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Topological and group theoretical analysis in dynamic NMR spectroscopy··· 

Abstract 

K. Balasubramanian 

Department of Chemistry and Lawrence Berkeley Laboratory 

University of California 

Berkeley, California 94720 

A method is developed for constructing NMR reaction graphs which give the 

NMR signal and intensity ratio patterns. This is done by generating the 

irreducible representations spanned by nuclei (whose NMR are of· interest) with 

generating functions obtained from group cycle indices ( GCCI' s). The method 

generates the symmetry species spanned by the nuclei both in the rigid and 

non-rigid groups without having to know the Character of the representation 

spanned by nuclei. For non-rigid molecules which exhibit internal rotations 

the GCCI' s can be obtained without· having to know their character tables. We 

outline a double coset technique to obtain the equivalence classes of nuclei 

and thus to construct NMR reaction graphs. Using this technique one can 

obtain the NMR signal and intensity ratio patterns. We introduce the concept 

of restricted character cycle indices (RCCI' s) which generate the irreducible 

representations spanned by a given equivalence class of· nuclei. This in turn 

enables the prediction of coalesance, splitting patterns and intensiy ratios 

of NMR signals in dynamic processes. Applications to spontaneous generation 

of chirat signals are outlined, where a non-rigid molecule which possesses no 

chiral signals suddenly possess chiral signals (which can· be resolved with 

chiral shift reagents) at lower temperatures. 
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1. Introduction 

Topological and group theoretical analysis of dynamical systems such as 

molecules exhibiting large amplitude non-rigid motions is of considerable 

interest 1-13 in recent yearse Several of these topological schemes describe 

essentialy interrelationship · among a set of isomers which get interconverted 

in to one another by non-rigid motions. They provide insight not only into 

pathways and mechanisms which interconvert such isomers but also several 

important experimental applications such as spont~geous generation of optical 

activity. Even though the area of isomerization reactions and react.ion graphs 

obtained thus seem to be quite well studied this is not the case in the area 

of dynamic NMR spectroscopy. Dynamic NMR. is potentially useful in understand-

ing large amplitude non-rigid motions and interconversions that take place in 

molecules as a function of temperature at experimentally feasible conditions. 

Experimentally one observes coalescene and splitting of certain signals 

which is a consequence of some dynamic exchanges that are so rapid that at 

high temperatu~s one sees only an average effect. (Coalescene of signals). 

The recent advent of dynamic NMR spectrometers, however, has enabled reso-

lution of these coalesced signals at experimentally feasible conditions by 

appropriately adjusting the shutter speeds. While rapid experimental progress 

has beenaccomplished in this field, theoretical understanding and representa-

tions of the~e dynatdc phenomena seems to be in progress. We undertake the 

present investigation with the intent of understanding dynamic NMR coalescence 
a 

and intensity patterns with/topoLogical scheme. We develop generating func-

tion techniques which provide for not only the number of NMR signals (by way 

of generating the number of totally symmetric representations spanned by 

nuclei) but also all irreducible representations spanned by the nuclei present 

in the molecule whose NMR is of interest. · Using the method of subduced repre-



sentations one can correlate the symmetry species spanned by the nuclei from a 

larger group to its subgroup which enables the prediction of the splitting 

patterns of NMR signals. We also develop double coset methods which provide 

the intensity patterns of both coalesced and split signals in dynamic NMR 

spectroscopy. The methods developed };t,eJ:e should be applicable to not only 

dynamic system .but also system which exhibit distortions such as ~n­

Teller distorions. We also apply the techniques developed here to an 

interesting problem namely spontaneous generation of chiral NMR Signals in 

dynamic processes., In section 2 we outline theoretical methods, Section 3 

discusses double coset methods for intensity patterns, in Section 4 we obtain 

generators for symmetry species in the equivalence classes of nuclei using the 

concept of RCCI's, Section 5 outlines an application of the techniques 

developed here to the phenomenon of spontaneous generation of chiral signals 

and in the last section We give an example. 

2. Theoretical Methods 

A. Preliminaries and Definitions 

Let G be therotationalsubgroup or the full point group of the molecule. 

Note that we will let G be the rotational subgroup if NMR can differentiate 

chiral nuclei by appropraite chiral shift reagents. Otherwise G is the point 

group. Let D be the set of nuclei whose magnetic resonance is under consi-

deration. Let ·ID I denote the number of elements in D. Let R be a set 

containing just 2 labels which we denote by ~ and ~· Consider a map fi from 

D to R defined as follows. 



if i ~ j' 

if i = j 0 

4 

d j ED' j = 1' 2 • • • I D I e 

(2 .. 1) 

To illustrate we could consider the five 19F nuclei as the D set. Then, for 

example the map £1 is shown below where we represent dj by j. 

f]. (1) -~ 

fl(2) -!; 
£1(3) ... ~ (2.2) 

fl(4) -~ 

£1(5) =~ 

Two maps £1 and fj are said to be equivalent if there exists a g in G such 

that 

(2.3) 

For example, if one considers the rotational group o3 of the rigid PF5 mole­

cule and if 1 ,2 and 3 are equitorial and 4 and 5 are axial nuclei then the 

maps f 1 and f 2 are equivalent since they are transformable into one another by 

3-fold rotation. It can be seen that if two maps fi and fj are equivalent 

then the nuclei i and j are also magnetically equivalent. Thus the group G 

divides D into equivalence classes, the number of equivalence clases gives the 

number of NMR. signals and the ratio of the number of elements in various 

classes give the intensity ratios of these signals. 
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B. Generating function techniques 

The problem is to develop a general method which will give the number of 

equivalence classes and the ratios of the number of elements in various equiv-

alence classes. The present author developed a method for the former problem 

using cycle indices and Polya 's theorem. 1 ,l4 In this paper we consider more 

general techniques for studying coalescence and intensity patterns in dynamic 

NMR.. With each element r£R let us associate a weight w(r) which is just a 

formal symbol used to book keep the number of ~'-s. and ~' s in any function 

fi. For example, we l!l~Y associate a weight a1 with !;. and a weight .~ with 

~· Define the weight of any map fi to be 

(2.4) 

It can be easily seem that 

where n is the number of nuclei. Define the generalized character cycle index 

( GCCI) of a group G corresponding to the irreducible reprsentation r whose 

character is x as 

(2.6) 

where a g£G has b1 cycles of legnth 1, b2 cycles of length 2 etc. Equiva­

lently the cycle type of g is (b1 , b2 , ••• ). 

15 
Then using the projection operator methods, Williamsonjand more recently 

Merris16(for higher dimensional represen·tations) proved that the generating 
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function for the number of irreducible representation in F, the set of maps 

from D or R is given by 

(2.7) 

n 1 n2 X gives number of times x occurs in the 
lb.e coefficent of. a term a 1 a2 in GF 
set of maps from D to R with the weight a1n 1~n2 • In particular, the coef-

ficient of a1n-l~ in G.F.x. gives· the number of times x occurs in the repre-

sentation spanned· by the set of · nuclei. This 1s· indeed quite elegant and 

advantageous over conventional techniques in that it does not require the 

character of the representation spanned by the nuclei. Further GCCI's for the 

symmetry groups of non-rigid molecules can be obtained from GCCPs of 1111ch 

smaller groups. 17 , 18 

We will now illustrate (2.7) with the non-rigid PF5 molecule which exhi-

bits Berry pseudo rotation. The rotational subgroup of the non-rigid PF 5 is 

s5 • If one considers 19F NMR of PF5 then the set D consists of 5 l9F 

nuclei. Consider for example, the G1 representation of this molecule. The 

corresponding GCCI and G.F.x are shown below. 

(2.8) 

(2.9) 
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'!be coefficent 

spanned by the 

of aia2 in (2.9) is 1 implying there is one G1 representation 

19 
5 F nuclei. Table 1 shows the total generating function for 

the non-rigid PF 5 molecule. In this table we follow the notation for the 

irreducible representations of an earlier paper of the author. By collecting 

4 all the coefficients of a1a2 one can immediately conclude that the representa-

tion spanned by the 19F nuclei is given by 2.10. 

(2.10) 

This is, of course, a trivial example but we used this for the sake of illus-

tration. The number of A1 (totally symmetric representations) representations 

in the representation spanned by nuclei gives the number of NMR Signals by 

Polya's theorem. This is because the number of A1 representations is obtained 

from GCCI which is also just the ordinary cycle index defined by Polya19 for 

the enumeration of equivalence clases. Thus number of A1 representations 

gives the number of equivalence classes and thus the number of NMR Signals. 

'l'he present author introduced a topological · description for the interconver-

2 
sion of nuclei in dynamic proceses. In that scheme nuclei are represented by 

verticles and the possible interconversions among them by edges. A NMR reac-

tion graph is a graph in which two nuclei are connected if they are transform-

' able in to one another by an operation in the rotational subgroup. Such a 

diagram for the 19F nuclei of the non-rigid PF5 molecule is shown in fig. 1. 

In the next section we will consider the splitting patterns of NMR graphs by 

way of correlation of the symmetry species spanned by these diagrams. 

C. Correlation of symmetry species and NMR reaction graphs 

The symmetry group of the rigid PF5 molecule is n3h and its rotational 
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subgroup is n3 ., In this example there are no enantiotopic protons in both the 

rigid and non-rigid molecular groups so that one can treat both the cases by 

rotational subgroup. The set of irreducible reprsentatio'ns spanned by. the 

nuclei in the rotational group of the rigid molecule can be found by two 

methodso One method is to obtain the generating functions in the group n3 • 

Such a generating function is shown in Table 2. Note that by collecting the 

coefficents of at~ in various. irreducible representations we find r F in n3 to 

be· 

(2.11) 

The same expression can also be obtained by correlating the symmetry species 

of s5 to n3 by way of subduced representation. The A1 representation of s5 

correlates to A1 of n3 and c1 splits in to A1+A2+E so that expression (2.10) 

correlates to 2 .11. Note that there are two A1 representations in r F in the 

group n3 indicating there are 2 equivalence classes for the rigid molecule. 

This establishes the fact that a single NMR signal of the non-rigid moelcule 

splits into 2 signals in dynamic NMR at lower temperatures. The NMR reaction 

graph of the rigid molecule is shown in figure 2 which contains 2 compo-

nents. Number of components in the NMR reaction graph corresponds to the 

number of NMR signals and the ratio of the number of vertices in various 

components gives the intensity ratios of the corresponding NMR signals. Thus 

we can infer that the single NMR peak of the non-rigid mlecule splits into two 

signals with the intensity ratio 3:2. The method outlined here eventhough 

enables the prediction of the splitting and coalescence patterns of the NMR 

signals it does not quite enable construction of the NMR reaction graph (since 

it. gives only the number of components and not the number of vertices in each 
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component) and thus cannot predict the intensity patterns in dynamic pro-

ceases. For this purpose we outline a double coset method in the next sec-

tion • 

3. Double Coset Method for Constructing The NMR Reaction graph and predic-

tion of Coalescence and intensity patterns. 

Let Sn denote the complete permutation group containing n! Permutations 

of nuclei. Since we are choosing n-1 a1 .labels and 1 ~ label to label the -
nuclei the group Sn_1xs1 (S1is the group containing just the identity element) 

is known as the label subgroup L which is isomorphic to Sn_1• L is in general 

a subgroup of Sn• Recall that G is the rotatinal sugroup or the point group 

of the molecule. Foran element sESn the set LsG is known as the double coset 

of. L and G . Any map fi defined in Section 2.4 can be considered as an ele-

ment in Sn• This is because we can consider the identity element of Sn as the 

map fn which maps first n-1 nuclei to ~1 and the nth nucleus to ~2 by defin­

tion. Then any other map can be obtained by applying sESn on fn• To illus-

t rate consider PF 5 • The map f 5 labels the nuclei ~1~1~1~1~. Then for 

example, the permutation (12345) generates the following labeling of nuclei: 

~~1~1~1 ~1 •. Thus the map f 1 can be considered as an element in s5 • 

TWo elements s 1 and s 2 are said to be in the same double coset if 

(3.1) 

Then it can be seen that the maps corresponding to s 1 and s 2 are equivalent 

and consequently, the corresponding nuclei are also equivalent. It can be 
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. 
proved that (3 .1) is an equivalance relation and thus the double cosets 

generate equivalence classes of nuclei. The elements of a set S== {s1 , 

s 2 , o .... sn} are. said to be distinct representatives of the double cosets or the 

equivalence classes of nuclei if the group Sn can be obtained as a disjoint 

decompostion of the double cosets formed by the elements of S. In symbols, 

the elements of·s aredistinct representatives if 

and 

S·' • 
n 

(3.2) 

Where 0 is the null set. The number of elements in S, M, can be found using 

the generating function techniques outlined in Section 2B. by way of generat-

ing number of A1 representations in the set of nuclei. 

The number of elements in any double coset LsG is given by (3.3) 

(3.3) 

Thus using (3.3) one can obtain the number of elements in the double coset 

without having to construct the coset. This is indeed quite advantageous 

because for our present purpose we only need to know the number of nuclei in 

each equivalance class (in fact ratio of nuclei in various classes) for the 

prediction of intensity ratio patterns. The number of elements in a double 

coset in general, is not equal to the number of elements in the corresponding 

equivalence . class of nuclei. This is because two elements in a double coset 
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. 
can generate the same map. To illustrate for the PF5 molecule the identity in 

s5 and the permutation (1234) generates the· same map f
5

• Nevertheless, in 

general the ratio of the number of elements in various double cosets is 

exactly the ratio of the number of elements in the corresponding equivalence 

classes. This is indeed very useful since we are interested in the intensity 

ratios of various peaks which corresponds to the ratio of the number of ele-

ment~ in the corresponding equivalence class. Thus we arrive at the following 

important relation& For a set of distinct representatives S = {s1 ,s2 , ••• sm}, 

which generate the double coset decomposition of Sn we have 

••• ILs Gl m 

Thus the intensity ratios of various signals is given by (3.5) 

1 1 
••• 

1 
-1 ILl\ s Gs I m m 

I 

Also the number of elements in an equivalence class of nuclei corresponding to 

the double coset LsiG is given by (3.6). 

Number of elements in an ] 

equivalence class of nuclei 

- • (3.6) 

The double cosets of nuclei also facilitate elegant correlation of 

equivalence classes of nuclei in dynamic processes such as large amplitude 

motions. Each double coset generates an equivalence class of nuclei. The 
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number of totally symmetric representations in any double coset is unity. The 

splitting patterns of equivalence classes of nuclei in dynamic processes can 

be found by correlating the symmetry species in the equivalence classes of 

nuclei. 

We will now illustrate the above method of double cosets with the example 

of PF5 • For the non-rigid molecule the rotational group is s5 • Thus G = s5 

and L • s4 .. This is a trivial case whe.re G is isomerphic to Sn. . Thus any 

s£Sn is a distinct representative and there is _?nly one such double coset 

since for any s£8n' LsG "" s5 • Thus all the five nuclei are equivalent and 

they span a single equivalence class C = {1,2,3,4,5,}. The irreducible repre­

sentations contained in C are A1 and G, (cf. 2.10). Thus when one considers 

rigid molecule whose rotational group G ~ n3 the class C splits into 2 classes 

c1 and ~. In terms of the double cosets the single double coset splits into 

2 double cosets. We will now look at this in detail as an illustration. The 

group G is 

G • n3 • {e, (123), (132), (12)(45), (13)(45), (23)(45)} 

L • s4 • {e, (12), (13), (14), (23), (24), (34), (123), (132), (124), 

(142)' (234), (134)' (143)' (1234) , (1243)' (1324)' (1342)' (1423)' 

(1~32), (12)(34), (14)(23), (13)(24)} 

We have to look for S = {s1 ,s 2} such that 
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One obvious choice is s 1 = e£55 where e is the identity. The number of ele­

ments in this double coset is 

-1 l!Jill 
ILeGI ... ILIIGI/ILf\ e Gel = lL1\GT = 24.6 ... 48 

3 

Thus the number of elements in the corresponding equivalence class of nuclei 

is given by 

. ~eG 
n 5 

5 

= 5.48 ... 2. 
5! 

The elements of the equivalence class c1 can be generated by first operating e 

on f 5 which is f 5 and any other element in G or the doulbe coset LeG. Thus it 

can be seen that c1 ... {f5 ,f4}. By choosing s 2 to be (12345) we obtain the . 

second double coset. We choose s 2 • (12345) since this is not present in the 

product LG. The number of elements in this double coset is 

24.6 72 
=~= • 

consequently the number of element is the second equivalence class is given by 

5.72 =--5! a 3. 

The second class is easily constructed by operating (12345) on f 5 and generat­

ing the other elements by either operating the resulting map by elements of 

G. It can be seen that ~ =- {f 1 ,f 2 ,f 3}. One can immediately obtain NMR 

reaction graph by connecting all elements in any Ci. The graph thus obtained 
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is shown in fig. 2. Of course, to predict the nature of intensity and split-

ting patterns of NMR Signals it is· not necessary to explictly construct all 

the double cosets. We need to know only the number of double cosets and the 

ratio of the number of elements in all double cosets which in turn give the 

number and intensity ratios of NMR Signals, respectively. The number of 

double cosets can be found by generating number of A1 representations as shown_ 

in Sec. 2c. The_ ratio ·of the numer of elements in all the double cosets is 

obtained. with the, formula (3 .5). Thus one- imme1iiately infers using these 

techniques that the single 19F NMR peak splits into 2 peaks in dynamic NMR 

with the intensity ratio 1/2 : 1/3 or 3:2 at lower temperatures. Q>nversely, 

the peaks with this intensity ratio will coalesce into a single peak.at higher 

temperatures. For several applications one needs to know the irreducible 

representations contained in each equivalence class of nuclei. A technique 

for this is in the next section. 

4. Generation of Symmetry Species in Each Class of Nuclei and The Assignment 

of Splitting and Coalescence Patterns. 

In order to completely assign the splitting and coalescence pattern of 

each signal -it is necessary to know the symmetry species contained in each 

equivalence class of nuclei generated by the double cosets. In earlier sec-

tions we had a method to generate only the symmetry species spanned by all 

nuclei rather than equivalence classes of nuclei. However, in order to know 

whether a given signal will split or not (or conversely coalesce) it is neces-

sary to know the irreducible representations spanned by the equivalence class 

of nuclei which gives raise to that NMR Signal. For this purpose we define 
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and use a new restricted character cycle index (RCCI) which generates symmetry 

species in each equivalence class. We define a RCCI as a character cycle 

index restricted to anequivalenceclass of nuclei. For an equivalence class C 

of nuclei we know that any g in the symmetry group G permutes nuclei only with 

in the class c. Thus the cycle product of any gEG over all nuclei can be 

separated and restricted only to the class C. Define a RCCI corresponding to 

a class C and an irreducible representation r with character x as 

(4.1) 

Where C(b 1), C(b 2), ••• are the number of 1, 2 cycles generated in the 

equivalence class C when g is applied on C. To illustrate, the two 

equivalence classes of nuclei for PF5 in n3 are c1 = {1,2,3} and c2 = {4,5}. 

The RCCI's for the various representations of n3 restricted to c1 and c2 are 

shown below. 

A 1 3 . 
RCCO 1(c

1
) =- (xl + 3x

1
x

2 
+ 2x

3
) 

6 

A 
1 3 RCCI 2( c

1
) =- (xl - 3x1x 2 + 2x

3
) 

6 

RCCIE(~l) 1 3 
- 2x ) -- (2x

1 6 3 

A 
RCCI 1(c

2
) 1 2 

3x2) = ~ 2 =- (3x
1 

+ (xl + x2) 6 

A 1 2 1 2 RCCO 2(c
2

) =- (3x
1 3x ) = - (xl - X ) 6 2 2 2 

RCCIE(C
2

) 1 2 2 = 0 =- (2x
1 - 2x ) 6 1 
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lhe restricted generating function RGFX(C) restricted to a class C generates 

the number of irreducible representations whose character ~s x restricted to 

C. It is obtained as follows: 

RGFx(c) - RCCI(~ + L 
r£R 

k (w(r)) ). 

To illustrate ·let us obtain the generating functions corresponding to RCCI' s 

of PF5 in D3h representations .. 

lcil - 1 
The coefficient of ~ a2 in RGFX generates the number of times r occurs 

(whose character is x) in the equivalence class Ci where lcil is the number of 

elements in the class ci e 
2 Thus by collecting the coefficient of a1 a2 in 

RCIC's one can immediately infer that the nculei in c1 span A1 + E representa­

tion and similarly nuclei in c2 span A1 + A2 representation. The technique 
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outlined above thus generates symmetry species in each class without having to 

know the character of the representa~ion spanned by the nuclei present in that 

classo This is indeed very advantageous for large moecules which have several 

equivalence classes containing varied number of nuclei. 

In order to theoretically predict if a given signal will split in dynamic 

NMR. at lower temperatures all that we need to do is to correlate the symmetry 

species spanned by the nuclei which give raise to that signal to rigid molecu­

lar groupe 

5. Spontaneous Generation of Chiral Signals. 

In this section we consider an important application of the techniques 

outlined in the earlier sections to spontaneous generation of chiral sig­

nals. A molecule which does not have any chiral nuclei at higher temperatures 

when it exhibits very large amplitude motions may have chiral (enantiotopic) 

nuclei at lower temperatures. The chiral nuclei can be resolved with the use 

of chiral shift reagents. This phenomenon can be called spontaneous generation 

of chiral NMR Signals. Let us consider the proton NMR of propane which 

exhibits this phenomenon. The rotational group of the non-rigid molecule can 

be represented by the generalized wreath product group c2 [ c3 , E] , where E 

corresponds to the identity group acting on the methylene protons. The rota­

tional group of the rigid molecule, however, contains only the identity and a 

2-fold rotation. Under the group c2 [ c3 ,E] there are 2 double cosets and 2 

equivalence classes of nuclei denoted by cl = {1,2,3,6,7 ,8,}, c2 = {4,5,} 

where 1,2,3,6,7,8, are methyl protons and 4 and 5 are methylene protons. 

Chiral nuclei can be differentiated in the rotational group. However, they 

become equivalent in the point group. It can be easily seen that the class 

.I 
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stucture remains unaltered if inversion operations are included in the rota-

tiona! subgroup of the non-rigid molecule. Thus there are no chiral nuclei 

for the non-rigid molecule. The corresponding NMR graph is shown in fig. 3. 

The irreducible representations spanned by e1and e2 are A1 + ~ + G and A1 + 

A2 where A1 and A2 are totally symmetric and antisymmetric representations, G 

actually has 2 degenerate two dimensional representations. The representa-

ti on A1 and A2 , and G correlate to A1 , A2 and 2(A1 + A2) in the rotational 

group e2 t of the rigid molecule so that the class J~l of the. non-rigid molecule 

contains 3 A1 representations in the rigid molecular group. Consequently, the 

class c1 of the non-rigid molecule splits into 3 classes. The double cosets 

analysis shows that these are c11 .. {1,6}, c12 = {2,8} and e13 = {3,7}. The 

class ~ of the non-rigid molecule remains unaltered. The corresponding 

reaction graph is shown in Fig. 4. If we, however, introduce the inversion 

operation in the rigid group then the group becomes e2h for the equilibrium 

conformation. The species A1, A2 and G correlate to A1 , A2 and A1 + A2 + A3 + 

A4 ~ representation in e2h. Thus the class e1 contains only 2A1 representation 

'!be double coset analysis with G = e2h gives e11 = {1,6}, e12 = 

{2,8,3,7}., 

Thus the two classes e12 and e13 in the group c2 coalesce into a single 

class in e=2h indicating the presence of chiral protons. The proton pairs 

(2 ,3) and (~ ,8) are equivalent chiral pairs. We can thus indicate 3 as "2 

(mirror image of 2) and 8 as 7. (See Fig. 4 and 5.) The corresponding NMR 
are 

graph is in Fig. 5. The analysis outlined here thus shows that there/ 2 NMR 

signals for the non-rigid molecule at high temperature with the intensity 

ratio 3:1. The higher intensity peak generates chiral signals at lower 

temperature 2 of which are chiral (and therefore can be differentiated only 

with chiral reagents) and the other is ·achiral. The over all spectrum has 4 
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signals with equal intensity. In the absence of chiral shift reagents the 

intensity pattern is 2:1:1. There are several such systems which exhibit this 

phenomenon of spontaneous generation of chiral NMR signals. 

6. An Example 

In this section we consider the molecule B(CH3 ) 3 as an example to illus-. 

trate all the concepts outlined in earlier_ sections. This molecule was con­

sidere~ by Longnet-Higgens20 as an illustration o~_a non-rigid molecule. The 

symmet :ry group of the non-rigid B( CH3 ) 3 is n3h I c3 1 • For the non-rigid mole-

cule which has 3 methyl rotors exhibiting internal rotation it can be easily 

seen that there is only one class of protons. Generating fun-ction for all the 

irreducible representation are shown in Table 3. Collecting the coefficients 

of ar~ under various irreducible representations we immediately infer that 

the protons of this non-rigid molecule span the representation A1 + E1 + I 3 • 

The molecule in its equilibrilun configuration (shown in Fig. 6) belongs to the 

point group £3h• The rotational subgroup is c3• - Generating functions for all 

irreducible representation of !;h are shown in Table 4. From this table we 

infer that the protons now span a representation shown below: 

Equivalently, we could have obtained the above result by subducing the repre­

sentations A1 , E1 and I 1 from n3h I c3] to c3h which correlate to A+, E! + E; 

and A+·+ A-_ + E! + ~ + ~ + BY' respectively. However, the latter method 

needs the character table of the non-rigid molecule, while the former method 
since 

does not need the character tables I the generating functions can be obtained 

without knowing the character tables. 1 ~' 21 In this sense generating function 
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techniques are more elegant than the ·method of subducing representations .. 

Note that protons B{CH3 ) 3 span 2 totally ~ymmetric representations in the 

Consequently, there are two equivalence classes of nuclei.. '!be 

double coset analysis in c3h shows - they are c11 = {1,4 '7} and 

{2,3,8,9,5,6} {see Fig~ 6)~ If one considers the rotational group of the 

molecule in its equilibrium configuration, the generating functions are shown 

in Table 5. !bus the nuclei span the following representations in the ~ 

group: 

3Al + 3E + 3E • 
X y 

There are 3 totally symmetric representations for the molecule in c3 group. 

The three equivalence classes are c11 = {1,4,7}, c 12 = {2,5,9} and c 13 = 

{3,5,8} .. Since the number of equivalence classes in c3 and c3h differ one 

immediately infers the existence of chiral nuclei for non-rigid molecule. '!be 

nuclei pairs {2,3), {5,6), and {8,9) are chiral pairs. 'nle non-rigid mole-

cule, however, did not have any chiral centers. !bus this molecule is an 

example of a malecule which exhibits spontaneous generation of chiral sig-

nal. '!be NMR reaction graph of this non-rigid molecule is shown in Fig. 7. 

!he corresponding reaction graphs of the rigid molecule in c3h, c3 groups are--· 

in Figures ~ and 9, respectively. A single NMR signal of the non-rigid mole-

cule splits into 3 signals with equal intensity, 2 of which are chiral. '!be 

chiral signals coalesce in the absence of chiral shift reagents resulting in 2 

signals with the intensity ration 2:1. 
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Table 1. Total Generating Function for the Non-rigid 

• 4 PF5 • The Coefficient of a1a2 Under each 

Irreducible Representation Generates the 

Number of that Irreducible Representation 

in the Equivalence Classes of Nuclei. The 
4 Coefficient of a
1

a
2 

in the Al Representation 

Generates the Number of NMR Signals 

r 5 4 3 2 2 3 4 5 
al ala2 ala2 a1a2 a1a2 a2 

Al 1 1 1 1 1 1 

A2 0 0 0 0 0 0 

Gl 0 1 1 1 1 0 

G2 0 0 0 0 0 0 

H1 0 0 1 1 0 0 

H2 0 0 0 0 0 0 

I 0 0 0 0 0 0 
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Table 2. Total Generating Function for the Rigid PF
5 

Molecule. Note that the Coefficient of 
4 a
1

a 2 of A1 in Table 2 is 2 while it was 1 

in Table 1 Indicating the Splitting of NMR 

Signals 

r 5 4 3 2 2 2 4 5 
Cll Cll Cl2 Cl1Cl2 Cl1Cl2 Cl1Cl2 Cl2 

Al 1 2 3 3 2 1 

A2 0 1 1 1 1 0 

E 0 1 3 3 1 0 
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Table 3. Generating Functions for the Irreducible Representations 

Spanned by the Protons of the Non-rigid B(CH
3

)
3 

Molecule. 

" 
r 9 8 7 2 6 3 5 4 4 5 3 6 2 7 8 9 

(ll (ll(l2 (ll(l2 al a2 (ll(l2 (ll(l2 (ll(l2 (ll (l2 (ll(l2 (l2 

~ 1 1 2 3 3 3 3 2 1 1 

A2 0 0 0 0 0 0 0 0 0 0 

A. 
3 0 0 0 0 0 0 0 0 0 0 

A4 0 0 0 1 1 1 1 0 0 0 

El 0 1 2 3 4 4 3 2 1 0 -

E2 0 0 0 0 0 0 0 0 0 0 

E3 0 0 0 1 1 1 1 0 • 0 0 

E4 0 0 0 0 0 0 0 0 0 0 

G 0 0 0 0 1 1 0 0 0 0 

Il . 0 0 1 2 3 3 2 1 0 0 

!2 0 0 0 1 1 1 1 0 0 0 

!3 0 1 2 3 4 4 3 2 1 0 
-···~ ~ 

_.,; 

!4 0 0 1 2 3 3 2 1 0 0 

rs 0 0 0 1 2 2 1 0 0 0 

16 0 0 0 0 1 1 0 0 0 0 

!7 0 0 1 2 3 3 2 1 0 0 

r8 0 0 0 1 1 1 1 0 0 0 
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Table 4o Generating Function for the Protons of B(CH
3

)
3 

in its 

Equilibrium Conformationo From the Coefficient of a~a2 
One can Immediately Infer that the Nuclei Span the 

Representation 2A+ +A- + 2E + + 2E + + E - + E -
X y X y 

r 9 8 7 2 6 3 5 4 4 5 3 6 2 7 8 9 
al ala2 ala2 ala2 ala2 ala2 ala2 ala2 ala2 a2 

A+ 1 2 7 17 23 23 17 7 2 1 

A 0 1 5 13 19 19 13 5 1 0 

E+ 0 2 7 15 23 23 15 7 2 0 
X 

E+ 0 2 7 15 23 23 15 7 2 0 
y 

E 0 1 5 12 19 19 12 5 1 0 
X 

E 0 1 5 12 19 19 12 5 1 0 
y 
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Table 5. - Generating Function for the Irreducible Representations of 

B(CH
3

)
3 

in the Group c3 

r 9 8 7 2 6-3 5 4 4 5 3 6 2 7 8 9 
al ala2 ala2 0 la.2 Ct.1Ct.2 Ct.1Ct.2 Ct.1Ct.2 0 la.2 Ct.1Ct.2 Ct.2 

1 3 12 30 42 42 30 12 3 1 

E 0 3 12 27 42 42 27 12 3 0 
X 

E 0 3 12 27 42 42 27 12 3 0 
y 



Figure Captions 

Figure 1. NMR reaction graph of non-rigid PF
5

• 

Figure 2. NMR reaction graph of rigid PF
5 

in o
3
h symmetry. Number of 

19 components in the graph gives number of F signals and the ratio 

of the number of vertices corresponds to the intensity ratio. 

Figure 3. NMR reaction graph of non-rigid propane. 

Figure 4. NMR reaction graph of rigid propane in c2 symmetry. The proton. 

pairs (2,3) and (7,8) are chiral pairs. Erantiotopic protons 

will be denoted by bars. 

Figure 5. NMR reaction graph of rigid propane in c2h or c2u symmetry. 

Figure 6. Equilibrium geometry of B(CH3) 3• 

Figure 7. NMR reaction graph of non-rigid B(CH3) 3• 

Figure 8. NMR reaction graph of rigid B(CH3) 3 in £3 group. 

Figure 9. NMR reaction graph of rigid B(CH3) 3 in c3h group. 
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