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Topological and group thaoreticai analysis in dynamic NMR spectroscopy"

K. Balasubramanian
Department of Chemistry and Lawrence Berkeley Laboratory
University of Calivfornia

Berkeley, California 94720

Abstract

A method is developed for constructing NMR reaction graphs which give the
NMR signal and intensity ratio patterns. This is done by generating the

irreducible representations spanned by nuclei (whose NMR are of interest) with

‘generating functions obtained from.grdup cycle indices (GCCI's). The method

generates the symmetry species spanned by the nuclel bothvin the rigid and
non-rigid groups without having to know the Character of the representation
spanned by nuclei. For non-rigid moleculesvwhich exhibit internal rotations
the GCCI's can bé obtained without having to know their character tables. We
outline a double coset technique to obtain the equivalence classes of nuclei
and thus to construct NMR reaction rgraphs. Using this technique one can
obtain the NMR signal and intensity ratio pétterns. We introduce the concept
of restricted characfer cycle indices (RCCI's) which_generéte_the'irreducible

representations spanned by a given equivalence class of nuclei. This in turn

‘enables the prediction of coalesance, splitting patterns and inténsiy ratios

of MMR signals in dynamic processes. Applications to spbntanedus generation
of chiral signals are outlined, where ‘a non-rigid molecule which possosses no
chiral signals suddenly possess chiral signals (which can be resolved with

chiral shift reagents) at lower temperatures.



1. Introduction

Topological and group theoretical analysis of dynamical systems such as
.molecules exhibiting large amplitude non-rigid motions 1is of considerable
interest in recent years}_13Severa1 of these topological schemes describe
essentialy interrelationship  among a set of isomers which get interconverted
in to one another by non-rigid motions. They p;ovide insight not only into
pathways and mechanisms which interconvert such isomers but also several
important experimental épplicationS'such as spontaneous generation of optical
activity. Even though the area of isomerization reactions and reaction graphs
obtained thﬁs seem to be quite well studied this is not the case in the area
of dynamic NMR spectroscopy. Dynamic NMR is ﬁotentially useful in understand-

ing large amplitude non-rigid motions and interconversions that take place in

molecules as a function of temperature at experimentally feasible‘conditions.
Experimentally one observes coalescene and splitting of certain signals
which is a consequénce of some dynamic exch#nges that are so rapid that at
high temperatums one sees‘only an. average efféct.‘ (Coalescene ofvsignals),
The recent advent of dynamic NMR SPectrometer;, howéver; has enabled reso-
lution ofvthese coalesced signals at experiﬁentally feasible conditions by
appropriately adjusting the shﬁtter speeds. While rapid experimeqtal progress
has beenaccomplished in this field, theoretical understanding and representa-
tions of these dynamic phenomena seems to be in progréss. We uhdertake the
present investigation withbthe intent of understanding dynamic NMR coéleécence
and intensity patterns with?topological scheme. We develop genefating func-
tion teéhniques which provide for not only the number of NMR signals (by way
of generating the number of totally symmetric representations spanned> by

nuclei) but also all irreducible representations spanned by the nuclei present

in the molecule whose NMR is of interest. Using the method of subduced repre-



sentations one can correlate the symmetry species spanned by the nuclei from a

larger grdup to 1its subgroup which enables the prediction of the'splitting
patterns of NMR signals. We also develop double coset methods which provide
the intensity patterns of both coalesced and:split signals in dynamic NMR
spectroscopy. The methods developed bh.er should be applicable to not only
dynamic systems but also systems which exhibit distortioms s&ch as Jahn-
Teller distorions. We also apply the techniques developed here to 'aﬁ
interesting problem namely spontaneous geﬁeration of chiral NMR Signals in
dynamié processes. In section 2 we outline.the;;etical methods, Sectioﬁ 3

discusses double coset methods for intensity patterns, in Section 4 we obtain

generators for symmetry species in the equivalence classes of nuclei using the

_concept of RCCI's, Section 5 outlines an application of the techniques

developed here to the phenomenon of spontaneous genefation of chiral signals

and in the last section we give an example.

2. Theoretical Methods

A, Preliminaries and Definitions

Let G be therotationalsubgroup or ;he full point group of the molecule,
Note that we will let G be the rotational subgroup if NMR can differentiate
chiral nuclei by appropraite chir#l shift reagents. Othérwise G 1is the'point
group. Let D be the set of nuclei whose magnetic resqnanée is under consi-
deration. Let ‘ID| denote the number of elements in D. Let R be a set
containing jus; 2 labels which we denote by ! and gé. qusidef a map fi from

D to R defined as follows.



21 if 1 #j, :
fi(dj) = % if i = jﬂ (201)
djeD, j =1,2...|D].

To illustrate we could.consider the five 19F nuclei as the D set. Then, for

example the map fl is shown beloﬁ where we represent dj by j.

f.'l(‘l) = a
fl(Z) = Q

b

£1(3) = | | ! (2.2)
f1(4) = ﬁ
£,(5) =

ie

Two maps f; and fj are said to be equivalent if there exists a g in G such

that
£4(d) = fj(gd) for every deD. : (2.3)

For example, 1f one considers the rotational group D3 of the rigid PFg mole~
cule and 1f 1,2 and 3 are equitorial and 4vana 5 are axial nuclei then the
maps fi and f, are equivalen; since they are transformable into one another by
3-fold rotation. It can be seen.that if two maps fiuand fjvare equivalent
then the nucleiriiand J are also magnetiéally equivaient. Thus the group G
divides D into equivalence classes, the number of equivalence claées gives thg
number. 6f NMR signals "and the ratio of the number of elemeﬁts in various

classes give the intensity ratios of these signals.



B. Generating function techniques

The prdblem is to develop a general method which will give the number of
equivalence classes and the ratios of the number of elements in various equiv-
alence élasses. The present author developed a method for the former problem

using cycle indices and Pélya's'theorem.l’14

In this paper we consider more
general techniques for studying coalescence and intensity patterns in dynamic
NMR. With éach element reR let us associate a weight w(r) which 1s just a
formal symbol used to book keep the number of glﬂg and gz's in aﬁy function
f;. For example, we may assoclate a weigﬁt o with 4 and a weight.a2 with
. Define the weighﬁ of any map fi to be |

) 3 O ew

W(fi) = dneD w(fi(d

9 J

It can be easily seem that

'y o Al ‘ _ _ '
w(fi), @ “a, 3 (235)
where n 1s the number of nuclei. Define the generalized character cycle index
(GCCI) of a group G corresponding to the irreducible reprsentation T whose

character is ¥ as

' b b, |
-[—r Zx(g)x Xy e , o (2.6)

where a.gEG-has bl cycles of legnth 1, b, cycles of length 2 etc. Equiva-
lently the cycle type'of g 18 (b, by, ...).
' 15
Then using the projection operator methods, Williamson/and more recently

Merrisl6(for higher dimensional representations) proved that _the generating



function for the number of irreducible representation in F,the set of maps

from D or R is given by

Go£X = 2 Xix, » I W), 2.7
reR

n; 0, gives number of times ¥ occurs in the
The coefficent of a term a; “"a, “ in GFX n. n
1, 72

>set of maps from D to R with the weight a 2 % Im particular, the coef-
ficient of- qln’1a2 in G.F.X, giveév- the number of times yx occurs in the repre-
sentation spanned by the set of nuclei. This 18 indeed quite elegant and
advantageous over conventional techniques iti that it does mnot require the
character of the representation spanned by the nuclei. Further GCCI's for the

symmetry groups of non-rigid molecules can be obtained from GCCI's of much

smaller groups. 17,18

We will now illustrate (2.7) with the non-rigid PFS molecule which exhi-

bits Berry pseudo rotation. The rotational subgroup of the non-rigid ?FS is

19

Sso If one considers F NMR of PF5 then the set D consists ofv‘5 19F

nuclei. Consider for example, the G, representation of this molecule, The

" corresponding GCCI and G.F.*X are shown below.

¢,

GCCI 3 3

[4x> + 20x°x. + 20x°x. — 20x.x. - 24x

1 1%2 1*3 =3 (2.8)

120 5

¢,

1. 5 3, 2.2 2,3 3
G.F. 120 [l;(cx1 + az) + 20((11 + az) (<x1 + a2) + 20((:l + az) (a1 +a

2)

20(a; + o2)(o} + @) - 24(a3 + ag)]

4 4 - -
= aq + o) & + a o, + @ a, | (2.9)



&

The coefficent of a%az in (2.9) is 1 implying there is one G].representatioﬁ

spanned by the 5 19F nuclei, ihble 1 shows the total generating function for
the non~rigid FFg melecule. In this table we follow the notation for the
irreduciﬂle representations of an earlier paper‘og the author. By collecting
all the coefficients of d?az one can immediately conclude that the representa-

tion spanned by the 19F nuclei is given by 2.10.

B »I,'19F =A +6 e (2.10)

‘This 1s, of course, a trivial example but we used this for the sake of illus-

tration. The number of Al (totally symﬁetric representations) representations
in the representation spanned by nuclei éives the number-bf'NMR Signals by
Polya's theorem. This is because the number'ef A, representations is obtained
from GCCi which is also just the ordinary cycle index defined by P61ya19 for
the enumeration ‘of- equivalence ciases. ihus number of Al representations
giQes the number of equivalence classes and thus the number of NMR Signals;
The present author introduced a topological'descriptioh for the inferconver-
sion of nuclei in dynamic -proceses.2 In. that scheme nucleibare represented by
§ertic1es end the possible interconversions among them by edges. A NMR reac—-
tion grapﬁ is a graph in which two nuclei are connected if they are transform—
able in to one another by en operation in the)rotational'subgroup.i Such a

diagram for the 19

F nuclei of thebnon-rigid PFS,molecule is shown in fig. 1. .
In the next section we will consider the splitting patcerns‘of.NMRegraphs by

way of correlation of the symmetry species spanned by these diagrams.

C. Correlation of symmetry‘species and NMR reaction graphs

The symmetry group of the rigid PFg molecule is Déh and its rotational



subgroup is D3. In this example there are no enantiotopic protoms in both the
rigid and non-rigid molecular groups so that one can treat both the cases by
rotational subgroup. The set .of irreducible .reprsentatio'ns spanned by . the
nuclei 1in the rotational group of the rigid molecule can be found by two
methods. One method 1is to obtain the generating functions in the group D3.
Such a generating'function' is shown in Table 2. Note that by cdllecting the
coefficents of a‘l'az in various. irreducible representations we find I'F in Dy to

be- } .-

=.2A1 + Az + E | | (2.11)

rl?
The same expression can also be obtained by correlating the symmetry species
of Sg to Dg byb way of subduced represehtation. The A, representation of Sg
correlates to Al of D3 and G‘1 splits in to A‘1+A2+E so that expression (2.10)
correlates to 2.11. Note that there are two A, representations ‘in I‘F in the
group Dy indicating there are 2 equivalence classes‘ for f:he rigid molecule.
This establishes the fact that a single NMR signal of the noﬁ-rigid mbelculé
splits inﬁo 2 signals iﬁ dynamic NMR. at lower temperatures. The NMRv reaction
graph of the rigid' molecule is shown in figure 2 which contains 2 compo-
nents. Number of components in the NMR reaction graph corresponds to the
mn;xber of NMR signals and the ratio of the number of vertices in various
components gives the intensity ratios of the corresponding NMR signals., _ Thus
we can infer that the single NMR peak of the non-rigid mlecule.splits into two
signals ‘with' the 1intensity ratio 3:2. The method outlined here eventhough
enables the prediction of the splitting and coalescence patterns of ﬁhe NMR
signals it does not quite enable construction of the NMR reaction graph (since

it gives only the number of components and not the vnumber of vertices in each



component) and thus cannot predict the intensity patterns in dynamic pro-
cesses. For this purpose we outline a double coset method in the next sec—

_tion.

._3. Double Coset Method for Constructing The NMR-Reaction graph and predic-

"tibn of Coalescence and intensity patterns.

Let S, denote the complete permutation group containing n! Permutations
of nuclei. Since we are choosing n-1 gi labels and 1 @, label to label the
nuclel the group S _;XS; (Slis'the group containing just the identity eleﬁent)
is known as the label subgroup L which is isomorphic to S _;. L-is.ip general
a subgroup of Sye Recall that G is thé rotatinal sugroup or the pointvgroup
of the molecule. For an element s€S, the set LsG is known as thg‘double coset
of L and G Any map fi'defined'in Section 2.4 can be considered as An ele-
ment in‘Sn.‘ Thié is because we can consider the identity element of S, as the
map fn'which maps first n-1 nuclei to % and the nth;nucieus tb ) by defin-
tion. Then any other map can be obtained by applying s€S, on fn‘ - To 11lus-
trate consider FFs. The map fs labels the nuclei 2121212125- Then for.
example, the permutation (¥2345) generates the following labeling of nuclei:
Bt Tt Bt et o . Thus the map f; can be considered as an_elément in Sg.

Two elements s; and s, are sald to be in'the same double cdset if
8 = LsyG. . | | _ 3.1

Then it can be seen that the maps cofresponding to s, and 8, are équiﬁalent

and consequently, the cdrresponding nuclei are also equivalent. It can be
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pro?ed that (3;1) 1s‘ an equivalance relation and thus the double cosets
generate equivalence classes of nuclei. The elements of a set S= {sl,
sz,ee.s#} are said to be distinct representatives of the double cosets or the
equivalence classes of ﬁuclei if the group S, can be obtained as a disjoint
decompostion of the double cosets formed by the elements of S. In symbols,

the elements offs.are;distinct representatives if
S = U Ls;G .- (3.2)
and

G) =P if i # §

(Ls, )N (Ls,

Where § is the null set. The number of elements in S, M, can be found using
the generating function techniques outlined in Section 2B. by way of generat-
'1ng number of A representations in the set of nu¢1e1.

The number  of elements in any double coset LsSG is given by (3.3)
lLse| = [L|lc|/|s  tspnc] = L1l 1L ses! | | (3.3)

Thus using (3.3) one can obtain the number of elémenfg in the double coset
without having to comnstruct the coset. This 1is indeed.>quité advantageous.
because for our present purpose we only need to know the nﬁmber of nuclei in
each eqﬁivalance class (in fact ratio of nuclei in various classes) for the
prediction of intensity ratio.patterns. The number of elements in a double
coset in general, is not equal to the number of elements in the corresponding

equivalence .class of nuclei. This 1is because two elements in a double coset
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can generate the same map. To 11lustrate for the PFg ﬁolecule the identity in
S; and the permutation (1234)-generates the same map fs; Nevertheless, in
general the ratio of the number of elements in various double cosets 1is
exactly the ratio of the number of elements in the corresponding equivalence
classes. This is indeed very useful since we are interested in the intensity
ratios of various peaks which corresponds to ﬁhe ratio of the number of ele-
ments in the correspondiﬁg'equivalence class, Thus we arrive.at thevfollowing
important relation. Fo? a set of distinct representatives S = {sl,sz,...qm},

which generate the double coset decomposition of S, we have

|lec| : 'lLszcl P oeee 8 |LsmG|

= [Lll6l/m s 65T | = [LIlGl/IL A 8,68, ILllel/|L s es '], (3.6)

Thus the intensity ratios of various signals is given by (3.5)

1 . 1 X 1
_1 . _1 . LA ) . _1
L A 8,Gs, LN 8,68, | L s"nGsm |

Also the number of elements in an eqﬁivalence class of nuclei corresponding to

the double coset‘LsiG is given by (3.6).

\

, 'ILsiG|°n
Number of elements in an C --——T;—T—e . : - (3.6)
o ,

equivalence class of nuclei

The double cosets of muclei also facilitate. elegant = correlation of
equivalence classes of nuclei in dynamic processes such as large amplitude

motions. Each double coset generates aﬁ equivalence class of nuclei. The
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number of totally symmetric representations in'any-double coset is unity. Tﬁe
splitting patterns of equivalence classes of nuclei in dynamic processes can
be found by correlating the symmetry species in the equivalence classes of
nuclei. |

We will now illustrate the above method of double cosets with the example
of PFg. For the non-rigid molecule the rotational group is Sge Thus G = Ss
'and L = §,. This is a trivial case where G is isomerphic to S . Thus any
seS, 1is a distinct representative and. there 1s’pn1y one such double coset
since for any se$_ , LsG = Sge Thus all the five nuciei are equivalent and
they span a single equivalence class C = {¥,2,3,4,5,}., Thg irreducible repre-—-
.sentations contained in C are Ay and G, (cf.VZ.IO). Thus when one considers
rigid molecule whose rotational group G = D3 the class C splits into 2 classes
C1 and Cye In terms of the double cosets the single double coset splits into

2 double cosets. We will now look at this in detail as an illustration. The

group G is
G = D3 = {e, (123), (132), (12)(45), (13)(45), (23)(45)}
L =5, = {e, (12), (13), (14), (23), (24), (34), (123), (132), (124),
(142), (234), (134), (143), (1234), (1243), (1324), (1342), (1423),
(1432), (12)(34), (14)(23), (13)(24)}
We have to look for S = {s|,s,} such that

lec U LSZG = SS and

Ls,G () Ls,G = .
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One obvious choice 1s s, = eeSS where e is the identity. The number of ele-

ments in this double coset is

24.6

3 = 48

-1 L||G
[Lec| = [Lllcl/[LAy e ce| = fHEL -
Thus the number of elements in the corresponding equivalence class of nuclei

is given by ' -

n LeG| _ 5.48 =2
S5 5! ‘

The elements of the équivalence class C; can be generated by first operating e
“on f5 which 1is fs‘and any other element in G br the doulbé coset LeG. Thus it
can be seen that ¢ = {fg,f,}. By éhbosing s, to be (12345) we obtain:the."
second double-coset, We ghoose 8y = (12345) since this is not present in the

product LG. The number of elements in this double coset 1is

lLIle]  _ 24.6
LA sglcszl.

|L826|' = = 72,

consequently the number of element is the second equivalence class is given'bj

n_"‘*‘zGl _5.72
Tss-| 51

= 3,

The second class is easily constructed by operating (12345) on fg and generat-
ing the other elements by either operating the resulting map by elements of
G. It can be seen that C, = {(f,,f,,f3}. One can immediately obtain NMR:

reaction graph by connecting all elements in any C,. The graph thus obtained
. i . ,
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is shown in fig. 2. Of course, to predict the nature of intensity and split-
ting patterns of NMR Signals it is.-not necessary to explictly construct all
the double cosets.'Wb need to know only the number of douﬁle cosets and the
ratic of the number of elements in all double cosets which in turn give the
number and intensity ratios of NMR Signals, respectively. The number of
double cosets can be found by generating number of Ay fepresentatious as shownA
in Sec. 2c.: The.ratio of the numer of elements in all the double cosets is
obtained. with the. formula (3.5). Thus one- immediately iﬁfers using these
techniques that the single 19F NMR peak splits into 2 peaks in dynamic NMﬁ
with the intensity ratio 1/2 : 1/3 of 3:2 at lower temperatures., Conversely;
the peaks with this intensity ratio will coalesce into a.single peak at highef
temperatures. For several applications one needsvto know the irreducible
representations contained in each equivalence class of nuclei. A technique

for this is in the next section.

4, Generation of Symmetry Species in Each Class of Nuclei and The Assignment

of Splitting and Coalescence Patterns,

In order to completely assign the splitting and coalescence pattern- of
each signal .it 1s necessary to know the symmetry spegies contained in each
'equivalenge class of nuclei generated by the double cosets. In earlier sec-
tions we'had a method to generate only the symmetry species spanned_by all
" nucledi father than equivalence classes of nuclei. However, in order to know
whether a given signal will split or not (or conversely coalesce) it is neces-
sary to know the irreducible representations spanned by thevequivalence class

of nuclei which gives raise to that NMR Signal. For this purpose we define



‘and useva new restricted character cycle index (RCCI) which generates symmetrj
species in each equivalence class. We define a'RCCI as a character cycle
index restricted to an equivalence class of nuclei. For an equivalence class C
of nuclei we know that any g in the symmetry grﬁup G permutes nuclei .only with.
in the class C. Thus the cycle product of any geG over all nuclei can be
. separated and reqtricted only to the class C. Define a RCCI corresponding to

a class C and an irreducible representation I' with character x as

C(bl) C(bz)

X(C) = X
RCCI*(C) TeT ) x(®)x, ~ x, ces (4.1)
geG
Where C(bl), C(by), ... are the number of 1, 2 cycles generated in the

equivalence class C when g is applied on c. To 1llustrate, the two
equivalence classes of nuclei for PFg in Dy are C; = {1,2,3} and C, = {4,5}.
The RCCI's for the various representations of D3 restricted to Cl'and C, are

shqwn below.

A 1,3,
RCCO (Cl) il (x1 + 3x1x2 + 2x3)
A, 1,3
RCCI (Cl) =3 (x1 - 3x1x2 + 2x3)
- E,.. 1 ,.3 |,
RCCI (Cl) 3 (2x1 - 2x3)

A

RCCI 1(CZ) -1

6

Nt

2 . _1,2
(3x] + 3x,) (x] + x,)

2 1 ,,2
RCCO “(C,) = (3x] - 3x

N

2) (xf - ?2)'

E 1 2 2
RCCI_(CZ) 6 (le - 2x1) = 0
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The restricted generating function RGF_‘X(C) restricted to a class C generates

f:he number of irreducible representations whose character is x restricted to

C. —It is obtained as follows:

RGFX(C) = RbCI(xk > 7 N,
TER

To illustrate-let us obtain the generating functions corresponding to RCCI's

of PFg in D3h representations.

A
i 1 3 2.2 3,3
RGF (Cl) =3 [(a1+a2) + 3(a1+a2)(a1+a2) + 2(a1+a2)]

3, 2 2, 3
TR L T L T

A, _
RGF (cl) = 0

E,. 2 2
RGF (Cl) = a,a, + @, @,
A 1 2., ,2. 2 2 2
RGF (CZ) =3 [(a1+a2) 2 (a.1+a2)] = a + @ a, + a,
A
RGF (Cz) =aqa,
lcyl =1
The coefficient of o @, in RGFX generates the number of times T occurs

(whose character is X) in the equivalence class C; where |Ci| is the number of
elements in the class Ci‘ Thu.s by collecting the coefficient of a%az in
RCIC's one can immediately infer that the nculei in C1 span A1 + E representa-

tion and similarly nuclei in CZ span ’Al + A2 representation. The technique
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outlined. above thué generates symmetry species in each class without having to
know the character of the representation spanned by the nuclei present in that
class. This is indeed very advantﬁgequs for large moecules which have several
equivalence classes containing varied number of nuclei.

In order to theoretically predict ;f'a given signal will split in dynamic
NMR at lower températures all that we need to do is to correlate the symmetry
species spanned by the nuclei which give raise to that signal to rigid molecu-

L -

lar group.

5. Spontaneous Generation of Chiral Signals.

In this section we consider an 1important application of the techniques
outlined in the ’eatlier sections to spontaneous generation of chiral sig¥
nals, A molecqle which doeé hot have any chiral nucléi at higher temperafu:es
when it exhibits very large amplitude motions méy have chiral (enantiotopié)
nuclei at lower temperatures. The chiral nuclei cﬁn be resolved with ﬁhe use
of chiral shift reagents. This phenomenon can be called spontaneous gemeration
of chiral NMR Signals. Let us considér ;he proton NMR of ‘propane which
exhibits this phenomenon. The rotational group of the non-rigid.molecule can
be represented by the generalized wreath product group C2[C3,E], where E
corresponds to the identity group acting on the methyiene protons. The fota-
‘tional group of - the rigid molecule, however, conﬁains only the identity and a
2-fold ;otation. Under the group CZ[C3;E] there are 2 double cosets and 2
equivalence'élasses of nucieivdenoted by ¢, = {1,2,3,6,7,8,}, Cy = {4,5,}
where 1,2,3,6,7,8, are methyl protons and 4 .and 5 are methYleﬁe protons.

- Chiral nuclei can bevdifferentiated in the rotationai group. However, they

become equivalent in the point group. It can be eaéily seen that the class
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stucture remains unaltered if inversion 6perations are included in the 1'(:)ta-‘=
tional subgroup of the non-rigid molecule. Thus there are no chiral nuclei
-for the non~-rigid molecule. The corresponding NMR graph is shown in fig. 3.
The irreducible representations spanned by Cjand C, are A; + A, + G and A+
vAz-where A1 and AZ are totally symmetric and antisymmetric representations, G
actuélly has 2 degenerate two dimensional representations. The representa-
tion Alvand-Az, and G correlate to A;, A, and 2(A f Az) in the rotational
gro;p Cy; of the rigid molecule so that the class#g1 of the non-rigid molecule
contains 3 Al representations in the rigid molecular group. Consequently, the
class ¢ of the non-rigid nbleéule splitéginto 3 classes. The double cosets
analysis shows that these are C;; = {1,6}, C;, = {2,8} and C;3 = {3,7}. The
class Cz of the non-rigid molecule  remains unaltered. The corresponding
reaction graph is shown in Fig. 4. If we,.however, introduce the inversion
operatioh in the rigid group then the group.becomes C2h for the equilibrium
conformation. The species A, Ay and Gvcorrelate to Ay, Ay and Al + Ay + A +
Ays reptésentation in Cyp. Thus the class Cr‘contains only ZAl represéntatioﬁ
in Cyp. The double coset analysis wiﬂn'G = Cyy, gives c11,= {1,6}, Cjy =
{2,8,3,7}. |

"Thus the two classe§ Ci2 and Cl3 in the grbup C, coalesce into a single
class in C=2h.indicating the presence of chiral protons. The proton pairs
(2,3) and (7,8) are equivalent chiral pairs. We can thus indicate 3 as 3
(mirror image of 2) and 8 as 7. (See Fig. 4 and 5.) The correspénding NMR
graph is in Fig. 5. The analysis outlined here thus shows that ther273 NMR
signalsA for the non-rigid molecule at high temperature with the intensity
ratio 3:1. The higher intensity péak generates chiral signals at 1lower
temperature 2 of which are chiral (and therefore can be differentiated only

with chiral reagents) and the other is:achiral. The over all spectrum has 4
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signals with equal intensity. In the absence of chiral shift reagents.the
intensity pattern is 2:1:1. There are several such systems which exhibit this

phenomenon of spontaneous generation of chiral NMR signals._

6. An Example
In this section we consider the molecule B(CH3)3 as an example to illus~
trate all the concepts outlined in earlier sections. This molecule was con-

20 45 an illustration of a non-rigid molecule. The

sidered by Longnet-Higgens
symmetry group of the non-rigid B(CHj); is D3h[C3]. For the non-rigid mole-
cule which has 3 methyl rotors exhibiting internal rotation it can be easiiy
seen that there is only one class of protons. Generating function for all the
irreducible representation are shown in Table 3. Collecting the coefficients
of a?az under various irreducible representations werimmediately infer that
the protons of this non-rigid molecule span the representation Ay 4 E1 + I3.
Thgrmolecule'in its equilibrium configuration (shown in Fig. 6) Belongs to the
‘point gfoup Esh..‘The rotational subgroup 1is 53. Generating functions for all

irreducible representation of Ebh are shown in Table 4. From this table we

infer that the protons now span a representation shown below:

C

s AT+ v+ 2w+ E 4 E
~3h X y ‘x vy

Equivalently, we could have obtained the above result by subducing the repre- '

sentations Al, E1 and I1 from b3h[c3} to C3h which cor;elaté to Af, _E; + E;
+

‘and At '+ AT + E, + E; + E; + E;, respectively. However, the latter method

needs the character table of the nonFrigid molecule, while the former method
: ’ since S : C .

does not need the character tables / the generating functions can be obtained

17,21

without‘knowing the character tables. In this sense generating function
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techniques are more elegant than the "method of subducing representations.
Note that protons B(CH3)3 span 2 totally symmet'ric representations in the
group Cqy. Consequently, there are two equivalence classes of nuclei. The
double coset analysis in Cy, shows they are Cy = .{1,4,7} and C;, =
2,3,8,9,5,6} (see Fig. 6). If one considers the rotational group of the
molecule in its equilibrium configuration, the generat:lnvgv functions are shown
in Table 5. Thus the nuclei span the: followving,rvepresentationé in the 53

group:

3A1 + 3Ex + 3Ey.
There are 3 totally symmetric representations for the molecule in C; group.
The three equivalence classes are C;; = {1,4,7}, Cio - {2,5,9} and Ci3 =
{3,5,8}. Since the number of equivalence classes in Cy and C3n differ one
:I.mmediate‘ly infefs the existence of chiral nuclei for non-rigid molecule. The
ﬁuclei pairs (2,3), (5,6), and (8,9) are chiral pairs. . The non-rigid mole-
cule, however, did not have any chiral centers. Thus this molecule is an
éxample of a molecule which exhibits spontaneous generation of chiral sig-
nal. The NMR reaction graph of this non-rigid molecule is shown in Fig. 7.
The corresponding reaction gréphs of the rigid molecule in C3h’ C3 groups are’
‘in Figures 8 and 9, respectively. 'A single MR signal.of the non-rigid mole-
cule splits into 3 signals with equal intensity, 2 of which are chiral. The
chiral signals coalesce in the absence of chiral éhift reagents vresulting in 2 -

signals'wit:h the intensity ratiom 2:1.
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Table 1. Total Generating Function for the Non-rigid
' PF.. The Coefficient of aiaz Under each
Irreducible Representation Generates the
Nﬁmber of that Irreducible Representation
- in the Equivalence Classes of Nuclei. The
| Coefficient of a4a in the A, Representation

172 1
Generates the Number of NMR Signals

r 5 4 32 23 4 5

oy aq%,y a0, a0, a0, a,
A1 1 1 1 1 1 1
A2 0 0 0 0 0 0
Gl | 0 1 1 1 1 0
G2 0 0 0 0 0 0
Hl‘ 0 0 1. 1 0 0
H2 0 0 -0 0 0 0
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Table 2. Total Generating Function for the Rig;i.d_PF5
Molecule. Note that the Coefficient of
agaz of A1 in Table 2-is 2 while it was 1
in Table 1 Indicating the Splitting of NMR
Signals

r 4 32 a2 2 o 4 aS

@ %1% *1%2 1%2 1%2 2

Al 2 3 3 2 1

AZ 1 1 1 1 0

E 1 3 3 1 0
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Table 3. Generating Functions for the Irreducible Representations -

Spanned by the Protons of the Non-rigid B(CH3)3 Molecule .

r a9 aea a7a2 a6a3 a5a4 a4a5 a3a6 a2a7 .0 o
1 1 2 172 172 172 172 172 172 172 2

A1 1 i 2 3 3 3 3 2 1 1
A2 0 0 0 0 0 0 0 0 0 0
Aj 0 0 ¢] 0 0 0 0 0 0 0
A4 0 0 0] 1 1 1 1 0 0 0]
El 0 1 2 3 4 4 3 2 1 0
E2 0 0 0 0 0 0 0] 0 0 0
E, 0 0 0 1 1 1 1 o* 0 0
E4 0] 0 0 0 0 0 0 0 0 0
G 0 0 0 0 1 1 0 0 0 0
L, 0 0 1 2 '_3 3 2 1 0 0
12 0 0 0] 1 1 1 1 0 0 0
I3 0 1 2 3 4 4 3 2 1 0
14 0 0 1 2 3 3 2 1 0 0
I5 0 0 0 1 2 2 1 0 0 0
16 0 0 0 0 1 1 0 0 0 0
I7 0 0 1 2 3 3 2 1 0 0
I 0 0 0 1 1 1 1 0 0 0
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Table 4. Generating Function for the Protons of B(CH3)3 in its
Equilibrium Conformation. From the Coefficient of alaz
One can Immediately Infer that the Nuclei Span the
‘Representation 2A+ + A + 2E + + 2E + +E +E_
X y b'q y
r 9 72 63 54 45 36 27 8 9
1 %% %% %% %% %1% %% %% %1% %
+ .
A 1 2 7 17 23 23 17 7 2 1
A 0 1 5 13 19 19 13
+ .
Ex 0 2 7 15 23 23 15
+ . .
Ey 0 2 7 15 23 23 15
Ex” 0 1 5 12 19 19 12
E_ O 1 5 12 19 19 12



27

Table 5.  Generating Function for the Irreducible Representations of

B(CH3)3 in the Group C

3
T ag' asa a7d2 déds a5a4“K a4a5 a306 a2a7 a a8 a9
1 %% %% %% %0y %0y %% %0y %0y 9
AL 13 12 30 42 42 30 12 3 1
E. 0 3 12 27 42 42 27 12 3 0
E o 3 12 27 42 42 27 12 3 0
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Figure Captions

Figure 1. NMR reaction graph of non-rigid PF

Figure

Figure

Figure-

Figure
Figure
Figure
Figure

Figure

2.

4-

5°
NMR reaction graph of rigid PF5 in D3h symmetry. Number of
components in the graph.gives number.of.lgF signals and the ratio
of the number of vertices corresponds to the intensity ratio.
NMR reaction graph of non-rigid propane.

NMR reaction graph of rigid propane in 02 symmetry. The proton.
pairs (2,3) and (7,8) are chiral pairs. Erantiotopic pro;ons
will be denoted by bars.

NMR reaction graph of rigid propane in C2h or C2u symmetry.
Equilibrium geometry‘of B(CH3)3.
NMR reaction graph of non-rigid B(CH3)3.

NMR reaction graph of rigid B(CH in‘g3 group.

3)3
NMR reaction graph of rigid B(CH

3)3 in C3h group.
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