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Abstract Introduction: Alzheimer’s Disease Neuroimaging Initiative (ADNI) is now in its 10th year. The pri-
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mary objective of the magnetic resonance imaging (MRI) core of ADNI has been to improve methods
for clinical trials in Alzheimer’s disease (AD) and related disorders.
Methods: We review the contributions of the MRI core from present and past cycles of ADNI
(ADNI-1, -Grand Opportunity and -2). We also review plans for the future-ADNI-3.
Results: Contributions of theMRI core include creating standardized acquisition protocols and qual-
ity control methods; examining the effect of technical features of image acquisition and analysis
on outcome metrics; deriving sample size estimates for future trials based on those outcomes; and
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piloting the potential utility of MR perfusion, diffusion, and functional connectivity measures in
multicenter clinical trials.
Discussion: Over the past decade the MRI core of ADNI has fulfilled its mandate of improving
methods for clinical trials in AD and will continue to do so in the future.
� 2015 The Authors. Published by Elsevier Inc. on behalf of the Alzheimer’s Association. This is an
open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/
4.0/).
Keywords: Alzheimer’s disease; Alzheimer’s Disease Neuroimaging Initiative; ADNI; Diffusion; MRI; Neuroimaging;
Perfusion; Resting functional MRI
1. Introduction

The overarching objective for the Alzheimer’s Disease
Neuroimaging Initiative (ADNI) magnetic resonance imag-
ing (MRI) core has been to improve methods for clinical tri-
als in Alzheimer’s disease (AD) and related disorders. Our
approach has included the following elements: develop stan-
dardized MRI protocols; port these to all needed platforms
of the three major MR vendors (GE, Siemens and Philips);
qualify all scanners at baseline and requalify following up-
grades; perform near real time quality control (QC); perform
and post publicly, quantitative measurements that are rele-
vant to AD clinical trials on all scans [1].

ADNI-1 focused primarily on structural MRI to study
morphological changes associated with AD [1]. Although
the ADNI cohort was recruited to study AD, not vascular
disease, ADNI-1 included a T2/proton density sequence to
ascertain incidental vascular changes. Subjects with hemi-
spheric infarctions at baseline were excluded from ADNI-1,
but white matter hyperintensities of any severity were not
excluded. ADNI-GO/2 retained this focus on anatomic
changes inADbut added aFluidAttenuation InversionRecov-
ery (FLAIR) sequence to better depict cerebrovascular disease
and also added a T2* gradient echo sequence for the detection
of cerebral microbleeds (CMB) [2]. ADNI-GO/2 also added
“experimental” sequences for perfusion MRI (arterial spin
labeling, ASL), diffusion MRI (diffusion tensor imaging,
DTI), and task-free functional MRI (TF-fMRI) also known
as resting fMRI [3]. These sequences were selected because
they are a major focus of modern imaging science (more so
than anatomic MRI). Our thinking was that functional mea-
sures, particularlyASL andTF-fMRI,might bemore sensitive
to early disease-related effects than anatomic measures. A
fourth experimental sequence was added after ADNI-GO/2
had begun—a high-resolution coronal T2 fast spin echo for
the purpose of measuring hippocampal subfield volumes [4].
These “experimental” sequences were performed in a
vendor-specific manner to pilot their potential use in multi-
center clinical trials: DTI on GE systems; TF-fMRI on Philips
systems; ASL; and coronal T2 on Siemens systems. Reasons
for this approach were: (1) We used only vendor product
sequences inADNI-GO/2 (i.e. noworks in progress sequences
were used, because these require a research license for each
site), and some of these sequences were not available as prod-
uct from all MR vendors at the time ADNI-GO/2 began, and
(2) implementation of these sequences was highly variable
across vendors. To optimize the uniformity of acquisition we
limited each of these sequences to a single vendor [3].

This report is divided into two major sections—the first
outlines contributions of the ADNI MRI core to date (i.e.
ADNI-1, GO/2) and the second outlines plans for ADNI 3.
2. Accomplishments of the ADNI-MRI core to date

2.1. Technical standards

Amajor goal of ADNI-MRIwas the standardization of im-
aging methods to facilitate MRI in clinical trials. Ideally, vari-
ation in quantitative measures across subjects and over time
should be a product of disease effects, not due to nonuniform
imagingmethods. To achieve the goal of standardized acquisi-
tions across all scanners and across time, protocolswere devel-
oped thatwere compatiblewith a variety of hardware/software
configurations within each of the three major MRI vendors’
product lines [1]. A total of 59 3T systems and 40 1.5T scan-
ners have been qualified and requalified over time as needed
with upgrades. This resulted in a large infrastructure of harmo-
nized MRI scanners at ADNI sites which have been used in
various clinical trials in AD and related disorders. Vendor-
and version-specific protocols are publically posted which re-
sulted in the wide use of the ADNI-MRI protocols both by the
pharmaceutical industry and academic entities.

ADNI methods also include near real-time QC of all ex-
aminations. QC results are used within ADNI to identify
subjects who may have medical problems, to select subjects
with failed examinations for rescans, and to label the quality
of scans for analysis purposes. QC was managed by the
Mayo group. Once uploaded, every MR study was examined
by a fully automated software program created at Mayo to
check tens of imaging parameters in each image file against
the protocol standard (which was specific for vendor/scanner
model/software version). Scans were also viewed and graded
manually by a MR technologist to ascertain quality prob-
lems such as motion artifact and also potential medical find-
ings. Scans that failed protocol checking or visual quality
prompted a rescan. All scans with potential medical findings
were reviewed by MDs (CRJ or KK) at Mayo.

The ADNI phantom was designed at the beginning of
ADNI-1 to address the need for a high-resolution three-
dimensional (3D) geometric phantom for quantitative struc-
tural MRI. The ADNI phantom was initially used to correct
for changes in scanner geometric scaling over time, scanner
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qualification, and ongoing scanner QC [5]. The ADNI phan-
tom was also adopted for assessing scanner performance by
other multisite studies (e.g., Systolic Blood Pressure Inter-
vention Trial: Memory and Cognition in Decreased Hyper-
tension, Atherosclerosis Risk in Communities, Dominantly
Inherited Alzheimer Network, and AddNeuroMed) [6].
The ADNI phantom was designed to correct several imaging
artifacts and some of these were addressed later by improved
vendor products. This is described in more detail in the
following section. Consequently, ADNI now uses this phan-
tom only for scanner qualification and requalification. A
separate phantom scan is no longer acquired with each pa-
tient examination [3]. The success of the ADNI phantom,
however, raised awareness in the MR community about the
need for a high-resolution 3D geometric phantom for quan-
titative structural MRI. This led the International Society of
Magnetic Resonance in Medicine (ISMRM) Committee on
Quantitative MRI along with the National Institute of Tech-
nology Standards (NIST) to design the NIST-ISMRM MRI
System Phantom [7]. The NIST-ISMRM system phantom
[7] uses the ADNI phantom design for geometric fidelity
but also incorporates additional elements. It also addresses
issues identified over the years of phantom use in ADNI
including enhanced physical robustness.
2.2. Image postprocessing

The state of the MRI field when ADNI-1 was launched in
2004 raised concerns about, (1) the stability of geometric
scaling over time, (2) image intensity nonuniformity, and
(3) geometric warping. All these effects can add noise/error
to quantitative anatomic measures and thus correcting these
should improve measurement precision. Offline postprocess-
ing corrections addressing each of these three issues were
therefore instituted in ADNI-1 [1]. When ADNI-1 began,
the MRI field had begun moving away from single channel
transmit/receive head coils, which have relatively uniform
intensity profiles, to multiarray receive-only head coils which
do not. Studies by the ADNI-MRI core showed that standard
artifact-correction methods could be improved on and opti-
mized for multiarray receiver coils. To correct for the inherent
intensity nonuniformity in the multiarray receiver coils [8]
ADNI instituted an image nonuniformity postprocessing
step for all 3D T1 scans. These produced significant improve-
ment in uniformity for individual scans and reduction in the
normalized difference image variance when using masks
that identified distinct brain tissue classes, and when using
smaller spline smoothing distances (e.g., 50–100 mm) for
magnetization prepared rapid acquisition gradient echo
sequences. These optimized settings may assist future large-
scale studies where 3T scanners and multiarray receiver coils
are used, such as ADNI, so that intensity nonuniformity
does not influence the power of MR imaging to detect disease
progression and the factors that influence it [9].

A second technical problem was image distortion due to
gradient nonlinearity. The three major vendors have had
different levels of distortion correction for 3D scans depend-
ing on scanner software version. Some software versions had
full 3D correction, some 2D correction, and in some cases
images were acquired with no distortion correction. Offline
gradient distortion correction was applied as necessary by
the MR core to bring all images to the equivalent of a full
3D correction for all 3D T1 images. Over time, all vendors
ultimately provided 3D correction as product, consequently
distortion correction in now accomplished using on-scanner
vendor product methods.

The final image artifact ADNI addressed was changes in
geometric scaling over time. Initially, the ADNI phantom
was scannedwith each patient examination and this informa-
tion was used to correct for changes in scanner geometric
scaling over time. However, analyses performed by the
ADNI-MRI core revealed that linear scaling through image
registration performed this task as well or better than correc-
tion by simultaneous phantom measurement; and scaling
corrections, by either method, reduced within-subject vari-
ability and thereby sample size estimates by 10% or more
[10]. Moreover, with improvements in scanner design over
time, significant scaling drift became uncommon. Conse-
quently, the use of the ADNI phantom for this purpose was
discontinued in ADNI-2.
2.3. MR measures performed

The operations of theMRI core described to this point ad-
dressed technical issues of protocol design, site qualifica-
tion, QC, and image postprocessing. However, a second
major thrust of the core was to provide quantitative measures
that were relevant to AD clinical trials. The research groups
of the ADNI core responsible for providing specific mea-
sures are listed below.

Structural MRI measures: boundary shift integral—Uni-
versity College London (UCL); Freesurfer—San Francisco
VA (SFVA); tensor-based morphometry (TBM)—University
Southern California (USC); TBM-Syn—Mayo Clinic;
quantitative anatomical regional change—Quarc (Univer-
sity of California San Diego); cerebrovascular disease—
UCDavis; cerebral microbleeds—Mayo; ASL—SFVA; hip-
pocampal subfields—SFVA; DTI—USC; TF-fMRI—Mayo.

Results from these analyses have had a wide ranging
impact. Some results are listed below by topic. Topics
were selected for presentation that addressed the central
aim of ADNI of improving clinical trial methods, were the
subject of large numbers of reports in the literature, or both.
2.4. Assessing effects of MRI hardware on structural MRI
measures, and methods for accommodating these effects

When ADNI 1 began, clinical practice at many academic
centers was transitioning from 1.5T scanners to 3T; however,
many sites had not made this transition. Consequently, clin-
ical trials in AD were typically being carried out at 1.5T [1].
One of the aims of ADNI 1 was to compare structural MRI
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measures at 1.5T versus 3T to determine if field strength had
a significant impact on quantitative measures that were rele-
vant to AD clinical trials. ADNI investigators found that the
two field strengths were roughly comparable with no major
drawbacks unique to either [11,12]. Because of greater
signal to noise and the greater flexibility for more
advanced scanning techniques at 3T, ADNI-GO/2 was
conducted entirely at 3T [3].
2.5. Use of acceleration for 3D T1 MRI

One of the questions that arose during the design phase
for the ADNI-GO/2 MR protocol was should the 3D T1
sequence be accelerated? Acceleration reduces imaging
time, allows more sequences to be acquired in an imaging
session of fixed duration, and potentially could reduce
motion-related artifacts, albeit with the penalty of reduced
signal to noise compared with nonaccelerated imaging.
The literature available during the planning of ADNI-GO/
2 did not provide a definitive answer to this question. There-
fore, ADNI-2 was designed to assess the effect of accelera-
tion on quantitative measures used in AD clinical trials.

Analyses by the MR core did not detect consistent differ-
ence between quantitative measures from accelerated versus
unaccelerated acquisitions. Two studies [13,14] applied
tensor-based morphometry (TBM) to measure brain changes
in accelerated and nonaccelerated MRI scans, and no signif-
icant difference was detected in numerical summaries of at-
rophy rates over a 6- and 12-month scan interval, in any
patient group or in controls. Whole-brain, voxel-wise map-
ping analyses revealed some apparent regional differences
in 6-month atrophy rates when comparing all subjects irre-
spective of diagnosis (n5 345), but no such whole-brain dif-
ference was detected for the 12-month scan interval
(n5 156). Scan acceleration may influence some brain mea-
sures, but had minimal effects on TBM-derived atrophy
measures, and effect sizes for structural brain changes
were not detectably different in accelerated versus nonaccel-
erated data.

Changing from unaccelerated to accelerated scans within
an individual subject’s time series typically causes major
problems for measurements of change over time but with
postprocessing methods to compensate for contrast differ-
ences atrophy rates could be measured with relatively little
adverse effect for some but very noticeable effects for other
vendor systems [15]. Therefore, based on the data from
ADNI-GO/2, our recommendation is that the acceleration
of 3D T1 scans for morphometry is not harmful, but a given
study should choose one approach or the other and use that
approach consistently.
2.6. Improved image processing methods for structural
MRI, and sample size estimates for clinical trial design

ADNI-MRI data have been used extensively to develop
and evaluate the utility of new methods to analyze anatomic
MRI data, particularly longitudinal data as a potential
outcome measure in clinical trials. Methods that have been
applied extensively to ADNI data include tensor-based
morphometry (TBM) [16–18], free surfer, improvements
to the boundary shift integral (BSI) [19], and quantitative
anatomical regional change (Quarc) [20–24].

TBM, for example, was used to estimate rates of struc-
tural brain atrophy, N5 5738 scans, fromADNI participants
scanned with both accelerated and nonaccelerated T1-
weighted MRI at 3 Tesla [25]. TBM uses nonlinear image
registration, sometimes based on elasticity or fluid me-
chanics, to “warp” or compress an individual’s baseline
scan onto a subsequent scan. The resulting warping field re-
veals the whole profile of atrophy or expansion as a color-
coded map (Fig. 1), and tissue loss rates can be summarized
in regions of interest, such as the hippocampus or temporal
lobe. Some groups proposed the use of “statistically prede-
fined regions of interest (ROIs)”—or stat-ROIs—that used
a portion of the scan data to identify regions that change
the most, or that differ the most between patients and con-
trols. To avoid circularity, changes in these regions were
computed on the rest of the data. Several papers noted that
atrophy rates computed in these stat-ROIs were higher
than standard anatomical regions of interest such as the tem-
poral lobes, offering greater effect sizes to detect change and
group differences. A further advance used linear discrimi-
nant analysis (LDA) to home in on regions of the image to
compute atrophy. Gutman et al. [26] showed how to incorpo-
rate different features (changes in ventricular surface, Jaco-
bians from TBM) in an LDA framework to generate a
weighted map used for identifying a univariate summary
measure that could be used to measure disease progression,
and potentially disease modification of a successful inter-
vention. By incorporating information from surface models
of the lateral ventricles, with TBM measures, this method,
which uses continuous weights on the features, performed
much better than the binary hard thresholding approach of
the “statistical” ROI. It also provides lower sample sizes
(in some cases with potentially nonoverlapping confidence
intervals) with other well-established methods.

Taking advantage of the large amount of serial MRI data
generated in ADNI-1 it was possible to make improvements
to the BSI (Fig. 2) to provide longitudinally consistent multi-
time-point atrophy rate measurements [19]. Such consis-
tency and lack of bias is particularly important for longer
studies with multiple imaging time points which have
become increasingly common in AD trials [27]. Automation
of analysis methods is particularly valuable for large studies.
Based on template-based and label fusion methods, accurate
and fully automated brain and hippocampal segmentation al-
gorithms were developed and validated in ADNI [28–31].
The automated and manual segmentations produced very
similar results (Jaccard Index .0.98 for brain and .0.80
for hippocampus). This contributed to the European
Medical Agency’s decision to approve the use of
hippocampal volume measures to enrich clinical trial



Fig. 1. Tensor-based morphometry (TBM). This figure, adapted from Hua et al. [25] shows how TBM can visualize the profiles of brain tissue loss and expan-

sion, throughout the brain, in this case over a 12-month interval. These average maps of brain tissue loss for different diagnostic groups can be summarized to

produce single “numeric summaries” of atrophy rates, as a percentage per year. Brain regions offering greatest group discrimination included the temporal lobes

(shown in blue), or specially defined regions within them.
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populations in prodromal AD/mild cognitive impairment
(MCI). The automated segmentation was combined with
the boundary shift integral to provide a fully automated
image processing pipeline for accurate and consistent
brain and hippocampal atrophy measurements over
multiple time points; such automation, avoiding manual
involvement and potential bias, was attractive for trials
potentially seeking regulatory approval [32].

A common metric by which different algorithms have
been assessed are sample size estimates for clinical trials.
Using a therapeutically induced reduction in the natural
rate of atrophy as an outcome measure could considerably
reduce sample sizes needed for trials. ADNI has contributed
significantly to growth in this area and rates of change on
anatomic MR have consistently performed quite well in
comparison to all other biomarker and cognitive indices
[24,33–37].

One group applied LDA to features fromTBM and surface
models of ventricular regions, to identify brain regions that
gave highest effect sizes in detecting brain change rates and
Fig. 2. Boundary shift integral (BSI). Coronal, volumetric (three-dimensional or 3D

after an interval are shown. The second scan is aligned (spatially registered) to the

cerebrospinal fluid (CSF) interface (green overlay on third image). The BSI, the s

provides a means of quantifying atrophy occurring between the two scans.
group differences. A 2-year trial using these measures
requires 31 (point estimate) AD subjects, or 56 subjects
with MCI to detect 25% slowing in atrophy with 80% power
and 95% confidence [26]. In a head-to-head comparison on all
available ADNI-1 data, Gutman et al. [26], FreeSurfer
ventricular measures give 2-year point estimates of 90 for
AD and 153 for MCI. An FMRIB Software Library tool,
known as SIENA, achieved a 1-year point estimate for sample
size of 132 for AD and 278 for MCI. Quarc entorhinal mea-
sures achieved 2-year point estimates of 44 for AD and 134
for MCI. MRI measures commonly offered greater effect
sizes than typical clinical and positron emission tomography
(PET)-derived measures derived in the same subjects.

In comparing MRI metrics of brain change, some impor-
tant lessons were learned. As some methods fail on some
subsets of the scan data, Wyman et al. [38] advocated that
all head-to-head comparisons of methods be conducted on
the same data set, explicitly noting any data throw-out;
this effort led to the definition of “standard” MRI data sets
for ADNI. Second, some early versions of TBM
) T1-weighted MRI scans from the same individual scanned at baseline and

first. Atrophy occurring between the two scans results in a shift at the brain/

um of the displacement of the brain/CSF boundary across the whole brain,
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overestimated brain changes due to very complex sources of
bias in the method (see Hua et al., 2015 [25] for an unbiased
method and a discussion). Arguably, these methodological
improvements would not have been identified without the
many time points collected by the ADNI-MRI data sets,
which allowed consistencies and nonlinearities in the brain
changes to be critically evaluated with multiple independent
methods.

To guide future trial design it was important for ADNI to
provide a realistic “real-world” model of phase 2/3 trial data
including all the heterogeneity in scanners inevitable in
large multicenter studies. ADNI included therefore multiple
manufacturers, scanner types, and software versions. This
meant that MR-based metrics could be needed to accommo-
date this heterogeneity and be tested on it. Tissue-specific
intensity normalization and parameter selection was intro-
duced to the BSI to create the K-means normalized BSI
(KN-BSI); this was shown to significantly improved sample
size estimates [39]. Estimated sample sizes using whole
brain atrophy rate with KN-BSI were shown to be 20%
lower than for the previous classic BSI. To give 80% power
to detect a 25% reduction in progression while controlling
for normal aging: samples sizes (95% CI) using KN-BSI
were 223 subjects per arm (154, 342), compared with 284
(183, 480) for classic BSI [31]. In addition, a generalized
BSI was developed by estimating adaptively a nonbinary
exclusive or region of interest from probabilistic brain seg-
mentations of the baseline and repeat scans, to better
localize and capture the brain atrophy [40]; sample sizes
were reduced by a further 15%. These advances, developed
and tested in ADNI, have gone on to be adopted in several
phase 3 trials [41].

Using the clinical and biomarker detail available in ADNI
it was possible to show theMR-based sample sizes estimates
could potentially be further reduced by adjusting for base-
line characteristics such as disease severity or measures of
amyloid pathology [37]; adjusting for 11 predefined covari-
ates reduced sample size estimates by up to 30%.

When using the rate of atrophy as an outcome measures,
it is important to recognize that not all structural changes that
occur over time in older adults are attributable to latent AD
pathology [42,43]. Thus it is important to take into account
changes that occur in normal aging when calculating sample
size estimates when atrophy is used as an outcome variable
[22,24,27,44,45].

Heterogeneity among groups was also addressed. The
diagnostic category of MCI contains subgroups that experi-
ences different rates of cognitive decline [46,47]. The same
is true of subjects classified as cognitively normal (CN). For
example, older patients decline at a slower rate than younger
patients [24,48]; in some studies women decline at a faster
rate than men [49]; individuals who test positive for cerebro-
spinal fluid (CSF) amyloid or tau pathology decline at a
faster rate than those who do not [50]; individuals who
show atrophy [44,50] or a positive amyloid PET scan [51]
at baseline decline faster than those who do not; individuals
who carry the APOE 34 allele decline at a faster rate than
those who do not [44,49].
2.7. Predicting future clinical/cognitive decline

In the context of improving methods for clinical trials a
question of interest has been the efficacy of various bio-
markers, including MRI, in predicting future cognitive
decline. Selecting subjects for inclusion in clinical trials
who are likely to decline cognitively over the typically short
duration of a clinical trial can reduce costs considerably
[22,24,44,50,52]. A number of studies have used ADNI
data to assess this and have generally found that MRI is as
effective as any biomarker (or more so) in predicting
short-term future clinical decline [53–57]. These studies
contributed to the European Medical Agency’s decision to
approve the use of hippocampal volume to enrich clinical
trial populations in prodromal AD/MCI [58,59].

Many MR measures beyond hippocampal volume, how-
ever, are predictive of cognitive decline. For example, tem-
poral and parietal volumes can identify cognitively healthy
individuals who are at risk for future memory decline. In
particular, use of the most accurate region model, which
included the hippocampus, parahippocampal gyrus, amyg-
dala, superior, middle, and inferior temporal gyri, superior
parietal lobe, and posterior cingulate gyrus, resulted in a
fitted accuracy of 94% and a cross-validated accuracy of
81% [52].

Analyses using Freesurfer software [60] demonstrated
that enforcing local linearity on the imaging features using
an unsupervised learning algorithm called local linear
embedding [61] were able to better train classifiers, such
as support vector machines for predicting future conversion
to AD from baseline MRI scans [62]. Most strikingly, the
approach significantly improved predictions whether MCI
subjects remained stable within a 3-year period or converted
to AD. In another study [63] atrophy rates in some brain re-
gions, including the hippocampus and entorhinal cortex,
generally varied nonlinearly with age and furthermore
leveled off with increasing age in normal and stable MCI
subjects in contrast to MCI converters and AD patients,
whose rates progressed further.
2.8. Associations between structural MRI and cognitive
performance, CSF biomarkers, and PET

Numerous studies have been performed with ADNI data
assessing associations between structural MRI and cognitive
performance, CSF biomarkers, or PET. Results and conclu-
sions from these studies are too extensive to catalog here but
some representative findings are outlined later.

One of the goals of ADNI was to compare the ability of
different biomarkers to distinguish cross-sectionally between
different patient groups. All biomarkers (MRI, fluorodeoxy-
glucose positron emission tomography, and CSF) can
distinguish between diagnostic groups of healthy controls,
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MCI, and mild AD patients [64]. However, these measures
are complementary, and the combined use of different types
of biomarkers can improve the diagnostic discrimination and
prediction of decline [53,65–69]. CSF amyloid beta (Ab) and
florbetapir PET were independent predictors of several AD
features, including brain structure, brain function, CSF tau,
and cognitive impairment. Isolated low CSF Ab with
normal florbetapir PET was most common in healthy
controls, and least common in AD dementia. The findings
suggest that CSF Ab and florbetapir PET partly capture
different aspects of amyloid pathology and that these may
differ by disease stage [70].

Examining the association of different biomarkers with
rates of change in structural MRI can provide insight into
the pathobiological basis of the disease. For example, amyloid
pathology, as evidence by low CSFAb levels, was associated
with clinical decline and accelerated neurodegeneration only
in the presence of elevated CSF phosphorylated tau [71,72].
Other proteins, such as heart fatty acid binding protein and
clusterin may also be implicated in AD neurodegeneration,
as they were associated with increased atrophy in medial
temporal lobe among individuals with low CSF Ab,
irrespective of CSF phospho-tau181p status [73,74].

Ab pathology, estimated by CSF Ab, is associated with
atrophy already before reaching previously established cut-
offs for abnormality [75]. Supporting this view, CSF Ab in
the low normal range was associated with the development
of CSF Ab positivity within 3 years, suggesting emerging
amyloid pathology [76]. Furthermore, longitudinal reduc-
tions in CSF Ab (from normal baseline levels) were associ-
ated with accelerated atrophy in CN controls, suggesting
early effects of amyloid pathology on brain structure [77].

Baseline CSF Ab predicts the progression of hippocam-
pal volume loss across the clinical groups in the AD contin-
uum. APOE 34 carrier status amplifies the degree of
neurodegeneration in MCI. Understanding the effect of in-
teractions between genetic risk and amyloid pathology will
be important in clinical trials and our understanding of the
disease process [78].

In CN older adults and subjects with MCI, age and Ab
have independent effects on hippocampal atrophy rate. In a
multivariable model including age, Ab, APOE 34 genotype,
gender, and white matter lesions, only Ab status is signif-
icantly associated with hippocampal atrophy rate. Hippo-
campal atrophy rate is higher in Ab1 participants, but
most hippocampal atrophy rate is not accounted for by
Ab status in either cohort. Because treatments directed at
reducing Ab would not be expected to slow the non-Ab-
related hippocampal atrophy rate, these results can inform
the design of future clinical trials testing the efficacy of
such therapies in CN and MCI individuals [79].

Lower CSF Ab and higher tau concentrations were asso-
ciated with increased rates of regional brain tissue loss [80]
and the patterns varied across the clinical groups. CSF
biomarker concentrations are associated with the character-
istic patterns of structural brain changes in CN and MCI that
resemble to a large extent the pathology seen in AD. There-
fore, the finding of faster progression of brain atrophy in the
presence of lower Ab levels and higher p-tau levels supports
the hypothesis that CSFAb and tau are measures of early AD
pathology. Moreover, the relationship among CSF bio-
markers, APOE 34 status, and brain atrophy rates are region-
ally varying, supporting the view that the genetic
predisposition of the brain to amyloid and tau mediated
pathology is regional and disease stage specific [81,82].

Regional brain atrophy and metabolism partly mediate
the effects of CSF Ab on longitudinal cognition in MCI.
The mediating effects of atrophy and metabolism were ad-
ditive, explaining up to w40% of the effects of CSF Ab.
However, CSF Ab also had effects on cognition that were
not captured by these changes in brain structure and func-
tion, and brain structure/function was also related to
cognition independently of amyloid [83]. Low cerebral
perfusion is associated with CSF Ab pathology in normal,
MCI, and AD [84].

InMCI, increased Ab burden in the left precuneus/cuneus
and medial-temporal regions was associated with increased
brain atrophy rates in the left medial-temporal and parietal
regions; and in contrast, increased Ab burden in bilateral
precuneus/cuneus and parietal regions was associated with
increased brain atrophy rates in the right medial temporal re-
gions. The results could be used to develop a specific AD-
specific imaging signature for diagnosis [85]. ADNI results
from a different analysis, however, do not support the notion
of a consistent AD-specific signature of atrophy based on
comparing amyloid PET positive versus negative CN elderly
[86].

In an attempt to identify a neuroimaging signature predic-
tive of brain amyloidosis as a screening tool to identify indi-
viduals with MCI that are most likely to have high levels of
brain amyloidosis or to be amyloid free, it was shown that
Ab positivity in late MCI could be predicted with an 88% ac-
curacy (with .90% sensitivity and specificity at 20% false-
positive rate and false-negative rate thresholds) using a
structural MRI-based brain amyloidosis signature and
APOE genotype. The performance of hippocampal volume
as an independent predictor of brain amyloidosis in MCI
was only marginally better than random chance (56% classi-
fication accuracy). Ab-positive early MCIs could be identi-
fied with 83% classification accuracy, 87% positive
predictive value, and 84% negative predictive value by
multidisciplinary classifiers combining demographics data,
APOE 34-genotype, and a multimodal MRI-based Ab score
combining structural and perfusion signatures of brain
amyloidosis [87,88].

A network diffusion model to mathematically predict dis-
ease topography resulting from the transneuronal transmis-
sion of neurodegeneration on the brain’s connectivity
network was used to predict the future patterns of regional
atrophy and metabolism from baseline regional patterns of
atrophy. The model accurately predicts end-of-study
regional atrophy and metabolism starting from baseline
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data, with significantly higher correlation strength than
given by the baseline statistics directly. The model’s rate
parameter encapsulates overall atrophy progression rate;
group analysis revealed this rate to depend on diagnosis
and baseline CSF biomarker levels. This work helps validate
the model as a prognostic tool for AD assessment [89].

Among individuals with MCI, those with subsyndromal
symptoms of depression had a lower volume of white matter
lesions and a higher frequency of APOE 34 alleles than indi-
viduals without symptoms of depression. At baseline, sub-
syndromal symptoms of depression individuals showed
significantly more disability than individuals with no symp-
toms of depression after controlling for the effect of cogni-
tive functioning, intracranial brain volume, white matter
lesions, and APOE status [90].

Many ADNI reports have attempted to determine which
CSF and cognitive measures, and which blood biomarkers
are most highly correlated with brain atrophy on MRI, and
which changes in imaging and other biomarkers were most
tightly linked. Although the core pathology of AD is clearly
linked with changes on MRI [91,92], several papers
identified and explored associations between atrophy on
MRI and body mass index, measures of physical exercise,
diabetes, homocysteine levels [93], and a range of hormone
measures (e.g., leptin [94]), lipid, and metabolic markers
obtainable from standard blood tests. Some groups advo-
cated measuring these markers in any MRI-based clinical
trial, as they may offer added value in predicting atrophy
or brain reserve beyond tests of classical AD pathology in
the brain or CSF [95].
2.9. Modeling biomarker trajectories

One of the objectives ofADNI-2was to assess the temporal
evolution of the different AD biomarkers outlined in a hypo-
thetical biomarker model published in 2010 [96,97]. The
hypothesis to be tested was that biomarkers of brain
amyloidosis became abnormal in the preclinical phase of the
disease, but their rate of change plateaus [98,99] as overt
clinical symptoms evolve such that the correlation between
amyloid biomarkers and clinical symptoms is limited. In
contrast, biomarkers of neurodegeneration become
abnormal later in the disease, but their temporal evolution
correlates well with the evolution of clinical symptoms.

Several studies have examined the question of temporal
ordering of AD biomarker abnormalities in autosomal domi-
nant AD [100–103]. These have uniformly supported the
proposed sequence of events proposed in the hypothetical
model [96,97,104] where biomarkers of b-amyloidosis
become abnormal first, followed by tau or FDG
(depending on the study), followed by structural MRI,
followed lastly by overt clinical symptoms.

Studies in elderly subjects address sporadic AD and
ADNI studies fall into this category. Studies using data
from ADNI or other elderly cohorts to test this biomarker
model (with one exception [105]) have shown that empiric
data [98,99,106–111] largely supports the principles
outlined hypothetically [96,97]. The difficulty in studying
AD biomarkers in elderly subjects is that older subjects
with AD typically have AD mixed with other age-related
non-AD pathologies. Thus attributing cognitive or neurode-
generative biomarker abnormalities exclusively to AD is
confounded by the fact that both cognition and neurodegen-
eration occur due to co-occurring non-AD features of aging.
The problems that SNAP (suspected non-Alzheimer’s path-
ophysiology) [104,112] presents in modeling AD
biomarkers in elderly subjects are discussed in the
following paragraph.

An event-based model was developed to make use of the
multimodal data sets available in ADNI [106]. This allowed
the determination of the sequence in which AD biomarkers
become abnormal without reliance on a priori diagnostic in-
formation or explicit biomarker cut points. This data-driven
model supported the hypothetical model [96,97] of
biomarker ordering in amyloid-positive and APOE-positive
subjects, but suggested that biomarker ordering in noncar-
riers might diverge from this sequence. However, apparent
divergence from the hypothetical model [96,97] in APOE
noncarriers is very likely due to the fact that AD-like neuro-
degenerative biomarker abnormalities (anatomic MRI, FDG
PET, and CSF tau) in amyloid negative individuals becomes
a progressively more prevalent condition in the population
with advancing age [113]. This condition, neurodegeneration
positive but amyloid negative, has been termed suspected
nonamyloid pathophysiology (or SNAP) [114]. The onset
of amyloidosis in the population is accelerated by roughly
7 years in APOE carriers relative to noncarriers [115]. Thus
modeling of AD biomarker ordering is particularly difficult
in elderly APOE noncarriers due to the high prevalence of
SNAP in the elderly. Individuals without amyloidosis are
increasingly more likely to have non-AD aging-related neu-
rodegeneration (i.e. SNAP) with advancing age [112].
2.10. Use of structural MRI in the assessment of new
diagnostic criteria for AD in its different clinical phases
(preclinical, MCI/prodromal, and AD dementia)

Two major working groups have published updated diag-
nostic criteria for AD in recent years [116–120]. These
modern criteria use imaging and CSF biomarkers to
improve diagnostic certainty and disease specificity.
Structural MRI is one of the imaging measures used in all
diagnostic criteria in all clinical phases (preclinical, MCI/
prodromal, and AD dementia). Several groups have used
the ADNI data to assess validity and utility of these new
diagnostic criteria [114,121–130].
2.11. Associations between MR and genetic variants

A number of studies have assessed the effect of APOE 34
on structural MRI both cross-sectionally and longitudinally.
APOE 34 has consistently been found to be associated with
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higher rates of atrophy across all clinical stages of the dis-
ease—including CN subjects. In particular hippocampal
atrophy rates in ε4 carriers were shown to be higher in AD
and MCI subjects compared with APOE 34 noncarriers
[131]. Even after adjustment for whole-brain atrophy rate,
the difference in hippocampal atrophy rate between ε4 car-
riers and noncarriers remained statistically significant in
AD and (only) in those MCI subjects who progressed to AD.

A further innovation was the use of genome-wide
screening in conjunction with ADNI-MRI data to identify
common genetic variants that might predict brain changes
[132,133]; these are reported as part of the ADNI Genetics
Core paper (this issue). Notably, some studies related brain
atrophy on MRI to variants in candidate genes such as the
obesity-associated gene, FTO [134], dopamine-related
genes [135], opiate receptor genes [136], folate-related
genes [137], and rare variants that confer high odds ratio
of AD, such as TREM2 [138]. Confirmation of these genetic
effects requires very large samples, and ADNI has contrib-
uted to several high-profile papers analyzing brain MRI in
over 30,000 individuals [139].
2.12. Use of ADNI scans to create a harmonized definition
of the hippocampus

Perhaps the most common anatomic structure measured
on structural MRI in the AD field is the hippocampus. How-
ever, boundary definitions vary widely from center to center.
Accordingly, one of the needs in the field identified several
years ago was a standardized definition of hippocampal
boundaries [140]. A consortium led by Giovanni Frisoni
has successfully addressed this issue [141–143]. ADNI
was the source of MRI data for the hippocampal
harmonization effort.
2.13. Impact of cerebrovascular disease

Coincident vascular brain injury is a common feature of
individuals diagnosed with dementia, including dementia
attributed to AD [144]. Therefore, despite the focus of
ADNI to study the effects of AD on diagnosis and prognosis,
the evaluation of vascular brain injury in ADNI is very rele-
vant to understanding the specific effects of AD pathology
on cognition to guide potential inclusion or stratification
strategies in future AD trials. Initial work developed an auto-
mated method to detect white matter hyperintensities
(WMH) [145]. Follow-up work in 804 subjects [146] found
that the extent of baseline and change in WMH volume was
associated with cognitive decline. Moreover, despite the low
level of vascular risk factors in the subject cohort, a signifi-
cant association between the extent of vascular risk and
extent of WMH was found. Follow-up studies found that
both the extent of WMH volume and levels of CSF Ab and
tau were associated with an increased rate of cerebral atro-
phy [147] and showed that both WMH and CSF amyloid
levels influence cerebral glucose metabolism and contrib-
uted to risk for conversion from MCI to dementia in ADNI
[148]. These publications strongly suggest that vascular
risk factors and WMH have a significant impact on brain
structure, function, and cognition within even a well-
selected clinical study population as modeled by ADNI
suggesting that subtle vascular risk and WMH—which
have effects independent of biomarkers of AD—should be
taken into account when designing clinical trials [149].

Comorbid disease processes, particularly the influence of
vascular disease, would be expected to be a common con-
founding effect [150] when attempting to identify the
earliest cognitive changes associated with AD pathology.
Biological heterogeneity is a consequence of mixed patho-
logical causes of cognitive impairment among individuals
diagnosed with presumedAD pathology. A series of publica-
tions by Nettiksimmons et al. examine this issue [151–153].
Initial analyses [153] used an unsupervised clustering
method using 11 different biomarkers identified three sepa-
rate subtypes within the CN cohort of ADNI. Comparison of
biomarkers found that group 3 had biomarker measures that
were similar to MCI and AD patients and showed significant
worsening of cognition over time, whereas group 1 looked
most normal on these measures, whereas group 2 had MRI
measures consistent with MCI and AD patients, but lacked
CSF amyloid indices of AD suggesting that this group was
similar to the recently identified SNAP [114]. Follow-up
analysis of group 2 by Nettiksimmons et al. [151] found
that these individuals had increased prevalence of vascular
risk factors, WMH, and atrophy supporting the notion that
vascular brain injury is common to a CN elderly cohort. Net-
tiksimmons et al. subsequently extended heterogeneity anal-
ysis to the MCI cohort [152]. In this case, despite the
assumption that the amnestic MCI is a strong AD pheno-
type [154], four separate groupings were identified.
Similar to the previous studies, group 1 was normal on all
biological markers. Groups 2 and 3, however, appeared to
have varying degrees of AD pathological signature, with
group 2 having normal appearing brain structural measures.
Group 4, which was the smallest, had a biological marker
signature identical to AD. The authors concluded by empha-
sizing the biological heterogeneity despite nearly identical
clinical phenotype and again emphasized the need to
assess this biological heterogeneity when considering future
treatment trials.

Estimates of premorbid intelligence quotient (possible
cognitive reserve) and biomarkers of neuronal damage,
including WMH, and amyloid pathology were shown to be
independent determinants of cognition [155].

Overall, measures of vascular disease in ADNI show that
concomitant WMH additive contributes to brain injury and
rate of cognitive decline which increases biological hetero-
geneity and may influence response to treatments specif-
ically targeting AD pathology. Future studies using the
expanded clinical phenotypes of ADNI-2 are likely to add
to the understanding of the influence of even mild vascular
brain injury on aging cognitive trajectories.



C.R. Jack Jr. et al. / Alzheimer’s & Dementia 11 (2015) 740-756 749
2.14. Cerebral microbleeds

A T2* gradient echo scan was added to ADNI-GO/2 to
acquire detailed information about CMB and superficial
sidersosis. This was prompted by findings of increased risk
incident CMBs in individuals receiving immunotherapy
for AD and concerns raised about the risk this posed for pa-
tients with CMBs detected at baseline [156,157]. In the
ADNI cohort, the prevalence of superficial siderosis at
baseline was 1% and the prevalence of CMB was 25%
[158]. The baseline prevalence of CMB increased with age
and b-amyloid load. APOE 34 carriers had higher numbers
of CMB compared with APOE 33 homozygotes, however,
after accounting for differences in Ab load, the apparent
ε4 effect was reduced, suggesting that the risk of CMB for
APOE 34 carriers is mediated by Ab load. The topographic
densities of CMBs were highest in the occipital lobes and
lowest in the deep/infratentorial regions. Greater number
of CMBs at baseline was associated with a greater rate of
incident CMBs.

2.15. Arterial spin labeling

Arterial spin labeling (ASL) was performed on Siemens
systems in ADNI-GO/2, using a pulsed labeling approach.
Using an integrated multimodality MRI framework, the
UCSF group studied the extent to which cortical thinning
and reduced regional cerebral blood flow (rCBF) explain
individually or together variability in dementia severity
[159,160]. This study showed that cortical thinning
dominated the classification of AD and controls compared
with contributions from rCBF. However, there was also a
positive interaction between reduced rCBF and cortical
thinning in the right superior temporal sulcus, implying
that structural and physiological brain alterations in AD
can be complementary. In another ASL study, the UCSF
group explored the relationship between rCBF variations
and amyloid-b pathology [84]. Furthermore, the UCSF
group explored whether amyloid-b has different associations
with rCBF and gray matter volume. We found that a higher
amyloid-b load was related to lower rCBF in several regions,
independent of diagnostic group. Moreover, the associations
of amyloid-bwith rCBF flow and volume differed across the
disease spectrum, with high amyloid-b being associated
with greater cerebral blood flow reduction in controls and
greater volume reduction in late MCI and dementia, poten-
tially indicating abnormal rCBF precedes brain tissue loss.

2.16. Diffusion tensor imaging

DTI was performed on GE systems in ADNI-GO/2. A
goal of ADNI-2 has been to determine the added value of
diffusion-weighted MRI for understanding and monitoring
brain changes in aging, MCI, and AD.

Demirhan et al. [161] quantified the added value of DTI
measures, over and above structural MRI, and showed that
they provided added diagnostic accuracy for the classifica-
tion of disease stages. In an effort to rank which DTI-
based measures were most beneficial for diagnostic
classification, Nir et al. [162] found that both voxel-based
maps and region-of-interest analyses revealed widespread
group differences in fractional anisotropy (FA) and in
all standard diffusivity measures. All DTI measures
were strongly correlated with all widely-used clinical ratings
(Mini Mental State Exam, Clinical Dementia Rating – sum
of boxes, and Alzheimer’s disease Assessment Scale –
cognitive subscale). When effect sizes were ranked, mean
diffusivity measures tended to outperform FA measures for
detecting group differences. ROIs showing strongest group
differentiation (greatest effect sizes) included tracts that
pass through the temporal lobes, as expected, but also tracts
in some posterior brain regions. The left hippocampal
component of the cingulum showed consistently high effect
sizes for distinguishing diagnostic groups, across all diffu-
sivity and anisotropy measures, and in correlations with
cognitive scores.

Several studies also used the ADNI-DTI scans to compute
measures of anatomical connectivity, including measures of
the brain’s network properties. In a longitudinal study using
both diffusion weighted imaging and anatomic MRI, Nir
et al. [163] found that baseline DTI network measures pre-
dicted future volumetric brain atrophy in people with MCI,
suggesting that DWI-based network measures may be an
additional predictor of AD progression. Further work used
fiber tracking (tractography) to assess the integrity of the
brain’s major fiber bundles. Nir et al. [164] found significant
differences in mean diffusivity (MD) and fractional anisot-
ropy between AD patients and controls, and MD differences
between people with late MCI [47] and matched elderly con-
trols. MD and FA measures from selected tracts were also
associated with widely used clinical scores.

Prasad et al. [165] performed a ranking of connectivity
measures, to see which ones best distinguished AD from
normal aging. Graph-based network measures—such as
small-world properties, clustering, and modularity—offered
additional value in differentiating diagnostic subgroups rela-
tive to just using the raw connectivity matrices; there was
also additional predictive value in computing a very dense
connectivity matrix to represent the anatomical connectivity
between all adjacent voxels in the image [166]. This
approach, known as “flow-based connectivity analysis” com-
plemented the more standard analysis of large-scale tracts
interconnecting cortical and subcortical regions of interest.

Additional work assessed what kinds of methods were
best for detecting diagnostically relevant features in DTI.
Care is needed in clinical analyses of brain connectivity, as
the density of extracted fibers, and the imaging protocol,
may affect how well a network measure can pick up differ-
ences between patients and controls. Prasad et al. [167]
focused on global efficiency, transitivity, path length, mean
degree, density, modularity, small world, and assortativity
measures computed from weighted and binary undirected
connectivity matrices. Of all these measures, the mean nodal
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degree—ameasure of the total number of detectable connec-
tions for each brain region—best distinguished diagnostic
groups. High-density fiber matrices, computed with
advanced probabilistic tractography methods, were most
helpful for picking up the more subtle clinical differences,
for example, between MCI and normals, or for distinguish-
ing subtypes of MCI (early versus late) [47]. Generalized
low-rank approximations—a technique for filtering brain
networks—and a method called “high-order singular value
decomposition” both boosted disease classification accuracy
based on structural brain networks [168,169].

Advanced mathematical work also identified new DTI-
based metrics that showed differences between AD and
healthy aging. These included analysis of the “rich club” co-
efficient, and a measure of the complexity of the structural
backbone of the white matter, called the k-core [170–172].
Additional studies evaluated new measures of algebraic
connectivity and spectral graph theory, and showed how
they revealed new aspects of network breakdown in AD
and MCI [168,173]. Additional work studied the effects of
scanner upgrades on DTI measures, and ranked DTI
measures in terms of their stability under upgrades in
scanning protocols [174,175].

The ADNI-DTI data set also served as a public platform to
develop and test new analysis methods. Jin et al. (2015), for
example, used the data set to develop an algorithm for extract-
ing the fornix from brain DTI scans—a key tract of interest
when studying hippocampal fiber connections with the rest
of the brain. Others studied the diffusion signal at each voxel,
and found it useful as a basis for classification of AD [176].

The ADNI-DTI data were also the target of new kinds of
genetic analysis. Warstadt et al. [177] found evidence that
cholesterol-related genes affected white matter fiber integrity;
Jahanshad et al. [178,179] used the ADNI-DTI and Genome
Wide Association Study data as part of a large-scale genetic
study, by the Evidence-based Network for the Interpretation
of Germline Mutant Alleles consortium, to discover common
genetic variants that affect brain connectivity.
2.17. Task free fMRI

Resting or task-free fMRI was performed on Philips
systems in ADNI-GO/2. Major ADNI findings to date are
consistent with the literature in this area. The default mode
network has distinct subsystems with characteristic cognitive
associations [180]. Measures of functional connectivity in
the posterior default mode network decline with advancing
cognitive impairment. Measures of functional connectivity
in the anterior default mode network are elevated early
in the disease process—that is, in amyloid positive CN indi-
viduals—but decline in later stages of dementia. These
nonmonotonic associations between functional connectivity
and clinical progression present challenges for the use
of TF-fMRI as a simple AD biomarker, but also present
opportunities for a deeper understanding of AD biology and
how TF-fMRI could be used in clinical trials.
2.18. Hippocampal subfields

A high-resolution coronal acquisition for hippocampal
subfield measures was performed on Siemens systems in
ADNI GO/2. The ADNI 2 subfield add-on project aimed
to (1) test the feasibility of acquiring high-resolution hippo-
campal images of high quality in a large multisite project;
and (2) compare different methods for automated subfield
volumetry using a standardized data set. The preliminary re-
sults suggest possible superiority of a high-resolution based
automated subfield volumetry over standard T1-based hip-
pocampal volumetry for the distinction among AD, MCI,
and healthy controls [4].
3. ADNI 3 MRI

The primary objectives of ADNI-1 and -2 were to
improve methods for AD clinical trials and to provide an ev-
idence base and data sets to guide future trial designs. The
objectives of the MRI core in ADNI-3 will continue this
focus, but with new aims that incorporate experience gained
in ADNI-2 plus technical advances in MRI. In ADNI-3 we
will continue to acquire structural MRI, FLAIR, and
T2*gradient recalled echo scans. Due to its high measure-
ment precision, structural MRI continues to provide the
best (smallest) sample size estimates for powering clinical
trials of any measure (clinical, imaging, or biofluid). And,
methods for acquisition, image processing, and analysis of
structural MRI continue to advance, yielding continually
improving results. Similarly, knowledge about cerebrovas-
cular disease and microbleeds is needed in every subject in
clinical trials. As a vehicle for improving clinical trials,
ADNI would be incomplete without these measures.

To date results from the experimental sequences have pro-
vided information not available on structural MRI, but over-
all have not shown better diagnostic power compared with
structural MRI. We believe that this may be due to the fact
that “lowest common denominator” acquisition schemes
were used to optimize homogeneity across the different
MR systems within each vendor product line. Our approach
in ADNI-3 will be different in that wewill optimize the capa-
bilities of the high performance systems available to ADNI.
This requires that we take a two-tiered approach where
more basic TF-fMRI and diffusion sequences are acquired
on the lower performance systems while the most advanced
possible acquisition protocols are used on high performance
systems. At this point the diagnostic value of coronal high-
resolution T2 for hippocampal subfield analysis is still being
evaluated as a potential addition to the above.

Given that the primary objective of ADNI is to improve
methods for clinical trials, it might at first seem out of scope
to pursue advanced methods as described previously which
cannot be performed at all sites. However, technical ad-
vances in MR are continuous. Methods that are advanced
at the beginning of ADNI-3 (late 2016) are likely to be stan-
dard and widely available later in the ADNI-3 grant cycle.
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Our objective is to anticipate the cycle of technical advances
so that we have data demonstrating the use of advanced
methods for clinical trials (or lack thereof) toward end of
the ADNI-3 grant cycle when these methods should be
widely available. Viewed from this perspective, incorpo-
rating methods that are considered advanced at the begin-
ning of the ADNI-3 grant cycle fulfills the mandate of
ADNI to serve the interests of AD clinical trials.

Our aims will include: creating standardized summary
numeric measures for each MR modality; comparing struc-
tural MRI with PET (amyloid PETand tau PET), clinical and
biofluid measures; developing or using analysis methods for
high performance acquisitions that take advantage of
advanced MRI technology; comparing ASL, TF-fMRI, and
diffusion; comparing basic versus advanced metrics for
diffusion, resting fMRI, and ASL. It is widely assumed
that more advanced methods are diagnostically superior to
standard measures, but this has not been formally tested in
an ADNI-like environment. The design of ADNI-3 will
ensure that all participants are scanned using all sequences,
unlike ADNI-2, fostering the creation of standard data sets to
compare what each sequence offers and fostering multi-
modal approaches.
RESEARCH IN CONTEXT

1. Systematic review: The authors searched PubMed
for: ADNI and MRI, ADNI and DTI, ADNI and
ASL, ADNI, and functional MRI. The authors’ pub-
lication lists were also used in compiling the bibliog-
raphy.

2. Interpretation: This article reviews contributions of
the magnetic resonance imaging (MRI) core of Alz-
heimer’s Disease Neuroimaging (ADNI) over the
past decade. The major objective of the ADNI MRI
core is to improve methods for clinical trials in Alz-
heimer’s disease (AD) and related disorders. TheMR
core has addressed this charge at a variety of levels.

3. Future directions: The MR core is currently in plan-
ning stages for ADNI-3. If funded, ADNI-3 will
continue to provide anatomic MRI, vascular MR im-
aging, and imaging for cerebral microbleeds. ADNI-
3 will expand efforts in diffusion, perfusion, and
functional connectivity MRI.
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