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Form factor counting and HQET matching for new physics in A, - Ajlv
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We calculate the A, — A%(2595)lv and A, — A%(2625)lv form factors and decay rates for all possible
b — clv four-Fermi interactions in and beyond the Standard Model (SM), including nonzero charged
lepton masses and terms up to order O(ay, 1/m, ;) in the heavy quark effective theory (HQET). We point
out a subtlety involving the overcompleteness of the representation of the spin-parity 1/27 — 3/2~
antisymmetric tensor form factors, relevant also to other higher excited-state transitions, and present a
general method for the counting of the physical form factors for any hadronic transition matrix element and
their matching onto HQET. We perform a preliminary fit of a simple HQET-based parametrization of the
A, — A} form factors at O(ay, 1/m, ;) to an existing quark model, providing preliminary predictions for
the lepton universality ratios R(A}) beyond the SM. Finally, we examine the possible incompatibility of
recent lattice QCD results with expectations from the heavy quark expansion and available experimental

data.

DOI: 10.1103/PhysRevD.105.016027

I. INTRODUCTION

Exclusive b — ¢ semileptonic decays to excited charm
states play an intriguing dual role in probes of lepton flavor
universality violation (LFUV), as well as extractions of the
Cabibbo-Kobayashi-Maskawa matrix element |V |. In the
first instance, they contribute sizeable feed-down back-
grounds to measurements from ground-state decays, lead-
ing to systematic uncertainties that are of comparable size
to the statistical ones in the current 3¢ [1] (or more [2])
evidence for LFUV seen in B — D"ty decays. In the
second instance, they are signal modes in their own right,
through which LFUV or |V ,| might be directly measured.

In light of the large anticipated datasets from LHCb and
Belle II, reducing systematic uncertainties from excited-
state decays to a sufficiently low level—roughly the percent
level—will be essential for establishing conclusive tensions
with the Standard Model (SM) (see, e.g., Ref. [2] for a
review). Further, identifying what new physics (NP)
operators are compatible with (future) b — ctv data for
not only ground-state decays but also excited-state decays
requires good control of the description of the latter in the
SM and beyond. In the case of B — D")zv decays, this
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mandates precision NP predictions for the semitauonic
decays to orbitally excited charm meson final states,
ie., B—> D"y [3,4] (I=e, u, or 7). In the case of
baryons, especially for studying NP effects in A, - A .7v
decays and the relevant form factors [5-11] (see also
Refs. [12-16]) one requires NP predictions for the A, —
Ajlv excited-state decays, where A} is the s2 = 1~ heavy
quark symmetry (HQS) doublet composed of the A%(1/27)
and A%(3/27).

For the vector and axial-vector A, — A} currents only,
Ref. [17] long ago studied the s =1~ heavy quark
effective theory (HQET) to O(1/m. ;) in the heavy quark
(HQ) expansion. Subsequently, Ref. [18] recently included
the O(a) radiative corrections for the SM currents (though
dropping the contributions from 1/m,, chromomagnetic
corrections). Because NP predictions to O(1/m,,, a,) in
the HQET for A, — Aj}lv are not present in the literature,
we therefore provide them, based on a treatment similar to
that developed in Refs. [9,10] for A, — A.zv and
Refs. [3,4] for B — D**zv. The constrained structure of
the s© = 0" HQET for A, — A.lv has already permitted
the size of the contributions at O(1/m?) in that decay to be
extracted from combined fits to data plus lattice QCD
(LQCD) calculations [9]. These higher-order corrections
were found to be compatible with a well-behaved HQ
expansion. It is therefore not unreasonable to expect a
similarly well-behaved HQ expansion for A, — Al
transitions.

Published by the American Physical Society
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However, unlike in the study of B — D®***)[y decays or
ground-state baryon decays, a subtlety arises for the
A%(3/27), when one applies the usual HQET matching
approach: We observe that the form factor representation of
the A, — A%(3/27) matrix element for the antisymmetric
tensor current co,,b is overcomplete with respect to the
basis of physical amplitudes. That is, there exists a linear
combination of terms in the form factor representation of
the matrix element—a kernel—that does not appear in any
physical amplitude. Preserving such redundancy in the
matrix elements can be essential for keeping the HQET
symmetries manifest at any order in the HQS-breaking
expansion while performing consistent calculations.
Moreover, HQET generates relations between the form
factors that must be obeyed order-by-order in 1/m, such
that this kernel can be removed only after HQET matching
is imposed on the tensor current.

Anticipating this subtlety and its relevance also to other
higher excited-state decays, we first present in Sec. II a
general discussion of the counting of the physical form
factors for any hadronic transition matrix element, showing
how to determine the kernel with respect to the physical
amplitudes and examining the role of HQET matching. We
then proceed in Sec. III to apply these results to A, — Ally
decays, matching onto HQET at O(1/m.,,a,). We thus
derive the HQET expansion of the form factors at this order
for all possible NP currents.

Currently, no experimental data (neither at nor beyond
zero recoil) are available for A, — A}lv, with the notable
exception that there exist measurements of their relative
branching fractions compared to A, — A.lv [19]. (There
is, in addition, ongoing work at LHCb, with preliminary
results for differential spectra presented in Ref. [20]. These
results are not yet published because of challenging charm
backgrounds.) The ratio of these branching fractions are
compatible with expectations from the HQ expansion. As a
stopgap measure, in Sec. IV we therefore fit the HQ
expansion of the form factors at order O(1/m, ;. a;) over
the full recoil range to the predictions of the Pervin-
Capstick-Roberts (PCR) parametrization [21]. This para-
metrization is based on a constituent quark model approach
similar to the Isgur-Scora-Grinstein-Wise updated model
(ISGW2) [22,23]; the covariant confined quark model
[24,25] and relativistic quark models [26] have also been
recently applied to generate A, — AZlv predictions. Using
our PCR-based fit, we generate preliminary predictions for
a simple parametrization of the Isgur-Wise functions up to
linear order in the recoil parameter w — 1 that might be
plausibly used as central values for a future data-driven fit.
We further examine the behavior of the lepton flavor
universality ratios R(A}) for both the SM and in the
presence of various NP currents. In addition, in the
Appendix A, we present the NP helicity amplitudes for
A, — Allv, to be used in the HAMMER library [27,28].

Very recently, new LQCD results [29] have also become
available for A, — Allv, in the near-zero recoil regime
w < 1.05. We examine the compatibility of these lattice
results with HQET, fitting the HQET expansion for the SM
and NP form factors at O(1/m,,,a,) to the LQCD
predictions. As remarked in passing in Ref. [29] regarding
the SM form factors at O(1/m, ), we similarly find that
this fit appears to be very poor. We briefly characterize the
implied degree of HQS breaking by modifying the fit to
include additional HQS-breaking parameters. We find
this modified fit implies O(1) violations of HQS at
O(1/m,, a,): asurprising result, demanding further study,
given the well-behaved convergent behavior of the HQ
expansion in A, — A.lv [9]. Curiously, we point out that,
while HQS expectations are compatible with the measured
ratio of A, — A}lv branching fractions [19], the modified
fit to the LQCD results is not.

II. COUNTING FORM FACTORS
A. General method

In a similar spirit to the discussion of Ref. [30], the
counting of physical form factors for a hadronic transition
H, — H,, mediated by an operator (J, can be systemati-
cally implemented by the counting of partial wave ampli-
tudes in the crossed process: HH, pair production by O
from the vacuum. For any particular operator O, one
decomposes it into a set of operators of definite angular
momentum-parity O, and then counts the number of
partial waves of the H, H, final state that may project onto
each operator O, C O." That is, the full matrix element

(H{H,|0|0) = ZFJP(L)<(H1H2)J”(L)|OJP|O>’ (1)
JP(L)

in which (HH,) J7(1) denotes a partial wave state with total
(orbital) angular momentum-parity J (L) and parity P, and
Fyrgy is its form factor. As usual, each partial wave
amplitude ((HH>),»(1)|O,r|0) can, in turn, be represented
as a tensor product of the external momenta, polarizations,
and/or spins, as appropriate to the external states.

An explicit algorithm to count such amplitudes proceeds

as follows:

(i) Write down the J” quantum numbers for the
decomposition of the operator O.

(ii) For each choice of the orbital angular momentum,
L =0,1,2, ..., write down the possible J* values of
the H,H, partial wave decomposition, until L is
sufficiently high that one can no longer match onto
any O, C O.

(iii) Count the number of (HH,),» ;) partial waves that
match onto each O,» and sum over J*. This counts

'If © and H,H, have also a well-defined charge-conjugation
parity, then one matches with respect to JC.
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the number of independent amplitudes, and thus the
number of possible form factors, in the H; — H,
process mediated by O.

For b — c transitions, we are interested in operators of
the form O =¢lb, where T =1, ¥, y*, y*y° or
o = (i/2)[y*,y"], for scalar (S), pseudoscalar (P), vector
(V), axial-vector (A), and tensor (T') operators, respectively.
Their angular momentum-parity decompositions are

JP(Og) = 0T, JP(Op) =07, (2a)
JE(Oy) =0T 1, JP(O)=0" 17, (2b)
JPO)=1"T@ 1. (2¢)

Thus we only need consider partial waves up toJ = 1.

We employ the conventions Tr[y*y*y”y°y’| = —4ie"r°,
so that the tensor-pseudotensor operator identity
oy’ = (i/2)e"?6,,, (3)

matching the choices in Refs. [9,10] for A, - A.lv and
the standard choice for excited charm mesons [3,4,31,32].
[For B — DWIp, the literature typically chooses
Trly*y*y*y°y°] = +4ie"?°, so that instead oy’ =
—(i/2)e"?6,,.] Thus, for any representation of the
tensor current matrix element, the representation for
the pseudotensor current follows by applying the
identity (3) or the underlying Chisholm identity €,,,,y* =
—i/2[}/ﬂ7,,)/p—}/py,,}/ﬂ]75.

As an initial counting example, the B — D* transition
corresponds to the crossed process pair production of a state
with intrinsic spin parity s =0~ ® 1~ = 17. Further
tensoring with a spatial partial wave with orbital angular
momentum L = 0, 1, 2, ... and parity (—1)%, one then has
states

JA(L=0)=1"TQ0" =17,
JFL=1)=1"TQ1 =0 1- &2,
JAL=2)=1T@2"=1"@®2" & 3", (4)

and no partial wave with L > 2 contains J < 1. Matching
Egs. (4) onto (2), one may immediately read off the number
of form factors N for each operator; viz., N(Og) =0,
N(Op)=1, N(Oy) =1, N(O4) =3, and N(Oy) =3.
This result is exactly as would be expected from the more
familiar process of writing down representations of the form
factors explicitly in terms of the D* polarization and the B
and D* momenta and imposing angular momentum and
parity conservation.

B. A, — A(1/27)

Turning to A, — Ai(1/27), this corresponds to pair
production of state with intrinsic spin parity

sP = %* ®; = 0~ @ 17. Further, taking a tensor product
with spatial partial waves, one has

JEL=0)=(0"®17)®0"=0" 1",
JAL=1)=0"®1")Q1 =1"®d0 1" d2",
JAL=2)=(0"17)@2"=2"1-®2-d3~, (5

and no partial wave with L > 2 contains J < 1. This time
one counts N(Og)=1, N(Op)=1, N(Oy)=3,
N(OA) = 3, and N(OT) =4,

By comparison, one may define the form factors via an
explicit representation of the matrix elements in terms of
spinors and momenta, writing down all possible indepen-
dent combinations subject to angular momentum and parity
conservation. To do this, we follow the (classic) notation of
Ref. [17] for the vector and axial-vector currents, extending
them to Og p 7. This yields

< ~)leb|Ay —dgii ysuy,
(47)[ersb|Ay,

)=
(ac )=
(M) erublAy) = a
)=
)=

—dpii.uy,

ieldyyy, + dvovy, + dysvylysug,
<A )[eyursb|A,

(i

eldary, + dapv, + dazv,]uy,
)|coblAy, ) = =i [dri6,, + idrvyy,

+ idrs UfﬂJ’L] + idT4v/U,U,/,ﬂ75”b’
(6)

where A,(p,s) and AZ(1/27)(p',s") are represented by
spinors u,(p, s) and @.(p’, s"), respectively, with momenta
p=myv and p’ =my.v'. The form factors dy are
functions of

= (my, +my. — q*)/(2mp,my:),  (7)

and the spinors are normalized to iu = 2m. We use
the  antisymmetrized  index  notation  xj...y,=
X,...yy = X,...y,. Happily, the number of form factors
deduced from the explicit representation (6) is exactly
the same as from counting partial waves.

C. Ay — AZ(3/27)

We can now turn to the A, — A%(3/27) process,
corresponding to the pair production of a state with intrinsic
spin parity s* = 1T ®3~ =17 @27, such that
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JAL=0)=1"®2,
JAL=1)=0"p1"@®2Td 1" ®2" @ 3",
JAL=2)=1"®2" 3
0-D1I"d2" B3 B4,
JP(L=3)=2t @3t @4t

Ol O2 D3 @4t @5 (8)

This time no partial wave with L > 3 contains J < 1. The
form factor counting is N(Og) =1, N(Op) =1,
N(Ov) = 4, N(OA) = 4, and N(OT) =6.

For the (pseudo)scalar and (axial) vector, an explicit
representation corresponding to this counting follows
straightforwardly. First, we represent the charmed spin-
3/2 state by a Rarita-Schwinger tensor [33] W:(p',s’),
satisfying the usual transversity and projective conditions
v-¥,=0 and y-¥.=0 and normalized such that
PP, = 2my.. Note also y'¥. =W, Then, we have
explicit form factor representations

(A)leblA, ) =150 Py,
<A§(%_)|575b|/\b> =1pv-Weysuy,
<AZ(%‘)|%bIAb> = U‘@c[lvﬂﬂ + Ly, +lyz v, uy
+lys W up,
<A§ (%_)‘57M75b|/\b> =0 L7+ Lo v, + L vl Jysuy

+ 1A4‘;’c;¢}’5 Up, )

where the form factors [y are functions of the recoil
parameter w, and we have followed the notation of
Ref. [17] for the vector and axial-vector currents. The
number of form factors follows the counting from Egs. (8).
The Rarita-Schwinger tensor itself can be represented in
terms of spinors and polarizations (see, e.g., Ref. [18]) as

Ye(p'.s') = |ee =5 (' + 0", |ue. (10)

[OSEIEE

in which €, is the polarization with velocity v" and helicity
A= =+,0. Alternatively, it can be written as a Clebsch-
Gordan decomposition with highest weight state &} u/,
using a spinor-helicity formalism representation for ¢, and
u.. Appropriate phase convention choices enforce
the above transversity, projective, and normalization
conditions.

A complication, however, arises for the tensor current,
for which an explicit representation is

2We have chosen a convention in which the form factor for the
Ul[ﬂU; | term is numbered last, i.e., Iy, rather than /4.

(A )leoubln, )
=70- li,C[lTlo-/w + ilTZU[/,tyv]
+ ilT3v’[ﬂy’U] + ilT7vfﬂ112]]ub
+ ili’c[ﬂ[lm}’/y] + lTsv,/,] + lT()U/U]]”b- (11)

In Eq. (11) there appears to be seven terms—and thus
seven form factors—in the representation of the
tensor current matrix element, rather than six as derived
from Eqgs. (8) above. These terms are independent,
such that one (or more) cannot be eliminated simply
by applying equations of motion or the transversity
conditions.

D. Why does 6 hate 7?

The resolution to this puzzle begins by noting that
locality and unitarity allow us to describe the A, —
A%:(3/27) decay, mediated by co**b, via an on-shell
amplitude between A,, A%(3/27), and a continuum of
fictitious massive particles with momentum

gq=p-7r. (12)

mass \/q_z, and quantum numbers J© = 1" @ 1 [34].3
Contracting the (A}(3/27)|¢6,,b|A,) matrix element with
a suitable polarization tensor representation of the 1~ @ 17
states, the generated on-shell amplitudes can be expressed
in the form

Aa = ZMailTi’ (13)

where o indexes a basis of physical amplitudes that
describe the A, — A%(3/27) + g transition. The key claim
is that M must have a nontrivial kernel of dimension one in
[7; space. That is, there is a particular linear combination of
terms in Eq. (11) that cannot appear in a physical A, —
A%:(3/27) + g amplitude, allowing one of the seven ap-
parent form factors to be redefined away.

To build suitable antisymmetric tensor representations
for (the polarizations of) the 1~ @ 17 states, one may start
from the conventional polarization vectors e(q)fl, with
A = =, 0, satisfying transversity £(q) - ¢ = 0 and spacelike
normalization &(q)** - £(q)* = —5*. Then one may pro-
ceed to construct the bilinears (g)ie(q)s and &(q)q5.
However, these bilinears are not independent, as can be

easily shown by representing both the polarization and

*This is possible in the timelike region where ¢> > 0 and can
be extended elsewhere via analytic continuation.
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momentum in the SL(2,C) covering space by Weyl
spinors,” from which one finds

oe(q)e(q)) = —ic" Y e(q),f 4./ ¢
oe(q), e(q); = —ic"re(q)9q./\/ 4*
o"e(q);e(q)) = +ic"re(q); q,/ 7\ 4 (14)

(up to phase conventions for the polarizations). Therefore,
it is sufficient to consider only either ,e, or €,q, when
contracting against both the tensor and pseudotensor
currents. In the following, we will use the ¢,q, representa-
tion, as it is more convenient.

Contracting the tensor and pseudotensor currents with
q, = m,v, — my:v,, and applying equations of motion
and transversity to eliminate all linearly dependent ampli-
tudes, one may compute M,;. One finds that {l;;} =
(1,0,-1,w+1,—-1,-1,0) is the kermnel M. From
Eq. (11), this corresponds to the combination of operators

K = dp(v - ‘i’c[oﬂy - iv’[ﬂ}/;]]ub

g, [0 1) = ol = ) (15)

where the Ay is arbitrary. That is, this combination of
operators does not contribute to any physical amplitude.
Put a different way, adding K* to Eq. (11), the latter can be
rewritten with the replacements

lTl - lTl +ﬂ7‘7
lrg = lpa + (W + 1)Ag,
lre = lre — A, (16)

lys = lr3 — A,

lys = lys — A,

without affecting any physical amplitude. For instance, one
could choose Ay = I74, thereby eliminating the l7¢ term
from Eq. (11) and leaving a basis of only six physical form
factors (after suitable redefinitions) as expected from the
partial wave counting.

However, as we shall see in the next section, in order to
be consistent with HQET at a particular order, care needs to
be taken to first match the tensor current matrix elements
onto HQET, before eliminating terms. This is not dissimilar
to the case of the renormalization group evolution in the
SM effective field theory: To consistently capture the
operator mixing under running, one has to use an over-
complete operator basis and then match it to the basis of
choice using kernels generated by equations of motion and
integration by parts [35]. For instance, in Ref. [36] the
preemptive omission of the /4 term obscures the presence

*The entire procedure is, in fact, much more straightforward
using the spinor-helicity formalism, as shown in Appendix D. We
have presented it here using four-vectors in order not to change
notation.

of the kernel in this procedure; we shall see below that this
omission happens to be inconsistent beyond leading order
in HQET.

Before proceeding, some further comments are in order.
Noting the relations (14), to determine a basis of physical
form factors, one could have instead defined them with
respect to I' = 6,,¢" and 0,,759", via

(N (5 )160,a BIA, ) = v [F, + FEu, + F v,

+FI®, . (17a)
(N)Neona rsblAy ) =v- P [GTr, +Gho,
+Gvlysup+Gi¥.ysuy,
(17b)

as done in Refs. [36,37] in the context of rare dileptonic
decays A, — A*ZZ. The identity (3) applied to the under-
lying tensor structure (11) would then allow one to show
that these eight form factors may be expressed in terms of
just six linear combinations of /;;, with the same kernel.
Note that the kernel itself satisfies both K*v, =0 and
KH v, = 0 separately, not just K*¢q, = 0.

Alternatively, one could have imposed the constraint that
the matrix elements (17) must each vanish under further
contraction with ¢*, to directly remove one each of the F ,T
and G7, leaving a total of six form factors. As done in
Refs. [37,38], these six can be reexpressed in a so-called
helicity basis, comprising three form factors for each matrix
element. Matching further onto the I' = 6,,¢" and 6,,y59"
HQET matrix elements will yield consistent results,
because the HQET traces implicitly impose the identity
(3) or equivalent. The helicity basis, however, is not a
natural choice for straightforward HQS interpretations of
the structure of the matrix elements.

Further, including g = my, v, — m: v, in the definition
of the (pseudo)tensor current itself in Eq. (17) introduces
hadron mass terms into the HQET traces, and it does not
respect the reparametrization invariance of HQET: The
momentum difference of the heavy quarks need not be g.
These hadron mass terms correspond to heavy quark mass
terms plus HQS-breaking higher-order corrections—
cf. Egs. (19) below—such that the power counting in
1/m,;, and order-by-order matching of the F7 and G form
factors onto HQET requires careful bookkeeping. By
contrast, while in deriving the kernel (15) we constructed
the amplitude with respectto ¢ = p — p/, the kernel itself is
independent of the hadron masses. It depends only on w
and does not introduce hadron mass terms. (Notably, one
could have used any timelike momentum to derive the
kernel, so long as it was a linear combination of » « p and
v' « p’.) With this in mind, we proceed to show how to
match onto HQET using the tensor current definition (11)

016027-5
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that manifestly preserves HQET symmetries, while being
careful to keep track of the kernel.

III. HQET MATCHING FOR A, — A

A. Spectroscopy

The A%(1/27) and A%(3/27) form a HQS doublet
“superfield” [17]

1
t =Y+ —= (0 + ") u,, 18
% \/g(y )y (18)

whose “brown muck” degrees of freedom are in the spin-
parity s£ = 1~ state, while the A, has s£ = 0" and is an
HQS singlet. The baryon masses can be expressed in
HQET via

mu —mQ—i—AA—%—F N
A Apa(mgp)
A Aaa(mg)
mp: (3/27) = Mg + A _I—IQ mQQ +o (19)

where Q = c¢, b, and the ellipsis denotes higher-order terms
in Agcp/mg. The parameter A, (A}) is the energy of the
light degrees of freedom in the my — oo limit for the
baryon sL = 0" HQ singlet (s£ = 1~ HQ doublet), and
arises also in the semileptonic form factors [31,32]. The
parameters A; and 1, are related to the HQ kinetic energy
and chromomagnetic energy.

The six baryon masses—two m, _, and four m Ar,——are
well measured, such that when combmed with a quark mass
scheme for m,. , the remaining six parameters in Eqgs. (19)
are fully determined. As in Refs. [4,9,10,39,40], we use the
1S short-distance mass scheme [41-43], under which
ambiguities in the pole mass A, and A/, cancel, and the
behavior of the perturbation series is improved. Under this
scheme, m;,(m}5) ~m}5(1 + 2a2/9), with m}5 = (4.71 £
0.05) GeV and we match HQET onto QCD at scale
u = \/m.my, so that a; ~ 0.26. Further, the mass splitting
dmy. = my, —m, = (3.40 £ 0.02) GeV is well constrained
by B — X /v spectra [44,45] and is treated as an inde-
pendent input. One finds from Eqgs. (19), in particular,
Ay =0.814005 and A} =1.10£0.05GeV. Also
important are the HQ expansion parameters ¢, =
1/(2m. ;). We summarize in Table I all these inputs and
the resulting HQET parameters.

TABLE 1. Input parameters used (left) and derived HQET
parameters (right).

Inputs (Masses in GeV) HQET parameters (Derived)

my, 5.61960(17) [46] Ay 0.81(5) GeV
MA: (1/27) 5.91220(12) [46] A 1.10(5) GeV

MAs (3/27) 5.91992(19) [46] Ao —0.26(7) GeV?
my, 2.28646(14) [46] A -0.38(7) GeV?
Ms (12 2.59225(28) [46] Ay, (my)  0.0123(4) GeV?
M (32 2.62811(19) [46]  Api(m.)  0.0165(7) GeV?
mjS 4.71(5) [41-43]  g,[=5-] 0.105(1) GeV~!

3402) [44.45] e f=5L]  036(1) Gev~!

a,(y/mymg) 0.26

B. Heavy quark expansion
At leading order in HQET [47,48], the matrix elements

(AL[elb|Ay) = o(w)vapeTuy, (20)

in which o is the leading-order Isgur-Wise (IW) function.
As for the definition of the form factors, we use (close
analogs of) the notation of Ref. [17] for the IW functions. In
the heavy quark limit, matching onto Egs. (6), (9), and (11),

dp =dy, =o(w— 1)/\/37,

dg = dy = dpy = o(w+1)/V3,
dyy, =dyy = dpy = —20'/\/§»
ls=1lp=1lyy =1y =Ip +ir =0, (21)

and all others vanish. Note we have included the A%(3/27)
tensor current kernel parameter A7 as in Eq. (16). One sees
here immediately that, although A; is unphysical with
respect to the A, — A%(3/27) amplitudes and is therefore
unconstrained, the choice Ay = —I7; is inconsistent with
HQET. That is, one could not have first removed the /7,
term from Eq. (11) using the kernel and then attempted to
match onto HQET.

At O(1/m, ), matching the ¢I'b current onto HQET
generates current corrections to the matrix element

(AZ|8(ETB)|Ay) = e BYSIF y Tuy + &, b Tyt uy. (22)

Applying the equations of motion for HQET fields and the
heavy quarks, one may show [17]
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bg‘j} =0 [vavy - WU{IU;J + (W2 - l)g{lﬂ]

+ 6([_\/\ - W[_\;\)ga/u
b
bg’l) = 0] [anv,; — VoV — (W2 - l)gau]

+ 6[Apvav, — Ny vy, — (Ay — WA ) Gl (23)
where o; = o((w) is a subleading IW function. Two
additional subleading IW functions ¢., arise via
O(1/m,,) chromomagnetic corrections to the HQET
Lagrangian,

1 /
oL = 8c¢cgaﬂvbl/_/?io-ﬂy ?f Ty,
a7
+€p$1 9 VT 4 o uy. (24)

Finally, the kinetic energy operator in the O(1/m.)
HQET Lagrangian generates HQ  spin-symmetry

conserving terms [Apeyob,(w) + Al e.of, (W) vawTuy.
These terms can be consistently reabsorbed into the
leading-order IW function via the redefinition

o(w) + [Apepol.(w) + Nye.of,(w)] = o(w).  (25)

It is further convenient to define hatted IW functions and
form factors, normalized by o,

I(w) = x(w)/a(w), X = {61’¢c,b’ dy,Ix}.  (26)

Radiative O(a;) corrections to the HQ currents can be
computed by matching QCD onto HQET [49-51]. Similar
to the notation of Ref. [52], these corrections arise in form
factors via the functions Cr,, where I'; is a form factor label.
The Cr, are functions of w, z =m./my, and &; = a,/x
[51]; explicit expressions for Cr. are in Ref. [40].

Incorporating all these contributions, at O(1/m, ;. a;), the A, — A%(1/27) hatted form factors

V3ds = w+ 1+ Cs(w+ 1), + e [3(Aw = Ay) = 2w = 1)&) = 2(w + )]

~

+ &, [(Ww=2)Ap + 2w = DA, =2(w? = 1)8; +2(w + 1)), (27a)

V3dp =w =14 Cp(w = 1)a, + . [3(Ayw — Ay) —2(w? = 1)6; —2(w — 1)¢b.]

A

+&,[(2+w)Ay — 2w+ DA +2(w? = 1)6; = 2(w — 1)), (27b)

V3dyy =w =1+ Cp(w = 1)é, + e,(wAy — Ay) + e.B(Ayw = Ay) = 2(w? = 1)8; = 2(w — 1), ],
V3dys = =2 = [2C,; 4 Coo(w + 1)])as + decd. — 2e,[Ay + Ny — (w + 1)81 + @),

V3dys = =C,5(1 + w)a + 2, (Ay + Ay — (w+ 1)5, — ¢,).

V3dy =1+ w+ Cyy (1 +w)ay + &,(WAy = A)) + e B(Ayw — Ay) = 2(w? = 1)6) = 2(w + D).,
V3dyy = =2 [2Cy1 + Coa(w = 1)]a, + 4e.p. + 26, [N} — Ay — (W= 1)6, + ¢y,

V3dyy = —=Cos(w = 1)a, — 2e,[Ap — N + (w = 1)81 + ¢).

V3p = 14w+ Cu(1+w)it, + e B(Ryw = Ry) =202 = 1)y = 20w + 1))

+ep[(24+w)Ay = 2w + DAL +2(w? = 1)6; = 2(w + 1)),

A

V3dpy = =2 - [2Cyy + Co(w = 1)]a, + de.d, + 2e,[A} — Ay — (w = 1)6, + ).
V3dpy = —Cps(w = 1)a, + 26, [Ny — Ay = (w = 1), + ¢,
V3dyy = —2C 30, — 4e, (A — wéy + ¢y).

Similarly, the A, — A}(3/27) hatted form factors at O(ay, 1/m, ;)
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Is =1+ Csay +e.[(w—1)5) + ]

+ep[An — Ay + (w—1)51 — ). (28a)
Ip =1+ Cpay +e[(1 +w)6) + ]
+ep[An + Ay = (W + 1)&1 + i), (28b)
lyy = 14 Cpé + e [(1 4+ w)éy + ]
+ep[Ay+ Ay = (w+ 1)a) + ). (28¢)
lyy = Cpott, — 2¢,6,, (28d)
lys = Cy3t, — 24|} — wéy + by, (28e)
lys = =2e[Ap — WA + (W2 = 1)6, — (w = 1)h,). (28f)
Iy =14 Cpé +e[(w=1)8) + §,]
+ep[An = Ay + (w=1)61 — ¢y, (28¢g)
1y = Cpolt, — 2€,61, (28h)
Ias = Caslty + 26, [Ny — w1 + ), (28i)
las = 2e5[Ap —wh)y + (W2 = 1)&) — (w+ D], (28))
Iy = =dr + 14 Coay + e [(w=1)8, + o]
+ep[Ay = Ay + (w=1)61 = ¢y, (28k)
Ips = Cpbt, — 26,64, (281)
Ips = Ay + Cptrs + 285 [N} — w6y + ). (28m)
Iy =—(w+1)ir
+2¢5[Ay —wA) + (W = 1) — (w+1)¢,].  (28n)
Irs = Jr, (280)
Ipg = A + dey by, (28p)
Iy =0, (28q)

in which we have kept the tensor current kernel terms to the
HQET expansion, with 1; = Ay /o.

The results for the vector and axial-vector form factors
match those of Ref. [17], while the (pseudo)scalar and
tensor form factors are new. We see, in particular, that if one
had already fixed A; = lr3, Ay = lyg, OF Ay = —lpg/ (W +
1) in order to eliminate their respective terms from Eq. (11),
then this would have been incompatible with matching onto
HQET at O(ay, 1/m, ;). That is, the HQ expansion (28)

generates relations between the form factors, thus provid-
ing HQET constraints on the choice of A in order to
eliminate any given tensor current term. In particular,
eliminating the /r¢ term [36] would require Ay = —4¢,¢,;,.

IV. HQET PARAMETRIZATION FITS

In Appendix A we present the full set of NP helicity
amplitudes and decay rates for A, — Allv. Just as for the
parametrization of the IW functions for B — D** decays
[3.4], we parametrize the IW functions to at most linear
order in (w — 1) as

o(w) =o(1)[1 + o' (w—1)],
61(w) =6,(1)

Pe(w) = (1)

and ¢, (w)~0. (Reference [18] implicitly sets both
¢.» =0, because therein chromomagnetic corrections
are dropped.) At present, there are no available exper-
imental data that would permit data-driven fits over the full
recoil range to these HQET parameters o(1), ¢/, 6;(1), and
$.(1). A measurement of their relative branching fractions
to A, = A lv is, however, available [19] for the ratios

>

(1
(1

s
s

R

(29)

(A, = Abur]
T[A, = Acps]’

f(A: ({)) = 0.126 + 0.03310047,

AGY)

F(A:)) = 0210400420075, (30)

Furthermore, very recently, LQCD results have been
published [29], applicable only in the near-zero recoil
regime w < 1.05.

A. Quark models

As a preliminary measure, one can fit the parametrization
(29) to quark-model-based predictions for the vector and
axial-vector currents over the full w range, with the intent
that such fits can provide a plausible set of initial central
values for the HQET parameters, for use in future data-
driven fits. To this end, we make use of the results of the
PCR form factor parametrization [21] for A, — A}, which
is based on a constituent quark model and follows a similar
approach to ISGW2 [22,23]. For each decay mode, explicit
expressions for the (axial-)vector form factors are obtained
in terms of two wave function overlap parameters «;, ay,
along with effective masses for the heavy quarks 7, 5, and
an effective light quark mass 7, a total of five parameters.
We use the same numerical values as implemented in
EvtGen R01-07-00 [53], shown in Table II. Using data-driven
precision predictions for A, — A.v [9], this PCR
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TABLE II. Parametric values for the PCR form-factor para-
metrization, as implemented in EvtGen RO1-07-00 [53], for both
Ai(1/27) and AL(3/27).

a ay i, (GeV) i, (GeV) iy (GeV)
0.59 0.47 5.28 1.89 0.40
parametrization  predicts  f(A5(1/27)) ~0.13  and

f(A%(3/27)) = 0.26 in good agreement with the data (30).

To fit the HQ expansion of the form factors to the PCR
parametrization, we sample both of its predicted dI'/dw
spectra at three points w = 1.1, 1.2, and 1.3. [The maxi-
mum wy,,, = 1.315 and 1.303 for A, - A%(1/27)¢v and
A:(3/27)¢v, respectively. Hereafter £ =e or p] We
further assign a somewhat arbitrary 20% theory uncertainty
to these PCR data, partly informed by the uncertainties in
Ref. [21]. This is quite a bit smaller than the 40%—45%
uncertainties in f(A}) measurements (30), so that the latter
are not included in the fit, as they would generate only
relatively weaker pulls.

One obtains from a simultaneous fit of the A, —
A:(1/27)¢v and A%(3/27)¢v spectra to the six PCR data
points

6(1)~1.040.1,
51(1) ~0.9 +0.5,

o/ ~—-18+02,
$.(1)~02+0.3, (31)

in which we emphasize here (and hereafter) by the “~” that
these fit results and their uncertainties do not properly
include the (presumably quite large) theory uncertainties or
possible biases implicit to the quark model-dependent PCR
parametrization predictions and the sampling thereof.
Moreover, we emphasize that these results are not data
driven. We therefore refer to these results as “fit estimates”
for the remainder of this discussion. Sensitivity to the
charm chromomagnetic contribution in this fit is weak, with
$.(1) compatible with zero, but not entirely negligible.

In Fig. 1, we show the resulting estimated w spectra for
Ay = A(1/27)¢v and A%(3/27)¢v, compared to the
predicted PCR data points. The spectra are displayed as
red and blue bands, respectively, that show the coverage
by the first principal component and uncertainty of the
fit covariance. The fit estimates predict the ratios
F(A:(1/27)) ~0.130(3) and f(A%(3/27)) ~0.259(4) in
good agreement with the data (30). In lighter red and blue
bands, we show the corresponding A, - A%(1/27)zv and
A%(3/27)zv spectra, respectively. These are in good agree-
ment with PCR predictions, shown as, respectively, colored
red and blue data points sampled at w = 1.05, 1.1, and
1.15. If instead one uses these six A, — A%(1/27)zv and
A%(3/27)wv data points as additional fit points together
with the six A, — A%(1/27)¢v and A%(3/27)¢v data
points, one finds (1) ~0.99 +0.04, ¢/ ~—-1.8 £0.1,
61(1) ~1.040.3,and ¢, (1) ~ 0.1 + 0.2, which is entirely
compatible with the fit estimates in Eq. (31).

%
@] i
i ]
X
g \
3
3 ]
=
=
1.3
w
FIG. 1. dI'/dw spectra for A, — A%(1/27)¢v (red band) and

A%(3/27)¢v (blue band) using the fit estimates (31), obtained from
fitting the HQET expansion parameters to data points generated by
predictions of the PCR parametrization [21] (black points). Each
spectrum is shown as a band, generated by the first principal
component and uncertainty of the fit. In lighter corresponding
colors, we show the respective semitauonic decay distributions and
their PCR predictions at w = 1.05, 1.1, and 1.15.

B. Comparison with LQCD predictions

We now turn to examine the recent LQCD results [29]
and HQET fits thereto. First, in the HQ limit, the ratio of the
differential decay rates to the A HQ doublet states

dU'[A, = AL(1/27)l]/dw 1 (32)
dU[A, = A:(3/27) )] /dw 2’

based on the number of spin degrees of freedom in
the respective final states and irrespective of any NP present.
This is in good agreement with the ratio of the measured
branching fractions, which we compute from Eq. (30) to be

r A= AL/ 2] f(A(1/20))
TTIA > A(3/27)m] F(AL(3/27))

0.6703. (33)

This, in turn, indicates the absence of large HQS violations,
at least after integrating over the full phase space.
However, it is notable that the LQCD results
instead predict dI'[A, = AL(1/27)Iv]/dw~2.5xdU[A, —
A:(3/27) )/ dw, albeit for w < 1.05 only. That is, in the
near-zero recoil region, the ratio of the A’(1/27) mode to
the A%(3/27) mode is 5 times larger than would be
expected from the HQ limit. This alone suggests large
HQS breaking in the LQCD results, naively far larger than
the expected effects from potentially large 1/m? terms.
This is, perhaps, a surprising result given that the HQ
expansion to O(1/m?2), when used for the description of the
ground-state A, — A.Zv decays, shows excellent agree-
ment with SM LQCD results and experimental data [9].
(A moderate discrepancy, however, between the LQCD
prediction for the A, — A, tensor form factors and the
predictions from a combined fit of the A, — A.Zv
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experimental data and SM LQCD results has been noted
previously [10].)

The LQCD results are expressed in terms of a particular
form factor helicity basis for the vector, axial-vector, tensor,
and axial tensor form factors, in which each is parametrized
to linear order as F; + Ay(w — 1), i.e., two parameters for
each form factor. The transformation from the HQET basis
(6), (9), and (11) to this LQCD helicity basis is provided in
Appendix B, with the explicit definitions in Ref. [29] (see
also, e.g., Refs. [37,38]). Results for the scalar and
pseudoscalar form factors are not explicitly provided; there
are, therefore, a total of (10 + 14) x 2 = 48 parameters in
the LQCD results. For this discussion, we use the nominal
fit parameters in Table VII of Ref. [29] and covariance
matrices provided therein.

We match HQET onto QCD at y = ,/m.my, while the
LQCD results are taken to be computed at u = my
(cf. Ref. [7]). To account for the anomalous dimension
of the tensor current, we include a multiplicative renorm-
alization factor [a,(m.my)/a,(m,)]™*/* ~0.97 [54,55] for
each LQCD tensor form factor, in order to scale them to our
matching scale. The 24 LQCD form factors are each
sampled at two w values, w = 1 and w = 1.05, in order
to create a set of 48 correlated, nonredundant data points
over the joint space of w and the form factors. Fitting the
five-parameter HQET parametrization (29) of the form
factors—i.e., including ¢,(w)—to these data, we find a
dramatically poor fit, with y?/d.o.f. ~ 313/43. Turning off
1/m., and a; corrections worsens the x? of the fit, as
expected, but only marginally; not accounting for the «;
running described above significantly worsens the fit,
with y2/d.o.f. ~484/43.

To roughly characterize the degree of HQS breaking
implied by the LQCD results, we modify the fit to include
HQS-breaking parameters for each hatted HQET basis
form factor in Eqgs. (27) and (28): i.e., EZX - EZX + &4, and
?x — 2x + &, In this 5 + 24-parameter fit, an excellent fit
to the LQCD results is obtained, with y*/d.o.f. ~25.3/19.
However, some of these HQS-breaking parameters are
pulled to very large values, e.g., we find ¢;, =0.7 £
0.2 and ¢;, =0.8+0.2: The best fit values and the
uncertainties of the HQS-breaking parameters are reported
in Appendix C. Since by comparison [Ae.]> ~0.16 and
[Are.])? ~0.085, this also suggests the presence of very
large HQS-breaking effects in the LQCD results, perhaps
beyond what could be expected from large 1/m? terms
alone. Interestingly, the A%(3/27) HQS-breaking parame-
ters are all smaller, being either compatible with zero or the
naively expected size of 1/m?2 terms.

Using the modified fit results with the HQS-breaking
parameters and naively extrapolating over the whole w
range, one can compute the ratio of branching fractions R
between the A%(1/27) and A%(3/27) modes, obtaining
R; =34+ 1.1. This is in tension with the ratio of the

experimental measurements in Eq. (33). If these results are
confirmed, the only way to reconcile the LQCD results with
the experimental data would be nontrivial w dependence of
the HQS-violating terms, such that very large HQS
violations in the w < 1.05 region are balanced out else-
where in the w spectrum. To further investigate this, a full
fit to the LQCD results incorporating higher-order
O(1/m?,a,/m, ;) corrections in HQET is warranted,
though beyond the scope of the current work.

C. SM and NP predictions

Returning to the quark model fit estimates (31), the
corresponding lepton universality ratios, defined by

T[A, = Al
R(AY) = =———F5. =e,p, 34

are predicted to be in the SM
R(A’; (1—)) ~0.15+0.01,
R(A’; (g—)) ~0.11 £0.01, (35)

in which again we emphasize by the ~ that the estimates
feature unassessed theory uncertainties and are not data
driven. This can be compared to the PCR SM predictions
R(A%(1/27)) ~0.16 and R(A%(3/27)) ~0.11. The quark-
model-based predictions of Refs. [25,26] are also compat-
ible with these estimates.

Using the HQET expansion for the NP form factors, we
can immediately extend these fit estimates (31) to generate
NP predictions for R(A}). In Fig. 2, we show the allowed
regions in the R(A.)—R(A}) plane for both the Aj(1/27)
and A%(3/27), as any one of the NP couplings for the five
operator combinations Qg p, Og_p, Oy s, Oy_y, and Op
are turned on and assuming only left-handed SM neutrinos.
These operators enter the effective b — crv Lagrangian as

Oy ~ (eTyb)(T0), (36)

with, respectively, I'y = Py, P;, v*Pg, y*P;, and 6" Py,
and F/X = PL’ PL’ ]/MPL, 7ﬂPL’ and Gj,u/PL' The NP
predictions for R(A.) are from Ref. [10]. The boundary
of each region corresponds to the case that the NP Wilson
coefficients are relatively real with respect to the SM term,
while the interior requires a relative phase between the SM
and NP contributions. The V-A NP interaction simply
rescales the SM current and therefore spans a line in the
R(A.)-R(A}) plane. It is notable that the allowed regions
for A:(1/27) [A%(3/27)] appear moderately (tightly)
positively correlated with R(A.).

V. SUMMARY

We have computed A, — Aj/v amplitudes for general NP
contributions and the corresponding form factors to
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FIG. 2. Allowed regions in the R(A.)-R(A}(1/27)) plane (top)
and R(A.)-R(A%(3/27)) plane (bottom) for various NP oper-
ators combinations. The SM prediction is shown by a black dot.

O(1/my, ., a;) in HQET to be included in the HAMMER library
[27,28]. This will provide experimental collaborations with
the necessary tools to control the uncertainties associated with
the A, — A feed-down backgrounds in A, — A_.lv analy-
ses. Moreover, such tools also open the possibility of using the
A, — A} modes to directly probe NP or measure |V, |.
Since there are no published differential measurements
of A, — Allv decays, we have fitted a parametrization of
the relevant Isgur-Wise functions to the ISGW2-like PCR
parametrization [21]. The resulting preliminary fit esti-
mates might be plausibly used as central values for a future
data-driven fit, and we have used them to generate
preliminary predictions for the lepton universality ratios
R(A}) in both the SM and beyond. Further, we have
assessed the compatibility of the HQET form factors with
total decay rates measurements and recent LQCD predic-
tions [29] in the near-zero recoil regime: As previously
noted [29], there is a tension between LQCD data and
HQET predictions. We find that this tension persists at full
O(1/my, ., a;), and we furthermore find the LQCD results

indicate unexpectedly large HQS-violating terms—poten-
tially, large 1/m? corrections—near zero recoil. However,
such large HQS-violating terms cannot persist uniformly
over the full recoil spectrum, as they would be incompatible
with the measurement of the ratio of total decay rates to the
A%(1/27) and A%(3/27) states. Further studies of this issue
are warranted and we leave them to the future.

From a more field-theoretical perspective, we saw that the
A, — A} system offers an (to our knowledge, first) example
where the most general parametrization of the hadronic
matrix elements compatible with all the symmetries of
HQET is overcomplete with respect to the number of physical
amplitudes: There appear to be more form factors than partial
wave amplitudes. Specifically, this happens in the (pseudo)
tensor matrix element for the A, — A%(3/27) transition.
Preserving such redundancy allows one to perform mani-
festly consistent calculations, while keeping the HQET
symmetries manifest order-by-order in the HQ expansion.
Therefore, we have presented a general discussion of the
counting of the physical form factors for any hadronic
transition matrix element, showing how to determine the
physical basis of form factors and match them onto HQET.
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Note added in the proof.—The CDF data reported in
Eq. (30) assume isospin limit relations for A%(1/27) —
Ar*n~ versus A(1/27) — Az°z°, using measurements
only of the former to recover the f(A%(1/27)) ratio.
Significant isospin violation from thresholds in
Ai(1/27) - £.(2455)r — Azx may alter the recovered
ratio, but with theory uncertainties that are not yet under-
stood. See Ref. [46] and references therein.

APPENDIX A: AMPLITUDES

We write explicit expressions for the b — ¢ amplitudes
rather than b — ¢, defining the basis of NP operators to be

SM: —2V2V?,Gplby" P c][oy,PLI, (Ala)
Vector: —2v2V*,Gplb(a)y*P, + ajy*Pg)c]
x [D(BLv,PL + Bry.Pr)l. (Alb)
Scalar: —2V2V*,Gplb(aS P, + aPg)c]
x [0(B] Pr + PP, (Alc)
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FIG. 3. Definition of the helicity angles #; and ¢, in the lepton
system rest frame. The azimuthal angle ¢, is unphysical in the
pure A, = Aflv decay.

Tensor: —2V2V?,Gr[(bake" Prc)(Dpro,,Prl)

+ (bal " Ppc)(0pko,,PLl). (Ald)
The subscript of # denotes the v chirality and the subscript
of a is that of the ¢ quark. Operators for the CP conjugate
b — ¢ processes follow by Hermitian conjugation. (The
correspondence between the a,  coefficients and the basis
typically chosen for b — ¢ operators can be found in
Ref. [4].) The A, — Allv process has four external spins:
sb::t,slzl,2,s,,::t,andscz1,20rsC::|:%,:|:%
for the spin-1/2 or spin-3/2 states, respectively.
[Anticipating inclusion of A%(1/27) and 7 decays, we
label the AZ(1/27) and massive lepton spin by “1”” and “2,”
rather than “=” and “+,” to match the conventions of
Ref. [56] for massive spinors on internal lines.]

Helicity angles are defined with respect to the b — ¢
process; definitions for the conjugate process follow simply
by replacing all particles with their antiparticles. The single
physical polar helicity angle 8, defines the orientation of p;
in the lepton center of mass reference frame, with respect to
—py,» as shown in Fig. 3. If subsequent A7 — Y,...Y,
decays are included, one may further define ¢; and ¢;(;; 1),
as twist angles of the [-v and Y;-Y; | decay planes, such
that the combination ¢; — ¢;(;, 1) becomes a physical phase.
For example, including the A} — A zz decay would result
in two physical phases. Our phase conventions match the
spinor conventions of Ref. [56] for not only 7 but also A}
decay amplitudes and are chosen such that the A, — AZlv
amplitudes themselves are independent of ¢;.

1
A = {—ﬂi(dp(ai ad)

T, —ds(aj +ap)= ) +

This phase convention amounts to requiring the inclu-
sion of an additional spinor phase function in the z,
A%(1/27) and A}(3/27) decay amplitudes that modifies
the phase conventions of the usual helicity basis for the =

and A}. These phase functions are denoted hw , hi/ szb, and

hs(/ 5,» respectively, each obeying h;; = hj,. Explicitly, the
required additional phase factors are

() = n (¢)) = e,

”2<¢1>: ‘/2<¢,> e,

3_/32/2 () = e, 3/12/21 (1) = €',
mls_(¢) =1, W () =€t (A2)

plus conjugates.
For compact expression of the amplitudes, it is conven-
ient to define

we=wEVw? -1,

92 = q2/m}\b =1=2rpw-+ ri*, (A3)
with ry- = my./my,, r; = m;/m,,, and further
= wy £ yw_,
Ry = (ry £ DI + (ras F 1)Zy cos b,
Q, =rp—w+ mcosez,
Q =ryw—1+ rA*MCOSQI,
Qo= Vw? =1+ (ry- —w)cosé,. (A4)

We pull out a prefactor 2\/§Gme\b. [ra-(G% — rl) from

the amplitudes Ay, , such that the total differential rate

2

T Gim}ry (3> —r7)?

dwdcosf,  32x° q

x D 1A

SprSesSiySy

(AS)

SpSeSS,

The explicit amplitudes for A, - A%(1/27)lv are then

R dy (1 + (af + a})py)r,

2 26]2
(1+ (af + ap)B)rZ_(dvsQy 4 dypQ,) | R_da(1 + (af —ag)B))rs
+ ~2 + -2
24 2q
1 V— aV) rZ . (da-Q ds»Q
+( + (ap —ag)B)riZ (dsQy +dyo X)+4dna£ﬂ{\/w_+cosel

24*

+ 20} p1[(dry + dr3) 2, — dpy

— 1] cos 6, } (A6a)
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AL :sinﬁl{—(r/\* = Ddyi (1 + (af +ap)B)Z;  (rardva +dys)(1 + (af +ap)f))Vw? — 12X
T 2V 2/

(14 ra)dar (1+ (o —ap)B)Z- (radap +das) (1 + (af = ag)B)Vw* — 1%,
o VT

B 4dryagPlri/wy " 2apBrri[=(dry + d3)Zy +dpVw? — 12—]}

NG PR

(ra = Ddyi(af +ap)PrZi  (radyy +dys)(af + ag)rVw? = 12_
2/ ¢? 2/ ¢?
(1 +rp)dai (o] —ag)Bp2- _ (radas + dgs)(af — ag)prvw® — 11X,

N NG

_ 4dT1aZﬁ£r1,/w_ 1 2a{ﬂ£r,[—(dn + dT3)Z+ + dT4V W2 - 12_]}

(A6b)

A711+ = Sinﬂl{—

~ = (A6c)
e 7

1 R, dy,(a) + a})prr
Az = {3l — )z dsla + s - Kok P

(af +ap)prriZ_(dvsQ. + dyrQy) | R_da(—a) + ag)prr
2@2 * 2@2

Va8V (daQ d,Q
_ (af —ag)pgr ;ész + +da X)—4dT1a€ﬁ,€ fw cos 6,

420l B [—(drs + dp3)Z, + dpgV/W? — 13_] cos 6,}, (A6d)

dyi(1 + (af +ap)Br)riZy  da(1+ (af —ag)Br)riz-
2\/512 2 f]z
n 4drapfL(w_ = ra) n a1 (dry = ra-dpaw, + dps(w_ — rA*)>Z+}

NN e

A_21_ = sin 91{—

(A6e)

0
Ay = 005231 {—dw(] + (af +ag)p] ) —da (1 + (af —ap)p )z

B 8driappri(rypwy — 1) /W n dapfir(dry — ra-dpow, + dpy(w_ — rA*))2+}

-2 o (A6f)

q q

20 8dpal frr Wi (rpw_ — 1)
Ay = szil {dw (af +ag)PrZs +dai(a) —ag)prZ_ + L7R A;

q
n daj frri(drs(ra- —wy) + dpy(rypw_ — 1))Z+}

> (Abg)

q

Here we have written only the s, = 1 amplitudes. The s, = 2 amplitudes for A, - A%(1/27)lv follow immediately from
the conjugation relation

AS,,ECs,sb (01’ Wi, W—) = hé,sb (”)Asbsuslsv (” - 917 w_, W+>’ (A7)

where h! is defined as in Eq. (A2), and the exchange w, <> w_ implies Vi —1 - —Vw? -1 everywhere in the
amplitudes.
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Similarly, with respect to the total differential rate (A5), the explicit amplitudes for A, — A%(3/27)lv are then

A <ind { Lyi (1 + (af + ap)py)rivw? —12_ n Lys(1 + (af + ag)pl)riZ,
1 - -
1 l V6@ 2V6\/4
4 Lo (=1 — (O‘X - aX)/}Z)rlv w? — 1%, 4 Laa(1 + (O‘V - O‘X)ﬂ}j)”lz—
N NN

SRBIN W = 1207y (raowy = 1) yWZ + (Ipa(raewy = 1) + gz (ra = w_)) 2]

2]2
V3B Rlra(rae = wo) W+ (rs(rews = 1) + Lrg(ra: = w_) 2]
i , (A8a)
/72
q
2 Lya(1 v 7/ 18))
A__%z_ _ 0052@{—\/:1‘/1(1 + (a\L/ +a¥)ﬂ¥)‘ /w2 — 1=+ V4( + (OlL +OCR)ﬁL) +
2 3 V6
2 lA4 (aL - aR)ﬁL)
- 1- - Vw =12
+ \/; a1 (= aR ﬂL L+ \/6
4 %alT?ﬁ{er w? — 1[2lT1(rA*W+ - 1)\/W— + (sz(rA*WJr - 1) + I3 (rps — W—))Z—]
+ ~2
q
2 O‘RﬁL’”Z[zlm( - W—)\/W— + (Irs(raswy = 1) + Iy (ra- —w_))Z,]
+ P : (A8b)
q
0 2 lys(a) + ag)BRE
A :-2_1\/:1 v V\paV 2_12__V4L R/PR=+
——1p4 = SIn 2{ 3 vi(ag + ag)BrVw /6
2 / lA4( aj + ag)BrE-
l -1
+ \/; ai(a) —ag)fpVw? + /6
a1 frrivw? = 1217 wWi(ryw_ = 1) + (Iyy + Ips(wy — rae) = raclppw_)Z_]
~2
q
%a{ﬂ§r1[2l”\/w+(w+ —rp) + (Ips + lpg(Wy — ras) — ’”A*ZT5W—)Z+]} (ASc)
- , c
7
— Singl{lm(O‘X +ag)Brrivw? =12 ly(af +ag)prriZ.
o V63 2V6\/4?
n Ly (] = ag)Prrvw? =12, + Laa(=af + ag)prriE_
Vo7 2V6V/
N 2\ /30l PRV w? = 12l W (raew_ = 1) + (Ipy + I (W = rpe) = raclppw_ )2 ]
2]2
\/%a{ﬁITi {2174\/W+(W+ —ras) + (s + lre(Wy —rae) = rpelpsw_ )2,
+ NGE , (A8d)
q
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BV = 1(lsa} Ey + [sanZ, — lpas Z_ + lpayX_)
A7+517 = /6
R_lyy (1 + (af + ap)By)rivw® = 1
+
V64?
(L (af +ag)B)rZ [=Vw? = 113y + 1yaQ, ) + 1ya€y)
V64?
n Ry 1y (1+ (af —ag)By)rivw’ -1
V62
q
(4 (af —ap)B)rZ VW = 11432 + 1) + 144y
V64
2
- 2\/;(11@{\/ w2 — 12l /Wy + (=l + I3)Z_] cos 6,
2 rar — 2 ATz
-2 gaRﬂL [2lT4 w_ + <ZT6 + lT5W)Z+] COS 9[ —+ 2 §IT7aRﬁL(w - 1)2+ COS 91 R (A8e)
) { (1 + rpa )y (1 + (@ + al)BY)Vw? — 1Z_
A_ 1, =sinf;q—
2 \/6 /qz

n (1 + (af + ap)B])[lys + lya(ras =w) = Lysw? + Lyp[ra- — ra-w?]]Z,
V6§
(ras = Dl (1 + (a7 —ag)f))Vw? — 1Z,
V6§

T (14 (af = ap)Bi)llas + Laa(rps =w) = Lisw? + Lig[rpe = ra- w22
V6§
2 %aﬁﬁ[rl V W2 — 1{2[7‘] A /W+ + (—17'2 + 17'3)2_]
+

~2

q
24 /30kPLTI2Lran/WZ 4 (76 + lpsw)Z.] 2\£177a1€ﬂ271(wz - DI,
+ = - NG . (AS8f)
q q
. (1 +rA*)lV1(aZ+a¥)ﬂ¥VW2— 12_
A_L1, =sin@;q -
z Vo
n (af + ag)Prllys + lya(ra = w) = Lysw? + lys[rpe — raw?]] 2,
V6@
_ (rar = Dlai(af — ag)Prvw? — 1=,
V6@
n (af = ag)Prllas + Laa(ras = w) = Lisw? + Lio[ras — raw?]]2_
Vo §
24/3a1 prrvw? = 120 /W + (Ip2 — I73)2_]
QZ
2 %“{ﬂ£r1[21T4\/W+ + (6 + lrsw)Zy] 2\/%1T7a{ﬂ1€rl(wz - DI,
~3 - ﬁ ) (Agg)
q q
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A (VW = 1(af (—IsZy + [pE) —ay(IsZ, + [pE))
-2+ = /6
_ R lyi(af +ap)Brrvw® — 1
v6g
n (af + ap)BrriZ [=Vw? = L(ly3Q + 1yr Q) + lya€y)
Voy?
n R Iy (=af +ag)pprivw* =1
Voy?
i (af = ap)BrriZ [—Vw? — (15 Qy + 1nQ) + 144
V6
2 S
— 2\/;05{@,2 W2 - 1[21T1\/W— + (ZTZ - ZT3)Z_] COS 91
2 T gT 2 T 3T (1,2
+ 2 gaL/}R[ZIT4‘/W+ + (lT6 + lT5W)Z+] COS 91 -2 §ZT7aL/)7R(W - 1>Z+ COS 91 s (Agh)
A_3_ = sinel{_ loslL (o0 + B )i (1 (af —ag)By)riz-
NN NN
_ V201 2Ura W (raw- = 1) + (g (rac =wy) + Ips(ryw- = 1))2+]} (A8i)
QZ
R {zv4<1 +(a} +a)BDE,  Lu(l+ (af — b))z
_43p— = S1n +
’ 2 V2 V2
n 2V2a B2l /W (rawo = 1) + (e (ras = wy) + lps(raw_ = 1))Z+]} (A8;)
e ’
A v~ cod? 0 f lys(a) + ap)prEy  la(—a) + aj)BrE_
—t+3 1+ 2 \/E \/E
- 2V2ap fpr 2Upy (rawy — Dyw= + (rs(raowy = 1) + lyg(ra — W—))2+]} (A8K)
2]2
|
Here, again, we have written only the s, = 1 amplitudes. (raow = 1)dyy  (ra- —w)dy; (Bla)

The s, = 2 amplitudes for A, — A%(3/27)lv follow from fo=dyi + 1+ ry 1+ry
the conjugation relation
_ (w = D[radyy + dys]
Az, (0w, W) fi=dy =y , (B1b)

= ei(‘S[Hl/Z)ﬂhéﬁv (ﬂ)ASbSCSISb (” - 91’ w_, W+)’ (Ag)

fi=dy. (Blc)
where /! is defined as in Eq. (A2), and the exchange w, <> ( 1)d ( d
FAsW — Far— W
w_ implies Vw? —1 — —vVw? —1 everywhere in the gy =d4 — Al A2 _ Al 43 (B1d)
amplitudes. — ' I
(w+ 1)[ra-das + dys]
APPENDIX B: FORM FACTOR BASES 9+ =dur + . » (Ble)
The transformation from the LQCD helicity basis [29] to
the HQET basis (6) for A, — A%(1/27) g1 = day, (BIf)
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hy = dp +dpy, + dps 4 (1 = w)dpa, (Blg)
hy, =dp — (raw=1dr  (ra = W)dn’ (B1h)
il+ =dr, (Bli)
’u:dn+(w+ Mra-dr + T?J’ (B1j)

1+rA*

which are denoted with a “(}7)” superscript in Ref. [29].

The transformation from the LQCD helicity basis
[29,37,38] to the HQET basis in Egs. (9) and (11) for
Ay = A5(3/27)

2(W + 1)(VA*W - l)lvz

Fo=2(w+ 1)l -

1- N
~ 2(ra- —w)(w+ 1)ly3 i 2(w + 1)ZV4, (B2a)
L —rp T=ra
2(w2 — 1)[7"/\*[\/2 + lV3]
F,=2w=1)l
L =2(w—=1)ly + 1+ 7y
2w =)l (B2b)
I+ rp
F) =2(w—=1)ly —lyg, (B2c)
Fio=ly,, (B2d)
2(w=1)(rpsw = 1)1y
Gy =2(w—=1)I
0=2(w—1)ly + 1+ 7y
N 2(ras —w)(w=1)las 2(w— l)lA“, (B2e)
1+ 7y Try
2 2 -1 «l l
Gy = 2w+ iy (W* = D)[ralag + Lys]
1 —rp
+2(r/\ —W)ZAAL’ (B2f)
1- F A
G, =2(w+ 1)l — Lps, (B2e)
Gy = L, (520
Hy =2(w=1)[lr = Iz + 3]
+ 2lpy + 2wlys 4 2l — 2(w? — 1)lpy, (B21)
H =2(w-1)I]
L=2w=1)lp + 1+ 7y
+ 2(rpe =w)w=1)lps (14 rpe =2w)lpy
1 + N 1 + N
(raw = Dlps  (ra- —w)lzg (B2j)
1+ rp L+ ra
g (=)l (L= raw)lys
U=
1 + T 1 + N
(w =)l (B2K)
1+ 7y

H+ = 2<W -+ 1)lT1 - 21T4’ <B21)
. 2w =1)[raslpy+1
HJ_:2(W+1>ZT1_ (W )[rA Tt T3]
1—7"A*
_(1_r/\*+2W)ZT4_(W+1)[’"A*ITS+ZT6}, (B2m)
1—1"/\* 1—}’/\*
i, :_(1+rA*)lT4_(W+1)[’”/\*ZT5+ZT6]‘ (B2n)
1 - N 1- N

In Ref. [29] each of these A, — A%(3/27) form factors is
denoted with a corresponding lowercase base symbol and a
“(37)” superscript. One may verify straightforwardly that
the six tensor form factors are orthogonal to the kernel (16).

APPENDIX C: LQCD FIT RESULTS

Performing the LQCD form factor fit with HQS-break-
ing parameters as described in Sec. IV B, one obtains

o(1) =09 +0.2,
61(1) =0.6+0.2,
$.(1) = =08 +0.5,

€q,, = 0.01 £ 0.03,
€q,, = 0.06 £ 0.07,
€q,, = 0.8 £0.2,

o =-22+0.6,

¢,(1) = =0.2£0.3,
€q,, = 0.7£0.2,
€q,, =—08+02,
€q,, = —0.05 £ 0.02,

€q, = 09402, €q, =0.9+02,
€q, =—001£002, e, =0.04+0.098,
e, =0.1£0.3, e, =02+02,

€, =—-020+0.05 ¢, =0.01+00l,
e, =00+03, €, = 01402,

e, =03+0.1, e, = —0.04 £ 0.08,
e, =00+03, e,, =03+03,

e,, = 0.140.1, e, = 0.01 £0.10,

e, =—001 008, ¢ =-01+02. (C1)

The uncertainties are estimated using Monte Carlo sam-
pling of the likelihood function to generate a profile
likelihood for each parameter and determine its values at
which Ay? = 1.

APPENDIX D: AMPLITUDE COUNTING AND
TENSOR POLARIZATIONS WITH THE SPINOR-
HELICITY FORMALISM

Here we use the formalism of Ref. [34]. Since insertions
of p,s/m can always be used for massive particles to
convert dotted to undotted indices, we can write the
amplitude—stripped of the external massive spinor-helicity
variables—as a tensor in the undotted indices and totally
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symmetric in the each of the 25; indices associated with the
external particle carrying spin S;. Such a tensor can be

expressed in terms of products of O, = P]{aﬁl’gﬂ} and

(at most one) €, factor. In the case of A, — A7 (3/27)
mediated by the (pseudo)tensor operator, one has a three-
point amplitude between a spin-1/2, spin-3/2, and a spin-1
particle, since JP(Or) =17 @ 1=. Therefore, counting
all the possible independent amplitudes is equivalent to
counting how many ways one can construct My g 5. .1,
(symmetric in the f and y indices) in terms of either
(a) three Ogyp’s or (b) two Ouy’s and one €45 It is
straightforward to see that the number of possible con-
tractions is 3 + 3 = 6.

Considering insertions of p,;/m, one may also easily see
how the different representations of the spin-1 polarization
tensors are equivalent. The canonical representation for

0.+.- s :
€qp ~ Ppolarization vectors is

while 62’;_’_ is usually written as

— laﬁ&
€ - 9
m

0 _ /1(1;1{'1 + 77(17]('1 +
Coi = om ’

aa

and the momentum ¢, = A Ay + 1471, It is trivial to show
that

Y 1 L% Y
656‘;/ g W (ﬂaﬂ/ﬂﬂﬂy - naﬂﬁ"lanﬁ) = _62}" (D3)

where we have used [17j] = m. The case of egjiq/y} is even

more trivial, as contracting with ql; /m converts €° g into egy.
Q

Similar relations hold for the other polarizations. Returning
to Lorentz index notation, one reproduces Eq. (14).
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