking method is an alternative 

method to probe inhomogeneous deformation fields. Long et al. [48,50] successfully utilized the 

particle tracking method to measure the deformation history near a crack in a rubber-like 

material subjected to tensile loading with different angles between the initial crack and the 

tension direction, equivalent to combined loading of tension and shear. Distinct from a common 

soft elastic material [89–91], LCEs can have significant and highly inhomogeneous director 

rotation at the crack tip, which can induce a highly inhomogeneous spontaneous strain field. 

Characterizing the microscopic director field near a crack is essential to understanding the crack-

tip and fracture behavior of LCEs.  

In this chapter, we analyze the fracture behavior of LCEs with a single-edge crack 

subjected to remote strain, see Figure 3.1a. Motivated by the pronounced stress-director coupling 

of LCEs, we anticipate that the crack-tip fields and fracture behavior of LCEs are very different 

from those of traditional elastomers. On one hand, the highly inhomogeneous and concentrated 
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stress at a crack tip can reorient the directors to different levels, inducing large and 

inhomogeneous spontaneous strain; on the other hand, different rotation capability of the 

directors around the crack tip gives rise to different levels of stress softening, influencing the 

stress distribution and energy release rate, and consequently leading to distinct crack opening 

shapes from traditional elastomers, see Figure 3.1b and c. Moreover, the angle between the initial 

director and stretching can dramatically vary the crack-tip fields and crack opening. In particular, 

when the angle is oblique, the adjacent directors exhibit opposite rotation around the crack tip, 

forming a domain wall, and the stress/strain field is highly asymmetric about the crack plane, as 

shown in Figure 3.1c. To demonstrate the unique crack-tip behavior, we simulate the stress, 

displacement and director fields in the vicinity of a sharp crack in LCEs with different initial 

directors, and subsequently evaluate their energy release rates. Moreover, experimental data 

capturing the deformation field by the DIC method and the director field by the crossed-

polarized optical measurement will be acquired to validate the simulation results. Through 

combining numerical modeling and experimental observations, we aim to gain a comprehensive 

understanding of the crack-tip fields and fracture behavior of LCEs. Notably, this study 

represents the first instance of observing the director and deformation fields in the vicinity of a 

crack in LCEs.   

This chapter is organized as follows. In section 3.2, we introduce the detailed modeling 

and experimental methodology. In section 3.3, we report the FEM analysis of the stress-director 

coupling around the crack-tip field. We present the experimental measurement of the director and 

displacement in section 3.4. Section 3.5 shows fracture evaluation. Section 3.6 concludes the 

Chapter. 
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Figure 3.1 Director rotation in edge-cracked LCEs under external tension. (a) Schematic illustration of an 

edge-cracked LCE sample subjected to remote strain 𝜀∞. Different initial directors, as shown for 𝜃0 =

90° and 𝜃0 = 30°, lead to different crack openings due to director rotation. The director evolution at 

selected points on the crack surface as a function of the remote strain in the LCE with (b) 𝜃0 = 90° and 

(c) 𝜃0 = 30°.   

3.2 FEM and Experimental Methodology 

3.2.1 Constitutive Model and FEM 

To model the constitutive behavior of a LCE, we consider a material particle labeled by a 

position vector 𝐗 in the stress-free reference configuration Ω0 (𝐗 ∈ Ω0) moves to the position 𝐱 

at time 𝑡 in the current configuration Ω𝑐 (𝐱 ∈ Ω𝑐). The deformation gradient is defined as 𝐹𝑖𝐾 =
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𝜕𝑥𝑖(𝐗, 𝑡) 𝜕𝑋𝐾⁄ . A unit vector 𝒅 is used to describe the director orientation in the current 

configuration. Under the isothermal condition, the free energy density of nematic LCEs in the 

reference configuration is assumed [24,72]: 

𝑓𝑟(𝑭, 𝒅, 𝛻𝒅) = 𝑓𝑒𝑙(𝑭, 𝒅) + 𝑓𝑠𝑠(𝑭, 𝒅) + 𝑓𝐹𝑟𝑎𝑛𝑘(𝛻𝒅) + 𝑓𝑐(𝒅). ( 3.1 ) 

The first term in Eqn. ( 3.1 ), 

𝑓𝑒𝑙(𝑭, 𝒅) = 𝜇(𝑇𝑟(𝒍𝟎𝑭𝒍−𝟏𝑭𝑻) − 3 − 2𝑙𝑛 (𝐽))/2 + 𝐵(𝐽 − 1)2/2,  ( 3.2 ) 

describes the entropic elasticity of the LCE network, which is also called the neo-classical free 

energy [81], where 𝜇 is the shear modulus, 𝐵 is the bulk modulus and 𝐽 = det (𝑭). The first part 

of the energy, 𝜇𝑇𝑟(𝒍𝟎𝑭𝒍−𝟏𝑭𝑻)/2, is a function of both 𝑭 and 𝒅, incoporating the coupling effect 

of the network deformation and the director rotation. 𝒍 and 𝒍𝟎 are the step length tensors in the 

current and reference configurations, respectively, 𝒍 = (𝑙∥ − 𝑙⊥)𝒅 ⊗ 𝒅 + 𝑙⊥𝑰 and 𝒍𝟎 =

(𝑙∥
0 − 𝑙⊥

0)𝒅𝟎 ⊗ 𝒅𝟎 + 𝑙⊥
0𝑰, with 𝒅𝟎 the director in the reference configuration. Since we consider 

the isothermal condition, the effective lengths along or perpendicular to the director in the 

current configuration (𝑙∥ and 𝑙⊥) remain the same as those in the reference configuration 

(𝑙∥
0 and 𝑙⊥

0), and we can denote the ratio 𝑟 = 𝑙∥/𝑙⊥ = 𝑙∥
0/𝑙⊥

0  as the anisotropy of the backbone. 

The second part, 𝐵(𝐽 − 1)2/2, is the energy associated with volume changes, with 𝐵 the bulk 

modulus. We employ a large ratio of the bulk modulus to shear modulus, 𝐵/𝜇 = 103, to 

represent incompressibility. The second term in Eqn. ( 3.1 ), 

𝑓𝑠𝑠(𝑭, 𝒅) = 𝜇𝑇𝑟(𝛼(𝑰 − 𝒅𝟎 ⊗ 𝒅𝟎)𝑭
𝑻 ∙ 𝒅 ⊗ 𝐝 ∙ 𝐅)/2  ( 3.3 ) 

describes the inevitable variation of the anisotropy 𝑟 among chains, called the semi-soft elasticity 

[92], with 𝛼 a parameter describing the level of such fluctuation. The third term in Eqn. ( 3.1 ), 
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𝑓𝐹𝑟𝑎𝑛𝑘(𝛻𝒅) = 𝐾𝛻𝒅: 𝛻𝒅/2 ( 3.4 ) 

is a simplified form of the Frank energy, which describes energy associated with the spatial 

variation of the director [93]. The parameters of the Frank energy and network elasticity, √𝐾/𝜇, 

defines a length scale, which is typically on the order of 10 nm [24]. The last term in Eq. ( 3.1 ), 

 𝑓𝑐(𝒅) = 𝛾𝑑(𝒅 ∙ 𝒅 − 1) ( 3.5 ) 

enforces the constraint of the unit vector 𝒅, 𝒅 ∙ 𝒅 ≡ 1, where 𝛾𝑑 is a Lagrange multiplier. 

Consider the deformation of a LCE as an equilibrium isothermal process. The 

thermodynamic condition requires the variation of the free energy of the LCE over a small time 

increment should always equal the external power, ∫
Ω0

𝑓𝑟̇𝑑𝑉 = 𝑊̇, where 𝑊̇ = ∫
Ω𝑐

𝒃 ∙ 𝒖̇𝑑𝑣 +

∫
Γ𝑐

𝒕 ∙ 𝒖̇𝑑𝑎 represents the power done by the body force 𝒃 and surface traction 𝒕 at the velocity 

𝒖̇, respectively, in the current configuration, with Γ𝑐 the prescribed traction boundary, and ̇ =

𝛿/𝛿𝑡 in 𝑓𝑟̇, 𝒖̇, 𝑊̇ etc. represents a small variation over a small time increment. Using the relation 

𝑓𝑟̇ = 𝜕𝑓𝑟 𝜕𝑭⁄ : 𝑭̇ + 𝜕𝑓𝑟 𝜕𝒅⁄ : 𝒅̇ + 𝜕𝑓𝑟 𝜕∇𝒅⁄ : (∇𝒅)̇ , we can derive two governing equations related 

to 𝒖̇ and 𝒅̇, 

𝑑𝑖𝑣(𝝈) + 𝒃 = 𝟎, ( 3.6 ) 

𝐽−1𝜇((𝑙∥
−1 − 𝑙⊥

−1)𝑭𝒍𝟎𝑭
𝑻𝒅 + 𝛼𝑭(𝑰 − 𝒅𝟎 ⊗ 𝒅𝟎)𝑭

𝑻𝒅) × 𝒅 − 𝐽−1𝐾𝛻𝟐𝒅 × 𝒅 = 𝟎, ( 3.7 ) 

where the Cauchy stress 𝝈 is  

𝝈 = 𝐽−1𝜇(𝒍−1𝑭𝒍𝟎𝑭
𝑻 + 𝛼𝒅 ⊗ (𝑰 − 𝒅𝟎 ⊗ 𝒅𝟎)𝑭

𝑻𝒅 ∙ 𝑭𝑻 − 𝑰) + 2𝐵(𝐽 − 1)𝑰 −

𝐽−1𝐾(𝛻𝒅)𝑇𝛻𝒅. 

( 3.8 ) 
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Figure 3.2 Theoretical prediction of the uniaxial response of LCEs with different initial directors 𝜃0. (a) 

Schematic of the uniaxial stretch with 𝜃 defined as the angle between the director and the 𝑋1 − 𝑎𝑥𝑖𝑠. (b) 

Stress, (c) director, and (d) shear strain as functions of uniaxial stretch for different initial directors. 

The constitutive model generally provides a comprehensive description of the properties 

exhibited by LCEs under uniaxial tension (Figure 3.2a). It is observed that when the initial 

director aligns with the stretching direction (𝜃0 = 90°), the stress-stretch behavior resembles that 

of a neo-Hookean material (Figure 3.2b) without director rotation and shear strain (Figure 3.2c 

and d). In contrast, when the initial director is tilted away from the stretching direction (𝜃0 =

60°, 45°, 30°), stress softening occurs, accompanied by director reorientation and non-zero shear 

strain.  



 

53 

 

 

Figure 3.3 Setup of the FEM model of a LCE specimen with a rounded notch tip with a radius 𝑅0 𝑎⁄ =

5𝑒 − 4. 

Appendix A.2. To accommodate nearly incompressible solids and mitigate volumetric 

locking behavior, we implemented the F-bar method [94,95] and utilized 2D plane-strain 4-node 

linear quadrilateral elements in this study. We simulate a 2D rectangular LCE sample of an initial 

director 𝜃0 with an edge crack, as shown in Figure 3.1a. The top and bottom boundaries are 

controlled by a displacement in the 𝑋2 direction, and fixed in the 𝑋1 direction with a zero 

displacement, 𝑢1 = 0. To prevent element distortion due to the strain concentration around the 

crack tip, a rounded notch is utilized, where the radius of the notch is 𝑅0/𝑎 = 5 × 10−4 and the 

ratio of the crack length to the sample length is 𝑎/𝐿 = 0.2, with 𝐿 = 1 𝑚𝑚 (Figure 3.3). To 

resolve the crack-tip fields and to ensure the element size in the vicinity of the crack tip 

comparable to √𝐾/𝜇, we set the size of the elements around the tip about 0.1 times of the notch 

size 𝑅0, i.e. about 5𝑒 − 5 times of the crack length 𝑎, and 1𝑒 − 5 times of the model size 𝐿. We 

analyze fracture behavior when the crack opens much larger than the notch width so that the 

results are independent of the crack-tip shape [96,97]. As we consider the plane strain condition, 
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the director is described by the unit direction 𝒅 = (𝑐𝑜𝑠(𝜃), 𝑠𝑖𝑛(𝜃), 0) with 𝜃 the angle between 

the current director and the 𝑋1-axis. The material properties are chosen as 

𝐵

𝜇
= 103, 𝑟 = 5, 𝛼 = 0.1, √

𝐾

𝜇
= 10 𝑛𝑚, ( 3.9 ) 

where the bulk modulus over the shear modulus is set large to represent incompressibility; the 

material anisotropic parameter 𝑟 and semi-soft elasticity parameter 𝛼 are based on our previous 

study [62]; the value of the Frank energy parameter with respect to shear modulus is estimated 

based on the previous report [24]. To ensure convergence of the simulations, small viscosity of 

the network and director rotation is added to the model. Moreover, the solution control 

parameters in ABAQUS are adjusted to allow an excessive number of increments and iterations 

to address the convergence issue. In particular, we set the maximum number of line search 

iteration to be 10. More details about the viscoelastic model and UEL implementation could be 

found in Appendix A.1 and A.2. 

3.2.2 Experimental Methods  

3.2.2.1 LCEs Fabrication 

In this study, the main-chain monodomain LCEs were synthesized via a two-stage thiol-

acrylate Michael addition-photopolymerization (TAMAP) reaction. The method is described in 

Section 2.2.1. 

3.2.2.2 Tension Tests 

Rectangular strips with a width of 25 mm and length of 75 mm were cut out of a LCE 

sheet with angles 0°, 30°, 45°, and 60° between the director and the longitudinal direction of the 

strips (Figure 3.4a). The solid rod-like mesogen represents the director in the whole LCE sheet 
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and the tilted red dashed line represents the cut LCE specimen with an initial director 𝜃0, which 

was measured by a protractor and further verified by the optical polariscopy method. In the 

specimens, 25 mm was left on each of the two ends for clamping and the middle region of 25 

mm by 25 mm was used for fracture testing. We used a sharp blade to cut an edge crack of 5 mm 

in the middle of the height. The tension test was performed in an Instron universal testing 

machine (Model 5944) with a 50 N load cell. The specimens were uniaxially stretched up to 10% 

strain with steps of 0.5% of the gauge length imposed. In each step, the loading rate was 0.01%/s 

and we waited for another 5 mins to ensure the specimen reaches quasi-equilibrium before any 

measurements were taken. No crack propagation occurred during tension tests and all the 

specimens could be reused for multiple measurements. 

 

Figure 3.4 (a) Schematic of a LCE specimen cut from a fabricated monodomain LCE thin film with the 

initial director angle 𝜃0 away from the transverse X1 direction. (b) Image of a LCE specimen with initial 
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director 𝜃0 = 45° at 𝜑 = 0° and 𝜀∞ = 0% in an optical polarized measurement. (c) Image of the marked 

part of a LCE specimen in Figure 3.4b with sprayed patterns for DIC tests. 

3.2.2.3 Crossed-polarized Optical Measurements 

Director rotation driven by stretching was characterized by crossed-polarized optical 

measurements. A light source, a polarizer, a specimen stretched by the Instron universal testing 

machine, an analyzer with the polarization perpendicular to the polarizer, and a camera were set 

up in the order as described in Section 2.2.3 (Figure 2.2). The appearance change of the 

specimen under uniaxial tension was recorded by a Canon ESO 6D DSLR camera along with a 

Canon 100mm F/2.8L macro lens. The recorded images per 0.5% strain were used to measure the 

transmitted light intensity via ImageJ. We measured the transmitted light intensity for different 

orientations of the crossed-polarizers by rotating them every 10° from 0° to 90° to determine the 

director as a function of stretch. The details are elaborated in Section 2.2.3. Figure 3.4b shows an 

example of an LCE specimen during optical polarized measurement at 𝜑 = 0° and 𝜀∞ = 0%. At 

this moment, the specimen exhibits a uniform and brightest appearance. This observation 

validates the monodomain nature of the LCE specimen with the initial director 𝜃0 = 45°. 

3.2.2.4 DIC Measurements 

We use the 2D digital image correlation (DIC) method to measure displacement 

distributions as described in Section 2.2.4. Figure 3.4c shows an example of a sprayed sample 

with the initial director 𝜃0 = 45° at 𝜀∞ = 0%.  
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3.3 FEM Analysis of the Coupled Stress-director Effect on the Crack-tip Fields 

We analyze the crack-tip fields of different initial directors 𝜃0 = 30°, 45°, 60°, and 90°. 

The FEM results have revealed highly inhomogeneous director rotation near the crack tip. When 

the initial director is parallel to the loading direction (𝜃0 = 90°; Figure 2.11b), the director on the 

crack surface at 𝜙 = 45° rotates counter-clockwise and the director at 𝜙 = −45° rotates 

clockwise, where 𝜙 is the polar angle defined in the reference state, while the director remains 

unchanged at 𝜙 = 0°. Intriguingly, when the initial director is inclined with respect to the 

loading direction (𝜃0 = 30°; Figure 2.11c), the directors positioned in close proximity (𝜙 =

39.5° and 44.9°) exhibit opposite rotation, i.e. the director at 𝜙 = 44.9° rotates clockwise, but 

the director at 𝜙 = 39.5° first rotates clockwise and then counter-clockwise, following a non-

monotonic trend as the applied strain increases. Such unexpected and inhomogeneous director 

rotation triggers a question: how does it influence fracture behavior in LCEs? To answer this 

question, we will next systematically investigate the stress, displacement and director fields, and 

subsequently the energy release rate.    

3.3.1 Stress and Strain Distributions Around A Crack-tip  

To begin with, we consider a LCE with a parallel initial director to the remote tension 

direction (𝜃0 = 90°). We present the distributions of the normalized maximum principal Cauchy 

stress 𝜎𝑝 and the maximum principal Lagrangian strain 𝐸𝑝, where the Lagrangian strain is 

defined as 𝑬 = (𝑭𝑇𝑭 − 𝑰)/2, in the region near the crack tip of size 0.01𝑎 under 𝜀∞ = 10% 

(Figure 3.5a and b). We observe significant stress/strain concentration at the crack tip. The stress 

and strain are both symmetrically distributed about the 𝑋1-axis with the contour lines exhibiting 

an elliptical shape, where a considerably smoother stress/strain gradient aligns in 𝑋2 than that in 
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𝑋1. LCEs present very different stress and strain distributions compared to those of neo-Hookean 

materials, corresponding to 𝑟 = 1, 𝛼 = 0 and 𝐾 = 0 in Eqns. ( 3.6 )( 3.7 ), which show nearly 

concentric circular stress and strain contour lines (Figure 3.5c and d). Further looking at the 

stress and strain distributions on the rounded notch surface, we find that while the locations of 

the maximum principal stress and strain are coincident at the polar angle 𝜙 = 0° in neo-Hookean 

materials, this is not the case in LCEs (Figure 3.5e and 5f). Although the maximum stress occurs 

at 𝜙 = 0°, consistent with that of neo-Hookean materials, strain peaks at two locations at around 

𝜙 = ±50°. Moreover, on the crack surface the maximum principal stress and strain in LCEs are 

both larger than those of neo-Hookean materials, which is consistent with the findings reported 

by Jiang et al. [52] for a monodomain LCE sheet with an elliptical hole. It is worth noting that as 

indicated by the stress contour lines, in the region a little far from the rounded notch at 𝜌 𝑎⁄ =

1.5𝑒 − 3 and 2.5𝑒 − 3 (Figure 3.5e and f), the location of the maximum principal stress is not at 

𝜙 = 0° but shifts to around 𝜙 = 90° due to smoother reduction of stress concentration caused by 

director rotation that will be discussed later. The location of the maximum principal strain also 

shifts towards 𝜙 = 90°. 

When the initial director is tilted away from the stretching direction (Figure 3.6 and 

Figure 3.7), although the stress/strain is still highly concentrated at the crack tip, their 

distributions exhibit notable distinctions from the case of 𝜃0 = 90°. Around the crack tip, the 

fields of stress and strain are no longer symmetrical about the 𝑋1-axis, instead showing elliptic-

like contour lines with a smoother gradient nearly along the initial director (Figure 3.6). 

Moreover, the stress and strain values are significantly smaller than those of 𝜃0 = 90°, and so is 

the normalized elastic energy density (Supplementary Fig. S1). For a LCE with 𝜃0 = 30°, on the 
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rounded notch surface, the peak maximum principal stress log (𝜎𝑝/𝜇) = 1.26 occurs at around 

𝜙 = −22°, while the peak maximum principal strain log(𝐸𝑝) = 1.34 occurs at around 𝜙 = 5° 

(Figure 3.7a and d). The values are much smaller than those of neo-Hookean materials 

(log (𝜎𝑝/𝜇) = 2.20, and log(𝐸𝑝) = 1.91) and LCEs with 𝜃0 = 90° (log (𝜎𝑝/𝜇) = 2.22, and 

log(𝐸𝑝) = 2.13); see Figure 3.5e and 5f. Such asymmetrical stress and strain distributions lower  

than those of neo-Hookean materials are also found in other LCEs with tilted initial director 

𝜃0 = 45° (Figure 3.6(b, e) and Figure 3.7(b, e)) and 60° (Figure 3.6 (c, f) and Figure 3.7(c, f)). 

Similar to the case of 𝜃0 = 90°, at the region a little far from the rounded notch at 𝜌 𝑎⁄ = 1.5𝑒 −

3 and 2.5𝑒 − 3, the location of the peak maximum principal stress/strain shifts towards the 

smoothest stress/strain gradient (Figure 3.7). 

 

Figure 3.5 FEM results of the stress and strain distributions around the crack tip at remote strain 𝜀∞ =

10%. (a, c) Normalized maximum principal stress and (b, d) maximum principal Lagrangian strain 
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around the crack tip in (a, b) a LCE with the initial director 𝜃0 = 90° and (c, d) a neo-Hookean material, 

respectively. The distribution of (e) normalized maximum principal Cauchy stress, and (f) maximum 

principal Lagrangian strain at different distances 𝜌/𝑎 around the crack tip at remote strain 𝜀∞ = 10% for 

a LCE with 𝜃0 = 90° and a neo-Hookean material. Note that on the crack surface, 𝜌/𝑎 = 5𝑒 − 4. 

 

Figure 3.6 FEM results of the stress and strain distributions around the crack tip at remote strain 𝜀∞ =

10%. (a, b, c) Normalized maximum principal stress and (d, e, f) maximum principal Lagrangian strain 

around the crack tip in a LCE with the initial director (a, d) 𝜃0 = 30°, (b, e) 45° and (c, f) 60°.  
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Figure 3.7 FEM results of the stress and strain distributions at different distances 𝜌/𝑎 around the crack tip 

at remote strain 𝜀∞ = 10%. (a, b, c) Normalized maximum principal stress, and (d, e, f) maximum 

principal Lagrangian strain at different distances 𝜌/𝑎 around the crack tip for a LCE with (a, d) 𝜃0 = 30°, 

(b, e) 45° and (c, f) 60°. Note that on the crack surface, 𝜌/𝑎 = 5𝑒 − 4. 

3.3.2 Director Distribution Around the Crack-tip Field 

The observed unusual stress and strain distributions can be attributed to the 

inhomogeneous and high director rotation at the crack tip. For the LCE with 𝜃0 = 90° (Figure 

3.8 a), the director at 𝜙 = 0° near the crack tip remains almost unrotated, as the director always 

aligns with the stretching in this region. In contrast, the director rotates clockwise at 𝜙 < 0° and 

counter-clockwise at 𝜙 > 0°. Correspondingly, when we plot the director change, 𝛿𝜃 = 𝜃 − 𝜃0, 

we observe negative 𝛿𝜃 at 𝜙 < 0° and positive 𝛿𝜃 at 𝜙 > 0° (Figure 3.8b). Further away from 

𝜙 = 0°, the director deviates more from 𝜃 = 90°. Interestingly, non-monotonic director rotation 



 

62 

 

with the applied strain is found around the crack surface. Figure 3.8b shows the change of the 

director at 𝜀∞ = 2% is higher than that at 𝜀∞ = 10%. To be specific, we select two 

representative points at 𝜙 = ±45° (Figure 3.3b), where the director gradually deviates from 

𝜃0 = 90°, reaches the maximum rotation at 𝜀∞ ≈ 1.4%, and then gradually returns to the initial 

direction. We also plot the director change at different applied strains as shown in Supplementary 

Fig. S2a. In general, the maximum director change, 𝛿𝜃 = 𝜃 − 𝜃0, is around ±20° at 𝜙 = ±90° 

at 𝜀∞ = 2%, but decreases to ±8° at 𝜀∞ = 10%. 

Such non-monotonic director rotation can be explained based on the director alignment. 

Figure 3.8c shows that at 𝜀∞ = 10% the director (red curve) in the vicinity of the crack surface 

aligns with the direction of the principal stress (blue crosses) and the tangent direction of the 

crack surface (green dots), while deviating from the direction of the principal Lagrangian strain 

(black curve) attributed to the spontaneous strain. The principal stress direction always aligns 

with the tangent direction of the crack surface, giving the absence of surface traction around the 

crack surface. When 𝜙 is larger or smaller than 0°, the directions of the principal stress are larger 

or smaller than 90°, respectively, and thereby the directors rotate toward the corresponding 

directions. However, the alignment becomes different when the applied strain is small; see 

Figure 3.8d when 𝜀∞ = 0.1%. The director (red curve) deviates much from the direction of the 

principal strain (black curve), principal stress (blue crosses) and the tangent direction of the 

crack surface (blue dots). At −45° < 𝜙 < 45°, the directions of the principal stress and principal 

strain are coincident as the director undergoes limited rotation, while at 𝜙 < −45° and 𝜙 < 45°, 

the directions of the principal stress and principal strain deviate more from each other as the 

director far from the crack tip undergoes more rotation, and the resultant higher spontaneous 
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strain leads to the difference. Plotting these directions at different applied strains (Supplementary 

Fig. S3a) allows us to unravel that the non-monotonic director change is contributed by the two 

stages of director reorientation. At small 𝜀∞ (< ~2%), the director has not aligned with the 

direction of the principal stress or tangent direction of the crack surface yet, and exhibits rapid 

and significant rotation towards the principal stress, so |𝛿𝜃| increases with 𝜀∞; see the dashed 

curves in Supplementary Fig. S3a at 𝜀∞ = 0.1% (red curves) to 2% (blue curves). This 

substantial director rotation changes the stress and strain concentration around the notch. As 𝜀∞ 

further increases (> ~2%) after the director aligns with the principal stress direction, the crack is 

greatly opened and blunted, and the director rotates back towards 90°, following the 

deformation, so |𝛿𝜃| decreases with 𝜀∞; see the dashed curves in Supplementary Fig. S3a at 

𝜀∞ = 2% (blue curves) to 10% (black curves).  
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Figure 3.8 FEM results of the director distributions around the crack tip for a LCE with 𝜃0 = 90°. (a) 

Distributions of the director at remote strain 𝜀∞ = 10%. (b) The change of director around the crack tip 

at remote strain 𝜀∞ = 10% and 2%. Relative directions of the director, maximum principal stress, 

maximum principal Lagrangian strain and the tangent direction of the crack opening surface with respect 

to the initial director 𝜃0 = 90° at (c) 𝜀∞ = 10%, and (d) 𝜀∞ = 0.1% on the crack surface. 

 

Figure 3.9 FEM results of the director distributions around the crack tip for a LCE with 𝜃0 = 30°, 45° 

and 60°. Director fields around the crack tip in LCEs with the initial director (a) 𝜃0 = 30°, (d) 𝜃0 = 45°, 

and (g) 𝜃0 = 60° at 𝜀∞ = 10% in the reference configuration. Changes of director on the crack surface in 
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LCEs with the initial director (b) 𝜃0 = 30°, (e) 45°, and (h) 60° at 𝜀∞ = 2% and 10%. Relative 

directions of the director, maximum principal stress, maximum principal Lagrangian strain and the 

tangent direction of the crack opening surface with respect to the initial director 𝜃0 for LCEs with (c) 

𝜃0 = 30°, (f) 45°, and (i) 60° on the crack surface at 𝜀∞ = 10%. Note that in Figure 3.9(c,f,i) the 

clockwise director rotation at one side of the domain wall is added by 180° due to the symmetry of the 

director.   

For the LCEs with 𝜃0 = 30°, 45° and 60°, we observe a domain wall at a specific angle 

𝜙 = 𝜙𝑑 > 0°, where the adjacent director rotates to opposite directions — clockwise at 𝜙 > 𝜙𝑑 

and counter-clockwise at 𝜙 < 𝜙𝑑 , as depicted in Figure 3.9. As a result, near the domain wall, a 

sharp jump of the director is observed (Figure 3.9 (b,e,h) and Supplementary Fig. S2(b-d)). The 

angle 𝜙𝑑 monotonically increases with 𝜃0; when 𝜃0 = 30°, 45° and 60°, 𝜙𝑑 equals around 42°, 

53°, and 81.5°, respectively, at 𝜀∞ = 10% (Figure 3.9 (a,d,g)). Note that in Figure 3.9(c,f,i), the 

clockwise director rotation at one side of the domain wall at 𝜀∞ = 10% is added by 180° due to 

the symmetry of the director. The formation of the domain wall is caused by the nearly 

perpendicular director to the principal stress direction at 𝜙𝑑, and consequently the directors on 

the two sides of the domain wall undergo large rotations toward each other to nearly align with 

the crack surface. Similar formation of domain walls was reported for monodomain LCEs under 

uniaxial perpendicular stretching, where strip domains, i.e. adjacent domains with directors 

rotating in opposite directions, are shown to reduce the overall elastic energy [84]. The director 

around the crack tip also undergoes two stages of reorientation as in the case of 𝜃0 = 90° (Figure 

3.9 (b,e,h), Figure 3.9(c,f,i) and Supplementary Fig. S3(b-d)): at the beginning, the director did 

not align with the principal stress direction or the tangent direction of the crack surface, and the 
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director exhibits considerable rotation until it aligns with the principal stress at 𝜀∞ = ~2%; see 

the dashed curves in Supplementary Fig. S3(b-d) from 𝜀∞ = 0.1% (red curves) to 2% (blue 

curves). As the remote strain increases to 𝜀∞ > ~2%, the crack tip surface is significantly 

blunted and opened to nearly 90°, and thereby, the director rotates more slowly following the 

deformation and approaches 90°; see the dashed curves in Supplementary Fig. S3(b-d) from 

𝜀∞ = 2% (blue curves) to 10% (black curves). Therefore, for LCEs with tilted initial directors, 

non-monotonic director rotation only occurs at approximately 0 < 𝜙 < 𝜙𝑑 . For example, at 𝜙 =

39.5° for the LCE with 𝜃0 = 30°, the director angle increases to around 𝜃 = 127° at 𝜀∞ = 2% , 

but decreases to around 104° at 𝜀∞ = 10% (Figure 3.3c).  

3.3.3 Elucidating the Effect of Stress-director Coupling  

Understanding the inhomogeneous director field at the crack tip can shed further light to 

the stress and strain distributions. The director rotation for the LCE with 𝜃0 = 90° induces 

compressive spontaneous strain normal to the crack surface, consequently facilitating the crack 

opening. The director rotation also causes stress softening, resulting in a lower stress/strain 

gradient towards 𝜙 = ±90°, and thereby, the elliptical-shaped stress/strain contour lines; see 

Figure 3.6a and b. To explicitly compute the spontaneous strain, we define the spontaneous 

Lagrangian strain 𝑬𝒔 as the difference between the Lagrangian strain and elastic Lagrangian 

strain, 𝑬𝑠 = 𝑬 − 𝑬𝑒𝑙𝑎𝑠, where 𝑬𝑒𝑙𝑎𝑠 = (𝑹𝑻𝑩𝑒𝑙𝑎𝑠𝑹 − 𝑰)/2 and 𝑩𝑒𝑙𝑎𝑠: = 𝒍−1𝑭𝒍𝒓𝑭
𝑻 + 𝛼𝒅 ⊗

(𝑰 − 𝒅𝟎 ⊗ 𝒅𝟎)𝑭
𝑻𝒅 ∙ 𝑭𝑻, and 𝑹 is the rigid rotation matrix in the polar decomposition of the 

deformation gradient 𝑭 = 𝑹𝑼 [51]. The principal spontaneous Lagrangian strain 𝐸𝑠𝑝 for the LCE 

with 𝜃0 = 90° distributes symmetrically about 𝜙 = 0° (Supplementary Fig. S4a), consistent with 

the director changes - the more director rotation indicates more spontaneous strain. 
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Similarly, for LCEs with tilted directors, the significant director rotation induces large 

spontaneous strain, and causes sharp changes in stress and strain at 𝜙𝑑 (Figure 3.7). In particular, 

when 𝜀∞ is small, the directors rotate in the opposite direction on the two sides of the domain 

wall, so the shear strain is opposite, consequently resulting in sharp shape changes on the crack 

surface; see the significant difference of the adjacent directors (represented by blue and red solid 

cylinders) in Figure 3.10a. On the other hand, when 𝜀∞ is large (> ~ 2%), the director difference 

on the two sides of the domain wall gets close to 180°, and the director distribution becomes 

almost continuous across the domain wall again because the directors 𝒅 = −𝒅 are symmetric 

(Figure 3.10b). Therefore, we added 180° to the clockwise director rotation when the director 

angle difference is more than 150° in Figure 3.9(c,f,i). As a result, when the remote strain is 

high, the crack opening surface becomes smooth again. Similar to the case of 𝜃0 = 90°, the 

spontaneous strain also causes stress softening, resulting in similar elliptical-shaped stress/strain 

contour lines, but with the axis of the smoother gradient aligning around the direction of 𝜙 = 𝜙𝑑  

(Figure 3.6). Due to the much higher director rotation and softening effect, the stress/strain 

concentration for a tilted 𝜃0 is much lower than that of 𝜃0 = 90°. 
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Figure 3.10 FEM results of the director distribution around the crack tip showing the formation of a 

domain wall. (a) Distribution of the director near the domain wall for the LCE with 𝜃0 = 30° at (a) 𝜀∞ =

1% and (b) 𝜀∞ = 10%, along with schematics showing the directors adjacent to the domain wall before 

(dashed hollow cylinders) and after (solid cylinders) deformation. An obvious crack surface discontinuity 

is observed at 𝜀∞ = 1%, accompanied by a large difference in the director alignment across the domain 

wall, ∆𝜃, while the discontinuity is reduced with the difference almost vanishing at 𝜀∞ = 10%. 

Such strong stress-director coupling in LCEs results in their director rotation distinct 

from the realignment of fibers in fiber-reinforced elastomer [98]. We denote the portion of 

director rotation simply following the deformation gradient, similar to fiber realignment, as 
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(cos(𝜃𝐹𝑑0
) , sin(𝜃𝐹𝑑0

) , 0) = 𝑭𝒅𝟎 |𝑭𝒅𝟎|⁄ , and plot the angle difference |𝜃 − 𝜃𝐹𝑑0
| in Figure 

3.11. Although the difference is relatively small in remote regions due to limited deformation, 

and at the crack tip, where exceptionally large deformation prevails, the difference becomes 

considerably pronounced around and behind the crack tip, see Figure 3.11(a,d,g,j) and Figure 

3.11(b,e,h,k). This difference becomes increasingly obvious as the applied strain grows from 2% 

to 10%. In contrast to the condition in the remote and crack tip areas, the large angle difference 

in these regions is attributed to the moderate deformation the material experiences. 

Consequently, the directors in these regions still need to undergo further rotation in order to align 

with the principal stress direction. The difference between the director rotation and fiber 

reorientation indicates the distinctively strong stress-director coupling in LCEs. 
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Figure 3.11 FEM simulation results of the angle difference |𝜃 − 𝜃𝐹𝑑0
|. 𝜃𝐹𝑑0

 is defined as 

(cos(𝜃𝐹𝑑0
) , sin(𝜃𝐹𝑑0

) , 0) = 𝑭𝒅𝟎 |𝑭𝒅𝟎|⁄ , denoting the portion of the director rotation following the 
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deformation gradient. The angle difference |𝜃 − 𝜃𝐹𝑑0
| for LCEs with (a-f) 𝜃0 = 90° and (g-l) 𝜃0 = 30° at 

(a-c, g-i) 𝜀∞ = 2%  and (d-f, j-k) 𝜀∞ = 10%, respectively, shown in different regions. 

3.4 Experimental Measurement of Director and Displacement 

3.4.1 Director Measurement via the Crossed-polarized Optical Measurement 

To validate our simulations, we fabricated LCEs and characterized the director rotation 

driven by slow stretching sufficiently close to equilibrium. The crossed-polarized optical 

measurement was employed to measure the transmitted light intensity, which was used to 

calculate the director; see Section 3.2.2.3. More details about the experimental method were 

elaborated in our previous study [62]. Figure 3.12 shows the measured director contour from the 

experiment in comparison with the corresponding FEM simulation results at 𝜀∞ = 10%. In 

general, the director near the crack tip exhibits a significantly larger rotation compared to the 

remote regions. 

The experimental observations confirm the occurrence of opposite director rotation near 

the crack tip. In the case of a LCE with 𝜃0 = 90° (Figure 3.12a and b), near the crack tip, the 

director rotates clockwise at 𝜙 < 0° and counter-clockwise at 𝜙 > 0°; far behind the crack tip, 

the director rotates counter-clockwise at 𝜙 < 0° and clockwise at 𝜙 > 0°; in remote regions, the 

director remains close to 90° due to the parallel loading. For the cases of LCEs with 𝜃0 = 30°, 

45° and 60° (Figure 3.12(c-h)), a sharp transition in director is observed near the crack tip at a 

critical 𝜙 angle, verifying the existence of a domain wall. When 𝜙 is larger than the critical 

angle, the director rotates clockwise, while when 𝜙 is smaller than the critical angle, the director 

rotates counter-clockwise, contrary to the behavior exhibited by LCEs with 𝜃0 = 90°. 

Comparison between the optical measurement and simulations reveals a high level of agreement 
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of the director near the crack tip. The simulations show higher maximum values, which is 

attributed to the different resolutions of the experimental and simulation tools, i.e. the optical 

measurement has a resolution of ~0.047 mm/pixel, whereas the element size at the crack tip in 

the simulations is around 0.0025 mm. Therefore, our simulations provide results in closer 

proximity to the tip, naturally yielding higher maximum values. 

We also find non-monotonic director distributions along the distance from the crack tip, 

𝜌 𝑎⁄ , at 𝜙 = 0° (Figure 3.13). The LCE with 𝜃0 = 90° shows little director rotation ahead of the 

crack tip due to the parallel loading. Conversely, in the LCE with 𝜃0 = 60°, the director rotation 

decreases monotonically with the distance 𝜌 𝑎⁄ . However, in the LCEs with 𝜃0 = 30° and 45°, 

the director rotation non-monotonically decreases and then increases with 𝜌 𝑎⁄ . This peculiar 

observation can be attributed to the inhomogeneous principal stress distribution at the crack tip 

and the remote region, which is significantly influenced by the initial director. Close to the crack 

tip, the director aligns tangentially to the crack opening surface resulting in a substantial director 

reorientation. Consequently, the observed decrease in the director rotation with increasing 𝜌 𝑎⁄  is 

ascribed to the reduction of stress concentration, and as a result, the director deviates from the 

tangent direction of the crack surface. As one moves farther away from the crack tip, the director 

rotation increases again primarily because the director undergoes considerable reorientation to 

align itself with the remote stretching direction ~90°. 
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Figure 3.12 Comparing the director fields obtained from the crossed-polarized optical measurements and 

FEM at 𝜀∞ = 10%. Director distributions (a, c, e, g) measured by the crossed-polarized optical 
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measurement and (b, d, f, h) calculated by FEM for LCEs with (a, b) 𝜃0 = 90° (c, d) 30°, (e, f) 45°, and 

(g, h) 60°, respectively. 

 

Figure 3.13 Director distributions ahead of the crack tip for LCEs with 𝜃0 = 90°, 60°, 45°, 30° obtained 

by (a) optical measurement and (b) FEM under 𝜀∞ = 10%. 

3.4.2 Displacement Measurement via Digital Image Correlation (DIC) 

The displacement distribution in the edge-cracked LCE samples subjected to external 

loading was measured using DIC. Figure 3.14a and b illustrate the normalized displacement 

𝑢2/𝐿 along 𝑋2 with respect to the bottom boundary of the specimen near the crack tip for the 

LCE with 𝜃0 = 90° at 𝜀∞ = 10%. Both experimental and FEM simulation results show a 

symmetrical deformation about 𝜙 = 0°, which is consistent with the symmetrical rotation of the 

director, and in line with the symmetrical deformation of neo-Hookean materials [91]. Not 

surprisingly, near the crack tip, the maximum deformation, 𝑢2/𝐿 ≈ 0.1, occurs behind the crack 

tip in the LCE with 𝜃0 = 90° due to rigid-body motion on the free surface, while at the crack tip, 

the displacement is 𝑢2/𝐿 = 0.05. However, when the initial director is tilted away from the 

remote strain, 𝑢2/𝐿 is no longer symmetrical (Figure 3.14(c-h)). This asymmetric deformation 

pattern has been indicated in the preceding section to be caused by the asymmetric director 
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rotation, and consequently the asymmetric spontaneous strain, including the shear components. 

As 𝜃0 decreases, the displacement 𝑢2 near the crack becomes smaller due to the bulk director 

rotation, but meanwhile the location of the maximum displacement shifts to the top-right corner 

due to severe shear deformation under the confinement of a clamped boundary condition. Figure 

3.15 exhibits the displacement 𝑢1/𝑎 and 𝑢2/𝑎 ahead of the crack tip from DIC and FEM. Upon 

comparing the DIC and FEM results (Figure 3.14 and Figure 3.15), it is evident that the 

displacement contours from the simulations closely resemble the experimental findings, thereby 

validating the theoretical modeling approach. 

The crack tip opening displacement is dramatically influenced by the rotation of the 

director (Figure 3.16). To compare the crack-tip opening displacement, we calculate the 

difference in movement between the top and the bottom crack surfaces, 𝛿𝑢2 = 𝑢2
𝑡𝑜𝑝 − 𝑢2

𝑏𝑜𝑡 for 

LCEs with different 𝜃0. For the LCE with 𝜃0 = 90°, the director rotation mainly occurs near the 

crack (𝜙 ≠ 0°, 𝜌 → 0). The spontaneous strain induced by director rotation leads to additional 

compressive strain normal to the crack surface, so the crack tends to open more than that of a 

neo-Hookean material. Conversely, for the LCEs with 𝜃0 = 60°, 45° and 30°, the crack opening 

is notably smaller than that exhibited by a neo-Hookean material. There are two reasons for the 

reduced crack opening in LCEs with tilted initial directors. First, the overall director rotation 

leads to bulk softening. Second, the local director rotation at the crack tip, inducing opposite 

shear strain around the domain wall, leads to sharp changes on the crack surface and 

asymmetrical crack opening pattern; see Figure 3.12, where a sharp turning occurs, constraining 

the extent of the opening. Meanwhile, the director rotation direction is reversed in comparison to 

the case of 𝜃0 = 90°, and consequently, the associated spontaneous strain constrains the opening. 
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This phenomenon can be proved by examining the deformed FEM elements near the crack tip 

(Figure 3.17). It becomes evident that the elements in the case of 𝜃0 = 90° distort greater than 

that of a neo-Hookean material, indicating that the associated spontaneous strain facilitates the 

deformation, while in the case of 𝜃0 = 30°, the elements display reduced distortion at the same 

small applied strain (𝜀∞ = 2%), suggesting that the different directions of director rotation from 

those of 𝜃0 = 90° impose spontaneous strain that limits deformation. As the director near the 

crack tip rotates mainly following the deformation at 𝜀∞ > 2%, the bulk softening starts to 

dominate the crack opening, resulting in a smaller crack opening for a smaller initial director 𝜃0. 

The corresponding deformation of the FEM elements at 𝜀∞ = 4% (Supplementary Fig. S5) also 

reveals that in the case of 𝜃0 = 30°, the elements exhibit significantly less deformation than that 

of the neo-Hookean material and LCE with 𝜃0 = 90° due to the combined contribution of bulk 

softening and local director rotation. 
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Figure 3.14 Comparing the displacement fields from DIC and FEM. The distribution of the normalized 

displacement 𝑢2/𝐿 around the crack of the LCEs with (a, b) 𝜃0 = 90°, (c, d) 30°, (e, f) 45° and (g, h) 60° 

at 𝜀∞ = 10% from (a, c, e, g) DIC and (b, d, f, h) FEM.  
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Figure 3.15 Displacement distributions ahead of the crack tip at 𝜀∞ = 10%. Normalized displacement (a, 

b) 𝑢1/𝑎 and (c, d) 𝑢2/𝑎 ahead of the crack tip for LCEs with 𝜃0 = 90°, 60°, 45°, 30° obtained from (a, c) 

DIC and (b, d) FEM. The simulation and experiment results show a consistent trend for LCEs with 

different initial directors. 
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Figure 3.16 Crack opening displacement. Normalized crack tip opening displacement 𝛿𝑢2/𝐿 from the 

DIC (dashed lines) and FEM (solid lines) for the LCEs with different 𝜃0 at (a) 𝜀∞ = 10% and (b) 4%. (c) 

Normalized crack tip opening displacement 𝛿𝑢2/𝐿 measured from DIC for the LCEs with 𝜃0 = 30° and 

45° at 𝜀∞ = 20%. 

 

Figure 3.17 Comparing the deformation of the FEM elements around the crack tip for LCEs and neo-

Hookean materials at 𝜀∞ = 2%. (a) Undeformed elements. Crack opening and element deformation at 

𝜀∞ = 2% for (b) a neo-Hookean material and a LCE with (c) 𝜃0 = 90° and (d) 𝜃0 = 30°. 

It is evident that the crack opening displacement measured for the LCE with 𝜃0 = 30° is 

smaller than that of 𝜃0 = 45° at a high remote strain 𝜀∞ = 20% (Figure 3.16c and 



 

80 

 

Supplementary Fig. S6), but interestingly, it is larger than that of 𝜃0 = 45° at a relatively low 

remote strain 𝜀∞ = 10% and 4% (Figure 3.16b). The simulation results present the same trend 

as the experiment, although in the simulations the crack opening displacement for the LCE with 

𝜃0 = 45° surpasses that of 𝜃0 = 30° at a smaller strain between 4% and 10%. Drawing upon the 

findings by Peng et al. [53] that LCEs with 𝜃0 = 45° exhibits the minimized stress concentration 

factor, we postulate that at a small strain the magnitude of the crack opening is predominantly 

influenced by the director near the crack tip, and consequently, the director rotation in the LCE 

with 𝜃0 = 45° reduces its crack opening more compared to LCEs with other initial directors. As 

the remote strain increases, the bulk softening plays a more dominant role in affecting the crack 

opening, and therefore, the LCE with 𝜃0 = 30°, which has a stronger bulk softening due to 

director rotation, has a smaller crack opening than that of 𝜃0 = 45°. The competition of the two 

factors leads to the positive-to-negative transition of the difference in the crack opening between 

the LCEs with 𝜃0 = 30° and 𝜃0 = 45° as the remote strain increases. 

3.5 Evaluation of Fracture Behavior 

To evaluate the fracture behavior, we analyze the stress ahead of the crack tip and the 

energy release rate for LCEs with different initial directors. We plot the Cauchy stress 𝜎22 as a 

function of the distance from the crack tip, 𝜌 𝑎⁄ , at 𝜀∞ = 10% in Figure 3.18a, and compare with 

that of a neo-Hookean material and a linearly elastic material [99]. In general, LCEs present a 

similar stress distribution to that of a neo-Hookean material. The LCE with 𝜃0 = 90° displays 

slightly lower stress values compared to the neo-Hookean case. We postulate that this 

discrepancy arises from the stress redistribution caused by the reorientation of the director in the 

LCE. Specifically, the director along 𝜙 = 0° undergoes limited rotation, while more director 
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rotation occurs at 𝜙 > 0° and 𝜙 < 0°. Consequently, the material along 𝜙 = 0° behaves stiffer 

than the surrounding regions, leading to stress redistribution, and resulting in lower stress values 

compared to those of a neo-Hookean material. For LCEs with tilted initial directors, significant 

director rotation occurs, inducing large spontaneous strain, resulting in considerably lower stress 

values. It is important to note that when the initial director is tilted relative to the applied strain, 

the maximum stress may not be located at 𝜙 = 0° as described in the previous sections. 

Therefore, the crack propagation may not follow the direction of 𝜙 = 0°. To gain a deeper 

understanding of the fracture behavior, further investigations are required to observe and analyze 

the crack propagation, which will be discussed in the next Chapter. 

 

Figure 3.18 Stress distribution ahead of crack tips and J-integral. (a) Normalized Cauchy stress 

distribution ahead of the crack tips for the LCEs of 𝜃0 = 30°, 45°, 60° and 90°, a neo-Hookean material, 

and a linearly elastic material at 𝜀∞ = 10%. (b) Schematics of a contour to evaluate the J integral and 

potential crack trajectory in the reference configuration. (c) Region 𝐴1 enclosed by the contour 𝐶 =
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−𝐶1 + 𝐶2 + 𝐶3 + 𝐶4 and (d) five different integral paths around the crack tip are highlighted in the FEM 

model to calculate the J-integral. (e) Normalized J-integral based on six paths of different 𝜌/𝑎, verifying 

its path-independency for LCEs. (f) Normalized 𝐽𝑖𝑛𝑡 as a function of the remote strain 𝜀∞ for the LCEs 

with 𝜃0 = 30°, 45°, 60° and 90°, and a neo-Hookean material. (f) shares the same legend as (a). 

Under the plane strain condition, we further calculate the energy release rate in a two-

dimensional LCE. Consider a 2D deformed LCE body, as shown in Figure 3.18b. We eliminate 

the dissipation energy while calculating the energy release rate due to extremely small values of 

viscosity. In the absence of the body force, the energy release rate 𝐺 is defined as the change in 

the total potential energy per area of the crack growth:  

𝐺 = −
𝑑𝑈

𝑑𝑎
= −∫𝐴

𝑑𝑓𝑟

𝑑𝑎
𝑑𝐴 + ∫Γ𝑇𝑖

𝑑𝑢𝑖

𝑑𝑎
𝑑𝑆, ( 3.10 ) 

where 𝑈 is the total potential energy defined as 𝑈 = ∫
𝐴
𝑓𝑟𝑑𝐴 − ∫

Γ
𝑻 ∙ 𝒖𝑑𝑆, with 𝑓𝑟(𝑭, 𝒅, 𝛻𝒅) the 

elastic energy density of a LCE, 𝑻 the prescribed surface traction on the boundary Γ in the 

reference configuration, and 𝐴 the total area of the body in the reference configuration. Introduce 

a coordinate system 𝑥𝑖 = 𝑋𝑖 − 𝑎𝛿𝑖1 (i =1, 2), where the origin of 𝒙 locates at the crack tip in the 

current configuration Figure 3.18b. Although for a LCE with a tilted director, the crack trajectory 

may not conform to the horizontal direction, we assume it is smooth, so at the onset of 

propagation, the crack direction still aligns with the 𝑥1 − axis [50]. Based on the chain rule, we 

get 

𝑑

𝑑𝑎
=

𝜕

𝜕𝑎
+

𝜕𝑥1

𝜕𝑎

𝜕

𝜕𝑥1
=

𝜕

𝜕𝑎
−

𝜕

𝜕𝑥1
=

𝜕

𝜕𝑎
−

𝜕

𝜕𝑋1
. ( 3.11 ) 

Substituting Eqn. ( 3.11 ) into Eqn. ( 3.10 ) we can calculate 𝐺 as 

𝐺 = −∫𝐴(
𝜕𝑓𝑟
𝜕𝑭

𝜕𝑭

𝜕𝑎
+

𝜕𝑓𝑟
𝜕𝒅

𝜕𝒅

𝜕𝑎
+

𝜕𝑓𝑟
𝜕𝛻𝒅

𝜕𝛻𝒅

𝜕𝑎
−

𝜕𝑓𝑟
𝜕𝑋1

)𝑑𝐴 + ∫Γ𝑇𝑖 (
𝜕𝑢𝑖

𝜕𝑎
−

𝜕𝑢𝑖

𝜕𝑋1
)𝑑𝑆. ( 3.12 ) 
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Then applying the divergence theorem, we can rewrite Eqn. ( 3.12 ) to 

𝐺 = −∫𝐴(
𝜕𝑓𝑟
𝜕𝑭

𝜕𝑭

𝜕𝑎
+

𝜕𝑓𝑟
𝜕𝒅

𝜕𝒅

𝜕𝑎
− 𝑑𝑖𝑣𝑋 (

𝜕𝑓𝑟
𝜕𝛻𝒅

𝑭−𝑻)
𝜕𝒅

𝜕𝑎
−

𝜕𝑓𝑟
𝜕𝑋1

)𝑑𝐴 − ∫Γ (
𝜕𝑓𝑟
𝜕𝛻𝒅

𝑭−𝑻)𝑵
𝜕𝒅

𝜕𝑎
𝑑𝑆

+ ∫Γ𝑇𝑖 (
𝜕𝑢𝑖

𝜕𝑎
−

𝜕𝑢𝑖

𝜕𝑋1
)𝑑𝑆. 

( 3.13 ) 

As 𝛻𝒅 only exists in the Frank energy, which is considerably small compared to the total 

elastic energy [24,51]. To simplify the calculation, we eliminate the term associated with 𝛻𝒅 

when evaluating the energy release rate. Using the governing equations ( 3.6 ) and ( 3.7 ), we can 

rewrite Eqn. ( 3.13 ) as the following Eqn. ( 3.14 ), which recovers the classical form of the J-

integral, although now 𝒅 is a new independent variable in the free energy density of LCEs 

𝐺 = 𝐽𝑖𝑛𝑡 = ∫Γ(𝑓𝑟𝑁1 − 𝑆𝑖𝐽𝑁𝐽
𝜕𝑢𝑖

𝜕𝑋1
)𝑑𝑆, ( 3.14 ) 

where 𝑵 is the outward normal to the path Γ in the reference configuration and 𝑺 = 𝜕𝑓𝑟/𝜕𝐅 is 

the first Piola–Kirchhoff stress. Eqn. ( 3.14 ) not only holds true for the boundary of the body in 

the path integration, but also remains valid for any arbitrary path from the bottom crack surface 

to the top crack surface [96,100], so Γ can be denoted as an arbitrary path.  

In FEM, it is more convenient to conduct an area integration than a line integration, so we 

convert Eqn. ( 3.14 ) to an area integration [101]. Now consider a closed curve denoted by 𝐶 =

−𝐶1 + 𝐶2 + 𝐶3 + 𝐶4 that bounds an area 𝐴1 with a outward normal vector 𝒎 (Figure 3.18c). 

Based on the divergent theorem, the line integration of the J-integral, Eqn. ( 3.14 ), over the 

contour 𝐶 can be rewritten as    

𝐽𝑖𝑛𝑡 = ∫𝐴1
(−𝑓𝑟

𝜕𝑞

𝜕𝑋1
+ 𝑆𝑖𝐽

𝜕𝑢𝑖

𝜕𝑋1

𝜕𝑞

𝜕𝑋𝐽
)𝑑𝐴, ( 3.15 ) 

where 𝑞 is a sufficiently smooth function varying from unity on 𝐶1 to zero on 𝐶2; 𝒎 is the 

outward unit vector normal to 𝐶. Therefore, 𝒎 = −𝑵 on 𝐶1 and 𝒎 = 𝑵 on 𝐶2. The integrals 
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along 𝐶3 and 𝐶4 are zero as no surface traction on the crack surface and 𝑚1 = 0. Therefore, Eqn. 

( 3.15 ) and Eqn. ( 3.14 ) are equivalent. Applying the divergence theorem, we get an area 

integral 𝐽𝑖𝑛𝑡 

𝐽𝑖𝑛𝑡 = ∫𝐴1
(−𝑓𝑟

𝜕𝑞

𝜕𝑋1
+ 𝑆𝑖𝐽

𝜕𝑢𝑖

𝜕𝑋1

𝜕𝑞

𝜕𝑋𝐽
)𝑑𝐴. ( 3.16 ) 

The path-independency of the J-integral is presented in Figure 3.18e, where the domain 

integral is computed at 𝜀∞ = 10% for various contours 𝐶1 of different distances 𝜌/𝑎 (Figure 

3.18d). We calculate the J-integral for LCEs with different initial directors (Figure 3.18f). 

Generally, a smaller 𝜃0 leads to a lower 𝐽𝑖𝑛𝑡. However, the LCE with 𝜃0 = 30° shows higher 𝐽𝑖𝑛𝑡 

than that of 𝜃0 = 45° at a small remote strain 𝜀∞ < ~7%; conversely, it shows a lower 𝐽𝑖𝑛𝑡 at a 

large remote strain 𝜀∞ > ~7%, similar to the trend of the crack opening displacement. We 

propose that a combined effect of bulk softening in the remote region and the director rotation 

near the crack tip influences both the J-integral value and crack displacement opening. 

Specifically, at a small remote strain, the energy release rate is dominated by the substantial 

director rotation occurring around the crack tip; conversely, at a high remote strain, the energy 

release rate is dominated by the overall director rotation. Compared to the behavior of neo-

Hookean materials, LCEs under parallel loading present slightly higher 𝐽𝑖𝑛𝑡, while LCEs with 

tilted stretching consistently show significantly smaller 𝐽𝑖𝑛𝑡. The deviation of 𝐽𝑖𝑛𝑡 of LCEs from 

that of neo-Hookean materials is primarily attributed to the inhomogeneous stress redistribution 

caused by the director rotation to the direction of the local principle stress around the crack tip 

and in the remote region. As previously demonstrated in Chapter 2, LCEs exhibit softer behavior 

as the initial director deviates more from the loading direction. As a result, the stress distribution 

becomes intricate, as LCEs exhibit different levels of softening around the crack tip due to 
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varying director reorientation. This phenomenon gives rise to highly inhomogeneous stress, 

strain and director in the vicinity of a crack tip, leading to higher (𝜃0 = 90°) or lower (𝜃0 =

30°, 45° and 𝜃0 = 60°) 𝐽𝑖𝑛𝑡 than that of neo-Hookean materials. 

3.6 Conclusion  

In this work, we combine simulations and experiments to provide a comprehensive 

investigation of the unique crack-tip fields of LCEs with various initial directors induced by their 

stress-director coupling behavior. We limit ourselves to obvious crack blunting but without crack 

propagation in this study. From FEM simulations, we predict inhomogeneous and significant 

director reorientation of LCEs, which leads to unique stress and strain distributions in contrast to 

those in traditional neo-Hookean materials; in experiments, we successfully measure the 

displacement field by the DIC and the inhomogeneous director reorientation by the optical 

polariscopic method, validating the findings in the FEM simulations. Based on the consistent 

results from the FEM and experiments, we reveal the unexpected occurrence of opposite director 

rotation near the crack tip of LCEs, and dramatically different energy release rates and crack 

opening displacements of LCEs from traditional elastomers. 

Since the unique mechanical responses of a LCE are mainly governed by its director 

rotation, we demonstrate that the initial director can significantly influence its crack-tip fields 

and fracture behavior. For an edge-cracked LCE subjected to stretching parallel to its director, 

the director near the crack tip rotates clockwise at the polar angle 𝜙 < 0° and counter-clockwise 

at 𝜙 > 0°, inducing a spontaneous strain field symmetric about the crack, and resulting in 

smooth and elliptical-shaped stress/strain contour lines. In contrast, for an edge-cracked LCE 

with a tilted initial director with respect to the loading, the director undergoes rotation throughout 



 

86 

 

the bulk sample, while exhibiting more substantial rotation near the crack tip. A domain wall is 

observed along a critical polar angle; the director rotates clockwise in the region with a larger 

polar angle and counter-clockwise in the region with a smaller polar angle. The director rotates 

significantly in the vicinity of the domain wall, resulting in elliptical stress/strain contour lines 

with the smoothest gradient direction close to the critical polar angle, and consequently, the 

stress/strain is no longer symmetrical about the crack. As the tilted angle 𝜃0 increases, the critical 

polar angle of the domain wall increases, and the crack opening decreases. Compared to a neo-

Hookean material, a LCE with a director parallel to stretching, 𝜃0 = 90°, exhibits a higher 

energy release rate and larger crack opening, while a LCE with a tilted director presents a much 

lower energy release rate and smaller crack opening primarily caused by bulk softening induced 

by overall director rotation. Interestingly, director rotation around the crack tip can be non-

monotonic, because at a small strain the director undergoes rapid rotation and tends to align to 

the local principal stress direction; after the director aligns with the principal stress direction, the 

director rotates gradually following the macroscopic deformation as the strain further increases.  

This work provides a valuable understanding on the director, stress and strain 

distributions in the vicinity of a crack tip of LCEs, which offers insights into designing LCEs 

with enhanced fracture properties for long-time applications. The findings and methodology 

presented in this work lay a solid foundation for further investigation of fracture behavior in 

LCEs, taking into account their viscoelasticity and crack propagation. Although in this work we 

load LCEs slowly enough to reach quasi-equilibrium states, LCEs are highly viscoelastic 

[24,39,47], involving multiple relaxation time scales of network relaxation and director rotation. 

It will be intriguing to investigate the rate-dependent crack-tip fields and fracture behavior for 
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LCEs with different initial directors. Furthermore, based on the stress/strain contour lines 

obtained from this work, it is conceivable to predict that the crack propagation paths in LCEs 

with different 𝜃0 can be quite different. Specifically, it is expected that a tilted crack path occurs 

when the initial director is tilted from the loading direction, which will be discussed in the next 

chapter.  

  



 

88 

 

Chapter 4 Crack Propagation in Post-cut Experiments 

Crack growth is a pivotal topic in failure analysis. Most studies on the dynamics of crack 

propagation in LCEs have focused on polydomain or monodomain under parallel or 

perpendicular loading, where the crack propagates perpendicular to the precut. However, the 

feasibility to apply traditional pure shear tests to LCEs with initial directors inclined to the 

loading direction is questionable, given the observation of tilted crack propagation paths. There 

is limited information on how the stress-director coupling effect influences crack propagation. To 

address these challenges, we use a post-cut method in this chapter to report intriguing stress-

director crack propagation behavior of LCEs with varying initial directors under different pre-

stretching levels. The results show the director-dependent propagation direction, with cracks 

typically propagating perpendicular to the director ahead of the crack tip, verifying the previous 

assumptions by Yu et al.[55]. Notably, in a LCE with the initial director 𝜃0 = 30° and a 30% pre-

stretch, the crack initially propagates in an opposite direction, preferentially initiating at the site 

of the strip domains. It then reorientates perpendicular to the director. We attribute this 

unexpected phenomenon to the lower fracture energy of the strip domains compared to 

monodomain regions. Additionally, the initial crack growth is delayed, which becomes more 

significant when the director is tilted and the pre-stretching level is low, followed by steady-state 

growth. As pre-stretching increases, crack rates increase at a steady stage. Furthermore, a phase-

field model is utilized to elucidate the underlying mechanism. This study provides valuable 

insights into the relationship between crack propagation and various initial directors. The 

sophisticated nature of fracture growth, particularly involving the tilted initial director and the 
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emergence of strip domains, challenges the characterization capabilities of traditional 

measurement techniques.  

4.1 Introduction 

 The unique rate-dependent fracture energy of LCEs under different loading directions has 

been reported [54,60,61,102]. Through pure-shear tests, a polydomain LCE exhibits higher 

fracture energy than a monodomain LCE. Furthermore, in monodomain LCEs, the fracture 

energy is lower under perpendicular loading compared to parallel loading. However, when the 

initial director is inclined relative to the loading direction, the crack path could become tilted 

[55,63].  Wei et al.[63] studied asymmetric stress/strain distributions ahead of the crack tip in 

LCEs with tilted directors. Later Yu et al. [55] reported tilted crack propagation in a LCE with an 

inclined angle between the initial director and the loading direction. These findings suggest that 

the traditional ‘pure shear’ method [90] could not be universally applicable to LCEs. Moreover, 

due to the complex stress-director coupling, conventional methods such as J-integral under 

mixed-mode tension or crack tip opening displacement fail to provide accurate assessment 

[50,103]. In response, our focus shifts to analyzing crack growth rates and trajectories, aiming to 

offer valuable guidance to further develop the fracture criteria of LCEs. 

The post-cut method, frequently employed in studies of viscoelastic soft materials [104–

107], is used to capture the crack propagation rates. This method offers several advantages: it 

reduces the impact of bulk dissipation and allows the samples to be stretched further compared to 

a pre-cut sample. In most soft materials, a sudden increase in velocity with increasing pre-

stretching is observed, along with a characteristic power-law relationship between the crack 

growth rates and energy release rate [105,108,109]. Despite the extensive research on the 
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fracture behavior of other soft materials, the crack growth mechanics in LCEs remain 

underexplored. In this study, we will explore if the crack propagation behavior of LCEs under 

post-cut distinguishes from these typical patterns. Particularly, we will experimentally validate 

the assumption by Yu et al.[55], which posits that crack propagation in LCEs perpendicular to the 

director. 

 The phase-field model is a widely adopted method for numerically predicting crack 

propagation, offering a smooth transition between intact and fractured material by introducing a 

damage variable, thereby avoiding discontinuities associated with sharp cracks [110–116]. This 

approach enables the prediction of rate-dependent crack growth by incorporating the intrinsic 

viscoelastic material constitutive model and rate-dependent fracture energy [117]. Furthermore, 

post-fracture behavior has been analyzed within the phase-field framework by tuning the damage 

variable [118]. Recently, Yu et al. [55] developed a phase-field model to describe a LCE with 

different initial directors and loading rates, accurately predicting crack paths by assuming that 

cracks propagate perpendicular to the director. In this study, we utilize a phase-field model 

following the work of Yu et al.[55], to investigate the post-cut fracture behavior of LCEs with 

different initial directors.    

 In this chapter, we examine the crack growth of LCEs with varying directors and pre-

stretching levels in post-cut experiments. The unique stress-director coupling in LCEs results in 

crack propagation patterns that differ significantly from those in conventional soft materials, 

exhibiting a heavy dependence on the director reorientation. Our results find that the crack 

typically propagates perpendicular to the director ahead of the crack tip. At low pre-stretching 

levels and with a substantial deviation between the initial director and the loading direction, an 
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obvious strip domain forms near the crack tip. In this special case, the crack initiates in the strip 

domain and then turns perpendicular to the director, a phenomenon likely due to the lower 

fracture energy in the strip domain compared to the monodomain. We document the crack rates 

at the steady stage, observing an increase in velocity with higher pre-stretching levels. An initial 

crack growth delay is observed and the phenomena become more obvious when the pre-

stretching level is low and the initial director deviates from the loading direction a lot. To further 

elucidate the fracture mechanism, we utilize a simplified phase-field model. This study provides 

critical insights into the relationship between crack propagation and the directors, aiming to 

advance the development of fracture criteria specific to LCEs.  

This chapter is organized as follows. In section 4.2, we introduce experimental 

methodology including material preparation, the post-cut method, and the measurement for crack 

propagation. We present the experimental results of crack propagations in section 4.3. In section 

4.4, we report a simplified phase-field model and the numerical simulation results. Section 4.5 

concludes the chapter. 

4.2 Experimental Methodology 

4.2.1 Sample Fabrication 

In this study, the main-chain monodomain LCEs were synthesized via a two-stage thiol-

acrylate Michael addition-photopolymerization (TAMAP) reaction [66]. The crosslinker, 

pentaerythritol tetrakis(3-mercaptopropionate) (PETMP, 95%) was obtained from Sigma-Aldrich 

and chain extender, 2,2-(ethylenedioxy) diethanethiol (EDDET, 95%) was purchased from TCI. 

The chemicals were used as received. The diacrylate mesogen, 1,4-Bis-[4-(3-

arcyloyoxypropyloxy) benzoyloxy]-2-methylbenzene (RM257, 95%), was purchased from 
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Daken Chemical Limited company. Dipropylamine (DPA, 98%) and (2-hydroxyethoxy)-2-

methylpropiophenone (HHMP, 98%) were selected as the catalyst and photoinitiator to enable 

the second-stage photopolymerization reaction, respectively. Additional butylated 

hydroxytoluene (BHT) was obtained from Sigma-Aldrich to slow down the first polymerization 

process. Toluene (98%) was used as the solvent for RM257.  

To prepare a sample, 8 g RM257 and 0.06 g BHT were fully dissolved in a vial with 3.2 g 

toluene at 80 ℃. Then, 0.4332 g PETMP, 1.8314 g EDDET, and 0.0514 g HHMP were poured 

into the solution and mixed using a vortex mixer for 90 s to obtain a uniform solution. After the 

solution cooled down to room temperature, 1.136 g DPA solution (DPA: toluene = 1:50) was 

added to the solution and mixed for another 60 s. The molar ratio of thiol functional groups 

between PETMP and EDDET was 15:85, corresponding to a ratio of 15 mol% PETMP. The 

molar ratio of DPA with respect to the thiol functional group was 1 mol%, while the molar ratio 

of HHMP was 1 mol%. The solution was degassed for about 2 minutes to remove all bubbles and 

then poured into a mold. Then the samples were cured at room temperature for 12 hours and put 

into an oven at 80 ℃ for 24 hours. At this stage, thiol-acrylate formed a loose network and the 

sample showed an opaque appearance at room temperature. There would be an excess of 15 

mol% acrylate groups for a second-stage photo-crosslinking reaction. In the second stage, the 

LCE sample was stretched uniaxially to 110% strain by a tension machine. The pre-stretch 

forced mesogens to reorientate to the tension direction, and the sample became transparent, 

indicating a monodomain LCE. The pre-stretched sample was exposed to UV light for 1 hour to 

photopolymerize the excessive acrylate groups, forming a denser network. After releasing the 

samples from the stretcher, a thin film of monodomain LCE sheet remains. 
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4.2.2 Post-cut Method 

LCEs specimens were cut in a dogbone shape with various initial directors 𝜃0 relative to 

𝑋1 − 𝑎𝑥𝑖𝑠 as shown in Figure 4.1a. We did not use a conventional ‘pure shear’ shape, 

characterized by a high aspect ratio of length over height, due to the inherent difficulties in 

accurately determining the fracture energy like traditional soft materials [90]. One difficulty 

comes from the tilted crack propagation direction due to director reorientation. Another reason is 

even in cases of monodomain LCEs under perpendicular loading, where crack propagation is 

horizontal, the samples experience significant contraction during tension, necessitating a 

considerably greater width than that needed for conventional soft materials to fulfill pure-shear 

testing conditions. Instead, we focus on the crack propagation velocities and trajectories. We 

prepared samples with a height of 20 mm and a width of 30 mm at the central region (Figure 

4.1a). The terminal ends of the samples are designed with an expanded profile, featuring a radius 

of 10 mm, to mitigate the risk of rupture at the clamping ends during testing. The stress 

concentration at the two ends is more pronounced compared to traditional soft materials due to 

the spontaneous strain arising from LCs’ reorientation. This effect is particularly significant for 

LCEs with initial directors close to 𝜃0 = 45° (Figure 4.1a): under tension in the X2 direction, the 

principal stress direction is perpendicular to the LCs alignment at the upper left and lower right 

corners, allowing significant rotation of LCs and inducing substantial spontaneous strain; 

conversely, at the lower left and upper right corners, where the principal stress direction is closer 

to the initial director, failure is more likely to happens due to the limited contribution from 

spontaneous strain. 
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Figure 4.1 (a) Schematic of the post-cut method. Pictures of crack propagation and schematic of crack 

length measurement of LCEs with the initial director (b) 𝜃0 = 90° and (c) 𝜃0 = 60° 

Figure 4.1a shows the post-cut process. At first, we marked a 5 mm horizontal cutting 

line along 𝑋1 − 𝑎𝑥𝑖𝑠 at the middle of the edge, ensuring the initial crack is identical for all cases 

in the undeformed configuration. Secondly, the sample was glued onto the ABS (Acrylonitrile 

butadiene styrene) plates via a superglue, and the plates were clamped onto the grip of an Instron 

universal testing machine (Model 5944) equipped with a 50 N load cell. Then, the sample was 

stretched at the rate of 0.5 mm/s to the predetermined strain along 𝑋2 − 𝑎𝑥𝑖𝑠 and held. The pre-

stretching levels were carefully controlled to ensure that crack initiation occurs only after cutting 

while preventing failure in the clamping. In this study, pre-stretching levels of 20%, 25%, and 

30% were applied for 𝜃0 = 90° and 𝜃0 = 60, while 30%, 40%,  50%, and 60% were used for 

𝜃0 = 30°. After 1 hour, we used scissors to cut along the marked line. This duration is based on 

the previous study that LCEs reach a near-equilibrium after 1 hour [62], even though evidence 
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has shown that complete equilibrium is not achieved even after several days of relaxation [39]. 

The cutting line could be tilted due to shear strain induced by LCs’ reorientation.. A slow-motion 

video setup records the crack propagation. Crack length is measured from the camera captures 

the image at a rate of 30 frames per second. Figure 4.1b and Figure 4.1c present examples of 

crack length measurement when the crack propagates horizontally and tiltedly, respectively.  

4.2.3 Crossed-polarized Optical Measurement 

Director rotation driven by stretching was characterized by crossed-polarized optical 

measurements. A light source, a polarizer, a specimen stretched by the Instron universal testing 

machine, an analyzer with the polarization perpendicular to the polarizer, and a camera were set 

up in the order described in Section 2.2.3 (Figure 2.2). 

4.3 Experimental Results and Discussion 

4.3.1 Crack Growth Rate 

 We first investigate a LCE with the initial director parallel to the loading direction (𝜃0 =

90°), as depicted in Figure 4.2. Figure 4.2a shows the stress response as a function of time. After 

one hour of holding, the stress curve becomes flat, indicating the material has nearly relaxed. A 

sharp drop of stress is observed upon introducing a post-cut, after which the stress gradually 

decreases to zero. The rate of stress decline accelerates with higher pre-stretching levels, 

reflecting faster crack propagation. Figure 4.2b presents the normalized crack length following 

the cut, with the slope of the curves representing the crack growth rates. LCEs exhibit delayed 

initial growth, resulting in an initial flat segment in the crack length. The phenomena become 

more pronounced under low pre-stretching levels. This delay crack may be attributed to the long-
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time relaxation of LCEs, viscous fracture energy [119,120], and crack nucleation [121]. Then 

crack grows at a faster and constant rate. With the pre-stretching levels set at 30%, 25%, and 

20%, the crack rate decreases from approximately 0.0098 mm/s to 0.0048 mm/s and finally to 

0.0015 mm/s. For a lower pre-stretching level (20%), the crack rate decreases at the end due to 

the boundary effects.  

 

Figure 4.2 The stress and crack growth for a LCE with 𝜃0 = 90° after pre-stretching at 30%, 25% and 

20%. (a) Stress as a function of time. (b) The normalized crack length as a function of time after cutting. 

(c) the crack rates at a constant growth stage.  

 When the initial director is inclined to the loading direction, as shown in Figure 4.3, 

stress-director coupling results in distinct crack growth dynamics. For LCEs with 𝜃0 = 60°, the 

crack propagation rate is slower compared to the parallel case (𝜃0 = 90°) at the same pre-

strethcing levels. Specifically, at pre-stretching levels of 30%, 25%, and 20%, the crack growth 

rates are 0.0058 mm/s, 0.0028 mm/s, and 0.0012 mm/s, respectively. While at the low pre-

stretching level (20%), the crack rate is pretty close in these two cases. Crack propagation occurs 

in two distinct stages: - an initial slow phase followed by a faster, steady growth phase. The 

delayed initial crack growth becomes more obvious compared to parallel cases. This 

phenomenon is more pronounced at 𝜃0 = 30° (Figure 4.3e).  
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Such intriguing behavior is likely attributed to two factors. First, it arises from the highly 

viscous nature of director rotation and network deformation. When a crack is introduced, the 

redistribution of stress and strain around the crack tip requires time. In cases where the initial 

director significantly deviates from the loading direction, the director at the crack tip undergoes 

substantial rotation, forming a domain wall that restricts the crack opening [63]. Additionally, the 

reorientation of the director induces extra energy dissipation compared to the parallel case, 

thereby reducing the available energy to overcome surface energy and slowing crack growth. The 

second factor could be the effect of the strip domain, particularly at low pre-stretching levels. 

Around the crack tip, strip domains and monodomains, with different material properties, 

coexist. This coexistence leads to a complex stress/strain distribution at the crack tip, slowing 

down the crack propagation. A more detailed discussion is provided in section 4.3.3. 

 

Figure 4.3 The stress and crack growth for a LCE with (a)-(c) 𝜃0 = 60° and (d)-(f) 𝜃0 = 30° after pre-

stretching. (a)(d) Stress as a function of time, (b)(e) the normalized crack length as a function of time after 
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cutting, and (c)(f) the crack rates at a constant growth stage, in LCEs with 𝜃0 = 60° and 𝜃0 = 30°, 

respectively. 

For LCEs with 𝜃0 = 60° (Figure 4.3(d-e)), greater pre-stretch is required due to the 

global spontaneous strain, necessitating a higher stretch to initiate the crack growth. The crack 

growth process in these cases can be categorized into three stages: delayed crack growth at the 

beginning, constant crack growth, and a deceleration phase due to the boundary effect. At pre-

stretching levels of 60%, 50%, 40%, and 30%, the crack growth rates are approximately 0.0103 

mm/s, 0.0036 mm/s, 0.0015 mm/s, and 0.0005 mm/s, respectively. Interestingly, these rates 

follow a near power-law relationship with the pre-stretching levels, resembling the behavior 

observed in conventional soft materials, where crack growth rates exhibit a power-law 

dependency on the energy release rate [106,107]. However, further experimental investigation is 

required to confirm the relationship. 

4.3.2 Crack Propagation Direction  

 The stress-director coupling in LCEs results in a remarkably different crack propagation 

trajectory compared to conventional soft materials. In typical soft materials, the crack generally 

follows the path of the pre-existing horizontal crack upon initiation. However, in LCEs, the 

presence of stress-director coupling leads to deviations from the expected crack path. 

 Figure 4.4 presents the crack trajectory of LCEs with varying initial directors in the 

undeformed configuration. In all cases, the initial crack is cut horizontally along 𝑋1 − 𝑎𝑥𝑖𝑠 in the 

reference status. Figure 4.4a exhibits the crack propagation along 𝑋1 − 𝑎𝑥𝑖𝑠 in LCEs under 

parallel loading (𝜃0 = 90°), which is similar to the normal soft materials.  
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In contrast, while the initial director is inclined to the loading direction, as illustrated in 

Figure 4.4b and c, the crack deflected from the pre-existing horizontal path, tilting toward the 

positive 𝑋2 − 𝑎𝑥𝑖𝑠. In LCEs with 𝜃0 = 60°, the crack trajectories at pre-stretching levels of 

30%, 25%, 20% are nearly identical. For LCEs with 𝜃0 = 30°, the crack trajectories exhibit 

variation across different stretching levels. The deviation angles are computed between the crack 

path and the negative 𝑋1 direction at the middle region of the sample, i.e. steady stage, as an 

example shown in Figure 4.4c. Figure 4.4d reveals decreasing deviated angles with pre-

stretching levels increasing, with values of approximately 27.2°, 23.6°, and 22.7°, for pre-

stretching levels of 40%, 50%, and 60%, respectively. Notably, at a pre-stretching level of 30% 

and 𝜃0 = 30°, the crack follows an atypical trajectory, initially propagating downward before 

redirecting upward, which will be discussed in Section 4.3.3. 
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Figure 4.4 The crack trajectories of LCEs in the undeformed configuration with an initial director (a) 

𝜃0 = 90°, (b) 𝜃0 = 60° and (c) 𝜃0 = 30°. (d) The relative crack propagation angle as a function of 

prestretch strain in LCE with 𝜃0 = 30°.  

To elucidate the intriguing crack propagation path, we record the director distribution 

during crack propagation through the crossed-polarized optical method, as shown in Figure 4.5. 

When the initial director is parallel to the loading direction and the pre-stretching level is 25% 

(Figure 4.5a), the director rotates towards the principal stress direction at four corners during the 

holding stage. We select two representative moments after cutting. As elaborated in the previous 

study [63], the director exhibits a clockwise rotation above the crack tip and a counter-clockwise 
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rotation below the crack tip. Ahead of the crack tip, the director remains 𝜃 = 90°, where crack 

propagates perpendicular to the director, i.e. along 𝑋1 − 𝑎𝑥𝑖𝑠.  

 

Figure 4.5 Director rotation of LCEs with initial directors (a) 𝜃0 = 90°, (b) 𝜃0 = 60° and (c) 𝜃0 = 30° at 

the stage of initial, holding before cutting, and holding after cutting. 

In scenarios where the initial director is tilted relative to the loading direction, as shown 

in Figure 4.5b and c. At the left top and right bottom corners, the principal stress direction is 

nearly perpendicular to the initial director, resulting in strip domains during the holding stage. 

These regions appear opaque, precluding the collection of data due to the absence of light 
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transmission. At the right top and left bottom corners, the director rotates slightly as the principal 

stress direction is nearly aligned with the initial director. In the central region, the director rotates 

counter-clockwise, approaching the alignment with the loading direction, leading to notable 

sample contraction. After cutting, two representative moments are selected. In the case of 𝜃0 =

60°, the director ahead of the crack tip is around 70°, and crack propagates at an angle of about 

20° relative to the negative 𝑋1 − 𝑎𝑥𝑖𝑠; For 𝜃0 = 30°, the director ahead of the crack tip is 

around 60°, and the crack propagates at an angle of about 30° relative to the negative 𝑋1 − 𝑎𝑥𝑖𝑠. 

These observation indicate that in both cases, the crack propagates nearly perpendicular to the 

director ahead of the crack tip.  

In general, the observations reveal that the crack typically advances perpendicular to the 

director orientation ahead of the crack tip, validating the assumption proposed by Yu et al.[55]. 

This explains the variations in crack trajectories at different pre-stretching levels. In the case of 

𝜃0 = 30°, significant discrepancies arise among the different pre-stretching levels. Higher pre-

stretching levels lead to the director rotating to the loading direction, consequently larger 

deviated angles from the 𝑋1 − 𝑎𝑥𝑖𝑠. Given that the crack propagates perpendicular to the director 

orientation ahead of the crack tip, the crack trajectory becomes more flat with a higher pre-

stretching level. In contrast, for LCEs with 𝜃0 = 60° and 90°, the crack trajectories are nearly 

identical due to limited differences in director rotation across the pre-stretching levels, as the 

initial director is closely aligned with the loading direction. 

4.3.3 The anomalous crack path in a LCE with 𝜃0 = 30° 

 In the case of 𝜃0 = 30° at a pre-stretching level of 30%, the crack presents anomalous 

growth, diverging from the typical perpendicular trajectory relative to the director ahead of the 



 

103 

 

crack tip in other cases. We hypothesize this deviation arises from the formation of a strip 

domain at the crack tip. The crack initiates in the strip domain, where the fracture energy is 

comparatively lower.  

Figure 4.6 illustrates the crack propagation in a LCE with 𝜃0 = 30° at pre-stretching 

level of 30%. Shortly after cutting (Figure 4.6a), the crack tip, highlighted in a red dot, comprises 

both monodomain and strip domain regions, which are characterized by their transparent and 

opaque appearances, respectively. This heterogeneous composition at the crack tip suggests the 

presence of inhomogeneous mechanical properties. According to the previous study [54,61], the 

formation of a strip domain ahead of the crack tip during perpendicular loading implies that the 

fracture energy within a strip domain is reduced compared to the monodomain region. 

Consequently, the crack initiates within the strip domain. 

After a long-time relaxation, the crack tip transitions from the strip domain to the 

monodomain region (Figure 4.6b and c). This behavior is likely due to the redistribution of stress 

and strain as the crack approaches the bottom boundary, leading to a shift of stress and strain 

concentration towards the monodomain regions. Consequently, the crack begins to propagate 

within the monodomain region, following a path perpendicular to the director, as shown in 

Figure 4.6d. Notably, no strip domains are observed at the crack tip during propagation 

perpendicular to the director, see the red dot positioned outside the strip domain regions. 
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Figure 4.6 Pictures of crack propagations in a LCE with 𝜃0 = 30° at pre-stretching level of 30% after (a) 

53 mins, (b) 15hr 44 mins, (c) 24hr 41 mins, and (d) 30hr 24 mins cutting.  

For 𝜃0 = 30° at a higher pre-stretching level, such as 60% shown in Figure 4.7, the crack 

grows as expected, aligning perpendicularly to the director. Although a strip domain is observed 

around the crack, it is absent at the crack tip and is restricted to smaller regions due to the higher 
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pre-stretching. As a result, the crack tip consists entirely of monodomain material, from which 

the crack initiates. In cases of  𝜃0 = 60°, a smaller strip domain region (domain wall) also forms 

near the crack tip but is absent at the tip. Therefore, the strip domains hardly affect the crack 

propagation direction.   

 

Figure 4.7 Pictures of crack propagations in a LCE with 𝜃0 = 30° at pre-stretching level of 60% after (a) 

3 mins, (b) 13 mins, and (c) 27 mins. 

 The formation of strip domains is identified as a potential factor contributing to a more 

pronounced delay in the onset of crack growth when the initial directors are inclined to the 

loading direction. In these cases, the materials near the crack tip comprise a combination of strip 

domains and monodomains. In monodomain regions, the director almost aligns with the principal 

stretching direction [63], whereas in strip domains, the alignment is absent. As a result, strip 

domains have more ability to be stretched, which may mitigate stress concentration at the crack 

tip during their formation, thereby resulting in a more significant delay. 
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The above findings highlight the need for a more rigorous approach to analyzing the 

fracture behavior of LCEs. First, the formation of a strip at the crack tip, which may transition 

into a monodomain as the crack progresses, complicates the prediction of crack growth direction. 

Particularly when the crack tip consists of both strip domains and monodomain regions at low 

pre-stretching levels, minor material variation – referred to as natural experimental error - can 

significantly influence the crack path. Secondly, the fracture criteria may vary depending on the 

pre-stretching levels and the presence of a strip domain at the crack tip, given different fracture 

energies in strip domains and monodomain regions. Third, it is a significant challenge to develop 

accurate models due to the lack of clarity regarding the transition in fracture energy between strip 

domains to monodomain regions. Further research is required to address these issues and 

improve our understanding of fracture behavior in LCEs.  

4.4 Phase-field Model and Numerical Simulation Results 

4.4.1 A phase-field model of LCEs 

Following the work by Yu et al.[55], we develop a phase-field model for LCEs. We 

define a material particle labeled by a position vector 𝐗 in the stress-free reference configuration 

Ω0 (𝐗 ∈ Ω0) moves to the position 𝐱 at time 𝑡 in the current configuration Ω𝑐 (𝐱 ∈ Ω𝑐). The 

deformation gradient is defined as 𝐹𝑖𝐾 = 𝜕𝑥𝑖(𝐗, 𝑡) 𝜕𝑋𝐾⁄ . A unit vector 𝒅 is used to describe the 

director orientation in the current configuration. 𝒅 = (𝑐𝑜𝑠(𝜃), 𝑠𝑖𝑛(𝜃), 0) with an angle 𝜃 

between the director and 𝑋1 − 𝑎𝑥𝑖𝑠. As the director relaxes much faster than the network [62], 

we only consider the viscoelasticity of the network. In this way, the rheological model is 

composed in parallel of an equilibrium spring, representing the elasticity after viscoelastic 

relaxation, a Maxwell unit with a non-equilibrium spring and a dashpot connected in series, 
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describing non-equilibrium behavior, and an additional dashpot (Figure 4.8). In the Maxwell 

unit, we assume the total deformation gradient 𝑭 can be decomposed into an elastic part 𝑭𝑒 and a 

viscoelastic part 𝑭𝒗, 𝑭 = 𝑭𝑒𝑭𝒗.  

 

Figure 4.8 Schematic of the rheological model with a viscous branch, an equilibrium branch, and one 

nonequilibrium branch 

 Based on the Griffith theory [122], the formation of a crack involves the additional 

dissipation energy, i.e. fracture energy, to create a new surface. For the isothermal condition, we 

can write the thermodynamics requirement as  

𝑊𝑒
̇ + 𝑊𝑣̇ + 𝑊𝑓̇ − 𝑊𝑒𝑥𝑡

̇ − ∫𝛾𝑑𝒅 ∙ 𝒅̇𝑑𝑉 = 0, ( 4.1 ) 

where 𝑊𝑒, 𝑊𝑣, 𝑊𝑓, 𝑊𝑒𝑥𝑡 are the elastic energy, bulk dissipation energy relative to the viscous 

network, the fracture energy, and the potential of external work, respectively. ̇ = 𝛿/𝛿𝑡 in 

𝑊𝑒
̇ ,𝑊𝑣

̇  etc. represents a small variation over a small time increment. 𝛾𝑑 is a Lagrange multiplier 

to enforce the unit vector constraint of 𝒅, 𝒅 ∙ 𝒅 ≡ 1. In the phase field model, we introduce a 

degradation function 𝑔(𝜑) with a scalar variable 𝜑 ∈ [0,1] to describe damaged material. We 

adopt a quadratic degradation function 𝑔(𝜑) = (1 − 𝜑)2 [123]. When 𝜑 = 1, the material is 

totally ruptured; when 𝜑 = 0, the material is intact. In this way, the elastic energy can be written 

as 
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𝑊𝑒 = 𝑔(𝜑)∫𝑓𝑟(𝑭, 𝑭𝒆, 𝒅)𝑑𝑉 = 𝑔(𝜑)∫(𝑓𝑟
𝑒𝑞

(𝑭, 𝒅) + 𝑓𝑟
𝑛𝑒𝑞

(𝑭𝒆, 𝒅))𝑑𝑉 
( 4.2 ) 

where 𝑓𝑟, 𝑓𝑟
𝑒𝑞

 and 𝑓𝑟
𝑛𝑒𝑞

 represent the total, equilibrium, and nonequilibrium free energy density 

in the reference state, respectively. The equilibrium and nonequilibrium free energy density 

functions are 

𝑓𝑟
𝑒𝑞

=
𝜇𝑒𝑞

2
(𝑡𝑟(𝑭𝑒𝑞𝑭𝑒𝑞𝑇 + 𝑎(𝑰 − 𝒅𝟎 ⊗ 𝒅𝟎)𝑭

𝑻 ∙ 𝒅 ⊗ 𝐝 ∙ 𝐅) − 3 − 2𝑙 𝑛(𝐽)) + 𝐵(𝐽 − 1)2/2, 
( 4.3 ) 

𝑓𝑟
𝑛𝑒𝑞

=
𝜇𝑛𝑒𝑞

2
(𝑡𝑟(𝑭𝑛𝑒𝑞𝑭𝑛𝑒𝑞𝑇

+ 𝑎(𝑰 − 𝒅𝟎 ⊗ 𝒅𝟎)𝑭𝑒
𝑻 ∙ 𝒅 ⊗ 𝐝 ∙ 𝑭𝑒) − 3 − 2𝑙 𝑛(𝐽𝑒)) +

𝐵𝑒(𝐽
𝑒 − 1)2/2, 

( 4.4 ) 

where 𝜇𝑒𝑞 and 𝜇𝑛𝑒𝑞 are the shear modulus of the equilibrium and non-equilibrium; 𝐵 and 𝐵𝑒 are 

the bulk modulus controlling incompressibility.  𝐽 = det(𝐹);  𝐽𝑒 = det (𝑭𝑒); 𝑭𝑒𝑞 ≔ 𝒍−1/2𝑭𝒍𝟎
1/2

; 

𝑭𝑛𝑒𝑞 ≔ 𝒍−1/2𝑭𝑒𝒍𝟎
1/2

; 𝑎 represents the semi-soft parameter, the value of which is kept the same 

for the equilibrium and non-equilibrium free energy; d and 𝒅𝟎 represent the director in the 

current and reference states, respectively. 𝒍 and 𝒍𝟎 are the corresponding dimensionless shape 

(metric) tensor, 𝒍 =
1

𝑙∥
((𝑙∥ − 𝑙⊥)𝒅 ⊗ 𝒅 + 𝑙⊥𝑰) and 𝒍𝟎 =

1

𝑙∥
0 ((𝑙∥

0 − 𝑙⊥
0)𝒅𝟎 ⊗ 𝒅𝟎 + 𝑙⊥

0𝑰). The 

effective lengths along or perpendicular to the director (𝑙∥ 𝑎𝑛𝑑 𝑙⊥) are assumed to remain 

constant during deformation. We set ratio 𝑟 =
𝑙∥

𝑙⊥
= 5.5 based on the previous study [62]. 

The dissipation energy comes from two dashpots in Figure 4.8. The dissipation energy is 

written as  

𝑊𝑣 = 𝑔(𝜑)(∫𝐷0 𝑑𝑉 + ∫𝐷1 𝑑𝑉) = 𝑔(𝜑)(∫
1

2
𝜂0𝐽𝑡𝑟(𝜺̇

2)𝑑𝑉 +

∫
1

2
𝜂1𝑭𝑣̇𝑭𝒗

−𝟏:𝑭𝑣̇𝑭𝒗
−𝟏 𝑑𝑉), 

( 4.5 ) 
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where the first term (𝐷0) in the paratheses represents an external dissipation [82], with strain rate 

tensor 𝜺̇ = 𝑭̇𝑭−𝟏. The second term (𝐷1) represents the dissipation from the dashpot (𝑭𝑣) in the 

branch of the Maxwell model (Figure 4.8). 

 Based on the Griffith energy principles and the crack density function of the phase-field 

model [111], the fracture energy is approximated as 

𝑊𝑓 = ∫𝐺𝑐 𝑑Γ ≅ ∫𝐺𝑐𝛾(𝜑; ∇𝜑)𝑑𝑉, ( 4.6 ) 

where 𝐺𝑐 is the intrinsic fracture energy, which is the same rate-dependent formula as Yu et 

al.[55] 𝐺𝑐 = [√𝐺𝑐0 + 𝛽log (𝑟𝑑/𝑟𝑑0)]
2
, where 𝑟𝑑 =

1

2
√(𝑭̇𝑭−1 + 𝑭−𝑇𝑭𝑇̇): (𝑭̇𝑭−1 + 𝑭−𝑇𝑭𝑇̇) and 𝛽 is 

a scaling factor, and 𝐺𝑐0 is the reference fracture energy with respect to the reference 

deformation rate 𝑟𝑑0. 𝛾 is the surface density function expressed a generic form [124,125] as 

𝛾 =
3

8
[

1

𝑏0
𝜑 + 𝑏0∇𝜑 ∙ 𝑨 ∙ ∇𝜑], ( 4.7 ) 

where 𝑨 = 𝑰 + 𝛼𝑎𝑛𝑖𝑭
−1𝒏⊥ ⊗ 𝑭−1𝒏⊥, with unit vector 𝒏⊥ perpendicular to the director and 𝛼𝑎𝑛𝑖 

illustrating the coefficient of anisotropy of the fracture energy, is the second-order structural 

tensor related to the director reorientation derived in a previous study Yu et al. [55]. It controls 

the crack propagates perpendicular to the director. 𝑏0 is a phase-field length scale, describing the 

crack dispersion width. 

The potential energy of the external work is expressed as  

𝑊𝑒𝑥𝑡 = ∫𝑩𝒖𝑑𝑉 + ∫𝑻𝒖𝑑𝐴. ( 4.8 ) 

 Implement eqns ( 4.2 )-( 4.8 ) into eqn ( 4.1 ), we obtain  



 

110 

 

∫(𝑩 + 𝑑𝑖𝑣𝑋 (𝑔(𝜑) ∙ (
𝜕𝑓𝑟

𝜕𝑭
+

𝜕𝑓𝑟

𝜕𝑭𝑒
𝑭𝑣

−𝑇 +
𝜕𝐷0

𝜕𝜺̇
𝑭−𝑇)))𝒖̇𝑑𝑉 + ∫(𝑻 − 𝑔(𝜑) ∙ (

𝜕𝑓𝑟

𝜕𝑭
+

𝜕𝑓𝑟

𝜕𝑭𝑒
𝑭𝑣

−𝑇 +

𝜕𝐷0

𝜕𝜺̇
𝑭−𝑇) ∙ 𝑵)𝒖̇𝑑𝐴 + ∫(𝛾𝑑𝒅 − 𝑔(𝜑)

𝜕𝑓𝑟

𝜕𝒅
)𝒅̇𝑑𝑉 + ∫𝑔(𝜑) ∙ ((𝑭𝑒

𝑇 𝜕𝑓𝑟

𝜕𝑭𝑒
𝑭𝒗

−𝑻 −
𝜕𝐷1

𝜕𝑭𝒗̇
): 𝑭𝒗̇)𝑑𝑉 +

∫
𝜕𝑔(𝜑)

𝜕𝜑
(𝑓𝑟 + 𝐷0 + 𝐷1)𝜑̇ + 𝐺𝑐𝛾̇ 𝑑𝑉 = 0, 

( 4.9 ) 

where 𝑵 is the unit vector normal to any given surface at the reference state. To satisfy the 

equilibrium equation, every term has to be zero. We define the first Piola-Kirchhoff stress as 𝐒 =

𝑔(𝜑) ∙ (
𝜕𝑓𝑟

𝜕𝑭
+

𝜕𝑓𝑟

𝜕𝑭𝑒
𝑭𝑣

−𝑇 +
𝜕𝐷0

𝜕𝜀̇
𝑭−𝑇

). Assume no body force and surface force, we can get the force 

balance equation and traction relation from the first two terms in eqn ( 4.9 ) as 

𝑑𝑖𝑣𝑋(𝑺) = 𝟎, ( 4.10 ) 

−𝑺 ∙ 𝑵 = 𝟎, ( 4.11 ) 

where  

                    𝑺 = (1 − 𝜑)2 ∙ {𝜇𝑒𝑞 ((𝒍−𝟏𝑭𝒍𝟎) + 𝑎𝒅 ⊗ (𝑰 − 𝒅𝟎 ⊗ 𝒅𝟎)𝑭
𝑻𝐝 − 𝑭𝑻) + 𝐵𝐽(𝐽 −

1)𝑭−𝑻 + 𝜇𝑛𝑒𝑞 ((𝒍−𝟏𝑭𝑒𝒍𝟎𝑭𝑣
−𝑇) + 𝑎𝒅 ⊗ (𝑰 − 𝒅𝟎 ⊗ 𝒅𝟎)𝑭𝑒

𝑻𝐝𝑭𝑣
−𝑇 − 𝑭−𝑻) + 𝐵𝑒𝐽

𝑒(𝐽𝑒 −

1)𝑭−𝑻 + 𝜂0𝐽𝜺̇𝑭
−𝑇}, 

( 4.12 ) 

  The third term in eqn ( 4.9 ) indicates that 
𝜕𝑓𝑟

𝜕𝒅
 should be in the same direction as 𝒅, 

requiring 𝒅 ×
𝜕𝑓𝑟

𝜕𝒅
= 𝟎. Implement eqns ( 4.3 )( 4.4 ), the governing equation for the director field 

can be expressed as 

𝒔𝑒𝑞𝑑 × 𝒅 + 𝒔𝑛𝑒𝑞𝑑 × 𝒅 = 𝟎, ( 4.13 ) 

where 𝒔𝑒𝑞𝑑 ≔ (1 − 𝜑)2𝜇𝑒𝑞((𝑙∥
−1 − 𝑙⊥

−1)𝑭𝒍𝟎𝑭
𝑻𝒅 + 𝑎𝑭(𝑰 − 𝒅𝟎 ⊗ 𝒅𝟎)𝑭

𝑻𝒅) and 𝒔𝑛𝑒𝑞𝑑 ≔

(1 − 𝜑)2𝜇𝑛𝑒𝑞((𝑙∥
−1 − 𝑙⊥

−1)𝑭𝑒𝒍𝟎𝑭𝑒
𝑻𝒅 + 𝑎𝑭𝑒(𝑰 − 𝒅𝟎 ⊗ 𝒅𝟎)𝑭𝑒

𝑻𝒅). 
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From the fourth term in eqn ( 4.9 ), we obtain the evolution equation 𝑭𝑣̇ =
1

𝜂1
𝑭𝑒

−𝑇 𝜕𝑓𝑟

𝜕𝑭𝑒
𝑭𝑣 

for 𝑭𝒆̇ (𝑭𝒗̇) 

𝑭𝒗̇ =
𝜇𝑛𝑒𝑞

𝜂1
(𝑭𝑒

𝑇𝒍−𝟏𝑭𝑒𝒍𝟎 + 𝑎𝑭𝑒
𝑇𝒅 ⊗ (𝑰 − 𝒅𝟎 ⊗ 𝒅𝟎)𝑭𝑒

𝑇𝐝 − 𝑰)𝑭𝒗 +
𝐵𝑒

𝜂1
𝐽𝑒(𝐽𝑒 − 1)𝑭𝒗. ( 4.14 ) 

 In the end, we get the evolution equation for the phase-field variable from the last term in 

eqn ( 4.9 ). Here, based on the findings that the intrinsic fracture energy could be only related to 

the equilibrium elastic energy [55,57], we write the evolution equation for 𝜑 as 

                    
𝜕𝑔(𝜑)

𝜕𝜑
𝑓𝑟

𝑒𝑞(𝑭, 𝒅) + 𝐺𝑐 ∙
3

8
[

1

𝑏0
− 2𝑏0∇ ∙ (𝑨 ∙ ∇𝜑)] = 0. ( 4.15 ) 

To prevent the crack from healing, a history variable [126] is introduced as 

                    𝐻 = max
𝜏∈[0,𝑡]

𝑓𝑟
𝑒𝑞

(𝜏)

𝐺𝑐(𝜏)
, ( 4.16 ) 

where 𝐻 is a monotonically non-decreasing function. In this way, the crack evolution equation is 

rewritten as: 

                    −2(1 − 𝜑)𝐻 +
3

8
[

1

𝑏0
− 2𝑏0∇ ∙ (𝑨 ∙ ∇𝜑)] = 0. ( 4.17 ) 

The model is implemented in COMSOL under plane stress condition. The four governing 

equations ( 4.10 )( 4.13 )( 4.14 )( 4.17 ) are implemented using the weak form. Linear Lagrange 

discretization is utilized for variables of displacement, director, and the phase-field variable. 

Discontinuous lear Lagrange discretization is used for 𝑭𝑒 (or 𝑭𝒗). The material parameters of 

phase-field model are estimated based on experimental observations in Table 4.1 and Table 4.2: 

Table 4.1 Mateiral parameters of LCEs 

𝜂0 𝜇𝑒𝑞⁄  𝜂1 𝜇𝑒𝑞⁄  𝜇𝑛𝑒𝑞 𝜇𝑒𝑞⁄  𝐵 𝜇𝑒𝑞⁄  𝐵𝑒 𝜇𝑒𝑞⁄  𝑎 𝑟 

0.5 10 9 100 100 0.08 5.5 
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Table 4.2 Fracture parameter setting for the phase-field model 

𝑏0(mm) 𝛼𝑎𝑛𝑖 𝐺𝑐𝑜 (𝑁/𝑚) 𝛽 (√𝑁/𝑚) 𝑟𝑑0 (𝑠−1) 

0.2 15 400  0.08 √1.5 × 10−4 

 

We build a rectangular model with a width of 30 mm and a height of 20 mm as shown in 

Figure 4.9. The crack width is 0.1 mm and the mesh size is refined along the crack path also set 

as 0.1 mm. The bottom boundary is fixed and the top boundary is velocity/displacement-

controlled. We pre-stretch the sample at a rate of 0.01%/s and then hold. The pre-stretching stage 

is quasi-static based on the material parameters in Table 4.1. As we did not build a dogbone-

shape model shown in Figure 4.1, we enforced a phase-field variable 𝜑 = 0 at four corners of a 

rectangular with 10 mm 𝑋1  and 4.5 mm along 𝑋2 to prevent boudanry failure. During pre-

stretching, the initial phase-field variable is set 𝜑 = 0 for all regions, ensuring no damage 

occurs. At the beginning of the holding stage, we manually assign the phase-field variable 𝜑 =

0.99 to the pre-cut crack region, introducing highly damaged material to simulate the post-cut 

process described in Section 4.2.2. The displacement is maintained, allowing the crack to 

propagate over time.  
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Figure 4.9 Schematic of the phase-field model in COMSOL 

4.4.2 Numerical Simulation Results and Discussion 

 We utilize the phase-field model to further demonstrate the relationship among the crack 

growth, initial director, and pre-stretching levels.  

 Figure 4.10a shows the director distribution after cutting in a LCE with 𝜃0 = 90° at a 

pre-stretching level of 30%. The director reorientation is in agreement with the experimental 

observation shown in Figure 4.5a, exhibiting clockwise rotation above the crack tip and counter-

clockwise rotation below it. A slight delay in the initiation of crack growth is observed, 

particularly at lower is lower pre-stretching levels. Following this initial phase, the crack 

transitions into a steady growth stage, consistent with the experimental findings (Figure 4.10b). 

The crack propagation rates during the steady growth phase are plotted in Figure 4.10c, with 

values of 0.027 mm/s, 0.0080 mm/s, and 0.0016 mm/s at pre-stretching levels of 30%, 25%, and 

20%, respectively. The growth rate matches quite well with the experiments (Figure 4.2), 

especially at the low stretching levels (20%).  

 Figure 4.10d shows the director distribution following cutting in a LCE with 𝜃0 = 60° at 

a pre-stretching level of 30%. In Figure 4.10e, the initial slow crack growth becomes more 

obvious compared to the case of 𝜃0 = 90°, showing a trend consistent with the discussion in 

Section 4.3.1. This behavior indicates a tilted initial director restricts crack opening compared to 

the parallel loading cases. The corresponding crack propagation rates during the steady growth 

phase are plotted in Figure 4.10f, with values of 0.0095 mm/s, 0.0028 mm/s, and 0.0008 mm/s at 

pre-stretching levels of 30%, 25%, and 20%, respectively. The simulation and experiment exhibit 
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a remarkable agreement in crack velocity at low pre-stretching levels, with only a slight 

deviation observed at high pre-stretching levels. 

 

Figure 4.10 The crack prediction based on a phase-field model. The director distribution in a LCE with 

(a) 𝜃0 = 90° and (d) 𝜃0 = 60° at a pre-stretching level of 30%. The crack growth length in LCEs with (b) 

𝜃0 = 90° and (e) 𝜃0 = 60° at pre-stretching level of 20%, 25%, and 30%. The corresponding constant 

crack growth rates in LCEs with (c) 𝜃0 = 90° and (f) 𝜃0 = 60°. 

 Through a specialized surface density function in eqn ( 4.7 ), the crack is programmed to 

propagate perpendicular to the director ahead of the crack tip. Figure 4.11 presents a comparison 

of crack propagation paths in the undeformed configuration between phase-field simulations and 

experimental results for LCEs with initial directors 𝜃0 = 90° and 𝜃0 = 60°. The contour 

illustrates the phase-field variable, where 𝜑 = 0.99 denotes a fully damaged material. The 

simulated crack paths closely match the experimental results, exhibiting a horizontal crack 
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propagation for 𝜃0 = 90° and an inclined crack path for 𝜃0 = 60°. Note that we a portion of the 

crack path is simulated for 𝜃0 = 60°, as damgae is not permitted at the boundary. 

 

Figure 4.11 The crack propagation path comparison in the reference configuration between phase-field 

prediction and experiments for LCEs with an initial director (a) 𝜃0 = 90° and (b) 𝜃0 = 60° 

Although this phase-field model generally exhibits good agreement with experimental 

observations, it does present certain limitations. First, the predicted crack velocity at higher 

stretching levels, such as 30%, shows higher values than the experimental results. This 

discrepancy may be attributed to the model’s failure to account for viscous director rotation. 

Given that the crack is constrained to propagate perpendicular to the director in the simulation, 

the strain rates along the crack propagation direction can be expressed as  

                  𝜀𝑐̇ = 𝜀11̇ 𝑠𝑖𝑛
2(𝜃) + 𝜀22̇ 𝑐𝑜𝑠2(𝜃) − 2𝜀12̇ 𝑠𝑖𝑛(𝜃)𝑐𝑜𝑠(𝜃), ( 4.18 ) 

where 𝜀11̇ , 𝜀13̇ , and 𝜀22̇  are the components of strain rate tensor 𝜺̇. Figure 4.12 presents the strain 

rates 𝜀𝑐̇ along the crack propagation direction in phase-field models. At low pre-stretching levels, 

where 𝜀𝑐̇ around the crack tip is smaller or approaching 0.1%/s (Figure 4.12a,d,e), the director 

rotation almost reaches equilibrium [62], resulting in close agreement between simulation and 

experimental results. However, at high pre-stretching levels, where 𝜀𝑐̇ near the crack tip 
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significantly exceeds 0.1%/s (Figure 4.12b,c,f), the deformation rates become sufficiently high 

for viscous director rotation to have a notable impact. Since this effect is not incorporated into 

the current model, discrepancies arise between the numerical predictions and experimental 

results. To improve model accuracy, incorporating viscous director rotation into both the 

constitutive material model and the viscous fracture is likely necessary. Besides, employing a 

more refined viscoelastic model, such as the multi-branch Maxwell model in Yu et al.[127] and 

Rezaei et al.[128], along with optimized material parameters, could enhance the model’s 

precision.  

 

Figure 4.12 Strain rates along crack propagation direction in phase-field model with initial directors (a-c) 

𝜃0 = 90° and (d-f) 𝜃0 = 60° under pre-prestretcing levels of (a,d) 20%, (b,e) 25%, and (c,f) 30%. 

Secondly, the relationship between intrinsic fracture energy and director orientation 

remains uncertain, particularly considering the differing fracture energies of monodomain LCEs 

under perpendicular and parallel loading [54,61]. This complexity is most evident in the case of 

𝜃0 = 30°, where the intricate material composition at the crack tip poses a challenge. As a result, 
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the current phase-field model encounters convergence issues when simulating this case. 

Understanding and addressing these issues is crucial to refining the model and fully realizing its 

potential in accurately capturing the crack propagation behavior of LCEs.  

Thirdly, the parameters used in the phase-field model are hard to measure experimentally. 

The value listed in Table 4.1 and 4 were mathematically fitted based on the experimental 

observations, i.e. crack velocity. However, these parameters possess physical significance, they 

should ideally be determined through direct experimental measurements rather than fitting 

procedures. Consequently, although the phase-field model’s predictions align relatively well with 

post-cut test results, its applicability to other loading conditions may be limited or entirely 

inaccurate. To address this limitation, it is essential to design novel experimental methodologies 

to directly measure key material parameters, such as intrinsic fracture energy and phase-field 

length scale, thereby enhancing the model’s robustness and generalizability.  

4.5 Conclusion 

 In this chapter, we examine the crack propagation in LCEs under varying initial directors 

and pre-stretching levels. Given the crack propagation path is not always horizontal, 

conventional fracture evaluation using the ‘pure shear’ method is inadequate. Instead, we adopt a 

post-cut method by applying different pre-stretching levels to analyze the crack growth direction 

and rates while minimizing the effects of bulk dissipation. The director-dependent crack growth 

path is characterized through optical polarized measurement, and the steady-state crack growth 

rates are quantified. A phase-field model is implemented into COMSOL, yielding predictions 

that align well with experimental observations. This investigation highlights the significant 
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influence of initial directors and pre-stretching levels on crack propagation direction and rates, 

offering new insights into the mechanics of fracture in LCEs.     

 First, we find the crack typically propagates perpendicular to the director ahead of the 

crack. Under parallel loading (𝜃0 = 90°), the crack follows the 𝑋1 − 𝑎𝑥𝑖𝑠, with the director 

ahead of the crack tip aligns with 𝑋2 − 𝑎𝑥𝑖𝑠. Under tilted loading (𝜃0 ≠ 90°), the crack path 

deviates from 𝑋1 − 𝑎𝑥𝑖𝑠, maintain a direction perpendicular to the tilted director ahead of the 

crack tip. In addition, at 𝜃0 = 30°, the crack path becomes more horizontal as pre-stretching 

levels increase due to the director’s rotation towards 𝑋2 − 𝑎𝑥𝑖𝑠, whereas other loading angles 

show minimal dependence on pre-stretching. Notably, an atypical crack growth is observed at a 

30% pre-stretching level in a LCE with 𝜃0 = 30°, where strip domains and monodomain coexist 

at the crack tip after cutting. The crack initiates in the strip domain and later reorients 

perpendicularly to the director. This anomalous behavior is believed attributed to the lower 

fracture energy in the strip domain compared to the monodomain.      

 Secondly, the crack propagation rates exhibit an initial delay in growth followed by a 

steady-state velocity. Even in LCEs with 𝜃0 = 90°, an obvious crack growth delay is observed at 

the onset. This phenomenon is assumed to be attributed to the combined effects of the long-time 

relaxation of LCEs, viscous toughness, and crack nucleation as previously reported [119–121]. In 

LCEs with tilted initial directors, the delay in crack growth is more pronounced during the early 

stages, suggesting that inhomogeneous and significant director reorientation impedes crack 

opening. Overall, the crack growth rate increases with higher pre-stretching levels, potentially 

following a power-law relationship. 
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 Finally, we use a phase-field model to demonstrate the mechanism. By prescribing the 

crack direction perpendicular to the director,  the model successfully reproduces both the crack 

propagation direction and rates observed in experiments. However, at higher pre-stretching 

levels, the model predicts faster crack rates than those observed experimentally. This discrepancy 

is likely due to the failure to account for viscous director rotation. To address this limitation, it is 

recommended to consider a more decent viscoelastic constitutive model and viscous toughness.     

This work is the first to systematically investigate the crack propagation direction and 

rates in relation to varying initial directors and stretching levels. The findings offer thoughtful 

insights into fracture behavior and provide valuable contributions to the development of fracture 

criteria. However, several questions remain unsolved. The fracture mechanical differences 

between strip domains and monodomains are not yet fully understood, complicating the 

prediction of crack direction when both domains exist. Besides, the current model is unable to 

simulate strip domains; an alternative free energy formulation proposed by Desimone et al.[129] 

may be considered for future work. Furthermore, the rate predictions from simulations show 

some divergence from experimental results, indicating a need for further refinement of the phase-

field models. Lastly, it is essential to develop a more advanced methodology to experimentally 

measure material properties required for the phase-field model. We anticipate that with these 

improvements, a comprehensive fracture criteria for LCEs could be established.    
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Chapter 5 Conclusions and Outlook 

5.1 Conclusions 

 This dissertation provides a comprehensive exploration of rate-dependent mechanical 

responses, stress-director coupling effects around the crack tip, and dynamic crack propagation 

in LCEs with varying initial directors and loading conditions. The experimental methodologies 

and theoretical constitutive models developed in this work not only enhance our understanding 

of LCEs mechanism but also provide a foundation for broader application, serving as a valuable 

resource for further research. These findings hold significant potential for guiding the design of 

optimized LCEs. The key contributions are summarized as follows: 

In Chapter 2, we investigate the rate-dependent stress, strain, and director rotation under 

tension at different loading rates. We systematically characterize real-time stress, strain, and 

director orientation in experiments, highlighting both viscous networks and mesogens. Notable, 

we quantitively differentiate the two distinct relaxation time scales associated with network 

deformation and director rotation. To further explain the rate-dependent behavior, a viscoelastic 

constitutive model is developed, presenting analytical solutions that qualitatively match 

experimental results. This study provides a detailed analysis of the complex interaction between 

network extension and director rotation, advancing our understanding of the stress-director 

coupling effect and its influence on the viscoelastic response of LCEs. 

 In Chapter 3, we examine the stress-director coupling effect on a crack tip. A complex 

LCEs model is implemented into ABAQUS UEL. Through the experiments and simulations, we 

observe symmetrical stress, strain director distributions when the initial director is aligned 

parallel to the loading direction. In contrast, when the initial director is tilted relative to the 
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loading direction, the stress, strain, and director distributions around the crack tip become 

asymmetrical. Notably, a formation of the domain wall is observed in both experiments and 

simulations under tilted loading. The fracture behavior is evaluated through energy release rate 

and crack opening displacement, revealing that a tilted initial director inhibits the crack opening. 

This work provides a valuable understanding of the director, stress, and strain distributions in the 

vicinity of a crack tip of LCEs. The findings and methodology presented here provide a solid 

foundation for further investigation into the fracture behavior. 

 In Chapter 4, we present a detailed discussion on crack propagation influenced by 

varying initial directors and pre-stretching levels. Our systematic investigation reveals that the 

crack typically propagates perpendicular to the director ahead of the crack tip. However, an 

atypical crack growth path is observed when a strip domain exists at the crack tip. Additionally, 

the crack growth rates computed at steady stages increase with higher pre-stretching levels. A 

delay in the onset of crack growth is noted and becomes more pronounced at low pre-stretching 

levels and when there is a large deviation angle between the initial director and the loading 

direction. We implement a phase-field model in COMSOL, showing simulation results agree 

well with experimental observations. This study provides novel insights into crack propagation 

under varying initial directors, a topic previously unexplored, and offers new perspectives for the 

development of fracture criteria of LCEs.  

5.2 Outlook 

 In this dissertation, we have studied the unique mechanical response of LCEs under 

various loading conditions, showing lots of interesting phenomena driven by stress-director 
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coupling effects. However, there are still many questions remaining unanswered. I outline 

several areas for further study.  

 First, the viscoelastic constitutive model requires further refinement. While we excluded 

the viscosity of the director due to its relatively negligible short relaxation time scale, this 

assumption may not hold near the crack tip, where the strain rates are extremely high due to the 

strain concentration. In such a case, the director’s viscosity must be accounted. Moreover, most 

existing viscoelastic models are based on monodomain LCEs. Our study on fracture highlights 

the demand for an advanced model capable of capturing the transition between the monodomain 

and strip domains. 

Secondly, optimizing the design of LCEs through the tuning of initial directors is a 

promising area of research. Strategically orienting the directors to mitigate stress and strain 

concentration at critical locations, such as crack tips, could prevent failure. However, identifying 

optimal designs remains a challenge. With advancements in artificial intelligence, there is 

potential to leverage AI to explore various combinations of initial director arrangements and 

identify the most effective configurations. Such design guidance could significantly expand the 

application potential of LCEs. 

Thirdly, defining the failure criteria or fracture energy in LCEs presents significant 

challenges due to the dependency of fracture energy on director orientation. It is crucial to 

understand how fracture energy is influenced by director orientation and the mechanism 

underlying chain breakage within strip domains. For LCEs with tilted initial directors, accurately 

measuring fracture energy is particularly challenging because the oblique crack propagation path 

subjects the material to mixed-mode tension. Furthermore, the inherent high viscosity of LCEs 
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complicates the assessment of rate-dependent fracture energy. Last, it is hard to introduce a 

uniform crack across experiments and crack sharpness will also influence the crack propagation, 

especially at the onset of crack growth. There is currently no established failure criterion for 

standard viscoelastic soft material. Addressing these complexities remains a critical avenue for 

further research.       
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Appendix  

A.1 Viscoelastic Constitutive Model 

To simulate the crack-tip fields of LCEs, we implement the constitutive model into a 

FEM code. Though we assume the LCE samples are loaded slowly enough to reach quasi-

equilibrium so that we do not need to consider their viscoelasticity, a small dissipation is added 

to the model to avoid convergence issues during analyses. Following Zhang et al. [72], we use a 

simple Rayleigh dissipation density function to represent the viscosity of the network and the 

director 

𝑅 = 𝑅(𝜺̇, 𝒅̃) =
1

2
𝜂𝑑𝒅̃2 +

1

2
𝜂0𝑡𝑟(𝜺̇

2), (A1) 

where 𝜺̇ is the strain rate tensor 𝜺̇ = 𝑭̇𝑭−𝟏, 𝒅̃ is the corotational time derivative 𝒅̃ = 𝒅̇ − 𝑾𝒅 

with 𝑾 the spin tensor 𝑾 = (∇𝒖̇ − ∇𝒖̇𝑇)/2, and 𝜂0 and 𝜂𝑑 are the viscosity of the network 

extension and director rotation, respectively, which are assumed very small, 𝜂0/𝜇 = 𝜂𝑑/𝜇 =

10−4𝑠. In our simulations, we applied a low loading rate to ensure the quasistatic condition. The 

energy balance can be expressed as  

𝑊̇ − ∫Ω0
𝑓𝑟̇𝑑𝑉 = ∫Ω0

(
𝜕𝑅

𝜕𝒅̃
: 𝒅̃ +

𝜕𝑅

𝜕𝜺̇
: 𝜺̇)𝑑𝑉, (A2) 

where 𝑊̇ is the external power and 𝑓𝑟 is the free energy density, as elaborated in the main text. 

Due to the addition of the Rayleigh dissipation, we could re-derive the governing 

equations associated with 𝒖̇ and 𝒅̇ as the following, which are slightly different from Eqs. ( 3.6 )-

( 3.8 ) 

𝑑𝑖𝑣(𝝈) + 𝒃 = 𝟎, (A3) 
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𝜂𝑑𝒅̇ × 𝒅 = 𝜂𝑑𝑾𝒅 × 𝒅 − 𝜇 ((𝑙∥
−1 − 𝑙⊥

−1)𝑭𝒍𝟎𝑭
𝑇𝒅 + 𝛼𝑭(𝑰 − 𝒅𝟎 ⊗ 𝒅𝟎)𝑭

𝑇𝒅) × 𝒅 +

𝐾𝛻𝟐𝒅 × 𝒅, 

(A4) 

where the Cauchy stress 𝝈 is 

𝝈 = 𝐽−1𝜇(𝒍−1𝑭𝒍𝟎𝑭
𝑻 + 𝛼𝒅 ⊗ (𝑰 − 𝒅𝟎 ⊗ 𝒅𝟎)𝑭

𝑻𝒅 ∙ 𝑭𝑻 − 𝑰) + 2𝐵(𝐽 − 1)𝑰 −

𝐽−1𝐾(𝛻𝒅)𝑇𝛻𝒅 + 𝐽−1𝜂0𝜺̇ +
𝐽−1

2
𝜂𝑑(𝒅 ⊗ (𝒅̇ − 𝑾𝒅) − (𝒅̇ − 𝑾𝒅) ⊗ 𝒅). 

(A5) 

If the viscosity is not considered, Eqs. (A4)(A5) recover Eqs. ( 3.7 )( 3.8 ) by eliminating 

the terms involving 𝜂0 and 𝜂𝑑. The first two terms in Eq. (A5) can be rewritten as the following 

so that the first term is independent of the director, which is more convenient for the 

implementation of the UEL later 

𝝈 = 𝐽−1𝜇(𝑙⊥
−1𝑭𝒍𝟎𝑭

𝑇 + (𝑙∥
−1 − 𝑙⊥

−1)𝒅 ⊗ 𝑭𝒍𝟎̂𝑭
𝑇𝒅 − 𝑰) + 2𝐵(𝐽 − 1)𝑰 − 𝐽−1𝐾(𝛻𝒅)𝑇𝛻𝒅 +

𝐽−1𝜂0𝜺̇ +
𝐽−1

2
𝜂𝑑(𝒅 ⊗ (𝒅̇ − 𝑾𝒅) − (𝒅̇ − 𝑾𝒅) ⊗ 𝒅), 

(A6) 

with 𝒍𝟎̂ = 𝒍𝟎 + 𝛼(𝑰 − 𝒅𝟎 ⊗ 𝒅𝟎)/(𝑙∥
−1 − 𝑙⊥

−1). Under the plane strain condition, the director 

degenerates to 𝒅 = (cos(𝜃) , sin(𝜃) , 0), where 𝜃 is utilized as the variable to represent the angle 

between the director and the 𝑋1 − axis. Thereby, the governing equation Eq. (A4) can be further 

simplified as 

𝜂𝑑𝜃̇ + 𝜂𝑑𝑊12 − 𝜎𝑑
21 + 𝜎𝑑

12 − 𝐾𝛻2𝜃 = 0, (A7) 

with 𝝈𝒅 = 𝜇(𝑙∥
−1 − 𝑙⊥

−1)𝒅 ⊗ 𝑭𝒍𝟎̂𝑭
𝑇𝒅. The boundary conditions associated with the displacement 

and the director field are 

𝝈 ∙ 𝒏 = 𝒕, (A8) 

𝐽−1𝐾𝜵𝒅 ∙ 𝒏 = 𝟎,  (A9) 
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where 𝒕 is the traction in the current configuration on the surface, and 𝒏 represents the unit outer 

vector normal to the deformed surface boundary. In this study, we assume no body force and 

surface traction. 

A.2 Numerical Solution Procedure 

Based on the FEM, the two coupled Eqs. (A3) (A4) are solved via a Newton procedure 

by gradually vanishing the corresponding residuals on the element level. We use a method 

similar to Chester et al.[95] to implement the coupled equations into a user element subroutine, 

UEL, in the commercial finite element software, ABAQUS. The trial solutions for the 

displacement and the director angle are interpolated inside each element by: 

𝒖 = ∑𝒖𝑨𝑁𝐴, (A10) 

𝜃 = ∑𝜃𝐴𝑁𝐴, (A11) 

where A={1,2,3 …} denotes the nodes of a given element, 𝒖𝑨 and 𝜃𝐴 represent the values of the 

displacement and the director angle at node A, and 𝑁𝐴 represents the corresponding shape 

function. In the absence of body forces, we employ a standard Galerkin approach with two 

weight functions 𝒘𝟏 = ∑𝒘𝟏
𝑨𝑁𝐴 and 𝑤2 = ∑𝑤2

𝐴𝑁𝐴, where 𝒘𝟏 and 𝑤2 have the same shape 

function as the trial solutions and vanish under the Dirichlet boundary condition. In the absence 

of body forces, we can get two weak forms for Eqs. (A3) (A4) 

∫Ω𝑐
𝒘𝟏 ∙ 𝑑𝑖𝑣(𝝈)𝑑𝑣 = 0, (A12) 

∫Ω𝑐
𝑤2(𝜂𝑑𝜃̇ + 𝜂𝑑𝑊12 − 𝜎𝑑

21 + 𝜎𝑑
12 − 𝐾𝛻2𝜃)𝑑𝑣 = 0 . (A13) 

Through the divergence theorem and boundary conditions in Eqs. (A8) (A9), we can get 

the following element-level equations 
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∫Ω𝑐

𝜕𝑁𝐴

𝜕𝑥
𝝈𝑑𝑣 = ∫Γ𝑐

𝑁𝐴𝒕𝑑𝑎, (A14) 

∫Ω𝑐
𝑁𝐴(𝜂𝑑𝜃̇ + 𝜂𝑑𝑊12 − 𝜎𝑑

21 + 𝜎𝑑
12)𝑑𝑣 = −∫Ω𝑐

𝐾
𝜕𝑁𝐴

𝜕𝑥
𝛻𝜃𝑑𝑣. (A15) 

We solve the coupled equations through the Newton’s method by defining two residuals 

𝑹𝒖
𝑨 and 𝑅𝜃

𝐴 for the displacement and the director 

𝑹𝒖
𝑨 = −∫Ω𝑐

𝜕𝑁𝐴

𝜕𝑥
𝝈𝑑𝑣 + ∫Γ𝑐

𝑁𝐴𝒕𝑑𝑎, (A16) 

𝑅𝜃
𝐴 = −∫Ω𝑐

(𝑁𝐴(𝜂𝑑𝜃̇ + 𝜂𝑑𝑊12 − 𝜎𝑑
21 + 𝜎𝑑

12) + 𝐾
𝜕𝑁𝐴

𝜕𝑥
𝛻𝜃)𝑑𝑣. (A17) 

In addition to the residuals, ABAQUS/Standard requires the matrix AMATRX to be 

evaluated and updated for the iterative Newton solver. AMATRX is defined as an array 

containing the contribution of this element to the Jacobian (stiffness) or other matrix of the 

overall system of equations, which is given by: 

, 

(A18) 

where the Jacobian stiffness 𝐾𝑢𝑖𝑢𝑘
𝐴𝐵 = −𝜕𝑅𝑢𝑖

𝐴 𝜕𝑢𝑘
𝐵⁄ , 𝐾𝑢𝑖𝜃

𝐴𝐵 = −𝜕𝑅𝑢𝑖

𝐴 /𝜕𝜃𝐵, 𝐾𝜃𝜃
𝐴𝐵 = −𝜕𝑅𝜃

𝐴/𝜕𝜃𝐵, 

and 𝐾𝜃𝑢𝑖

𝐴𝐵 = −𝜕𝑅𝜃
𝐴/𝜕𝑢𝑖

𝐵 with B={1,2,3 …} denoting the nodes of the element, and 𝑢1 and 𝑢2 

denote the displacements in the 𝑋1 and 𝑋2 directions, respectively. In this study, we utilize a 2D 

plane-strain 4-node linear quadrilateral elements, and hence AMATRX is a 12 by 12 matrix.  

Here we rewrite each Jacobian stiffness in the index notation   
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 𝐾𝑢𝑖𝑢𝑘
𝐴𝐵 =

−𝜕𝑅𝑢𝑖
𝐴

𝜕𝑢𝑘
𝐵 =

𝜕(∫Ω𝑐

𝜕𝑁𝐴

𝜕𝑥𝑗
𝜎𝑖𝑗𝑑𝑣−∫Γ𝑐

𝑁𝐴𝒕𝑑𝑎)

𝜕𝑢𝑘
𝐵 = ∫Ω𝑐

𝜕𝑁𝐴

𝜕𝑥𝑗
(𝐽−1𝐹𝑙𝑁𝐹𝑗𝑀

𝜕𝐽[𝝈𝑭−𝑇]𝑖𝑀

𝜕𝐹𝑘𝑁
)

𝜕𝑁𝐵

𝜕𝑥𝑙
𝑑𝑣 −

∫Γ𝑐
𝑁𝐴𝑁𝐵 𝜕𝒕

𝜕𝑢𝑘
𝑑𝑎, 

(A19) 

with [ ]𝑖𝑗 represents the matrix component. We assume there is no surface traction, and thereby 

the last term in Eq. (A19) can be eliminated. Substitute Eq. (A6), and 𝜕𝐽[𝝈𝑭−𝑇]𝑖𝑀/𝜕𝐹𝑘𝑁 can be 

expressed as  

𝜕𝐽(𝝈𝑭−𝑇)𝑖𝑀

𝜕𝐹𝑘𝑁
= 𝐾𝑖𝑀,𝑘𝑁

1 + 𝐾𝑖𝑀,𝑘𝑁
2 + 𝐾𝑖𝑀,𝑘𝑁

3 − 𝐾𝑖𝑀,𝑘𝑁
4 + 𝐾𝑖𝑀,𝑘𝑁

5 + 𝐾𝑖𝑀,𝑘𝑁
6 , (A20) 

where  

𝐾𝑖𝑀,𝑘𝑁
1 = 𝜕𝜂0[𝜺̇𝑭

−𝑇]𝑖𝑀/𝜕𝐹𝑘𝑁, (A21) 

𝐾𝑖𝑀,𝑘𝑁
2 = 𝜕𝜇(𝑙⊥

−1[𝑭𝒍𝟎]𝑖𝑀 − 𝐹−1
𝑀𝑖)/𝜕𝐹𝑘𝑁, (A22) 

𝐾𝑖𝑀,𝑘𝑁
3 = 𝜕𝜇(𝑙∥

−1 − 𝑙⊥
−1)[𝑸𝑭−𝑇]𝑖𝑀/𝜕𝐹𝑘𝑁, (A23) 

𝐾𝑖𝑀,𝑘𝑁
4 = 𝜕𝐾[(𝛻𝒅)𝑇𝛻𝒅 ∙ 𝑭−𝑇]𝑖𝑀/𝜕𝐹𝑘𝑁, (A24) 

 𝐾𝑖𝑀,𝑘𝑁
5 = 𝜕𝜂𝑑[𝑯𝑭−𝑇]𝑖𝑀/2𝜕𝐹𝑘𝑁, (A25) 

𝐾𝑖𝑀,𝑘𝑁
6 = 𝜕2𝐵𝐽(𝐽 − 1)𝐹−𝑇

𝑀𝑖/𝜕𝐹𝑘𝑁, (A26) 

with tensor 𝜺̇ = (𝑭̇𝑭−1 + 𝑭−𝑇𝑭𝑇̇)/2, 𝑸 = 𝒅 ⊗ 𝑭𝒍𝟎̂𝑭
𝑻𝒅, and 𝑯 = 𝒅 ⊗ (𝒅̇ − 𝑾𝒅) − (𝒅̇ −

𝑾𝒅) ⊗ 𝒅. Therefore, 𝐾𝑖𝑀,𝑘𝑁
1  to 𝐾𝑖𝑀,𝑘𝑁

6  can be calculated as 

𝐾𝑖𝑀,𝑘𝑁
1 =

𝜂0

2
(

1

∆𝑡
[𝑭−1𝑭−𝑇]𝑁𝑀𝛿𝑘𝑖 − [𝑭̇𝑭−1]𝑖𝑘[𝑭

−1𝑭−𝑇]𝑁𝑀 +
1

∆𝑡
𝐹𝑀𝑘

−1𝐹𝑁𝑖
−1 −

[𝑭−1𝑭̇𝑭−1]𝑀𝑘𝐹𝑁𝑖
−1) − 𝜂0[𝜺̇𝑭

−𝑇]𝑖𝑁𝐹𝑀𝑘
−1, 

(A27) 

𝐾𝑖𝑀,𝑘𝑁
2 = 𝜇𝑙⊥

−1𝛿𝑘𝑖𝑙0𝑁𝑀
+ 𝐹𝑁𝑖

−1𝐹𝑀𝑘
−1, (A28) 
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𝐾𝑖𝑀,𝑘𝑁
3 = 𝜇(𝑙∥

−1 − 𝑙⊥
−1)(𝐷𝑖𝑁𝐹𝑀𝑘

−1 + 𝑛𝑖[𝑭
−𝟏𝑭𝒍𝟎̂]𝑀𝑁𝑛𝑘 − [𝑸𝑭−𝑻]𝑖𝑁𝐹𝑀𝑘

−1), (A29) 

𝐾𝑖𝑀,𝑘𝑁
4 = −𝐾([(𝛻𝒅)𝑇𝛻𝒅 ∙ 𝑭−𝑇]𝑘𝑀𝐹𝑁𝑖

−1 − [(𝛻𝒅)𝑇𝛻𝒅]𝑘𝑖[𝑭
−𝟏𝑭−𝑇]

𝑀𝑁
− [(𝛻𝒅)𝑇𝛻𝒅 ∙

𝑭−𝑇]𝑖𝑁𝐹𝑀𝑘
−1), 

(A30) 

 𝐾𝑖𝑀,𝑘𝑁
5 =

𝜂𝑑

2
(−𝑑𝑖

𝜕𝑊𝑎𝑏

𝜕𝐹𝑘𝑁
𝑑𝑏 +

𝜕𝑊𝑖𝑏

𝜕𝐹𝑘𝑁
𝑑𝑏𝑑𝑎)𝐹𝑀𝑎

−1 −
𝜂𝑑

2
[𝑯𝑭−𝑻]𝑖𝑁𝐹𝑀𝑘

−1, (A31) 

𝐾𝑖𝑀,𝑘𝑁
6 = 2𝐵𝐽((2𝐽 − 1)𝐹𝑁𝑘

−1𝐹𝑀𝑖
−1 − (𝐽 − 1)𝐹𝑁𝑖

−1𝐹𝑀𝑘
−1), (A32) 

where tensor 𝑫 = 𝒅 ⊗ 𝒍𝟎̂𝑭
𝑻𝒅, ∆𝑡 represents the time increment at each step, 𝒅̇ = (𝒅𝑛+1 −

𝒅𝑛)/∆𝑡 with variable 𝒅𝑛+1 and 𝒅𝑛 the directors at increment steps 𝑛 + 1 and 𝑛, respectively, 

and 𝛿𝑘𝑖 represents Kronecker delta. 𝜕𝑊𝑎𝑏/𝜕𝐹𝑘𝑛 in Eq. (A31) is 

𝜕𝑊𝑎𝑏

𝜕𝐹𝑘𝑁
=

1

2
(−[𝑭̇𝑭−1]𝑎𝑘𝐹𝑁𝑏

−1 + [𝑭̇𝑭−1]𝑏𝑘𝐹𝑁𝑎
−1) +

1

2∆𝑡
(𝛿𝑎𝑘𝐹𝑁𝑏

−1 − 𝛿𝑏𝑘𝐹𝑁𝑎
−1). (A33) 

To alleviate the convergent issue, following Chester et al. [95], we assume 𝜕(∇𝒅) 𝜕𝑭⁄ =

0 in deriving Eq. (A24), and approximate Eq. (A30) as 

𝐾𝑖𝑀,𝑘𝑁
4 = −𝐾[(𝛻𝒅)𝑇𝛻𝒅 ∙ 𝑭−𝑇]𝑖𝑁𝐹𝑀𝑘

−1). (A34) 

Similarly, the Jacobian stiffness 𝐾𝑢𝑖𝜃
𝐴𝐵  is 

𝐾𝑢𝑖𝜃
𝐴𝐵 = ∫Ω𝑐

𝜕𝑁𝐴

𝜕𝑥𝑗
(𝐾𝑖𝑗,𝜃

1 − 𝐾𝑖𝑗,𝜃
2 + 𝐾𝑖𝑗,𝜃

3 )𝑁𝐵𝑑𝑣 (A35) 

where  

𝐾𝑖𝑗,𝜃
1 = 𝜕𝜇(𝑙∥

−1 − 𝑙⊥
−1)𝑄𝑖𝑗/𝜕𝜃 (A36) 

𝐾𝑖𝑗,𝜃
2 = 𝜕[𝐾(𝛻𝒅)𝑇𝛻𝒅]𝑖𝑗/𝜕𝜃, (A37) 

𝐾𝑖𝑗,𝜃
3 = 𝜕𝜂𝑑𝐻𝑖𝑗/2𝜕𝜃, (A38) 

They can be calculated as: 
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𝐾𝑖𝑗,𝜃
1 = 𝜇(𝑙∥

−1 − 𝑙⊥
−1)[

𝜕𝑑𝑖

𝜕𝜃
[𝑭𝒍𝟎̂𝑭

𝑻𝒅]𝑗 + 𝑑𝑖[𝑭𝒍𝟎̂𝑭
𝑻
𝜕𝒅

𝜕𝜃
]𝒋], 

(A39) 

𝐾𝑖𝑗,𝜃
2 = 𝐾[

𝜕(𝛻𝒅)𝑇

𝜕𝜃
∇𝐝 + (𝛻𝒅)𝑇 𝜕∇𝐝

𝜕𝜃
]𝑖𝑗, (A40) 

𝐾𝑖𝑗,𝜃
3 =

𝜂𝑑

2
(𝑍𝑖𝑗 − 𝑍𝑗𝑖), (A41) 

where tensor 𝒁 =
𝜕𝒅

𝜕𝜃
⊗ (𝒅̇ − 𝑾𝒅) + 𝒅 ⊗ (

𝜕𝒅̇

𝜕𝜃
− 𝑾

𝜕𝒅

𝜕𝜃
), and 𝜕𝒅/𝜕𝜃 = (− sin(𝜃) , cos(𝜃) , 0).  

The Jacobian stiffness 𝐾𝜃𝜃
𝐴𝐵 is 

𝐾𝜃𝜃
𝐴𝐵 = ∫Ω𝑐

(𝑁𝐴𝑁𝐵(𝐾𝜃,𝜃
1 + 𝐾𝜃,𝜃

3 − 𝐾𝜃,𝜃
4 ) +

𝜕𝑁𝐴

𝜕𝑥
𝐾𝜃,𝜃

2 𝜕𝑁𝐵

𝜕𝑥
)𝑑𝑣 

(A42) 

where 𝐾𝜃,𝜃
1 , 𝐾𝜃,𝜃

2 , 𝐾𝜃,𝜃
3  and 𝐾𝜃,𝜃

4  are: 

𝐾𝜃,𝜃
1 =

𝜂𝑑𝜕𝜃̇

𝜕𝜃
=

𝜂𝑑

∆𝑡
, (A43) 

𝐾𝜃,𝜃
2 = 𝐾, (A44) 

𝐾𝜃,𝜃
3 = 𝜇(𝑙∥

−1 − 𝑙⊥
−1)𝑆21, (A45) 

𝐾𝜃,𝜃
4 = 𝜇(𝑙∥

−1 − 𝑙⊥
−1)𝑆12, (A46) 

with tensor 𝑺 =
𝜕𝒅

𝜕𝜃
⊗ 𝑭𝒍𝟎̂𝑭

𝑻𝒅 + 𝒅 ⊗ 𝑭𝒍𝟎̂𝑭
𝑻 𝜕𝒅

𝜕𝜃
. 

The Jacobian stiffness 𝐾𝜃𝑢𝑘

𝐴𝐵  is  

𝐾𝜃𝑢𝑘

𝐴𝐵 = ∫Ω𝑐
𝑁𝐴(−𝐾𝜃,𝑘𝑁

1 + 𝐾𝜃,𝑘𝑁
2 + 𝐾𝜃,𝑘𝑁

3 )
𝜕𝑁𝐵

𝜕𝑥𝑎
𝐹𝑎𝑁𝑑𝑣, (A47) 

where the components 𝐾𝜃,𝑘𝑁
1 , 𝐾𝜃,𝑘𝑁

2  and 𝐾𝜃,𝑘𝑁
3  are 

𝐾𝜃,𝑘𝑁
1 = 𝜇(𝑙∥

−1 − 𝑙⊥
−1)[𝑑2𝛿1𝑘[𝒍𝟎̂𝑭

𝑻𝒅]𝑁 + 𝑑2[𝑭𝒍𝟎̂]1𝑁𝑑𝑘], (A48) 

𝐾𝜃,𝑘𝑁
2 = 𝜇(𝑙∥

−1 − 𝑙⊥
−1)[𝑑1𝛿2𝑘[𝒍𝟎̂𝑭

𝑻𝒅]𝑁 + 𝑑1[𝑭𝒍𝟎̂]2𝑁𝑑𝑘], (A49) 
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𝐾𝜃,𝑘𝑁
3 =

𝜂𝑑

2
([𝑭̇𝑭−1]2𝑘𝐹𝑁1

−1 − [𝑭̇𝑭−1]1𝑘𝐹𝑁2
−1 +

1

∆𝑡
(𝛿1𝑘𝐹𝑁2

−1 − 𝛿2𝑘𝐹𝑁1
−1)), (A50) 

To accommodate nearly incompressible solids and mitigate volumetric locking behavior, 

we implemented the F-bar method [94,95,130]. Based on the concept of splitting the deformation 

gradient into a volumetric part and a distortional part, we have 

𝑭 = 𝑭𝑑𝑖𝑠𝑭𝑣𝑜𝑙, (A51) 

where 𝑭𝑑𝑖𝑠 = 𝐽−1/3𝑭 and 𝑭𝑣𝑜𝑙 = 𝐽1/3𝑰. The modified deformation gradient F-bar, 𝑭̅, is defined 

as the multiplication of the distortional part of 𝑭 and the cubic root of the determinant of the 

deformation gradient 𝑭𝒄 at the centroid of each element  

𝑭̅ = (
det (𝑭𝒄)

𝐽
)1/3𝑭. (A52) 

It is clear that the distortional/volumetric split of 𝑭̅ is  
𝑭̅ = 𝑭̅𝑑𝑖𝑠𝑭̅𝑣𝑜𝑙, (A53) 

with 𝑭̅𝑑𝑖𝑠 = 𝑭𝑑𝑖𝑠 and 𝑭̅𝑣𝑜𝑙 = (𝑭𝒄)𝑣𝑜𝑙. Thereby, the volumetric part changes to that at the centroid 

of the element, meaning that all the integration points in one element share the same volumetric 

deformation. We replace 𝑭 by 𝑭̅ in the Cauchy stress Eq. (A6) so that the Cauchy stress at each 

Gauss point is computed as 𝝈(𝑭̅). To simplify the implementation and calculation of the UEL, 

we still use 𝑭 in Eq. (A7), but only applied 𝑭̅ to the residual equation related to the displacement, 

Eq. (A16). As a consequence, only the stiffness component 𝐾𝑢𝑖𝑢𝑘
𝐴𝐵  needs to be modified to [94,95] 

𝐾𝑢𝑖𝑢𝑘
𝐴𝐵̅̅ ̅̅ ̅̅ ̅ = 𝐾𝑢𝑖𝑢𝑘

𝐴𝐵 + ∫
𝜕𝑁𝐴

𝜕𝑥𝑗
𝒒((

𝜕𝑁𝐵

𝜕𝑥𝑙
)
𝑐
−

𝜕𝑁𝐵

𝜕𝑥𝑙
) 𝑑𝑣, (A54) 

where (𝜕𝑁𝐵/𝜕𝑥𝑙)𝑐 is the gradient operator at the centroid of an element, and 𝒒 is a fourth-order 

tensor defined by 

𝒒 =
1

2
𝑨: (𝑰 ⊗ 𝑰) −

1

2
(𝝈 ⊗ 𝑰), (A55) 
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with 𝐴𝑖𝑗𝑘𝑙 = 𝐽−1𝐹𝑙𝑁𝐹𝑗𝑀
𝜕𝐽[𝝈𝑭−𝑇]𝑖𝑀

𝜕𝐹𝑘𝑁
 the spatial elasticity tensor.  

A.3 Supplementary Figures 

 

Fig. S1 FEM results of normalized elastic energy density distributions around the crack tip. Distributions 

of elastic free energy density around the crack tip at remote strain 𝜀∞ = 10% for LCEs with the initial 

director (a) 𝜃0 = 90°, (b) 𝜃0 = 30°, (c) 𝜃0 = 45°, and (d) 𝜃0 = 60°.   
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Fig. S2 FEM results of the director distributions at different 𝜀∞ around the crack tip. FEM simulation 

results of the director distributions at the crack tip at different remote strains from 𝜀∞ = 0.1% to 10% for 

LCEs with (a) 𝜃0 = 90°, (b) 30°, (c) 45°, (d) 60°.   
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Fig. S3 FEM results of the relative angles at the crack tip at different 𝜀∞ around the crack tip for LCEs 

with (a) 𝜃0 = 90°, (b) 30°, (c) 45°, and (d) 60°. The dots represent the direction of the maximum 

principal strain relative to the initial director; the solid curves represent the direction of the maximum 

principal stress and tangent direction of the crack surface relative to the initial director; the dashed curves 

represent the current director relative to the initial director. Note that for (b) 𝜃0 = 30°, (c) 45° and (d) 

60°, at 𝜀∞ = 10% and 2%, the clockwise director rotation at one side of the domain wall is added by 

180° due to the symmetry of the director. 
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Fig. S4 FEM results of the spontaneous strain distributions around the crack tip. Distributions of the 

maximum principal spontaneous strain around the crack tip at remote strain 𝜀∞ = 10% for LCEs with the 

initial director (a) 𝜃0 = 90°, (b) 30°, (c) 45°, and (d) 60°.   
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Fig. S5 Comparing the deformation of the FEM elements around the crack tip for LCEs and neo-Hookean 

materials at 𝜀∞ = 4%.  (a) Undeformed element. Crack opening and element deformation at 𝜀∞ = 4% 

for (b) a neo-Hookean material and a LCE with (c) 𝜃0 = 90° and (d) 𝜃0 = 30°. 
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Fig. S6 DIC measurement of the displacement at 𝜀∞ = 20%. Distributions of the normalized 

displacement 𝑢2/𝐿 around the crack for the LCEs with (a) 𝜃0 = 45° and (b) 𝜃0 = 30°.   
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